WO2009014050A1 - Flame-retardant resin composition - Google Patents

Flame-retardant resin composition Download PDF

Info

Publication number
WO2009014050A1
WO2009014050A1 PCT/JP2008/062868 JP2008062868W WO2009014050A1 WO 2009014050 A1 WO2009014050 A1 WO 2009014050A1 JP 2008062868 W JP2008062868 W JP 2008062868W WO 2009014050 A1 WO2009014050 A1 WO 2009014050A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
weight
parts
resin
Prior art date
Application number
PCT/JP2008/062868
Other languages
French (fr)
Japanese (ja)
Inventor
Keiichiro Ino
Fumitaka Kondo
Kazuhiko Inoue
Makoto Soyama
Masatoshi Iji
Original Assignee
Teijin Chemicals Ltd.
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd., Nec Corporation filed Critical Teijin Chemicals Ltd.
Priority to JP2009524462A priority Critical patent/JP5323701B2/en
Priority to CN2008801000764A priority patent/CN101790565B/en
Publication of WO2009014050A1 publication Critical patent/WO2009014050A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes

Definitions

  • the present invention relates to a resin composition containing a polycarbonate resin and inorganic particles. More specifically, the present invention relates to a resin composition that contains a polycarbonate resin and inorganic particles and becomes a molded article having excellent flame retardancy and appearance. Background art
  • plastic composite materials filled with inorganic particles to impart flame retardancy include polycarbonate resins.
  • Patent Document 1 JP 2004-10825 A discloses a resin composition in which inorganic particles such as silica particles are blended in a polycarbonate resin. This document proposes to improve the flame retardancy by devising the shape of the inorganic particles.
  • Patent Document 2 JP 2001-152030 A discloses a resin composition containing particles having a particle diameter of 10 nm to 100 nm obtained by pulverizing an inorganic porous material. Specifically, a resin composition in which porous particles obtained by pulverizing silicon oxide or aluminum oxide are blended with a polycarbonate resin or a polypropylene resin has been proposed. When inorganic particles are thus contained in the polycarbonate resin, the flame retardancy of the resin composition can be improved. However, it is difficult to stably achieve a high level of flame retardancy.
  • Patent Document 3 discloses a resin composition in which polycarbonate resin is mixed with particles containing a composite of silicon dioxide and aluminum oxide, particularly flash ash. . This resin composition has excellent flame retardancy, but there is room for improvement in the appearance of molded articles such as silver.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-10825
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-152030
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2005-272808 Disclosure of Invention
  • an object of the present invention is to provide a resin composition which has a high flame retardancy and gives a molded article having an improved appearance of a molded article such as silver.
  • polycarbonate particles (component A) contain a composite of silicon dioxide and aluminum oxide as inorganic particles, and D50 particle diameter is 1 or less (component B).
  • component A polycarbonate particles
  • component B polycarbonate particles
  • a resin composition containing a fluorine resin (C component), an elution inhibitor (D component), a flow modifier (E component) and an acid-modified polyolefin wax (F component) can achieve the above-mentioned problems.
  • the present invention has been completed.
  • the object of the present invention is (A) 100 parts by weight of polycarbonate resin (component A),
  • the resin composition of the present invention provides a molded product having high flame retardancy and improved appearance of the molded product such as silver.
  • the inorganic particles (component B) are preferably fly ash.
  • the fluororesin (component C) is preferably a polytetrafluoroethylene resin having a fibril forming ability.
  • the dissolution inhibitor (component D) is preferably divalent and Z or trivalent iron ions and sulfur.
  • a salt with an acid ion more preferably ferrous sulfate ⁇ hydrate or Schwernite, and more preferably ferrous sulfate ⁇ 7hydrate.
  • the flow modifier (E component) is preferably at least one selected from the group consisting of aliphatic polyester resins and trimellitic acid esters. By using these flow modifiers, the appearance of molded articles such as silver can be improved.
  • the acid-modified polyolefin wax (F component) is preferably an acid-modified polyolefin wax having a carboxyl group and Z or carboxyl anhydride.
  • a phosphorus stabilizer (G component) per 100 parts by weight of the polycarbonate resin (component A).
  • G component a phosphorus stabilizer in which 50% by weight or more of its 10% by weight is a phosphate compound and Z or a phosphate compound is more preferable.
  • the polycarbonate resin (component A) is preferably bisphenol A type polycarbonate.
  • the present invention includes a molded article comprising the resin composition according to claim 1.
  • FIG. 1 is an evaluation photograph of the silver generation ratio of Example 4 and Comparative Example 4. BEST MODE FOR CARRYING OUT THE INVENTION
  • the polycarbonate resin used as component A in the present invention is obtained by reacting divalent phenol with a carbonate precursor.
  • a carbonate precursor examples thereof include an interfacial polymerization method, a melt transesterification method, a solid phase ester exchange method of a carbonate precursor, and a ring-opening polymerization method of a cyclic carbonate compound.
  • dihydric phenols used here are hydroquinone, resorcinol, 4,4, -biphenol, 1,1-bis (4-hydroxyphenol) ethane, 2,2-bis (4-hydroxyphenol).
  • Enyl) propane (commonly known as bisphenol A), 2,2-bis (4-hydroxy-1-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1_bis (4-hydroxyphenyl) 1-phenylphenyl, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -1,3-, 3-trimethylcyclohexane, 2,2-bis ( 4-hydroxyphenyl) pentane, 4, 4 'one (p-phenylene diisopropylidene) diphenol, 4, 4'-(m-phenylene diisopropylidene) dipheno 1, 1 bis (4-hydroxyphenyl) 4-1 isopropyl cyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl
  • the component A is preferably a bisphenol A type polycarbonate.
  • Bisphenol A type polycarbonate is a polycarbonate resin in which bisphenol A is preferably 50 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more of divalent phenol.
  • component A in addition to bisphenol A type polycarbonate which is a general-purpose polycarbonate, a special polycarbonate manufactured using other divalent phenols is used. Can be used as component A.
  • BPM 4, 4′-one (m-phenol di-diisopropylidene) diphenol
  • B is—TMC 1, 1-bis (4- Hydroxyphenyl) cyclohexane, 1, 1 bis (4-hydroxyphenyl) — 3, 3, 5-trimethylcyclohexane
  • B is—TMC 1, 1-bis (4- Hydroxyphenyl) cyclohexane
  • TMC 5-trimethylcyclohexane
  • B is—TMC 1, 9 Polycarbonate (homopolymer or copolymer) using bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene
  • BCF 9,9-bis (4-hydroxy-3-methylphenyl) fluorene
  • the component A constituting the resin composition is preferably a copolymer polycarbonate (1) to (3) below. Yes.
  • the BPM component is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%).
  • a BCF component of 20 to 8 mol% (more preferably 25 to 60 mol%, more preferably 35 to 55 mol%).
  • the BP A component is 10 to 95 mol% (more preferably 50 to 90 mol%, more preferably 60 to 85 mol%). And a copolymerized polycarbonate containing 5 to 90 mol% (more preferably 10 to 50 mol%, more preferably 15 to 40 mol%) of the BCF component.
  • the BPM component is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%).
  • B is— 20-80 mol% of TMC component (more preferred Copolymer polycarbonate which is preferably 25 to 60 mol%, more preferably 35 to 55 mol%.
  • These special polycarbonates may be used alone or in combination of two or more. These can also be used by mixing with a commonly used bisphenol A type polycarbonate.
  • a polycarbonate having a water absorption rate of 0.05 to 0.15%, preferably 0.06 to 0.113% and Tg of 120 to 180, or
  • Ding 8 is 160 to 250, preferably 170 to 230, and the water absorption is 0.1 to 0.30%, preferably 0.13 to 0.30%, more preferably 0. Polycarbonate which is 14-0.27%.
  • the water absorption rate of polycarbonate is a value obtained by measuring the moisture content after immersion in water at 23 according to I S062-1980 using a disk-shaped test piece having a diameter of 45 mm and a thickness of 3. Omm. It is.
  • Tg glass transition temperature
  • DSC differential scanning calorimetry
  • carbonate precursor carbonyl halide, carbonic acid diester, haloformate, or the like is used, and specific examples include phosgene, diphenyl carbonate, or dihaloformate of divalent phenol.
  • the polycarbonate resin (component A) used in the above is a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, and an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid.
  • the branched polycarbonate resin increases the melt tension of the resin composition of the present invention, and can improve the molding processability in extrusion molding, foam molding, and blow molding based on its strong properties. As a result, a molded product obtained by these molding methods having superior dimensional accuracy can be obtained.
  • the trifunctional or higher polyfunctional aromatic compounds used in such branched polycarbonate resins include 4, 6-dimethyl-2, 4, 6- ⁇ ris (4-hydroxydiphenyl) heptene 1, 2, 2, 4, 6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane 1, 1, 1-tris (3, 5-dimethyl-4-hydroxyphenyl) ethane, 2, 6-bis (2-hydroxy-5_methylbenzyl) 1-4 methylphenol, and 4 1 ⁇ 4-[1 , 1_bis (4-hydroxyphenyl) ethyl] benzene ⁇ -, ⁇ -dimethylbenzylphenol and the like are preferably exemplified.
  • polyfunctional aromatic compounds include fluorodalcine, phloroglucid, tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4 monobis (4,4-dihydroxytriphenylmethyl) ), Benzene, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, and acid chlorides thereof are exemplified.
  • 1,1,1_ ⁇ ris (4-hydroxyphenyl) evene and 1,1,1-tris (3,5_dimethyl-4-hydroxyphenyl) ethane are preferred, especially 1,1,1 tris (4— Hydroxyphenyl) ethane is preferred.
  • the structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate resin is 100 mol% in total of the structural unit derived from the divalent phenol and the structural unit derived from the polyfunctional aromatic compound.
  • such a branched structural unit is not only derived from a polyfunctional aromatic compound but also derived from a side reaction during a melt transesterification reaction without using a polyfunctional aromatic compound. There may be.
  • the ratio of the branched structure can be calculated by 1 H-NMR measurement.
  • the aliphatic difunctional carboxylic acid is preferably ⁇ , ⁇ -dicarboxylic acid.
  • aliphatic difunctional carboxylic acids include linear saturated aliphatic dicarboxylic acids such as sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, and icosanedioic acid.
  • alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid are preferred.
  • the bifunctional alcohol an alicyclic diol is more preferable, and examples thereof include cyclohexane dimethanol, cyclohexane diol, and tricyclodecane dimethanol.
  • Interfacial polymerization which is a method for producing polycarbonate resin, melt transesterification, solid-phase transesterification of force-bonate prepolymers, and ring-opening polymerization of cyclic carbonate compounds are various literatures and patent publications. This is a well-known method.
  • the viscosity average molecular weight ( ⁇ ) of the polycarbonate resin ( ⁇ component) is preferably 1 X 10 4 to 5 X 10 4 , more preferably 1.4 to 10 4 to 3 3 1 0 4 , more preferably 1.4 ⁇ 10 4 to 2.4 ⁇ 10.
  • Polycarbonate resins having a viscosity average molecular weight of less than 1 ⁇ 10 4 may not provide practically sufficient toughness and crack resistance.
  • a resin composition obtained from a polycarbonate resin having a viscosity average molecular weight exceeding 5 ⁇ 10 4 generally has a high molding processing temperature. It is inferior in versatility because it requires a high degree or requires a special molding method. High molding temperature tends to cause deterioration of deformation and rheological properties of resin composition.
  • the polycarbonate resin may be obtained by mixing those having a viscosity average molecular weight outside the above range.
  • a polycarbonate resin having a viscosity average molecular weight exceeding the above value (5 ⁇ 10 4 ) increases the melt tension of the resin composition of the present invention, and the extrusion molding, foam molding and blow molding are based on such characteristics. Molding processability can be improved. This improvement effect is even better than the branched polycarbonate.
  • the component A is a polycarbonate resin (A—3-1 component) having a viscosity average molecular weight of 7 ⁇ 10 4 to 2 ⁇ 10 6 , and a viscosity average molecular weight of 1 ⁇ 10 4 to 3 ⁇ 10 4
  • Polycarbonate resin (A—3—two components) and a viscosity average molecular weight of 1.6 X 10 4 to 3.5 X 10 4 (A_ 3 components) (hereinafter “high molecular weight component included”)
  • Polycarbonate resin ” (sometimes referred to as“ polycarbonate resin ”) can also be used.
  • the molecular weight of the A-3-1 component is preferably 7 X 10 4 to 3 X 10 5 , more preferably 8 X 10 4 to 2 X 10. 5, more preferably 1 X 1 0 5 ⁇ 2 X 1 0 5, particularly preferably 1 X 1 0 5 ⁇ : I. a 6 X 10 5.
  • the A- 3- 2 molecular weight of the component rather preferably the 1 X 1 0 4 ⁇ 2. 5 X 10 4, more preferably 1. 1 X 1 0 4 ⁇ 2. 4X 10 4, more preferably 1. 2 X 1 0 4 ⁇ 2. 4X 1 0 4, particularly preferably 1. a 2 X 10 4 ⁇ 2. 3 X 10 4.
  • High molecular weight component-containing polycarbonate resin (A-3 component) can be obtained by mixing the above A-3-1 component and A-3-2 component in various proportions and adjusting to satisfy the predetermined molecular weight range. .
  • the A-3-1-component is 2-40% by weight and the A-3-3 component is 60-98% by weight, more preferably A-3-1-
  • the component is 5 to 20% by weight and the A-3-2 component is 80 to 95% by weight.
  • the molecular weight distribution of polycarbonate resin is in the range of 2-3. Obedience Therefore, it is preferable that the A-3-1-component and the A-31-2 component of the present invention satisfy the range of the molecular weight distribution.
  • the molecular weight distribution is expressed by the ratio (MwZMn) of the weight average molecular weight (Mw) to the number average molecular weight (M n) calculated by GPC (gel permeation chromatography) measurement.
  • Mn and Mw are based on standard polystyrene.
  • the preparation method of the A-3 component is as follows: (1) A method in which the 8_3-1 component and the 8-3-2 component are polymerized independently and mixed, (2) Using a method of producing an aromatic polycarbonate resin exhibiting a plurality of polymer peaks in a molecular weight distribution chart by the GPC method, represented by the method disclosed in Japanese Patent No. 3 0 6 336, in the same system, such an aromatic polycarbonate A method for producing a resin to satisfy the conditions of the A-3 component of the present invention, and (3) an aromatic polycarbonate resin obtained by such a production method (the production method of (2)), and a separately produced A — 3 — 1 component and Z or A— 3— 2 components can be mixed.
  • the viscosity average molecular weight referred to in the present invention is as follows. First, a specific viscosity (r? SP ) calculated by the following formula is 20 and a Ostwald viscometer is measured from a solution in which 0.7 g of polycarbonate resin is dissolved in 100 ml of methylene chloride. Using
  • Viscosity average molecular weight M is calculated from the obtained specific viscosity (7 ⁇ SP ) by the following formula.
  • the calculation of the viscosity average molecular weight in the resin composition of the present invention is performed as follows. That is, the resin composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble component in the resin composition. Such soluble matter is collected by Celite filtration. Thereafter, the solvent in the obtained solution is removed. The solid after removal of the solvent is thoroughly dried to obtain a solid component that dissolves in methylene chloride. 0.7 g of such solid From the solution dissolved in 100 ml of len, the specific viscosity at 20 is obtained in the same manner as described above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as described above.
  • Inorganic particles are particles containing a composite of silicon dioxide and aluminum oxide. This means particles comprising a silicon dioxide phase and an aluminum oxide phase. Specific examples thereof include particles containing a solid solution of silicon dioxide and aluminum oxide, and particles obtained by fusing silicon dioxide particles and aluminum oxide particles. Fly ash is a suitable example of a particle containing such a complex.
  • inorganic particles (component B) having such a configuration excellent flame retardancy that cannot be obtained with silicon dioxide particles alone, aluminum oxide particles alone, or a mixture thereof. Can be realized.
  • the inorganic particles further include aluminum oxide particles and silicon dioxide particles in addition to the particles containing the composite.
  • the inorganic particles containing a plurality of different types of particles By using such inorganic particles containing a plurality of different types of particles, a resin composition having excellent flame retardancy can be stably obtained.
  • inorganic particles having such a structure include particles containing a composite oxide of silicon and aluminum, and inorganic particles made of a mixture of silica particles and alumina particles.
  • the fly ash described later can also be cited as an example of inorganic particles containing a plurality of types of particles.
  • fly ash examples include fly ash. While incineration ash obtained from garbage incinerators is combustion ash obtained by burning various miscellaneous things, fly ash is coal combustion ash from thermal power plants, so the identity of raw materials is clear The content of heavy metals other than silicon and aluminum is low compared to combustion ash. In addition, it is relatively easy to control the content of heavy metals and the like in fly ash. Therefore, fly ash also has the advantage that it does not adversely affect the environment when added as a filler to the material composition. In addition, when such inorganic particles are used, phosphorus-based flame retardants, halogen-based flame retardants, etc. Even if the compounding amount is reduced, a resin composition having sufficient flame retardancy can be obtained. It is preferable from the viewpoint of environmental protection that the amount of phosphorus flame retardant and halogen flame retardant is 0.
  • D 50 particle diameter of inorganic particles in the present invention (50% diameter: median diameter)
  • the number of large diameter powder and the small diameter powder In the present invention the number of particles having a particle size of 0.1 m or more is calculated.) Is preferably 1 tm or more, more preferably 2 m or more, most preferably 3; m or more.
  • the D 50 particle size is ⁇ ⁇ ⁇ ⁇ or less, preferably 8 // m or less, more preferably 7 m or less.
  • the flame retardancy of the resin composition is improved.
  • a decrease in moldability of the resin composition can be suppressed.
  • scattering of inorganic particles is suppressed, and workability and handling stability in the manufacturing process of the resin composition are improved.
  • the D 50 particle size is 3 / m or more, the flame retardancy of the resin composition is further improved.
  • scattering of inorganic particles is further suppressed, and workability and handling stability in the manufacturing process of the resin composition are further improved.
  • the D 50 particle size is 10 m or less, the flame retardancy of the resin composition is improved.
  • a decrease in moldability of the resin composition can be suppressed.
  • the D 50 particle size is 7 m or less, the carbonization of the polycarbonate resin is further promoted during combustion, and as a result, the flame retardancy of the resin composition is further improved.
  • fly ash usually has a D 50 particle size exceeding 10 m.
  • a fly ash having such a large particle size which is not directly used, but whose particle size is controlled by classification or the like.
  • the synergistic action of the polycarbonate resin (component A) and the inorganic particles (component B) is remarkably obtained, and excellent flame retardancy can be stably realized.
  • the moldability of the resin composition is maintained well.
  • Examples of the method for controlling the particle size of the inorganic particles (component B) include classification using a sieve having a specific opening, classification using an airflow classifier, and the like.
  • Inorganic particle (component B) in the present invention is the above particle size defined by D 50 particle size
  • the volume average particle diameter of the inorganic particles is preferably l; m or more, more preferably 3 m or more, preferably 10 xm or less, more preferably 7 m or less.
  • the volume average particle size is the average particle size obtained by dividing the sum of the product of the volume of a particle of a certain particle size and the number of particles of that particle size by the total volume of the particle. Measured by scattering method. When the volume average particle diameter of the inorganic particles is 1 m or more, the flame retardancy of the resin composition is improved.
  • the moldability of the resin composition is improved.
  • scattering of inorganic particles is suppressed, and workability and handling stability in the manufacturing process of the resin composition are improved.
  • the volume average particle size of the inorganic particles is 3 // m or more, the flame retardancy of the resin composition becomes even better.
  • scattering of inorganic particles is further suppressed, and workability and handling stability in the manufacturing process of the resin composition are further improved.
  • the volume average particle size of the inorganic particles is 10 m or less, the flame retardancy of the resin composition is improved.
  • the moldability of the resin composition is improved.
  • the volume average particle diameter of the inorganic particles is 7 / m or less, the flame retardancy of the resin composition is further improved.
  • the inorganic particles (component B) in the present invention satisfy the particle size conditions defined as follows in addition to satisfying the particle size conditions defined by D 50 particle size or volume average particle size. Is desirable. That is, it is desirable that the inorganic particles contain particles having a particle size of 20 ⁇ m or less, preferably 70 cumulative% (number cumulative) or more, more preferably 90 cumulative% (number cumulative) or more. Here, the number of particles with a particle size of 0.1 m or more is calculated. Flame retardancy is improved when the proportion of particles with a particle size of 20 m or less is 70% cumulative (number cumulative) or more based on the whole inorganic particles. In addition, a decrease in moldability of the resin composition is suppressed. In addition, when the proportion of particles having a particle size of 20 or less is 90 cumulative% (several cumulative) or more, the flame retardancy of the resin composition becomes even better. In addition, a decrease in moldability of the resin composition is further suppressed.
  • the particle size of the inorganic particles (component B) can be measured by a method such as cross-sectional observation with an electron microscope of a molded product obtained using the resin composition. Specifically, an ultrathin section of the resin composition is observed using a transmission electron microscope, or a cut surface of the resin composition is observed using a scanning electron microscope, and a photograph is taken for observation. Resin group from photo For spherical particles in the composition, the diameter of each particle is measured. Furthermore, the particle size of the non-spherical particles is obtained by calculating the projected area S of each particle, and using S, let (4 S / ⁇ ) X 0.5 be the particle size of each particle. The number of measurements shall be 100.
  • the particle diameter of the inorganic particles can be measured by the following light scattering method.
  • the particle size distribution can be measured by the light scattering method using an average of three measurements of 20 seconds.
  • a 2 g sample was placed in 30 ml of a 2 wt% aqueous solution of sodium hexaphosphate and subjected to ultrasonic dispersion (20 kHz, 300 kW, 3 minutes).
  • the content of the inorganic particles (component B) is 10 to 70 parts by weight, preferably 20 to 60 parts by weight, more preferably 30 to 50 parts by weight, based on 100 parts by weight of the polycarbonate resin (component A). More preferably, it is 35 to 45 parts by weight. If the content of inorganic particles (component B) is less than 10 parts by weight, sufficient flame retardancy of the resin composition cannot be obtained, and if the content of inorganic particles exceeds 70 parts by weight, the resin composition will deteriorate. It becomes more likely to generate silver. At the same time, it becomes difficult to obtain sufficient flame retardancy.
  • fly ash which is a more preferable inorganic particle in the present invention will be described below.
  • fly ash is preferably used as the inorganic particles in the present invention.
  • Fly ash (hereinafter referred to as “FA” as appropriate) refers to finely pulverized coal ash produced at thermal power plants that burn coal using the pulverized coal combustion method.
  • Fly ash contains the following ingredients: Here, the amount of components is an example.
  • Silicon dioxide content (silica S I_ ⁇ 2) is preferably 4 4 mass% or more der is, more preferably 5 0% by mass or more. Further, it is preferably 85% by mass or less, more preferably 75% by mass or less. When the content of silicon dioxide is within this range, the flame retardancy improving effect of the resin composition can be stably obtained by the synergistic action of the inorganic particles and the polycarbonate resin.
  • the content of aluminum oxide is preferably 10% by mass or more, and more preferably 15% by mass or more. Further, it is preferably 40% by mass or less, more preferably 30% by mass or less. When the aluminum oxide content is within this range, the flame retardancy improving effect of the resin composition can be stably obtained due to the synergistic action of the inorganic particles and the polycarbonate resin.
  • the total content of silicon dioxide and aluminum oxide is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 80% by mass or more. It is.
  • the total content of silicon dioxide and aluminum oxide is preferably 99% by mass or less, more preferably 95% by mass or less. When the total content of silicon dioxide and aluminum oxide is within this range, the flame retardancy improving effect of the resin composition can be stably obtained by the synergistic action of the inorganic particles and the polycarbonate resin.
  • Fly ash also includes particles that form complex oxides of silicon dioxide and aluminum oxide. Also included are particles in which silicon dioxide and aluminum oxide form a silicon dioxide phase and an aluminum oxide phase in the particles to form a multiphase structure. Note that components such as ferric (F e 2 ⁇ 3) or titanium oxide oxide (T I_ ⁇ 2) and oxide magnesium ⁇ beam (M G_ ⁇ ) and calcium oxide (C A_ ⁇ ), if a small amount, The flame retardancy and moldability of the resin composition are not particularly reduced. In addition to these oxides, fly ash contains trace amounts of heavy metals, but the concentration of trace amounts of heavy metals is lower than incineration ash obtained from garbage incinerators. This is because incineration ash is combustion ash obtained by burning various miscellaneous things, whereas fly ash is coal combustion ash from thermal power plants.
  • fly ash is a fine particle, and when viewed with an electron microscope, most of the particles are spherical. For this reason, when fly ash is used, flame retardancy can be improved while suppressing a decrease in moldability during molding of the resin composition. Since fly ash is generated in large quantities at thermal power plants, and most of it is industrial waste, it has the advantage of low procurement costs. Therefore, the manufacturing cost of the resin composition having flame retardancy can also be reduced. Further, since fly ash has relatively stable quality such as particle size and composition, a resin composition having flame retardancy can be obtained stably.
  • the D ⁇ 0 particle size of this fly ash can be controlled to 10 m or less. Therefore, flame retardancy can be stably realized by the synergistic action of the polycarbonate resin (component A) and the inorganic particles (component B). In addition, a decrease in moldability of the resin composition can be stably suppressed.
  • the fluororesin (C component) used in the present invention is a fluorine-containing compound that prevents melting and dripping at the time of combustion and further improves flame retardancy, and is typically a polytetrafluoro having a fibril formation ability.
  • Ethylene is mentioned.
  • polytetrafluoroethylene is sometimes simply referred to as PTFE.
  • PTFE with fibril-forming ability has an extremely high molecular weight, and tends to bind to each other by an external action such as shearing force to become fibrous.
  • the number average molecular weight determined from the standard specific gravity of PTFE is preferably 1 million to 10 million, more preferably 2 million to 9 million.
  • Such PTFE can be used in solid form or in the form of an aqueous dispersion.
  • PTFE with such fibril formation ability improves dispersibility in the resin, and in order to obtain better flame retardancy and mechanical properties, it is also possible to use a PTFE mixture in a mixed form with other resins It is.
  • Commercially available PTFEs having such fibril formation ability include, for example, Teflon (registered trademark) 6 J from Mitsui Dubon Fluorochemical Co., Ltd., Polyflon MP A FA500 and F-201 L from Daikin Chemical Industries, Ltd. be able to.
  • PTFE aqueous dispersions include Fullon AD-1 and AD-936 manufactured by Asahi Ishii Ifluoro Polymers Co., Ltd. Fullon D-1 and D-2 manufactured by Daikin Industries, Ltd. A representative example is Teflon (registered trademark) 30 J manufactured by Mitsui DuPont Fluorochemical Co., Ltd.
  • the mixed form of PTFE is as follows: (1) A method in which an aqueous dispersion of PTFE and an aqueous dispersion or solution of an organic polymer are mixed and co-precipitated to obtain a co-agglomerated mixture (JP-A-60-258263) And a method obtained by the method described in JP-A-63-154744). Further, (2) those obtained by a method of mixing an aqueous dispersion of PTFE and dried organic polymer particles (the method described in JP-A No. 4-272957) can be used.
  • PTFE Commercially available products of these mixed forms of PTFE include “Metablene A3800” (trade name) manufactured by Mitsubishi Rayon Co., Ltd. and “BLENDEX B449” (trade name) manufactured by GE Specialty I Chemicals. it can.
  • the proportion of PTFE in the mixed form is preferably 1 to 60% by weight, more preferably 5 to 55% by weight, in 100% by weight of the PTFE mixture. Achieving good dispersibility of PTFE when the proportion of PTFE is within this range be able to.
  • the content of the fluororesin (component C) is 0.01 to 2 parts by weight, preferably 0.05 to 1 part by weight, more preferably 100 parts by weight of the polycarbonate resin (component A). Or 0.1 to 0.6 parts by weight.
  • the resin composition of the present invention further contains an elution inhibitor (D component) that suppresses elution of components such as heavy metals and selenium / arsenic in the inorganic particles (B component).
  • D component elution inhibitor
  • B component elution inhibitor
  • An elution inhibitor is a substance supplemented by adsorbing heavy metal ions, etc. in inorganic particles (component B).
  • This elution inhibitor may be an adsorbent or an ion exchange resin that adsorbs the components in the inorganic particles.
  • an adsorbent or ion exchange resin that adsorbs components in inorganic particles in this way, it is possible to efficiently adsorb components such as heavy metals such as hexavalent chromium, lead, and mercury and selenium arsenic in inorganic particles. It is possible to efficiently reduce the environmental impact and the impact on the human body.
  • the dissolution inhibitor (component D) is preferably a salt of divalent and Z or trivalent iron ions and sulfate ions. More preferred is ferrous sulfate hydrate or Schwertmannite. Still more preferred is ferrous sulfate heptahydrate.
  • a salt of divalent or trivalent iron ions and sulfate ions in this way, heavy metals such as hexavalent chromium, lead, and mercury, and components such as selenium and arsenic are stably adsorbed in the inorganic particles. Therefore, it is possible to stably reduce the impact on the environment and the impact on the human body.
  • the elution inhibitor (component D) is preferably ferrous sulfate heptahydrate having less adverse effects because it deteriorates the appearance of the molded product as in the case of inorganic particles.
  • the relative mass ratio of the dissolution inhibitor (component D) to the inorganic particles (component B) is, for example, 1 / ⁇ , 400 or more, preferably 1 100 or more. Relative dissolution inhibitor If the mass ratio is higher than these values, the effect of suppressing the elution of heavy metals such as hexavalent chromium, lead and mercury and components such as selenium and arsenic from inorganic particles while maintaining high flame retardancy will be improved. To do.
  • the content of the dissolution inhibitor (component D) in the resin composition is 0.05 to 3 parts by weight, preferably 0.07 parts per 100 parts by weight of the polycarbonate resin (component A). ⁇ 2 parts by weight, more preferably 0.1 to 1 part by weight. If the content of the dissolution inhibitor is within this range, the occurrence of silver during molding is suppressed, and the appearance characteristics of the molded product made of the resin composition are improved.
  • the flow modifier (component E) used in the present invention is preferably at least one fluid modifier selected from the group consisting of aliphatic polyester resins and trimellitic acid esters. If an aliphatic polyester resin is incorporated with trimellitic acid ester, the behavior of the resin composition during combustion becomes stable. That is, the rank of U L 94 is comparable, but has the advantage of shortening the burning time.
  • Preferable examples of the aliphatic polyester include poly-strength prolactone.
  • poly force prolactone is a polymer of force prolactone, particularly ⁇ -force prolactone.
  • Part of the hydrogen atom or repeating unit of the methylene chain of the poly-strength prolactone may be substituted with a halogen atom or a hydrocarbon group.
  • the end of the polystrength prolacton may be subjected to end treatment such as esterification or etherification.
  • the molecular weight of Po Li caprolactone need not be particularly limited, but is usually 5 X 1 0 3 ⁇ 4 X 1 0 4 represents the number average molecular weight.
  • Such poly-prolacton can be produced by ring-opening polymerization of proprolacton in the presence of a catalyst such as an acid, base, or organometallic compound.
  • Trimellitic acid esters include Tory (2-ethylhexyl) trimellitate ( ⁇ ), Tory (normalooctyl) trimellitate ( ⁇ ⁇ ), Tory (isonolyl) trimellitate ( ⁇ ⁇ ⁇ ⁇ ) , Tree (isodecyl) trimellitate (TID TM) and the like.
  • Preferable examples include ⁇ (2-ethyl hexyl) trimellitate ( ⁇ ⁇ ⁇ ).
  • ABS resin AS resin, etc. can be used as flow modifiers wear.
  • ABS resin means a thermoplastic graph copolymer (ABS copolymer) obtained by graph copolymerization of a vinyl rubber component and a vinyl cyanide compound and an aromatic vinyl compound, and the graft copolymer, cyan A mixture of a vinyl fluoride compound and an aromatic vinyl compound copolymer (AS copolymer).
  • the copolymer of the vinyl cyanide compound and the aromatic vinyl compound is a resin made of a thermoplastic graft copolymer obtained by graft copolymerizing a cyanated vinyl compound and an aromatic vinyl compound to a gen-based rubber component.
  • the weight average molecular weight of the copolymer comprising such a vinyl cyanide compound and an aromatic vinyl compound is preferably 3.0 X 1 in a value measured in terms of standard polystyrene by GPC (gel permeation chromatography) method. 0 4 to 2.0 in the range of X 10 5, more preferably 6. 0 X 1 0 4 to 1. in the range of 4X 10 5, more preferably 9. 0 X 1 0 4 ⁇ 1. 2 X 10 is in the range of 5.
  • the proportion of the Gen rubber component in 100% by weight of the ABS resin component is in the range of 40% by weight or less. Is in the range of ⁇ 35 wt%, more preferably in the range of 8-30 wt%, particularly preferably in the range of 9-25 wt%.
  • the proportion of the component graphed in the gen-based rubber component is preferably 95 to 20% by weight, more preferably 92 to 50% by weight, based on 100% by weight of the ABS resin component.
  • AS resin is a resin made of the above-mentioned AS copolymer.
  • the AS resin may be produced by any of bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, but is preferably produced by bulk polymerization or suspension polymerization. It is preferably produced by a bulk polymerization method, and the polymerization method is the most common in the industry.
  • the copolymerization method may be either one-stage copolymerization or multistage copolymerization.
  • the weight average molecular weight of the AS polymer is preferably 4 ⁇ 10 4 to 2 ⁇ 10 5 in terms of standard polystyrene by GPC measurement.
  • the lower limit is more preferably 5 ⁇ 10 4 , and even more preferably 7 ⁇ 10 4 .
  • the upper limit is 1. 6X 10 5 Gayori weight, more preferably 1. 5 X 10 5.
  • F component acid-modified polyolefin wax
  • the acid-modified polyolefin-based wax which is the F component of the present invention is an acid-modified having an acidic group represented by a carboxyl group, a carboxylic anhydride group, a sulfonic acid group, a sulfinic acid group, a phosphonic acid group, and a phosphinic acid group.
  • a preferred embodiment of the F component of the present invention is an acid-modified polyolefin wax having at least one of the acidic groups exemplified above, and particularly preferably has a carboxyl group and Z or a carboxylic anhydride group. It is an acid-modified polyolefin series.
