WO2009006840A1 - Procédé, système et station de base utilisant une configuration de trame supportant un relais destinés aux transmissions sans fil - Google Patents

Procédé, système et station de base utilisant une configuration de trame supportant un relais destinés aux transmissions sans fil Download PDF

Info

Publication number
WO2009006840A1
WO2009006840A1 PCT/CN2008/071578 CN2008071578W WO2009006840A1 WO 2009006840 A1 WO2009006840 A1 WO 2009006840A1 CN 2008071578 W CN2008071578 W CN 2008071578W WO 2009006840 A1 WO2009006840 A1 WO 2009006840A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
zone
base station
subframe
data
Prior art date
Application number
PCT/CN2008/071578
Other languages
English (en)
French (fr)
Inventor
Guanghui Zhang
Yongbin Xie
Yingmin Wang
Shaohui Sun
Yang Yu
Original Assignee
Da Tang Mobile Communications Equipment Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Da Tang Mobile Communications Equipment Co., Ltd. filed Critical Da Tang Mobile Communications Equipment Co., Ltd.
Priority to US12/668,292 priority Critical patent/US8265044B2/en
Priority to KR1020107002361A priority patent/KR101148412B1/ko
Publication of WO2009006840A1 publication Critical patent/WO2009006840A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/143Two-way operation using the same type of signal, i.e. duplex for modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, system, and base station for wirelessly transmitting a frame structure supporting a relay.
  • Wireless access systems generally cover the service area through base stations or access points.
  • the terminal may be completely outside the service area, so that the wireless access service cannot be obtained; even if the terminal is within the service area, the transmission of the signal may still be obscured by the obstacle on the transmission path. Resulting in a decline in the quality of service.
  • it is necessary to transmit very high rate data (such as IGbps), and due to the limitation of frequency band allocation conditions, it is highly probable that future mobile communication systems will use a higher communication band (such as 5 GHz).
  • IGbps very high rate data
  • frequency band allocation conditions such as 5 GHz
  • the "Relay or RS-relay station” technology is generally proposed;
  • the signal may be relayed through the RS to implement the extension of the service area or improve the reliability of the transmission; that is, the main role of the Relay is to extend the coverage and expand the cell capacity.
  • the basic structure can be described by FIG. 1; wherein, if the RS transmits its own independent synchronization and control information, the RS is called a non-transparent relay, otherwise it is called a transparent relay.
  • a B3G frame structure is shown in FIG. 2; in addition, in order to maintain the existing 3G (mainly TD-SCDMA)
  • a frame structure of LTE TDD (Long Term Evolution Time Division duplex) is shown in Figure 3.
  • the TDD system In order to support the relay, the TDD system usually divides the downlink subframe and the uplink subframe into an Access Zone and a Relay Zone. Specifically, as shown in Figure 4.
  • the BS can transmit at the beginning of the downlink subframe in the original system frame structure, but in the B3G frame structure supporting the relay, it can only be in the DL Access Zone ( Downstream access zone) Zone transmission, which invisibly increases the delay, which makes it difficult to meet the demanding delay requirements of B3G. Specifically as shown in Figure 5.
  • DL Access Zone Downstream access zone
  • the embodiments of the present invention provide a method, a system, and a base station for wirelessly transmitting a frame structure supporting a Relay, effectively utilizing frequency resources and time resources, reducing delay, and improving resource utilization. rate.
  • the technical solution provided by the embodiment of the present invention is as follows:
  • the data is transmitted by using a time division multiplexing manner, and the method further includes:
  • the data is transmitted in a frequency division multiplexing manner in the mixed area.
  • a system for wirelessly transmitting a frame structure supporting a relay including a base station, a relay, and a terminal;
  • the base station In the downlink direction, the base station separately transmits data to the terminal and the relay in a frequency division multiplexing manner in a downlink specific time slot.
  • the terminal sends data to the relay, and the relay transmits data to the base station in a frequency allocated by the base station in an uplink specific time slot, and the terminal also uses the uplink specific time slot and the relay frequency division.
  • the data transmitted after multiplexing is sent to the base station.
  • a base station comprising: a setting unit, a sending unit, and a receiving unit;
  • the setting unit is configured to: set at least one time slot in the subframe as a mixed area;
  • the sending unit is configured to: respectively, to the terminal in a frequency division multiplexing manner in a mixing zone of the downlink subframe And relaying data;
  • the receiving unit is configured to: receive data transmitted after relaying or relaying and frequency division multiplexing of the terminal in a mixed zone of the uplink subframe.
  • the method, the system and the base station of the embodiment of the present invention make full use of the high bandwidth of the B3G system, set at least one time slot in the subframe as a mixed zone, and access through the mixed zone of the subframe.
  • Link and relay link frequency division multiplexing to achieve data transmission not only improve system flexibility, but also make full use of the system's time-frequency resources, reduce latency, and is compatible with TD-SCDMA systems, while supporting non-transparency , transparent and multi-hop relay.
  • the use of this sequence can greatly reduce system overhead, improve resource utilization, and ensure that the UE has sufficient time for transmission and reception or transmission and reception.
  • FIG. 1 is a schematic diagram showing the basic structure of a relay system in the prior art
  • FIG. 2 is a schematic diagram of a B3G frame structure compatible with TD-SCDMA in the prior art
  • FIG. 3 is a LTE TDD frame structure compatible with TD-SCDMA in the prior art
  • FIG. 4 is a schematic diagram of a frame structure of a TDD system supporting a relay in the prior art
  • FIG. 5 is a schematic diagram of a frame structure increase delay of a TDD system supporting a relay in the prior art
  • FIG. 6 is a schematic diagram of a frame structure waste resource of a TDD system supporting a relay in the prior art
  • FIG. 7 is a flow chart of a method according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a TDD frame supporting in-band non-transparent relay in the embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a TDD frame supporting in-band transparent relay in the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a frame structure reduction delay for supporting a frequency division multiplexing of a relay link and an access link according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a reasonable allocation resource structure of a frame structure capable of supporting frequency division multiplexing of a relay link and an access link according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of a signal flow for supporting an in-band non-transparent relay according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of a signal flow for supporting a multi-hop relay in a first mode according to an embodiment of the present invention
  • the second mode supports the schematic diagram of the signal flow of the multi-hop relay.
  • the method of the embodiment of the present invention includes:
  • Step 701 Set at least one time slot in the subframe as a mixed area.
  • Step 702 Perform data transmission in a frequency division multiplexing manner in the mixing area.
  • the frame structure of the B3G in the prior art is used: 10 ms per frame, divided into two 5 ms subframes, each subframe includes one downlink synchronization slot (DL SYNC timeslot) and 14 data slots.
  • DL SYNC timeslot downlink synchronization slot
  • 14 data slots 14 data slots.
  • the B3G frame structure is divided into different zones, which respectively support transparent relay and non-transparent relay:
  • the hybrid area is set in each subframe, that is, the Hybrid Zone is used instead of the Relay Zone, and therefore, each subframe is replaced by the first DL.
  • Access Zone downlink access zone
  • UL Hybrid Zone UL Access Zone
  • DL Hybrid Zone DL Hybrid Zone
  • second DL Access Zone DL Access Zone
  • the first DL Access Zone consists of DL SYNC slots, TS0 and TS1, while the other zones consist of one or more remaining slots.
  • the BS can send synchronization and control information.
  • the UE and the RS can simultaneously transmit data to the BS in FDM mode, and only the UE can send data to the BS in the UL Access Zone.
  • the BS can simultaneously transmit data to the UE and the RS in FDM mode, and in the second DL Access Zone, the BS can only send data to the UE.
  • the BS can also send synchronization information and control information to the RS in the DL Hybrid Zone.
  • each subframe consists of the first DL Access Zone, the UL Relay Zone, the UL Access Zone, the DL Relay Zone, and the DL Access Zone.
