WO2009008760A1 - Avion à système radioélectronique intégré - Google Patents

Avion à système radioélectronique intégré Download PDF

Info

Publication number
WO2009008760A1
WO2009008760A1 PCT/RU2007/000380 RU2007000380W WO2009008760A1 WO 2009008760 A1 WO2009008760 A1 WO 2009008760A1 RU 2007000380 W RU2007000380 W RU 2007000380W WO 2009008760 A1 WO2009008760 A1 WO 2009008760A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
control
optoelectronic
hemisphere
periscope
Prior art date
Application number
PCT/RU2007/000380
Other languages
English (en)
French (fr)
Inventor
Oleg Fedorovich Demchenko
Nikolai Nikolaevich Dolzhenkov
Konstantin Fedorovich Popovich
Valdimir Petrovich Shkolin
Arkady Iosifovich Gurtovoi
Valery Grigorievich Kodola
Vyacheslav Georgievich Kalugin
Kirill Veniaminovich Obrosov
Original Assignee
Otkrytoe Aktsionernoe Obschestvo 'opytno-Konstruktorskoe Byuro Im. A.S. Yakovleva'
Federalnoe Gosudarstvennoe Uchrezhdenie 'federalnoe Agentstvo Po Pravovoi Zaschite Rezultatov Intellektualnoi Deyatelnosti Voennogo, Spetsialnogo I Dvoinogo Naznacheniya' Pri Ministerstve Justitsii Rf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40228792&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009008760(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Otkrytoe Aktsionernoe Obschestvo 'opytno-Konstruktorskoe Byuro Im. A.S. Yakovleva', Federalnoe Gosudarstvennoe Uchrezhdenie 'federalnoe Agentstvo Po Pravovoi Zaschite Rezultatov Intellektualnoi Deyatelnosti Voennogo, Spetsialnogo I Dvoinogo Naznacheniya' Pri Ministerstve Justitsii Rf filed Critical Otkrytoe Aktsionernoe Obschestvo 'opytno-Konstruktorskoe Byuro Im. A.S. Yakovleva'
Priority to EA200800855A priority Critical patent/EA012495B1/ru
Priority to PCT/RU2007/000380 priority patent/WO2009008760A1/ru
Priority to EP07866908A priority patent/EP2177432B1/en
Priority to US12/452,561 priority patent/US20100133388A1/en
Publication of WO2009008760A1 publication Critical patent/WO2009008760A1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D7/00Arrangements of military equipment, e.g. armaments, armament accessories, or military shielding, in aircraft; Adaptations of armament mountings for aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/40Periscopic sights specially adapted for smallarms or ordnance; Supports or mountings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/22Aiming or laying means for vehicle-borne armament, e.g. on aircraft

