WO2009004742A1 - Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses - Google Patents

Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses Download PDF

Info

Publication number
WO2009004742A1
WO2009004742A1 PCT/JP2007/070970 JP2007070970W WO2009004742A1 WO 2009004742 A1 WO2009004742 A1 WO 2009004742A1 JP 2007070970 W JP2007070970 W JP 2007070970W WO 2009004742 A1 WO2009004742 A1 WO 2009004742A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
distance
width
glasses
stereoscopic
Prior art date
Application number
PCT/JP2007/070970
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Inaba
Original Assignee
Minoru Inaba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP07830704.8A priority Critical patent/EP2173106B1/en
Priority to MX2009012857A priority patent/MX2009012857A/en
Priority to CN200780053518XA priority patent/CN101690247B/en
Priority to GB0920300.1A priority patent/GB2463395B/en
Priority to BRPI0721824-9A priority patent/BRPI0721824B1/en
Priority to US12/452,096 priority patent/US8451326B2/en
Priority to DE112007003572T priority patent/DE112007003572T5/en
Priority to KR1020107002194A priority patent/KR101195192B1/en
Application filed by Minoru Inaba filed Critical Minoru Inaba
Priority to ES200990025A priority patent/ES2366067B1/en
Priority to CA2689640A priority patent/CA2689640C/en
Priority to PL07830704T priority patent/PL2173106T3/en
Priority to AU2007356091A priority patent/AU2007356091B2/en
Publication of WO2009004742A1 publication Critical patent/WO2009004742A1/en
Priority to HK10105113.9A priority patent/HK1139270A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/194Transmission of image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/172Processing image signals image signals comprising non-image signal components, e.g. headers or format information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing

Definitions

  • the present invention relates to a 3D television system, a 3D television receiver, and 3D video viewing glasses for recording and playing back 3D video captured by a stereo video camera, and more particularly to 3D television broadcasting. It has been proposed to realize Background art
  • paragraph [0 0 0 9] of Patent Document 1 it is also described in paragraph [0 0 0 9] of Patent Document 1 that it is difficult to optimally adjust the stereoscopic state (the fusion state of the left and right images) in binocular stereoscopic vision. Further, paragraphs [0 0 6 7] and [0 0 6 8] of the 'Patent Document 1 have the following description.
  • the stereoscopic display device to be finally used is assumed, and that the display unit 9 at the time of shooting can be confirmed so as not to exceed the limit pop-out amount and the limit depth amount of the display device.
  • An indicator will be established. This may be formed in actuality or may be formed as a three-dimensional image.
  • the assumed stereoscopic display device may use data of a typical stereoscopic display device, or may be selected or set by the user.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2 0 0 3-2 6 4 8 5 1
  • the size of the human eye width is B s
  • Fig. 8 (b) shows the state of viewing the stereoscopic television shown in Fig. 8 (a) at an appreciation distance of 1 meter.
  • An object of the present invention is to solve these problems and to realize 3D television broadcasting. Disclosure of the invention
  • the present invention is proposed in order to achieve the above object, and is a binocular stereoscopic television broadcasting that separates the left and right images taken from two points separated from each other for the left and right eyes.
  • the display width of the receiver is determined to be a fixed reference size, and the center of the screen width for each of the left and right is superimposed and displayed at the same position in the left and right direction on one display, and the same infinite object image is displayed.
  • the present invention provides a stereoscopic television transmission system configured to reproduce the distance between the left and right of corresponding points at an interval equal to the human eye width.
  • the size of the left and right screens and Spacing is a particularly important issue.
  • the invention of claim 1 is proposed in order to solve the above-mentioned problem.
  • the transmission / reception system is determined so that the interval between the same corresponding points in the left and right images of the object at infinity is displayed at an interval equal to the human eye width.
  • the invention of claim 2 is a stereoscopic television of a binocular stereoscopic system in which the left and right images are viewed separately for the left and right eyes, and the left and right images are overlapped at the same position on the reference size display.
  • 3D television receiver that displays the distance between the left and right of the same corresponding point of the object image at infinity at equal intervals to the human eye width Provide an imager.
  • the right and left images of a subject located at an infinite distance are displayed on a stereoscopic television display having a reference size display so that the centers of the left and right images are overlapped and displayed.
  • the optimal three-dimensional state is reproduced by displaying the interval of the eye at the same interval as the human eye width dimension.
  • the invention of claim 3 uses a display having a narrower width than the display of the reference size, and provides a black non-display portion on each of the right end portion of the left display screen and the left end portion of the right display screen.
  • this configuration it is applied to a vertical television using a display having a width narrower than the reference dimension.
  • a part (edge) of the left and right display screen is shielded (black display), and the left and right display is used.
  • the distance between the centers of the display screens is displayed at a distance, the left and right fields of view are matched beyond the display position, and the distance between the same corresponding points in the left and right images of the infinity subject is the human eye width interval.
  • the invention of claim 4 uses a display having a width wider than that of the display of the reference size, and each of the left end portion of the left display screen and the right end portion of the right display screen.
  • a display having a width wider than that of the display of the reference size, and each of the left end portion of the left display screen and the right end portion of the right display screen.
  • this configuration it is applied to a vertical television using a display having a width wider than a reference dimension, and a part (edge) of each of the left and right screens is shielded symmetrically (black display).
  • the left and right display screen widths are moved in such a way that the centers move closer to each other, and so that they are opposite to each other (the left screen center moves to the right and the right screen center moves to the left)
  • a standard-size display by matching the left and right fields of view on the front side of the display and simultaneously displaying the left and right distances of the same corresponding points in the infinitely distant subject image at the same distance as the human eye width dimension. The same effect as when viewing 3D television from the recommended viewing distance.
  • the invention of claim 5 is characterized in that in the above-mentioned claims 2, 3, and 4, the left and right images of a stereoscopic television of a system that is time-divisionally displayed on a display of a stereoscopic television using an LCD are separated.
  • the plate is driven alternately to separate the left and right visual fields for stereoscopic viewing.Furthermore, an inclination angle sensor is attached to the glasses, and the angle of inclination with respect to the horizontal is detected during viewing, and the visual field is closed.
  • the glasses for viewing stereoscopic images are corrected so that the light-shielding state is always maximized when the field of view is closed.
  • the glasses for visual field separation for separating the left and right images of a stereoscopic image that is displayed in a time-division manner on the LCD panel are alternately placed on the liquid crystal plate provided on the front of the glasses.
  • the polarization directions of the light beams passing through the right and left liquid crystal plates of the glasses are aligned so as to be orthogonal to each other in time series, and the orthogonal polarizations are arranged behind the liquid crystal plate of the glasses. Even if the viewer tilts the glasses (head), the tilt angle is detected by the tilt angle sensor provided on the glasses, and the voltage applied to the liquid crystal plate is controlled to cross. Try to prevent talk.
  • the reference dimensions of the display are determined and transmitted so that the left and right screen display positions coincide with each other on the display of the reference dimensions, the left and right sides of an infinitely distant subject are displayed on the receiving side regardless of the display size. It is easy to display the distance between the same corresponding points in the image equal to the human eye width dimension (display based on infinity), and displays of various width dimensions are used together as display elements for 3D television. In case There will be no confusion. In addition, stereoscopic images that display the distance between the left and right images of an object at infinity equal to the eye width have an optimal viewing distance (recommended viewing distance), but in reality, there is not much discomfort even if the viewing distance is changed.
  • polarizing glasses for separating the left and right visual fields in binocular stereoscopic vision often use a circular polarizing filter to prevent crosstalk.
  • the problem with this circular polarizer is its high price.
  • a quarter wave plate is used, the transmitted wavelength is biased.
  • LCD screen televisions have become larger and more detailed. Since the light emitted from the LCD panel is polarized light (linearly polarized light), it is relatively easy to separate the left and right visual fields using this polarization.
  • linear polarization may cause crosstalk when the glasses are tilted with respect to the display. This problem can be easily solved by attaching a tilt angle sensor to the glasses and controlling the voltage applied to the liquid crystal plate placed in front of the polarizing glasses.
  • FIG. 1 An explanatory diagram of a state in which a human is viewing an actual scene or the like with both eyes.
  • FIG. 2 is an explanatory diagram of a stereoscopic television that displays left and right images superimposed at the same position on a single display.
  • FIG. 3 is a state diagram in which a person determines the size of an object.
  • FIG. 4 An illustration of a 3D television that uses a display with a size smaller than the reference size, but can be seen on the screen with the reference size.
  • FIG. 6 An explanatory diagram of a solid television using a display with a size larger than the standard size.
  • FIG. 7 is an explanatory diagram of a stereo camera that captures a stereoscopic image.
  • FIG. 8 (a) and (b) are diagrams for explaining the state of stereoscopic viewing of a conventional stereoscopic television.
  • the present invention provides a stereoscopic television transmission system that can obtain a natural and natural depth feeling, and that even when the viewing distance changes, the infinity or the farthest distance in the display screen can be seen naturally.
  • a stereoscopic television transmission system that can obtain a natural and natural depth feeling, and that even when the viewing distance changes, the infinity or the farthest distance in the display screen can be seen naturally.
  • the display width dimension of the receiver is determined to be a fixed reference dimension, the center of the left and right screen widths are superimposed and displayed on the same position in the left and right direction on one display, and the same corresponding point of the object image at infinity is displayed. This was realized by providing a 3D television transmission system configured to reproduce the distance between the left and right at intervals equal to the human eye width.
  • FIG. As shown in the figure, an object located at infinity. Light rays that are launched from the same point at 0 ⁇ and incident on the left and right human eyes E L and 13 ⁇ 4 are parallel to each other. When light rays emitted from the same point of an object located at a short distance are incident on the left and right eyes, they are separated from each other (illustration of a short distance object and light rays emitted from the object is omitted).
  • the distance between the eyes is not very different from that of human eyes. In other words, humans always see objects at infinity in parallel. If so, the display interval of the left and right images of the object at infinity should be displayed at an interval equal to the human eye width dimension even in stereoscopic television.
  • Figure 2 shows the state of stereoscopic viewing.
  • display D is the center of the left and right 3D image. Match and display above.
  • the left and right images C L and C R of the subject at the shortest distance are displayed so that they overlap at the same position (see JP 2006-303832 and JP 2006-254074).
  • ⁇ Pi I interval when equally Table Shimesuru a human interpupillary distance B s of R, when considered appropriate viewing distance, and distant objects and near objects when humans stereoscopic real object Can be fused at the same time 0
  • the range is said to be 30 to 50 times the eye width if the distance is infinity.
  • the viewing distance of 3,5 meters is a distance where the fusion of the left and right visual fields is extremely easy, and 2 meters is abbreviated It is a limit value. Therefore, when the left and right intervals of an infinite distance image are displayed at B s intervals equal to the interpupillary interval, a short-distance image that should be displayed at the same position (left and right direction) on the display (match the left and right fields of view).
  • Body window that is, the recommended viewing distance for viewing the display (D R in the figure), and a virtual window that looks like a single window with the left and right display screens matching in the field of view. "It is the distance that can be seen.
  • the D R is 2-3, it may be set to any 5 meters, but if you set significantly smaller recommended Kan prize distances D R, rather than Rubakari stress is may arise from the stereoscopic display itself itself Appears to be small (even though it is not shielded). Also, if the recommended viewing distance D R is set to a large value, there will be an increased chance that an object closer than the recommended viewing distance of 0! ⁇ Will be captured on the shooting side (even if there is no shooting intention, it may be captured as a background). In other words, an image with a recommended viewing distance of 13 13 ⁇ 4 or less appears in the field of view during viewing. In such a case, the left and right screens (picture frames) often appear to be double-shifted (especially television). (In addition, the display itself appears to be shifted in this case, and the influence of it will extend to the surroundings of the television.) Considering the above, the recommended viewing distance D R is 2.5 meters It should be decided in consideration of the size of the room where the television is installed.
  • the display size is not limited, but 20 times or more of the eye width B s is desirable.
  • the screen width W is about 1300mm.
  • the reference screen width (reference dimension) is W. given that,
  • Fig. 3 is a state diagram in which a person determines the size of an object. If the viewing angles e shown in the figure are equal, the apparent sizes appear to be equal. Also, even objects of the same size appear larger as they are closer to the eyes. Therefore, display D of the reference dimension in Fig. 4.
  • display D of reference dimensions Right and left images of the shortest distance to the subject to the above are displayed over the same position (FIG. 2's and C R), the display D. In the above, they are displayed at the positions of C i and C r shown in FIG. In Fig. 4, the infinitely distant subject images I i and If are displayed on the display at intervals equal to the interpupillary distance B, and display D. If stereoscopic from the display 1, 25 m length of the image C of the left and right to reflected conform to the same position, and the C r at intervals bs is above 2, 5m position on the display D. It will look the same as if you put.
  • Figure 5 shows the display D of the standard dimensions in a stereoscopic view.
  • the transmission signal adjusted so that the left image is displayed between A and C and the right image is displayed between B and D is displayed on the display
  • the left image Pi is between a and c.
  • the video P r for the right must be visible between the b ⁇ d.
  • the left image must be displayed black (between c and d), and the right image must be displayed black (between a and b).
  • the extension amount is B s / 2 in total on the left and right. Also for the screen for the left. ⁇ D, right screens a ⁇ b are also shielded (black display) by B s / 2.
  • reference display D as shown in Figure 6.
  • Width W. 1800mm
  • recommended viewing distance D R 2
  • the left and right images of a distant subject should be set to a width of B s with dimensions equal to the human eye width. In this case as well, the image is proportionally enlarged according to the screen size, but the viewing distance is also proportional.
  • Recommended viewing distance D R 2 It looks the same as seen from a distance of 5 meters. However, the left image PL shown in FIG. 6 must appear in B to D ', and the right image PR must appear in A' to '.
  • the screen for the left side must be shielded (black display) for A 'to B' on the display, and the screen for the right side is C'-D.
  • the eye width size B s is more than twice the width W 2 of D 2 of the reference size display.
  • a wide display W 2 ′ with an added is required.
  • reference dimension display D in Figure 6 The above reflected in positions of the same position the object image of the shortest photographing distance to be displayed superimposed on the location C L and C R are each CL and CR of the display D 2 widening size for the right and left, opposite the image for the left and right with each other Although it is displayed at the position, as shown in the figure, the right and left images at close distance in the stereoscopic view are the reference dimension display D. Crossed at the virtual position of, as if it were the reference display D. As you can see from the recommended viewing distance D R naturally 70970
  • a television for receiving 3D broadcasts may block a part of the screen even if the actual display width is larger or smaller than the standard. Black). Therefore, it is necessary to consider more factors when determining the numerical value of the reference dimension W Q recommended viewing distance D R. This is because the average number of people in a typical home and the size of the installed room are important factors in determining the recommended viewing distance.
  • Figure 7 shows an example of a TV camera when performing stereoscopic television broadcasting.
  • Light rays incident on the left and right imaging lenses from an object at infinity are parallel to each other, so they are projected onto the left and right image sensors.
  • the distance between the images is equal to the distance between the left and right imaging lenses.
  • the distance between the left and right lenses (lens distance) is D L and the distance between the left and right image sensors (sensor distance) D s is determined as follows.
  • the sensor distance D s is D s 2 D L + D L ⁇ r.
  • the image projected on the left and right imaging elements in a state determined by the above formula may be transmitted and displayed on the left and right screens on the receiver side.
  • the positional relationship between the imaging lens and the image sensor may be the fixed relation shown in the figure (focus adjustment is necessary but explanation is omitted)
  • Objects closer than that are the field of view for shooting When entering, the image of the object appears to pop out of the screen, and in many cases, the viewer sees a sense of stress in stereoscopic view because the left and right picture frames appear double. Therefore, normally, objects near the recommended viewing distance (same as viewed from the receiver) should not be in the field of view.
  • Many TV cameras are equipped with a zoom lens.
  • the “stereo window” is set closer on the wide focal length side and farther on the longer telephoto side.
  • reference dimension display D is an example.
  • Width W Q 1800mm
  • Recommended viewing distance D R 2500mm
  • the width of the image sensor is l 8 mm
  • the focal length of the photographic lens is 25 mm.
  • the image sensor width is 1/100 of the display width.
  • the lens distance D L is 65 mm
  • the sensor distance D s is
  • the stereo window is set at 10m.
  • the one meter position appears to be 2.5 or 5 meters. This is an advantage of being close to 1 meter even in a narrow space.
  • Stereo cameras include hyper stereo and macro stereo with a narrower distance than the standard one, with the distance between the optical axes of the left and right lenses being significantly greater than the standard one. Since the light rays that are emitted and incident on the left and right photographing lenses are parallel to each other, the image point captured at the center of each of the left and right lenses can be displayed in the distance between the left and right human eyes when viewing.
  • the embodiment of claim 5 The light beam emitted from the LCD panel is polarized light having a constant amplitude direction. If a polarizing plate whose direction is perpendicular to the polarizing plate on the surface of the LCD panel is attached to the left and right sides of the glasses, both the left and right fields of view are closed.
  • the polarization from the LCD is oriented by 90 ° or 2700 ° due to the liquid crystal, and the left and right fields of view are Both are open and in a crosstalk state (looks the same as when glasses are not used) If a voltage is applied to the liquid crystal plate of the glasses, the liquid crystal is strained from a twisted state to a linear state, and the field of view is closed, similar to the state in which the liquid crystal plate is removed.
  • left and right images are displayed alternately on the LCD in a time-division manner, and at the same time, a sync signal is generated by infrared rays, and the voltage applied to the LCD panel of the glasses is synchronized with the infrared rays to open and close the left and right visual fields alternately. By doing so, the left and right visual fields can be separated.
  • the above method is the same principle as the method already implemented in CRT and PDP. However, in the case of CRT and PDP, the emitted light is not polarized light. Need.
  • linearly polarized light leaks from the left and right fields and crosstalks.
  • circular polarizing filters have been used to prevent crosstalk, but circular polarizing filters are expensive due to the use of ⁇ / 4 plates (because they are recently made with polymer curtains, not necessarily However, it is not expensive, and there are problems such as bias in the wavelength of transmitted light.
  • the stereoscopic television system, the stereoscopic television receiving image, and the stereoscopic video viewing glasses according to the present invention record and reproduce and display the stereoscopic video captured by the stereo video camera. Suitable for use in John Broadcasting.