  • the concentration of the acidic group is in the range of 0.05 to: LO me Q / g, more preferably in the range of 0.1 to 6 meq Z g, and more preferably in the range of 0.5 to It is in the range of 4 meq Z g.
  • olefin fin wax examples include paraffin wax, micro-criss phosphorus wax, Fischer-Tropsch wax, and a one-year-old olefin polymer as paraffin waxes.
  • Examples of a method for bonding carboxyl groups to such a polyolefin wax include, for example, (a) a method of copolymerizing a monomer having a carboxyl group and an ⁇ -aged refin monomer, and (b) a polyolefin wax.
  • a method of bonding or copolymerizing a compound or monomer having a carboxyl group there may be mentioned a method of bonding or copolymerizing a compound or monomer having a carboxyl group.
  • a living polymerization method can be employed in addition to a radical polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization, and bulk polymerization. Furthermore, it is possible to polymerize after once forming a macromonomer.
  • the copolymer can be used as a copolymer in various forms such as an alternating copolymer, a block copolymer, and a tapered copolymer in addition to a random copolymer.
  • a radical generator such as peroxide or 2,3_dimethyl-2,3diphenylbutane (commonly called “dicumyl"
  • dicumyl 2,3_dimethyl-2,3diphenylbutane
  • a copolymerization method can be employed. Such a method is a method in which reactive active sites are thermally generated in polyolefin wax and a compound or monomer that reacts with the active sites is reacted.
  • active sites required for the reaction include the application of external forces by mechanochemical techniques, such as irradiation with radiation or electron beams. Can be mentioned. Further, there may be mentioned a method in which a monomer that generates an active site required for the reaction is copolymerized in advance in a polyolefin wax. Examples of active sites for the reaction include unsaturated bonds and peroxide bonds, and examples of a method for obtaining active sites include nitroxide-mediated radical polymerization represented by TEMP. Examples of the compound or monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, fumaric acid, maleic anhydride, and citraconic anhydride, particularly maleic anhydride. Is preferred.
  • the F component is that the carboxyl group is preferably in the range of 0.05 to 1 Ome qZg, more preferably in the range of 0.1 to 6 me qZg, per 1 g of the acid-modified polyolefin wax. More preferably, it is a carboxyl group-containing olefin-based wax contained in the range of 0.5 to 4 meqZg. Further molecular weight of Orefu in wax is preferably 1 X 10 3 ⁇ 1 X 10 4 , 5X 10 3 ⁇ 1 X 10 4 is more preferable. The molecular weight is a weight average molecular weight calculated based on a calibration curve obtained from standard polystyrene in GPC (Gel Permeation Chromatography).
  • the F component there can be mentioned a copolymer of ⁇ -aged refin and maleic anhydride, and the copolymer further satisfies the above-mentioned carboxyl group content and molecular weight. Particularly preferred.
  • a copolymer can be produced by melt polymerization or bulk polymerization in the presence of a radical catalyst according to a conventional method.
  • Preferred examples of ⁇ -olefin include those having an average carbon number of 10 to 60. More preferable examples of monoolefin include carbon having an average value of 16 to 60, and more preferably 25 to 55.
  • the content of the acid-modified polyolefin wax (component F) is 0.01 to 2 parts by weight, preferably 0.05 to 1 part by weight, more preferably 0 to 100 parts by weight of the polycarbonate resin (salt component). 1 to 0.7 parts by weight. If the content of the acid-modified polyolefin wax (F component) is within this range, a good appearance of the molded product can be obtained while maintaining a high flame retardant effect. (G component: Phosphorus stabilizer)
  • the resin composition of the present invention preferably further contains a phosphorus-based stabilizer (G component).
  • a phosphorus-based stabilizer G component
  • Such phosphorus stabilizers greatly improve the thermal stability during production or molding. The result is improved mechanical properties, hue, and molding stability.
  • the phosphorus stabilizer (G component) include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphine. Of these, phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, phosphate compounds, and phosphate compounds are preferred. In particular, phosphate compounds and / or phosphite compounds are preferred.
  • As the phosphate compound a triorganophosphate compound and an acid phosphate compound are preferable.
  • the organic group in the acid phosphate compound includes any of mono-substituted, di-substituted, and mixtures thereof. All of the following exemplified compounds corresponding to the compound are
  • Triorganophosphate compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tridecyl phosphate, tridodecyl phosphate, trilauryl phosphate, ⁇ -listeryl phosphate, tricresyl phosphate, triphenyl phosphate, trichlor phosphate Examples include phenyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, and riboxetyl phosphate. Among these, trialkyl phosphate is preferable. The number of carbon atoms of the alkyl group of such trialkyl phosphate is preferably 1 to 22 and more preferably 1 to 4. A particularly preferred trialkyl phosphate is trimethyl phosphate.
  • acid phosphate compounds include methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, butoxychetyl phosphate, octyl acid phosphate, decyl acid phosphate, lauryl phosphate, stearyl acid phosphate, phosphate Benenyl acid phosphate, phenyl acid phosphate Nonyl phenyl acid phosphate, cyclohexyl acid phosphate, phenoloxyl phosphate, alkoxy polyethylene glycol phosphate, bisphenol A acid phosphate, and the like.
  • a long-chain dialkyl acid phosphate having an alkyl group with 10 or more carbon atoms, more preferably 14 to 22 is effective in improving thermal stability, and the stability of the acid phosphate itself. Is preferable because it is high.
  • phosphite compounds include trialkyl phosphites such as tridecyl phosphite, dialkyl monophenyl phosphites such as didecyl monophenyl phosphite, and monoalkyls such as monobutyl diphenyl phosphite.
  • trialkyl phosphites such as tridecyl phosphite, dialkyl monophenyl phosphites such as didecyl monophenyl phosphite, and monoalkyls such as monobutyl diphenyl phosphite.
  • triaryl phosphites such as dialyl phosphite, triphenyl phosphite and tris (2,4-di-tert-butylphenyl) phosphite.
  • 2,2-methylenebis (4,6-ditert-butylphenyl) octyl phosphite and 2,2'-methylenebis (4,6-ditert-butylphenyl) (2,4-ditert-butylphenyl) phosphine Examples include fights.
  • Preferred examples of the phosphonite compound include tetrakis (di-tert-butylphenyl) -biphenyl dirange phosphonite and bis (di-tert-butylphenyl) monophenyl phosphonite, and tetrakis (2,4-di-tert-butylphenyl) -biphenyl. More preferred are two-range phosphonai ⁇ ⁇ and bis (2,4-di-tert-butylphenyl) -phenyl-phenylphosphonite. Such a phosphonai compound can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.
  • Phosphonate compounds include benzene phosphonate, benzene phosphonate Examples include jetyl acid and dipropyl benzenephosphonate.
  • An example of tertiary phosphine is triphenylphosphine.
  • the content of the phosphorus-based stabilizer (component G) is preferably 0.001 to 2 parts by weight, more preferably 0.01 to 1 based on 100 parts by weight of the polycarbonate resin (component A). Parts by weight, more preferably 0.05 to 0.5 parts by weight. It is preferable that 50% by weight or more of the G component is a phosphate compound and Z or a phosphate compound.
  • the G component is preferably a trialkyl phosphate and / or an acid phosphate compound in 50% by weight or more in 100% by weight. In particular, it is preferable that 50% by weight or more of the 100% by weight is a trialkyl phosphate.
  • various additives, reinforcing agents, and other polymers that are blended in the polycarbonate resin can be further blended.
  • another polymer or elastomer can be further blended within a range in which the effect of the present invention is exhibited.
  • the total amount of other polymers and elastomers based on 100 parts by weight of component A is not more than 200 parts by weight, preferably not more than 100 parts by weight, more preferably not more than 50 parts by weight. In the following, it is particularly preferably 30 parts by weight or less.
  • Such other polymers include polyphenylene ether, polyacetal, aromatic polyester, aliphatic polyester, polyamide, polyarylate (amorphous polyarylate, liquid crystalline polyarylate), polyetheretherketone, polyetherimide, polysulfone.
  • polyethersulfone, polyphenylene sulfide, and polyolefins such as polyethylene, polypropylene, poly-4-methylpentene, and cyclic polyolefin, styrene polymers, and acrylic polymers such as polymethyl methacrylate.
  • elastomers examples include olefin-based elastomers, acrylic elastomers, polyester-based elastomers, polyamide-based elastomers, and the like. And thermoplastic elastomers such as polyurethane elastomers.
  • a rubbery graft copolymer in which a graft chain is bonded to a rubber substrate is also preferably exemplified as an elastomer.
  • the rubber substrate has a rubber elasticity and has a glass transition temperature of 10 or less, preferably ⁇ 10 or less, more preferably 1 to 30 or less. It is a coalescence.
  • Such rubber substrates include, for example, polybutadiene, polyisoprene, random copolymers or block copolymers of styrene monobutadiene, acrylonitrile monobutadiene copolymers, alkyl acrylates or alkyl methacrylates and butadiene.
  • Copolymer Copolymer of ethylene and a-year-old refin, Copolymer of ethylene and unsaturated carboxylic acid ester, Copolymer of ethylene and aliphatic vinyl, Ethylene, propylene and non-conjugated consumer Examples include polymers, acrylic rubbers, and silicone rubbers.
  • Preferred examples of the monomer for deriving the graft chain of the rubbery graft copolymer include aromatic vinyl compounds, vinyl cyanide compounds, acrylate esters, and methacrylate esters.
  • rubber graft copolymers include SB (styrene butadiene styrene) polymer, ABS (acrylonitrile butadiene styrene) polymer, MBS (methyl methacrylate butadiene styrene) polymer, MA BS (methyl methacrylate).
  • the rubber substrate is more than 40% by weight in 100% by weight of the rubbery graph copolymer, preferably 50% by weight or more, and more preferably in the range of 55-85% by weight.
  • the styrenic polymer is polystyrene (PS) (syndiotactic). Tic polystyrene), AS (acrylonitrile-styrene) copolymer,
  • Examples thereof include MS (methyl methacrylate-styrene) copolymer and SMA (styrene monomaleic anhydride) copolymer.
  • SMA styrene monomaleic anhydride
  • the styrenic polymer a mixture previously integrated with the above rubbery graft copolymer can be used.
  • a commercially available ABS resin can be used as a mixture of a commercially available AS copolymer and ABS copolymer.
  • Such a copolymer includes a so-called transparent ABS resin.
  • the styrenic polymer may be modified with various functional groups typified by epoxy groups and acid anhydride groups. These styrene polymers can be used in combination of two or more.
  • Aromatic polyesters include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate (PBT), polyhexylene terephthalate, polyethylene 1,6-naphthalate (PEN), polybutylene naphtha Polyethylene terephthalate (PBN), polyethylene 1,2-bis (phenoxy) 1,4'-dicarboxylate, polyethylene terephthalate copolymerized with 1,4-cyclohexane dimethyl alcohol ( Copolyesters such as so-called PET-G), poly (ethylene isophthalate) terephthalate, polybutylene terephthalate / isophthalate can also be used. Of these, PET, PBT, and PEN / PBN are preferred.
  • aromatic polyesters Two or more of the above aromatic polyesters can be mixed. These aromatic polyesters are copolymers obtained by copolymerizing units derived from other aromatic dicarboxylic acids or units derived from other dallicols in an amount of 50 mol% or less, preferably 1 to 30 mol%. Polyester may be used.
  • the molecular weight of the aromatic polyester is not particularly limited, but the intrinsic viscosity measured by 351: using o-chlorophenol as a solvent is 0.4 to 1.2, preferably 0. o to 1.1 o.
  • various known fillers can be blended in the resin composition of the present invention as reinforcing fillers.
  • various fibrous fillers, plate-like fillers, and granular fillers can be used.
  • the fibrous filler is fibrous (bar, needle, Or the shape in which the axis extends in a plurality of directions), and the plate-like filler is filled in a plate shape (including those having irregularities on the surface and those having a curved surface) It is a material.
  • the granular filler is a filler having a shape other than these including an indefinite shape.
  • the above fiber and plate shapes are often clear from the observation of the filler shape.
  • the difference from the so-called indefinite shape is that the aspect ratio is 3 or more. It can be said to be plate-shaped.
  • the particle size is preferably in the range of 0.1 to 300 m. This particle size is a value based on the median diameter (D 50) of the particle size distribution measured by the X-ray transmission method, which is one of the liquid phase precipitation methods, up to about 10 / m. In the 50 m region, the value by the median diameter (D 50) of the particle size distribution measured by the laser diffraction / scattering method is used.
  • the value is obtained by the vibration sieving method.
  • a particle size is a particle size in the resin composition.
  • the plate-like filler may be surface-treated with various silane-based, titanate-based, aluminate-based, and zirconate-based coupling agents.
  • the fiber diameter of the fibrous filler is preferably in the range of 0.
  • the upper limit of the fiber diameter is preferably 13 im and more preferably 10 m.
  • the lower limit of the fiber diameter is preferably 1 m.
  • the fiber diameter here refers to the number average fiber diameter.
  • the number average fiber diameter is defined as the residue obtained by dissolving the molded product in a solvent, the residue collected after decomposing the resin with a basic compound, and the ashing residue collected after ashing with a crucible. It is a value calculated from an image observed with a scanning electron microscope.
  • fibrous fillers include glass fiber, glass milled fiber, carbon fiber, carbon milled fiber, metal fiber, asbestos, rock wool, ceramic fiber, slag fiber, potassium titanate whisker, boron whisker, boric acid.
  • fibrous inorganic fillers such as aluminum whisker, calcium carbonate whistle, titanium oxide whistle, wollastonite, zonotlite, palygorskite (ayu pulgite), and sepiolite.
  • fibrous heat-resistant organic fillers typified by heat-resistant organic fibers such as aramid fibers, polyimide fibers, and polybenzthiazole fibers can be mentioned.
  • fibrous fillers whose surfaces are coated with different materials such as metals and metal oxides.
  • the filler whose surface is coated with a different material include metal coated glass fiber, metal coated glass flake, titanium oxide coated glass flake, and metal coated carbon fiber.
  • the surface coating method for different materials is not particularly limited.
  • various known plating methods for example, electrolytic plating, electroless plating, melting plating, etc.
  • vacuum deposition method for example, vacuum deposition method, ion plating method, C Examples include VD methods (eg, thermal CVD, MCVD, plasma C VD, etc.), PVD methods, and sputtering methods.
  • the fibrous filler refers to a fibrous filler having an aspect ratio of 3 or more, preferably 5 or more, and more preferably 10 or more.
  • the upper limit of the aspect ratio is about 10 and 0,000, preferably 2 0 0.
  • the aspect ratio of such a filler is a value in the resin composition.
  • the fibrous filler may be surface-treated with various types of cutting agents as in the case of the plate-shaped filler, may be subjected to bundling treatment with various resins, and may be granulated by compression treatment.
  • the content of such filler is not more than 20.0 parts by weight, preferably not more than 100 parts by weight, more preferably not more than 50 parts by weight, particularly preferably 3 parts by weight based on 100 parts by weight of the component A. 0 parts by weight or less.
  • a release agent can be blended in the resin composition of the present invention as necessary.
  • the resin composition of the present invention often requires high dimensional accuracy. Therefore, it is preferable that the resin composition is excellent in releasability.
  • Known release agents can be used. For example, saturated fatty acid ester, unsaturated fatty acid ester, polyolefin wax (polyethylene wax, 1-alkene polymer, etc., which may be modified with a functional group-containing compound such as acid modification), silicone compound, fluorine compound (E.g., fluorine oil represented by polyfluorinated alkyl ether), paraffin wax, and beeswax.
  • a release agent is a resin composition 1
  • the fatty acid ester may be a partial ester or a total ester (full ester).
  • the acid value is preferably 20 or less (can take substantially 0)
  • the hydroxyl value is in the range of 0.1 to 30, and the iodine value is preferably 10 or less (can take substantially 0).
  • the hindered phenol-based stabilizer is effective in preventing the heat aging of the resin composition. Since the resin composition of the present invention may be used in a high heat atmosphere, it is particularly preferably blended in such a case.
  • Hindered phenolic stabilizers include octyldecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-tert-butyl-6- (3'-tert-butyl-5 , —Methyl-2 ′ —hydroxybenzil) 1 4-methylphenyl acrylate, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), triethylene glycol-N-bis 1 3— (3 — Tert-Butyl _ 4-hydroxy-5-methylphenyl) propionate, 3,9-bis ⁇ 2 -— [3-— (3-tert-Butyl-4-hydroxy-1,5-methylphenyl) propionyloxy] — 1,1-dimethylethyl ⁇ 1,2,4,8,10-tetraoxaspiro [5,5] undecane, N, N'-hexamethylenebis (3,5-di-tert-butyl-1-hydroxyhydroc
  • antioxidants than the hindered phenol stabilizers can be used.
  • examples of such other antioxidants include lactone stabilizers represented by reaction products of 3-hydroxy-5,7-di tert-butyl-furan-2-one and o-xylene (details of such stabilizers). Is described in Japanese Patent Application Laid-Open No. 7-2 3 3 1 60), and Penyu Erisri] ⁇ Irutetrakis (3-mercaptopropionate), Penyu Erisri! ⁇ -containing stabilizers such as monotetrakis (3-laurylthiopropionate) and glycerol-3-stearylthiopropionate.
  • the above hindered phenol stabilizers can be used alone or in combination of two or more.
  • the blending amount of these stabilizers is preferably 0.001 to 1% by weight, more preferably 0.05 to 0.5% by weight in 100% by weight of the resin composition.
  • the resin composition of the present invention may be used in a high-heat atmosphere, it may be required to improve its hydrolysis resistance.
  • a compound conventionally known as a polycarbonate resin hydrolysis improver can be blended within a range not impairing the object of the present invention.
  • examples of such compounds include epoxy compounds, oxetane compounds, silane compounds, and phosphonic acid compounds, with epoxy compounds and oxetane compounds being particularly preferred.
  • the epoxy compound include alicyclic epoxy compounds represented by 3,4-epoxycyclohexylmethyl_3 ', 4'-epoxycyclohexylcarboxylate, and 3-glycidylpropoxy sheet triethoxysilane.
  • a silicon atom-containing epoxy compound is preferably exemplified.
  • Such a hydrolysis improver is composed of 1 layer in 100% by weight of the resin composition. It is preferable that the amount is not more than%.
  • the resin composition of the present invention is required to have improved weather resistance and ultraviolet absorption, it is preferable to add an ultraviolet absorber.
  • the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, hydroxyphenyl triazine compounds, cyclic imino ester compounds, and cyanoacrylate compounds.
  • hindered amines such as bis (2, 2, 6, 6, 6-tetramethyl-4-piperidyl) Sebake, bis (1, 2, 2, 6, 6-penyumethyl-4-piperidyl) sebagate, etc. It is also possible to use other light stabilizers.
  • the blending amount of the ultraviolet absorber and the light stabilizer is preferably from 0.01 to 5% by weight in 100% by weight of the resin composition.
  • the resin composition of the present invention may contain an antistatic agent.
  • antistatic agents include polyether ester amide, glycerin monostearate, naphthaline phosphonate formaldehyde highly condensed alkali (earth) metal salt, alkali dodecylbenzenesulfonate (earth) metal salt, dodecyl Benzenesulfonic acid ammonium salt, dodecylbenzenesulfonic acid phosphonium salt, maleic anhydride And acid monoglyceride and maleic anhydride diglyceride.
  • the blending amount of the antistatic agent is preferably 0.5 to 20% by weight in 100% by weight of the resin composition.
  • the resin composition of the present invention includes a sliding agent (for example, PTFE particles and high molecular weight polyethylene particles), a coloring agent (for example, a pigment such as carbon black and titanium oxide, and a dye), an inorganic phosphor (for example, aluminum). Phosphors using acid salts as mother crystals), inorganic or organic antibacterial agents, photocatalytic antifouling agents (fine particle titanium oxide, fine particle zinc oxide, etc.), infrared absorbers (ATO fine particles, ITO fine particles, lanthanum boride fine particles) , Tungsten boride fine particles, phthalocyanine metal complexes, etc.), photochromic agents, and fluorescent brighteners.
  • a sliding agent for example, PTFE particles and high molecular weight polyethylene particles
  • a coloring agent for example, a pigment such as carbon black and titanium oxide, and a dye
  • an inorganic phosphor for example, aluminum.
  • Phosphors using acid salts as mother crystals inorganic or organic anti
  • the resin composition of the present invention can be produced by melt-kneading the A component, the B component and other components using a twin screw extruder.
  • ZSK (trade name, manufactured by Werenr & Pfle i der er, Inc.)
  • specific examples of similar types include TEX (trade name, manufactured by Nippon Steel Works), TEM (trade name, manufactured by Toshiba Machine Co., Ltd.), KTX (trade name, manufactured by Kobe Steel, Ltd.), etc.
  • melt kneaders such as FCM (Farre 1 company, product name), Ko-Kneader (Buss company, product name), and DSM (Krauss—Maffei, product name) are also examples.
  • FCM Fluor 1 company, product name
  • Ko-Kneader Ko-Kneader
  • DSM Karlss—Maffei, product name
  • the evening typified by Z SK is more preferable.
  • the screw is a complete mesh type, and the screw has various screw segments with different lengths and pitches, and various kinds of needing discs with different widths (and corresponding kneading discs). Segment).
  • a more preferable embodiment in the twin screw extruder is as follows.
  • the screw shape can be 1, 2, or 3 screw screws, and the 2-thread screw is particularly preferred because it has a wide range of applications for both molten resin transport and shear kneading capabilities. Can be used.
  • the ratio (LZD) between the length (L) and the diameter (D) of the screw in the twin screw extruder is preferably 20 to 50, more preferably 28 to 42. When L ZD is large, uniform dispersion is likely to be achieved, while when it is too large, resin degradation is likely to occur due to thermal degradation.
  • the screw needs to have at least one kneading zone composed of a double disc segment (or a kneading segment corresponding thereto) for improving kneadability, and preferably 1 to 3 kneading zones.
  • one having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used.
  • a vacuum pump is preferably installed to efficiently discharge generated moisture and volatile gas to the outside of the extruder.
  • water, an organic solvent, a supercritical fluid, or the like may be added in order to enhance the dispersibility of the inorganic particles or to remove impurities in the resin composition as much as possible.
  • a screen for removing foreign substances mixed in the extrusion raw material can be installed in the zone in front of the extruder die to remove the foreign substances from the resin composition. Examples of such screens include wire meshes, screen changers, and sintered metal plates (such as disk filters).
  • the feeding method of B component to F component, optional G component and other additives (simply referred to as “additive” in the following examples) to the extruder is not particularly limited, but the following methods are typically exemplified. .
  • (Ii) A method of pre-melting and kneading an additive and a polycarbonate resin into a master pellet.
  • One of the above methods (ii) is a method in which all necessary raw materials are premixed and supplied to the extruder.
  • Another method is a method in which a mass agent containing a high concentration of additives is prepared, and the master agent is separately or further premixed with the remaining polycarbonate resin or the like and then supplied to the extruder. is there.
  • the mass agent can be selected from either a powder form or a form obtained by compressing and granulating the powder.
  • other premixing means For example, there are now Yuichi mixers, V-type blenders, Henschel mixers, mechanochemical devices, and extrusion mixers, and high-speed stirring mixers such as Henschel mixers are preferred.
  • Still another premixing method is, for example, a method in which a polycarbonate resin and an additive are uniformly dispersed in a solvent and then the solvent is removed.
  • the resin extruded from the twin-screw extruder is directly cut into pellets, or after forming a strand, the strands are cut with a pelletizer to be pelletized. Furthermore, when it is necessary to reduce the influence of external dust, it is preferable to clean the atmosphere around the extruder. Furthermore, in the manufacture of such pellets, various methods already proposed for optical disk polycarbonate resin are used to narrow the pellet shape distribution, reduce miscuts, and generate fine powder during transportation or transportation. And reduction of bubbles (vacuum bubbles) generated in the strands and pellets can be appropriately performed. These prescriptions can increase the molding cycle and reduce the rate of defects such as silver.
  • the pellet may have a general shape such as a cylinder, a prism, or a sphere, but more preferably a cylinder.
  • the diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and even more preferably 2 to 3.3 mm.
  • the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, and even more preferably 2.5 to 3.5 mm.
  • B component 10 to 70 parts by weight, C component 0.01 to 2 parts by weight, D component 0.05 to 3 parts by weight per 100 parts by weight of component A , And E component 1 to 20 parts by weight, F component 0.0 1 to 2 parts by weight, and optionally G component 0.0 0 1 to 2 parts by weight are mixed.
  • the details of the components A to G used in this production method are as described above.
  • a vent type twin screw extruder can be most suitably used.
  • the cylinder temperature is preferably set to 2 5 0 to 3 2 0 t: more preferably 2 7 0 to 3 1 0 ° C, and the screw speed is preferably 6 0 to 5 0 0 Set to rpm, more preferably from 70 to 200 rpm. (Molding)
  • the resin composition of the present invention can usually produce various molded products by injection molding the pellets produced as described above. Furthermore, the resin composition melt-kneaded by a twin screw extruder can be directly made into a sheet, film, profile extrusion molded product, direct blow molded product and injection molded product without going through pellets.
  • injection molding not only ordinary molding methods but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including those by supercritical fluid injection), insert molding, depending on the purpose as appropriate.
  • Molded products can be obtained using injection molding methods such as in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • injection molding methods such as in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • injection molding methods such as in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • injection molding either a cold runner one-way method or a hot runner method can be selected. More preferable are injection compression molding and injection press molding which can be molded at a low injection speed.
  • the resin composition of the present invention can be used in the form of various shaped extruded products, sheets, films, etc. by extrusion molding.
  • the inflation method, the calendar method, and the casting method can also be used. It is also possible to form a heat-shrinkable tube by applying a specific stretching operation.
  • the resin composition of the present invention may be formed into a molded product by rotational molding or blow molding.
  • various surface treatments can be performed on the molded article made of the resin composition of the present invention.
  • Surface treatment here refers to a new layer on the surface of resin molded products such as vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electric plating, electroless plating, melting plating, etc.), painting, coating, printing, etc.
  • the method used for ordinary resins can be applied.
  • Specific examples of the surface treatment include various surface treatments such as hard coat, water / oil repellent coat, ultraviolet absorption coat, infrared absorption coat, and metalizing (evaporation).
  • Applications of the molded article of the present invention include, for example, personal computers, notebook computers, game machines (home game machines, arcade game machines, pachinko machines, slot machines, etc.), Examples include display devices (LCD, organic EL, electronic paper, plasma display, projector, etc.) and power transmission components (represented by the housing of a dielectric coil power transmission device).
  • display devices LCD, organic EL, electronic paper, plasma display, projector, etc.
  • power transmission components represented by the housing of a dielectric coil power transmission device.
  • Examples include printing, copying machines, scanners, and fax machines (including these multifunction devices). Examples include precision equipment such as VTR cameras, optical film cameras, digital still cameras, camera lens units, security devices, and mobile phones.
  • the molded product of the present invention is suitably used for a housing, a cover, and a frame of a digital information processing apparatus such as a personal computer.
  • the molded products of the present invention include medical equipment such as massage machines and high oxygen therapy equipment, video recorders (so-called DVD recorders, etc.), audio equipment, home appliances such as electronic musical instruments, amusement devices such as pachinko machines and slot machines, precision It is also suitable for parts such as home robots equipped with various sensors.
  • the molded product of the present invention includes various vehicle parts, batteries, power generation devices, circuit boards, integrated circuit molds, optical disk boards, disk cartridges, optical cards, IC memory cards, connectors, cable couplers, and electronic parts.
  • Transport containers such as IC magazine cases, silicon wafer containers, glass substrate storage containers, and carrier tapes
  • antistatic or charge removal parts such as charging rolls for electrophotographic photosensitive devices
  • various mechanical parts such as turntables, low evenings, and screws, including mechanical parts for micromachines).
  • a combustion test was conducted at a thickness of 1.5 mm in accordance with UL standard 94V.
  • the dissolution test method for heavy metals, etc. was based on the dissolution test for soil environmental standards (Environment Agency Notification No. 46, August 23, 1991).
  • the sample was made by collecting and crushing pellets of the resin composition and sieving with a 2 mm sieve.
  • the sample solution consists of a sample (unit: g) and a solvent (hydrochloric acid aqueous solution with a hydrogen ion concentration index of 5.8 or more and 6.3 or less) (unit: ml) mixed at a ratio of 10% by weight / volume.
  • the mixed solution was set to 500 m 1 or more.
  • the dissolution test is performed for 6 hours using a shaker of the prepared sample solution at room temperature and normal pressure (the shaking frequency is adjusted to about 200 times per minute and the shaking width is adjusted to 4 cm or more and 5 cm or less in advance). We continued shaking.
  • test solution the sample solution obtained by the above operation was allowed to stand for 30 minutes, then centrifuged at approximately 3 000 rpm for 20 minutes, and the supernatant was filtered through a membrane filter with a pore size of 0.45 zm. The amount required for quantification was accurately measured. The amount of arsenic and selenium contained in the obtained test solution was measured by the atomic absorption method as shown in Environment Agency Notification No. 46.
  • a resin composition having the blending ratio shown in Table 14 was prepared as follows. The explanation will be made according to the symbols in Table 14 below.
  • the ingredients listed in Table 14 were mixed in a V-type blender to make a mixture.
  • a small amount of additives other than the component A was prepared using a super mixer with a premix having a content of 10% by weight.
  • a plurality of such premixtures were uniformly mixed with the remaining PC in a V-type blender.
  • Using a vent type twin screw extruder (Nippon Steel Works TEX-3O XSST) with a screw diameter of 30 mm the mixture from the V-type blender was fed to the first inlet at the end.
  • Such an extruder has a kneading zone with a needing disk between the first supply port and the second supply port, and is provided with a vent port opened immediately thereafter.
  • the length of the ventro was about 2 D with respect to the screw diameter (D).
  • a side feeder was installed after the vent port, and a kneading zone with a kneading disk and a vent port following the kneading disc were further provided after the side feeder.
  • the length of the vent port in this part is about 1.5 D, and a vacuum pump is used in that part to reduce the pressure to about 3 kPa.
  • Extrusion was performed at a cylinder temperature of 2500 to 30000 (almost evenly rising from the barrel at the root of the screw to the die), a screw speed of 180 rpm, and a discharge rate of 20 kg per hour. .
  • the extruded strand was cooled in a water bath, then cut with a pelletizer and pelletized.
  • the obtained pellets were dried at 120 ° C. for 5 hours in a hot air circulating drier, and then using a spray molding machine, the cylinder temperature was 2 80, the mold temperature was 80, and the shooting speed was 20 mm.
  • the test pieces for the above evaluation items were prepared under the conditions of / sec and a molding cycle of about 60 seconds.
  • PC-1 Linear aromatic polycarbonate resin with a viscosity average molecular weight of 2 2,500 (Panlite L _ 1 2 2 WP (trade name) manufactured by Teijin Chemicals Ltd.)
  • PC-2 heat-resistant polycarbonate resin having a glass transition temperature of 17 I and a water absorption of 0.2% by weight produced by the following method
  • PC—3 Bisphenol A, p_tert-butylphenol as end-stopper, and 1,1,1 tris (4-hydroxyphenyl) chain as a branching agent (based on 100 mol% of bisphenol A) 0.3 mol%), and an aromatic polycarbonate resin having a viscosity average molecular weight of 24,500 synthesized from the phosgene by the interfacial polycondensation method
  • PC-4 A linear aromatic polycarbonate resin synthesized by interfacial polycondensation from bisphenol A and p-tert-butylphenol as a terminal terminator and phosgene, with a viscosity average molecular weight of 15,200. 80,000 parts by weight, 23,700, and 10 parts by weight of 120,000 are melt-blended aromatic polycarbonate resin pellets with a viscosity average molecular weight of 29,500
  • a reactor equipped with a thermometer and a stirrer was charged with 19, 580 parts of ion-exchanged water and 3,850 parts of 48.5 wt% aqueous sodium hydroxide, and 9, 9-bis (4-hydroxy-3-methylphenyl) fluorene ( BCF) 1,175 parts and bisphenol A (BPA) 2,835 parts and hydrosulfite 9 parts were dissolved, then methylene chloride 13,210 parts were added and stirred vigorously at 15 with phosgene 2, 000 parts were blown and reacted for about 40 minutes.
  • BCF 9, 9-bis (4-hydroxy-3-methylphenyl) fluorene
  • BPA bisphenol A
  • the mixture was raised to 28 mm and emulsified by adding 94 parts of p-tert-butylphenol and 640 parts of sodium hydroxide, and then 6 parts of triethylamine was added and stirring was continued for 1 hour to carry out the reaction. finished.
  • the organic phase was separated, diluted with methylene chloride, washed with water, acidified with hydrochloric acid and washed with water. Was evaporated to obtain 4,080 parts of colorless powder having a molar ratio of BCF to BP A of 20:80.
  • the viscosity average molecular weight of this aromatic polycarbonate powder was 20,300.
  • PTFE Polytetrafluoroethylene (Daikin Industries, Ltd. Polyflon M P FA500
  • D component D-1 Ferrous sulfate heptahydrate (Fuji Titanium Industry Co., Ltd.)
  • E-3 Polycaprolactone ("Braxel HI P” (trade name) manufactured by Daicel Chemical Industries)
  • E-4 Trimellitic acid ester ("TOTM” (trade name) manufactured by Daihachi Chemical)
  • F-1 Acid-modified olefin wax that is a copolymer of maleic anhydride and ⁇ -olefin (Mitsubishi Chemical Corporation: Diacarna DC 30 ⁇ )
  • TMP Trimethyl phosphate
  • G-2 Phosphite stabilizer (“Adekastab PEP—8” (trade name) manufactured by Ade force)
  • G-3 Phosphite stabilizer ("Adekastab PEP-24G” (trade)
  • the resin composition of the present invention becomes a molded article having excellent flame retardancy and improved surface appearance. That is, the molded article of the present invention has excellent flame retardancy, and can achieve V-1 or V-0 in a combustion test having a thickness of 1.5 mm. Further, the molded article of the present invention has an excellent surface appearance with a low silver generation rate. Since the resin composition of the present invention contains an elution inhibitor (D component), there is little elution of heavy metals contained in the inorganic particles (B component). Industrial applicability
  • the resin composition of the present invention is extremely useful for various industrial applications such as the field of OA equipment and the field of electrical and electronic equipment.