Definitions

  • the invention relates to aircraft and is intended for use in the construction of aircraft, in particular, with a universal integrated radio electronic complex.
  • a well-known aircraft which includes the fuselage, wing, plumage, landing gear, main and auxiliary power plants, a control system for general aircraft equipment, which has 15 two automatic control circuits, structurally designed into the main and backup conversion and calculation units connected to the actuators via control and monitoring unit, as well as a manual control circuit with control panels, a light-signal board and a central light-signal light, and 20 are paired with a multiplex cable Alu with a complex of on-board digital computers, an electronic control system for the left engine, an electronic control system for the right engine, a registration and control system, guidance and landing equipment, an integrated control system, and along code lines with 25 fuel management and control systems, voice equipment communications, a comprehensive electronic indication system and auxiliary power unit (patent RU Ne 2263044 C1, 64 C 13/00).
  • a light multi-functional aircraft with enhanced maneuverability containing the fuselage, wing, plumage, landing gear, the power plant, as well as the integrated control complex, which includes an information exchange system, an on-board digital computer system for flight and combat training operations, an external storage device and information input system 5, flight and navigation equipment, an integrated aircraft control system with those installed in the cockpit the pilot and the operator with the system consoles, an arms control system with the system consoles installed in the pilot and operator’s cabin, a comprehensive electronic system display, control and ⁇ o aiming placard alarm installed in the cockpit of the pilot and the operator, doubly redundant obschesamoletnym equipment management system, on-board system of objective control, voice information and control system, power supply system,
  • the disadvantage of the prototype is the lack of effectiveness of its electronic complex. Disclosure of the invention.
  • the objective of the invention is to provide an aircraft with a radio electronic complex of increased efficiency.
  • the proposed universal integrated electronic electronic complex (UIRK) of the aircraft contains an airborne radar station (radar), optoelectronic surveillance and targeting system (OE OPS), while the OE OPS contains an automatic locking system (CAA) of the head mirror, which fixes the orientation of the fields of view of the laser-location (LL), thermal imaging (UTP, SHTp), television 5 (T) systems during the transition of the line of sight to the upper hemisphere and razarretiruet him when moving into the lower hemisphere.
  • the head mirror is located in the lower housing of the OPS OPS.
  • the periscope system for securing the visual fields of the OPS OPS to the upper hemisphere is fixed.
  • the periscope system contains a two-position (for operation in the upper or lower hemisphere) deflector subsystem. Based on the signal from the line of sight to the upper hemisphere received from the digital computer, the lower (head) mirror of the periscopic 15 system is automatically set to the position of the OE OPS in the upper hemisphere, while the visual fields of the OE OPS of the system are discarded to the upper sighting element of the periscope system.
  • the periscope system contains an upper sighting element in the form of a deflector 20 fixed in a cordan suspension to control the orientation of the visual fields in the upper hemisphere.
  • control signals for the orientation of the fields of view of the optoelectronic system from the output of the executive control system are supplied not only to the drives of the head mirror of the optoelectronic system, but also to the drives of the upper sighting element of the periscope system.
  • An overview of the upper hemisphere of the OA OPS is carried out by swinging the mirror in two mutually perpendicular planes, which is provided by fixing the mirror in a cordan suspension.
  • the deflector is covered with a fairing, transparent in the optical wavelength range.
  • the work of the complex thanks to the combination of five channels (radar, laser-ranging system, television system, thermal imager
  • a laser altimeter is carried out day and night, in any weather conditions, at any theater of operations (including mountain conditions) when both ground and air targets are hit.
  • FIG. Figure 1 shows a general view of an aircraft with a universal integrated radio electronic complex (UIRK) installed in its nose.
  • UIRK universal integrated radio electronic complex
  • FIG. 2 shows the UIRK and a device for its installation on an airplane, ensuring its operability.
  • FIG. 3 shows a section A-A of the device depicted in
  • FIG. 4 shows a section BB of the device depicted in figure 2.
  • FIG. 5 shows a radar antenna mount assembly
  • FIG. 6 shows a diagram of the interaction of elements of the UIRK 20 between themselves and the main parts of the complex of avionics.
  • Radar 4 and OPS OPS 5 are mounted on a single mounting device 25 using, for example, a hinge device 7 and a flange 8, respectively, and fasteners 9 (bolts, nuts, washers, etc.).
  • the fastening device 6 is fixed, for example, on the frame 10 of the aircraft 1 using, for example, a flange 11 and fasteners 12. From the frame 10 has a slot 13 to accommodate, for example, ribs
  • Blocks that ensure the operation of radar 4 and OE OPS 5 can be placed in order to enable rotation of the antenna, partially on the installation device 6 - blocks 15, partially - outside it, for example, on the frame (U) -block 16.
  • the rotation of the radar antenna 4 in azimuth and revenge angle, for example, in the hinge 7 is performed using, for example, electric motors 17 and 5 18, respectively.
  • Radar 4 and OE OPS 5 are interconnected by blocks 15 and 16
  • BTsVM 19 electrical connections with the control panel 20, multifunctional digital display (MFCI) 21, weapon control system (FCS) 22, control system complex (KSU) 23 23 aircraft 1, power source (not shown in the diagram).
  • MFCI multifunctional digital display
  • FCS weapon control system
  • KSU control system complex
  • deflector element for example, a mirror
  • cord suspension 29 with a lower sighting element - a head mirror inside the OE OPS 5 case (not shown in the figure), automatic locking system (CAA) 31.
  • CAA automatic locking system
  • Switching OE OPS 5 from the OPS mode to the provision of the profit center is carried out by the pilot from the control panel 20 via communication line 33.
  • OE OPS 5 through the digital computer 19 and communication 34 transmits information about 25 targets for displaying on part 35 of the MFCI 21 screen.
  • the pilot determines the attack sequence of the targets and issues a command to attack them through the remote control 20.