Abstract

The realization of a three-dimensional television broadcast and its receiver are promoted for making it possible to reproduce a three-dimensional video image in good condition for a three-dimensional view. In a three-dimensional broadcast, the transmission is subjected to that a standard size of a display for a receiver is determined, that left and right images are overlapped and displayed at the same position on the standard size display, and that the same corresponding points of an infinite distant image are reproduced and displayed at the same interval as that of human eyes.

Description

07 070970  07 070970
1 明 細 書 立体テレビジョンシステム及び立体テレビジョン受像機並びに立体映 像観賞用メガネ 技術分野 1 MORE BOOK Stereoscopic television system, stereoscopic television receiver and glasses for stereoscopic viewing
本発明は、 ステレオビデオカメラによって撮影した立体映像を録画再 生表示するための立体テレビジョンのシステム及ぴ立体テレビジョン受 像機並びに立体映像観賞用メガネに関するものであり、 特に、 立体テレ ビジョン放送を実現するために提案されたものである。 背景技術  The present invention relates to a 3D television system, a 3D television receiver, and 3D video viewing glasses for recording and playing back 3D video captured by a stereo video camera, and more particularly to 3D television broadcasting. It has been proposed to realize Background art
従来、 左右離れた二点から撮影した二枚の写真を左右夫々の眼で見る ステレオ写真は古くから存在している。 そして、 電子撮像デバイス、 電 子ディスプレイ、 ディジタル信号処理等の技術は近年頓に発達し、 電子 的立体映像の撮影、 録画、 伝送、 表示、 が容易になり、 立体テレビジョ ン放送の実施も現実味を帯びてきた。  In the past, stereo photography has existed for a long time, in which two photographs taken from two separate points are viewed with the left and right eyes. In addition, technologies such as electronic imaging devices, electronic displays, and digital signal processing have been developed in recent years, making it easier to capture, record, transmit, and display electronic 3D images, and to implement 3D television broadcasting. I have been born.
また、 電子ディスプレイによる立体表示には様々な方式が提案されて いるが、 その中でも立体テレビジョン放送を実施するには 2眼立体視 In addition, various methods have been proposed for stereoscopic display using an electronic display.
(左右用の一対の映像を、 左右互いに直交する直線偏光、 又は回転方向 が互いに反対の円偏光によって重ねて表示し、 左右互いに直交する直線 偏光または互いに反対方向に回転する円偏光メガネを使用し左右の画像 を分離して観る方式) が最も現実的である。 P2007/070970 (A pair of left and right images are displayed with linearly polarized light orthogonal to the left and right, or circularly polarized light with opposite rotation directions. The method of viewing the left and right images separately is the most realistic. P2007 / 070970
2 しかし、 2眼立体視において立体視の状態 (左右の画像の融合状態) を最適に調節することが難しいことは特許文献 1の段落 〔0 0 0 9〕 に も記述されている。 また、 同'特許文献 1の段落 〔0 0 6 7〕 及び 〔0 0 6 8〕 には次のような記述がある。 However, it is also described in paragraph [0 0 0 9] of Patent Document 1 that it is difficult to optimally adjust the stereoscopic state (the fusion state of the left and right images) in binocular stereoscopic vision. Further, paragraphs [0 0 6 7] and [0 0 6 8] of the 'Patent Document 1 have the following description.
[ 0 0 6 7 ] …同じ画像を小さな画面 1 5 Aで見る場合と大きな画面 1 5 Cで観る場合は飛び出し量、 奥行き量が異なる。 …  [0 0 6 7]… When the same image is viewed on a small screen 1 5 A and when viewed on a large screen 1 5 C, the pop-out amount and depth amount are different. ...
〔0 0 6 8〕 そこで、 最終的に利用される立体ディスプレイ装置を想 定し、 そのディスプレイ装置の限界飛び出し量、 限界奥行き量を超えな いように、 撮影時の表示部 9で確認できるように、 指標を設ける。 これ は実態で形成してもよいし、 立体画像で形成しても良い。 想定される立 体ディスプレイ装置は、 典型的な立体ディスプレイ装置のデータを用い ても良いし、 ユーザーが選択或いは設定しても良い。  [0 0 6 8] Therefore, it is assumed that the stereoscopic display device to be finally used is assumed, and that the display unit 9 at the time of shooting can be confirmed so as not to exceed the limit pop-out amount and the limit depth amount of the display device. An indicator will be established. This may be formed in actuality or may be formed as a three-dimensional image. The assumed stereoscopic display device may use data of a typical stereoscopic display device, or may be selected or set by the user.
【特許文献 1】 特開 2 0 0 3— 2 6 4 8 5 1号公報  [Patent Document 1] Japanese Unexamined Patent Application Publication No. 2 0 0 3-2 6 4 8 5 1
立体映像を再現する場合、 撮影に特許文献 1の立体カメラを使用する とすれば、 遠景、 及び近景の両方に調整限界点を設定しなければならな い (特許文献 1の段落 〔0 0 7 0〕 〜 〔0 0 7 2〕 参照) 力 、 どのよう な原理で、 どのような基準をもって、 遠近夫々の限界点を設定するのか は記載されていない。 従って、 撮影には撮影者個々の勘に頼る必要が あり、 相当の熟練を要する。 また、 引用文献 1記載中の前記 「…想定さ れる立体ディスプレイ装置は、 典型的な立体ディスプレイ装置のデータ を用いても良いし…」 からすれば、 撮影された立体映像データは、 鑑賞 時には特定のディスプレイのみに有効に作用するものであることが窺わ れる。 このような立体カメラを汎用的に使用するのは不可能である。 P T/JP2007/070970 When reproducing a 3D image, if the 3D camera of Patent Document 1 is used for shooting, the adjustment limit points must be set for both the distant view and the close view (paragraph [0 0 7 of Patent Document 1]. (Refer to [0] to [0 0 7 2]) Force, what principle is used, and what criteria is used to set the limit point for each perspective is not described. Therefore, it is necessary to rely on the intuition of each photographer for photographing, and considerable skill is required. In addition, according to the above-mentioned “... the assumed 3D display device may use data of a typical 3D display device” in the cited document 1, the captured 3D image data is specified at the time of viewing. It can be seen that it works effectively only on other displays. It is impossible to use such a stereoscopic camera for general purposes. PT / JP2007 / 070970
3 また、 実際に展示会等で実演されている 「立体テレビジョ ン」 の多く は、 遠くの山等の無限遠被写体像がディスプレイの表示面の向う側の僅 か 1メートル位以内にしか見えない場合が多い。 即ち、 これ等の立体テ レビジョンは、 本来、 無限遠に見えるはずの物体が略 1メートルく らい3 In addition, many of the `` stereoscopic televisions '' that are actually being demonstrated at exhibitions, etc., can only see infinitely distant subject images such as distant mountains within 1 meter or so on the opposite side of the display surface of the display. There are many cases. In other words, these three-dimensional televisions originally have about 1 meter of objects that should appear at infinity.
(場合によっては数十センチ) 以内の距離に見え、 その他、 全ての物体 は、 その手前に見えることになる。 その結果、 鑑賞者は、 ミニチュアセ ットを見ているかのように感じてしまうことになる。 It looks within a distance (sometimes tens of centimeters), and all other objects are visible in front of it. As a result, viewers feel as if they are watching a miniature set.
図 8 (a)に図示の如く、 人間の目幅寸法を B s とし、 無限遠の被写体の 左右像の間隔を、 図示の b s = B s/ 2の間隔で表示する立体テレビジョン を 2メートルの位置から見たとすれば、 立体視において無限遠の立体像 は、 鑑賞距離を D A 立体視野上の距離感を D T とすれば、 As shown in Fig. 8 (a), the size of the human eye width is B s, and the distance between the left and right images of an object at infinity is 2 m for a stereoscopic television that displays bs = B s / 2 as shown. if viewed from the position, infinite stereoscopic image in the stereoscopic vision, if the viewing distance sense of distance on D a stereoscopic viewing and D T,
D T = D A/ ( 1一 b s/ B s)の関係となり、 D T = 2000Z ( 1 - 32, 5/65) = 4 000mm 4メートルの距離に見える。 D T = D A / (1 bs / B s), and D T = 2000Z (1-32, 5/65) = 4 000mm.
図 8 (b)は、 図 8 (a)に図示の立体テレビジョンを 1メートルの鑑賞距 離で視た状態を表したもので、 図 8 (b)による無限遠の立体像の距離感は 、 D τ = 1000/ (1-32, 5/65) = 2000mm、 即ち、 2メー トルの距離に見え る。 このように無限遠の被写体像の表示間隔を人間の目幅間隔よりも狭 く設定した立体映像を鑑賞した場合、 前記に記載の現象が発生するのは 必然である。 Fig. 8 (b) shows the state of viewing the stereoscopic television shown in Fig. 8 (a) at an appreciation distance of 1 meter. D τ = 1000 / (1-32, 5/65) = 2000mm, that is, it looks like a distance of 2 meters. Thus, when viewing a stereoscopic image in which the display interval of an infinite subject image is set to be narrower than the human eye width interval, the phenomenon described above is inevitably generated.
そこで、 現実に近い、 自然な奥行き感を得ることができ、 且つ、 鑑賞 距離が変化しても無限遠又は表示画面内の最遠の距離感が自然に見える 必要があり、 またミニチュアセッ トを見ているような感覚の回避を図る 07 070970 Therefore, it is necessary to obtain a natural sense of depth that is close to reality, and even if the viewing distance changes, the sense of distance at infinity or the farthest distance in the display screen must appear natural. Avoiding the feeling of looking 07 070970
4 必要がある。 本発明はこれらの問題を解決し、 立体テレビジョン放送の 実現を目的とする。 発明の開示 4 Needed. An object of the present invention is to solve these problems and to realize 3D television broadcasting. Disclosure of the invention
本発明は上記目的を達成するために提案するものであり、 左右離れた 二点から撮影した左右二枚の映像を左右夫々の眼用に分離して観る二眼 立体視方式の立体テレビジョン放送において、 受像機のディスプレイ幅 寸法を一定の基準寸法に決定し、 左右用夫々の画面幅中心を一つのディ スプレイ上の左右方向の同一位置に重ねて表示し、 且つ、 無限遠被写体 像の同一対応点の左右間距離を人間の眼幅と等しい間隔に再現するよう に構成した立体テレビジョン送信システムを提供するものである。  The present invention is proposed in order to achieve the above object, and is a binocular stereoscopic television broadcasting that separates the left and right images taken from two points separated from each other for the left and right eyes. The display width of the receiver is determined to be a fixed reference size, and the center of the screen width for each of the left and right is superimposed and displayed at the same position in the left and right direction on one display, and the same infinite object image is displayed. The present invention provides a stereoscopic television transmission system configured to reproduce the distance between the left and right of corresponding points at an interval equal to the human eye width.
