WO2009013114A1 - Procédé de détermination de la vitesse d'une cabine d'ascenseur et unité de commande destinée à réaliser ce procédé - Google Patents

Procédé de détermination de la vitesse d'une cabine d'ascenseur et unité de commande destinée à réaliser ce procédé Download PDF

Info

Publication number
WO2009013114A1
WO2009013114A1 PCT/EP2008/058722 EP2008058722W WO2009013114A1 WO 2009013114 A1 WO2009013114 A1 WO 2009013114A1 EP 2008058722 W EP2008058722 W EP 2008058722W WO 2009013114 A1 WO2009013114 A1 WO 2009013114A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
detected
determined
elevator car
delta
Prior art date
Application number
PCT/EP2008/058722
Other languages
German (de)
English (en)
Inventor
Steffen Grundmann
Original Assignee
Inventio Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio Ag filed Critical Inventio Ag
Publication of WO2009013114A1 publication Critical patent/WO2009013114A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3492Position or motion detectors or driving means for the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P7/00Measuring speed by integrating acceleration

Definitions

  • the present invention relates to a method for determining the speed of an elevator car which can be moved along a travel path, to an elevator installation in which the speed of an elevator car is determined by this method, and to a control unit for carrying out this method or for use in this elevator installation.
  • Known safety devices for monitoring an elevator car include a speed or acceleration sensor and a position sensor for determining the current position of the elevator car.
  • a position sensor detects, for example, in the area of the floors in the elevator shaft mounted position marks.
  • Such a system is known, for example, from EP 1 602 610 A1.
  • measuring systems with acceleration sensors are error-prone.
  • deviations may result if, for example, an installation position changes or if a measuring system is inclined.
  • an accelerometer can itself undergo deviations. If, as described in EP 1 602 610 A1, an acceleration sensor is used to determine the driving speed, such deviations can lead to a faulty result. Therefore, such a signal can not be said to be safe and other measurement systems are needed to determine a safe speed signal.
  • the invention is therefore based on the object to provide a method for determining a precise, error-free speed of the elevator car.
  • the method should be easy to use in an elevator installation.
  • a correspondingly designed elevator system should be specified.
  • a method for determining the speed of an elevator car movable along a track is provided, wherein for a first track section of the track between a first position and a second position - a speed v 0 of the elevator car at the first position is detected, several accelerations a m ( n ) of the elevator car in several measuring intervals .DELTA.t are detected, a time period .DELTA.T ZF is detected, which requires the elevator car to get from the first position to the second position, a speed v corr for the second Position is determined as follows:
  • V cor V 0 + At • ⁇ a m (n) ⁇ « ⁇ off, real
  • ⁇ o # re ⁇ / is a correction value obtained by comparing a real one
  • ⁇ t is the duration of the measurement interval
  • a m ( n ) are the detected accelerations in the travel path section
  • V 0 is the speed at the first position
  • n is the number of measurement intervals for which the accelerations have been detected.
  • One idea of the invention is to determine a correction value ⁇ off real by comparing a calculated distance on the basis of the measured values of the accelerations a m ( n ) with a real distance ⁇ X ZF between the first position and the second position. Then, starting from a velocity v 0 measured or predetermined for the first position, the measured accelerations a m ( n ). and the number n of the measurement intervals for which the accelerations have been detected, the current corrected speed v korr for the second position of the first travel path section or another travel path section or a travel path comprising a plurality of travel path sections are calculated. For example, the value 0 is obtained for the speed v 0 when the elevator car is moved from standstill.
  • the elevator car is usually installed in a lift shaft in a building.
  • the building has several floors which are connected by the elevator shaft, and the elevator car serves for the substantially vertical transport of persons and / or goods between these floors.
  • the travel path of the elevator car is determined by the elevator shaft.
  • Under the track section is a section of the available track understood, in particular, this section is the distance between two floors and / or the position marks provided there. Furthermore, the distance between two floors can also be subdivided by additional additional positions or position marks (intermediate marks).
  • a travel path can be traveled that includes one or more sections of travel path.
  • the method according to the invention is repeated for each track section, wherein the determined travel speed v korr of the preceding track section is set for the speed v 0 of a subsequent track section.
  • a safe, corrected speed value v korr of the elevator car can be determined.
  • This speed value can advantageously be used in particular for a safety system in such a way that a brake signal is triggered in the event of exceeding a maximum speed value.
  • this speed value for controlling the opening and closing of the shaft doors and / or car doors when approaching a floor towards the end of a service run can be advantageously used.
  • the accelerations a m ( n ) can be detected by means of a low-cost accelerometer, which is for example installed directly in a control unit (board).
  • components already present in the elevator shaft for example the position markers for approaching the floors, can be used for the method anyway.
  • the installation of a separate measuring system can be dispensed with.
  • an additional system for speed determination can be installed, so that the speed is detected by means of two measuring systems in order to create a further increased safety or to further reduce sources of error.
  • further information useful for monitoring the elevator installation can be obtained, such as, for example with regard to a wear indicator or bearing damage.
  • the method and the associated elevator installation can trigger a signal for triggering emergency braking or a safety alarm if the speed and / or acceleration values are too high.
  • the errors which occur as a result of subsidence and changes in length of the building by a change made to maintenance for example, in the context of adjustment of the values for the distances .DELTA.X ZF can be reduced.
  • the distances of the individual sections of track can be redefined and stored in the control unit.