  • the attack of targets can be carried out automatically through the digital computer 19 if there is an appropriate program of priority goals.
  • the dimensions and appearance of a special mounting device 6 are determined by the dimensions of the radar 4 and OE OPS 5, the conditions of their work.
  • the mounting device 6 crosses, for example, the frame 10, then the width of the mounting device 6 must be minimized so that it enters the OE OPS 5 with a small gap, while the slot 13 will be minimal and will not weaken the power set of the fuselage of the aircraft 1st Traditionally, radar 4 with an antenna, blocks, devices, drive is located in one building, separately located power sources and a computer.
  • the mounting device 6 in order to reduce its weight contains a device for rotating the antenna 36, for example, a hinge 7.
  • the antenna 36 radar 4 may have its
  • mounting part for example, a flange 39 and mounting elements 40, with which the antenna 36 radar 4 with a hinge 7 is rigidly fixed to the mounting device 6.
  • OE OPS 5 channels laser 24, television (T) 27, thermal (UTP) 25 and LJJTn 26 are directed forward along the axis of the aircraft with the possibility of scanning in azimuth and elevation planes, and the laser altimeter 41 is down, perpendicular to the longitudinal axis of the aircraft.
  • UIRK 3 works as follows.
  • Radar 4 has a greater detection range of ground targets than OE OPS 5 (> 20 km), detects targets at any time of the day and is weatherproof. Having found the targets, the radar 4 through the digital computer 19 displays their marks on the screen of the MFCI 21. At the same time using the digital computer 19, the targets are ranked and their priorities are assigned, for example:
  • Information on the detected targets through additional communication 34 is sent to part 35 of the screen of MFCI 21, intended for 20 information about the objectives of the MA OPS 5.
  • the pilot evaluates this information and, through the remote control (20), selects the attack sequence of the targets even before approaching them, using the control system, directs the plane to the target and when the target enters the detection zone, T-system 27 and (or) UJTn - system 26 previously recognizes it. 25
  • LJJTn - channel (26) (at night) is 8-10 km.
  • OE OPS 5 has significant pumping angles: from + 8-10 ° to -135 ° in the longitudinal vertical plane (i.e., it can accompany guided weapons) and ⁇ 45 ° in the azimuthal plane ZO ( ⁇ 90 ° when the OE OPS is located at turrets).
  • the system has a field of view of 4 ° x4 °, and the field of view of the laser location system of the laser location unit 24 can be formed depending on the problem being solved
  • the laser radar system of the laser-radar unit 24 When attacking, for example, small targets as directed by radar 4, or T 27 - system, or Shtp-system 26, the laser radar system of the laser-radar unit 24 forms a microraster within 5 limits of the field of view G x G, and complex signal processing VTn - system 25 and the laser location system of the laser location unit 24 allows for the final recognition of the target and, making a decision about the attack.
  • the system enters the target auto-tracking mode and, illuminating it with a laser target indicator of the laser location unit 24, provides guidance of guided weapons with laser homing heads from 6-8 km ranges using a weapon control system (FCS) 22.
  • FCS weapon control system
  • Resolution of the laser location system of the unit 24 is up to 0.3 m in range and -1 e
  • periscope system 30 observes OE OPS 5 in the upper and lower hemispheres, which allows the pilot to reach the target faster and more accurately
  • the automatic locking system 31 of the head mirror of the periscope system 30 captures the orientation of the fields of view of the laser-location unit 24, television 27, thermal imaging UTP 25 and SHTp (26) systems for operating OE OPS in the upper hemisphere and displays the visual fields through the periscopic system 30 of the optoelectronic system 5 to the upper hemisphere through the deflector 28, and the signals for the transition of the line of sight to the upper hemisphere and control signals for the orientation of the visual fields come from the output of the information-control system, for example p, from radar 4 and BTsVM 19.
  • MVP low-altitude flight
  • Radar 4 on an airplane at best can provide a flight of at least 50 m (due to interference from the ground). In addition, she does not see such obstacles as ground masts, boiler room pipes, power transmission wires, etc. Therefore, the profit center using radar 4 aircraft is not reliable enough.
  • the laser location system 24 While ensuring flight safety at extremely low altitudes ( ⁇ 30 m) and correcting the navigation system, the laser location system 24 generates an azimuthal scan in the 15 front hemisphere in the angle range of ⁇ 15 ° with sequential automatic analysis of the underlying surface in a strip 2-3 km wide, ensuring detection all obstacles (large objects, masts, wires, cables, etc.).
  • the best results of the profit center can be obtained 20 by combining the work of radar 4 with OE OPS 5.
  • Radar 4 looks through routes at long ranges, detects passages, for example, in mountainous areas, and OPS OPS 5 looks through an accurate profile in the intended direction at ranges up to 5 km, it detects not only towers, pipes, power transmission towers, 25 but also wires (at a distance - 1 km) and prolongs the safe path of the profit center by superimposing it on the images formed by the T - system 27 and LJJTn - system 26, and presented to the pilot on screen 35.
  • the fight against air targets is carried out using radar 4 UIRK 3 both in the conduct of long-range and close air combat, in the usual way.
  • the OE OPS 5 UIRK 3 When conducting close air combat, the OE OPS 5 UIRK 3 is used. The principle of operation is similar to that described above. The difference is that the information about the air target comes mainly through the viewing system of the upper hemisphere: mirror 28 of the periscope system 30 in the OE of the OPS (5) to the same laser 24, television 27 and thermal imaging UTp - (25) and SHTp - (26) channels
  • the proposed UIRK 3 ensures the effective fulfillment by aircraft of combat missions to combat enemy air and ground targets around the clock, in any weather conditions, in any theater of operations.
  • the advantages of the proposed UIRK 3 include the ability to provide landing on technically unprepared sites thanks to a three-dimensional image of the terrain in front of the aircraft (provided by a laser location system), and the high resolution OE OPS 5 allows the navigation system to be adjusted at intermediate points on the route most accurately all available OPS. All of the above helps to increase the combat effectiveness of the aircraft 1.
  • the invention can be used in aeronautical engineering in the construction of aircraft with a universal integrated electronic complex.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