この構成によれば、 立体テレビジョン放送を具現化するためには、 送 信された信号を受像機側で忠実に再現することが必要で、 立体テレビジ ョン放送において左右の画面の大きさ及び間隔は、 殊に重要な問題とな る。 請求項 1 の発明は、 上記課題を解決するために提案するもので、 受 像機のディスプレイの基準寸法を決定し、 左右用画像を受像機のデイス プレイの同一位置に重ねて表示した場合において、 無限遠の被写体の左 右像の同一対応点の間隔が人間の眼幅と等しい間隔に表示されるべく送 受信システムを決定する。  According to this configuration, in order to realize 3D television broadcasting, it is necessary to faithfully reproduce the transmitted signal on the receiver side. In 3D television broadcasting, the size of the left and right screens and Spacing is a particularly important issue. The invention of claim 1 is proposed in order to solve the above-mentioned problem. In the case where the reference size of the display of the receiver is determined and the left and right images are displayed in the same position on the display of the receiver, The transmission / reception system is determined so that the interval between the same corresponding points in the left and right images of the object at infinity is displayed at an interval equal to the human eye width.
請求項 2の発明は、 左右用の画像を左右夫々の眼用に分離して観る二 眼立体視方式の立体テレビジョンであって、 基準寸法のディスプレイの 同一位置に左右用の画像を重ねて表示し、 無限遠被写体像の同一対応点 の左右間距離を人間の眼幅と等しい間隔に表示する立体テレビジョ ン受 像機を提供する。 The invention of claim 2 is a stereoscopic television of a binocular stereoscopic system in which the left and right images are viewed separately for the left and right eyes, and the left and right images are overlapped at the same position on the reference size display. 3D television receiver that displays the distance between the left and right of the same corresponding point of the object image at infinity at equal intervals to the human eye width Provide an imager.
この構成によれば、 基準寸法のディスプレイを備えた立体テレビジョ ンのディスプレイ上に左右用の画像の中心を一致させて重ねて表示し、 無限遠距離に位置する被写体の左右像の同一対応点の間隔を人間の眼幅 寸法と同一間隔で表示することによって、 最適な立体感の状態を再現す る。  According to this configuration, the right and left images of a subject located at an infinite distance are displayed on a stereoscopic television display having a reference size display so that the centers of the left and right images are overlapped and displayed. The optimal three-dimensional state is reproduced by displaying the interval of the eye at the same interval as the human eye width dimension.
請求項 3の発明は、 基準寸法のディスプレイよりも狭い幅のディスプ レイを用い、 左用表示画面の右端部、 及ぴ右用の表示画面の左端部の 夫々に黒色の無表示部分を設け、 左右用夫々の表示画面幅中心同士をデ イスプレイ上で互いに離れる方向に変位表示することによって、 左右の 視野をディスプレイ表面以遠の位置で合致させ、 且つ、 無限遠被写体像 の同一対応点の左右間距離を人間の眼幅と等しい間隔に表示する立体テ レビジョン受像機を提供する。  The invention of claim 3 uses a display having a narrower width than the display of the reference size, and provides a black non-display portion on each of the right end portion of the left display screen and the left end portion of the right display screen. By displaying the center of each display screen width in a direction away from each other on the display, the left and right visual fields are matched at a position farther from the display surface, and the distance between the left and right of the same corresponding point of the object at infinity A stereoscopic television receiver that displays images at intervals equal to the human eye width is provided.
この構成によれば、 基準寸法よりも狭い幅のディスプレイを用いた立 体テレビジョンに適用されるもので、 左右用の表示画面の一部(端部)を 遮蔽 (黒色表示) し、 左右用の表示画面の中心間距離を離間させて表示 し、 左右の視野をディスプレイの位置を越える向こう側で合致させ、 同 時に無限遠被写体の左右像の同一対応点の間隔を人間の眼幅間隔と等し く表示することによって、 小さな画面サイズのテレビジョンを観ている にも拘らず、 基準寸法のディスプレイによる立体テレビジョンを推奨鑑 賞距離から観ている状態と同等の効果を得る。  According to this configuration, it is applied to a vertical television using a display having a width narrower than the reference dimension. A part (edge) of the left and right display screen is shielded (black display), and the left and right display is used. The distance between the centers of the display screens is displayed at a distance, the left and right fields of view are matched beyond the display position, and the distance between the same corresponding points in the left and right images of the infinity subject is the human eye width interval. By displaying the images equally, it is possible to obtain the same effect as when viewing a 3D television with a standard-sized display from the recommended viewing distance, despite watching a television with a small screen size.
請求項 4の発明は、 基準寸法のディスプレイよりも広い幅のディスプ レイを用い、 左用表示画面の左端部及び右用表示画面の右端部の夫々に 黒色の無表示部分を設け、 左右用夫々の表示画面幅中心同士をディスプ レイ上で互いに近付く方向更には互いに反対位置となる方向に変位表示 することによって、 左右の視野をディスプレイの表面以近で合致させ、 且つ、 無限遠被写体像の同一対応点の左右間距離を人間の眼幅と等しい 間隔に表示する立体テレビジョ ン受像機を提供する。 The invention of claim 4 uses a display having a width wider than that of the display of the reference size, and each of the left end portion of the left display screen and the right end portion of the right display screen. By providing a black non-display area and displaying the center of the left and right display screen widths in a direction close to each other on the display and in a direction opposite to each other, the left and right fields of view are matched closer to the display surface. And a three-dimensional television receiver that displays the distance between the left and right of the same corresponding point of the subject image at infinity at intervals equal to the human eye width.
この構成によれば、 基準寸法よりも広い幅のディスプレイを用いた立 体テレビジョンに適用されるもので、 左右用夫々の画面の一部(端部)を 対称的に遮蔽 (黒色表示) することによって、 左右用夫々の表示画面幅 中心同士を互いに近付く方向、 更には互いが反対の位置になるように移 動 (左用の画面中心は右方向に、 右用画面中心は左方向に移動) して表 示し、 左右の視野をディスプレイの手前側で合致させ、 同時に無限遠被 写体像の同一対応点の左右間隔を人間の眼幅寸法と等しい間隔に表示す ることによって基準サイズのディスプレイによる立体テレビジョンを推 奨鑑賞距離から観ている状態と同等の作用を奏する。 これは、 基準寸法 の立体テレビジョンを観る場合の推奨鑑賞距離よりも遠い距離から鑑賞 するもので、 テレビジョンと鑑賞者間とのスペースを広く設定できるこ とが特徴である。 従って、 多人数が同時に鑑賞する場合に使用すれば効 果的である。  According to this configuration, it is applied to a vertical television using a display having a width wider than a reference dimension, and a part (edge) of each of the left and right screens is shielded symmetrically (black display). The left and right display screen widths are moved in such a way that the centers move closer to each other, and so that they are opposite to each other (the left screen center moves to the right and the right screen center moves to the left) A standard-size display by matching the left and right fields of view on the front side of the display and simultaneously displaying the left and right distances of the same corresponding points in the infinitely distant subject image at the same distance as the human eye width dimension. The same effect as when viewing 3D television from the recommended viewing distance. This is for viewing from a distance that is longer than the recommended viewing distance when viewing a three-dimensional television of a standard size, and is characterized by the ability to set a wide space between the television and the viewer. Therefore, it is effective if it is used when many people are watching at the same time.
請求項 5の発明は、 前記請求項 2、 3、 及び 4において、 L C Dを使 用する立体テレビジョンのディスプレイ上に時分割表示される方式の立 体テレビジョンの左右用の映像を分離して見るためのメガネであって、 メガネの左右に偏光板を取り付け、 その左右夫々の偏光板の前方に液晶 板を設け、 受像機から発信される赤外線信号に同期して左右夫々の液晶 7 板を交互に駆動して左右の視野を分離して立体視するものであって、 更 に、 メガネに傾斜角センサを取り付けて、 鑑賞時に水平に対する傾き角 度を検出して視野閉時に於ける液晶の印加電圧をメガネの傾きに応じて 制御することによって、 視野閉時の遮光状態が常に最大となるように補 正する立体映像鑑賞用メガネを提供する。 The invention of claim 5 is characterized in that in the above-mentioned claims 2, 3, and 4, the left and right images of a stereoscopic television of a system that is time-divisionally displayed on a display of a stereoscopic television using an LCD are separated. A pair of glasses for viewing, with polarizing plates attached to the left and right of the glasses, a liquid crystal plate in front of each of the left and right polarizing plates, and the left and right liquid crystals synchronized with the infrared signal transmitted from the receiver 7 The plate is driven alternately to separate the left and right visual fields for stereoscopic viewing.Furthermore, an inclination angle sensor is attached to the glasses, and the angle of inclination with respect to the horizontal is detected during viewing, and the visual field is closed. By providing a liquid crystal display voltage that is controlled according to the tilt of the glasses, the glasses for viewing stereoscopic images are corrected so that the light-shielding state is always maximized when the field of view is closed.
この構成によれば、 特に L C Dパネル上に時分割表示する方式の立体 映像の左右用の画像を分離するための視野分離用のメガネであって、 メ ガネの前面に設けた液晶板に左右交互に電圧を印加することによってメ ガネの左右の液晶板を通過する光線の偏光方向を時系列で互いに直交す るように配向し、 その互いに直交する偏光をメガネの液晶板の後方に配 置する偏光板によって検光するものであって、 鑑賞者がメガネ (頭部) を傾けた場合でも、 メガネに設けた傾斜角センサによって傾き角を検出 し、 液晶板に印加する電圧を制御してクロストークの防止を図る。  According to this configuration, the glasses for visual field separation for separating the left and right images of a stereoscopic image that is displayed in a time-division manner on the LCD panel, in particular, are alternately placed on the liquid crystal plate provided on the front of the glasses. By applying a voltage to the glasses, the polarization directions of the light beams passing through the right and left liquid crystal plates of the glasses are aligned so as to be orthogonal to each other in time series, and the orthogonal polarizations are arranged behind the liquid crystal plate of the glasses. Even if the viewer tilts the glasses (head), the tilt angle is detected by the tilt angle sensor provided on the glasses, and the voltage applied to the liquid crystal plate is controlled to cross. Try to prevent talk.