  • the participating evaluation units such as accelerometer, position sensor, control unit, data storage and required processors are arranged together, advantageously directly integrated in the control unit, in the elevator car.
  • the device can be built compact and secure and long transmission paths omitted.
  • Such a compact device or control unit can be advantageously used for retrofitting in an existing elevator installation or it can be replaced in the event of a possible repair as a whole.
  • the safety standard of an existing elevator system can be easily improved, in particular since many existing position marks in the shaft can be used.
  • the elevator cabin is provided with an acceleration sensor which measures the instantaneous acceleration continuously in several time intervals ⁇ t in accordance with a clock measurement frequency.
  • the elevator shaft is provided with position markers in the area of the floors, wherein in the area of each floor a position mark is provided which forms the first position and / or the second position. Each adjacent positions or position marks are spaced by a distance corresponding to the distance .DELTA.X ZF .
  • the time duration which the elevator car requires in order to move from the first position mark to the second position mark of the first travel path section and optionally further travel path sections is then detected.
  • the respectively associated distance ⁇ X ZF is retrieved from a data memory of the control unit. Based on these data, the correction value ⁇ o # re ⁇ / the current corrected vehicle speed v is then computed corr under investigation. This determined driving speed v korr is transmitted to the control unit as effective driving speed. tion or control unit or a security monitoring system forwarded.
  • the correction value z off> rml is determined by:
  • ⁇ t is the duration of the measuring interval
  • a m (n) are the detected accelerations in the track section
  • ⁇ X th is the theoretically calculated distance between the first position and the second position
  • ⁇ X ZF is the actual distance between the first position and the second position
  • ⁇ T ZF is the time required for the elevator car to move from the first position to the second position
  • V 0 is the speed at the first position
  • n is the number of measurement intervals for which the accelerations have been detected.
  • the speed v korr for the second position of the second track section is determined between a first position and a second position of a second track section of the track, wherein the speed v determined for the second position of the first track section corr is set as the speed v 0 for the first position of the second track section, with the above parameters relating to the second track section, in particular a m being the detected accelerations in the second track section.
  • the first position is assigned to a first floor and the second position is assigned to a second floor.
  • the mounted to start the floors in the elevator shaft position marks for example in the form of sheet steel strips used.
  • the distance .DELTA.X ZF between the first position and the second position of the respective track section in a control unit, in particular a storage unit is stored and retrieved.
  • the distance ⁇ X ZF can be adapted for at least one section of track. This can advantageously also be done later. As a result, any errors that occur, for example, as a result of setting the building, can be counteracted.
  • each path section is assigned a plurality of measurement intervals, wherein the measurement interval is determined by a predetermined clock measurement frequency and the clock measurement frequency determines the duration of the measurement interval ⁇ t.
  • Typical measurement intervals are approximately 5 to 50 milliseconds. For safety-relevant applications, preferably shorter measurement intervals are selected. This prevents a dangerous condition between two measuring intervals. Of course, depending on elevator data such as driving speed, other measuring intervals can be defined.
  • a position mark is provided for each position, which is detectable by a position sensor.
  • the position sensor for example a light barrier, is attached to the elevator car and is preferably configured in such a way that the absolute position of the position marker in the driving bay can be detected.
  • V 0 is the speed at the first position of the respective track section
  • ⁇ off rea i dsr correction value of the last track section a m ( n ) are the currently detected accelerations in the respective track section
  • n is the number of measurement intervals for which the accelerations in the respective track section have been detected.
  • the speed v akt for controlling the start of a floor and / or for monitoring the speed of the elevator car is transmitted to the control unit.
  • the value determined for the speed of the elevator car can be used in many ways.
  • a signal is issued for emergency braking or maintenance.
  • the speed v act is not detected or maintaining, when the amount of sensed acceleration a m (n) falls below a predetermined limit ⁇ & &.
  • This limit ⁇ & & is preferably between about 0.03 and about 0.05 m / s 2.
  • the determined speed v 0 can be set to a predetermined value or, at a predetermined time, to a reference value, in particular to zero.
  • a predetermined event is the stop of the elevator car in a floor that lasts for a certain period of time, in particular when the doors are open and the brake is closed. Further, this calibration can be done over a long period of time with no acceleration or a time period that is longer than the maximum expected driving time.
  • a plurality of speed values are determined, wherein the speed v korr according to one of the preceding claims is determined as a first speed value , and wherein at least one second speed value is determined by means of own sensors and if at least one of the determined speed values is exceeded an error is detected and a brake signal is output.
  • an elevator installation with an elevator car which can be moved in a lift shaft along a travel path wherein the travel path comprises at least one track section with a first position and a second position, and wherein at the elevator car an acceleration sensor for detecting the acceleration a m ( n ) of the elevator car and a position sensor for detecting the position of the elevator car are provided.
  • the elevator installation furthermore comprises a control unit, in which the distance ⁇ X ZF between the first position and the second position for the at least one track section is deposited, and a time detection unit for detecting a time duration ⁇ T ZF , which the elevator car requires to move from the first position to get to the second position.
  • the acceleration sensor, the position sensor, the control unit and the time recording unit are set up to carry out the method according to one of claims 1 to 15.