5 Самолет с универсальным интегрированным радиоэлектронным комплексом
Область техники.
Изобретение относится к авиационной технике и предназначено для использования при построении самолетов, в частности, с ю универсальным интегрированным радиоэлектронным комплексом.
Предшествующий уровень техники.
Известен самолет, в состав которого входят фюзеляж, крыло, оперение, шасси, основная и вспомогательная силовые установки, система управления общесамолетным оборудованием, которая имеет 15 два контура автоматического управления, конструктивно оформленных в основной и резервный блоки преобразований и вычислений, подключенные к исполнительным устройствам через блок управления и контроля, а также контур ручного управления с пультами управления, светосигнальным табло и центральным светосигнальным огнем и 20 сопряжена по мультиплексному каналу с комплексом бортовых цифровых вычислительных машин, электронной системой управления левого двигателя, электронной системой управления правого двигателя, системой регистрации и контроля, аппаратурой наведения и посадки, комплексной системой управления, а по кодовым линиям связи - с 25 системой управления и контроля топлива, аппаратурой речевых сообщений, комплексной системой электронной индикации и вспомогательной силовой установкой (патент RU Ne 2263044 C1 , В 64 С 13/00).
Недостатком данного самолета является низкая эффективностью зо его радиоэлектронного комплекса
Наиболее близким к предложенному является легкий многофункциональный самолет с повышенными маневренными возможностями, содержащий фюзеляж, крыло, оперение, шасси, силовую установку, а также управляющий интегрированный комплекс, включающий в себя систему информационного обмена, бортовую цифровую вычислительную систему управления полетом и учебно- боевыми действиями, внешнее запоминающее устройство и систему 5 ввода информации, пилотажно-навигационное оборудование, комплексную систему управления самолетом с установленными в кабине летчика и оператора пультами системы, систему управления вооружением с установленными в кабине летчика и оператора пультами системы, комплексную систему электронной индикации, управления и ιо прицеливания, информационное табло аварийной сигнализации, установленные в кабине летчика и оператора, двукратно резервированную систему управления общесамолетным оборудованием, бортовую систему объективного контроля, речевую информационно-управляющую систему, систему электроснабжения,
15 внешнее и внутреннее светотехническое оборудование, комплексную систему аварийного покидания самолета, двукратно резервированную электронную систему управления силовой установкой, при этом система информационного обмена разделена на три независимых мультиплексных канала информационного обмена, между
20 вычислительной системой и системой управления общесамолетным оборудованием, а также между комплексной системой электронной индикации, управления и прицеливания и комплексной системой управления самолетом выполнены радиальные связи (патент RU N° 2252899 Cl, B64C 13/00, приоритет 20.05.2004). Данный самолет принят
25 за прототип.
Недостатком прототипа является недостаточная эффективность его радиоэлектронного комплекса. Раскрытие изобретения. Задачей изобретения является создание самолета с зо радиоэлектронным комплексом повышенной эффективности.
Указанный результат достигается тем, что предлагаемый универсальный интегрированный радиоэлектронный комплекс (УИРК) самолета, содержит бортовую радиолокационную станцию (БРЛС), оптико-электронную обзорно-прицельную систему (ОЭ ОПС), при этом ОЭ ОПС содержит систему автоматического арретирования (CAA) головного зеркала, которая фиксирует ориентацию полей зрения лазерно-локационной (ЛЛ), тепловизионной (УТп, ШТп), телевизионной 5 (T) систем при переходе линии визирования в верхнюю полусферу и разарретирует его при переходе в нижнюю полусферу. Головное зеркало расположено в нижнем корпусе ОЭ ОПС.
В едином крепежном устройстве закреплена, помимо приёмоизлучающих узлов БРЛС и ОЭ ОПС, перископическая система ю для вывода полей зрения ОЭ ОПС в верхнюю полусферу.
Перископическая система содержит двухпозиционную (для работы в верхней или в нижней полусфере) дефлекторную подсистему. По сигналу перехода линии визирования в верхнюю полусферу, получаемому от БЦВМ, нижнее (головное) зеркало перископической 15 системы автоматически устанавливается в положение для работы ОЭ ОПС в верхней полусфере, при этом поля зрения ОЭ ОПС системы отбрасываются на верхний визирный элемент перископической системы.
Перископическая система содержит верхний визирный элемент в 20 виде дефлектора, закрепленного в кордановом подвесе для управления ориентацией полей зрения в верхней полусфере.
При этом с выхода информационно-управляющей системы (например, БРЛС и БЦВМ) на вход двухпозиционной дефлекторной системы поступают сигналы перехода линии визирования из нижней 25 полусферы в верхнюю и из верхней - в нижнюю.
Сигналы управления ориентацией полей зрения оптико- электронной системы с выхода исполнительно управляющей системы поступают не только на приводы головного зеркала оптико-электронной системы, но и на приводы верхнего визирного элемента зо перископической системы.
Обзор верхней полусферы ОЭ ОПС осуществляется с помощью качания зеркала в двух взаимно перпендикулярных плоскостях, что обеспечивается закреплением зеркала в кордановом подвесе. Дефлектор закрыт обтекателем, прозрачным в оптическом диапазоне длин волн.
Работа комплекса, благодаря объединению пяти каналов (БРЛС, лазерно-локационная система, телевизионная система, тепловизорная
5 система, лазерный высотомер), осуществляется днем и ночью, в любых метеоусловиях, на любом театре военных действий (включая горные условия) при поражении как наземных, так и воздушных целей.
Изобретение поясняется чертежами на фиг. 1 -6.
На фиг. 1 изображен общий вид самолета с установленным в его ю носовой части универсальным интегрированным радиоэлектронным комплексом (УИРК).