立体テレビジョンにおいて無限遠被写体の左右の像の同一対応点の間 隔を人間の眼幅寸法と等しく表示すれば、 無限遠像が近距離の位置に見 えることがなく、 鑑賞距離が変化しても無限遠像の距離感が崩れること はない。  If the distance between the same corresponding points of the left and right images of an object at infinity is displayed in 3D television equal to the human eye width, the image at infinity will not be seen at a short distance, and the viewing distance will change. However, the sense of distance of the infinity image does not collapse.
また、 立体テレビジョン放送において、 ディスプレイの基準寸法を決 定し、 基準寸法のディスプレイにおいて左右の画面表示位置が一致する ように送信すれば、 受信側においてディスプレイサイズに関わらず無限 遠被写体の左右の像の同一対応点同士の間隔を人間の眼幅寸法と等しく 表示(無限遠基準表示)することも容易で、 立体テレビジョンの表示素子 として大小様々な幅寸法のディスプレイが混在して使用される場合であ つても混乱を生ずることが無い。 また、 無限遠被写体の左右の像の間隔 を眼幅と等しく表示する立体映像は、 最適な鑑賞距離 (推奨鑑賞距離) は存在するが、 実際には鑑賞距離を変えてもあまり違和感がない。 Also, in 3D television broadcasting, if the reference dimensions of the display are determined and transmitted so that the left and right screen display positions coincide with each other on the display of the reference dimensions, the left and right sides of an infinitely distant subject are displayed on the receiving side regardless of the display size. It is easy to display the distance between the same corresponding points in the image equal to the human eye width dimension (display based on infinity), and displays of various width dimensions are used together as display elements for 3D television. In case There will be no confusion. In addition, stereoscopic images that display the distance between the left and right images of an object at infinity equal to the eye width have an optimal viewing distance (recommended viewing distance), but in reality, there is not much discomfort even if the viewing distance is changed.
近年、 二眼立体視において左右の視野を分離するための偏光メガネに は、 クロストークを防止するために、 円偏光フィルタを用いる場合が多 い。 この円偏光板の問題点は、 価格が高いことである。 更に、 1 / 4 波 長板を使用するために、 透過する波長に偏りを生ずることである。 また、 最近、 L C D方式のテレビジョンが大画面化及び高精細化されている。 L C Dパネルから射出される光線は偏光(直線偏光)であるので、 その偏 光を利用すれば左右の視野の分離は比較的容易である。 しかし、 直線偏 光はディスプレイに対しメガネを傾けた場合にはクロス トークが発生す る恐れがある。 この問題は、 メガネに傾斜角センサを取り付けて、 偏光 メガネの前面に配置した液晶板に印加する電圧を制御すれば容易に解決 できる。 図面の簡単な説明  In recent years, polarizing glasses for separating the left and right visual fields in binocular stereoscopic vision often use a circular polarizing filter to prevent crosstalk. The problem with this circular polarizer is its high price. In addition, since a quarter wave plate is used, the transmitted wavelength is biased. Recently, LCD screen televisions have become larger and more detailed. Since the light emitted from the LCD panel is polarized light (linearly polarized light), it is relatively easy to separate the left and right visual fields using this polarization. However, linear polarization may cause crosstalk when the glasses are tilted with respect to the display. This problem can be easily solved by attaching a tilt angle sensor to the glasses and controlling the voltage applied to the liquid crystal plate placed in front of the polarizing glasses. Brief Description of Drawings
【図 1】 人間が、 実際の光景等を両眼で見ている状態の説明図。  [Fig. 1] An explanatory diagram of a state in which a human is viewing an actual scene or the like with both eyes.
【図 2】 一枚のディスプレイ上に同一位置に左右用の画像を重ねて 表示する立体テレビジョンの説明図。  FIG. 2 is an explanatory diagram of a stereoscopic television that displays left and right images superimposed at the same position on a single display.
【図 3】 人が物体の大きさを判断する状態図。  FIG. 3 is a state diagram in which a person determines the size of an object.
【図 4】 基準寸法よりも小さいサイズのディスプレイを使用するも、 基準寸法の大きさの画面に見える立体テレビジョンの説明図。  [Fig. 4] An illustration of a 3D television that uses a display with a size smaller than the reference size, but can be seen on the screen with the reference size.
【図 5】 基準寸法よりも小さいサイズのディスプレイを使用する場 合の画面補正の状態図。 [Figure 5] When using a display smaller than the standard size FIG.
【図 6】 基準寸法よりも大きなサイズのディスプレイを使用した立 体テレビジョンの説明図。  [Fig. 6] An explanatory diagram of a solid television using a display with a size larger than the standard size.
【図 7】 立体映像を撮影するステレオカメラの説明図。  FIG. 7 is an explanatory diagram of a stereo camera that captures a stereoscopic image.
【図 8】 (a ) 、 ( b ) は従来の立体テレビジョンの立体視の状態 説明図。 発明を実施するための最良の形態  [Fig. 8] (a) and (b) are diagrams for explaining the state of stereoscopic viewing of a conventional stereoscopic television. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は立体テレビジョン送信システムにおいて、 現実に近い、 自然 な奥行き感を得ることができ、 且つ、 鑑賞距離が変化しても無限遠又は 表示画面内の最遠の距離感が自然に見えるようにすると云う 目的を達成 するために、 左右離れた二点から撮影した左右二枚の映像を左右夫々の 眼用に分離して観る二眼立体視方式の立体テレビジョ ンに放送に於いて、 受像機のディスプレイ幅寸法を一定の基準寸法に決定し、 左右用夫々の 画面幅中心を一つのディスプレイ上の左右方向の同一位置に重ねて表示 し、 且つ、 無限遠被写体像の同一対応点の左右間距離を人間の眼幅と等 しい間隔に再現するように構成した立体テレビジョン送信システムを提 供することにより実現した。  The present invention provides a stereoscopic television transmission system that can obtain a natural and natural depth feeling, and that even when the viewing distance changes, the infinity or the farthest distance in the display screen can be seen naturally. In order to achieve this goal, in broadcasting to a stereoscopic television with a binocular stereoscopic system, two left and right images taken from two separate points are viewed separately for the left and right eyes. The display width dimension of the receiver is determined to be a fixed reference dimension, the center of the left and right screen widths are superimposed and displayed on the same position in the left and right direction on one display, and the same corresponding point of the object image at infinity is displayed. This was realized by providing a 3D television transmission system configured to reproduce the distance between the left and right at intervals equal to the human eye width.
本発明の基本的原理を図 1に示す。 図示の如く無限遠に位置する物体. 0の同一点から発射し、 人間の左右の眼 E L及ぴ£ に入射する光線は 互いに平行になる。 そして、 近距離に位置する物体の同一点から発射し た光線が左右の眼に入射する場合、 互いに離間する (近距離の物体及び その物体から発する光線の図示は省略) 。 図 1において人間の眼幅を B s = 65顏とし、 無限遠の物体距離を、 1000メートル (実際には有限距離 であるが、 写真撮影においては数 10メートルでも無限遠と表示する場合 もある) とすれば、 物体の同一点からの光線は互いに 65mm離れた間隔を もって左右の眼に入射する。 視点位置において B s = 65mmの間隔の光線 は、 例えば、 物体方向に 10メートル近付いた位置においても The basic principle of the present invention is shown in FIG. As shown in the figure, an object located at infinity. Light rays that are launched from the same point at 0 and incident on the left and right human eyes E L and are parallel to each other. When light rays emitted from the same point of an object located at a short distance are incident on the left and right eyes, they are separated from each other (illustration of a short distance object and light rays emitted from the object is omitted). In Figure 1, the human eye width is B If s = 65 mm and the object distance at infinity is 1000 meters (actually it is a finite distance, but in photography, it may be displayed as infinity at several tens of meters), the same point of the object Rays from the left and right eyes enter the left and right eyes at a distance of 65 mm. Rays with a spacing of B s = 65 mm at the viewpoint position, for example, even at a position approaching 10 meters in the object direction
B s = 65mm 65 X ( 1000 - 10) / 1000 = 64, 35mm  B s = 65mm 65 X (1000-10) / 1000 = 64, 35mm
の間隔であり、 人間の眼幅間隔とあまり違わない。 即ち、 人間は無限遠 の物体を常に並行に見ていることになる。 ならば、 立体テレビジョンに おいても無限遠被写体の左右像の表示間隔を人間の眼幅寸法と等しい間 隔に表示すべきである。 The distance between the eyes is not very different from that of human eyes. In other words, humans always see objects at infinity in parallel. If so, the display interval of the left and right images of the object at infinity should be displayed at an interval equal to the human eye width dimension even in stereoscopic television.
人間の眼幅間隔の標準寸法は、 63, 5mmと言われている。 しかし、 これ はィングリッシュサイズの 2, 5ィンチをメ トリックサイズに換算 ( 2, 5 X 25, 4 = 63, 5mm) したもので、 実際には、 65〜66mmが標準と思われるが、 ± 10パーセントの個差があると考えられるので、 65 ± 65 X 0, 1 ( 58〜7 2) 58〜72とする。 因みに市販の双眼鏡の接眼部の眼幅調節は 60~ 70匪 に設定されている。  The standard size of the human eye gap is said to be 63, 5mm. However, this is a metric size conversion of 2,5 inch to 2,5 x 25, 4 = 63, 5 mm. Actually, 65 to 66 mm seems to be the standard, but ± Since it is considered that there is an individual difference of 10%, 65 ± 65 X 0, 1 (58-7 2) 58-72. Incidentally, the eye width adjustment of the eyepiece of commercially available binoculars is set to 60 ~ 70mm.
図 2は、 立体視の状態を表したものである。 同図において、 立体映像 の左右用の画面中心をディスプレイ D。 上で一致させて表示する。 この 状態で最も近距離の被写体の左右像 C L及び C Rが同一位置に重なるよう に表示する (特開 2006- 303832及び特開 2006- 254074を参照) 、 同時に 無限遠被写体の左右の像 I L及ぴ I Rの間隔を人間の眼幅 B s と等しく表 示する場合、 適切な鑑賞距離を検討すれば、 人間が実際の物体を立体視 する場合において遠距離の物体と近距離の物体とを同時に融合視できる 0 Figure 2 shows the state of stereoscopic viewing. In the figure, display D is the center of the left and right 3D image. Match and display above. In this state, the left and right images C L and C R of the subject at the shortest distance are displayed so that they overlap at the same position (see JP 2006-303832 and JP 2006-254074).及Pi I interval when equally Table Shimesuru a human interpupillary distance B s of R, when considered appropriate viewing distance, and distant objects and near objects when humans stereoscopic real object Can be fused at the same time 0