  • the first DL Access Zone consists of DL SYNC time slots, TS0 and TS1, while the other zones consist of one or more remaining time slots.
  • the RS can also send its own synchronization and control information.
  • the RS forwards the data of the UE to the BS, and the UE can send data to the host RS in the UL Access Zone.
  • the RS can receive it. Data from the BS and forwarded to the UE in the second DL Access Zone.
  • each subframe is composed of the first DL Access Zone, the UL Hybrid Zone, the UL Access Zone, The DL Hybrid Zone and the DL Access Zone are combined.
  • the first DL Access Zone consists of DL SYNC time slots, TS0 and TS1, while the other zones consist of one or more remaining time slots.
  • the BS can send synchronization information and control information.
  • the UE and the RS can simultaneously transmit data to the BS in FDM (Frequency Division Multiple), and only the UE can transmit to the BS in the UL Access Zone.
  • the BS can simultaneously transmit data to the UE and the RS in FDM mode, and in the second DL Access Zone, the BS can only transmit to the UE.
  • the second downlink access zone can be replaced by a downlink transparent zone, so that the in-band transparent relay can implement the function of cooperative relay.
  • each subframe consists of the first DL Access Zone, UL Access Zone, UL Relay Zone, DL Access Zone, and DL Relay Zone.
  • the first DL Access Zone consists of DL SYNC time slots, TS0 and TS1, while the other zones consist of one or more remaining time slots.
  • the RS receives synchronization information and control information from the BS.
  • the RS forwards the UE's data to the BS, and the UE can send data to its host RS in the UL Access Zone.
  • the RS can receive data from the BS and forward it to the UE in the second DL Access Zone.
  • the specific signal flow is shown in Figure 12.
  • the relay link and the access link use frequency division multiplexing. Style.
  • the frequency domain resource allocation of the relay link and the access link of each time slot in the Hybrid Zone may be different, which is determined by scheduling.
  • the traffic of the trunk link is small, that is, the trunk does not occupy a large bandwidth
  • a part of the frequency resource can be used in the UL Hybrid Zone or the DL Hybrid Zone for the UE to use, so that a time slot is avoided. All the bandwidth is allocated to the relay link and the waste of resources.
  • the use of frequency reuse also increases the flexibility of system resource mobilization. With the above frame structure, it is possible to achieve smaller granularity resource scheduling and reduce delay.
  • the downlink service is sent by the BS as an example: when the downlink service arrives at the BS, due to the relay link and the access link in the Hybrid zone.
  • Frequency division multiplexing can be used. Therefore, in the system frame structure supporting the Hybrid zone, the BS can transmit data to the terminal in the Hybrid zone of the downlink subframe, which is the same as the transmission timing of the frame structure that does not support the relay, so that it does not increase. Delay.
  • the frame structure supporting the relay link and the access link frequency division multiplexing can be used to partially bandwidth the hybrid zone. It is distributed to the relay link, which reduces the waste of resources.
  • the working process of the system is as follows:
  • the UE and the RS and the RS perform demodulation and decoding after receiving the data of the BS according to the corresponding frequency resource.
  • the corresponding destination address is then forwarded to the corresponding UE after the appropriate location code modulation in the DL Access Zone.
  • the UE sends data to the RS in the UL Access, and the RS receives the demodulation and decoding, and determines the corresponding destination address.
  • the transparent relay receives synchronization information and control information from the base station in the first downlink access zone; the non-transparent relay receives synchronization information and control information from the base station in the downlink relay zone.
  • the RS when multiple trunks appear in the system, in order to support multiple hops, the RS needs multiple relay zones to operate in transmit or receive mode.
  • Two methods for supporting multi-hop relay are provided in the embodiments of the present invention: intra-subframe relay and intra-frame relay. Among them, each RS can work in either mode, but from time to time must work in two ways at the same time.
  • the first mode is intra-subframe relay: allowing the BS or the RS to transmit, receive, or idle in the relay zone.
  • the odd hop RS is sent in the DL Relay Zone of the even subframe.
  • the data is sent to the next hop RS, and the BS and the even hop RS transmit data to the next hop RS in the DL Relay Zone of the odd subframe.
  • the odd hop RS transmits data to the previous hop RS (or BS) in the UL Relay Zone of the odd subframe
  • the even hop RS transmits data to the previous hop RS in the UL Relay Zone of the even hop subframe.
  • the odd hop RS there is a TTG between the UL Relay Zone and the UL Access Zone of the odd subframe, and there is an RTG between the DL Relay Zone and the DL Access Zone of the odd subframe.
  • even-hop RS there is a TTG between the UL Relay Zone and the UL Access Zone of the even subframe, and there is an RTG between the DL Relay Zone of the even subframe and the second DL Access Zone.
  • the second mode is intra-frame relay: allowing multi-hop relay in a single subframe.
  • the odd hop RS transmits data to the last hop RS or BS in the UL Relay Zone 2
  • the even hop RS transmits data to the last hop RS in the UL Relay Zone 1.
  • the even hop RS (or BS) sends data to the next hop RS in the DL Relay Zone 1 (or DL Hybrid Zone), and the odd hop RS sends data to the next hop RS in the DL Relay Zone 2.
  • odd-hop RS there should be RTG between UL Relay Zone 1 and UL Relay Zone 2 or DL Relay Zonel and DL Relay Zone 2, and there should be TTG between UL Relay Zone 2 and UL Access Zone.
  • even-hop RS there should be a TTG between the UL Relay Zone 2 and the UL Access Zone or between the DL Relay Zonel and the DL Relay Zone 2.
  • even-hop RS there should be a TTG between the UL Relay Zone 1 and the UL Relay Zone 2 or between the DL Relay Zonel and the DL Relay Zone 2, and there should be an RTG between the DL Relay Zone 2 and the second DL Access Zone.
  • the relay can implement multi-hop well, and further expands the coverage of the wireless access system.
  • the system includes a base station, a relay, and a terminal;
  • each subframe is composed of a first DL Access Zone, a UL Hybrid Zone, a UL Access Zone, a DL Hybrid Zone, and a second DL. Access Zone component; For relay, each subframe consists of the first DL Access Zone ⁇ UL Relay Zone , UL Access Zone , DL Relay Zone and DL Access one.
  • the BS may be frequency division multiplexed in the DL Hybrid Zone relay link and the access link, that is, the BS allocates part of the bandwidth of the Hybrid zone to the relay link; thus, the BS is in the DL Hybrid.
  • the FDM can separately transmit data to the UE and the RS in the coverage of the BS.
  • the RS demodulates and decodes the data, determines the corresponding destination address, and then in the DL Access Zone.
  • the UE forwards the data to the corresponding UE.
  • the UE sends data to the RS in the UL Access.
  • the RS After receiving the RS, the RS performs demodulation and decoding, determines the corresponding destination address, and allocates the RS to the RS in the UL Hybrid Zone.
  • the frequency resource sends data to the BS, and the UE also transmits data to the BS in the UL Hybrid Zone and the RS frequency division multiplexing.
  • intra-subframe relay when multiple relays are present in the system, two methods for supporting multi-hop relay are provided in the embodiments of the present invention: intra-subframe relay and intra-frame relay.
  • each RS can work in either mode, but it does not have to work in two ways at the same time.
  • the first way is intra-subframe relay: Allow BS or RS to send, receive or idle in the relay zone.
  • the odd hop RS transmits data to the next hop RS in the DL Relay Zone of the even subframe, and the BS and the even hop RS transmit data to the next hop RS in the DL Relay Zone of the odd subframe.
  • the odd hop RS transmits data to the previous hop RS (or BS) in the UL Relay Zone of the odd subframe
  • the even hop RS transmits data to the previous hop RS in the UL Relay Zone of the even hop subframe.
  • the second way is intra-frame relay: Allow multi-hop relay in a single sub-frame. In the upstream direction, odd jump
  • the RS sends data to the last hop RS or BS in the UL Relay Zone 2, and the even hop RS sends data to the last hop RS in the UL Relay Zone 1.
  • the even hop RS (or BS) sends data to the next hop RS in the DL Relay Zone 1 (or DL Hybrid Zone), and the odd hop RS sends data to the next hop RS in the DL Relay Zone 2.
  • the above system fully utilizes the high bandwidth of the B3G system, and the data transmission is realized by frequency division multiplexing of the access link and the relay link in the mixed area of the subframe, thereby not only improving system flexibility.
  • multi-hop relay can also be supported when multiple relays appear in the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Description