На фиг. 2 приведен УИРК и устройство для его установки на самолете, обеспечивающее его работоспособность.
На фиг. 3 изображено сечение A-A устройства, изображенного на
15 фИГ.2.
На фиг. 4 изображено сечение Б-Б устройства, изображенного на фиг.2.
На фиг. 5 изображен узел крепления антенны БРЛС.
На фиг. 6 изображена схема взаимодействия элементов УИРК 20 между собой и основными частями комплекса бортового радиоэлектронного оборудования.
На самолете 1 , в его носовой части 2, устанавливается УИРК 3, содержащий БРЛС 4 и ОЭ ОПС 5.
БРЛС 4 и ОЭ ОПС 5 закреплены на едином крепежном 25 устройстве 6 с помощью, например, шарнирного устройства 7 и фланца 8 соответственно и крепежных элементов 9 (болтов, гаек, шайб и т.п.).
Крепежное устройство 6 закреплено, например, на шпангоуте 10 самолета 1 при помощи, например, фланца 11 и крепежных элементов 12. зо Шпангоут 10 имеет прорезь 13 для размещения, например, ребер
14 с фланцами 8 крепежного устройства 6.
Блоки, обеспечивающие работу БРЛС 4 и ОЭ ОПС 5, могут быть размещены, с целью обеспечения возможности вращения антенны, частично на установочном устройстве 6 - блоки 15, частично - вне его, например, на шпангоуте (Ю)-блoки 16.
Вращение антенны БРЛС 4 по азимуту и углу мести, например, в шарнире 7 производится с помощью, например, электродвигателей 17 и 5 18 соответственно.
БРЛС 4 и ОЭ ОПС 5 соединены между собой блоками 15 и 16
БЦВМ 19, электрическими связями с пультом управления 20, многофункциональным цифровым индикатором (МФЦИ) 21 , системой управления оружием (СУО) 22, комплексом системы управления (КСУ) ю 23 самолета 1 , источником питания (на схеме не показано).
ОЭ ОПС 5 включает в себя лазерно-локационный блок 24 (с целеуказателем, работающем на A=1 ,06 мкм, лазерно-локационной системой, работающей на A=1 ,54 мкм, и высотомером), узкопольную тепловизионную (УТп) систему 25, широкопольную тепловизионную
15 (ШТп) 26 и телевизионную (T) 27 камеры, а . также верхний визирный
. элемент-дефлектор (например, зеркало) 28, кордановый подвес 29, перископическую систему 30 с нижним визирным элементом - головным зеркалом внутри корпуса ОЭ ОПС 5 (на рисунке не показано), систему автоматического арретирования (CAA) 31. Дефлектор 28 установлен
20 под обтекателем 32.
Переключение ОЭ ОПС 5 с режима ОПС на режим обеспечения МВП осуществляется летчиком с пульта управления 20 по линии связи 33.
ОЭ ОПС 5 через БЦВМ 19 и связь 34 передает информацию о 25 целях для ее отображения на часть 35 экрана МФЦИ 21. Летчик определяет последовательность атаки целей и через пульт 20 выдает команду на их атаку. Атака целей может осуществляться в автоматическом режиме через БЦВМ 19 при наличии в ней соответствующей программы приоритетности целей. зо Размеры и внешний вид специального крепежного устройства 6 определяются габаритами БРЛС 4 и ОЭ ОПС 5, условиями их работы.
Например, при отклонении по азимуту и по углу места (обычно на 50-600C) антенны 36 БРЛС 4 плоскость, проходящая через поверхность б
37 антенны 36, должна составлять с плоскостью 38. которая не должна пересекать ОЭ ОПС 5 или, например, блоки 15 на корпусе БРЛС 4, или, например, шпангоут 10, запасной угол (а = -10°), чтобы не искажать диаграмму направленности антенны 36 БРЛС 4.
5 Кроме того, если крепежное устройство 6 пересекает, например, шпангоут 10, то ширину крепежного устройства 6 необходимо сделать минимальной с тем, чтобы оно входило внутрь ОЭ ОПС 5 с небольшим зазором, при этом прорезь 13 будет минимальной и не ослабит силовой набор фюзеляжа самолета 1 ю Традиционно БРЛС 4 с антенной, блоками, устройствами, приводом располагается в одном корпусе, отдельно располагаются источники питания и БЦВМ.
В крепежном устройстве 6 предлагается в целях упрощения его конструкции, снижения массы, а следовательно, и массы всего
15 самолета 1 , уменьшения его габаритов, увеличения углов поворота антенны, разместить на крепежном устройстве 6 минимальное количество элементов БРЛС 4, например, электродвигатели 17 и 18, вращающие антенну 36 по углу места и азимуту соответственно (при электрическом, например, приводе), и ряд блоков 15 (например,
20 приемник, датчики). Остальные элементы БРЛС 4, например передатчик блок 16, разместить вне крепежного устройства 6.
Крепежное устройство 6 в целях снижения его массы содержит устройство вращения антенны 36, например, шарнир 7.
Однако при необходимости антенна 36 БРЛС 4 может иметь свою
25 крепежную часть, например, фланец 39 и крепежные элементы 40, с помощью которых антенна 36 БРЛС 4 с шарниром 7 жестко закрепляется на крепежном устройстве 6.
Это позволит сохранить универсальность антенны 36 БРЛС 4, т.е. возможность использовать ее на любых самолетах, изменяя только зо конфигурацию крепежного устройства 6 под конкретный самолет.
Каналы ОЭ ОПС 5: лазерный 24, телевизионный (T) 27, тепловизионные (УТп) 25 и LJJTn 26 направлены вперед по оси самолета с возможностью сканирования в азимутальной и угломестной плоскостях, а лазерный высотомер 41 - вниз, перпендикулярно продольной оси самолета.
УИРК 3 работает следующим образом.
Для борьбы с воздушными целями и с наземными целями как 5 прикрываемыми средствами противовоздушной обороны (ПВО) противника, так и при их отсутствии целесообразно использовать как работу БРЛС 4, так и работу ОЭ ОПС 5 УИРК 3.
БРЛС 4 имеет большую дальность обнаружения наземных целей, чем ОЭ ОПС 5 (> 20 км), обнаруживает цели в любое время суток и ю является всепогодной. Обнаружив цели, БРЛС 4 через БЦВМ 19 выдает их отметки на экран МФЦИ 21. Одновременно с помощью БЦВМ 19 происходит ранжировка целей и присвоение им приоритетов, например:
0 - приоритет - колонна техники на марше, 1 - быстродвижущаяся цель,
2 - медленно движущаяся цель, 3 - медленно движущаяся цель с малой
15 ЭПР.
Однако распознавание цели затруднено из-за низкой разрешающей способности РЛС 4 по дальности (~ 6 м) и углу (-5°).