Abstract

Disclosed is a resin composition having high flame retardancy, which enables to obtain a molded article improved in appearance such as occurrence of silver streaks. Specifically disclosed is a resin composition containing 100 parts by weight of a polycarbonate resin (component A), 10-70 parts by weight of an inorganic particle (component B) containing a composite body of silicon dioxide and aluminum oxide and having a D50 particle size of not more than 10 μm, 0.01-2 parts by weight of a fluorine resin (component C), 0.05-3 parts by weight of a dissolution inhibitor (component D), 1-20 parts by weight of a fluidity improver (component E), and 0.01-2 parts by weight of an acid-modified polyolefin wax (component F). Also specifically disclosed is a molded article of such a resin composition.

Description

明 細 書 難燃性樹脂組成物 技術分野  Memorandum Flame retardant resin composition Technical field
本発明は、 ポリカーボネート樹脂と無機粒子とを含有する樹脂組成物に関する。 より詳しくは、 本発明は、 ポリカーボネート樹脂と無機粒子とを含有し、 難燃性 および外観に優れた成形品となる樹脂組成物に関する。 背景技術  The present invention relates to a resin composition containing a polycarbonate resin and inorganic particles. More specifically, the present invention relates to a resin composition that contains a polycarbonate resin and inorganic particles and becomes a molded article having excellent flame retardancy and appearance. Background art
無機粒子を充填し難燃性を付与したプラスチック複合材料について、 既に多く の提案がなされ一部実用化されている。 かかるプラスチックにはポリカーボネー ト樹脂も含まれる。  Many proposals have already been made for plastic composite materials filled with inorganic particles to impart flame retardancy, and some have been put into practical use. Such plastics include polycarbonate resins.
例えば、 特開 2004— 10825号公報 (特許文献 1 ) には、 ポリカーボネ —ト樹脂中にシリカ粒子等の無機物粒子を配合した樹脂組成物が開示されている。 この文献には、 無機物粒子の形状を工夫することにより難燃性の向上を図ること が提案されている。  For example, JP 2004-10825 A (Patent Document 1) discloses a resin composition in which inorganic particles such as silica particles are blended in a polycarbonate resin. This document proposes to improve the flame retardancy by devising the shape of the inorganic particles.
特開 2001— 152030号公報 (特許文献 2) には、 無機多孔質体を粉砕 して得られた粒径 10 nm〜 100 nmの粒子を含む樹脂組成物が開示されてい る。 具体的には、 酸化珪素または酸化アルミニウムを粉砕して得られた多孔質の 粒子をポリカーボネート樹脂やポリプロピレン樹脂に配合した樹脂組成物が提案 されている。 このようにポリカーボネート樹脂に無機粒子を含有させると、 樹脂 組成物の難燃性を向上させることができる。 し力 ^し、 高い水準の難燃性を安定的 に実現するのは困難である。  JP 2001-152030 A (Patent Document 2) discloses a resin composition containing particles having a particle diameter of 10 nm to 100 nm obtained by pulverizing an inorganic porous material. Specifically, a resin composition in which porous particles obtained by pulverizing silicon oxide or aluminum oxide are blended with a polycarbonate resin or a polypropylene resin has been proposed. When inorganic particles are thus contained in the polycarbonate resin, the flame retardancy of the resin composition can be improved. However, it is difficult to stably achieve a high level of flame retardancy.
また、 特開 2005— 272808号公報 (特許文献 3) には、 ポリカーボネ ート樹脂に、 二酸化珪素と酸化アルミニウムの複合体を含有する粒子、 特にフラ ィアッシュを配合した樹脂組成物が開示されている。 この樹脂組成物は優れた難 燃性を有するが、 シルバーなどの成形品の外観については改良の余地がある。 (特許文献 1) 特開 2004— 10825号公報 Japanese Patent Application Laid-Open No. 2005-272808 (Patent Document 3) discloses a resin composition in which polycarbonate resin is mixed with particles containing a composite of silicon dioxide and aluminum oxide, particularly flash ash. . This resin composition has excellent flame retardancy, but there is room for improvement in the appearance of molded articles such as silver. (Patent Document 1) Japanese Unexamined Patent Application Publication No. 2004-10825
(特許文献 2) 特開 2001 - 152030号公報  (Patent Document 2) Japanese Patent Application Laid-Open No. 2001-152030
(特許文献 3) 特開 2005-272808号公報 発明の開示  (Patent Document 3) Japanese Unexamined Patent Publication No. 2005-272808 Disclosure of Invention
上述のごとく、 無機粒子を含有する樹脂組成物において、 高度な難燃性と良好 な成形品外観とを両立させる試みは未だなされていない。 従って、 本発明の目的 は、 高度な難燃性を有し、 かつシルバーなどの成形品外観の改善された成形品を 与える樹脂組成物を提供することにある。  As described above, in the resin composition containing inorganic particles, no attempt has been made to achieve both high flame retardancy and good appearance of molded products. Accordingly, an object of the present invention is to provide a resin composition which has a high flame retardancy and gives a molded article having an improved appearance of a molded article such as silver.
本発明者らは、 鋭意検討を重ねた結果、 ポリカーボネート樹脂 (A成分) に、 無機粒子として二酸化珪素および酸化アルミニウムの複合体を含有し、 D50粒 径が 1 以下である無機粒子 (B成分)、 フッ素系樹脂 (C成分)、 溶出抑制 剤 (D成分)、 流動改質剤 (E成分) および酸変性ポリオレフイン系ワックス (F成分) を配合した樹脂組成物が上記課題を達成できることを見出し、 本発明 を完成するに至った。  As a result of intensive studies, the present inventors have found that polycarbonate particles (component A) contain a composite of silicon dioxide and aluminum oxide as inorganic particles, and D50 particle diameter is 1 or less (component B). And found that a resin composition containing a fluorine resin (C component), an elution inhibitor (D component), a flow modifier (E component) and an acid-modified polyolefin wax (F component) can achieve the above-mentioned problems. The present invention has been completed.
本発明の目的は、 (A) 1 00重量部のポリカーボネート樹脂 (A成分)、 The object of the present invention is (A) 100 parts by weight of polycarbonate resin (component A),
(B) 10〜70重量部の、 二酸化珪素および酸化アルミニウムの複合体を含有 し、 D50粒径が 10 m以下である無機粒子 (B成分)、 (B) Inorganic particles (component B) containing 10 to 70 parts by weight of a composite of silicon dioxide and aluminum oxide and having a D50 particle size of 10 m or less,
(C) 0. 01〜2重量部のフッ素系樹脂 (C成分)、  (C) 0.01 to 2 parts by weight of a fluororesin (component C),
(D) 0. 05〜 3重量部の溶出抑制剤 (D成分)、  (D) 0.05 to 3 parts by weight of dissolution inhibitor (component D),
(E) 1〜20重量部の流動改質剤 (E成分) および  (E) 1-20 parts by weight of flow modifier (E component) and
(F) 0. 01〜2重量部の酸変性ポリオレフイン系ワックス (F成分)、 を含有する樹脂組成物により達成される。 本発明の樹脂組成物は、 高度な難燃性 を有し、 かつシルバーなどの成形品外観の改善された成形品を与える。  (F) This is achieved by a resin composition containing 0.01 to 2 parts by weight of an acid-modified polyolefin wax (F component). The resin composition of the present invention provides a molded product having high flame retardancy and improved appearance of the molded product such as silver.
無機粒子 (B成分) は、 フライアッシュであることが好ましい。  The inorganic particles (component B) are preferably fly ash.
フッ素系樹脂 (C成分) は、 フィブリル形成能を有するポリテトラフルォロェ チレン樹脂であることが好ましい。  The fluororesin (component C) is preferably a polytetrafluoroethylene resin having a fibril forming ability.
溶出抑制剤 (D成分) は、 好ましくは二価および Zまたは三価の鉄イオンと硫 酸イオンとの塩、 より好ましくは硫酸第一鉄 ·水和物またはシュベルトナイト、 さらに好ましくは硫酸第一鉄 · 7水和物である。 D成分としてかかる化合物を使 用することにより無機粒子中に含まれる重金属、 ヒ素等の溶出をより抑制するこ とが出来る。 The dissolution inhibitor (component D) is preferably divalent and Z or trivalent iron ions and sulfur. A salt with an acid ion, more preferably ferrous sulfate · hydrate or Schwernite, and more preferably ferrous sulfate · 7hydrate. By using such a compound as component D, elution of heavy metals and arsenic contained in the inorganic particles can be further suppressed.
流動改質剤 (E成分) は、 脂肪族ポリエステル樹脂およびトリメリット酸エス テルからなる群より選ばれる少なくとも一種であることが好ましい。 これらの流 動改質剤を使用することにより、 シルバー等の成形品外観を改善することができ る。  The flow modifier (E component) is preferably at least one selected from the group consisting of aliphatic polyester resins and trimellitic acid esters. By using these flow modifiers, the appearance of molded articles such as silver can be improved.
酸変性ポリオレフイン系ワックス (F成分) は、 カルボキシル基および Zまた はカルボキシル無水物を有する酸変性ポリオレフィン系ワックスであることが好 ましい。 これらのワックスを使用することによりシルバー等の成形品外観をさら に改善することができる。  The acid-modified polyolefin wax (F component) is preferably an acid-modified polyolefin wax having a carboxyl group and Z or carboxyl anhydride. By using these waxes, the appearance of molded articles such as silver can be further improved.
またポリカーボネート樹脂 (A成分) 1 0 0重量部あたり、 0 . 0 0 0 1〜2 重量部のリン系安定剤 (G成分) を含有することが好ましい。 G成分として、 そ の 1 0 0重量%中 5 0重量%以上がホスフェート化合物および Zまたはホスファ ィト化合物であるリン系安定剤がより好ましい。  Further, it is preferable to contain 0.002 to 1 part by weight of a phosphorus stabilizer (G component) per 100 parts by weight of the polycarbonate resin (component A). As the G component, a phosphorus stabilizer in which 50% by weight or more of its 10% by weight is a phosphate compound and Z or a phosphate compound is more preferable.
ポリカーボネート樹脂 (A成分) は、 ビスフエノール A型ポリカーボネートで あることが好ましい。  The polycarbonate resin (component A) is preferably bisphenol A type polycarbonate.
本発明は、 請求項 1記載の樹脂組成物よりなる成形品を包含する。 図面の簡単な説明  The present invention includes a molded article comprising the resin composition according to claim 1. Brief Description of Drawings
図 1は、 実施例 4および比較例 4のシルバー発生比率の評価写真である。 発明を実施するための最良の形態  FIG. 1 is an evaluation photograph of the silver generation ratio of Example 4 and Comparative Example 4. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の詳細について説明する。  Details of the present invention will be described below.
(A成分:ポリカーボネート樹脂)  (A component: polycarbonate resin)
本発明で A成分として使用されるポリカーボネート樹脂は、 二価フエノールと カーボネート前駆体とを反応させて得られるものである。 反応方法の一例として 界面重合法、 溶融エステル交換法、 カーボネートプレボリマーの固相エステル交 換法、 および環状カーボネート化合物の開環重合法などを挙げることができる。 ここで使用される二価フエノールの代表的な例としては、 ハイドロキノン、 レ ゾルシノール、 4, 4, ービフエノール、 1, 1—ビス (4ーヒドロキシフエ二 ル) ェタン、 2, 2—ビス (4ーヒドロキシフエニル) プロパン (通称ビスフエ ノール A)、 2 , 2—ビス (4ーヒドロキシ一 3—メチルフエニル) プロパン、 2, 2—ビス (4ーヒドロキシフエニル) ブタン、 1, 1 _ビス (4ーヒドロキ シフエニル) 一 1一フエニルェタン、 1 , 1一ビス (4ーヒドロキシフエニル) シクロへキサン、 1 , 1—ビス (4ーヒドロキシフエニル) 一 3, 3 , 5—トリ メチルシクロへキサン、 2, 2—ビス (4—ヒドロキシフエニル) ペンタン、 4, 4 ' 一 (p—フエ二レンジイソプロピリデン) ジフエノール、 4, 4 ' - (m— フエ二レンジイソプロピリデン) ジフエノール、 1, 1一ビス (4ーヒドロキシ フエニル) 一 4一イソプロビルシクロへキサン、 ビス (4ーヒドロキシフエ二 ル) ォキシド、 ビス (4ーヒドロキシフエニル) スルフイド、 ビス (4ーヒドロ キシフエニル) スルホキシド、 ビス (4ーヒドロキシフエニル) スルホン、 ビス ( 4ーヒドロキシフエニル) ケトン、 ビス (4ーヒドロキシフエニル) エステル、 ビス (4ーヒドロキシー 3 _メチルフエニル) スルフイ ド、 9, 9一ビス (4一 ヒドロキシフエニル) フルオレンおよび 9, 9—ビス (4ーヒドロキシー 3—メ チルフエニル) フルオレンなどが挙げられる。 好ましい二価フエノールは、 ビス ( 4—ヒドロキシフエニル) アルカンであり、 なかでも靭性ゃ変形特性に優れる 点からビスフエノール A (以下 " B P A" と略称することがある) が特に好まし い。 The polycarbonate resin used as component A in the present invention is obtained by reacting divalent phenol with a carbonate precursor. As an example of the reaction method Examples thereof include an interfacial polymerization method, a melt transesterification method, a solid phase ester exchange method of a carbonate precursor, and a ring-opening polymerization method of a cyclic carbonate compound. Typical examples of dihydric phenols used here are hydroquinone, resorcinol, 4,4, -biphenol, 1,1-bis (4-hydroxyphenol) ethane, 2,2-bis (4-hydroxyphenol). Enyl) propane (commonly known as bisphenol A), 2,2-bis (4-hydroxy-1-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1_bis (4-hydroxyphenyl) 1-phenylphenyl, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -1,3-, 3-trimethylcyclohexane, 2,2-bis ( 4-hydroxyphenyl) pentane, 4, 4 'one (p-phenylene diisopropylidene) diphenol, 4, 4'-(m-phenylene diisopropylidene) dipheno 1, 1 bis (4-hydroxyphenyl) 4-1 isopropyl cyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) ester, bis (4-hydroxy-3-methylphenyl) sulfide, 9,9-bis (4-hydroxyphenyl) Enyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. A preferred divalent phenol is a bis (4-hydroxyphenyl) alkane, and bisphenol A (hereinafter sometimes abbreviated as “BPA”) is particularly preferred because of its excellent toughness and deformation characteristics.
A成分は、 ビスフエノール A型のポリカーボネートであることが好ましい。 ビ スフエノール A型のポリカーボネートは、 二価フエノールの好ましくは 5 0モ ル%以上、 より好ましくは 8 0モル%以上、 さらに好ましくは 9 0モル%以上が ビスフエノール Aであるポリカーボネート樹脂である。  The component A is preferably a bisphenol A type polycarbonate. Bisphenol A type polycarbonate is a polycarbonate resin in which bisphenol A is preferably 50 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more of divalent phenol.
本発明では、 汎用のポリカーボネートであるビスフエノール A型のポリカーボ ネー卜以外にも、 他の二価フエノ一ル類を用いて製造した特殊なポリカーボネ一 トを A成分として使用することが可能である。 In the present invention, in addition to bisphenol A type polycarbonate which is a general-purpose polycarbonate, a special polycarbonate manufactured using other divalent phenols is used. Can be used as component A.
例えば、 二価フエノール成分の一部または全部として、 4, 4' 一 (m—フエ 二レンジイソプロピリデン) ジフエノール (以下 "BPM" と略称することがあ る)、 1, 1—ビス (4—ヒドロキシフエニル) シクロへキサン、 1, 1一ビス (4ーヒドロキシフエ二ル) — 3, 3, 5—トリメチルシクロへキサン (以下 "B i s—TMC" と略称することがある)、 9, 9一ビス (4ーヒドロキシフ ェニル) フルオレンおよび 9, 9一ビス (4ーヒドロキシー 3—メチルフエ二 ル) フルオレン (以下 "BCF" と略称することがある) を用いたポリカーボネ ート (単独重合体または共重合体) は、 吸水による寸法変化や形態安定性の要求 が特に厳しい用途に適当である。 これらの BP A以外の二価フエノールは、 該ポ リカ一ボネ一卜を構成する二価フエノール成分全体の 5モル%以上、 特に 10モ ル%以上、 使用するのが好ましい。  For example, as part or all of the divalent phenol component, 4, 4′-one (m-phenol di-diisopropylidene) diphenol (hereinafter sometimes abbreviated as “BPM”), 1, 1-bis (4- Hydroxyphenyl) cyclohexane, 1, 1 bis (4-hydroxyphenyl) — 3, 3, 5-trimethylcyclohexane (hereinafter sometimes referred to as “B is—TMC”), 9, 9 Polycarbonate (homopolymer or copolymer) using bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter sometimes abbreviated as “BCF”) Is suitable for applications where dimensional changes due to water absorption and the requirement for form stability are particularly severe. These bivalent phenols other than BPA are preferably used in an amount of 5 mol% or more, particularly 10 mol% or more of the total divalent phenol component constituting the polycarbonate / bonnet.
殊に、 高剛性で良好な耐加水分解性が要求される場合には、 樹脂組成物を構成 する A成分が次の (1) 〜 (3) の共重合ポリカーボネー卜であることが好まし い。  In particular, when high rigidity and good hydrolysis resistance are required, the component A constituting the resin composition is preferably a copolymer polycarbonate (1) to (3) below. Yes.
(1) 該ポリカーボネートを構成する二価フエノール成分 100モル%中、 BP M成分が 20〜80モル% (より好適には 40〜75モル%、 さらに好適には 4 5〜65モル%) であり、 かつ BCF成分が 20〜8◦モル% (より好適には 2 5〜60モル%、 さらに好適には 35〜 55モル%) である共重合ポリ力一ボネ 一卜。  (1) In 100 mol% of the divalent phenol component constituting the polycarbonate, the BPM component is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%). And a BCF component of 20 to 8 mol% (more preferably 25 to 60 mol%, more preferably 35 to 55 mol%).
(2) 該ポリカーボネートを構成する二価フエノール成分 100モル%中、 BP A成分が 10〜95モル% (より好適には 50〜90モル%、 さらに好適には 6 0〜85モル%) であり、 かつ BCF成分が 5〜90モル% (より好適には 10 〜50モル%、 さらに好適には 15〜40モル%) である共重合ポリカーボネー ト。  (2) In 100 mol% of the divalent phenol component constituting the polycarbonate, the BP A component is 10 to 95 mol% (more preferably 50 to 90 mol%, more preferably 60 to 85 mol%). And a copolymerized polycarbonate containing 5 to 90 mol% (more preferably 10 to 50 mol%, more preferably 15 to 40 mol%) of the BCF component.
(3) 該ポリカーボネートを構成する二価フエノール成分 100モル%中、 BP M成分が 20〜80モル% (より好適には 40〜75モル%、 さらに好適には 4 5〜65モル%) であり、 かつ B i s— TMC成分が 20〜80モル% (より好 適には 25〜60モル%、 さらに好適には 35〜 55モル%) である共重合ポリ カーボネー卜。 (3) In 100 mol% of the divalent phenol component constituting the polycarbonate, the BPM component is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%). And B is— 20-80 mol% of TMC component (more preferred Copolymer polycarbonate which is preferably 25 to 60 mol%, more preferably 35 to 55 mol%.
これらの特殊なポリカーボネートは、 単独で用いてもよく、 2種以上を適宜混 合して使用してもよい。 また、 これらを汎用されているビスフエノール A型のポ リカ一ボネートと混合して使用することもできる。  These special polycarbonates may be used alone or in combination of two or more. These can also be used by mixing with a commonly used bisphenol A type polycarbonate.
これらの特殊なポリカーボネートの製法および特性については、 例えば、 特開 平 6— 172508号公報、 特開平 8— 27370号公報、 特開 2001— 55 435号公報および特開 2002 - 117580号公報等に詳しく記載されてい る。  The production method and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435 and JP-A-2002-117580. Are listed.
なお、 上述した各種のポリカーボネートの中でも、 共重合組成等を調整して、 吸水率および Tg (ガラス転移温度) を下記の範囲内にしたものは、 ポリマー自 体の耐加水分解性が良好で、 力つ成形後の低反り性においても格段に優れている ため、 形態安定性が要求される分野では特に好適である。  Of the various polycarbonates described above, those having a water absorption and Tg (glass transition temperature) adjusted within the following ranges by adjusting the copolymer composition, etc. have good hydrolysis resistance of the polymer itself. Since it is remarkably excellent in low warpage after intensive molding, it is particularly suitable in a field where shape stability is required.
(i) 吸水率が 0. 05〜0. 15%、 好ましくは 0. 06〜0. 13%であり、 かつ Tgが 120〜180でであるポリカーボネート、 あるいは  (i) a polycarbonate having a water absorption rate of 0.05 to 0.15%, preferably 0.06 to 0.113% and Tg of 120 to 180, or
( i i ) 丁8が160〜250で、 好ましくは 170〜 230でであり、 かつ吸 水率が 0. 10〜0. 30%、 好ましくは 0. 13〜0. 30%、 より好ましく は 0. 14〜0. 27%であるポリカーボネート。  (ii) Ding 8 is 160 to 250, preferably 170 to 230, and the water absorption is 0.1 to 0.30%, preferably 0.13 to 0.30%, more preferably 0. Polycarbonate which is 14-0.27%.
ここで、 ポリカーボネートの吸水率は、 直径 45mm、 厚み 3. Ommの円板 状試験片を用い、 I S062— 1980に準拠して 23での水中に 24時間浸漬 した後の水分率を測定した値である。 また、 Tg (ガラス転移温度) は、 J I S K7121に準拠した示差走査熱量計 (DSC) 測定により求められる値である。 カーボネート前駆体としてはカルボニルハライド、 炭酸ジエステルまたはハロ ホルメートなどが使用され、 具体的にはホスゲン、 ジフエ二ルカ一ボネートまた は二価フエノールのジハロホルメートなどが挙げられる。  Here, the water absorption rate of polycarbonate is a value obtained by measuring the moisture content after immersion in water at 23 according to I S062-1980 using a disk-shaped test piece having a diameter of 45 mm and a thickness of 3. Omm. It is. Tg (glass transition temperature) is a value determined by differential scanning calorimetry (DSC) measurement in accordance with JI S K7121. As the carbonate precursor, carbonyl halide, carbonic acid diester, haloformate, or the like is used, and specific examples include phosgene, diphenyl carbonate, or dihaloformate of divalent phenol.
上記二価フエノールとカーボネート前駆体を界面重合法によってポリカーボネ ート樹脂を製造するに当っては、 必要に応じて触媒、 末端停止剤、 二価フエノー ルが酸化するのを防止するための酸化防止剤などを使用してもよい。 また本発明 に用いるポリカーボネート樹脂 (A成分) は、 三官能以上の多官能性芳香族化合 物を共重合した分岐ポリカーボネート樹脂、 芳香族または脂肪族 (脂環式を含 む) の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、 二官能 性アルコール (脂環式を含む) を共重合した共重合ポリカーボネート樹脂、 並び にかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエ ステルカーボネート樹脂を含む。 また、 得られたポリカーボネート樹脂の 2種以 上を混合した混合物であってもよい。 In the production of polycarbonate resin by interfacial polymerization using the above divalent phenol and carbonate precursor, oxidation prevention to prevent oxidation of the catalyst, terminal terminator and divalent phenol as necessary. An agent or the like may be used. The present invention The polycarbonate resin (component A) used in the above is a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, and an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid. Polymerized polyester carbonate resin, copolymer polycarbonate resin copolymerized with bifunctional alcohol (including alicyclic), and polyester carbonate resin copolymerized with both difunctional carboxylic acid and bifunctional alcohol . Further, a mixture obtained by mixing two or more of the obtained polycarbonate resins may be used.
分岐ポリカーボネート樹脂は、 本発明の樹脂組成物の溶融張力を増加させ、 か 力 ^る特性に基づいて押出成形、 発泡成形およびブロー成形における成形加工性を 改善できる。 結果として寸法精度により優れた、 これらの成形法による成形品が 得られる。  The branched polycarbonate resin increases the melt tension of the resin composition of the present invention, and can improve the molding processability in extrusion molding, foam molding, and blow molding based on its strong properties. As a result, a molded product obtained by these molding methods having superior dimensional accuracy can be obtained.
かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化 合物としては、 4 , 6—ジメチルー 2, 4, 6—卜リス (4ーヒドロキジフエ二 ル) ヘプテン一 2、 2 , 4 , 6—トリメチルー 2 , 4 , 6—トリス (4ーヒドロ キシフエニル) ヘプタン、 1 , 3 , 5—卜リス (4ーヒドロキシフエニル) ベン ゼン、 1 , 1, 1—トリス (4—ヒドロキシフエニル) ェタン、 1, 1, 1ート リス (3, 5—ジメチルー 4ーヒドロキシフエニル) ェタン、 2 , 6—ビス (2 ーヒドロキシー 5 _メチルベンジル) 一 4一メチルフエノール、 および 4一 { 4 ― [ 1, 1 _ビス (4—ヒドロキシフエニル) ェチル] ベンゼン } - , α—ジ メチルベンジルフエノール等のトリスフエノールが好適に例示される。 その他多 官能性芳香族化合物としては、 フロロダルシン、 フロログルシド、 テトラ (4— ヒドロキシフエニル) メタン、 ビス (2, 4ージヒドロキシフエニル) ケトン、 1 , 4一ビス (4, 4ージヒドロキシトリフエニルメチル) ベンゼン、 並びにト リメリット酸、 ピロメリット酸、 ベンゾフエノンテトラカルボン酸およびこれら の酸クロライド等が例示される。 中でも 1, 1, 1 _卜リス (4ーヒドロキシフ ェニル) ェ夕ンおよび 1 , 1 , 1—トリス (3, 5 _ジメチルー 4—ヒドロキシ フエニル) ェタンが好ましく、 特に 1, 1, 1ートリス (4—ヒドロキシフエ二 ル) ェタンが好ましい。 分岐ポリカーボネート樹脂における多官能性芳香族化合物から誘導される構成 単位は、 二価フエノールから誘導される構成単位とかかる多官能性芳香族化合物 から誘導される構成単位との合計 100モル%中、 0. 03〜1モル%、 好まし くは 0. 07〜0. 7モル%、 特に好ましくは 0. 1〜0. 4モル%である。 また、 かかる分岐構造単位は、 多官能性芳香族化合物から誘導されるだけでな く、 溶融エステル交換反応時の副反応の如き、 多官能性芳香族化合物を用いるこ となく誘導されるものであってもよい。 尚、 かかる分岐構造の割合については1 H— NMR測定により算出することが可能である。 The trifunctional or higher polyfunctional aromatic compounds used in such branched polycarbonate resins include 4, 6-dimethyl-2, 4, 6- 卜 ris (4-hydroxydiphenyl) heptene 1, 2, 2, 4, 6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane 1, 1, 1-tris (3, 5-dimethyl-4-hydroxyphenyl) ethane, 2, 6-bis (2-hydroxy-5_methylbenzyl) 1-4 methylphenol, and 4 1 {4-[1 , 1_bis (4-hydroxyphenyl) ethyl] benzene}-, α-dimethylbenzylphenol and the like are preferably exemplified. Other polyfunctional aromatic compounds include fluorodalcine, phloroglucid, tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4 monobis (4,4-dihydroxytriphenylmethyl) ), Benzene, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, and acid chlorides thereof are exemplified. Of these, 1,1,1_ 卜 ris (4-hydroxyphenyl) evene and 1,1,1-tris (3,5_dimethyl-4-hydroxyphenyl) ethane are preferred, especially 1,1,1 tris (4— Hydroxyphenyl) ethane is preferred. The structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate resin is 100 mol% in total of the structural unit derived from the divalent phenol and the structural unit derived from the polyfunctional aromatic compound. 03 to 1 mol%, preferably 0.07 to 0.7 mol%, particularly preferably 0.1 to 0.4 mol%. Further, such a branched structural unit is not only derived from a polyfunctional aromatic compound but also derived from a side reaction during a melt transesterification reaction without using a polyfunctional aromatic compound. There may be. The ratio of the branched structure can be calculated by 1 H-NMR measurement.
脂肪族の二官能性のカルボン酸は、 α, ω—ジカルボン酸が好ましい。 脂肪族 の二官能性のカルボン酸としては例えば、 セバシン酸 (デカン二酸)、 ドデカン 二酸、 テトラデカン二酸、 ォク夕デカン二酸、 およびィコサン二酸などの直鎖飽 和脂肪族ジカルボン酸、 並びにシクロへキサンジカルボン酸などの脂環式ジカル ボン酸が好ましく挙げられる。 二官能性アルコールとしては脂環式ジオールがよ り好適であり、 例えばシクロへキサンジメタノール、 シクロへキサンジオール、 およびトリシクロデカンジメタノールなどが例示される。  The aliphatic difunctional carboxylic acid is preferably α, ω-dicarboxylic acid. Examples of aliphatic difunctional carboxylic acids include linear saturated aliphatic dicarboxylic acids such as sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, and icosanedioic acid. And alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid are preferred. As the bifunctional alcohol, an alicyclic diol is more preferable, and examples thereof include cyclohexane dimethanol, cyclohexane diol, and tricyclodecane dimethanol.
さらにポリオルガノシロキサン単位を共重合した、 ポリカーボネート一ポリオ ルガノシロキサン共重合体の使用も可能である。  Furthermore, it is possible to use a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane units.
ポリカーボネート樹脂の製造方法である界面重合法、 溶融エステル交換法、 力 ーボネートプレボリマーの固相エステル交換法、 および環状カーボネート化合物 の開環重合法などの反応形式は、 各種の文献および特許公報などで良く知られて いる方法である。  Reaction methods such as interfacial polymerization, which is a method for producing polycarbonate resin, melt transesterification, solid-phase transesterification of force-bonate prepolymers, and ring-opening polymerization of cyclic carbonate compounds are various literatures and patent publications. This is a well-known method.
本発明の樹脂組成物を製造するにあたり、 ポリカーボネート樹脂 (Α成分) の 粘度平均分子量 (Μ) は、 好ましくは 1 X 104〜5 X 104、 より好ましくは 1. 4Χ 104〜3 Χ 1 04、 さらに好ましくは 1. 4X 104〜 2. 4 X 1 0 である。 In producing the resin composition of the present invention, the viscosity average molecular weight (Μ) of the polycarbonate resin (樹脂 component) is preferably 1 X 10 4 to 5 X 10 4 , more preferably 1.4 to 10 4 to 3 3 1 0 4 , more preferably 1.4 × 10 4 to 2.4 × 10.
粘度平均分子量が 1 X 104未満のポリカーボネート樹脂では、 実用上十分な 靱性ゃ割れ耐性が得られない場合がある。 一方、 粘度平均分子量が 5 X 1 04を 超えるポリカーボネート樹脂から得られる樹脂組成物は、 概して高い成形加工温 度を必要とするか、 または特殊な成形方法を必要とすることから汎用性に劣る。 高い成形加工温度は、 樹脂組成物の変形特性やレオロジー特性の低下を招きやす レ^ Polycarbonate resins having a viscosity average molecular weight of less than 1 × 10 4 may not provide practically sufficient toughness and crack resistance. On the other hand, a resin composition obtained from a polycarbonate resin having a viscosity average molecular weight exceeding 5 × 10 4 generally has a high molding processing temperature. It is inferior in versatility because it requires a high degree or requires a special molding method. High molding temperature tends to cause deterioration of deformation and rheological properties of resin composition.
なお、 ポリカーボネート樹脂は、 その粘度平均分子量が上記範囲外のものを混 合して得られたものであってもよい。 殊に、 上記値 (5X 104) を超える粘度 平均分子量を有するポリカーボネー卜樹脂は、 本発明の樹脂組成物の溶融張力を 増加させ、 かかる特性に基づいて押出成形、 発泡成形およびブロー成形における 成形加工性を改善できる。 かかる改善効果は、 上記分岐ポリカーボネートよりも さらに良好である。 The polycarbonate resin may be obtained by mixing those having a viscosity average molecular weight outside the above range. In particular, a polycarbonate resin having a viscosity average molecular weight exceeding the above value (5 × 10 4 ) increases the melt tension of the resin composition of the present invention, and the extrusion molding, foam molding and blow molding are based on such characteristics. Molding processability can be improved. This improvement effect is even better than the branched polycarbonate.
より好適な態様としては、 A成分が、 粘度平均分子量 7 X 1 04〜2 X 106 のポリカーボネート樹脂 (A— 3— 1成分)、 および粘度平均分子量 1 X 104 〜3 X 1 04のポリカーボネート樹脂 (A— 3— 2成分) からなり、 その粘度平 均分子量が 1. 6 X 104〜3. 5 X 104であるポリカーボネート樹脂 (A_ 3成分) (以下、 "高分子量成分含有ポリカーボネート樹脂" と称することがあ る) も使用できる。 In a more preferred embodiment, the component A is a polycarbonate resin (A—3-1 component) having a viscosity average molecular weight of 7 × 10 4 to 2 × 10 6 , and a viscosity average molecular weight of 1 × 10 4 to 3 × 10 4 Polycarbonate resin (A—3—two components) and a viscosity average molecular weight of 1.6 X 10 4 to 3.5 X 10 4 (A_ 3 components) (hereinafter “high molecular weight component included”) Polycarbonate resin ”(sometimes referred to as“ polycarbonate resin ”) can also be used.
かかる高分子量成分含有ポリカーボネート樹脂 (A— 3成分) において、 A— 3— 1成分の分子量は、 好ましくは 7 X 104〜3 X 105、 より好ましくは 8 X 1 04〜2 X 1 05、 さらに好ましくは 1 X 1 05〜2 X 1 05、 特に好ましく は 1 X 1 05〜: I. 6 X 105である。 また A— 3— 2成分の分子量は、 好まし くは 1 X 1 04〜2. 5 X 104、 より好ましくは 1. 1 X 1 04〜2. 4X 10 4、 さらに好ましくは 1. 2 X 1 04〜2. 4X 1 04、 特に好ましくは 1. 2 X 104〜2. 3 X 104である。 In such a high molecular weight component-containing polycarbonate resin (A-3 component), the molecular weight of the A-3-1 component is preferably 7 X 10 4 to 3 X 10 5 , more preferably 8 X 10 4 to 2 X 10. 5, more preferably 1 X 1 0 5 ~2 X 1 0 5, particularly preferably 1 X 1 0 5 ~: I. a 6 X 10 5. The A- 3- 2 molecular weight of the component, rather preferably the 1 X 1 0 4 ~2. 5 X 10 4, more preferably 1. 1 X 1 0 4 ~2. 4X 10 4, more preferably 1. 2 X 1 0 4 ~2. 4X 1 0 4, particularly preferably 1. a 2 X 10 4 ~2. 3 X 10 4.