一种采用支持 Relay的帧结构进行无线传输的方法、 系统和基站 本申请要求于 2007年 7月 9日提交中国专利局、申请号为 200710118573.4、 发明名称为"一种采用支持 Relay 的帧结构进行无线传输的方法和系统"的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种釆用支持 Relay的帧结构进 行无线传输的方法、 系统和基站。
背景技术
在 3G和 B3G ( Beyond 3 Generation, 超 3代)通信系统中覆盖范围都是无 线接入系统的一项重要指标,无线接入系统一般通过基站或接入点实现对服务 区域的覆盖。 但是由于终端的移动性, 终端完全有可能处于服务区之外, 从而 无法得到无线接入服务; 而即使终端处在服务区之内,信号的传输仍然可能由 于受到传输路径上障碍的遮蔽, 而造成服务质量的下降。 此外, 在未来的移动 通信系统中, 需要传输非常高速率的数据(如 IGbps ) , 同时由于频带分配条 件的限制, 未来移动通信系统极有可能使用较高的通信频带 (如 5GHz ) , 这 两个因素都会导致覆盖范围的急剧下降, 而基站 /接入点的数量在很大程度上 会影响到网络的建设与运行成本。
基于上述考虑,为了解决服务区的无缝覆盖与系统容量的增加并尽可能的 节约成本, 在未来移动通信的技术方案中普遍提出釆用 "中继 (Relay或 RS— relay station ) "技术; 当 UE位于服务区外或者信号质量不能满足需求时, 可以通过 RS对信号进行中转, 以实现服务区域的扩展或者提高传输的可靠性; 即 Relay的主要作用是扩展覆盖范围和扩展小区容量,其基本结构可由图 1进行 描述; 其中, 如果 RS发送本身独立的同步和控制信息, 则该 RS称为非透明中 继 (non-transparent relay) , 否则称为透明中继 (transparent relay)。
现有技术中, 为了保持与现有 3G (主要是 TD-SCDMA ) 的强兼容, 一种 B3G的帧结构如图 2所示; 此外, 为了保持与现有 3G (主要是 TD-SCDMA )的 强兼容, LTE TDD ( Long term evolution time division duplex, 长期演进时分双 工模式) 的一种帧结构如图 3所示。 其中, 为了支持 relay, TDD系统中通常是 将下行子帧和上行子帧分别分为 Access Zone (接入区)和 Relay Zone (中继区), 具体如图 4所示。
但是, 如果将上述支持 Relay帧结构的 TDD系统应用于 B3G技术时, 其却 有着明显的缺陷:
( 1 )增大时延。 以 BS发送下行业务为例, 当下行业务到达 BS时, 在原有 的系统帧结构下, BS可以在下行子帧开始时刻发送, 但是在支持 Relay的 B3G 帧结构下, 只能在 DL Access Zone (下行接入区) 区域发送, 这样就无形增 加了时延, 这就很难满足 B3G苛刻的时延要求。 具体如图 5所示。
( 2 )浪费资源, 对于中继链路的业务量较小, 需要很小带宽的情况下, 如果釆用原有支持 Relay帧结构进行数据传输, 却需要把整个 Relay zone的带 宽分给中继链路, 这对资源是极大的浪费。 具体如图 6所示。
发明内容
有鉴于此,本发明实施例提供了一种釆用支持 Relay的帧结构进行无线传 输的方法、 系统和基站, 有效的利用了频率资源和时间资源, 减小了时延, 提 高了资源的利用率。
相应的, 本发明实施例提供的技术方案如下: 若干区域, 釆用时分复用方式进行数据的传输, 该方法进一步包括:
将子帧中至少一个时隙设置为混合区;
在混合区以频分复用的方式进行数据的传输。
一种釆用支持 Relay的帧结构进行无线传输的系统, 包括基站、 中继和终 端;
在下行方向,所述基站在下行特定时隙内以频分复用的方式分别发送数据 给终端和中继,
在上行方向, 所述终端发送数据给所述中继, 所述中继在上行特定时隙内 基站分配的频率发送数据给基站,同时终端也会在所述上行特定时隙与中继频 分复用后发送的数据给基站。
一种基站, 包括: 设置单元、 发送单元和接收单元; 其中,
所述设置单元用于: 将子帧中至少一个时隙设置为混合区;
所述发送单元用于:在下行子帧的混合区内以频分复用的方式分别向终端 和中继发送数据;
所述接收单元用于:在上行子帧的混合区内接收中继或中继与终端频分复 用后发送的数据。
可以看出, 釆用本发明实施例的方法、 系统和基站, 充分利用了 B3G系 统的高带宽,将子帧中至少一个时隙设置为混合区, 并在子帧的混合区通过将 接入链路和中继链路频分复用来实现数据的传输, 不仅提高系统灵活性, 而且 充分利用了系统的时频资源, 减小了时延, 并兼容 TD— SCDMA系统, 同时支 持非透明、 透明和多跳中继。 此外, 釆用这种顺序可以充分减小系统开销, 提 高资源利用率, 同时保证了 UE充分时间用于收发或发收转换。
附图说明
图 1是现有技术中 Relay系统的基本结构示意图;
图 2是现有技术中与 TD— SCDMA兼容的一种 B3G帧结构示意图; 图 3是现有技术中与 TD— SCDMA兼容的 LTE TDD帧结构;
图 4是现有技术中支持 relay的 TDD系统的帧结构示意图;
图 5是现有技术中支持 relay的 TDD系统的帧结构增大时延示意图; 图 6是现有技术中支持 relay的 TDD系统的帧结构浪费资源示意图; 图 7是本发明实施例的方法流程图;
图 8是本发明实施例中支持带内非透明中继的 TDD帧结构示意图; 图 9是本发明实施例中支持带内透明中继的 TDD帧结构示意图;
图 10是本发明实施例中支持中继链路与接入链路可以频分复用的帧结构 减小时延示意图;
图 11是本发明实施例中支持中继链路与接入链路可以频分复用的帧结构 合理分配资源示意图;
图 12是本发明实施例中支持带内透明中继的信号流程示意图;
图 13是本发明实施例中支持带内非透明中继的信号流程示意图; 图 14是本发明实施例中第一种方式支持多跳中继的信号流程示意图; 图 15是本发明实施例中第二种方式支持多跳中继的信号流程示意图。 具体实施方式 本发明实施例的基本思想是在宽带 TDD系统中釆用时分和频分相结合的 复用方式, 这样才能体现合理的颗粒度和资源调度的灵活性、 有效性。
为了使本技术领域的人员更好地理解本发明实施例方案,下面结合附图和 实施方式对本发明实施例作进一步的详细说明。 如图 7所示, 本发明实施例方 法包括:
步骤 701 : 将子帧中至少一个时隙设置为混合区;
步骤 702: 在混合区以频分复用的方式进行数据的传输。