  • a position mark detectable by the position sensor is provided in the region of the position.
  • This position mark is advantageously a sheet metal strip, preferably a coded sheet metal strip.
  • a position sensor preferably a light barrier can be provided.
  • the first position forms a first end of the track section and the second position forms a second end of the track section.
  • a track section may correspond to a distance between two floors. The coding allows a determination of the floor, with which also different floor distances can be safely detected and assigned.
  • the acceleration sensor, the position sensor, the control unit and the time recording unit are assembled directly in the control unit and / or installed in a common housing or device.
  • Such a compact device or control unit can advantageously be used for retrofitting in an existing elevator installation as described in claims 21 and 22, or it can be replaced as a whole in the case of a possible repair.
  • the safety standard of an existing elevator system can be easily improved, in particular, since many already existing position marks can be used in the shaft.
  • FIG. 1 shows a section of a building with an elevator installation according to the invention with an elevator car
  • FIG. 1 schematically shows a detail of a building with an elevator installation 10 with an elevator car 14 that can be moved in a lift shaft 12 along a travel path 20.
  • the building has a multiplicity of floors, wherein in FIG. 1 a first floor 15, a second floor 16 , a third floor 17 and a fourth floor 18 are shown.
  • Each cursor 50 includes a zero position 56 and an upper first end 52 and a lower second end 54.
  • the cursor has a height of about 24 cm and the two ends 52, 54 have a height of 12 cm each.
  • position markers 50 and in particular their respective zero position 56 mark a first position P1 and / or a second position P2 in the respectively associated floor (see FIG. 1).
  • the position marks are provided with a coded hole pattern (not shown). This makes it possible to associate the position mark and thus the individual track section 22, 24, 26 with an associated floor.
  • An acceleration sensor 30 and a position sensor 40 are arranged on the elevator car.
  • the position sensor 40 interacts with the position marks 50 of the floors 15 to 18 and detects the respective floor position of the elevator car 14.
  • the position sensor 40 comprises a light barrier.
  • the elevator car 14 is further provided with a control unit 60, which evaluates the data determined by the accelerometer 30 and the position sensor 40.
  • the elevator installation 10 comprises the control unit, a memory unit and a time recording unit (not shown).
  • the position sensor 40, the control unit 60 and the acceleration sensor 30 are arranged in decentralized modules. Alternatively, these parts can be combined into a single module. This is inexpensive, since such an assembly may contain required operating units such as voltage and emergency power, data storage and interfaces.
  • the elevator installation is set up in order to be able to carry out the method explained below.
  • the elevator car 14 is in the initial situation shown in Fig. 1 at the level of the fourth floor 18.
  • the elevator car 14 is in the position shown at a standstill with a speed v 0 with the value zero.
  • the user sets the desired destination call.
  • the user wants to be moved to the first floor 15.
  • an elevator control sends a corresponding signal to a drive unit of the elevator installation 10, so that the elevator car 14 is accelerated out of the rest position.
  • the elevator car 14 In order to achieve the desired destination of the user on the first floor 15 in the present case, the elevator car 14 must therefore cover a travel path 20 which comprises the first to third travel sections 22 to 26.
  • the speed v 0 is detected at the first position P1 of the first track section 22 having the value zero. This can be done for example by a speed measuring device in the drive unit. Subsequently, with continuous movement of the elevator car 14 by means of the acceleration pickup 30, the acceleration a m (n) is continuously measured and stored in successively connected measuring intervals of predetermined duration .DELTA.t, ie corresponding to a predetermined clock measuring frequency (see also FIG. 2). Upon reaching the second position P2 of the first track section 22 on the third floor 17, the position sensor 40 detects the position mark 50 and informs the control unit.
  • the distance between the first position P1 and the second position P2 of the first track section 22 and the further track sections 24 and 26 are retrievably stored in the control unit.
  • the clock measuring frequency of the measuring interval .DELTA.t is stored in the memory unit. All values either stored in the control unit or currently determined are then processed to determine the correction value ⁇ off rea i un, followed by the determination of the current corrected speed v cor according to the formulas given in claims 1 and 2.
  • the value for the speed v cor determined accordingly for the second position P2 is then set as the new value for the speed v 0 for the first position P1 of the second travel section 24 (see also FIG. 2).
  • FIG. 2 shows a speed-time diagram (vt diagram) and an acceleration-time diagram (at diagram), FIG. 2 showing below the two diagrams the route sections 22, 24, 26 already indicated in FIG can be seen.
  • the curve indicated in the speed-time diagram shows the exemplary course of the speed v over the time t, starting with the speed v 0, for example, on the fourth floor 18.
  • the accelerations a m ( n ) are now detected at several measuring intervals along the second travel path section 24 by means of the acceleration pickup 30.
  • the values for the number n of the measurement intervals and the time duration ⁇ T ZF which the elevator car 14 has needed can be changed from the first position P1 to reach the second position P2 of the second travel section 24, are determined.
  • the new current corrected speed v korr for the second position P2 of the second track section 24 can then be determined on the basis of the above formulas.
  • the detection and measurement is made of the further values for the third path section 26.
  • current velocity is v corr as the new value for the velocity v 0 set in the first position P1 of the third Fahrwegabitess 26.
  • a safe speed value can be determined v corr so all of the following track sections and thus over the entire travel path 20, to obtain a more accurate compared with the prior art velocity value and sources of error are reduced further.
  • the values stored in the memory unit for the distances .DELTA.X ZF can be easily changed, whereby a simple adaptation of the resulting after the erection of the building subsidence and thus changes in these distances is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Elevator Control (AREA)