Информация по обнаруженным целям по дополнительной связи 34 поступает на часть 35 экрана МФЦИ 21 , предназначенную для 20 информации о целях ОЭ ОПС 5.
Летчик оценивает эту информацию и через пульт (20) выбирает последовательность атаки целей еще до подлета к ним, используя КСУ, направляет самолет на цель и при вхождении цели в зону обнаружения Т-система 27 и (или) UJTn - система 26 предварительно распознает ее. 25 При этом дальность обнаружения цели T - каналом 27 (днем) или
LJJTn - каналом (26) (ночью) составляет 8-10 км.
Конструкция ОЭ ОПС 5 имеет значительные углы прокачки: от +8- 10° до -135° в продольной вертикальной плоскости (т.е. может сопровождать управляемое оружие) и ±45° в азимутальной плоскости зо (±90° при расположении ОЭ ОПС на турели).
В пределах углов прокачки УТп - система имеет поле зрения 4°x4°, а поля обзора лазерной локационной системы лазерно- локационного блока 24 могут быть сформированы в зависимости от решаемой задачи
При атаке, например, малоразмерных целей по указанию БРЛС 4, или T 27 - системы, или ШТп -системы 26 лазерная локационная система лазерно-локационного блока 24 формирует микрорастр в 5 пределах поля зрения Г х Г, а комплексная обработка сигналов VTn - системой 25 и лазерной локационной системой лазерно-локационного блока 24 позволяет провести окончательное распознавание цели и, принятие решения об атаке. Система переходит в режим автосопровождения цели и, подсвечивая ее лучом лазерного ю целеуказателя лазерно-локационного блока 24, обеспечивает наведение управляемого оружия с лазерными головками самонаведения с дальностей 6-8 км с использованием системы управления оружием (СУО) 22. Разрешающая способность лазерной локационной системы блока 24 составляет до 0,3 м по дальности и -1е
15 по углу.
Благодаря тому, что БРЛС 4 и ОЭ ОПС 5 жестко закреплены в едином крепежном устройстве 6, меньше ошибки прицеливания, выше надежность работы комплекса и больше вероятность поражения цели, в том числе с первого захода.
20 При совершении самолетом маневра при заходе на цель она не может выйти из поля зрения пилота, так как цель через верхний дефлектор 28, перископической системы 30 наблюдается ОЭ ОПС 5 в верхней и нижней полусферах, что позволяет летчику быстрее и точнее выйти на цель
25 При этом система автоматического арретирования 31 головного зеркала перископической системы 30 фиксирует ориентацию полей зрения лазерно-локационного блока 24, телевизионной 27, тепловизионных УТп 25 и ШТп (26) систем для работы ОЭ ОПС в верхней полусфере и через перископическую систему 30 выводит поля зо зрения оптико-электронной системы 5 в верхнюю полусферу через дефлектор 28, а сигналы перехода линии визирования в верхнюю полусферу и сигналы управления ориентацией полей зрения поступают с выхода информационно-управляющей системы, например, от БРЛС 4 и БЦВМ 19.
Для преодоления ПВО целесообразно использовать маловысотный полет (МВП), т.к. средства ПВО (зенитные ракетные комплексы, зенитные артиллерийские комплексы) из-за помех работе их
5 РЛС от земли не в состоянии обнаружить самолет, летящий на малой высоте.
БРЛС 4 на самолете в лучшем случае может обеспечить полет не ниже 50 м (вследствие помех, идущих от земли). Кроме того, она не видит таких препятствий как наземные мачты, трубы котельных, ю провода ЛЭП и т.п. Поэтому МВП с помощью БРЛС 4 самолета недостаточно надежен.
При обеспечении безопасности полета на предельно малых высотах (~30 м) и коррекции навигационной системы лазерная локационная система 24 формирует азимутальное сканирование в 15 передней полусфере в диапазоне углов ±15° с последовательным автоматическим анализом подстилающей поверхности в полосе шириной 2-3 км, гарантируя обнаружение всех препятствий (крупных объектов, мачт, проводов, тросов и т.п.).
Наилучшие результаты МВП могут быть получены 20 комплексированием работы БРЛС 4 с ОЭ ОПС 5.
БРЛС 4 просматривает маршруты на больших дальностях, обнаруживает проходы, например, в гористой местности, а ОЭ ОПС 5 просматривает точный профиль по намеченному направлению на дальности до 5 км, обнаруживает не только вышки, трубы, опоры ЛЭП, 25 но и провода (на дальности - 1 км) и пролонгирует безопасную траекторию МВП путем её наложения на изображения, формируемые T - системой 27 и LJJTn - системой 26, и предъявляемые летчику на экране 35.
В случае необходимости обеспечения только маловысотного зо полета лазерный целеуказатель (A=1 ,06 мкм) лазерно-локационного блока 24 и УТп - система 25 не используются и могут быть отключены летчиком через пульт 20 и связь 33.
Борьба с воздушными целями осуществляется с помощью БРЛС 4 УИРК 3 как при ведении дальнего, так и ближнего воздушного боя, обычным образом.
При ведении ближнего воздушного боя используется работа ОЭ ОПС 5 УИРК 3. Принцип работы подобен описанному выше. Отличие заключается в том, что информация о воздушной цели поступает, в основном, через систему обзора верхней полусферы: зеркало 28 перископической системы 30 в ОЭ ОПС (5) на те же лазерный 24, телевизионный 27 и тепловизионные УТп - (25) и ШТп - (26) каналы,
Таким образом, предлагаемый УИРК 3 обеспечивает эффективное выполнение самолетом боевых задач по борьбе с воздушными и наземными объектами противника круглосуточно, в любых метеоусловиях, на любых театрах военных действий.
К достоинствам предлагаемого УИРК 3 относится возможность обеспечения им посадки на неподготовленные в техническом отношении площадки благодаря трех-мерному изображению местности впереди самолета (обеспечивается лазерной локационной системой), а высокая разрешающая способность ОЭ ОПС 5 позволяет провести коррекцию навигационной системы в промежуточных точках маршрута наиболее точно из всех имеющихся ОПС. Все вышесказанное способствует повышению боевой эффективности самолета 1.
Изобретение может быть использовано в авиационной технике при построении самолетов с универсальным интегрированным радиоэлектронным комплексом.