具体为, 釆用现有技术中 B3G的帧结构: 每帧 10ms, 分为 2个 5ms子帧, 每个子帧包含一个下行同步时隙 ( DL SYNC timeslot )和 14个数据时隙。 在本 发明实施例中为了支持 Relay, 将 B3G帧结构分为不同区域( zone ) , 分别支持 透明中继和非透明中继:
其中, 对于非透明中继, 如图 8所示: 从基站(BS )来说, 在每个子帧中 设置混合区, 即用 Hybrid Zone来代替 Relay Zone, 因此,每个子帧由第一个 DL Access Zone (下行接入区)、 UL Hybrid Zone (上行混合区)、 UL Access Zone (上行接入区)、 DL Hybrid Zone (下行混合区)和第二个 DL Access Zone (下 行接入区)组成。 其中, 第一个 DL Access Zone由 DL SYNC时隙、 TS0和 TS1 组成, 而其他 zone由一个或多个剩余时隙组成。 在第一个 DL Access Zone, BS 可以发送同步信息和控制信息。 在 UL Hybrid Zone, UE和 RS可以以 FDM方式 同时发送数据给 BS, 而在 UL Access Zone只有 UE可以发送数据给 BS。 在 DL Hybrid Zone , BS可以以 FDM方式同时发送数据给 UE和 RS , 而在第二个 DL Access Zone , BS仅能给 UE发送数据。 BS也可以在 DL Hybrid Zone发送同步信 息和控制信息给 RS。 第一个 DL Access Zone和 UL Hybrid Zone之间有 GP 用于 下行到上行的转换点。
从中继来说, 每个子帧由第一个 DL Access Zone、 UL Relay Zone (上行中 继区) , UL Access Zone, DL Relay Zone (下行中继区)和 DL Access Zone组 成。 第一个 DL Access Zone由 DL SYNC时隙、 TS0和 TS1组成, 而其他 zone由 一个或多个剩余时隙组成。 在第一个 DL Access Zone, RS也可以发送它自己的 同步信息和控制信息。 在 UL Relay Zone, RS转发 UE的数据给 BS, 而 UE可以 在 UL Access Zone发送数据给给其宿主 RS。 在 DL Relay Zone , RS可以接收来 自 BS的数据, 并在第二个 DL Access Zone转发给 UE。 第一个 DL Access Zone 和 UL Relay Zone之间有 GP 用于下行到上行的转换点。 UL Relay Zone和 UL Access Zone之间有 TTG (transmit/receive transition ga 发4丈转换间隔), 而 DL Relay Zone和第二个 DL Access Zone之间存有 RTG (receive /transmit transition gap 收发转换间隔)。
对于支持透明中继, 如图 9所示: 其帧结构与非透明中继相似。 也是在每 个子帧中设置混合区, 即用 Hybrid Zone来代替 Relay Zone, 因此, 对于支持带 内透明中继的 BS , 每个子帧由第一个 DL Access Zone、 UL Hybrid Zone、 UL Access Zone 、 DL Hybrid Zone和 DL Access Zone组成。 第一个 DL Access Zone 由 DL SYNC时隙、 TS0和 TS1组成, 而其他 zone由一个或多个剩余时隙组成。 在第一个 DL Access Zone, BS可以发送同步信息和控制信息。 在 UL Hybrid Zone, UE和 RS可以以 FDM ( Frequency division multiple, 频分复用)方式同时 发送数据给 BS , 而在 UL Access Zone只有 UE可以发送给 BS。 在 DL Hybrid Zone , BS可以以 FDM方式同时发送数据给 UE和 RS , 而在第二个 DL Access Zone, BS仅能给 UE发送。 第一个 DL Access Zone和 UL Access Zone之间有 GP 用于下行到上行的转换点。
此外, 第二个下行接入区可以由下行透明区替代,从而使得带内透明中继 可以实现协同中继的功能。
对于带内透明中继, 每个子帧由第一个 DL Access Zone、 UL Access Zone, UL Relay Zone, DL Access Zone和 DL Relay Zone。第一个 DL Access Zone由 DL SYNC时隙、 TS0和 TS1组成, 而其他 zone由一个或多个剩余时隙组成。 在第一 个 DL Access Zone, RS接收来自 BS的同步信息和控制信息。 在 UL Relay Zone , RS转发 UE的数据给 BS , 而 UE可以在 UL Access Zone发送数据给其宿主 RS。在 DL Relay Zone, RS可以接收来自 BS的数据, 并在第二个 DL Access Zone转发 给 UE。 具体的信号流程如图 12所示。 第一个 DL Access Zone和 UL Access Zone 之间有 GP 用于下行到上行的转换点。 UL Access Zone和 UL Relay Zone之间有 RTG, 而第二个 DL Access Zone和 DL Relay Zone之间存有 TTG。
釆用以上帧结构, 虽然 zone之间仍然釆用时分复用的方式, 但是在 UL Hybrid Zone和 DL Hybrid Zone区域, 中继链路和接入链路釆用频分复用的方 式。 同时, Hybrid Zone中各个时隙的中继链路和接入链路的频域资源分配可 以不同, 这由调度决定。 当中继链路的业务量很小, 即中继不要占用较大带宽 时, 就可以在 UL Hybrid Zone或 DL Hybrid Zone拿出一部份频率资源给 UE使 用, 这样就避免了把一个时隙的所有带宽都分配给中继链路而造成的资源浪 费。 同时, 釆用频率复用也提高了系统资源调动的灵活性。 釆用以上帧结构, 可以实现更小颗粒度的资源调度和减小时延。
具体的, 如图 10所示, 以 BS发送下行业务为例: 当下行业务到达 BS时, 由于在 Hybrid zone (混合区 ) 中 relay link (中继链路)和 access link (接入链 路)可以频分复用, 因此在支持 Hybrid zone的系统帧结构下, BS可以在下行 子帧 Hybrid zone区域发送数据给终端,这与不支持 relay的帧结构的发送时刻相 同, 这样就不会增加时延。
同样,如图 11所示,对于中继链路的业务量较小,需要很小带宽的情况时, 釆用支持 relay link和 access link频分复用的帧结构,可以把 hybrid zone的部分带 宽分给中继链路, 这就减少了对资源的浪费。