高分子量成分含有ポリカーボネート樹脂 (A— 3成分) は上記 A— 3— 1成分 と A— 3— 2成分を種々の割合で混合し、 所定の分子量範囲を満足するよう調整 して得ることができる。 好ましくは、 A— 3成分 100重量%中、 A— 3— 1成 分が 2〜40重量%および A— 3一 2成分が 60〜98重量%であり、 より好ま しくは A— 3— 1成分が 5〜20重量%および A— 3— 2成分が 80〜95重 量%である。 通常ポリカーボネート樹脂の分子量分布は 2〜3の範囲である。 従 つて、 本発明の A— 3— 1成分および A— 3一 2成分においてもかかる分子量分 布の範囲を満足することが好ましい。 尚、 かかる分子量分布は、 GPC (ゲルパ —ミエ一シヨンクロマトグラフィー) 測定により算出される数平均分子量 (M n) に対する重量平均分子量 (Mw) の比 (MwZMn) で表されるものであり、 該 Mnおよび Mwは標準ポリスチレン換算によるものである。 High molecular weight component-containing polycarbonate resin (A-3 component) can be obtained by mixing the above A-3-1 component and A-3-2 component in various proportions and adjusting to satisfy the predetermined molecular weight range. . Preferably, in 100% by weight of the A-3 component, the A-3-1-component is 2-40% by weight and the A-3-3 component is 60-98% by weight, more preferably A-3-1- The component is 5 to 20% by weight and the A-3-2 component is 80 to 95% by weight. Usually the molecular weight distribution of polycarbonate resin is in the range of 2-3. Obedience Therefore, it is preferable that the A-3-1-component and the A-31-2 component of the present invention satisfy the range of the molecular weight distribution. The molecular weight distribution is expressed by the ratio (MwZMn) of the weight average molecular weight (Mw) to the number average molecular weight (M n) calculated by GPC (gel permeation chromatography) measurement. Mn and Mw are based on standard polystyrene.
また、 A— 3成分の調製方法としては、 (1) 八_ 3— 1成分と八— 3 _ 2成 分とを、 それぞれ独立に重合しこれらを混合する方法、 (2) 特開平 5— 3 0 6 336号公報に示される方法に代表される、 G PC法による分子量分布チャート において複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内に おいて製造する方法を用い、 かかる芳香族ポリカーボネート樹脂を本発明の A— 3成分の条件を満足するよう製造する方法、 および (3) かかる製造方法 ((2) の製造法) により得られた芳香族ポリカーボネート樹脂と、 別途製造さ れた A— 3 _ 1成分および Zまたは A— 3— 2成分とを、 混合する方法などを挙 げることができる。  The preparation method of the A-3 component is as follows: (1) A method in which the 8_3-1 component and the 8-3-2 component are polymerized independently and mixed, (2) Using a method of producing an aromatic polycarbonate resin exhibiting a plurality of polymer peaks in a molecular weight distribution chart by the GPC method, represented by the method disclosed in Japanese Patent No. 3 0 6 336, in the same system, such an aromatic polycarbonate A method for producing a resin to satisfy the conditions of the A-3 component of the present invention, and (3) an aromatic polycarbonate resin obtained by such a production method (the production method of (2)), and a separately produced A — 3 — 1 component and Z or A— 3— 2 components can be mixed.
本発明でいう粘度平均分子量は、 まず、 次式にて算出される比粘度 (r?SP) を 20でで塩化メチレン 1 00m lにポリカーボネート樹脂 0. 7 gを溶解した 溶液からォストワルド粘度計を用いて求め、 The viscosity average molecular weight referred to in the present invention is as follows. First, a specific viscosity (r? SP ) calculated by the following formula is 20 and a Ostwald viscometer is measured from a solution in which 0.7 g of polycarbonate resin is dissolved in 100 ml of methylene chloride. Using
比粘度 (7?SP) = ( t - t 0) / t o Specific viscosity (7? SP ) = (t-t 0 ) / to
[ t Qは塩化メチレンの落下秒数、 tは試料溶液の落下秒数] [t Q is the drop time of methylene chloride, t is the drop time of the sample solution]
求められた比粘度 (7^SP) から次の数式により粘度平均分子量 Mを算出する。 Viscosity average molecular weight M is calculated from the obtained specific viscosity (7 ^ SP ) by the following formula.
r?SP/c= [η] +0. 45 Χ [η] 2c (但し [ ] は極限粘度) r? SP / c = [η] +0.45 Χ [η] 2 c (where [] is the intrinsic viscosity)
[η] = 1. 23 X 1 0 -4 Μ0. 83 [η] = 1. 23 X 1 0 -. 4 Μ 0 83
c = 0. 7  c = 0.7
尚、 本発明の樹脂組成物における粘度平均分子量の算出は次の要領で行なわれ る。 すなわち、 樹脂組成物を、 その 20〜30倍重量の塩化メチレンと混合し、 樹脂組成物中の可溶分を溶解させる。 かかる可溶分をセライト濾過により採取す る。 その後、 得られた溶液中の溶媒を除去する。 溶媒除去後の固体を十分に乾燥 し、 塩化メチレンに溶解する成分の固体を得る。 かかる固体 0. 7 gを塩化メチ レン 1 0 0 m lに溶解した溶液から、 上記と同様にして 2 0でにおける比粘度を 求め、 該比粘度から上記と同様にして粘度平均分子量 Mを算出する。 The calculation of the viscosity average molecular weight in the resin composition of the present invention is performed as follows. That is, the resin composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble component in the resin composition. Such soluble matter is collected by Celite filtration. Thereafter, the solvent in the obtained solution is removed. The solid after removal of the solvent is thoroughly dried to obtain a solid component that dissolves in methylene chloride. 0.7 g of such solid From the solution dissolved in 100 ml of len, the specific viscosity at 20 is obtained in the same manner as described above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as described above.
(B成分:無機粒子)  (B component: inorganic particles)
無機粒子 (B成分) は、 二酸化珪素および酸化アルミニウムの複合体を含有す る粒子である。 これは、 二酸化珪素の相および酸化アルミニウムの相を含む粒子 を意味する。 その具体的態様としては、 たとえば、 二酸化珪素と酸化アルミニゥ ムとの固溶体を含む粒子、 二酸化珪素粒子と酸化アルミニウム粒子とが融着した 粒子などが挙げられる。 また、 フライアッシュは、 こうした複合体を含有する粒 子の好適な例である。  Inorganic particles (component B) are particles containing a composite of silicon dioxide and aluminum oxide. This means particles comprising a silicon dioxide phase and an aluminum oxide phase. Specific examples thereof include particles containing a solid solution of silicon dioxide and aluminum oxide, and particles obtained by fusing silicon dioxide particles and aluminum oxide particles. Fly ash is a suitable example of a particle containing such a complex.
本発明者の検討によれば、 このような構成の無機粒子 (B成分) を用いること により、 二酸化珪素粒子単体、 酸化アルミニウム粒子単体、 あるいはこれらの混 合物では得られない、 優れた難燃性を実現することができる。  According to the study of the present inventor, by using the inorganic particles (component B) having such a configuration, excellent flame retardancy that cannot be obtained with silicon dioxide particles alone, aluminum oxide particles alone, or a mixture thereof. Can be realized.
無機粒子は、 上記複合体を含む粒子に加えて、 酸化アルミニウム粒子および二 酸化珪素粒子をさらに含むこと力好ましい。 このような複数の異なる種類の粒子 を含む無機粒子を用いることにより、 難燃性に優れる樹脂組成物を安定的に得る ことができる。  It is preferable that the inorganic particles further include aluminum oxide particles and silicon dioxide particles in addition to the particles containing the composite. By using such inorganic particles containing a plurality of different types of particles, a resin composition having excellent flame retardancy can be stably obtained.
このような構成の無機粒子として、 たとえば、 珪素およびアルミニウムの複合 酸化物を含む粒子、 シリカ粒子およびアルミナ粒子の混合物からなる無機粒子な どが挙げられる。 後述するフライアッシュも、 このような複数の種類の粒子を含 む無機粒子の例として挙げることができる。  Examples of inorganic particles having such a structure include particles containing a composite oxide of silicon and aluminum, and inorganic particles made of a mixture of silica particles and alumina particles. The fly ash described later can also be cited as an example of inorganic particles containing a plurality of types of particles.
このような無機粒子であって、 入手コス卜が安価なものとしてフライアッシュ などが挙げられる。 ゴミ焼却炉などから得られる焼却灰が種々雑多なものを燃焼 させ得られた燃焼灰であるのに対して、 フライアッシュは、 火力発電所の石炭燃 焼灰であるので、 原材料の素性が明確であり、 珪素およびアルミニウム以外の重 金属等の含有量が燃焼灰に比べて低い。 また、 重金属等の含有量を制御すること もフライアッシュでは比較的容易である。 従って、 材料組成物に充填材等として 添加したとき、 フライアッシュは環境に悪影響を与えにくいという利点もある。 また、 このような無機粒子を用いると、 リン系難燃剤やハロゲン系難燃剤など の配合量を低減しても、 充分な難燃性を有する樹脂組成物を得ることができる。 リン系難燃剤やハロゲン系難燃剤の配合量は 0とすること力環境保護の観点から は好ましい。 Examples of such inorganic particles that can be obtained at low cost include fly ash. While incineration ash obtained from garbage incinerators is combustion ash obtained by burning various miscellaneous things, fly ash is coal combustion ash from thermal power plants, so the identity of raw materials is clear The content of heavy metals other than silicon and aluminum is low compared to combustion ash. In addition, it is relatively easy to control the content of heavy metals and the like in fly ash. Therefore, fly ash also has the advantage that it does not adversely affect the environment when added as a filler to the material composition. In addition, when such inorganic particles are used, phosphorus-based flame retardants, halogen-based flame retardants, etc. Even if the compounding amount is reduced, a resin composition having sufficient flame retardancy can be obtained. It is preferable from the viewpoint of environmental protection that the amount of phosphorus flame retardant and halogen flame retardant is 0.
以下、 無機粒子 (B成分) の粒径について説明する。 本発明における無機粒子 の D 5 0粒径 (5 0 %径:メジアン径のことをいい、 粉体をある粒子径から 2つ に分けたとき、 大きい径の粉体数と小さい径の粉体数が同じになる径のこと。 本 発明においては 0 . 1 m以上の粒径の粒子数で計算する。) は、 好ましくは 1 t m以上、 より好ましくは 2 m以上、 最も好ましくは 3 ;Lt m以上である。 また、 この D 5 0粒径は、 Ι Ο μ ιη以下、 好ましくは 8 // m以下、 より好ましくは 7 m以下である。  Hereinafter, the particle size of the inorganic particles (component B) will be described. D 50 particle diameter of inorganic particles in the present invention (50% diameter: median diameter) When the powder is divided into two from a certain particle diameter, the number of large diameter powder and the small diameter powder In the present invention, the number of particles having a particle size of 0.1 m or more is calculated.) Is preferably 1 tm or more, more preferably 2 m or more, most preferably 3; m or more. The D 50 particle size is 以下 Ο μ ιη or less, preferably 8 // m or less, more preferably 7 m or less.
D 5 0粒径が 1 ; m以上である場合には、 樹脂組成物の難燃性が向上する。 ま た、 樹脂組成物の成形性の低下を抑制することもできる。 また、 無機粒子の飛散 が抑制され、 樹脂組成物の製造工程における作業性や取扱安定性が向上する。 D 5 0粒径が 3 / m以上であると、 樹脂組成物の難燃性が一層良好となる。 また、 無機粒子の飛散がさらに抑制され、 樹脂組成物の製造工程における作業性や取扱 安定性がさらに向上する。 D 5 0粒径が 1 0 m以下である場合には、 樹脂組成 物の難燃性が向上する。 また、 樹脂組成物の成形性の低下を抑制することもでき る。 D 5 0粒径が 7 m以下であると、 燃焼時にポリカーボネート樹脂の炭化が より促進され、 その結果、 樹脂組成物の難燃性が一層良好となる。  When the D 50 particle size is 1; m or more, the flame retardancy of the resin composition is improved. In addition, a decrease in moldability of the resin composition can be suppressed. In addition, scattering of inorganic particles is suppressed, and workability and handling stability in the manufacturing process of the resin composition are improved. When the D 50 particle size is 3 / m or more, the flame retardancy of the resin composition is further improved. In addition, scattering of inorganic particles is further suppressed, and workability and handling stability in the manufacturing process of the resin composition are further improved. When the D 50 particle size is 10 m or less, the flame retardancy of the resin composition is improved. In addition, a decrease in moldability of the resin composition can be suppressed. When the D 50 particle size is 7 m or less, the carbonization of the polycarbonate resin is further promoted during combustion, and as a result, the flame retardancy of the resin composition is further improved.
ここで、 市販のフライアッシュは、 通常、 D 5 0粒径が 1 0 mを超える。 こ のため、 本発明においては、 このような大粒径のフライアッシュをそのまま用い ず、 分級処理等により粒径制御したものを用いることが好ましい。 これにより、 ポリカーボネート樹脂 (A成分) と無機粒子 (B成分) との相乗作用が顕著に得 られ、 優れた難燃性を安定的に実現することができる。 また、 樹脂組成物の成形 性も良好に維持される。  Here, commercially available fly ash usually has a D 50 particle size exceeding 10 m. For this reason, in the present invention, it is preferable to use a fly ash having such a large particle size, which is not directly used, but whose particle size is controlled by classification or the like. As a result, the synergistic action of the polycarbonate resin (component A) and the inorganic particles (component B) is remarkably obtained, and excellent flame retardancy can be stably realized. In addition, the moldability of the resin composition is maintained well.
なお、 無機粒子 (B成分) の粒径制御の方法としては、 特定の目開きのふるい を用いた分級処理や、 気流分級装置を用いた分級処理等が挙げられる。  Examples of the method for controlling the particle size of the inorganic particles (component B) include classification using a sieve having a specific opening, classification using an airflow classifier, and the like.
本発明における無機粒子 (B成分) は、 D 5 0粒径により規定される上記粒径 条件を満たすことに加え、 体積平均粒径により規定される下記の粒径条件を満た すこと力好ましい。 無機粒子の体積平均粒径は、 好ましくは l ; m以上、 より好 ましくは 3 m以上であり、 好ましくは 1 0 x m以下、 より好ましくは 7 m以 下である。 体積平均粒径はある粒径の粒子の体積と、 その粒径の粒子数との積の 総和を、 粒子の総体積で割ったときに得られる平均粒径のことであり、 レーザ一 回折 ·散乱法によって測定する。 無機粒子の体積平均粒径が 1 m以上である場 合には、 樹脂組成物の難燃性が向上する。 また、 樹脂組成物の成形性が良好にな る。 また、 無機粒子の飛散が抑制され、 樹脂組成物の製造工程における作業性や 取扱安定性が向上する。 無機粒子の体積平均粒径が 3 // m以上であると、 樹脂組 成物の難燃性が一層良好となる。 また、 無機粒子の飛散がさらに抑制され、 樹脂 組成物の製造工程における作業性や取扱安定性がさらに向上する。 無機粒子の体 積平均粒径が 1 0 m以下である場合には、 樹脂組成物の難燃性が向上する。 ま た、 樹脂組成物の成形性が良好になる。 無機粒子の体積平均粒径が 7 / m以下で あると、 樹脂組成物の難燃性が一層良好となる。 Inorganic particle (component B) in the present invention is the above particle size defined by D 50 particle size In addition to satisfying the conditions, it is preferable to satisfy the following particle size conditions defined by the volume average particle size. The volume average particle diameter of the inorganic particles is preferably l; m or more, more preferably 3 m or more, preferably 10 xm or less, more preferably 7 m or less. The volume average particle size is the average particle size obtained by dividing the sum of the product of the volume of a particle of a certain particle size and the number of particles of that particle size by the total volume of the particle. Measured by scattering method. When the volume average particle diameter of the inorganic particles is 1 m or more, the flame retardancy of the resin composition is improved. In addition, the moldability of the resin composition is improved. In addition, scattering of inorganic particles is suppressed, and workability and handling stability in the manufacturing process of the resin composition are improved. When the volume average particle size of the inorganic particles is 3 // m or more, the flame retardancy of the resin composition becomes even better. In addition, scattering of inorganic particles is further suppressed, and workability and handling stability in the manufacturing process of the resin composition are further improved. When the volume average particle size of the inorganic particles is 10 m or less, the flame retardancy of the resin composition is improved. In addition, the moldability of the resin composition is improved. When the volume average particle diameter of the inorganic particles is 7 / m or less, the flame retardancy of the resin composition is further improved.
また、 本発明における無機粒子 (B成分) は、 D 5 0粒径または体積平均粒径 により規定される上記粒径条件を満たすことに加え、 以下のように規定される粒 径条件を満たすことが望ましい。 すなわち、 無機粒子は、 粒径 2 0 x m以下の粒 子を、 好ましくは 7 0累積% (数累積) 以上、 より好ましくは 9 0累積% (数累 積) 以上含むものとすることが望ましい。 ここにおいては 0. 1 m以上の粒径 の粒子数で計算する。 粒径 2 0 m以下の粒子の割合が、 無機粒子全体を基準と して、 7 0累積% (数累積) 以上の場合には、 難燃性が向上する。 また、 樹脂組 成物の成形性の低下が抑制される。 また、 粒径 2 0 以下の粒子の割合が 9 0 累積% (数累積) 以上の場合には、 樹脂組成物の難燃性がより一層良好になる。 また、 樹脂組成物の成形性の低下がさらに抑制される。  In addition, the inorganic particles (component B) in the present invention satisfy the particle size conditions defined as follows in addition to satisfying the particle size conditions defined by D 50 particle size or volume average particle size. Is desirable. That is, it is desirable that the inorganic particles contain particles having a particle size of 20 × m or less, preferably 70 cumulative% (number cumulative) or more, more preferably 90 cumulative% (number cumulative) or more. Here, the number of particles with a particle size of 0.1 m or more is calculated. Flame retardancy is improved when the proportion of particles with a particle size of 20 m or less is 70% cumulative (number cumulative) or more based on the whole inorganic particles. In addition, a decrease in moldability of the resin composition is suppressed. In addition, when the proportion of particles having a particle size of 20 or less is 90 cumulative% (several cumulative) or more, the flame retardancy of the resin composition becomes even better. In addition, a decrease in moldability of the resin composition is further suppressed.
無機粒子 (B成分) の粒径は、 樹脂組成物を用いて得られた成形品の電子顕微 鏡による断面観察等の方法により測定することができる。 具体的には、 透過型電 子顕微鏡を用いて樹脂組成物の超薄切片を観察するか、 あるいは走査型電子顕微 鏡を用いて樹脂組成物の切出面を観察し、 写真撮影を行い、 観察写真から樹脂組 成物中における球形粒子に対しては一つ一つの粒子の直径を計測する。 さらに、 非球形粒子の粒子径は、 一つ一つの粒子の投影面積 Sを求め、 Sを用いて、 (4 S/π) X 0. 5を各粒子の粒子径とする。 なお、 測定個数は 100個とする。 あるいは、 この無機粒子の粒子径は、 下記の光散乱法によって測定することも できる。 すなわち、 MI CRO TRAC社製 D. H. S 9200 PRO FR Aタイプの装置を用い、 2wt % へキサメ夕リン酸ナトリウム水溶液 (屈折率 1. 33) を分散媒とし、 超音波 (20 kHz 300 kW) で 3分間前処理を した後、 20秒間の測定を 3回繰り返した平均によって粒度分布を光散乱法で測 定できる。 The particle size of the inorganic particles (component B) can be measured by a method such as cross-sectional observation with an electron microscope of a molded product obtained using the resin composition. Specifically, an ultrathin section of the resin composition is observed using a transmission electron microscope, or a cut surface of the resin composition is observed using a scanning electron microscope, and a photograph is taken for observation. Resin group from photo For spherical particles in the composition, the diameter of each particle is measured. Furthermore, the particle size of the non-spherical particles is obtained by calculating the projected area S of each particle, and using S, let (4 S / π) X 0.5 be the particle size of each particle. The number of measurements shall be 100. Alternatively, the particle diameter of the inorganic particles can be measured by the following light scattering method. In other words, using a DH S 9200 PRO FR A type device manufactured by MI CRO TRAC, using 2 wt% sodium hexadium phosphate aqueous solution (refractive index 1.33) as a dispersion medium, and using ultrasonic waves (20 kHz 300 kW) 3 After pretreatment for 5 minutes, the particle size distribution can be measured by the light scattering method using an average of three measurements of 20 seconds.
なお、 測定前の前処理として、 2 gのサンプルを 2wt % へキサメ夕リン酸 ナトリウム水溶液 30mlに投入し、 超音波分散 (20 kHz 300 kW 3 分) 処理を行った。  As a pretreatment before measurement, a 2 g sample was placed in 30 ml of a 2 wt% aqueous solution of sodium hexaphosphate and subjected to ultrasonic dispersion (20 kHz, 300 kW, 3 minutes).
本発明において、 無機粒子 (B成分) の含有量は、 ポリカーボネート樹脂 (A 成分) 100重量部に対し、 10〜70重量部、 好ましくは 20〜60重量部、 より好ましくは 30〜50重量部、 さらに好ましくは 35〜45重量部である。 無機粒子 (B成分) の含有量が 10重量部未満であると、 樹脂組成物の十分な 難燃性が得られず無機粒子の含有量が 70重量部を超えると、 樹脂組成物の劣化 が多くなりシルバーが発生しやすくなる。 同時に十分な難燃性が得られにくくな る。  In the present invention, the content of the inorganic particles (component B) is 10 to 70 parts by weight, preferably 20 to 60 parts by weight, more preferably 30 to 50 parts by weight, based on 100 parts by weight of the polycarbonate resin (component A). More preferably, it is 35 to 45 parts by weight. If the content of inorganic particles (component B) is less than 10 parts by weight, sufficient flame retardancy of the resin composition cannot be obtained, and if the content of inorganic particles exceeds 70 parts by weight, the resin composition will deteriorate. It becomes more likely to generate silver. At the same time, it becomes difficult to obtain sufficient flame retardancy.
以下に本発明においてより好ましい無機粒子であるフライァッシュについて説 明する。 本発明における無機粒子として、 フライアッシュが好適に用いられる。 フライアッシュ (以下、 適宜 「FA」 と称する) とは、 石炭を微粉炭燃焼方式で 燃焼させる火力発電所などで生成される微粉末の石炭灰のことである。  The flyash which is a more preferable inorganic particle in the present invention will be described below. As the inorganic particles in the present invention, fly ash is preferably used. Fly ash (hereinafter referred to as “FA” as appropriate) refers to finely pulverized coal ash produced at thermal power plants that burn coal using the pulverized coal combustion method.
フライアッシュは、 以下の成分を含む。 ここで、 成分量は例示である。  Fly ash contains the following ingredients: Here, the amount of components is an example.
(a) 二酸化珪素: 44質量%以上 80質量%以下  (a) Silicon dioxide: 44% to 80% by mass
(b) 酸化アルミニウム: 15質量%以上 40質量%以下  (b) Aluminum oxide: 15% to 40% by weight
(c) その他の成分:少量の酸化第二鉄 (Fe23) や酸化チタン (T i〇2) や酸化マグネシウム (Mg〇) や酸化カルシウム (C aO) 等。 二酸化珪素 (シリカ : S i〇2) の含有量は、 好ましくは 4 4質量%以上であ り、 より好ましくは 5 0質量%以上である。 また、 好ましくは 8 5質量%以下で あり、 より好ましくは 7 5質量%以下である。 二酸化珪素の含有量がこの範囲内 にあると、 無機粒子とポリカーボネート樹脂との相乗作用により、 樹脂組成物の 難燃性向上効果が安定して得られる。 (c) Other components: a small amount of ferric oxide (Fe 23) or titanium oxide (T I_〇 2) and magnesium oxide (Mg_〇) and calcium oxide (C aO-) or the like. Silicon dioxide: content (silica S I_〇 2) is preferably 4 4 mass% or more der is, more preferably 5 0% by mass or more. Further, it is preferably 85% by mass or less, more preferably 75% by mass or less. When the content of silicon dioxide is within this range, the flame retardancy improving effect of the resin composition can be stably obtained by the synergistic action of the inorganic particles and the polycarbonate resin.
酸化アルミニウム (アルミナ: A l 23 ) の含有量は、 好ましくは 1 0質 量%以上であり、 より好ましくは 1 5質量%以上である。 また、 好ましくは 4 0 質量%以下であり、 より好ましくは 3 0質量%以下である。 酸化アルミニウムの 含有量がこの範囲内にあると、 無機粒子とポリカーボネート樹脂との相乗作用に より、 樹脂組成物の難燃性向上効果が安定して得られる。 The content of aluminum oxide (alumina: Al 2 O 3 ) is preferably 10% by mass or more, and more preferably 15% by mass or more. Further, it is preferably 40% by mass or less, more preferably 30% by mass or less. When the aluminum oxide content is within this range, the flame retardancy improving effect of the resin composition can be stably obtained due to the synergistic action of the inorganic particles and the polycarbonate resin.
これらの成分のうち、 二酸化珪素と酸化アルミニウムとの合計含有量は、 好ま しくは 6 0質量%以上であり、 より好ましくは 7 0質量%以上であり、 さらに好 ましくは 8 0質量%以上である。 また、 二酸化珪素と酸化アルミニウムとの合計 含有量は、 好ましくは 9 9質量%以下であり、 より好ましくは 9 5質量%以下で ある。 二酸化珪素と酸化アルミニウムとの合計含有量がこの範囲内にあると、 無 機粒子とポリカーボネート樹脂との相乗作用により、 樹脂組成物の難燃性向上効 果が安定して得られる。  Of these components, the total content of silicon dioxide and aluminum oxide is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 80% by mass or more. It is. The total content of silicon dioxide and aluminum oxide is preferably 99% by mass or less, more preferably 95% by mass or less. When the total content of silicon dioxide and aluminum oxide is within this range, the flame retardancy improving effect of the resin composition can be stably obtained by the synergistic action of the inorganic particles and the polycarbonate resin.
フライアッシュは、 二酸化珪素および酸化アルミニウムで複合酸化物を形成す る粒子も包含する。 また、 二酸化珪素および酸化アルミニウムが粒子中で二酸化 珪素の相と酸化アルミニウムの相を形成し、 多相構造を形成している粒子も包含 する。 なお、 酸化第二鉄 (F e 23) や酸化チタン (T i〇2) や酸化マグネシ ゥム (M g〇) や酸化カルシウム (C a〇) 等の成分は、 少量であれば、 樹脂組 成物の難燃性や成形性などを特に低下させることはない。 これらの酸化物以外に も微量の重金属等をフライアッシュは含有するが、 ゴミ焼却炉などから得られる 焼却灰に比べると微量重金属等の濃度は低い。 これは、 焼却灰が種々雑多なもの を燃焼させ得られた燃焼灰であるのに対して、 フライアッシュが火力発電所の石 炭燃焼灰であることに因る。 Fly ash also includes particles that form complex oxides of silicon dioxide and aluminum oxide. Also included are particles in which silicon dioxide and aluminum oxide form a silicon dioxide phase and an aluminum oxide phase in the particles to form a multiphase structure. Note that components such as ferric (F e 23) or titanium oxide oxide (T I_〇 2) and oxide magnesium © beam (M G_〇) and calcium oxide (C A_〇), if a small amount, The flame retardancy and moldability of the resin composition are not particularly reduced. In addition to these oxides, fly ash contains trace amounts of heavy metals, but the concentration of trace amounts of heavy metals is lower than incineration ash obtained from garbage incinerators. This is because incineration ash is combustion ash obtained by burning various miscellaneous things, whereas fly ash is coal combustion ash from thermal power plants.
また、 原材料の素性が明確であるので、 重金属等の含有量を制御することもフ ライアッシュでは比較的容易である。 また、 後述するように、 微量の重金属等の 溶出対策を施すことで、 樹脂組成物およびその成形品の環境影響リスクをさらに 低減することができる。 In addition, since the identity of raw materials is clear, it is also possible to control the content of heavy metals, etc. It is relatively easy with Liash. In addition, as described later, by taking measures against elution of trace amounts of heavy metals, the environmental impact risk of the resin composition and its molded product can be further reduced.
また、 フライアッシュは微細粒子であり、 これを電子顕微鏡で見ると大部分の 粒子が球形をしている。 このため、 フライアッシュを用いると、 樹脂組成物の成 形加工時における成形性の低下を抑制しつつ難燃性の向上を図ることができる。 フライアッシュは火力発電所などで大量に発生し、 大部分が産業廃棄物となつ ているのが現状であるため、 調達コストが安いという利点がある。 そのため、 難 燃性を有する樹脂組成物の製造コストも低減することができる。 また、 フライア ッシュは粒径や組成などの品質が比較的安定しているため、 難燃性を有する樹脂 組成物を安定して得ることができる。  Also, fly ash is a fine particle, and when viewed with an electron microscope, most of the particles are spherical. For this reason, when fly ash is used, flame retardancy can be improved while suppressing a decrease in moldability during molding of the resin composition. Since fly ash is generated in large quantities at thermal power plants, and most of it is industrial waste, it has the advantage of low procurement costs. Therefore, the manufacturing cost of the resin composition having flame retardancy can also be reduced. Further, since fly ash has relatively stable quality such as particle size and composition, a resin composition having flame retardancy can be obtained stably.
本発明においては、 20 m直径の目開きのふるいにより市販のフライアツシ ュを分級することにより、 このフライアッシュの D δ 0粒径が 10 m以下に制 御することができる。 そのため、 ポリカーボネート樹脂 (A成分) とこの無機粒 子 (B成分) との相乗作用により、 難燃性を安定的に実現することができる。 ま た、 樹脂組成物の成形性の低下を安定的に抑制することができる。  In the present invention, by classifying commercially available fly ash with a 20 m diameter sieve, the D δ 0 particle size of this fly ash can be controlled to 10 m or less. Therefore, flame retardancy can be stably realized by the synergistic action of the polycarbonate resin (component A) and the inorganic particles (component B). In addition, a decrease in moldability of the resin composition can be stably suppressed.
(C成分: フッ素系樹脂)  (C component: Fluorine resin)
本発明で使用するフッ素系樹脂 (C成分) とは、 燃焼時の溶融滴下を防止し難 燃性をさらに向上させる含フッ素化合物であり、 代表的にはフィプリル形成能を 有するポリテトラフルォロエチレンが挙げられる。 以下、 ポリテトラフルォロェ チレンを単に PTFEと称することがある。 フィブリル形成能を有する PTFE は、 極めて高い分子量を有し、 せん断力などの外的作用により PTFE同士を結 合して繊維状になる傾向を示す。 PTFEの標準比重から求められる数平均分子 量は、 好ましくは 100万〜 1, 000万、 より好ましく 200万〜 900万で ある。 かかる PTFEは、 固体形状の他、 水性分散液形態のものも使用可能であ る。 またかかるフィプリル形成能を有する PTFEは樹脂中での分散性を向上さ せ、 さらに良好な難燃性および機械的特性を得るために他の樹脂との混合形態の PTFE混合物を使用することも可能である。 かかるフィプリル形成能を有する P T F Eの市販品としては例えば三井 ·デュ ボンフロロケミカル (株) のテフロン (登録商標) 6 J、 ダイキン化学工業 (株) のポリフロン MP A FA500および F— 201 Lなどを挙げることが できる。 PTFEの水性分散液の市販品としては、 旭ァイシ一アイフロロポリマ ーズ (株) 製のフルオン AD— 1、 AD— 936、 ダイキン工業 (株) 製のフル オン D— 1、 D— 2、 三井 ·デュポンフロロケミカル (株) 製のテフロン (登録 商標) 30 Jなどを代表として挙げることができる。 The fluororesin (C component) used in the present invention is a fluorine-containing compound that prevents melting and dripping at the time of combustion and further improves flame retardancy, and is typically a polytetrafluoro having a fibril formation ability. Ethylene is mentioned. Hereinafter, polytetrafluoroethylene is sometimes simply referred to as PTFE. PTFE with fibril-forming ability has an extremely high molecular weight, and tends to bind to each other by an external action such as shearing force to become fibrous. The number average molecular weight determined from the standard specific gravity of PTFE is preferably 1 million to 10 million, more preferably 2 million to 9 million. Such PTFE can be used in solid form or in the form of an aqueous dispersion. In addition, PTFE with such fibril formation ability improves dispersibility in the resin, and in order to obtain better flame retardancy and mechanical properties, it is also possible to use a PTFE mixture in a mixed form with other resins It is. Commercially available PTFEs having such fibril formation ability include, for example, Teflon (registered trademark) 6 J from Mitsui Dubon Fluorochemical Co., Ltd., Polyflon MP A FA500 and F-201 L from Daikin Chemical Industries, Ltd. be able to. Commercially available PTFE aqueous dispersions include Fullon AD-1 and AD-936 manufactured by Asahi Ishii Ifluoro Polymers Co., Ltd. Fullon D-1 and D-2 manufactured by Daikin Industries, Ltd. A representative example is Teflon (registered trademark) 30 J manufactured by Mitsui DuPont Fluorochemical Co., Ltd.