Abstract

La présente invention concerne un procédé de détermination de la vitesse d'une cabine d'ascenseur (14) pouvant être déplacée dans une cage d'ascenseur (12) le long d'un passage de déplacement (20). Une vitesse v0 de la cabine d'ascenseur (14) dans la première position (P1) est détectée pour une première section de passage de déplacement (22) du passage de déplacement (20) entre une première position (P1) et une seconde position (P2). Plusieurs accélérations sur la cabine d'ascenseur (14) sont détectées dans plusieurs intervalles de mesure. Une durée ΔTZF utilisée par la cabine d'ascenseur (14) pour parvenir de la première position (P1) à la seconde position (P2) est détectée et une vitesse vkorr pour la seconde position (P2) est déterminée de la manière suivante : (I), εoff,real est une valeur de correction, définie en comparant un parcours réel (ΔXZF) entre la première position (P1) et la seconde position (P2) et un parcours calculé de façon théorique (ΔXth); Δt est la durée de l'intervalle de mesure; am(n) représente les accélérations détectées dans la section de passage de déplacement (22), v0 est la vitesse dans la première position (P1) et n le nombre d'intervalles de mesure pour lesquels les accélérations ont été détectées. L'invention concerne en outre un système d'élévation destiné à réaliser ce procédé ainsi qu'une unité de commande destinée à réaliser ce procédé et/ou à être utilisée dans un système d'élévation correspondant.
PCT/EP2008/058722 2007-07-20 2008-07-04 Procédé de détermination de la vitesse d'une cabine d'ascenseur et unité de commande destinée à réaliser ce procédé WO2009013114A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07112855 2007-07-20
EP07112855.7 2007-07-20