相应的, 如图 12、 图 13所示, 釆用以上帧结构时, 系统的工作过程如下: 的 UE和 RS , RS在相应的频率资源接收到 BS的数据后, 进行解调和解码, 判断 相应的目的地址, 然后在 DL Access Zone的合适位置编码调制后转发给相应的 UE; 在上行方面, UE在 UL Access发送数据给 RS , RS接收到后进行解调和解 码, 判断相应的目的地址, 并在 UL Hybrid Zone的 BS分配给 RS的频率资源发 送给 BS , UE也会在 UL Hybrid Zone与 RS频分复用发送数据给 BS。所不同的是, 透明中继要在第一个下行接入区接收来自基站的同步信息和控制信息;而非透 明中继是在下行中继区接收来自基站的同步信息和控制信息。
此外, 当系统中出现多个中继时, 为了支持多跳, RS需要多个 relay zone 以工作在发送或接收模式。 本发明实施例中提供了两种支持多跳中继的方法: 子帧内中继和帧内中继。 其中, 每个 RS能够工作在任一方式下, 但不时必须 同时工作在两种方式下。
具体的,如图 14所示,第一种方式即子帧内中继:允许 BS或 RS在 relay zone 发送、 接收或空闲。 在下行方向, 奇数跳 RS在偶数子帧的 DL Relay Zone发送 数据给下一跳 RS ,而 BS和偶数跳 RS在奇数子帧的 DL Relay Zone发送数据给下 一跳 RS。 在上行方向, 奇数跳 RS在奇数子帧的 UL Relay Zone发送数据给上一 跳 RS (或 BS ) , 而偶数跳 RS在偶数跳子帧的 UL Relay Zone发送数据给上一跳 RS。 其中, 对于奇数跳 RS, 奇数子帧的 UL Relay Zone 和 UL Access Zone之 间有 TTG, 而奇数子帧的 DL Relay Zone 和 DL Access Zone之间有 RTG。 对于 偶数跳 RS,偶数子帧的 UL Relay Zone 和 UL Access Zone之间有 TTG, 而偶数 子帧的 DL Relay Zone 和第二个 DL Access Zone之间有 RTG。
具体的,如图 15所示,第二种方式即帧内中继:允许单一子帧内多跳中继。 在上行方向, 奇数跳 RS在 UL Relay Zone 2发送数据给上一跳 RS或 BS , 而偶数 跳 RS在 UL Relay Zone 1发送数据给上一跳 RS。在下行方向,偶数跳 RS (或 BS ) 在 DL Relay Zone 1 (或 DL Hybrid Zone )发送数据给下一跳 RS , 而奇数跳 RS 在 DL Relay Zone 2发送数据给下一跳 RS。其中,对于奇数跳 RS, UL Relay Zone 1和 UL Relay Zone 2之间或 DL Relay Zonel和 DL Relay Zone 2应有 RTG, 而在 UL Relay Zone 2和 UL Access Zone之间应有 TTG。 对于偶数跳 RS , UL Relay Zone 2 和 UL Access Zone之间或 DL Relay Zonel和 DL Relay Zone 2之间应有 TTG。 对于偶数跳 RS, UL Relay Zone 1和 UL Relay Zone 2之间或 DL Relay Zonel和 DL Relay Zone 2应有 TTG, 而 DL Relay Zone 2和第二个 DL Access Zone之间应有 RTG。
通过以上两种方式, 可是使中继很好的实现多跳, 进一步扩展了无线接入 系统的覆盖范围。 实施例, 该系统包括基站、 中继和终端;
对于基站,在每个子帧中设置混合区,即用 Hybrid Zone来代替 Relay Zone, 因此, 每个子帧由第一个 DL Access Zone、 UL Hybrid Zone、 UL Access Zone、 DL Hybrid Zone和第二个 DL Access Zone组成; 对于中继, 每个子帧由第一个 DL Access Zone ^ UL Relay Zone , UL Access Zone , DL Relay Zone和 DL Access one组成。
具体的 , 在下行方向 , BS在 DL Hybrid Zone中继链路和接入链路可以频分 复用, 即, BS把 Hybrid zone的部分带宽分给中继链路; 因而 BS在 DL Hybrid Zone内可以以 FDM方式分别发送数据给 BS覆盖范围内的 UE和 RS, RS在相应 的频率资源接收到 BS的数据后, 进行解调和解码, 判断相应的目的地址, 然 后在 DL Access Zone的合适位置编码调制后转发给相应的 UE; 在上行方向, UE在 UL Access发送数据给 RS, RS接收到后进行解调和解码, 判断相应的目 的地址, 并在 UL Hybrid Zone的 BS分配给 RS的频率资源发送数据给 BS, 同时, UE也会在 UL Hybrid Zone与 RS频分复用发送数据给 BS。
此外, 当系统中出现多个中继时, 本发明实施例中提供了两种支持多跳中 继的方法: 子帧内中继和帧内中继。 其中, 每个 RS能够工作在任一方式下, 但不是必须同时工作在两种方式下。
第一种方式即子帧内中继: 允许 BS或 RS在 relay zone发送、 接收或空闲。 在下行方向, 奇数跳 RS在偶数子帧的 DL Relay Zone发送数据给下一跳 RS, 而 BS和偶数跳 RS在奇数子帧的 DL Relay Zone发送数据给下一跳 RS。 在上行方 向, 奇数跳 RS在奇数子帧的 UL Relay Zone发送数据给上一跳 RS (或 BS ) , 而 偶数跳 RS在偶数跳子帧的 UL Relay Zone发送数据给上一跳 RS。
第二种方式即帧内中继: 允许单一子帧内多跳中继。 在上行方向, 奇数跳
RS在 UL Relay Zone 2发送数据给上一跳 RS或 BS,而偶数跳 RS在 UL Relay Zone 1发送数据给上一跳 RS。 在下行方向, 偶数跳 RS (或 BS )在 DL Relay Zone 1 (或 DL Hybrid Zone )发送数据给下一跳 RS, 而奇数跳 RS在 DL Relay Zone 2 发送数据给下一跳 RS。
可以看出, 釆用以上的系统, 充分利用了 B3G系统的高带宽, 在子帧的混 合区通过将接入链路和中继链路频分复用来实现数据的传输,不仅提高系统灵 活性, 而且充分利用了系统的时频资源; 同时, 在系统出现多个中继时还可以 支持多跳中继。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发 明的保护范围之内。