混合形態の PTFEとしては、 (1) PTFEの水性分散液と有機重合体の水 性分散液または溶液とを混合し共沈殿を行い、 共凝集混合物を得る方法 (特開昭 60-258263号公報、 特開昭 63— 154744号公報などに記載された 方法) により得られたものが使用できる。 また、 (2) PTFEの水性分散液と 乾燥した有機重合体粒子とを混合する方法 (特開平 4一 272957号公報に記 載された方法) により得られたものが使用できる。 また、 (3) PTFEの水性 分散液と有機重合体粒子溶液を均一に混合し、 かかる混合物からそれぞれの媒体 を同時に除去する方法 (特開平 06— 220210号公報、 特開平 08— 188 653号公報などに記載された方法) により得られたものが使用できる。 また、 (4) PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法 (特開平 9一 95583号公報に記載された方法) により得られたものが使用で きる。 また、 (5) PTFEの水性分散液と有機重合体分散液を均一に混合後、 さらに該混合分散液中でビニル系単量体を重合し、 その後混合物を得る方法 (特 開平 1 1一 29679号などに記載された方法) により得られたものが使用でき る。  The mixed form of PTFE is as follows: (1) A method in which an aqueous dispersion of PTFE and an aqueous dispersion or solution of an organic polymer are mixed and co-precipitated to obtain a co-agglomerated mixture (JP-A-60-258263) And a method obtained by the method described in JP-A-63-154744). Further, (2) those obtained by a method of mixing an aqueous dispersion of PTFE and dried organic polymer particles (the method described in JP-A No. 4-272957) can be used. (3) A method of uniformly mixing an aqueous dispersion of PTFE and an organic polymer particle solution, and simultaneously removing each medium from the mixture (Japanese Patent Laid-Open Nos. 06-220210 and 08-188 653). Can be used. Further, it is possible to use those obtained by (4) a method of polymerizing monomers forming an organic polymer in an aqueous dispersion of PTFE (a method described in JP-A-9-95583). (5) A method in which an aqueous dispersion of PTFE and an organic polymer dispersion are uniformly mixed, and a vinyl monomer is further polymerized in the mixed dispersion, and then a mixture is obtained. Can be used.
これらの混合形態の PTFEの市販品としては、 三菱レイヨン (株) の 「メタ ブレン A3800」 (商品名)、 および GEスぺシャリティ一ケミカルズ社製 「BLENDEX B449」 (商品名) などを挙げることができる。  Commercially available products of these mixed forms of PTFE include “Metablene A3800” (trade name) manufactured by Mitsubishi Rayon Co., Ltd. and “BLENDEX B449” (trade name) manufactured by GE Specialty I Chemicals. it can.
混合形態における PTFEの割合としては、 PTFE混合物 100重量%中、 PTFEが 1〜 60重量%が好ましく、 より好ましくは 5〜 55重量%である。 PTFEの割合がかかる範囲にある場合は、 PTFEの良好な分散性を達成する ことができる。 The proportion of PTFE in the mixed form is preferably 1 to 60% by weight, more preferably 5 to 55% by weight, in 100% by weight of the PTFE mixture. Achieving good dispersibility of PTFE when the proportion of PTFE is within this range be able to.
フッ素系樹脂 (C成分) の含有量は、 ポリカーボネート樹脂 (A成分) 1 0 0 重量部に対して、 0 . 0 1〜2重量部、 好ましくは 0 . 0 5〜1重量部、 より好 ましくは 0 . 1〜0 . 6重量部である。  The content of the fluororesin (component C) is 0.01 to 2 parts by weight, preferably 0.05 to 1 part by weight, more preferably 100 parts by weight of the polycarbonate resin (component A). Or 0.1 to 0.6 parts by weight.
(D成分:溶出抑制剤)  (D component: elution inhibitor)
本発明の樹脂組成物はさらに無機粒子 (B成分) 内の重金属やセレン ·ヒ素な どの成分の溶出を抑制する溶出抑制剤 (D成分) を含有する。 溶出抑制剤を含有 することにより、 高度な難燃性を維持しつつ無機粒子内からの六価クロム、 鉛、 水銀などの重金属やセレンゃヒ素などの溶出を抑制できる。 このため、 環境への 負荷および人体への影響を低減することができる。  The resin composition of the present invention further contains an elution inhibitor (D component) that suppresses elution of components such as heavy metals and selenium / arsenic in the inorganic particles (B component). By containing an elution inhibitor, elution of heavy metals such as hexavalent chromium, lead, and mercury and selenium and arsenic from the inorganic particles can be suppressed while maintaining high flame retardancy. For this reason, the impact on the environment and the impact on the human body can be reduced.
溶出抑制剤 (D成分) は、 無機粒子 (B成分) 内の重金属イオン等を吸着する こと等により補足する物質である。  An elution inhibitor (component D) is a substance supplemented by adsorbing heavy metal ions, etc. in inorganic particles (component B).
この溶出抑制剤 (D成分) は無機粒子内の成分を吸着する吸着剤またはイオン 交換樹脂であってもよい。 このように無機粒子内の成分を吸着する吸着剤または イオン交換樹脂を含むことにより、 無機粒子内の六価クロム、 鉛、 水銀などの重 金属やセレンゃヒ素などの成分を効率よく吸着できるため、 環境への負荷および 人体への影響を効率よく低減することができる。  This elution inhibitor (component D) may be an adsorbent or an ion exchange resin that adsorbs the components in the inorganic particles. By including an adsorbent or ion exchange resin that adsorbs components in inorganic particles in this way, it is possible to efficiently adsorb components such as heavy metals such as hexavalent chromium, lead, and mercury and selenium arsenic in inorganic particles. It is possible to efficiently reduce the environmental impact and the impact on the human body.
溶出抑制剤 (D成分) は、 好ましくは二価および Zまたは三価の鉄イオンと硫 酸イオンとの塩である。 より好ましくは硫酸第一鉄 ·水和物またはシュベルトマ ナイトである。 またさらに好ましくは硫酸第一鉄 ·七水和物である。 このように 二価あるいは三価の鉄ィオンと硫酸イオンとの塩を含有することにより、 無機粒 子内の六価クロム、 鉛、 水銀などの重金属やセレンゃヒ素などの成分を安定して 吸着できるため、 環境への負荷および人体への影響を安定して低減することがで さる。  The dissolution inhibitor (component D) is preferably a salt of divalent and Z or trivalent iron ions and sulfate ions. More preferred is ferrous sulfate hydrate or Schwertmannite. Still more preferred is ferrous sulfate heptahydrate. By containing a salt of divalent or trivalent iron ions and sulfate ions in this way, heavy metals such as hexavalent chromium, lead, and mercury, and components such as selenium and arsenic are stably adsorbed in the inorganic particles. Therefore, it is possible to stably reduce the impact on the environment and the impact on the human body.
なお、 溶出抑制剤 (D成分) は、 無機粒子同様に成形品外観を悪化させるため、 より悪影響の少ない硫酸第一鉄 ·七水和物が好ましい。  In addition, the elution inhibitor (component D) is preferably ferrous sulfate heptahydrate having less adverse effects because it deteriorates the appearance of the molded product as in the case of inorganic particles.
無機粒子 (B成分) に対する溶出抑制剤 (D成分) の相対質量比は、 例えば 1 / \ , 4 0 0以上であり、 好ましくは 1ノ1 0 0以上である。 溶出抑制剤の相対 質量比がこれらの値以上であれば、 高度な難燃性を維持しつつ無機粒子からの六 価クロム、 鉛、 水銀などの重金属やセレンゃヒ素などの成分の溶出を抑制する効 果が向上する。 また、 樹脂組成物中における溶出抑制剤 (D成分) の含有量は、 ポリカーボネート樹脂 (A成分) 1 0 0重量部に対し、 0 . 0 5〜3重量部、 好 ましくは 0 . 0 7〜2重量部、 より好ましくは 0 . 1〜1重量部である。 溶出抑 制剤の含有量がこの範囲にあれば成形時におけるシルバーの発生が抑制されるた め、 樹脂組成物からなる成形品の外観特性が向上する。 The relative mass ratio of the dissolution inhibitor (component D) to the inorganic particles (component B) is, for example, 1 / \, 400 or more, preferably 1 100 or more. Relative dissolution inhibitor If the mass ratio is higher than these values, the effect of suppressing the elution of heavy metals such as hexavalent chromium, lead and mercury and components such as selenium and arsenic from inorganic particles while maintaining high flame retardancy will be improved. To do. The content of the dissolution inhibitor (component D) in the resin composition is 0.05 to 3 parts by weight, preferably 0.07 parts per 100 parts by weight of the polycarbonate resin (component A). ˜2 parts by weight, more preferably 0.1 to 1 part by weight. If the content of the dissolution inhibitor is within this range, the occurrence of silver during molding is suppressed, and the appearance characteristics of the molded product made of the resin composition are improved.
(E成分:流動改質剤)  (E component: flow modifier)
本発明に使用される流動改質剤 (E成分) としては、 脂肪族ポリエステル樹脂 およびトリメリット酸エステルからなる群より選ばれる少なくとも一種の流動改 質剤が好ましい。 脂肪族ポリエステル樹脂ゃトリメリツト酸エステルを含有させ ると、 樹脂組成物の燃焼時の挙動が安定する。 即ち、 U L 9 4のランクは同程度 である力 燃焼時間が短くなるという利点がある。  The flow modifier (component E) used in the present invention is preferably at least one fluid modifier selected from the group consisting of aliphatic polyester resins and trimellitic acid esters. If an aliphatic polyester resin is incorporated with trimellitic acid ester, the behavior of the resin composition during combustion becomes stable. That is, the rank of U L 94 is comparable, but has the advantage of shortening the burning time.
脂肪族ポリエステルとしては、 ポリ力プロラクトンを好適に挙げることができ る。 ここでポリ力プロラクトンとは、 力プロラクトン特に ε—力プロラクトンの 重合体である。 ポリ力プロラクトンのメチレン鎖の水素原子の一部または繰返単 位がハロゲン原子や炭化水素基で置換されていてもよい。 また、 ポリ力プロラク トンの末端はエステル化やエーテル化などの末端処理を施してあってもよい。 ポ リカプロラクトンの分子量は特に制限する必要はないが、 数平均分子量で表して 通常 5 X 1 0 3〜4 X 1 0 4である。 かかるポリ力プロラクトンは、 力プロラク トンを酸、 塩基、 有機金属化合物などの触媒の存在下開環重合して製造すること ができる。 Preferable examples of the aliphatic polyester include poly-strength prolactone. Here, poly force prolactone is a polymer of force prolactone, particularly ε-force prolactone. Part of the hydrogen atom or repeating unit of the methylene chain of the poly-strength prolactone may be substituted with a halogen atom or a hydrocarbon group. Moreover, the end of the polystrength prolacton may be subjected to end treatment such as esterification or etherification. The molecular weight of Po Li caprolactone need not be particularly limited, but is usually 5 X 1 0 3 ~4 X 1 0 4 represents the number average molecular weight. Such poly-prolacton can be produced by ring-opening polymerization of proprolacton in the presence of a catalyst such as an acid, base, or organometallic compound.
トリメリット酸エステルとしては、 トリー (2—ェチルへキシル) トリメリテ ート (Τ〇ΤΜ)、 トリー (ノルマルーォクチル) トリメリテート (Τ η〇ΤΜ)、 トリー (イソノリル) トリメリテート (Τ Ι Ν ΤΜ)、 トリー (イソデシル) ト リメリテート (T I D TM) などが挙げられる。 好ましくは卜リー (2—ェチル へキシル) トリメリテート (Τ Ο ΤΜ) が例示される。  Trimellitic acid esters include Tory (2-ethylhexyl) trimellitate (Τ〇ΤΜ), Tory (normalooctyl) trimellitate (Τ η〇ΤΜ), Tory (isonolyl) trimellitate (Τ Ι Ν ΤΜ) , Tree (isodecyl) trimellitate (TID TM) and the like. Preferable examples include 卜 (2-ethyl hexyl) trimellitate (Τ Ο ΤΜ).
流動改質剤 (Ε成分) としては、 A B S樹脂、 A S樹脂なども用いることがで きる。 ABS樹脂とは、 ジェン系ゴム成分にシアン化ビニル化合物と芳香族ビニ ル化合物とをグラフ卜共重合した熱可塑性グラフ卜共重合体 (ABS共重合体)、 並びに該グラフト共重合体と、 シアン化ビニル化合物と芳香族ビニル化合物との 共重合体 (AS共重合体) との混合物をいう。 なお、 このシアン化ビニル化合物 と芳香族ビニル化合物との共重合体は、 ジェン系ゴム成分にシァン化ビニル化合 物と芳香族ビニル化合物とをグラフト共重合した熱可塑性グラフト共重合体から なる樹脂の製造の際に副生される共重合体でもよく、 芳香族ビニル化合物とシァ ン化ビニル化合物とを別途共重合して得られるビニル化合物共重合体でもよい。 かかるシアン化ビニル化合物および芳香族ビニル化合物からなる共重合体の重量 平均分子量は、 GPC (ゲルパーミエーシヨンクロマトグラフィー) 法により、 標準ポリスチレン換算で測定される値において、 好ましくは 3. 0 X 1 04〜2. 0 X 105の範囲であり、 より好ましくは 6. 0 X 1 04〜1. 4X 105の範囲 であり、 さらに好ましくは 9. 0 X 1 04〜1. 2 X 105の範囲である。 本発 明で使用する ABS樹脂においては、 ABS樹脂成分 100重量%中ジェンゴム 成分の割合が 40重量%以下の範囲であり、 好ましくは?〜 35重量%の範囲で あり、 さらに好ましくは 8〜30重量%の範囲であり、 特に好ましくは 9〜25 重量%の範囲である。 ジェン系ゴム成分にグラフ卜される成分の割合は、 ABS 樹脂成分 100重量%中 95〜20重量%が好ましく、 より好ましくは 92〜 5 0重量%である。 ABS resin, AS resin, etc. can be used as flow modifiers wear. ABS resin means a thermoplastic graph copolymer (ABS copolymer) obtained by graph copolymerization of a vinyl rubber component and a vinyl cyanide compound and an aromatic vinyl compound, and the graft copolymer, cyan A mixture of a vinyl fluoride compound and an aromatic vinyl compound copolymer (AS copolymer). The copolymer of the vinyl cyanide compound and the aromatic vinyl compound is a resin made of a thermoplastic graft copolymer obtained by graft copolymerizing a cyanated vinyl compound and an aromatic vinyl compound to a gen-based rubber component. It may be a copolymer by-produced during production, or may be a vinyl compound copolymer obtained by separately copolymerizing an aromatic vinyl compound and a vinyl cyanide compound. The weight average molecular weight of the copolymer comprising such a vinyl cyanide compound and an aromatic vinyl compound is preferably 3.0 X 1 in a value measured in terms of standard polystyrene by GPC (gel permeation chromatography) method. 0 4 to 2.0 in the range of X 10 5, more preferably 6. 0 X 1 0 4 to 1. in the range of 4X 10 5, more preferably 9. 0 X 1 0 4 ~1. 2 X 10 is in the range of 5. In the ABS resin used in the present invention, the proportion of the Gen rubber component in 100% by weight of the ABS resin component is in the range of 40% by weight or less. Is in the range of ~ 35 wt%, more preferably in the range of 8-30 wt%, particularly preferably in the range of 9-25 wt%. The proportion of the component graphed in the gen-based rubber component is preferably 95 to 20% by weight, more preferably 92 to 50% by weight, based on 100% by weight of the ABS resin component.
AS樹脂は上記 AS共重合体よりなる樹脂である。 AS樹脂は塊状重合、 溶液 重合、 懸濁重合、 および乳化重合のいずれの方法により製造されてもよいが、 好 ましくは塊状重合法または懸濁重合法により製造されたものであり、 最も好まし くは塊状重合法により製造されたものであり、 かつ該重合法は工業上最も一般的 である。 また共重合の方法も一段での共重合、 または多段での共重合のいずれで あってもよい。 AS重合体の重量平均分子量は、 GPC測定による標準ポリスチ レン換算において 4 X 104〜2 X 105が好ましい。 かかる下限は 5 X 104が より好ましく、 7 X 104がさらに好ましい。 また上限は 1. 6X 105がより 好ましく、 1. 5 X 105がさらに好ましい。 ( F成分:酸変性ポリオレフィン系ワックス) AS resin is a resin made of the above-mentioned AS copolymer. The AS resin may be produced by any of bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, but is preferably produced by bulk polymerization or suspension polymerization. It is preferably produced by a bulk polymerization method, and the polymerization method is the most common in the industry. The copolymerization method may be either one-stage copolymerization or multistage copolymerization. The weight average molecular weight of the AS polymer is preferably 4 × 10 4 to 2 × 10 5 in terms of standard polystyrene by GPC measurement. The lower limit is more preferably 5 × 10 4 , and even more preferably 7 × 10 4 . The upper limit is 1. 6X 10 5 Gayori weight, more preferably 1. 5 X 10 5. (F component: acid-modified polyolefin wax)
本発明の F成分である酸変性ポリオレフイン系ワックスとは、 カルボキシル基、 カルボン酸無水物基、 スルホン酸基、 スルフィン酸基、 ホスホン酸基およびホス フィン酸基に代表される酸性基を有する酸変性ポリオレフィン系ワックスである。 本発明の F成分として好適な態様は、 上記に例示された酸性基の少なくとも 1 種を有する酸変性ポリオレフイン系ワックスであり、 特に好適には、 カルボキシ ル基および Zまたはカルボン酸無水物基を有する酸変性ポリオレフイン系ヮック スである。 酸変性ポリオレフイン系ワックスにおいてその酸性基の濃度は、 0 . 0 5〜: L O m e Q / gの範囲、 より好ましくは 0 . l〜6 m e q Z gの範囲、 さ らに好ましくは 0 . 5〜4 m e q Z gの範囲である。  The acid-modified polyolefin-based wax which is the F component of the present invention is an acid-modified having an acidic group represented by a carboxyl group, a carboxylic anhydride group, a sulfonic acid group, a sulfinic acid group, a phosphonic acid group, and a phosphinic acid group. Polyolefin wax. A preferred embodiment of the F component of the present invention is an acid-modified polyolefin wax having at least one of the acidic groups exemplified above, and particularly preferably has a carboxyl group and Z or a carboxylic anhydride group. It is an acid-modified polyolefin series. In the acid-modified polyolefin wax, the concentration of the acidic group is in the range of 0.05 to: LO me Q / g, more preferably in the range of 0.1 to 6 meq Z g, and more preferably in the range of 0.5 to It is in the range of 4 meq Z g.
ォレフィン系ワックスとしてはパラフィンワックス類としてパラフィンヮック ス、 マイクロクリス夕リンワックス、 フィッシャー · トロプシュワックス、 およ びひ一才レフィン重合体などが例示される。  Examples of olefin fin wax include paraffin wax, micro-criss phosphorus wax, Fischer-Tropsch wax, and a one-year-old olefin polymer as paraffin waxes.
かかるポリオレフィン系ワックスにカルボキシル基類を結合する方法としては、 例えば、 (a ) カルボキシル基類を有する単量体と α—才レフイン単量体とを共 重合する方法、 (b ) ポリオレフイン系ワックスに対してカルボキシル基類を有 する化合物または単量体を結合または共重合する方法等を挙げることができる。 上記 (a ) の方法では、 溶液重合、 乳化重合、 懸濁重合、 塊状重合等のラジカ ル重合法の他、 リビング重合法を採用することもできる。 さらに一旦マクロモノ マーを形成した後重合する方法も可能である。 共重合体の形態はランダム共重合 体の他に、 交互共重合体、 ブロック共重合体、 テーパード共重合体等の各種形態 の共重合体として使用することができる。 上記 (b ) の方法では、 ポリオレフィ ン系ワックスに、 必要に応じて、 パーオキサイドや 2, 3 _ジメチルー 2, 3ジ フエニルブタン (通称 "ジクミル") 等のラジカル発生剤を加え、 高温下で反応 または共重合する方法を採用することができる。 かかる方法はポリオレフイン系 ワックス中に熱的に反応活性点を生成し、 かかる活性点に反応する化合物または 単量体を反応させるものである。 反応に要する活性点を生成するその他の方法と して、 放射線や電子線の照射ゃメカノケミカル手法による外力の付与等の方法も 挙げられる。 さらにポリオレフィン系ワックス中に予め反応に要する活性点を生 成する単量体を共重合しておく方法も挙げられる。 反応のための活性点としては 不飽和結合およびパーォキサイド結合などが挙げられ、 さらに活性点を得る方法 として T E M P〇に代表されるニトロキシド介在ラジカル重合が挙げられる。 前記カルボキシル基類を有する化合物または単量体としては、 例えば、 ァクリ ル酸、 メ夕クリル酸、 マレイン酸、 フマル酸、 無水マレイン酸、 および無水シト ラコン酸などが例示され、 特に無水マレイン酸が好適である。 Examples of a method for bonding carboxyl groups to such a polyolefin wax include, for example, (a) a method of copolymerizing a monomer having a carboxyl group and an α-aged refin monomer, and (b) a polyolefin wax. On the other hand, there may be mentioned a method of bonding or copolymerizing a compound or monomer having a carboxyl group. In the method (a), a living polymerization method can be employed in addition to a radical polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization, and bulk polymerization. Furthermore, it is possible to polymerize after once forming a macromonomer. The copolymer can be used as a copolymer in various forms such as an alternating copolymer, a block copolymer, and a tapered copolymer in addition to a random copolymer. In the method (b) above, a radical generator such as peroxide or 2,3_dimethyl-2,3diphenylbutane (commonly called "dicumyl") is added to the polyolefin wax as necessary, and the reaction is carried out at a high temperature. Alternatively, a copolymerization method can be employed. Such a method is a method in which reactive active sites are thermally generated in polyolefin wax and a compound or monomer that reacts with the active sites is reacted. Other methods for generating the active sites required for the reaction include the application of external forces by mechanochemical techniques, such as irradiation with radiation or electron beams. Can be mentioned. Further, there may be mentioned a method in which a monomer that generates an active site required for the reaction is copolymerized in advance in a polyolefin wax. Examples of active sites for the reaction include unsaturated bonds and peroxide bonds, and examples of a method for obtaining active sites include nitroxide-mediated radical polymerization represented by TEMP. Examples of the compound or monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, fumaric acid, maleic anhydride, and citraconic anhydride, particularly maleic anhydride. Is preferred.
F成分としてより好適であるのは、 酸変性ポリオレフィン系ワックス 1 g当た り、 カルボキシル基類を好ましくは 0. 05〜1 Ome qZgの範囲、 より好ま しくは 0. 1〜6me qZgの範囲、 さらに好ましくは 0. 5〜4me qZgの 範囲で含有するカルボキシル基含有ォレフィン系ワックスである。 さらにォレフ イン系ワックスの分子量は 1 X 103〜1 X 104が好ましく、 5X 103〜1 X 104がより好ましい。 尚、 かかる分子量は、 GPC (ゲルパーミエーシヨンク 口マトグラフィー) における標準ポリスチレンより得られた較正曲線を基準にし て算出された重量平均分子量である。 More preferable as the F component is that the carboxyl group is preferably in the range of 0.05 to 1 Ome qZg, more preferably in the range of 0.1 to 6 me qZg, per 1 g of the acid-modified polyolefin wax. More preferably, it is a carboxyl group-containing olefin-based wax contained in the range of 0.5 to 4 meqZg. Further molecular weight of Orefu in wax is preferably 1 X 10 3 ~1 X 10 4 , 5X 10 3 ~1 X 10 4 is more preferable. The molecular weight is a weight average molecular weight calculated based on a calibration curve obtained from standard polystyrene in GPC (Gel Permeation Chromatography).
F成分として好適な態様として、 α—才レフインと無水マレイン酸との共重合 体を挙げることができ、 かかる共重合体であってさらに上記のカルボキシル基含 有割合、 および分子量を満足するものが特に好適である。 かかる共重合体は、 常 法に従いラジカル触媒の存在下に、 溶融重合あるいはバルク重合法で製造するこ とができる。 ここで α—ォレフインとしてはその炭素数が平均値として 10〜6 0のものを好ましく挙げることができる。 ひ一ォレフィンとしてより好ましくは 炭素数が平均値として 16〜60、 さらに好ましくは 25〜55のものを挙げる ことができる。  As a preferred embodiment of the F component, there can be mentioned a copolymer of α-aged refin and maleic anhydride, and the copolymer further satisfies the above-mentioned carboxyl group content and molecular weight. Particularly preferred. Such a copolymer can be produced by melt polymerization or bulk polymerization in the presence of a radical catalyst according to a conventional method. Preferred examples of α-olefin include those having an average carbon number of 10 to 60. More preferable examples of monoolefin include carbon having an average value of 16 to 60, and more preferably 25 to 55.
酸変性ポリオレフイン系ワックス (F成分) の含有量は、 ポリカーボネート樹 脂 (Α成分) 100重量部に対して、 0. 01〜2重量部、 好ましくは 0. 05 〜1重量部、 より好ましくは 0. 1〜0. 7重量部である。 酸変性ポリオレフィ ン系ワックス (F成分) の含有量がこの範囲にあれば高度な難燃効果を維持しつ つ、 良好な成形品外観を得ることができる。 (G成分: リン系安定剤) The content of the acid-modified polyolefin wax (component F) is 0.01 to 2 parts by weight, preferably 0.05 to 1 part by weight, more preferably 0 to 100 parts by weight of the polycarbonate resin (salt component). 1 to 0.7 parts by weight. If the content of the acid-modified polyolefin wax (F component) is within this range, a good appearance of the molded product can be obtained while maintaining a high flame retardant effect. (G component: Phosphorus stabilizer)
本発明の樹脂組成物は、 さらにリン系安定剤 (G成分) を含有することが好ま しい。 かかるリン系安定剤は製造時または成形加工時の熱安定性を大きく向上さ せる。 その結果、 機械的特性、 色相、 および成形安定性を向上させる。 リン系安 定剤 (G成分) としては、 亜リン酸、 リン酸、 亜ホスホン酸、 ホスホン酸および これらのエステル、 並びに第 3級ホスフィンなどが例示される。 これらの中でも 亜リン酸、 リン酸、 亜ホスホン酸、 ホスホン酸、 ホスフェート化合物、 ホスファ イト化合物が好ましい。 特に、 ホスフェート化合物および/またはホスファイト 化合物が好ましい。 ホスフェート化合物として、 トリオルガノホスフェート化合 物およびアシッドホスフェート化合物が好ましい。 尚、 アシッドホスフェート化 合物における有機基は、 一置換、 二置換、 およびこれらの混合物のいずれも含む。 該化合物に対応する下記の例示化合物においても同様にいずれをも含むものとす る。  The resin composition of the present invention preferably further contains a phosphorus-based stabilizer (G component). Such phosphorus stabilizers greatly improve the thermal stability during production or molding. The result is improved mechanical properties, hue, and molding stability. Examples of the phosphorus stabilizer (G component) include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphine. Of these, phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, phosphate compounds, and phosphate compounds are preferred. In particular, phosphate compounds and / or phosphite compounds are preferred. As the phosphate compound, a triorganophosphate compound and an acid phosphate compound are preferable. The organic group in the acid phosphate compound includes any of mono-substituted, di-substituted, and mixtures thereof. All of the following exemplified compounds corresponding to the compound are similarly included.
トリオルガノホスフェート化合物として、 トリメチルホスフェート、 トリェチ ルホスフェート、 トリブチルホスフェート、 トリオクチルホスフェート、 トリデ シルホスフェート、 トリドデシルホスフェート、 トリラウリルホスフェート、 卜 リステアリルホスフェート、 トリクレジルホスフェート、 トリフエニルホスフエ —ト、 トリクロルフエニルホスフェート、 ジフエニルクレジルホスフエ一卜、 ジ フエニルモノオルソキセニルホスフエ一卜、 卜リブトキシェチルホスフエ一卜な どが例示される。 これらの中でもトリアルキルホスフェートが好ましい。 かかる トリアルキルホスフェートのアルキル基の炭素数は、 好ましくは 1〜2 2、 より 好ましくは 1〜 4である。 特に好ましいトリアルキルホスフェートはトリメチル ホスフエ一トである。  Triorganophosphate compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tridecyl phosphate, tridodecyl phosphate, trilauryl phosphate, 卜 -listeryl phosphate, tricresyl phosphate, triphenyl phosphate, trichlor phosphate Examples include phenyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, and riboxetyl phosphate. Among these, trialkyl phosphate is preferable. The number of carbon atoms of the alkyl group of such trialkyl phosphate is preferably 1 to 22 and more preferably 1 to 4. A particularly preferred trialkyl phosphate is trimethyl phosphate.
アシッドホスフェート化合物として、 メチルアシッドホスフエ一ト、 ェチルァ シッドホスフエ一ト、 ブチルアシッドホスフェート、 ブトキシェチルアシッドホ スフェート、 ォクチルアシッドホスフェート、 デシルアシッドホスフェート、 ラ ゥリルアシッドホスフェート、 ステアリルアシッドホスフェート、 ォレイルァシ ッドホスフェート、 ベへニルアシッドホスフェート、 フエニルアシッドホスフエ ート、 ノニルフエニルアシッドホスフェート、 シクロへキシルアシッドホスフエ —ト、 フエノキシェチルアシッドホスフェート、 アルコキシポリエチレングリコ ールァシッドホスフェート、 およびビスフエノール Aァシッドホスフェートなど が例示される。 これらの中でもアルキル基の炭素数が 1 0以上、 より好ましくは 1 4〜2 2の長鎖ジアルキルァシッドホスフエー卜が熱安定性の向上に有効であ り、 該ァシッドホスフェート自体の安定性が高いことから好ましい。 Examples of acid phosphate compounds include methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, butoxychetyl phosphate, octyl acid phosphate, decyl acid phosphate, lauryl phosphate, stearyl acid phosphate, phosphate Benenyl acid phosphate, phenyl acid phosphate Nonyl phenyl acid phosphate, cyclohexyl acid phosphate, phenoloxyl phosphate, alkoxy polyethylene glycol phosphate, bisphenol A acid phosphate, and the like. Among these, a long-chain dialkyl acid phosphate having an alkyl group with 10 or more carbon atoms, more preferably 14 to 22 is effective in improving thermal stability, and the stability of the acid phosphate itself. Is preferable because it is high.
その他、 ホスファイト化合物としては、 例えば、 トリデシルホスフアイトの如 きトリアルキルホスフアイト、 ジデシルモノフエニルホスフアイ卜の如きジアル キルモノァリールホスフアイト、 モノブチルジフエニルホスフアイ卜の如きモノ アルキルジァリールホスファイト、 卜リフエニルホスファイトおよびトリス (2, 4ージ— t e r t—ブチルフエニル) ホスフアイ卜の如きトリァリールホスファ ィ卜が例示される。 また、 ジステアリルペンタエリスリ ] ^一ルジホスフアイ卜、 ビス (2 , 4—ジー t e r t—ブチルフエニル) ペン夕エリスリ I ^一ルジホスフ アイト、 ビス (2, 4ージクミルフエニル) ペン夕エリスリ! ^一ルジホスフアイ ト、 およびビス (2 , 6—ジー t e r t—ブチルー 4—メチルフエニル) ペン夕 エリスリ) ^一ルジホスフアイトなどのペン夕エリスリ I ^一ルホスフアイトが例示 される。 また、 2 , 2—メチレンビス (4, 6—ジ一 t e r t —ブチルフエ二 ル) ォクチルホスファイトおよび 2, 2 ' ーメチレンビス (4, 6—ジー t e r t 一ブチルフエニル) (2, 4ージー t e r t —ブチルフエニル) ホスファイト などが例示される。  Other examples of phosphite compounds include trialkyl phosphites such as tridecyl phosphite, dialkyl monophenyl phosphites such as didecyl monophenyl phosphite, and monoalkyls such as monobutyl diphenyl phosphite. Examples are triaryl phosphites such as dialyl phosphite, triphenyl phosphite and tris (2,4-di-tert-butylphenyl) phosphite. In addition, distearyl pentaerythri] ^ One Rudiphosphia 卜, Bis (2, 4-di tert-butylphenyl) Pen Yu Erisri I ^ One Rudiphosphite, Bis (2, 4-dicumylphenyl) Pen Yue Eli! ^ Ludiphosphite, and bis (2,6-di-tert-butyl-4-methylphenyl) Penyu Erisri) ^ Erythriphosphite such as Luluphosphite. In addition, 2,2-methylenebis (4,6-ditert-butylphenyl) octyl phosphite and 2,2'-methylenebis (4,6-ditert-butylphenyl) (2,4-ditert-butylphenyl) phosphine Examples include fights.
ホスホナイト化合物としては、 テトラキス (ジー t e r t一ブチルフエニル) ービフエ二レンジホスホナイト、 およびビス (ジー t e r t—ブチルフエニル) 一フエ二ルーフェニルホスホナイトが好ましく例示され、 テトラキス (2, 4一 ジー t e r t—ブチルフエニル) ービフエ二レンジホスホナイ卜、 およびビス ( 2 , 4ージー t e r t —ブチルフエニル) —フエニル—フエニルホスホナイト がより好ましい。 かかるホスホナイ卜化合物は上記アルキル基が 2以上置換した ァリ一ル基を有するホスフアイト化合物との併用可能であり好ましい。  Preferred examples of the phosphonite compound include tetrakis (di-tert-butylphenyl) -biphenyl dirange phosphonite and bis (di-tert-butylphenyl) monophenyl phosphonite, and tetrakis (2,4-di-tert-butylphenyl) -biphenyl. More preferred are two-range phosphonai ビ ス and bis (2,4-di-tert-butylphenyl) -phenyl-phenylphosphonite. Such a phosphonai compound can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.
ホスホネイト化合物としては、 ベンゼンホスホン酸ジメチル、 ベンゼンホスホ ン酸ジェチル、 およびベンゼンホスホン酸ジプロピル等が挙げられる。 第 3級ホ スフィンとしては、 例えばトリフエニルホスフィンが例示される。 Phosphonate compounds include benzene phosphonate, benzene phosphonate Examples include jetyl acid and dipropyl benzenephosphonate. An example of tertiary phosphine is triphenylphosphine.
リン系安定剤 (G成分) の含有量は、 ポリカーボネート樹脂 (A成分) 1 0 0 重量部に対して、 好ましくは 0 . 0 0 0 1〜2重量部、 より好ましくは 0 . 0 1 〜1重量部、 さらに好ましくは 0 . 0 5〜0 . 5重量部である。 G成分は、 その 1 0 0重量%中 5 0重量%以上がホスフェート化合物および Zまたはホスフファ イト化合物であることが好ましい。 G成分は、 その 1 0 0重量%中5 0重量%以 上がトリアルキルホスフェートおよび/またはアシッドホスフェート化合物であ ることが好ましい。 特に、 その 1 0 0重量%中5 0重量%以上がトリアルキルホ スフェ一トであることが好ましい。  The content of the phosphorus-based stabilizer (component G) is preferably 0.001 to 2 parts by weight, more preferably 0.01 to 1 based on 100 parts by weight of the polycarbonate resin (component A). Parts by weight, more preferably 0.05 to 0.5 parts by weight. It is preferable that 50% by weight or more of the G component is a phosphate compound and Z or a phosphate compound. The G component is preferably a trialkyl phosphate and / or an acid phosphate compound in 50% by weight or more in 100% by weight. In particular, it is preferable that 50% by weight or more of the 100% by weight is a trialkyl phosphate.