11 範囲は、 遠距離を無限遠とすれば、 近距離は、 眼幅の 30倍〜 50倍が適当 と言われている。 The range is said to be 30 to 50 times the eye width if the distance is infinity.
眼幅を B s = 65mmとすれば、  If the eye width is B s = 65 mm,
30倍の場合は、 B s X 30 = 65 X 30 = 1950mm 約 2メートル  In the case of 30 times, B s X 30 = 65 X 30 = 1950mm About 2 meters
50倍の場合は、 B s X 50 = 65 X 50 = 3250mm 約 3, 5 メートル 立体視に於いて 3 , 5メートルの視距離は左右の視野の融合が極めて 容易な距離で、 2メートルは略限界値である。 そこで、 無限遠像の左右 の間隔を眼幅間隔と等しい B sの間隔に表示した場合、 ディスプレイ上 で同一位置(左右方向の)に表示(左右の視野を合致)するべき近距離の被 写体距離、 つまり、 ディスプレイを観るための推奨鑑賞距離 (図示の D R) で、 左右用の表示画面が視野内で一致して一つの窓のように見える仮 想の窓、 即ち "ステレオの窓" の見える距離である。 In the case of 50 times, B s X 50 = 65 X 50 = 3250mm About 3,5 meters In stereoscopic vision, the viewing distance of 3,5 meters is a distance where the fusion of the left and right visual fields is extremely easy, and 2 meters is abbreviated It is a limit value. Therefore, when the left and right intervals of an infinite distance image are displayed at B s intervals equal to the interpupillary interval, a short-distance image that should be displayed at the same position (left and right direction) on the display (match the left and right fields of view). Body window, that is, the recommended viewing distance for viewing the display (D R in the figure), and a virtual window that looks like a single window with the left and right display screens matching in the field of view. "It is the distance that can be seen.
上記 D Rは、 2〜 3 , 5メートルの何れに設定してもよいが、 推奨鑑 賞距離 D Rを著しく小さく設定した場合、 立体視においてス トレスが生ず るばかりではなく、 ディスプレイそのもの自体が小さく見える現象が発 生する (遮蔽を行わないにも拘らず)。 また、 推奨鑑賞距離 D Rを大きく 設定した場合、 撮影側に於いて推奨鑑賞距離 0 !^以近の物体が写る (撮影 の意図はなくても添景として写る場合がある) 機会が増大する。 即ち、 鑑賞時の視野内に推奨鑑賞距離 13 以近の像が写る場合であり、 このよう な場合、 左右用の画面 (ピクチャーフレーム) が二重にずれて見えるこ とが多い (特にテレビジョンに於いてはディスプレイそのものがずれて 見えるのは勿論こと、 その影響はテレビジョンの周囲の景況まで及ぶの で注意を要する) 。 以上を考慮すれば、 推奨鑑賞距離 D Rは 2, 5メート ルく らいが適当と思われるが、 その他、 テレビジョンを設置する部屋の 広さ等も考慮して決定すべきである。 The D R is 2-3, it may be set to any 5 meters, but if you set significantly smaller recommended Kan prize distances D R, rather than Rubakari stress is may arise from the stereoscopic display itself itself Appears to be small (even though it is not shielded). Also, if the recommended viewing distance D R is set to a large value, there will be an increased chance that an object closer than the recommended viewing distance of 0! ^ Will be captured on the shooting side (even if there is no shooting intention, it may be captured as a background). In other words, an image with a recommended viewing distance of 13 1¾ or less appears in the field of view during viewing. In such a case, the left and right screens (picture frames) often appear to be double-shifted (especially television). (In addition, the display itself appears to be shifted in this case, and the influence of it will extend to the surroundings of the television.) Considering the above, the recommended viewing distance D R is 2.5 meters It should be decided in consideration of the size of the room where the television is installed.
また、 無限遠の被写体の左右の像を眼幅 B sに等しく設定する場合、 ディスプレイサイズ (画面幅) は限定されるものではないが、 眼幅 B s の 20倍以上が望ましい。  In addition, when the left and right images of a subject at infinity are set equal to the eye width B s, the display size (screen width) is not limited, but 20 times or more of the eye width B s is desirable.
画面幅を Wとすれば、 If the screen width is W,
B s =65 W = 65X20=1300mm B s = 65 W = 65X20 = 1300mm
画面幅 Wは約 1300mmとなる。 The screen width W is about 1300mm.
一方、 迫力ある大画面として観るためには、 水平鑑賞画角 (ディスプ レイの両端と瞳とを結ぶ線分の角度) を ]3とすれば 0 =40° く らいが理 想である。  On the other hand, in order to view it as a powerful large screen, if the horizontal viewing angle (the angle of the line connecting both ends of the display and the pupil) is] 3, the ideal is 0 = 40 °.
水平鑑賞画角を /3として、 Set the horizontal viewing angle to / 3,
推奨鑑賞距離を DR Recommended viewing distance D R
基準画面幅 (基準寸法) を W。とすれば、  The reference screen width (reference dimension) is W. given that,
W。 = 2 D R · tan( /3 I 2 ) W. = 2 D R · tan (/ 3 I 2)
推奨鑑賞距離 DR = 2500とすれば、 If the recommended viewing distance D R = 2500,
W0 = 2 X 2500 X tan (40/ 2 ) tan20° =0, 363970232 W 0 = 2 X 2500 X tan (40/2) tan20 ° = 0, 363970232
W。= 2 X2500XO, 36397= 1800mm W. = 2 X2500XO, 36397 = 1800mm
1800mmの幅のディスプレイを必要とする。 因みにディスプレイの縦横比 を 3対 4とすれば斜辺(対角線)の長さ比は 5となり、 斜辺の実寸法は、 1800X 5 /4 =2250mm 2250/25, 4 = 88, 58 約 90インチサイズを必要 とする。  Requires a 1800mm wide display. By the way, if the aspect ratio of the display is 3 to 4, the length ratio of the hypotenuse (diagonal line) is 5, and the actual dimension of the hypotenuse is 1800X 5/4 = 2250mm 2250/25, 4 = 88, 58 about 90 inch size I need.
以上のことから、 立体テレビジョ ン放送を実施する場合において、 無 限遠被写体の左右の像を人間の眼幅寸法と同一で、 且つ、 最も近い距離 の被写体の左右の像を同一位置に重ねて表示するように送信すべきであ る。 そして、 画面サイズが基準寸法と異なる受像機で同一放送波を受信 する場合でも、 個々の受像機を、 無限遠被写体の左右の画像の表示間隔 が人間の眼幅寸法 B s と等しく表示されるように設定するべきである。 図 3は、 人が物体の大きさを判断する状態図で、 図示の視角 eが等し ければ見かけ上の大きさは等しく見える。 また、 同じ大きさの物体でも 眼に近いほど大きく見える。 よって、 図 4において基準寸法のディスプ レイ D。と、 その 1 / 2の距離に置かれている 1 / 2幅のディスプレイ D 丄 とでは見かけ上、 同一サイズに見える。 即ち、 2, 5メートルの距離に 視る Wo == 1800mm幅のディスプレイと 1 , 25メートルの距離に視る W i = 900iMi幅のディスプレイとは同一サイズに見える。 また、 ディスプレイ D 。を に置き換えた場合、 当然、 映像の大きさも比例縮小表示される力 縮小比と鑑賞距離との比が等しいので見かけ上の像の大きさも等しくな る。 このように比較的狭い幅のディスプレイを用いた立体テレビジョン であっても幅広の立体テレビジョンと同等の大きさに立体像を視ること が可能である。 そして、 この場合も無限遠被写体の左右の像の間隔を人 間の眼幅と等しく表示すれば、 無限遠の左右用の像夫々が鑑賞者の左右 夫々の眼に平行に入射するので問題はない。 Based on the above, there is no need for 3D television broadcasting. The left and right images of the far-field subject should be transmitted so that the left and right images of the subject with the same distance as the human eye width and the closest distance are displayed in the same position. And even when the same broadcast wave is received by a receiver whose screen size is different from the reference size, the display interval of the left and right images of the infinity subject is displayed equal to the human eye width dimension B s on each receiver. Should be set to Fig. 3 is a state diagram in which a person determines the size of an object. If the viewing angles e shown in the figure are equal, the apparent sizes appear to be equal. Also, even objects of the same size appear larger as they are closer to the eyes. Therefore, display D of the reference dimension in Fig. 4. And the half-width display D れ placed at a distance of 1/2 looks apparently the same size. That is, a W o == 1800mm wide display viewed at a distance of 2.5 meters and a W i = 900iMi wide display viewed at a distance of 1, 25 meters appear to be the same size. Display D. When is replaced with, the size of the image is naturally the same as the ratio of the power reduction ratio and the viewing distance, which are proportionally reduced, and the viewing distance. Thus, even a stereoscopic television using a display with a relatively narrow width can view a stereoscopic image in the same size as a wide stereoscopic television. In this case as well, if the distance between the left and right images of the infinity subject is displayed equal to the human eye width, the left and right images at infinity will be incident in parallel to the left and right eyes of the viewer. Absent.
図 4において、 基準寸法のディスプレイ D。の幅 1800mmに対し、 その 基準寸法の 1/ 2幅のディスプレイ D jを使用した例で、 ディスプレイ D! 上では表示される像も比例縮小表示されるので、 ディスプレイ D。 上で 眼幅 B s と等しい寸法の無限遠被写体の左右の像の間隔は、 本来 1/2に 比例縮小されて図示の B s /2 = b s の間隔に表示される。 それを、 図示 するように幅狭サイズのディスプレイ上においても無限遠の左右像の間 隔を眼幅に等しい間隔の B sの寸法に表示するために左右用夫々の画面 全体を移動させれば、 左右用の画面の中心間距離は B s /2 = b の量、 互 いに離れることになる。 従って、 基準寸法のディスプレイ D。上では同じ 位置に重ねて表示されるべく最短距離の被写体の左右の像 (図 2の と C R ) は、 ディスプレイ D。上では図 4に図示の C i及び C rの夫々の位置 に bの間隔に離れて表示される。 図 4において、 ディスプレイ 上に無 限遠の被写体像 I i及び I f を眼幅間隔 Bに等しい間隔で表示し、 デイス プレイ D。上では同一位置に合致して映るべき左右の像 C ,及び Crを間隔 b sで表示し 1, 25メートルの距離から立体視すれば、 2, 5 メートルの位 置にディスプレイ D。を置いた場合と同等に見えることになる。 In Figure 4, reference dimension display D. An example of using a display D j that has a width of 1/2 the standard dimension for a width of 1800 mm. Display D! In the above, the displayed image is also displayed in proportional reduction, so display D. Above, the distance between the left and right images of an infinite subject with dimensions equal to the eye width B s is essentially 1/2. Proportionally reduced and displayed at an interval of B s / 2 = bs in the figure. If the entire left and right screens are moved in order to display the distance between the left and right images at infinity on the narrow size display as shown in the figure, the size of B s is equal to the eye width. The distance between the centers of the left and right screens will be away from each other by the amount B s / 2 = b. Therefore, display D of reference dimensions. Right and left images of the shortest distance to the subject to the above are displayed over the same position (FIG. 2's and C R), the display D. In the above, they are displayed at the positions of C i and C r shown in FIG. In Fig. 4, the infinitely distant subject images I i and If are displayed on the display at intervals equal to the interpupillary distance B, and display D. If stereoscopic from the display 1, 25 m length of the image C of the left and right to reflected conform to the same position, and the C r at intervals bs is above 2, 5m position on the display D. It will look the same as if you put.