Publications (1)

Publication Number Publication Date
WO2009013114A1 true WO2009013114A1 (fr) 2009-01-29

Family

ID=38776423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/058722 WO2009013114A1 (fr) 2007-07-20 2008-07-04 Procédé de détermination de la vitesse d'une cabine d'ascenseur et unité de commande destinée à réaliser ce procédé

Country Status (1)

Country Link
WO (1) WO2009013114A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102795521A (zh) * 2011-05-25 2012-11-28 株式会社日立制作所 电梯
WO2013084154A2 (fr) * 2011-12-07 2013-06-13 Koninklijke Philips Electronics N.V. Procédé et appareil pour la détection d'un mouvement d'ascenseur
CN107000964A (zh) * 2014-12-02 2017-08-01 因温特奥股份公司 用于确定电梯轿厢的位置的方法和系统
EP3081519B1 (fr) 2015-04-16 2018-02-21 Kone Corporation Procédé pour la détection de la position d'une cabine d'ascenseur
US9975732B2 (en) 2012-10-18 2018-05-22 Inventio Ag Safety equipment of an elevator installation
US10286497B2 (en) 2014-04-30 2019-05-14 Nihon Superior Co., Ltd. Lead-free solder alloy
WO2019205099A1 (fr) * 2018-04-27 2019-10-31 深圳技术大学(筹) Procédé et système de mesure de la vitesse de déplacement d'un ascenseur
EP3653555A1 (fr) * 2018-11-16 2020-05-20 KONE Corporation Agencement d'ascenseur et procédé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691152A (en) * 1986-02-19 1987-09-01 International Business Machines Corporation Data disk drive velocity estimator
EP1602610A1 (fr) * 2004-06-02 2005-12-07 Inventio Ag Système de monitorage pour ascenseur
EP1626025A2 (fr) * 2004-07-21 2006-02-15 Entec IRD International Corporation Méthode de surveillance des caractéristiques opérationnelles d'une machine uniaxiale
WO2006035101A2 (fr) * 2004-09-27 2006-04-06 Kone Corporation Procede et systeme de mesure de la precision d'arret d'une cabine d'ascenseur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691152A (en) * 1986-02-19 1987-09-01 International Business Machines Corporation Data disk drive velocity estimator
EP1602610A1 (fr) * 2004-06-02 2005-12-07 Inventio Ag Système de monitorage pour ascenseur
EP1626025A2 (fr) * 2004-07-21 2006-02-15 Entec IRD International Corporation Méthode de surveillance des caractéristiques opérationnelles d'une machine uniaxiale
WO2006035101A2 (fr) * 2004-09-27 2006-04-06 Kone Corporation Procede et systeme de mesure de la precision d'arret d'une cabine d'ascenseur