(その他の成分)  (Other ingredients)
本発明の樹脂組成物には、 ポリカーボネート樹脂に配合される各種の添加剤、 強化剤、 および他のポリマーなどをさらに配合することができる。  In the resin composition of the present invention, various additives, reinforcing agents, and other polymers that are blended in the polycarbonate resin can be further blended.
(他のポリマ一やエラストマ一)  (Other polymers and elastomers)
本発明の樹脂組成物には、 他のポリマーやエラストマ一を本発明の効果が発揮 される範囲でさらに配合することができる。 かかる範囲の目安としては、 1 0 0 重量部の A成分を基準として他のポリマーやエラストマ一の総量が 2 0 0重量部 以下、 好ましくは 1 0 0重量部以下、 さらに好ましくは 5 0重量部以下、 特に好 ましくは 3 0重量部以下である。  In the resin composition of the present invention, another polymer or elastomer can be further blended within a range in which the effect of the present invention is exhibited. As a guideline for such a range, the total amount of other polymers and elastomers based on 100 parts by weight of component A is not more than 200 parts by weight, preferably not more than 100 parts by weight, more preferably not more than 50 parts by weight. In the following, it is particularly preferably 30 parts by weight or less.
かかる他のポリマーとしては、 ポリフエ二レンエーテル、 ポリアセタール、 芳 香族ポリエステル、 脂肪族ポリエステル、 ポリアミド、 ポリアリレート (非晶性 ポリアリレート、 液晶性ポリアリレート)、 ポリエーテルエーテルケトン、 ポリ エーテルイミド、 ポリサルフォン、 ポリエーテルサルフォン、 ポリフエ二レンサ ルファイド、 並びにポリエチレン、 ポリプロピレン、 ポリ一 4ーメチルペンテン 一 1、 および環状ポリオレフインなどのポリオレフイン、 スチレン系ポリマー、 ポリメチルメタクリレートなどのァクリル系ポリマーなどが例示される。  Such other polymers include polyphenylene ether, polyacetal, aromatic polyester, aliphatic polyester, polyamide, polyarylate (amorphous polyarylate, liquid crystalline polyarylate), polyetheretherketone, polyetherimide, polysulfone. Examples thereof include polyethersulfone, polyphenylene sulfide, and polyolefins such as polyethylene, polypropylene, poly-4-methylpentene, and cyclic polyolefin, styrene polymers, and acrylic polymers such as polymethyl methacrylate.
また、 エラストマ一としては、 例えばォレフィン系エラストマ一、 アクリル系 エラス卜マー、 ポリエステル系エラストマ一、 ポリアミド系エラストマ一、 およ びポリウレタン系エラストマ一などの熱可塑性エラストマ一が例示される。 さらにゴム基質にグラフト鎖が結合したゴム質グラフト共重合体もエラストマ —として好適に例示される。 ゴム基質とは、 ゴム弾性を有し、 ガラス転移温度が 1 0で以下、 好ましくは— 1 0で以下、 より好ましくは一 3 0で以下である、 グ ラフト重合体のグラフ卜幹となる重合体である。 かかるゴム基質としては、 例え ば、 ポリブタジエン、 ポリイソプレン、 スチレン一ブタジエンのランダム共重合 体またはブロック共重合体、 アクリロニトリル一ブタジエン共重合体、 アクリル 酸アルキルエステルまたはメ夕クリル酸アルキルエステルとブタジエンとの共重 合体、 エチレンと a—才レフインとの共重合体、 エチレンと不飽和カルボン酸ェ ステルとの共重合体、 エチレンと脂肪族ビニルとの共重合体、 エチレンとプロピ レンと非共役ジエンターポリマ一、 アクリル系ゴム、 およびシリコーン系ゴムな どが例示される。 ゴム質グラフト共重合体のグラフト鎖を誘導する単量体として は、 芳香族ビニル化合物、 シアン化ビニル化合物、 アクリル酸エステル、 および メタクリル酸エステルなどが好適に例示される。 Examples of elastomers include olefin-based elastomers, acrylic elastomers, polyester-based elastomers, polyamide-based elastomers, and the like. And thermoplastic elastomers such as polyurethane elastomers. Further, a rubbery graft copolymer in which a graft chain is bonded to a rubber substrate is also preferably exemplified as an elastomer. The rubber substrate has a rubber elasticity and has a glass transition temperature of 10 or less, preferably −10 or less, more preferably 1 to 30 or less. It is a coalescence. Such rubber substrates include, for example, polybutadiene, polyisoprene, random copolymers or block copolymers of styrene monobutadiene, acrylonitrile monobutadiene copolymers, alkyl acrylates or alkyl methacrylates and butadiene. Copolymer, Copolymer of ethylene and a-year-old refin, Copolymer of ethylene and unsaturated carboxylic acid ester, Copolymer of ethylene and aliphatic vinyl, Ethylene, propylene and non-conjugated dienter Examples include polymers, acrylic rubbers, and silicone rubbers. Preferred examples of the monomer for deriving the graft chain of the rubbery graft copolymer include aromatic vinyl compounds, vinyl cyanide compounds, acrylate esters, and methacrylate esters.
ゴム質グラフト共重合体の具体例としては、 S B (スチレン一ブタジエン) 重 合体、 A B S (アクリロニトリル一ブタジエン—スチレン) 重合体、 M B S (メ チルメタクリレートーブタジエン一スチレン) 重合体、 MA B S (メチルメタク リレートーアクリロニトリル一ブタジエン一スチレン) 重合体、 M B (メチルメ タクリレートーブタジエン) 重合体、 A S A (アクリロニトリル一スチレン一ァ クリルゴム) 重合体、 A E S (アクリロニトリル一エチレンプロピレンゴムース チレン) 重合体、 MA (メチルメ夕クリレート—アクリルゴム) 重合体、 MA S (メチルメタクリレートーアクリルゴム一スチレン) 重合体、 メチルメタクリレ 一トーアクリル ·ブタジエンゴム共重合体、 メチルメタクリレートーアクリル · ブタジエンゴム一スチレン共重合体、 およびメチルメ夕クリレートー (ァクリ ル ·シリコーン I P Nゴム) 重合体などを挙げることができる。 ゴム基質はゴム 質グラフ卜共重合体 1 0 0重量%中4 0重量%より多く、 5 0重量%以上が好ま しく、 5 5〜8 5重量%の範囲がより好ましい。  Specific examples of rubber graft copolymers include SB (styrene butadiene styrene) polymer, ABS (acrylonitrile butadiene styrene) polymer, MBS (methyl methacrylate butadiene styrene) polymer, MA BS (methyl methacrylate). Toacrylonitrile-butadiene-styrene polymer, MB (methylmethacrylate-butadiene) polymer, ASA (acrylonitrile-styrene-acrylic rubber) polymer, AES (acrylonitrile-ethylenepropylene rubber-styrene) polymer, MA (methyl methacrylate) Acrylate-acrylic rubber) polymer, MA S (methyl methacrylate-acrylic rubber-styrene) polymer, methyl methacrylate-to-acrylic-butadiene rubber copolymer, methyl methacrylate-acrylic-butadiene rubber-styrene copolymer And Mechirume evening Kurireto (Akuri Le Silicone I P N rubber), and the like polymers. The rubber substrate is more than 40% by weight in 100% by weight of the rubbery graph copolymer, preferably 50% by weight or more, and more preferably in the range of 55-85% by weight.
また上記スチレン系ポリマーとしては、 ポリスチレン (P S ) (シンジオタク チックポリスチレンを含む)、 AS (アクリロニトリル—スチレン) 共重合体、The styrenic polymer is polystyrene (PS) (syndiotactic). Tic polystyrene), AS (acrylonitrile-styrene) copolymer,
MS (メチルメタクリレートースチレン) 共重合体、 および SMA (スチレン一 無水マレイン酸) 共重合体などが例示される。 スチレン系ポリマーは、 上記ゴム 質グラフト共重合体と予め一体化された混合物を利用できる。 例えば市販される AS共重合体と AB S共重合体の混合物として市販の A B S樹脂が利用できる。 尚、 かかる共重合体にはいわゆる透明 ABS樹脂を含む。 スチレン系ポリマーは、 エポキシ基および酸無水物基などに代表される各種の官能基で変性されていても よい。 これらスチレン系ポリマ一は、 2種以上混合して使用することも可能であ る。 Examples thereof include MS (methyl methacrylate-styrene) copolymer and SMA (styrene monomaleic anhydride) copolymer. As the styrenic polymer, a mixture previously integrated with the above rubbery graft copolymer can be used. For example, a commercially available ABS resin can be used as a mixture of a commercially available AS copolymer and ABS copolymer. Such a copolymer includes a so-called transparent ABS resin. The styrenic polymer may be modified with various functional groups typified by epoxy groups and acid anhydride groups. These styrene polymers can be used in combination of two or more.
芳香族ポリエステルとしては、 ポリエチレンテレフ夕レート (PET)、 ポリ プロピレンテレフ夕レート、 ポリブチレンテレフタレート (PBT)、 ポリへキ シレンテレフ夕レート、 ポリエチレン一 2, 6_ナフ夕レート (PEN)、 ポリ ブチレンナフタレ一卜 (PBN)、 ポリエチレン一 1, 2—ビス (フエノキシ) ェ夕ン一4, 4 ' —ジカルボキシレート等の他、 1, 4ーシクロへキサンジメ夕 ノールを共重合したポリエチレンテレフ夕レート (いわゆる PET— G)、 ポリ エチレンイソフタレー卜 テレフタレ一卜、 ポリブチレンテレフタレ一卜/イソ フタレートのような共重合ポリエステルも使用できる。 なかでも、 PET、 PB T、 PENぉょびPBNが好ましぃ。 上記の芳香族ポリエステルは 2種以上を混 合することができる。 またこれらの芳香族ポリエステルは、 他の芳香族ジカルボ ン酸に由来する単位または他のダリコールに由来する単位を 50モル%以下、 好 ましくは 1〜 30モル%の範囲で共重合した共重合ポリエステルであってもよい。 芳香族ポリエステルの分子量については特に制限されないが、 ο—クロロフエノ ールを溶媒として 351:で測定した固有粘度が 0. 4〜1. 2、 好ましくは 0. o〜 1. 1 oであ 。  Aromatic polyesters include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate (PBT), polyhexylene terephthalate, polyethylene 1,6-naphthalate (PEN), polybutylene naphtha Polyethylene terephthalate (PBN), polyethylene 1,2-bis (phenoxy) 1,4'-dicarboxylate, polyethylene terephthalate copolymerized with 1,4-cyclohexane dimethyl alcohol ( Copolyesters such as so-called PET-G), poly (ethylene isophthalate) terephthalate, polybutylene terephthalate / isophthalate can also be used. Of these, PET, PBT, and PEN / PBN are preferred. Two or more of the above aromatic polyesters can be mixed. These aromatic polyesters are copolymers obtained by copolymerizing units derived from other aromatic dicarboxylic acids or units derived from other dallicols in an amount of 50 mol% or less, preferably 1 to 30 mol%. Polyester may be used. The molecular weight of the aromatic polyester is not particularly limited, but the intrinsic viscosity measured by 351: using o-chlorophenol as a solvent is 0.4 to 1.2, preferably 0. o to 1.1 o.
(充填材)  (Filler)
本発明の樹脂組成物には、 強化フィラーとして公知の各種充填材を配合するこ とができる。 かかる充填材としては、 各種の繊維状充填材、 板状充填材および粒 状充填材が利用できる。 ここで、 繊維状充填材はその形状が繊維状 (棒状、 針状、 またはその軸が複数の方向に伸びた形状をいずれも含む) であり、 板状充填材は その形状が板状 (表面に凹凸を有するものや、 板が湾曲を有するものを含む) で ある充填材である。 粒状充填材は、 不定形状を含むこれら以外の形状の充填材で ある。 Various known fillers can be blended in the resin composition of the present invention as reinforcing fillers. As such a filler, various fibrous fillers, plate-like fillers, and granular fillers can be used. Here, the fibrous filler is fibrous (bar, needle, Or the shape in which the axis extends in a plurality of directions), and the plate-like filler is filled in a plate shape (including those having irregularities on the surface and those having a curved surface) It is a material. The granular filler is a filler having a shape other than these including an indefinite shape.
上記繊維状や板状の形状は充填材の形状観察より明らかな場合が多いが、 例え ばいわゆる不定形との差異としては、 そのァスぺクト比が 3以上であるものは繊 維状や板状といえる。  The above fiber and plate shapes are often clear from the observation of the filler shape. For example, the difference from the so-called indefinite shape is that the aspect ratio is 3 or more. It can be said to be plate-shaped.
板状充填材としては、 ガラスフレーク、 タルク、 マイ力、 カオリン、 メタルフ レーク、 カーボンフレーク、 およびグラフアイト、 並びにこれらの充填剤に対し て例えば金属や金属酸化物などの異種材料を表面被覆した板状充填材などが好ま しく例示される。 その粒径は 0 . 1〜3 0 0 mの範囲が好ましい。 かかる粒径 は、 1 0 / m程度までの領域は液相沈降法の 1つである X線透過法で測定された 粒子径分布のメジアン径 (D 5 0 ) による値をいい、 1 0〜5 0 mの領域では レーザー回折 ·散乱法で測定された粒子径分布のメジアン径 (D 5 0 ) による値 をいい、 5 0〜3 0 0 a mの領域では振動式篩分け法による値である。 かかる粒 径は樹脂組成物中での粒径である。 板状充填材は、 各種のシラン系、 チタネート 系、 アルミネート系、 およびジルコネート系などのカップリング剤で表面処理さ れてもよく、 またォレフィン系樹脂、 スチレン系樹脂、 アクリル系樹脂、 ポリエ ステル系樹脂、 エポキシ系樹脂、 およびウレタン系樹脂などの各種樹脂や高級脂 肪酸エステルなどにより集束処理されるか、 または圧縮処理された造粒物であつ てもよい。  As the plate-like filler, glass flakes, talc, my strength, kaolin, metal flakes, carbon flakes, and graphite, and a plate whose surface is coated with a different material such as metal or metal oxide for these fillers. Preferable examples are fillers. The particle size is preferably in the range of 0.1 to 300 m. This particle size is a value based on the median diameter (D 50) of the particle size distribution measured by the X-ray transmission method, which is one of the liquid phase precipitation methods, up to about 10 / m. In the 50 m region, the value by the median diameter (D 50) of the particle size distribution measured by the laser diffraction / scattering method is used. In the 50 to 300 am region, the value is obtained by the vibration sieving method. . Such a particle size is a particle size in the resin composition. The plate-like filler may be surface-treated with various silane-based, titanate-based, aluminate-based, and zirconate-based coupling agents. Also, olefin-based resins, styrene-based resins, acrylic-based resins, polyesters. It may be a granulated product that has been subjected to a bundling treatment or compression treatment with various resins such as epoxy resins, epoxy resins, and urethane resins, and higher fatty acid esters.
繊維状充填材は、 その繊維径が 0 . ;!〜 2 0 mの範囲が好ましい。 繊維径の 上限は 1 3 i mが好ましく、 1 0 mがさらに好ましい。 一方繊維径の下限は 1 mが好ましい。  The fiber diameter of the fibrous filler is preferably in the range of 0. The upper limit of the fiber diameter is preferably 13 im and more preferably 10 m. On the other hand, the lower limit of the fiber diameter is preferably 1 m.
ここでいう繊維径とは数平均繊維径を指す。 尚、 かかる数平均繊維径は、 成形 品を溶剤に溶解するかもくしは樹脂を塩基性化合物で分解した後に採取される残 渣、 およびるつぼで灰化を行った後に採取される灰化残渣を走査電子顕微鏡観察 した画像から算出される値である。 かかる繊維状充填材としては、 例えば、 ガラスファイバー、 ガラスミルドファ ィバー、 カーボンファイバー、 カーボンミルドファイバー、 メタルファイバー、 アスベスト、 ロックウール、 セラミックファイバー、 スラグファイバー、 チタン 酸カリウムゥイスカー、 ボロンゥイスカー、 ホウ酸アルミニウムゥイスカー、 炭 酸カルシウムゥイス力一、 酸化チタンゥイス力一、 ワラストナイト、 ゾノトライ ト、 パリゴルスカイト (ァ夕パルジャイト)、 およびセピオライトなどの繊維状 無機充填材が挙げられる。 また、 ァラミド繊維、 ポリイミド繊維およびポリベン ズチアゾール繊維などの耐熱有機繊維に代表される繊維状耐熱有機充填材が挙げ られる。 The fiber diameter here refers to the number average fiber diameter. The number average fiber diameter is defined as the residue obtained by dissolving the molded product in a solvent, the residue collected after decomposing the resin with a basic compound, and the ashing residue collected after ashing with a crucible. It is a value calculated from an image observed with a scanning electron microscope. Examples of such fibrous fillers include glass fiber, glass milled fiber, carbon fiber, carbon milled fiber, metal fiber, asbestos, rock wool, ceramic fiber, slag fiber, potassium titanate whisker, boron whisker, boric acid. Examples include fibrous inorganic fillers such as aluminum whisker, calcium carbonate whistle, titanium oxide whistle, wollastonite, zonotlite, palygorskite (ayu pulgite), and sepiolite. In addition, fibrous heat-resistant organic fillers typified by heat-resistant organic fibers such as aramid fibers, polyimide fibers, and polybenzthiazole fibers can be mentioned.
また、 これらの充填材に対して例えば金属や金属酸化物などの異種材料を表面 被覆した繊維状充填材などが挙げられる。 異種材料を表面被覆した充填材として は、 例えば金属コートガラスファイバ一、 金属コートガラスフレーク、 酸化チタ ンコートガラスフレーク、 および金属コートカーボンファイバーなどが例示され る。 異種材料の表面被覆の方法としては特に限定されるものではなく、 例えば公 知の各種メツキ法 (例えば、 電解メツキ、 無電解メツキ、 溶融メツキなど)、 真 空蒸着法、 イオンプレーティング法、 C VD法 (例えば熱 C V D、 M〇C V D、 プラズマ C VDなど)、 P VD法、 およびスパッタリング法などを挙げることが できる。  In addition, for example, fibrous fillers whose surfaces are coated with different materials such as metals and metal oxides. Examples of the filler whose surface is coated with a different material include metal coated glass fiber, metal coated glass flake, titanium oxide coated glass flake, and metal coated carbon fiber. The surface coating method for different materials is not particularly limited. For example, various known plating methods (for example, electrolytic plating, electroless plating, melting plating, etc.), vacuum deposition method, ion plating method, C Examples include VD methods (eg, thermal CVD, MCVD, plasma C VD, etc.), PVD methods, and sputtering methods.
ここで繊維状充填材とは、 アスペクト比が 3以上、 好ましくは 5以上、 より好 ましくは 1 0以上である繊維状の充填材をいう。 アスペクト比の上限は 1 0, 0 0 0程度であり、 好ましくは 2 0 0である。 かかる充填材のアスペクト比は樹脂 組成物中での値である。 繊維状充填材も上記板状充填材と同様に各種のカツプリ ング剤で表面処理されてもよく、 各種の樹脂などにより集束処理され、 また圧縮 処理により造粒されてもよい。  Here, the fibrous filler refers to a fibrous filler having an aspect ratio of 3 or more, preferably 5 or more, and more preferably 10 or more. The upper limit of the aspect ratio is about 10 and 0,000, preferably 2 0 0. The aspect ratio of such a filler is a value in the resin composition. The fibrous filler may be surface-treated with various types of cutting agents as in the case of the plate-shaped filler, may be subjected to bundling treatment with various resins, and may be granulated by compression treatment.
かかる充填材の含有量は、 1 0 0重量部の A成分を基準として 2 0 0重量部以 下、 好ましくは 1 0 0重量部以下、 さらに好ましくは 5 0重量部以下、 特に好ま しくは 3 0重量部以下である。  The content of such filler is not more than 20.0 parts by weight, preferably not more than 100 parts by weight, more preferably not more than 50 parts by weight, particularly preferably 3 parts by weight based on 100 parts by weight of the component A. 0 parts by weight or less.
(離型剤) 本発明の樹脂組成物には、 必要に応じて離型剤を配合することができる。 本発 明の樹脂組成物には高い寸法精度が要求されることが多い。 従って樹脂組成物は 離型性に優れることが好ましい。 かかる離型剤としては公知のものが使用できる。 例えば、 飽和脂肪酸エステル、 不飽和脂肪酸エステル、 ポリオレフイン系ヮック ス (ポリエチレンワックス、 1—アルケン重合体など。 酸変性などの官能基含有 化合物で変性されているものも使用できる)、 シリコーン化合物、 フッ素化合物 (ポリフルォ口アルキルエーテルに代表されるフッ素オイルなど)、 パラフィン ワックス、 および蜜蟎などを挙げることができる。 かかる離型剤は樹脂組成物 1(Release agent) A release agent can be blended in the resin composition of the present invention as necessary. The resin composition of the present invention often requires high dimensional accuracy. Therefore, it is preferable that the resin composition is excellent in releasability. Known release agents can be used. For example, saturated fatty acid ester, unsaturated fatty acid ester, polyolefin wax (polyethylene wax, 1-alkene polymer, etc., which may be modified with a functional group-containing compound such as acid modification), silicone compound, fluorine compound (E.g., fluorine oil represented by polyfluorinated alkyl ether), paraffin wax, and beeswax. Such a release agent is a resin composition 1
00重量%中0. 005〜2重量%カ好ましい。 0.005 to 2% by weight of 00% by weight is preferred.
脂肪酸エステルは、 部分エステルおよび全エステル (フルエステル) のいずれ であってもよい。 脂肪酸エステルにおいて、 酸価は 20以下 (実質的に 0を取り 得る)、 水酸基価は 0. 1〜30の範囲、 ヨウ素価は 10以下 (実質的に 0を取 り得る) が好ましい。 これらの特性は J I S K 0070に規定された方法に より求めることができる。  The fatty acid ester may be a partial ester or a total ester (full ester). In the fatty acid ester, the acid value is preferably 20 or less (can take substantially 0), the hydroxyl value is in the range of 0.1 to 30, and the iodine value is preferably 10 or less (can take substantially 0). These characteristics can be obtained by the method defined in JI S K0070.
(ヒンダードフエノール系安定剤およびその他の酸化防止剤)  (Hindered phenol stabilizers and other antioxidants)
ヒンダ一ドフエノール系安定剤は、 樹脂組成物の耐熱老化を防止するのに効果 がある。 本発明の樹脂組成物は高熱雰囲気下で利用される場合もあることから、 かかる場合に特に好適に配合される。  The hindered phenol-based stabilizer is effective in preventing the heat aging of the resin composition. Since the resin composition of the present invention may be used in a high heat atmosphere, it is particularly preferably blended in such a case.
ヒンダードフエノール系安定剤としては、 ォク夕デシル一3— (3, 5—ジー t e r t—ブチル—4ーヒドロキシフエニル) プロピオネート、 2— t e r t— ブチルー 6— (3 ' — t e r t—ブチル—5, —メチルー 2' —ヒドロキシベン ジル) 一 4—メチルフエニルァクリレート、 4, 4' ーブチリデンビス (3—メ チルー 6— t e r t一ブチルフエノール)、 トリエチレングリコール— N—ビス 一 3— (3— t e r t—ブチル _ 4ーヒドロキシー 5—メチルフエニル) プロピ ォネート、 3, 9一ビス {2— [3— (3— t e r t —ブチル一4ーヒドロキシ 一 5—メチルフエニル) プロピオニルォキシ] — 1, 1—ジメチルェチル} 一 2, 4, 8, 10—テトラオキサスピロ [5, 5] ゥンデカン、 N, N' —へキサメ チレンビス一 (3, 5—ジ一 t e r t—ブチル一4—ヒドロキシヒドロシンナミ ド)、 1 , 3, 5—トリメチルー 2, 4 , 6—トリス (3, 5—ジ— t e r t— ブチル—4ーヒドロキシベンジル) ベンゼン、 およびテトラキス [メチレン一 3 一 (3 , 5—ジー t e r t—ブチルー 4ーヒドロキシフエニル) プロビオネ一 ト] メタンなどが例示される。 これらはいずれも入手容易である。 中でもォク夕 デシル— 3— ( 3 , 5—ジー t e r t—ブチルー 4ーヒドロキシフエニル) プロ ピオネートが好ましく利用される。 Hindered phenolic stabilizers include octyldecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-tert-butyl-6- (3'-tert-butyl-5 , —Methyl-2 ′ —hydroxybenzil) 1 4-methylphenyl acrylate, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), triethylene glycol-N-bis 1 3— (3 — Tert-Butyl _ 4-hydroxy-5-methylphenyl) propionate, 3,9-bis {2 -— [3-— (3-tert-Butyl-4-hydroxy-1,5-methylphenyl) propionyloxy] — 1,1-dimethylethyl} 1,2,4,8,10-tetraoxaspiro [5,5] undecane, N, N'-hexamethylenebis (3,5-di-tert-butyl-1-hydroxyhydrocinna ), 1, 3, 5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, and tetrakis Butyl-4-hydroxyphenyl) Probione] Examples include methane. All of these are readily available. Among these, octyldecyl-3- (3,5-ditert-butyl-4-hydroxyphenyl) propionate is preferably used.
またヒンダードフエノール系安定剤以外の他の酸化防止剤を使用することがで きる。 かかる他の酸化防止剤としては、 例えば 3—ヒドロキシー 5, 7—ジー t e r t一ブチル—フラン一 2—オンと o—キシレンとの反応生成物に代表される ラクトン系安定剤 (かかる安定剤の詳細は特開平 7— 2 3 3 1 6 0号公報に記載 されている)、 並びにペン夕エリスリ ] ^一ルテトラキス (3—メルカプトプロピ ォネート)、 ペン夕エリスリ! ^一ルテトラキス (3—ラウリルチオプロビオネ一 ト)、 およびグリセロール一 3—ステアリルチオプロピオネートなどのィォゥ含 有系安定剤が挙げられる。 上記ヒンダードフエノール系安定剤は、 単独でまたは 2種以上を組み合わせて使用することができる。 これら安定剤の配合量は、 樹脂 組成物 1 0 0重量%中、 好ましくは 0. 0 0 0 1〜1重量%、 より好ましくは 0 . 0 0 5〜0 . 5重量%である。  In addition, other antioxidants than the hindered phenol stabilizers can be used. Examples of such other antioxidants include lactone stabilizers represented by reaction products of 3-hydroxy-5,7-di tert-butyl-furan-2-one and o-xylene (details of such stabilizers). Is described in Japanese Patent Application Laid-Open No. 7-2 3 3 1 60), and Penyu Erisri] ^ Irutetrakis (3-mercaptopropionate), Penyu Erisri!ィ -containing stabilizers such as monotetrakis (3-laurylthiopropionate) and glycerol-3-stearylthiopropionate. The above hindered phenol stabilizers can be used alone or in combination of two or more. The blending amount of these stabilizers is preferably 0.001 to 1% by weight, more preferably 0.05 to 0.5% by weight in 100% by weight of the resin composition.
(加水分解改良剤)  (Hydrolysis improver)
本発明の樹脂組成物は、 高熱雰囲気下で利用される場合もあることから、 その 耐加水分解性の改良が求められる場合がある。 かかる場合にポリカーボネート樹 脂の加水分解改良剤として従来知られた化合物を、 本発明の目的を損なわない範 囲において配合することができる。 かかる化合物としては、 エポキシ化合物、 ォ キセタン化合物、 シラン化合物およびホスホン酸化合物などが例示され、 特にェ ポキシ化合物およびォキセタン化合物が好適に例示される。 エポキシ化合物とし ては、 3 , 4—エポキシシクロへキシルメチル _ 3 ', 4 ' 一エポキシシクロへ キシルカルボキシレートに代表される脂環式エポキシ化合物、 および 3—グリシ ジルプロポキシートリエトキシシランに代表される珪素原子含有エポキシ化合物 が好適に例示される。 かかる加水分解改良剤は、 樹脂組成物 1 0 0重量%中 1重 量%以下とすることが好ましい。 Since the resin composition of the present invention may be used in a high-heat atmosphere, it may be required to improve its hydrolysis resistance. In such a case, a compound conventionally known as a polycarbonate resin hydrolysis improver can be blended within a range not impairing the object of the present invention. Examples of such compounds include epoxy compounds, oxetane compounds, silane compounds, and phosphonic acid compounds, with epoxy compounds and oxetane compounds being particularly preferred. Examples of the epoxy compound include alicyclic epoxy compounds represented by 3,4-epoxycyclohexylmethyl_3 ', 4'-epoxycyclohexylcarboxylate, and 3-glycidylpropoxy sheet triethoxysilane. A silicon atom-containing epoxy compound is preferably exemplified. Such a hydrolysis improver is composed of 1 layer in 100% by weight of the resin composition. It is preferable that the amount is not more than%.
(紫外線吸収剤)  (UV absorber)
本発明の樹脂組成物に耐候性の改良や紫外線吸収性が要求される場合、 紫外線 吸収剤を配合すること力好ましい。 紫外線吸収剤としては、 ベンゾフエノン系化 合物、 ベンゾトリアゾール系化合物、 ヒドロキシフエニルトリアジン系化合物、 環状ィミノエステル系化合物およびシァノアクリレート系化合物などが例示され る。 より具体的には、 例えば 2— ( 2 H _ベンゾトリァゾールー 2—ィル) — p —クレゾール、 2— ( 2 H—べンゾトリアゾール—2—ィル) 一 4一 (1 , 1, 3, 3—テトラメチルブチル) フエノール、 2— ( 2 H—ベンゾトリアゾール— 2—ィル) 一 4, 6—ビス ( 1—メチルー 1—フエニルェチル) フエノール、 2 一 [ 5—クロ口 (2 H) —ベンゾトリアゾールー 2—ィル] —4ーメチルー 6— t e r t —ブチルフエノール、 2 , 2 ' ーメチレンビス [ 6— (2 H—ベンゾト リアゾ一ルー 2—ィル) _ 4一 (1, 1 , 3, 3—テトラメチルブチル) フエノ ―ル]、 2— ( 4, 6—ジフエ二ルー 1, 3, 5—トリアジンー 2—ィル) 一 5 一 [ (へキシル) ォキシ] フエノール、 2, 2 ' _ p—フエ二レンビス (3, 1 —ベンゾォキサジン一 4一オン)、 および 1, 3—ビス [( 2—シァノー 3 , 3 - ジフエ二ルァクリロイル) ォキシ] 一 2 , 2—ビス [ [( 2—シァノ一 3, 3—ジ フエ二ルァクリロイル) ォキシ] メチル] プロパンなどが例示される。 さらにビ ス (2, 2 , 6, 6—テトラメチルー 4—ピペリジル) セバケ一卜、 ビス (1 , 2 , 2 , 6 , 6—ペン夕メチル—4ーピペリジル) セバゲート等に代表されるヒ ンダードアミン系の光安定剤も使用することが可能である。 かかる紫外線吸収剤、 光安定剤の配合量は、 樹脂組成物 1 0 0重量%中 0 . 0 1〜 5重量%が好ましい。  When the resin composition of the present invention is required to have improved weather resistance and ultraviolet absorption, it is preferable to add an ultraviolet absorber. Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, hydroxyphenyl triazine compounds, cyclic imino ester compounds, and cyanoacrylate compounds. More specifically, for example, 2— (2 H _benzotriazole-2-yl) — p —cresol, 2— (2 H—benzotriazole-2-yl) 1 4 1 (1, 1 , 3, 3-tetramethylbutyl) phenol, 2- (2H-benzotriazole-2-yl) 1, 4-6-bis (1-methyl-1-phenylethyl) phenol, 2 H) —Benzotriazol-2-yl] —4-methyl-6- tert —butylphenol, 2, 2′-methylenebis [6— (2 H—benzotriazol 2-yl) _ 4 one (1, 1,, 3, 3-tetramethylbutyl) phenol], 2— (4, 6-diphenyl 2-, 1, 3-, 5-triazine-2-yl) 1 5 1 [(hexyl) oxy] phenol, 2, 2 '_ p-Phenylenebis (3, 1-benzoxazine 4-one), and 1, 3-bis [(2-Cyan 3, 3 - Jifue two Ruakuriroiru) Okishi] one 2, 2-bis [[(2-Shiano one 3, 3-di-phenylene Ruakuriroiru) Okishi] such as methyl] propane and the like. In addition, hindered amines such as bis (2, 2, 6, 6, 6-tetramethyl-4-piperidyl) Sebake, bis (1, 2, 2, 6, 6-penyumethyl-4-piperidyl) sebagate, etc. It is also possible to use other light stabilizers. The blending amount of the ultraviolet absorber and the light stabilizer is preferably from 0.01 to 5% by weight in 100% by weight of the resin composition.
(帯電防止剤)  (Antistatic agent)
本発明の樹脂組成物には、 帯電防止剤を含有させることもできる。 かかる帯電 防止剤としては、 例えばポリエーテルエステルアミド、 グリセリンモノステアレ 一卜、 ナフ夕リンスルホン酸ホルムアルデヒド高縮合物アルカリ (土類) 金属塩、 ドデシルベンゼンスルホン酸アルカリ (土類) 金属塩、 ドデシルベンゼンスルホ ン酸アンモニゥム塩、 ドデシルベンゼンスルホン酸ホスホニゥム塩、 無水マレイ ン酸モノグリセライド、 および無水マレイン酸ジグリセライド等が挙げられる。 かかる帯電防止剤の配合量は、 樹脂組成物 100重量%中 0. 5〜20重量%が 好ましい。 The resin composition of the present invention may contain an antistatic agent. Examples of such antistatic agents include polyether ester amide, glycerin monostearate, naphthaline phosphonate formaldehyde highly condensed alkali (earth) metal salt, alkali dodecylbenzenesulfonate (earth) metal salt, dodecyl Benzenesulfonic acid ammonium salt, dodecylbenzenesulfonic acid phosphonium salt, maleic anhydride And acid monoglyceride and maleic anhydride diglyceride. The blending amount of the antistatic agent is preferably 0.5 to 20% by weight in 100% by weight of the resin composition.
(その他付加的成分)  (Other additional ingredients)
本発明の樹脂組成物には、 摺動剤 (例えば PTFE粒子および高分子量ポリエ チレン粒子など)、 着色剤 (例えばカーボンブラックおよび酸化チタンなどの顔 料、 並びに染料)、 無機系蛍光体 (例えばアルミン酸塩を母結晶とする蛍光体)、 無機もしくは有機の抗菌剤、 光触媒系防汚剤 (微粒子酸化チタン、 および微粒子 酸化亜鉛など)、 赤外線吸収剤 (ATO微粒子、 I TO微粒子、 ホウ化ランタン 微粒子、 ホウ化タングステン微粒子、 およびフタロシアニン系金属錯体など)、 フォトク口ミック剤、 並びに蛍光増白剤などが配合できる。  The resin composition of the present invention includes a sliding agent (for example, PTFE particles and high molecular weight polyethylene particles), a coloring agent (for example, a pigment such as carbon black and titanium oxide, and a dye), an inorganic phosphor (for example, aluminum). Phosphors using acid salts as mother crystals), inorganic or organic antibacterial agents, photocatalytic antifouling agents (fine particle titanium oxide, fine particle zinc oxide, etc.), infrared absorbers (ATO fine particles, ITO fine particles, lanthanum boride fine particles) , Tungsten boride fine particles, phthalocyanine metal complexes, etc.), photochromic agents, and fluorescent brighteners.
(樹脂組成物の製造)  (Manufacture of resin composition)
本発明の樹脂組成物は、 二軸押出機を使用して A成分、 B成分およびその他成 分を溶融混練することにより製造することができる。  The resin composition of the present invention can be produced by melt-kneading the A component, the B component and other components using a twin screw extruder.
二軸押出機の代表的な例としては、 ZSK (We r ne r & P f l e i d e r e r社製、 商品名) を挙げることができる。 同様のタイプの具体例としては TEX ((株) 日本製鋼所製、 商品名)、 TEM (東芝機械 (株) 製、 商品名)、 KTX ((株) 神戸製鋼所製、 商品名) などを挙げることができる。 その他、 F CM (F a r r e 1社製、 商品名)、 Ko -Kn e a d e r (Bu s s社製、 商 品名)、 および DSM (K r a u s s— Ma f f e i社製、 商品名) などの溶融 混練機も具体例として挙げることができる。 上記の中でも Z SKに代表される夕 イブがより好ましい。 かかる Z SKタイプの二軸押出機においてそのスクリユー は、 完全嚙合い型であり、 スクリユーは長さとピッチの異なる各種のスクリュー セグメント、 および幅の異なる各種のニーデイングディスク (またそれに相当す る混練用セグメント) からなるものである。  As a typical example of a twin screw extruder, ZSK (trade name, manufactured by Werenr & Pfle i der er, Inc.) can be mentioned. Specific examples of similar types include TEX (trade name, manufactured by Nippon Steel Works), TEM (trade name, manufactured by Toshiba Machine Co., Ltd.), KTX (trade name, manufactured by Kobe Steel, Ltd.), etc. Can be mentioned. In addition, melt kneaders such as FCM (Farre 1 company, product name), Ko-Kneader (Buss company, product name), and DSM (Krauss—Maffei, product name) are also examples. As an example. Among them, the evening typified by Z SK is more preferable. In such a Z SK type twin screw extruder, the screw is a complete mesh type, and the screw has various screw segments with different lengths and pitches, and various kinds of needing discs with different widths (and corresponding kneading discs). Segment).