しかし、 ディスプレイサイズの縮小は問題を残す。 図 5は立体視の状 態で基準寸法のディスプレイ D。 の A〜C間に左用の映像を、 B〜D間 には右用の映像が映るように調整された送信信号を図示のディスプレイ に表示する場合、 左用の映像 Piは図示の a〜c間、 右用の映像 Prは b 〜d間に見えるようにしなければならない。 そのためには左用の映像は図 示の c〜d間、 右用は a〜b間を黒色に表示(無表示)する必要がある。 図 5において基準寸法のディスプレイ D。の両端と視点の中央 Oとを結ぶ線 (図示の一点鎖線)は推奨鑑賞距離 D Rの 1/2の距離に位置するディスプレ ィ 13 1上において、 a b 及び c d夫々の中間点を通り、 この左右の一点 鎖線によって挟むディスプレイ 上の長さが基準寸法ディスプレイ D。 の 1 / 2の寸法で、 それは、 図示の W であるが、 実際のディスプレイは 0970 However, reducing the display size remains a problem. Figure 5 shows the display D of the standard dimensions in a stereoscopic view. When the transmission signal adjusted so that the left image is displayed between A and C and the right image is displayed between B and D is displayed on the display, the left image Pi is between a and c. , the video P r for the right must be visible between the b ~d. For this purpose, the left image must be displayed black (between c and d), and the right image must be displayed black (between a and b). Reference dimension display D in Figure 5. Across the viewpoint of the line connecting the center O (dashed line illustrated) in the Display I 13 1 located half the distance of the recommended viewing distance D R, through the midpoint of ab and cd, respectively, the The display on the display sandwiched between the dashed lines on the left and right is the reference dimension display D. 1/2 of the dimension, which is W as shown, but the actual display is 0970
15 で図示の点 a〜点 d まで延展しなければならない。 図示するよう に延展量は、 左右合計で B s /2となる。 また、 左用の画面の。〜 d,右用 の画面 a〜b夫々の遮蔽(黒色表示)量も B s / 2となる。 It must be extended from point a to point d in Fig. 15. As shown in the figure, the extension amount is B s / 2 in total on the left and right. Also for the screen for the left. ~ D, right screens a ~ b are also shielded (black display) by B s / 2.
また、 上記とは反対に例えば、 図 6に図示するように基準ディスプレ ィ D。の幅 W。 = 1800mm、 推奨鑑賞距離 DR= 2 , 5メートルで送信された 立体映像を 2倍幅のディスプレイ W2 = 3600mmに表示して鑑賞距離 DRを 2倍の 5メートルで鑑賞する場合にも無限遠の被写体の左右の像は人間 の眼幅と等しい寸法の B sの幅に設定するべきである。 この場合も、 映 像は画面サイズに応じて比例拡大されるが鑑賞距離も比例しているので 基準寸法ディスプレイ W。を推奨鑑賞距離 DR =2, 5メ一トルの距離から 見た状態と同様に見える。 しかし、 図 6に図示の左用の画像 PLは B 〜 D 'に映り右用画像 PRは A '〜 'に映るようにしなければならない。 よって左用の画面はディスプレイの A '〜B 'を右用の画面は C '—D 一を夫々遮蔽 (黒色表示) しなければならない。 図示で明らかなように 基準寸法よりも大きい寸法のディスプレイを使用する場合、 例えば 2倍 に拡幅する場合、 基準寸法のディスプレイの D2の幅 W2の 2倍よりも更 に眼幅寸法 B sを付加した広幅のディスプレイ W2 'が要求される。 On the other hand, for example, reference display D as shown in Figure 6. Width W. = 1800mm, recommended viewing distance D R = 2, 5 meters of 3D images W 2 = 3600mm display and viewing distance D R is doubled and viewing is 5 meters The left and right images of a distant subject should be set to a width of B s with dimensions equal to the human eye width. In this case as well, the image is proportionally enlarged according to the screen size, but the viewing distance is also proportional. Recommended viewing distance D R = 2, It looks the same as seen from a distance of 5 meters. However, the left image PL shown in FIG. 6 must appear in B to D ', and the right image PR must appear in A' to '. Therefore, the screen for the left side must be shielded (black display) for A 'to B' on the display, and the screen for the right side is C'-D. As shown in the figure, when using a display with a size larger than the reference size, for example, when expanding to 2 times, the eye width size B s is more than twice the width W 2 of D 2 of the reference size display. A wide display W 2 ′ with an added is required.
また、 図 6において基準寸法のディスプレイ D。上では左右用の同一位 置に重なって表示されるべく最短撮影距離の被写体像 CL及び CRは拡幅 サイズのディスプレイ D 2の夫々 C L及び C Rの位置に映り、 左右用の像 が互いに反対位置に表示されるが、 図示するように立体視に於いて近距 離の左右像は、 基準寸法ディスプレイ D。の仮想位置で交叉し、 あたかも 基準寸法のディスプレイ D。を推奨鑑賞距離 DRから観ている如く 自然に 70970 In addition, reference dimension display D in Figure 6. The above reflected in positions of the same position the object image of the shortest photographing distance to be displayed superimposed on the location C L and C R are each CL and CR of the display D 2 widening size for the right and left, opposite the image for the left and right with each other Although it is displayed at the position, as shown in the figure, the right and left images at close distance in the stereoscopic view are the reference dimension display D. Crossed at the virtual position of, as if it were the reference display D. As you can see from the recommended viewing distance D R naturally 70970
16 見える。 16 I see.
立体放送を受信するためのテレビジョンは、 基準ディスプレイサイズ を決定した場合、 実際に使用するディスプレイの幅は基準よりも大きい 場合でも、 または、 小さい場合であっても、 画面の一部を遮蔽 (黒色表 示) しなければならない。 よって、 基準寸法 W Q 推奨鑑賞距離 D R の 数値を決定するにあたっては、 より多くの要素から検討する必要がある。 何故ならば、 一般的な家庭では平均何人で鑑賞されるか、 及び設置する 部屋の広さ等はディスプレイサイズゃ推奨鑑賞距離を決定するにあたつ て重要な要素となるからである。 When a standard display size is determined, a television for receiving 3D broadcasts may block a part of the screen even if the actual display width is larger or smaller than the standard. Black). Therefore, it is necessary to consider more factors when determining the numerical value of the reference dimension W Q recommended viewing distance D R. This is because the average number of people in a typical home and the size of the installed room are important factors in determining the recommended viewing distance.
図 7は、 立体テレビジョン放送を実施する場合の TVカメラのー実施例 で、 無限遠の被写体から左右の撮影レンズに入射する光線は互いに並行 であるため左右の撮像素子 に投影される無限遠の像の間隔は左右の撮 影レンズの間隔に等しくなる。 左右のレンズ間隔(レンズデイスタンス) を D Lそして、 左右の撮像素子の間隔(センサディスタンス) D sは、 以下 のよ うに決定される。 Figure 7 shows an example of a TV camera when performing stereoscopic television broadcasting. Light rays incident on the left and right imaging lenses from an object at infinity are parallel to each other, so they are projected onto the left and right image sensors. The distance between the images is equal to the distance between the left and right imaging lenses. The distance between the left and right lenses (lens distance) is D L and the distance between the left and right image sensors (sensor distance) D s is determined as follows.
撮像素子上で左右の視野が合致する距離 D cを決定すれば、 If the distance D c where the left and right fields of view match on the image sensor is determined,
図示において距離に対する投影比は、 r = f /D cであり、 In the figure, the projection ratio with respect to distance is r = f / D c ,
センサディスタンス D sは、 D s 二 D L + D L · r となる。 The sensor distance D s is D s 2 D L + D L · r.
上記数式で決定される状態で、 左右夫々の撮像素子上に投影された画像 を送信し、 受像機側で左右夫々の画面に表示すればよい。 The image projected on the left and right imaging elements in a state determined by the above formula may be transmitted and displayed on the left and right screens on the receiver side.
図 7のカメラにおいて、 図示の距離 D cよりも遠い被写体であれば、 撮 像レンズ及び撮像素子夫々の位置関係は図示の一定関係でよい(焦点調節 が必要であるが説明を省略)が、 それよりも近い距離の物体が撮影の視野 に入る場合、 その物体の像は、 画面から飛び出して見え、 また、 多くの 場合、 立体視において、 一つに見える左右のピクチャーフレームが二重 に見え鑑賞者はス トレス感を覚える。 従って、 通常は、 推奨鑑賞距離 (受像機側から見て同等) 以近の物体を撮影視野に入れてはならない。 なお、 TVカメラはズームレンズを備えているものが多い。 ズーミング を行う状態において、 D S = D L + D L ' r の関係であり、 センサディ スタンス及びレンズディスタンスは一定であるので図示の D cは投影比 r によって決定される。 ズーミングにおいて、 レンズディスタンス及ぴセ ンサディスタンスを一定にするためには投影比 rを一定にする必要があ る。 投影比は r = f /D cの関係であるので、 図示の距離 D cはズーム操作 に伴って変化することになる。 In the camera of FIG. 7, if the subject is farther than the distance D c shown in the figure, the positional relationship between the imaging lens and the image sensor may be the fixed relation shown in the figure (focus adjustment is necessary but explanation is omitted) Objects closer than that are the field of view for shooting When entering, the image of the object appears to pop out of the screen, and in many cases, the viewer sees a sense of stress in stereoscopic view because the left and right picture frames appear double. Therefore, normally, objects near the recommended viewing distance (same as viewed from the receiver) should not be in the field of view. Many TV cameras are equipped with a zoom lens. In the zooming state, the relationship D S = D L + D L ′ r is satisfied, and the sensor distance and the lens distance are constant, so that D c shown in the figure is determined by the projection ratio r. In zooming, the projection ratio r must be constant in order to make the lens distance and sensor distance constant. Since the projection ratio has a relationship of r = f / D c , the distance D c shown in the figure changes with the zoom operation.
即ち、 "ステレオの窓" は、 焦点距離の小さいワイ ド側では、 近くに設 定され、 長いテレ側では遠くに設定される。 · In other words, the “stereo window” is set closer on the wide focal length side and farther on the longer telephoto side. ·