Claims

权 利 要 求
1、 一种釆用支持 Relay的帧结构进行无线传输的方法, 其将子帧的时隙 分为若干区域, 釆用时分复用方式进行数据的传输, 其特征在于, 该方法进一 步包括:
将子帧中至少一个时隙设置为混合区;
在混合区釆用频分复用的方式进行数据的传输。
2、 根据权利要求 1所述的方法, 其特征在于:
在所述混合区内, 中继链路和接入链路釆用频分复用的方式。
3、 根据权利要求 1所述的方法, 其特征在于:
非透明中继在下行中继区接收基站发送的同步信息和控制信息。
4、 根据权利要求 1所述的方法, 其特征在于:
透明中继在第一下行接入区接收基站的同步信息和控制信息。
5、 根据权利要求 1至 4中任意一项所述的方法, 其特征在于, 部分的通 过以下方式来实现数据的传输:
下行方向, 在混合区基站以频分复用的方式分别发送数据给终端和中继。
6、 根据权利要求 1至 4中任意一项所述的方法, 其特征在于, 部分的通 过以下方式来实现数据的传输:
上行方向, 在混合区中继和终端以频分复用的方式同时发送数据给基站。
7、 根据权利要求 1所述的方法, 其特征在于:
当存在多个中继时,基站或中继通过在中继区发送数据、或者接收数据或 者空闲来支持多跳中继。
8、 根据权利要求 7所述的方法, 其特征在于, 部分的通过以下方式来实 现支持多跳中继:
下行方向, 奇数跳中继在偶数子帧下行中继区发送数据给下一跳中继, 而 基站和偶数跳中继在奇数子帧的下行中继区发送数据给下一跳中继;
上行方向,奇数跳中继在奇数子帧的上行中继区发送数据给上一跳中继或 基站, 而偶数跳中继在偶数子帧的上行中继区发送数据给上一跳中继。
9、 根据权利要求 1所述的方法, 其特征在于:
中继通过工作在帧内中继方式下支持多跳中继。
10、 根据权利要求 9所述的方法, 其特征在于, 通过以下方式来实现支持 多跳中继:
下行方向,偶数跳中继在第一下行中继区或基站在下行混合区发送数据给 下一跳中继, 而奇数跳中继在第二下行中继区发送数据给下一跳中继;
上行方向, 奇数跳中继在第二上行中继区发送数据给上一跳中继或基站, 偶数跳中继在第一上行中继区发送数据给上一跳中继。
11、 一种釆用支持 Relay的帧结构进行无线传输的系统, 包括基站、 中继 和终端, 其特征在于:
所述基站在下行子帧的混合区内以频分复用的方式分别发送数据给终端 和中继;
所述中继在上行子帧的混合区内根据基站分配的频率发送数据给基站; 所述终端在所述上行子帧的混合区与所述中继频分复用后发送数据给基 站。
12、 根据权利要求 11所述的系统, 其特征在于:
在混合区内, 中继链路和接入链路频分复用在一起。
13、 根据权利要求 11所述的系统, 其特征在于:
当中继工作在子帧内中继和帧内中继工作方式下时, 系统支持多跳中继。
14、 一种基站, 其特征在于, 包括: 设置单元、 发送单元和接收单元; 其 中,
所述设置单元用于: 将子帧中至少一个时隙设置为混合区;
所述发送单元用于:在下行子帧的混合区内以频分复用的方式分别向终端 和中继发送数据;
所述接收单元用于:在上行子帧的混合区内接收中继或中继与终端频分复 用后发送的数据。
PCT/CN2008/071578 2007-07-09 2008-07-08 Procédé, système et station de base utilisant une configuration de trame supportant un relais destinés aux transmissions sans fil WO2009006840A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/668,292 US8265044B2 (en) 2007-07-09 2008-07-08 Method, system and base station using frame configuration which supports relay for wireless transmission
KR1020107002361A KR101148412B1 (ko) 2007-07-09 2008-07-08 무선 전송을 위한 릴레이를 지원하는 프레임 구성을 사용하는 방법, 시스템 및 베이스 스테이션