二軸押出機においてより好ましい態様は次の通りである。 スクリユー形状は 1 条、 2条、 および 3条のネジスクリユーを使用することができ、 特に溶融樹脂の 搬送能力やせん断混練能力の両方の適用範囲が広い、 2条ネジスクリューが好ま しく使用できる。 二軸押出機におけるスクリユーの長さ (L ) と直径 (D) との 比 (LZD) は、 2 0〜 5 0が好ましく、 さらに 2 8〜4 2が好ましい。 L ZD が大きい方が均質な分散が達成されやすい一方、 大きすぎる場合には熱劣化によ り樹脂の分解が起こりやすい。 スクリユーには混練性を上げるための二一ディン グディスクセグメント (またはそれに相当する混練セグメント) から構成された 混練ゾーンを 1個所以上有することが必要であり、 1〜 3箇所有することが好ま しい。 A more preferable embodiment in the twin screw extruder is as follows. The screw shape can be 1, 2, or 3 screw screws, and the 2-thread screw is particularly preferred because it has a wide range of applications for both molten resin transport and shear kneading capabilities. Can be used. The ratio (LZD) between the length (L) and the diameter (D) of the screw in the twin screw extruder is preferably 20 to 50, more preferably 28 to 42. When L ZD is large, uniform dispersion is likely to be achieved, while when it is too large, resin degradation is likely to occur due to thermal degradation. The screw needs to have at least one kneading zone composed of a double disc segment (or a kneading segment corresponding thereto) for improving kneadability, and preferably 1 to 3 kneading zones.
押出機としては、 原料中の水分や、 溶融混練樹脂から発生する揮発ガスを脱気 できるベントを有するものが好ましく使用できる。 ベントからは発生水分や揮発 ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。 また無機粒子の分散性を高めたり、 樹脂組成物中の不純物を極力除去するため、 水、 有機溶剤、 および超臨界流体などの添加を行ってもよい。 さらに押出原料中 に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに 設置し、 異物を樹脂組成物から取り除くことも可能である。 かかるスクリーンと しては金網、 スクリーンチェンジャー、 焼結金属プレート (ディスクフィルター など) などを挙げることができる。  As the extruder, one having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used. From the vent, a vacuum pump is preferably installed to efficiently discharge generated moisture and volatile gas to the outside of the extruder. In addition, water, an organic solvent, a supercritical fluid, or the like may be added in order to enhance the dispersibility of the inorganic particles or to remove impurities in the resin composition as much as possible. Furthermore, a screen for removing foreign substances mixed in the extrusion raw material can be installed in the zone in front of the extruder die to remove the foreign substances from the resin composition. Examples of such screens include wire meshes, screen changers, and sintered metal plates (such as disk filters).
B成分〜 F成分、 任意の G成分およびその他添加剤 (以下の例示において単に "添加剤" と称する) の押出機への供給方法は特に限定されないが、 以下の方法 が代表的に例示される。 ( i ) 添加剤をポリカーボネート樹脂とは独立して押出 機中に供給する方法。 U i ) 添加剤とポリカーボネート樹脂粉末とをスーパー ミキサーなどの混合機を用いて予備混合した後、 押出機に供給する方法。 ( i i i ) 添加剤とポリカーボネート樹脂とを予め溶融混練してマスターペレツト化す る方法。  The feeding method of B component to F component, optional G component and other additives (simply referred to as “additive” in the following examples) to the extruder is not particularly limited, but the following methods are typically exemplified. . (I) A method in which the additive is fed into the extruder independently of the polycarbonate resin. U i) A method in which the additive and the polycarbonate resin powder are premixed using a mixer such as a super mixer and then supplied to the extruder. (Ii) A method of pre-melting and kneading an additive and a polycarbonate resin into a master pellet.
上記方法 ( i i ) の 1つは、 必要な原材料を全て予備混合して押出機に供給す る方法である。 また他の方法は、 添加剤が高濃度に配合されたマス夕一剤を作成 し、 該マスター剤を独立にまたは残りのポリカーボネート樹脂等とさらに予備混 合した後、 押出機に供給する方法である。 尚、 該マス夕一剤は、 粉末形態および 該粉末を圧縮造粒などした形態のいずれも選択できる。 また他の予備混合の手段 は、 例えばナウ夕一ミキサー、 V型プレンダー、 ヘンシェルミキサー、 メカノケ ミカル装置、 および押出混合機などがあるが、 ヘンシェルミキサーのような高速 撹拌型の混合機が好ましい。 さらに他の予備混合の方法は、 例えばポリカーボネ 一ト樹脂と添加剤を溶媒中に均一分散させた溶液とした後、 該溶媒を除去する方 法である。 One of the above methods (ii) is a method in which all necessary raw materials are premixed and supplied to the extruder. Another method is a method in which a mass agent containing a high concentration of additives is prepared, and the master agent is separately or further premixed with the remaining polycarbonate resin or the like and then supplied to the extruder. is there. The mass agent can be selected from either a powder form or a form obtained by compressing and granulating the powder. Also other premixing means For example, there are now Yuichi mixers, V-type blenders, Henschel mixers, mechanochemical devices, and extrusion mixers, and high-speed stirring mixers such as Henschel mixers are preferred. Still another premixing method is, for example, a method in which a polycarbonate resin and an additive are uniformly dispersed in a solvent and then the solvent is removed.
二軸押出機より押出された樹脂は、 直接切断してペレット化するか、 またはス トランドを形成した後かかるストランドをペレタイザ一で切断してペレツト化さ れる。 さらに外部の埃などの影響を低減する必要がある場合には、 押出機周囲の 雰囲気を清浄化することが好ましい。 さらにかかるペレツ卜の製造においては、 光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を 用いて、 ペレットの形状分布の狭小化、 ミスカット物の低減、 運送または輸送時 に発生する微小粉の低減、 並びにストランドやペレット内部に発生する気泡 (真 空気泡) の低減を適宜行うことができる。 これらの処方により成形のハイサイク ル化、 およびシルバーの如き不良発生割合の低減を行うことができる。 またペレ ットの形状は、 円柱、 角柱、 および球状など一般的な形状を取り得るが、 より好 適には円柱である。 かかる円柱の直径は好ましくは l〜5 mm、 より好ましくは 1 . 5〜4 mm、 さらに好ましくは 2〜 3 . 3 mmである。 一方、 円柱の長さは 好ましくは l〜3 0 mm、 より好ましくは 2〜 5 mm、 さらに好ましくは 2 . 5 〜3 . 5 mmでめる。  The resin extruded from the twin-screw extruder is directly cut into pellets, or after forming a strand, the strands are cut with a pelletizer to be pelletized. Furthermore, when it is necessary to reduce the influence of external dust, it is preferable to clean the atmosphere around the extruder. Furthermore, in the manufacture of such pellets, various methods already proposed for optical disk polycarbonate resin are used to narrow the pellet shape distribution, reduce miscuts, and generate fine powder during transportation or transportation. And reduction of bubbles (vacuum bubbles) generated in the strands and pellets can be appropriately performed. These prescriptions can increase the molding cycle and reduce the rate of defects such as silver. The pellet may have a general shape such as a cylinder, a prism, or a sphere, but more preferably a cylinder. The diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and even more preferably 2 to 3.3 mm. On the other hand, the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, and even more preferably 2.5 to 3.5 mm.
上述のとおり、 本発明によれば、 A成分 1 0 0重量部当たり、 B成分 1 0〜7 0重量部、 C成分 0 . 0 1〜2重量部、 D成分 0 . 0 5〜3重量部、 および E成 分 1〜2 0重量部、 F成分 0 . 0 1〜2重量部、 任意に G成分 0 . 0 0 0 1〜2 重量部を混合することを特徴とする製造方法が提供される。 かかる製造方法で利 用される A〜G成分の詳細は上述のとおりである。 かかる混合には、 樹脂組成物 の製造方法で説明したとおり、 ベント式二軸押出機が最も好適に利用できる。 かかる溶融混練では、 シリンダー温度を好ましくは 2 5 0〜3 2 0 t:、 より好 ましくは 2 7 0〜3 1 0 °Cに設定し、 スクリユー回転数を好ましくは 6 0〜5 0 0 r p m、 より好ましくは 7 0〜2 0 0 r p mに設定する。 (成形品) As described above, according to the present invention, B component 10 to 70 parts by weight, C component 0.01 to 2 parts by weight, D component 0.05 to 3 parts by weight per 100 parts by weight of component A , And E component 1 to 20 parts by weight, F component 0.0 1 to 2 parts by weight, and optionally G component 0.0 0 1 to 2 parts by weight are mixed. The The details of the components A to G used in this production method are as described above. For such mixing, as described in the method for producing a resin composition, a vent type twin screw extruder can be most suitably used. In such melt-kneading, the cylinder temperature is preferably set to 2 5 0 to 3 2 0 t: more preferably 2 7 0 to 3 1 0 ° C, and the screw speed is preferably 6 0 to 5 0 0 Set to rpm, more preferably from 70 to 200 rpm. (Molding)
本発明の樹脂組成物は、 通常、 上記の如く製造されたペレットを射出成形して 各種成形品を製造することができる。 さらにペレットを経由することなく、 二軸 押出機で溶融混練された樹脂組成物を直接シート、 フィルム、 異型押出成形品、 ダイレクトブロー成形品および射出成形品にすることも可能である。  The resin composition of the present invention can usually produce various molded products by injection molding the pellets produced as described above. Furthermore, the resin composition melt-kneaded by a twin screw extruder can be directly made into a sheet, film, profile extrusion molded product, direct blow molded product and injection molded product without going through pellets.
かかる射出成形においては、 通常の成形方法だけでなく、 適宜目的に応じて、 射出圧縮成形、 射出プレス成形、 ガスアシスト射出成形、 発泡成形 (超臨界流体 の注入によるものを含む)、 インサート成形、 インモールドコーティング成形、 断熱金型成形、 急速加熱冷却金型成形、 二色成形、 サンドイッチ成形、 および超 高速射出成形などの射出成形法を用いて成形品を得ることができる。 これら各種 成形法の利点は既に広く知られるところである。 また成形はコールドランナ一方 式およびホットランナー方式のいずれも選択することができる。 より好ましいの は低射出速度でも成形が可能な射出圧縮成形および射出プレス成形である。  In such injection molding, not only ordinary molding methods but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including those by supercritical fluid injection), insert molding, depending on the purpose as appropriate. Molded products can be obtained using injection molding methods such as in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding. The advantages of these various molding methods are already widely known. For molding, either a cold runner one-way method or a hot runner method can be selected. More preferable are injection compression molding and injection press molding which can be molded at a low injection speed.
また本発明の樹脂組成物は、 押出成形により各種異形押出成形品、 シート、 フ イルムなどの形で使用することもできる。 またシート、 フィルムの成形にはイン フレ一シヨン法や、 カレンダ一法、 キャスティング法なども使用可能である。 さ らに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可 能である。 また本発明の樹脂組成物は回転成形やブロー成形などにより成形品に してもよい。  In addition, the resin composition of the present invention can be used in the form of various shaped extruded products, sheets, films, etc. by extrusion molding. For forming sheets and films, the inflation method, the calendar method, and the casting method can also be used. It is also possible to form a heat-shrinkable tube by applying a specific stretching operation. The resin composition of the present invention may be formed into a molded product by rotational molding or blow molding.
さらに本発明の樹脂組成物からなる成形品には、 各種の表面処理を行うことが 可能である。 ここでいう表面処理とは、 蒸着 (物理蒸着、 化学蒸着など)、 メッ キ (電気メツキ、 無電解メツキ、 溶融メツキなど)、 塗装、 コーティング、 印刷 などの樹脂成形品の表層上に新たな層を形成させるものであり、 通常の樹脂に用 いられる方法が適用できる。 表面処理としては、 具体的には、 ハードコート、 撥 水 ·撥油コート、 紫外線吸収コート、 赤外線吸収コート、 並びにメタライジング (蒸着など) などの各種の表面処理が例示される。  Furthermore, various surface treatments can be performed on the molded article made of the resin composition of the present invention. Surface treatment here refers to a new layer on the surface of resin molded products such as vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electric plating, electroless plating, melting plating, etc.), painting, coating, printing, etc. The method used for ordinary resins can be applied. Specific examples of the surface treatment include various surface treatments such as hard coat, water / oil repellent coat, ultraviolet absorption coat, infrared absorption coat, and metalizing (evaporation).
本発明の成形品の用途としては、 例えばパソコン、 ノートパソコン、 ゲーム機 (家庭用ゲーム機、 業務用ゲーム機、 パチンコ、 およびスロットマシーンなど)、 ディスプレー装置 (LCD、 有機 EL、 電子ペーパー、 プラズマディスプレー、 およびプロジェクタなど)、 送電部品 (誘電コイル式送電装置のハウジングに代 表される) が例示される。 Applications of the molded article of the present invention include, for example, personal computers, notebook computers, game machines (home game machines, arcade game machines, pachinko machines, slot machines, etc.), Examples include display devices (LCD, organic EL, electronic paper, plasma display, projector, etc.) and power transmission components (represented by the housing of a dielectric coil power transmission device).
また、 プリン夕一、 コピー機、 スキャナー、 ファックス (これらの複合機を含 む) が例示される。 また、 VTRカメラ、 光学フィルム式カメラ、 デジ夕ルスチ ルカメラ、 カメラ用レンズユニット、 防犯装置、 携帯電話などの精密機器が例示 される。 特に本発明の成形品は、 パソコンの如きデジタル情報処理装置の筐体、 カバ一、 および枠に好適に利用される。  Examples include printing, copying machines, scanners, and fax machines (including these multifunction devices). Examples include precision equipment such as VTR cameras, optical film cameras, digital still cameras, camera lens units, security devices, and mobile phones. In particular, the molded product of the present invention is suitably used for a housing, a cover, and a frame of a digital information processing apparatus such as a personal computer.
本発明の成形品は、 マッサージ機や高酸素治療器などの医療機器、 画像録画機 (いわゆる DVDレコーダーなど)、 オーディオ機器、 電子楽器などの家庭電器 製品、 パチンコやスロットマシーンなどの遊技装置、 精密なセンサーを搭載する 家庭用ロボットなどの部品にも好適である。  The molded products of the present invention include medical equipment such as massage machines and high oxygen therapy equipment, video recorders (so-called DVD recorders, etc.), audio equipment, home appliances such as electronic musical instruments, amusement devices such as pachinko machines and slot machines, precision It is also suitable for parts such as home robots equipped with various sensors.
また本発明の成形品は、 各種の車両部品、 電池、 発電装置、 回路基板、 集積回 路のモールド、 光学ディスク基板、 ディスクカートリッジ、 光カード、 I Cメモ リーカード、 コネクター、 ケーブルカプラー、 電子部品の搬送用容器 (I Cマガ ジンケース、 シリコンウェハ一容器、 ガラス基板収納容器、 およびキャリアテ一 プなど)、 帯電防止用または帯電除去部品 (電子写真感光装置の帯電ロールなど)、 各種機構部品 (ギア、 ターンテーブル、 ロー夕一、 およびネジなど、 マイクロマ シン用機構部品を含む) に利用可能である。 実施例  The molded product of the present invention includes various vehicle parts, batteries, power generation devices, circuit boards, integrated circuit molds, optical disk boards, disk cartridges, optical cards, IC memory cards, connectors, cable couplers, and electronic parts. Transport containers (such as IC magazine cases, silicon wafer containers, glass substrate storage containers, and carrier tapes), antistatic or charge removal parts (such as charging rolls for electrophotographic photosensitive devices), various mechanical parts (gears) , Including turntables, low evenings, and screws, including mechanical parts for micromachines). Example
以下に実施例を挙げてさらに説明するが、 本発明はそれに限定されるものでは ない。 尚、 評価としては以下の項目について実施した。  Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto. The following items were evaluated.
(I) 評価項目  (I) Evaluation items
(1 - 1) 難燃性  (1-1) Flame resistance
UL規格 94Vに従い、 厚み 1. 5 mmで燃焼試験を実施した。  A combustion test was conducted at a thickness of 1.5 mm in accordance with UL standard 94V.
(1 -2) シルバー  (1 -2) silver
下記の製造条件により 1mm角ゲートで作成した半径 20mm、 厚さ 1mmの 円形成形品の写真を 2階調化処理し、 白の部分をシルバー面積として換算し、 判 定を行なった。 表面のシルバー発生比率を下記基準により評価し、 3点以上を合 格とした。 なお、 シルバー発生比率は小数点以下 1桁を四捨五入して算出した。 With the following manufacturing conditions, a 1mm square gate with a radius of 20mm and a thickness of 1mm The photograph of the circular molded product was processed with two gradations, and the white part was converted as the silver area for the judgment. The silver generation ratio on the surface was evaluated according to the following criteria, and a score of 3 or more was rated. The silver generation ratio was calculated by rounding off one decimal place.
1占 シルバ- -発生面積が全面積に対し 100 -76  1 Fortune-telling Silver-100% -76
2占 シルバ- -発生面積が全面積に対し 75— 51 %  2 Occupation Silva-Generated area 75-51% of total area
3点 - シルバ- -発生面積が全面積に対し 50— 26 %  3 points-Silver-Generation area is 50- 26% of the total area
4点 -シルバ- -発生面積が全面積に -対し 25- 1 %  4 points -Silver- -The total area is 25% to 1%
5点: シルバ- -発生面積が全面積に -対し 0%  5 points: Silver--Total area-0%
(1 -3) 土壌溶出試験  (1 -3) Soil dissolution test
重金属等の溶出試験方法は、 土壌環境基準に係る溶出試験 (環境庁告示 46号、 平成 3年 8月 23日) に準拠した。 試料は、 樹脂組成物のペレット採取 ·粉砕し、 2 mmの篩いにかけ作成した。 試料液は、 試料 (単位 g) と溶媒 (水素イオン濃 度指数が 5. 8以上 6. 3以下となるようにした塩酸水溶液) (単位 ml) とを 重量体積比 10%の割合で混合し、 その混合液が 500m 1以上となるようにし た。 溶出試験は、 調製した試料液を常温常圧で振とう機 (あらかじめ振とう回数 を毎分約 200回に、 振とう幅を 4 cm以上 5 cm以下に調整したもの) を用い て、 6時間連続して振とうして行った。  The dissolution test method for heavy metals, etc., was based on the dissolution test for soil environmental standards (Environment Agency Notification No. 46, August 23, 1991). The sample was made by collecting and crushing pellets of the resin composition and sieving with a 2 mm sieve. The sample solution consists of a sample (unit: g) and a solvent (hydrochloric acid aqueous solution with a hydrogen ion concentration index of 5.8 or more and 6.3 or less) (unit: ml) mixed at a ratio of 10% by weight / volume. The mixed solution was set to 500 m 1 or more. The dissolution test is performed for 6 hours using a shaker of the prepared sample solution at room temperature and normal pressure (the shaking frequency is adjusted to about 200 times per minute and the shaking width is adjusted to 4 cm or more and 5 cm or less in advance). We continued shaking.
検液は上記の操作を行って得られた試料液を 30分静置後、 毎分約 3 000 回転で 20分間遠心分離した後の上澄み液を孔径 0. 45 zmのメンブランフィ ルターでろ過し、 定量に必要な量を正確に計り取った。 得られた検液に含有され るヒ素およびセレンは、 環境庁告示第 46号に示されるように原子吸光法により 溶出量を測定した。  For the test solution, the sample solution obtained by the above operation was allowed to stand for 30 minutes, then centrifuged at approximately 3 000 rpm for 20 minutes, and the supernatant was filtered through a membrane filter with a pore size of 0.45 zm. The amount required for quantification was accurately measured. The amount of arsenic and selenium contained in the obtained test solution was measured by the atomic absorption method as shown in Environment Agency Notification No. 46.
(I I) 樹脂組成物および成形品の製造  (I I) Manufacture of resin compositions and molded products
表 1 4記載の配合割合からなる樹脂組成物を以下の要領で作成した。 尚、 説 明は以下の表 1 4中の記号に従って説明する。 表 1 4に記載成分を V型ブレ ンダ一にて混合して混合物を作成した。 尚、 A成分以外の少量の添加剤は、 その 含有率が 10重量%となる予備混合物を、 スーパ一ミキサーを用いて製造した。 かかる複数の予備混合物を残りの PCと共に V型プレンダ一で均一に混合した。 スクリユー径 3 0 mmのベント式二軸押出機 ((株) 日本製鋼所 T E X— 3 0 X S S T) を用いて、 V型プレンダーによる混合物を最後部の第 1投入口に供給 した。 かかる押出機は、 第 1供給口から第 2供給口の間にニーデイングディスク による混練ゾーンがあり、 その直後に開放されたベント口が設けられていた。 ベ ントロの長さはスクリュー径 (D) に対して約 2 Dであった。 かかるベント口の 後にサイドフィーダ一が設置され、 サイドフィーダ一以後にさらにニーディング ディスクによる混練ゾーンおよびそれに続くベント口が設けられていた。 かかる 部分のベント口の長さは約 1 . 5 Dであり、 その部分では真空ポンプを使用し約 3 k P aの減圧度とした。 押出は、 シリンダー温度 2 5 0で〜 3 0 0 (スクリ ユー根元のバレル〜ダイスまでほぼ均等に上昇)、 スクリュー回転数 1 8 0 r p m、 および時間当りの吐出量 2 0 k gの条件で行った。 押出されたストランドを 水浴において冷却した後、 ペレタイザ一で切断しペレツ卜化した。 A resin composition having the blending ratio shown in Table 14 was prepared as follows. The explanation will be made according to the symbols in Table 14 below. The ingredients listed in Table 14 were mixed in a V-type blender to make a mixture. In addition, a small amount of additives other than the component A was prepared using a super mixer with a premix having a content of 10% by weight. A plurality of such premixtures were uniformly mixed with the remaining PC in a V-type blender. Using a vent type twin screw extruder (Nippon Steel Works TEX-3O XSST) with a screw diameter of 30 mm, the mixture from the V-type blender was fed to the first inlet at the end. Such an extruder has a kneading zone with a needing disk between the first supply port and the second supply port, and is provided with a vent port opened immediately thereafter. The length of the ventro was about 2 D with respect to the screw diameter (D). A side feeder was installed after the vent port, and a kneading zone with a kneading disk and a vent port following the kneading disc were further provided after the side feeder. The length of the vent port in this part is about 1.5 D, and a vacuum pump is used in that part to reduce the pressure to about 3 kPa. Extrusion was performed at a cylinder temperature of 2500 to 30000 (almost evenly rising from the barrel at the root of the screw to the die), a screw speed of 180 rpm, and a discharge rate of 20 kg per hour. . The extruded strand was cooled in a water bath, then cut with a pelletizer and pelletized.
得られたペレットを 1 2 0 で 5時間、 熱風循環式乾燥機にて乾燥した後、 射 出成形機を用いて、 いずれもシリンダー温度 2 8 0 、 金型温度 8 0 、 射速 2 0 mm/ s e c、 並びに成形サイクル約 6 0秒の条件で、 上記評価項目の試験片 を作成した。  The obtained pellets were dried at 120 ° C. for 5 hours in a hot air circulating drier, and then using a spray molding machine, the cylinder temperature was 2 80, the mold temperature was 80, and the shooting speed was 20 mm. The test pieces for the above evaluation items were prepared under the conditions of / sec and a molding cycle of about 60 seconds.
実施例 4および比較例 4のシルバー発生比率の評価写真を図 1として添付する。 上記実施例および比較例で使用した原材料は、 下記のとおりである。  An evaluation photograph of the silver generation ratio of Example 4 and Comparative Example 4 is attached as FIG. The raw materials used in the above examples and comparative examples are as follows.
(A成分:ポリカーボネート樹脂)  (A component: polycarbonate resin)
P C— 1 :粘度平均分子量 2 2, 5 0 0の直鎖状芳香族ポリカーボネート榭脂パ ウダ一 (帝人化成 (株) 製パンライト L _ 1 2 2 5 WP (商品名)) PC-1: Linear aromatic polycarbonate resin with a viscosity average molecular weight of 2 2,500 (Panlite L _ 1 2 2 WP (trade name) manufactured by Teijin Chemicals Ltd.)
P C— 2 :下記製法により製造されたガラス転移温度 1 7 I , 吸水率 0 . 2重 量%である耐熱性ポリカーボネート樹脂 PC-2: heat-resistant polycarbonate resin having a glass transition temperature of 17 I and a water absorption of 0.2% by weight produced by the following method
P C— 3 : ビスフエノール A、 末端停止剤として p _ t e r t一ブチルフエノー ル、 および分岐剤として 1 , 1 , 1ートリス (4—ヒドロキシフエニル) ェ夕ン (ビスフエノール A 1 0 0モル%に対して 0 . 3モル%)、 並びにホスゲンから 界面重縮合法で合成した粘度平均分子量 2 4, 5 0 0の芳香族ポリカーボネート 樹脂 PC— 4 : ビスフエノール Aおよび末端停止剤として p— t e r t一ブチルフエ ノール、 並びにホスゲンから界面重縮合法で合成した直鎖状芳香族ポリカーボネ ート樹脂において、 粘度平均分子量 15, 200のものが 10重量部、 23, 7 00のものが 80重量部、 および 120, 000のものが 10重量部を溶融混合 してなり、 その粘度平均分子量が 29, 500の芳香族ポリカーボネート樹脂べ レツ卜 PC—3: Bisphenol A, p_tert-butylphenol as end-stopper, and 1,1,1 tris (4-hydroxyphenyl) chain as a branching agent (based on 100 mol% of bisphenol A) 0.3 mol%), and an aromatic polycarbonate resin having a viscosity average molecular weight of 24,500 synthesized from the phosgene by the interfacial polycondensation method PC-4: A linear aromatic polycarbonate resin synthesized by interfacial polycondensation from bisphenol A and p-tert-butylphenol as a terminal terminator and phosgene, with a viscosity average molecular weight of 15,200. 80,000 parts by weight, 23,700, and 10 parts by weight of 120,000 are melt-blended aromatic polycarbonate resin pellets with a viscosity average molecular weight of 29,500
(PC— 2の製法)  (PC-2 production method)
温度計および撹拌機付き反応器にイオン交換水 19, 580部および 48. 5 重量%水酸化ナトリウム水溶液 3, 850部を仕込み、 これに 9, 9—ビス (4 ーヒドロキシ— 3—メチルフエニル) フルオレン (BCF) 1, 175部および ビスフエノール A (BPA) 2, 835部およびハイドロサルファイト 9部を溶 解した後、 塩化メチレン 13, 210部を加えて激しく撹拌しながら 1 5ででホ スゲン 2, 000部を約 40分を要して吹込み反応させた。 ホスゲン吹き込み終 了後、 28 ΐ:に上げて p— t e r t—プチルフエノール 94部と水酸化ナトリウ ム 640部を加えて乳化させた後、 卜リエチルァミン 6部を加えて 1時間撹拌を 続けて反応を終了した。 反応終了後有機相を分離し、 塩化メチレンで希釈して水 洗した後塩酸酸性にして水洗し、 水相の導電率がィォン交換水と殆ど同じになつ たところで二一ダ一にて塩化メチレンを蒸発して、 BCFと BP Aの比がモル比 で 20 : 80である無色のパウダー 4, 080部を得た。 この芳香族ポリカーボ ネートパウダーの粘度平均分子量は 20, 300であった。  A reactor equipped with a thermometer and a stirrer was charged with 19, 580 parts of ion-exchanged water and 3,850 parts of 48.5 wt% aqueous sodium hydroxide, and 9, 9-bis (4-hydroxy-3-methylphenyl) fluorene ( BCF) 1,175 parts and bisphenol A (BPA) 2,835 parts and hydrosulfite 9 parts were dissolved, then methylene chloride 13,210 parts were added and stirred vigorously at 15 with phosgene 2, 000 parts were blown and reacted for about 40 minutes. After completion of the phosgene blowing, the mixture was raised to 28 mm and emulsified by adding 94 parts of p-tert-butylphenol and 640 parts of sodium hydroxide, and then 6 parts of triethylamine was added and stirring was continued for 1 hour to carry out the reaction. finished. After completion of the reaction, the organic phase was separated, diluted with methylene chloride, washed with water, acidified with hydrochloric acid and washed with water. Was evaporated to obtain 4,080 parts of colorless powder having a molar ratio of BCF to BP A of 20:80. The viscosity average molecular weight of this aromatic polycarbonate powder was 20,300.
(B成分)  (B component)
B— 1フライアッシュ (四電ビジネス (株) 製: フアイナッシュ FA20、 D δ 0粒径: 5 )  B—1 fly ash (manufactured by Yoden Business Co., Ltd .: Fineash FA20, Dδ 0 particle size: 5)
Β— 2フライアッシュ (D 50粒子径が 10 mより大)  Β— 2 fly ash (D 50 particle size larger than 10 m)
(C成分)  (C component)
PTFE :ポリテトラフルォロエチレン (ダイキン工業 (株) 製 ポリフロン M P FA500  PTFE: Polytetrafluoroethylene (Daikin Industries, Ltd. Polyflon M P FA500
(D成分) D- 1 :硫酸第一鉄 · 7水和物 (富士チタン工業 (株) 製) (D component) D-1: Ferrous sulfate heptahydrate (Fuji Titanium Industry Co., Ltd.)
D-2 :硫酸第一鉄 · 1水和物 (富士チタン工業 (株) 製) D-2: Ferrous sulfate monohydrate (Fuji Titanium Industry Co., Ltd.)
D— 3 :シュベルトマナイト ((株) ゾフィア製:ァズレ—S) D-3: Schwertmannite (manufactured by Zoffia: Azzle-S)
(E成分)  (E component)
E— 1 : AS樹脂 (日本エイアンドエル製 「ライタック— A BS— 218」 (商 ロロ名ノ ) E-1: AS resin (Nihon A & L "Litec-A BS-218"
E-2 : ABS樹脂 (東レ製 「トヨラック 700— 314」、 (商品名) ゴム成分 含有量: 12%)  E-2: ABS resin (Toyolac 700-314, manufactured by Toray, (trade name) Rubber component content: 12%)
E— 3 :ポリカプロラクトン (ダイセル化学製 「ブラクセル HI P」 (商品名)) E-4 : トリメリット酸エステル (大八化学製 「TOTM」 (商品名))  E-3: Polycaprolactone ("Braxel HI P" (trade name) manufactured by Daicel Chemical Industries) E-4: Trimellitic acid ester ("TOTM" (trade name) manufactured by Daihachi Chemical)
(F成分)  (F component)
F— 1 :無水マレイン酸と α—ォレフィンとの共重合体である酸変性ォレフィン ワックス (三菱化学 (株) 製:ダイヤカルナ DC 30Μ)  F-1: Acid-modified olefin wax that is a copolymer of maleic anhydride and α-olefin (Mitsubishi Chemical Corporation: Diacarna DC 30Μ)
(G成分)  (G component)
G— 1 : トリメチルホスフェート (大八化学製 「TMP」 (商品名)) G-1: Trimethyl phosphate (Daihachi Chemical "TMP" (trade name))
G- 2 :ホスファイト系安定剤 (アデ力製 「アデカスタブ PEP— 8」 (商品 名))  G-2: Phosphite stabilizer (“Adekastab PEP—8” (trade name) manufactured by Ade force)
G— 3 :ホスファイト系安定剤 (アデ力製 「アデカスタブ PEP— 24 G」 (商 G-3: Phosphite stabilizer ("Adekastab PEP-24G" (trade)
ΠΡ^Ρノノ ΠΡ ^ ΡNono
表 1 table 1
Figure imgf000043_0001
Figure imgf000043_0001
表 2 Table 2
Figure imgf000044_0001
Figure imgf000044_0001
表 3 Table 3
Figure imgf000045_0001
Figure imgf000045_0001
表 4 Table 4
Figure imgf000046_0001
Figure imgf000046_0001
発明の効果 The invention's effect
本発明の樹脂組成物は、 優れた難燃性と改善された表面外観を有する成形品と なる。 即ち、 本発明の成形品は、 優れた難燃性を有し、 厚み 1 . 5 mmの燃焼試 験において、 V— 1若しくは V— 0を達成できる。 また本発明の成形品は、 シル バーの発生率が少なく優れた表面外観を有する。 本発明の樹脂組成物は、 溶出抑 制剤 (D成分) を含有するので、 無機粒子 (B成分) 中に含まれる重金属の溶出 が少ない。 産業上の利用可能性  The resin composition of the present invention becomes a molded article having excellent flame retardancy and improved surface appearance. That is, the molded article of the present invention has excellent flame retardancy, and can achieve V-1 or V-0 in a combustion test having a thickness of 1.5 mm. Further, the molded article of the present invention has an excellent surface appearance with a low silver generation rate. Since the resin composition of the present invention contains an elution inhibitor (D component), there is little elution of heavy metals contained in the inorganic particles (B component). Industrial applicability
本発明の樹脂組成物は、 OA機器分野、 電気電子機器分野などの各種工業用途 に極めて有用である。  The resin composition of the present invention is extremely useful for various industrial applications such as the field of OA equipment and the field of electrical and electronic equipment.