前項を、 より具体的に詳述すれば、 一例として、 基準寸法ディスプレ ィ D。の幅 W Q = 1800mmとして、 推奨鑑賞距離 D R = 2500mm とする立体 テレビジョン用立体映像を撮影するカメラの撮像素子の幅が l 8mmであり、 撮影レンズの焦点距離が 25mmであったとすれば、 撮像素子の幅はディプ レイの幅の 1/100になる。 今、 反対に、 テレビジョンが実際の光景と考 えれば、 1800mm幅の窓が実在し、 その窓を 2500mmの距離から撮影する状 態と同等になる。 その場合、 焦点距離が 25mmのレンズは 2500匪の撮影 距離に対して投影比が 1/100になる。 1800mm幅のディスプレイ上での無 限遠像の間隔と近景の像間隔 (近景の左右の像は基準ディスプレイ D。の 位置で同じ位置に重なる) との差 6 5 ramは、 1 8 mm幅の撮像素子上では 投影比が 1/100であるので 65/100mmの差となる。 To give a more detailed explanation of the previous section, reference dimension display D is an example. Width W Q = 1800mm, Recommended viewing distance D R = 2500mm Stereo camera for 3D image shooting The width of the image sensor is l 8 mm, and the focal length of the photographic lens is 25 mm. For example, the image sensor width is 1/100 of the display width. Now, on the contrary, if a television is considered an actual scene, a 1800mm wide window exists and is equivalent to a situation where the window is photographed from a distance of 2500mm. In this case, a lens with a focal length of 25 mm has a projection ratio of 1/100 for a shooting distance of 2500 mm. The difference between the infinite distance on the 1800mm wide display and the near view distance (the left and right images of the near view overlap at the same position at the position of the reference display D.) 6 5 ram is 18 mm wide On the image sensor Since the projection ratio is 1/100, the difference is 65 / 100mm.
従って、 レンズディスタンス D Lを 65mmとすれば、 センサディスタンス D sは、 Therefore, if the lens distance D L is 65 mm, the sensor distance D s is
D S = D L + D L - r = 65 + 65/100 = 65, 65mmになる。 D S = D L + D L -r = 65 + 65/100 = 65, 65mm.
もし、 このカメラがズームレンズであり、 焦点距離を 100mmに設定すれ ば、 投影比が 1 /100になる図示の D cは、 100/0, 01 = 10000 = 10メートル となる。 つまり、 ステレオの窓は 10mの位置に設定される。 しかし、 実 際にはディスプレイ上でステレオの窓が 10メートルの位置に見えるので はなく、 10メートルの位置のものが拡大されて 2 , 5メートルの位置に あるように見える。 同様に撮影レンズの焦点距離を短い方向に例えば 10m mに設定すれば、 投影比 rが 1/100 となる図示の D cの距離は、 10/0, 01= 1000 = 1メートルとなる。 1メートルの位置のものが 2 , 5メートルの位 置に見える。 これは、 前後に狭い場所であっても、 1メートルまで近づけ る利点となる。 If this camera is a zoom lens and the focal length is set to 100 mm, the D c shown in the figure, where the projection ratio is 1/100, is 100/0, 01 = 10000 = 10 meters. In other words, the stereo window is set at 10m. However, in reality, the stereo window does not appear at 10 meters on the display, but the one at 10 meters is magnified and appears to be at 2.5 meters. Similarly, if the focal length of the taking lens is set to 10 mm in the short direction, for example, the distance of D c shown in the figure where the projection ratio r is 1/100 is 10/0, 01 = 1000 = 1 meter. The one meter position appears to be 2.5 or 5 meters. This is an advantage of being close to 1 meter even in a narrow space.
以上のように、 撮影時にはズーミングに伴って "ステレオの窓" の設 定距離が自ずと変化するが、 撮影時にステレオの窓以近の物体が視野に 入らないよう注意が必要である。 しかし、 従来のステレオカメラではス テレオの窓の設定距離を視認することが不可能であったため、 撮影者及 び編集者の勘に頼らざるを得なかったが、 本出願人が既に提案する特開 2 006-303832 及び、 特開 2006-254074のカメラは、 ファインダーの視準 パターンによってステレオの窓の設定距離を視認できるのでズームレン ズを使用しても又は、 レンズを自由に交換しても常に最適撮影状態を維 持できる。 また、 ステレオカメラには左右のレンズの光軸間距離を標準のものよ りも著しく増大させた、 ハイパーステレオ及び、 標準のものよりも狭め たマクロステレオがあるが、 ハイパーステレオでも無限遠距離から発射 され左右の撮影レンズに入射する光線は互いに並行であるので、 左右レ ンズ夫々の中心で捉えた像点を鑑賞時において人間の左右の眼幅間隔に 表示すればよい。 As described above, the setting distance of the “stereo window” naturally changes with zooming during shooting, but care must be taken so that objects near the stereo window do not enter the field of view when shooting. However, since it was impossible to visually recognize the set distance of the stereo window with a conventional stereo camera, it was necessary to rely on the intuition of the photographer and the editor. Open 2 006-303832 and JP 2006-254074 cameras can always see the set distance of the stereo window according to the collimation pattern of the finder, so it is always possible to use the zoom lens or change the lens freely. The optimal shooting state can be maintained. Stereo cameras include hyper stereo and macro stereo with a narrower distance than the standard one, with the distance between the optical axes of the left and right lenses being significantly greater than the standard one. Since the light rays that are emitted and incident on the left and right photographing lenses are parallel to each other, the image point captured at the center of each of the left and right lenses can be displayed in the distance between the left and right human eyes when viewing.
標準的なステレオカメラを使用しても、 比較的近距離の被写体のみを 撮影する場合がある。 このよ うな場合、 撮影素子上に投影される像全体 の中心間距離が増大し左右の視野が完全には融合しない問題が生じる。 本出願人は、 この問題の解決方法を既に提案している。 その方法は撮像 素子の全幅よりもやや狭い範囲を常に読み出して使用し撮影距離が小さ い場合、 左右の撮像素子の読み出し範囲が互いに外側になる方向にスク ロール調節することである。 その調節状態はカメラのモニタによって視 認される。 (特開 2006- 303832 及ぴ特開 2006- 254074を参照) なお、 マ ク口撮影等近距離の被写体のみ映る場合、 視野内の最遠点を無限遠と同 等に极うべきである。  Even when using a standard stereo camera, there are cases where only a relatively close subject is shot. In such a case, there arises a problem that the distance between the centers of the entire image projected on the imaging element increases and the left and right visual fields are not completely fused. The applicant has already proposed a solution to this problem. The method is to always read and use a range that is slightly narrower than the full width of the image sensor and adjust the scroll in the direction in which the read range of the left and right image sensors is outside each other when the shooting distance is small. The adjustment status is monitored by the camera monitor. (Refer to JP 2006-303832 and JP 2006-254074.) Note that when only a subject at a short distance, such as shooting at the mouth, is taken, the farthest point in the field of view should be as large as infinity.
請求項 5の実施例 : L C Dパネルから射出する光線は振幅方向が一定 方向の偏光である。 メガネの左右夫々に前記 L C Dパネルの表面の偏光 板と方向が直交する偏光板を取り付けて L C Dを見れば左右両方の視野 とも閉状態になる。 そのメガネの左右夫々の前面に 9 0 ° 又は 2 7 0 ° 捩れた液晶板を取り付ければ L C Dからの偏光は液晶により偏光の方向 が 9 0 ° 又は、 2 7 0 ° 配向されて左右の視野は両方ともに開となり、 クロストーク状態になる (メガネを使用しないときと同様に見える) そ して、 メガネの液晶板に電圧を印加すれば液晶は捩れた状態から直線状 態に緊張され液晶板を取り外した状態と同様になり視野は閉状態になる。 そこで、 L C D上に左右用の映像を時分割で交互に表示し、 同時に赤外 線で同期信号を発し、 メガネの液晶板に印加する電圧を赤外線に同期さ せて左右の視野を交互に開閉すれば、 左右の視野を分離することができ . る。 - 上述の方法は、 C R T、 や P D Pで既に実施されている方法と同一原 理であるが、 C R T、 や P D P等の場合、 射出する光線は偏光ではない のでメガネの前面に更に一枚偏光板を必要とする。 また、 直線偏光はデ イスプレイに対しメガネを傾けた場合、 左右互いの視野が漏光しクロス トークする。 クロストークを防止するために最近では、 円偏光フィルタ が使用されているが、 円偏光フィルタは、 λ / 4板を使用するために価格 が高価(最近は高分子幕で作られているため必ずしも高価といえないが) なことと、 透過光の波長に偏りがある等の問題がある。 The embodiment of claim 5: The light beam emitted from the LCD panel is polarized light having a constant amplitude direction. If a polarizing plate whose direction is perpendicular to the polarizing plate on the surface of the LCD panel is attached to the left and right sides of the glasses, both the left and right fields of view are closed. If a 90 ° or 2700 ° twisted liquid crystal plate is attached to the left and right front surfaces of the glasses, the polarization from the LCD is oriented by 90 ° or 2700 ° due to the liquid crystal, and the left and right fields of view are Both are open and in a crosstalk state (looks the same as when glasses are not used) If a voltage is applied to the liquid crystal plate of the glasses, the liquid crystal is strained from a twisted state to a linear state, and the field of view is closed, similar to the state in which the liquid crystal plate is removed. Therefore, left and right images are displayed alternately on the LCD in a time-division manner, and at the same time, a sync signal is generated by infrared rays, and the voltage applied to the LCD panel of the glasses is synchronized with the infrared rays to open and close the left and right visual fields alternately. By doing so, the left and right visual fields can be separated. -The above method is the same principle as the method already implemented in CRT and PDP. However, in the case of CRT and PDP, the emitted light is not polarized light. Need. In addition, when the glasses are tilted with respect to the display, linearly polarized light leaks from the left and right fields and crosstalks. Recently, circular polarizing filters have been used to prevent crosstalk, but circular polarizing filters are expensive due to the use of λ / 4 plates (because they are recently made with polymer curtains, not necessarily However, it is not expensive, and there are problems such as bias in the wavelength of transmitted light.
前記の諸問題を解決するためには、 偏光メガネに傾斜角センサを取り 付けて、 メガネの傾斜角に応じてメガネの液晶板に印加する電圧を制御 すれば、 メガネを傾けた場合でも閉時の視野状態が完全に遮蔽状態とな りクロストークの発生を防止できる。 産業上の利用可能性  To solve the above problems, attach a tilt angle sensor to the polarizing glasses and control the voltage applied to the LCD panel of the glasses according to the tilt angle of the glasses. The field of view of the camera is completely shielded, and crosstalk can be prevented. Industrial applicability
以上のように、 本発明にかかる立体テレビジョンシステム及び立体テ レビジョン受像並びに立体映像観賞用メガネは、 ステレオビデオカメラ によって撮影した立体映像を録画再生表示するため、 及び、 立体テレビ ジョン放送用に供されるのに適している。 As described above, the stereoscopic television system, the stereoscopic television receiving image, and the stereoscopic video viewing glasses according to the present invention record and reproduce and display the stereoscopic video captured by the stereo video camera. Suitable for use in John Broadcasting.