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710118573A CN101345544B (zh) 2007-07-09 2007-07-09 一种采用支持Relay的帧结构进行无线传输的方法和系统
CN200710118573.4 2007-07-09

Publications (1)

Publication Number Publication Date
WO2009006840A1 true WO2009006840A1 (fr) 2009-01-15

Family

ID=40228180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071578 WO2009006840A1 (fr) 2007-07-09 2008-07-08 Procédé, système et station de base utilisant une configuration de trame supportant un relais destinés aux transmissions sans fil

Country Status (4)

Country Link
US (1) US8265044B2 (zh)
KR (1) KR101148412B1 (zh)
CN (1) CN101345544B (zh)
WO (1) WO2009006840A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280176A1 (en) * 2009-01-16 2011-11-17 Electronics And Telecommunications Research Institute A device and method for transmitting relay synchronization signal on lte-a system based on orthogonal frequency division having a multi-hop relay

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345544B (zh) * 2007-07-09 2012-10-10 电信科学技术研究院 一种采用支持Relay的帧结构进行无线传输的方法和系统
CN101616418A (zh) * 2008-06-25 2009-12-30 中兴通讯股份有限公司 一种资源重用的方法
KR101527978B1 (ko) * 2008-08-06 2015-06-18 엘지전자 주식회사 기지국과 중계기 사이의 서브프레임을 사용하여 통신하는 방법 및 장치
US8355734B2 (en) 2008-08-07 2013-01-15 Apple Inc. Wireless system
ES2383062T3 (es) * 2008-08-11 2012-06-18 Koninklijke Philips Electronics N.V. Técnicas para resolver problemas de diafonía de protocolos de control de acceso al medio de red de área corporal
EP2313990B1 (en) * 2008-08-12 2018-05-23 BlackBerry Limited Enabling downlink transparent relay in a wireless communications network
CN101730115B (zh) * 2008-10-24 2013-01-30 华为技术有限公司 中继传输的方法及设备
CN101814944B (zh) * 2009-02-25 2015-04-08 电信科学技术研究院 一种数据传输方法、系统及装置
CN101841890B (zh) * 2009-03-16 2013-12-04 中兴通讯股份有限公司 一种中继系统中的处理方法、装置及系统
TWI455626B (zh) 2009-06-22 2014-10-01 Htc Corp 處理定位量測的方法
JP5251776B2 (ja) * 2009-07-27 2013-07-31 ソニー株式会社 基地局、通信システム、移動端末および中継装置
KR101612558B1 (ko) * 2009-08-28 2016-04-15 엘지전자 주식회사 중계국을 포함하는 무선통신 시스템에서 프레임 전송방법
CN102045761B (zh) * 2009-10-26 2013-05-22 中国移动通信集团公司 一种在中继系统中进行数据传输的方法和设备
CN102137500B (zh) * 2010-01-26 2013-10-02 华为技术有限公司 传输数据的方法、基站和系统
WO2011102631A2 (en) * 2010-02-16 2011-08-25 Lg Electronics Inc. Relay node apparatus for transmitting and receiving signal according to link operation mode in wireless communication system and method thereof
US9036491B2 (en) 2011-08-12 2015-05-19 Sharp Laboratories Of America, Inc. Devices for converting a downlink subframe
US8934424B2 (en) 2011-09-29 2015-01-13 Sharp Laboratories Of America, Inc. Devices for reconfiguring a subframe allocation
KR101305585B1 (ko) * 2011-12-30 2013-09-09 서울대학교산학협력단 다중 사용자 다운링크 릴레이 네트워크에서 급변하는 사용자 요구 통신품질에 대한 만족도 개선방법
US9602251B2 (en) 2012-01-27 2017-03-21 Sharp Kabushiki Kaisha Devices for reconfiguring uplink and downlink allocations in time domain duplexing wireless systems
US9521637B2 (en) 2013-02-14 2016-12-13 Blackberry Limited Small cell demodulation reference signal and initial synchronization
CN104579456B (zh) * 2013-10-18 2018-09-04 中国移动通信集团公司 异构网络通信方法及相应设备
US9699802B2 (en) * 2014-01-30 2017-07-04 Intel Corporation User equipment uplink toggling for dual connectivity networks
TWI602462B (zh) * 2015-01-30 2017-10-11 財團法人資訊工業策進會 使用者裝置、裝置對裝置使用者裝置、後端裝置及其定位方法
CN107769834B (zh) * 2017-09-30 2020-05-19 中兴克拉科技(苏州)有限公司 一种LoRaWAN物联网信号中继方法
GB2572646B (en) * 2018-04-06 2021-07-14 Tcl Communication Ltd Control and data transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714587A (zh) * 2002-12-19 2005-12-28 艾利森电话股份有限公司 将第一协议通信的传输间隙期间的时隙指配给第二协议通信
CN1960207A (zh) * 2005-11-01 2007-05-09 华为技术有限公司 基于fdd和tdd混合的无线中转通信系统及方法
CN1960209A (zh) * 2005-10-31 2007-05-09 上海原动力通信科技有限公司 频分双工模式下的通信方法及设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398752B2 (ja) * 2004-02-19 2010-01-13 株式会社エヌ・ティ・ティ・ドコモ 無線中継システム、無線中継装置及び無線中継方法
KR100810201B1 (ko) * 2005-06-18 2008-03-06 삼성전자주식회사 다중 홉 릴레이 셀룰라 네트워크에서 라우팅 장치 및 방법
US8554232B2 (en) * 2005-08-17 2013-10-08 Apple Inc. Method and system for a wireless multi-hop relay network
KR100901374B1 (ko) * 2005-10-06 2009-06-05 삼성전자주식회사 다중홉 릴레이 셀룰러 네트워크에서 셀 내 간섭 없이 다중링크를 지원하기 위한 장치 및 방법