Claims

請 求 の 範 囲 The scope of the claims
1. (A) 100重量部のポリカーボネート樹脂 (A成分)、 1. (A) 100 parts by weight of polycarbonate resin (component A),
(B) 10〜70重量部の、 二酸化珪素および酸化アルミニウムの複合体を含有 し、 D50粒径が 10 /m以下である無機粒子 (B成分)、  (B) inorganic particles (component B) containing 10 to 70 parts by weight of a composite of silicon dioxide and aluminum oxide and having a D50 particle size of 10 / m or less,
(C) 0. 01〜2重量部のフッ素系樹脂 (C成分)、  (C) 0.01 to 2 parts by weight of a fluororesin (component C),
(D) 0. 05〜 3重量部の溶出抑制剤 (D成分)、  (D) 0.05 to 3 parts by weight of dissolution inhibitor (component D),
(E) 1〜 20重量部の流動改質剤 (E成分) および  (E) 1 to 20 parts by weight of flow modifier (E component) and
(F) 0. 01〜2重量部の酸変性ポリオレフイン系ワックス (F成分)、 を含有する樹脂組成物。  (F) A resin composition comprising 0.01 to 2 parts by weight of an acid-modified polyolefin wax (F component).
2. 無機粒子 (B成分) は、 フライアッシュである請求項 1記載の樹脂組成物。 2. The resin composition according to claim 1, wherein the inorganic particles (component B) are fly ash.
3. フッ素系樹脂 (C成分) は、 フィブリル形成能を有するポリテトラフルォ 口エチレン樹脂である請求項 1記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the fluororesin (component C) is a polytetrafluoroethylene resin having a fibril-forming ability.
4. 溶出抑制剤 (D成分) は、 二価および/または三価の鉄イオンと硫酸ィォ ンとの塩である請求項 1記載の樹脂組成物。 4. The resin composition according to claim 1, wherein the elution inhibitor (component D) is a salt of divalent and / or trivalent iron ions and sulfate.
5. 溶出抑制剤 (D成分) は、 硫酸第一鉄 ·水和物またはシュベルトマナイト である請求項 1記載の樹脂組成物。 5. The resin composition according to claim 1, wherein the elution inhibitor (component D) is ferrous sulfate hydrate or Schwertmannite.
6. 溶出抑制剤 (D成分) は、 硫酸第一鉄 · 7水和物である請求項 1記載の樹 脂組成物。 6. The resin composition according to claim 1, wherein the elution inhibitor (component D) is ferrous sulfate heptahydrate.
7. 流動改質剤 (E成分) は、 脂肪族ポリエステル樹脂およびトリメリット酸 エステルからなる群より選ばれる少なくとも一種である請求項 1記載の樹脂組成 物。 7. The resin composition according to claim 1, wherein the flow modifier (component E) is at least one selected from the group consisting of aliphatic polyester resins and trimellitic esters.
8. 酸変性ポリオレフイン系ワックス (F成分) は、 カルボキシル基および Z またはカルボキシル無水物を有する酸変性ポリオレフィン系ワックスである請求 項 1に記載の樹脂組成物 8. The resin composition according to claim 1, wherein the acid-modified polyolefin wax (F component) is an acid-modified polyolefin wax having a carboxyl group and Z or a carboxyl anhydride.
9. ポリカーボネート樹脂 (A成分) 100重量部あたり、 0. 0001〜2 重量部のリン系安定剤 (G成分) を含有する請求項 1記載の樹脂組成物。 9. The resin composition according to claim 1, comprising 0.0001 to 2 parts by weight of a phosphorus stabilizer (G component) per 100 parts by weight of the polycarbonate resin (A component).
10. リン系安定剤 (G成分) は、 その 100重量%中50重量%以上がホス フェート化合物および Zまたはホスファイト化合物である請求項 9記載の樹脂組 成物。 10. The resin composition according to claim 9, wherein 50% by weight or more of the phosphorus stabilizer (G component) is a phosphate compound and Z or a phosphite compound.
11. ポリカーボネート樹脂 (A成分) がビスフエノール A型ポリカーボネー トである、 請求項 1記載の樹脂組成物。 11. The resin composition according to claim 1, wherein the polycarbonate resin (component A) is bisphenol A-type polycarbonate.
12. 請求項 1記載の樹脂組成物よりなる成形品。 12. A molded article comprising the resin composition according to claim 1.
PCT/JP2008/062868 2007-07-24 2008-07-10 Flame-retardant resin composition WO2009014050A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009524462A JP5323701B2 (en) 2007-07-24 2008-07-10 Flame retardant resin composition
CN2008801000764A CN101790565B (en) 2007-07-24 2008-07-10 Flame-retardant resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007191893 2007-07-24
JP2007-191893 2007-07-24

Publications (1)

Publication Number Publication Date
WO2009014050A1 true WO2009014050A1 (en) 2009-01-29

Family

ID=40281306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/062868 WO2009014050A1 (en) 2007-07-24 2008-07-10 Flame-retardant resin composition

Country Status (3)

Country Link
JP (1) JP5323701B2 (en)
CN (1) CN101790565B (en)
WO (1) WO2009014050A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084168A (en) * 2012-10-26 2014-05-12 Asahi Kasei Chemicals Corp Foam for battery conveyance tray
JP2015140362A (en) * 2014-01-27 2015-08-03 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and method of manufacturing the same
WO2019146507A1 (en) * 2018-01-23 2019-08-01 三菱瓦斯化学株式会社 Polycarbonate resin composition, production method therefor, and optical lens
JP2019202542A (en) * 2017-09-29 2019-11-28 住友ベークライト株式会社 Optical sheet and optical component
KR20210052627A (en) * 2019-10-29 2021-05-11 주식회사 삼양사 Polycarbonate resin composition with improved scratch resistance and flowability and molded article comprising the same
US11119260B2 (en) 2017-09-29 2021-09-14 Sumitomo Bakelite Co., Ltd. Optical sheet and optical component

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000016B2 (en) * 2010-09-29 2012-08-15 積水化学工業株式会社 Resin composition and molded body
CN104861629A (en) * 2015-05-19 2015-08-26 苏州奥美材料科技有限公司 Polycarbonate film and preparation method thereof
CN111657197B (en) * 2020-05-09 2021-12-10 中国水产科学研究院东海水产研究所 Preparation method of cylindrical box body for deep and open sea net cage with antifouling performance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104775A (en) * 1994-10-06 1996-04-23 Kanebo Ltd Thermoplastic resin composition for inkstone and inkstone
JP2001072853A (en) * 1999-09-08 2001-03-21 Teijin Chem Ltd Damping thermoplastic resin composition
JP2003518539A (en) * 1999-12-24 2003-06-10 バイエル アクチェンゲゼルシャフト Flame-resistant polycarbonate molding composition containing talc of specific purity
JP2003518543A (en) * 1999-12-24 2003-06-10 バイエル アクチェンゲゼルシャフト Polycarbonate molding composition containing specific talc
WO2005083004A1 (en) * 2004-02-27 2005-09-09 Nec Corporation Flame retardant resin composition
JP2007186605A (en) * 2006-01-13 2007-07-26 Dainichiseika Color & Chem Mfg Co Ltd Polycarbonate-based flame-retardant resin composition
WO2007132596A1 (en) * 2006-05-15 2007-11-22 Idemitsu Kosan Co., Ltd. Aromatic polycarbonate resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418272A (en) * 1991-12-10 1995-05-23 Nippon Petrochemicals Company, Limited Abrasion-resistant flame-retardant composition
US7183342B2 (en) * 2002-03-18 2007-02-27 Asahi Kasei Chemicals Corporation Flame-retardant aromatic polycarbonate resin composition
CN100417690C (en) * 2004-02-27 2008-09-10 日本电气株式会社 Flame retardant resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104775A (en) * 1994-10-06 1996-04-23 Kanebo Ltd Thermoplastic resin composition for inkstone and inkstone
JP2001072853A (en) * 1999-09-08 2001-03-21 Teijin Chem Ltd Damping thermoplastic resin composition
JP2003518539A (en) * 1999-12-24 2003-06-10 バイエル アクチェンゲゼルシャフト Flame-resistant polycarbonate molding composition containing talc of specific purity
JP2003518543A (en) * 1999-12-24 2003-06-10 バイエル アクチェンゲゼルシャフト Polycarbonate molding composition containing specific talc
WO2005083004A1 (en) * 2004-02-27 2005-09-09 Nec Corporation Flame retardant resin composition
JP2007186605A (en) * 2006-01-13 2007-07-26 Dainichiseika Color & Chem Mfg Co Ltd Polycarbonate-based flame-retardant resin composition
WO2007132596A1 (en) * 2006-05-15 2007-11-22 Idemitsu Kosan Co., Ltd. Aromatic polycarbonate resin composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084168A (en) * 2012-10-26 2014-05-12 Asahi Kasei Chemicals Corp Foam for battery conveyance tray
JP2015140362A (en) * 2014-01-27 2015-08-03 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and method of manufacturing the same
JP2019202542A (en) * 2017-09-29 2019-11-28 住友ベークライト株式会社 Optical sheet and optical component
US11119260B2 (en) 2017-09-29 2021-09-14 Sumitomo Bakelite Co., Ltd. Optical sheet and optical component
WO2019146507A1 (en) * 2018-01-23 2019-08-01 三菱瓦斯化学株式会社 Polycarbonate resin composition, production method therefor, and optical lens
KR20200105864A (en) * 2018-01-23 2020-09-09 미츠비시 가스 가가쿠 가부시키가이샤 Polycarbonate resin composition, its manufacturing method and optical lens
JPWO2019146507A1 (en) * 2018-01-23 2021-01-07 三菱瓦斯化学株式会社 Polycarbonate resin composition, its manufacturing method and optical lens
US11440991B2 (en) 2018-01-23 2022-09-13 Mitsubishi Gas Chemical Company, Inc. Polycarbonate resin composition, production method therefor, and optical lens
JP7176535B2 (en) 2018-01-23 2022-11-22 三菱瓦斯化学株式会社 POLYCARBONATE RESIN COMPOSITION, METHOD FOR MANUFACTURING SAME, AND OPTICAL LENS
KR102651213B1 (en) * 2018-01-23 2024-03-25 미츠비시 가스 가가쿠 가부시키가이샤 Polycarbonate resin composition, manufacturing method and optical lens
KR20210052627A (en) * 2019-10-29 2021-05-11 주식회사 삼양사 Polycarbonate resin composition with improved scratch resistance and flowability and molded article comprising the same
KR102281675B1 (en) 2019-10-29 2021-07-27 주식회사 삼양사 Polycarbonate resin composition with improved scratch resistance and flowability and molded article comprising the same

Also Published As

Publication number Publication date
JP5323701B2 (en) 2013-10-23
CN101790565A (en) 2010-07-28
CN101790565B (en) 2012-01-25
JPWO2009014050A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
WO2009014050A1 (en) Flame-retardant resin composition
JP4907899B2 (en) Resin composition containing carbon nanotube, and concentrate for compounding carbon nanotube
JP5154820B2 (en) Conductive resin composition
EP1300445B1 (en) Aromatic polycarbonate resin composition
JP5021918B2 (en) Glass fiber reinforced flame retardant resin composition
JP4747102B2 (en) Resin composition and flat panel display fixing frame
JP5111458B2 (en) Method for reducing pearl luster of aromatic polycarbonate resin composition
JP2008255214A (en) Aromatic polycarbonate resin composition
JP2011026439A (en) Glass fiber-reinforced resin composition
WO2009060986A1 (en) Resin composition
WO2011087141A1 (en) Polycarbonate resin composition
JP2007114264A (en) Lens barrel comprising glass fiber reinforced flame-retardant resin composition
TW200837141A (en) Flame retardancy polycarbonate resin composition
JP2011001514A (en) Electric-electronic device component obtained by performing injection molding of glass fiber-reinforced resin composition
JP2009001740A (en) Thermoplastic resin composition with stabilized electrical conductivity
JP2013001801A (en) Flame-retardant polycarbonate resin composition
JP5101810B2 (en) Flame retardant aromatic polycarbonate resin composition
JP2017132913A (en) Antibacterial polycarbonate resin composition
JP4547100B2 (en) Aromatic polycarbonate resin composition
JP5893848B2 (en) Aromatic polycarbonate resin composition and molded article thereof
JP2015137308A (en) Fire retardant carbon fiber reinforced polycarbonate resin composition
JP2010275413A (en) Glass-reinforced resin composition
JP2011140545A (en) Fiber-reinforced resin composition and resin molded article produced by molding the same
JP6782576B2 (en) Polycarbonate resin composition
JP5432046B2 (en) Aromatic polycarbonate resin composition and molded article thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880100076.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08778219

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009524462

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08778219

Country of ref document: EP

Kind code of ref document: A1