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527281A3 (fr) * 2011-05-25 2013-10-30 Hitachi Ltd. Élévateur
CN102795521A (zh) * 2011-05-25 2012-11-28 株式会社日立制作所 电梯
CN102795521B (zh) * 2011-05-25 2015-07-22 株式会社日立制作所 电梯
RU2625370C2 (ru) * 2011-12-07 2017-07-13 Конинклейке Филипс Н.В. Способ и устройство для обнаружения движения лифта
CN103974887A (zh) * 2011-12-07 2014-08-06 皇家飞利浦有限公司 用于电梯运动检测的方法和装置
WO2013084154A3 (fr) * 2011-12-07 2013-08-08 Koninklijke Philips N.V. Procédé et appareil pour la détection d'un mouvement d'ascenseur
WO2013084154A2 (fr) * 2011-12-07 2013-06-13 Koninklijke Philips Electronics N.V. Procédé et appareil pour la détection d'un mouvement d'ascenseur
US9975732B2 (en) 2012-10-18 2018-05-22 Inventio Ag Safety equipment of an elevator installation
US10286497B2 (en) 2014-04-30 2019-05-14 Nihon Superior Co., Ltd. Lead-free solder alloy
CN107000964A (zh) * 2014-12-02 2017-08-01 因温特奥股份公司 用于确定电梯轿厢的位置的方法和系统
EP3081519B1 (fr) 2015-04-16 2018-02-21 Kone Corporation Procédé pour la détection de la position d'une cabine d'ascenseur
WO2019205099A1 (fr) * 2018-04-27 2019-10-31 深圳技术大学(筹) Procédé et système de mesure de la vitesse de déplacement d'un ascenseur
EP3653555A1 (fr) * 2018-11-16 2020-05-20 KONE Corporation Agencement d'ascenseur et procédé
CN111196535A (zh) * 2018-11-16 2020-05-26 通力股份公司 电梯装置及通过电梯控制系统监视电梯装置的方法
CN111196535B (zh) * 2018-11-16 2023-07-21 通力股份公司 电梯装置及通过电梯控制系统监视电梯装置的方法

Similar Documents

Publication Publication Date Title
WO2009013114A1 (fr) Procédé de détermination de la vitesse d'une cabine d'ascenseur et unité de commande destinée à réaliser ce procédé
EP2516305B1 (fr) Procédé et dispositif de détermination du mouvement et/ou de la position d'une cabine d'ascenseur
EP1679279B1 (fr) Ascenseur avec système de contrôle
EP3227215B1 (fr) Procédé et système destinés à la détermination de la position d'une cabine d'ascenseur
DE10195922B4 (de) Nivellierungssystem für Aufzüge
EP1698580B1 (fr) Système s'ascenseur
WO2008009703A1 (fr) Dispositif et procédé de détermination de positions verticales
EP2768755B1 (fr) Dispositif pour détecter la position d'une cabine d'ascenseur et procédé pour faire fonctionner une installation d'ascenseur
EP3190075A1 (fr) Unité de surveillance d'un ascenseur
EP2043935B1 (fr) Détecteur de position d'un cabine d'ascenseur
WO2014067814A1 (fr) Dispositif de surveillance du déplacement d'un système d'ascenseur
EP3643865A1 (fr) Procédé de commande d'un système de porte ainsi que système de porte
EP2834611A1 (fr) Procédé et dispositif pour contrôler la pression de gonflage
EP3319855A1 (fr) Système et procédé de génération d'un signal de déverrouillage de porte pour portes d'accès aux quais
EP3658440B1 (fr) Détection et optimisation de la précision de point d'arrêt d'un véhicule
EP3558788A2 (fr) Procédé et unité de contrôle de détection de déraillement à l'aide de signaux de vitesse de rotation de roue
EP1288155A1 (fr) Méthode et dispositif pour déterminer l' état de rails de guidage
DE102004058471A1 (de) Sicherheitseinrichtung für eine automatisiert arbeitende Anlage mit zumindest einem automatisiert bewegbaren Anlagenteil
EP3556700A1 (fr) Installation d'ascenseur dotée d'un dispositif de mesure de position ainsi que procédé de détermination d'une position d'une cabine d'ascenseur dans une cage d'ascenseur
EP4013933B1 (fr) Procédé de détermination de la position d'une porte dans un système de porte
EP4015430A1 (fr) Procédé de fonctionnement d'un ascenseur équipé d'un système de positionnement ainsi que dispositifs correspondants
EP2463223B1 (fr) Dispositif de contrôle de la position d'arrêt d'une cabine d'ascenseur
WO2020193278A1 (fr) Dispositif de détermination de position d'une cabine d'ascenseur dans une gaine d'ascenseur ainsi que système équipé d'un tel dispositif
DE19958308C2 (de) Verfahren und Steuerung zum Steuern einer Antriebsvorrichtung für eine Abschlusseinrichtung eines Gebäudes oder einer Einfriedung
WO2001057553A1 (fr) Dispositif de mesure de distance au laser pour systemes anti-collision

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08785936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08785936

Country of ref document: EP

Kind code of ref document: A1