KR20070048575A (ko) * 2005-11-04 2007-05-09 삼성전자주식회사 다중 홉 중계 방식의 셀룰러 네트워크에서 다중 홉을그룹화하여 다중링크를 지원하기 위한 장치 및 방법
US20070104223A1 (en) * 2005-11-04 2007-05-10 Samsung Electronics Co., Ltd. Apparatus and method for supporting multiple links by grouping multiple hops in a multi-hop relay cellular network
EP1830490B1 (en) * 2006-03-03 2013-07-03 Samsung Electronics Co., Ltd. Apparatus and method for supporting relay service in a multi-hop relay broadband wireless access communication system
EP1848165A3 (en) * 2006-04-19 2011-05-04 Samsung Electronics Co., Ltd. Relay service in a multi-hop relay broadband wireless access communication system
GB2440985A (en) * 2006-08-18 2008-02-20 Fujitsu Ltd Wireless multi-hop communication system
JP4790544B2 (ja) * 2006-08-31 2011-10-12 富士通株式会社 リレー通信システムにおける再送制御方法及びリレー局装置
US8031604B2 (en) * 2006-10-25 2011-10-04 Sydir Jaroslaw J Algorithm for grouping stations for transmission in a multi-phase frame structure to support multi-hop wireless broadband access communications
US7990906B2 (en) * 2006-11-03 2011-08-02 Fujitsu Semiconductor Limited Frame structure for a relay station operating in mobile networks
US7920826B2 (en) * 2006-11-10 2011-04-05 Electronics And Telecommunications Research Institute Method of forming frame in multi-hop relay system and system for implementing the method
CN101345544B (zh) * 2007-07-09 2012-10-10 电信科学技术研究院 一种采用支持Relay的帧结构进行无线传输的方法和系统
KR101493455B1 (ko) * 2008-09-02 2015-02-23 삼성전자주식회사 전 이중 릴레이를 위한 프레임 구성 장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714587A (zh) * 2002-12-19 2005-12-28 艾利森电话股份有限公司 将第一协议通信的传输间隙期间的时隙指配给第二协议通信
CN1960209A (zh) * 2005-10-31 2007-05-09 上海原动力通信科技有限公司 频分双工模式下的通信方法及设备
CN1960207A (zh) * 2005-11-01 2007-05-09 华为技术有限公司 基于fdd和tdd混合的无线中转通信系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280176A1 (en) * 2009-01-16 2011-11-17 Electronics And Telecommunications Research Institute A device and method for transmitting relay synchronization signal on lte-a system based on orthogonal frequency division having a multi-hop relay

Also Published As

Publication number Publication date
US8265044B2 (en) 2012-09-11
CN101345544A (zh) 2009-01-14
CN101345544B (zh) 2012-10-10
KR20100032917A (ko) 2010-03-26
KR101148412B1 (ko) 2012-05-23
US20100189081A1 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
WO2009006840A1 (fr) Procédé, système et station de base utilisant une configuration de trame supportant un relais destinés aux transmissions sans fil
EP1931155B1 (en) Wireless relay communication system and method
US8116256B2 (en) Wireless data frame structure among nodes
TWI362851B (en) Communication systems
US20080165881A1 (en) Method for Accessing Channels in OFDMA Mobile Multihop Relay Networks
JP5191202B2 (ja) 無線通信システム、方法、およびデータ構造
JP2008048423A (ja) マルチホップ無線通信システム、中間装置、送信方法及びコンピュータプログラム
TW200824333A (en) Communication systems
CN102056316B (zh) 一种信道资源分配的方法、基站和中继节点
KR20120042905A (ko) 통신 시스템, 통신 장치, 통신 방법 및 컴퓨터 프로그램 제품
WO2007101406A1 (fr) Système et procédé de communication radio par relais
CN102160300A (zh) 网络元件以及操作网络元件的方法
WO2011047503A1 (en) Method and apparatus for provision of paging messages in relay network
KR20090106344A (ko) 무선 통신 시스템에서의 중계기를 통한 신호 전송 방법
US20100103869A1 (en) Transferring data in a mobile telephony network
CN1964222B (zh) 无线中转通信系统及方法
CN101442755B (zh) 一种支持Relay的无线通信系统
CN101442357B (zh) 一种采用支持中继的帧结构进行无线传输的方法和系统
WO2011085515A1 (zh) 中继传输方法及其设备
KR20070103667A (ko) 다중 홉 중계방식의 광대역 무선 접속 통신시스템에서 중계서비스를 지원하기 위한 장치 및 방법
Jia et al. A cut-through scheduling for delay optimization in TD-LTE relay enhanced networks
CN102130714A (zh) 一种中继节点设备下行定时配置方法及装置
KR20100048855A (ko) 트랜스페어런트 중계기 식별 정보를 수신하는 방법
KR20100048947A (ko) 다중 홉 중계 시스템에서의 무선 자원 할당에 따른 데이터 전송 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08773132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12668292

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 494/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107002361

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08773132

Country of ref document: EP

Kind code of ref document: A1