Claims

Формула изобретения
1. Самолет (1) с повышенными маневренными возможностями, содержащий фюзеляж, крыло, оперение, шасси, силовую установку, а также универсальный интегрированный радиоэлектронный комплекс (3),
5 включающий в себя систему информационного обмена, комплекс бортовых цифровых вычислительных машин (19) для управления полетом и учебно-боевыми действиями, внешнее запоминающее устройство и систему ввода информации, пилотажно-навигационное оборудование, комплексную систему управления самолетом, систему ю управления вооружением, комплексную систему электронной индикации, управления и прицеливания, информационное табло аварийной сигнализации, систему управления общесамолетным оборудованием, бортовую систему объективного контроля, речевую информационно-управляющую систему, систему электроснабжения,
15 внешнее и внутреннее светотехническое оборудование, комплексную систему аварийного покидания самолета, электронную систему управления силовой установкой, отличающийся тем, что оптико- электронная обзорно-прицельная система (5) содержит систему автоматического арретирования (31 ), которая фиксирует ориентацию
20 полей зрения лазерной локационной (24), узкопольной тепловизионной (25) широкопольной тепловизионной (26), телевизионной (27) систем при переходе линии визирования в верхнюю полусферу и разарретирует ее при переходе в нижнюю полусферу, при этом оптико- электронная обзорно-прицельная система (5), приемоизлучающие узлы
25 бортовой радиолокационной станции (4) и перископическая система (30) для вывода полей зрения оптико-электронной системы в верхнюю полусферу смонтированы в едином крепежном устройстве.
2. Самолет (1 ) с универсальным интегрированным радиоэлектронным комплексом (3) по п. 1 , отличающийся тем, что зо перископическая система (30) содержит двухпозиционную дефлекторную подсистему (28), которая по сигналу перехода линии визирования в верхнюю полусферу автоматически арретирует систему обзора нижней полусферы перископической системы (30) и отбрасывает поля зрения оптико-электронной системы (5) на верхний визирный элемент перископической системы (30).
3. Самолет (1 ) с универсальным интегрированным радиоэлектронным комплексом (3) по п. п. 1 и 2, отличающийся тем, что
5 перископическая система (30) содержит верхний визирный элемент в виде дефлектора (28), закрепленного в кордановом подвесе (29) для управления ориентацией полей зрения в верхней полусфере.
4. Самолет (1) с универсальным интегрированным радиоэлектронным комплексом (3) по п. п. 1-3, отличающийся тем, что с ю выхода БЦВМ (19) информационно-управляющей системы на вход двухпозиционной дефлекторной системы (28) поступают сигналы перехода линии визирования из нижней полусферы в верхнюю и из верхней в нижнюю.
5. Самолет (1 ) с универсальным интегрированным 15 радиоэлектронным комплексом (3) по п. п. 1-4, отличающийся тем, что сигналы управления ориентацией полей зрения оптико-электронной системы (3) с выхода БЦВМ (19) информационно-управляющей системы поступают на приводы визирного элемента оптико-электронной системы (3) для обзора нижней полусферы и на приводы верхнего визирного 0 элемента перископической системы (30).
PCT/RU2007/000380 2007-07-11 2007-07-11 Avion à système radioélectronique intégré WO2009008760A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EA200800855A EA012495B1 (ru) 2007-07-11 2007-07-11 Самолет с универсальным интегрированным радиоэлектронным комплексом
PCT/RU2007/000380 WO2009008760A1 (fr) 2007-07-11 2007-07-11 Avion à système radioélectronique intégré
EP07866908A EP2177432B1 (en) 2007-07-11 2007-07-11 Aircraft with an integrated radioelectronic system
US12/452,561 US20100133388A1 (en) 2007-07-11 2007-07-11 Aircraft with multi-purpose integrated electronic complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2007/000380 WO2009008760A1 (fr) 2007-07-11 2007-07-11 Avion à système radioélectronique intégré

Publications (1)

Publication Number Publication Date
WO2009008760A1 true WO2009008760A1 (fr) 2009-01-15

Family

ID=40228792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2007/000380 WO2009008760A1 (fr) 2007-07-11 2007-07-11 Avion à système radioélectronique intégré

Country Status (4)

Country Link
US (1) US20100133388A1 (ru)
EP (1) EP2177432B1 (ru)
EA (1) EA012495B1 (ru)
WO (1) WO2009008760A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099748A (zh) * 2016-06-27 2016-11-09 国网山东省电力公司济南供电公司 一种输电线路无人机测绘系统
CN112034484A (zh) * 2020-09-02 2020-12-04 亿嘉和科技股份有限公司 一种基于半球形激光雷达的建模系统及其方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8635938B2 (en) * 2011-05-25 2014-01-28 Raytheon Company Retractable rotary turret
US8654314B2 (en) 2011-05-25 2014-02-18 Raytheon Company Rapidly deployable high power laser beam delivery system
RU2712707C1 (ru) * 2019-08-13 2020-01-30 Илья Сергеевич Пастухов Способ управления темпом стрельбы авиационных автоматических пушек с электрозапальным стреляющим механизмом

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1465548A (en) * 1973-03-30 1977-02-23 France Armed Forces Military equipment having internal and external sights
DE3124726A1 (de) * 1981-06-24 1983-01-13 Krupp Mak Maschinenbau Gmbh, 2300 Kiel "zielvorrichtung fuer schwere waffen"
RU94024245A (ru) * 1994-06-29 1997-04-27 Г.С. Чайка Система управления огнем
RU2239768C1 (ru) * 2003-10-06 2004-11-10 Общевойсковая Академия Вооруженных Сил Российской Федерации Автоматизированная система управления вооружением
RU2252900C1 (ru) * 2004-05-20 2005-05-27 ОКБ "Электроавтоматика" Многопозиционный интегрированный комплекс бортового радиоэлектронного оборудования легкого многоцелевого самолета с повышенными маневренными возможностями
RU2252899C1 (ru) 2004-05-20 2005-05-27 ОАО "ОКБ им. А.С. Яковлева" Легкий многоцелевой самолет с повышенными маневренными возможностями
RU2263044C1 (ru) 2004-08-03 2005-10-27 Открытое акционерное общество "ОКБ им. А.С. Яковлева" Самолет с системой управления общесамолетным оборудованием

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834531A (en) * 1985-10-31 1989-05-30 Energy Optics, Incorporated Dead reckoning optoelectronic intelligent docking system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1465548A (en) * 1973-03-30 1977-02-23 France Armed Forces Military equipment having internal and external sights
DE3124726A1 (de) * 1981-06-24 1983-01-13 Krupp Mak Maschinenbau Gmbh, 2300 Kiel "zielvorrichtung fuer schwere waffen"
RU94024245A (ru) * 1994-06-29 1997-04-27 Г.С. Чайка Система управления огнем
RU2239768C1 (ru) * 2003-10-06 2004-11-10 Общевойсковая Академия Вооруженных Сил Российской Федерации Автоматизированная система управления вооружением
RU2252900C1 (ru) * 2004-05-20 2005-05-27 ОКБ "Электроавтоматика" Многопозиционный интегрированный комплекс бортового радиоэлектронного оборудования легкого многоцелевого самолета с повышенными маневренными возможностями
RU2252899C1 (ru) 2004-05-20 2005-05-27 ОАО "ОКБ им. А.С. Яковлева" Легкий многоцелевой самолет с повышенными маневренными возможностями
RU2263044C1 (ru) 2004-08-03 2005-10-27 Открытое акционерное общество "ОКБ им. А.С. Яковлева" Самолет с системой управления общесамолетным оборудованием

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099748A (zh) * 2016-06-27 2016-11-09 国网山东省电力公司济南供电公司 一种输电线路无人机测绘系统
CN112034484A (zh) * 2020-09-02 2020-12-04 亿嘉和科技股份有限公司 一种基于半球形激光雷达的建模系统及其方法
CN112034484B (zh) * 2020-09-02 2023-04-11 亿嘉和科技股份有限公司 一种基于半球形激光雷达的建模系统及其方法

Also Published As

Publication number Publication date
US20100133388A1 (en) 2010-06-03
EA012495B1 (ru) 2009-10-30
EP2177432B1 (en) 2013-01-09
EA200800855A1 (ru) 2009-06-30
EP2177432A4 (en) 2012-02-29
EP2177432A1 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP3606601B2 (ja) 航空機の照準装置
US5396243A (en) Infrared laser battlefield identification beacon
DE602005001624T2 (de) Flugzeug-antiraketen-schutzsystem
WO2009008760A1 (fr) Avion à système radioélectronique intégré
RU2725928C1 (ru) Способ управления вооружением многофункциональных самолетов тактического назначения и система для его осуществления
US4086841A (en) Helical path munitions delivery
RU2351508C1 (ru) Вертолетный комплекс высокоточного оружия ближнего действия
US5282589A (en) Terrain cueing
EP0433538A2 (en) Optic-electronic telemetry device with variable base
RU2252900C1 (ru) Многопозиционный интегрированный комплекс бортового радиоэлектронного оборудования легкого многоцелевого самолета с повышенными маневренными возможностями
RU5976U1 (ru) Прицельно-навигационный комплекс бортового оборудования самолета
RU2266235C1 (ru) Авиационный интегрированный многоканальный, многорежимный радиоэлектронный комплекс
RU2252899C1 (ru) Легкий многоцелевой самолет с повышенными маневренными возможностями
JPH0357400B2 (ru)
CN201961531U (zh) 带多用途电子综合体的飞行器
RU2226166C1 (ru) Многофункциональный самолет тактического назначения
RU2292005C1 (ru) Установка для стрельбы по скоростным низколетящим целям
RU2784528C1 (ru) Система прицеливания оружия
RU2748133C1 (ru) Способ управления вооружением многофункциональных самолетов тактического назначения и система для его осуществления
RU2791341C1 (ru) Способ управления вооружением многофункциональных самолетов тактического назначения и система для его осуществления
RU2797976C2 (ru) Зенитный ракетный комплекс
RU2465532C1 (ru) Устройство для запуска ракеты с подвижного носителя
RU12608U1 (ru) Комплексная система управления вооружением самолета
Rock et al. Falcon Eye Forward-Looking Infrared (FLIR) System
Donohue et al. Evaluation and lessons learned through the developmental test of the AH-1W helicopter Helmet Display and Tracker System

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200800855

Country of ref document: EA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07866908

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 833/MUMNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12452561

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007866908

Country of ref document: EP