Claims

請求の範囲 左右離れた二点から撮影した左右二枚の映像を左右夫々の眼用に分 離して観る二眼立体視方式の立体テレビジョン放送において、 受像 機のディスプレイ幅寸法を一定の基準寸法に決定し、 左右用夫々の 画面幅中心を一つのディスプレイ上の左右方向の同一位置に重ねて 表示し、 且つ、 無限遠被写体像の同一対応点の左右間距離を人間の 眼幅と等しい間隔に再現するように構成した立体テレビジョン送信 システム。 Claims In binocular stereoscopic television broadcasting, where the left and right images taken from two points separated from each other are viewed separately for the left and right eyes, the display width of the receiver is a fixed reference size. The left and right screen width centers are displayed at the same position in the left and right direction on one display, and the distance between the left and right of the same corresponding point in the infinity subject image is equal to the human eye width. 3D television transmission system configured to reproduce
左右用の画像を左右夫々の眼用に分離して観る二眼立体視方式の立 体テレビジョンであって、 基準寸法のディスプレイの同一位置に左 右用の画像を重ねて表示し、 無限遠被写体像の同一対応点の左右間 距離を人間の眼幅と等しい間隔に表示する立体テレビジョン受像機。 基準寸法のディスプレイより も狭い幅のディスプレイを用い、 左用 表示画面の右端部、 及ぴ右用の表示画面の左端部の夫々に黒色の無 表示部分を設け、 左右用夫々の表示画面幅中心同士をディスプレイ 上で互いに離れる方向に変位表示することによって、 左右の視野を ディスプレイ表面以遠の位置で合致させ、 且つ、 無限遠被写体像の 同一対応点の左右間距離を人間の眼幅と等しい間隔に表示する立体 テレビジョン受像機。 This is a binocular stereoscopic TV that separates the left and right images for the left and right eyes, and displays the left and right images superimposed at the same position on the reference size display. A stereoscopic television receiver that displays the distance between the left and right of the same corresponding point in the subject image at an interval equal to the human eye width. Use a display with a narrower width than the standard size display, and provide a black non-display area at the right edge of the left display screen and the left edge of the right display screen. The left and right fields of view are matched at positions farther away from the display surface, and the distance between the left and right of the same corresponding point in the infinity subject image is set equal to the human eye width. 3D television receiver to display.
基準寸法のディスプレイよりも広い幅のディスプレイを用い、 左用 表示画面の左端部及び右用表示画面の右端部の夫々に黒色の無表示 部分を設け、 左右用夫々の表示画面幅中心同士をディスプレイ上で 互いに近付く方向更には互いに反対位置となる方向に変位表示する ことによって、 左右の視野をディスプレイの表面以近で合致させ、 且つ、 無限遠被写体像の同一対応点の左右間距離を人間の眼幅と等 しい間隔に表示する立体テレビジョン受像機。 Use a display with a width wider than the standard size display, and provide a black non-display area at the left edge of the left display screen and the right edge of the right display screen, with the left and right display screen width centers on the display. so By displaying displacement in the direction of approaching each other and in the direction opposite to each other, the left and right fields of view are matched near the surface of the display, and the distance between the left and right of the same corresponding point of the infinite object image is the human eye width. A three-dimensional television receiver that displays images at equal intervals.
前記請求項 2、 3、 及び 4 において、 L C Dを使用する立体テレビ ジョンのディスプレイ上に.時分割表示される方式の立体テレビジョ ンの左右用の映像を分離して見るためのメガネであって、 メガネの 左右に偏光板を取り付け、 その左右夫々の偏光板の前方に液晶板を 設け、 受像機から発信される赤外線信号に同期して左右夫々の液晶 板を交互に駆動して左右の視野を分離して立体視するものであって、 更に、 メガネに傾斜角センサを取り付けて、 鑑賞時に水平に対する 傾き角度を検出して視野閉時に於ける液晶の印加電圧をメガネの傾 きに応じて制御することによって、 視野閉時の遮光状態が常に最大 となるように補正する立体映像観賞用メガネ。 5. The glasses according to claim 2, 3, and 4 for separately viewing the right and left images of a stereoscopic television of a time-division display type on a stereoscopic television display using an LCD. A polarizing plate is attached to the left and right of the glasses, and a liquid crystal plate is provided in front of each of the left and right polarizing plates. The left and right visual fields are driven alternately in synchronization with the infrared signal transmitted from the receiver. In addition, a tilt angle sensor is attached to the glasses to detect the tilt angle with respect to the horizontal during viewing, and the voltage applied to the liquid crystal when the field of view is closed depends on the tilt of the glasses. 3D video viewing glasses that are controlled so that the light-shielding state is always maximized when the field of view is closed.
PCT/JP2007/070970 2007-07-04 2007-10-22 Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses WO2009004742A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
DE112007003572T DE112007003572T5 (en) 2007-07-04 2007-10-22 Stereo TV system, stereo receiver and glasses for stereo images
CN200780053518XA CN101690247B (en) 2007-07-04 2007-10-22 Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses
GB0920300.1A GB2463395B (en) 2007-07-04 2007-10-22 Stereoscopic television receiver
BRPI0721824-9A BRPI0721824B1 (en) 2007-07-04 2007-10-22 “STEREOSCOPIC TELEVISION TRANSMISSION SYSTEMS”
US12/452,096 US8451326B2 (en) 2007-07-04 2007-10-22 Three-dimensional television system, and three-dimensional television receiver
EP07830704.8A EP2173106B1 (en) 2007-07-04 2007-10-22 Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses
KR1020107002194A KR101195192B1 (en) 2007-07-04 2007-10-22 Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses
MX2009012857A MX2009012857A (en) 2007-07-04 2007-10-22 Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses.
ES200990025A ES2366067B1 (en) 2007-07-04 2007-10-22 SYSTEM FOR STEREOSCOPIC TELEVISION TRANSMISSION, STEREOSCOPIC TELEVISION RECEIVERS FOR SUCH SYSTEM AND GOGGLES FOR THE STEREOSCOPIC VISIONING OF THE CORRESPONDING IMAGES.
CA2689640A CA2689640C (en) 2007-07-04 2007-10-22 Stereoscopic television system, stereoscopic television receiver, and glasses for stereoscopic image viewing
PL07830704T PL2173106T3 (en) 2007-07-04 2007-10-22 Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses
AU2007356091A AU2007356091B2 (en) 2007-07-04 2007-10-22 Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses
HK10105113.9A HK1139270A1 (en) 2007-07-04 2010-05-25 Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-176373 2007-07-04
JP2007176373A JP4291862B2 (en) 2007-07-04 2007-07-04 3D television system and 3D television receiver

Publications (1)

Publication Number Publication Date
WO2009004742A1 true WO2009004742A1 (en) 2009-01-08

Family

ID=40225810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070970 WO2009004742A1 (en) 2007-07-04 2007-10-22 Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses

Country Status (19)

Country Link
US (1) US8451326B2 (en)
EP (1) EP2173106B1 (en)
JP (1) JP4291862B2 (en)
KR (1) KR101195192B1 (en)
CN (1) CN101690247B (en)
AU (1) AU2007356091B2 (en)
BR (1) BRPI0721824B1 (en)
CA (1) CA2689640C (en)
DE (1) DE112007003572T5 (en)
ES (1) ES2366067B1 (en)
GB (1) GB2463395B (en)
HK (1) HK1139270A1 (en)
MX (1) MX2009012857A (en)
MY (1) MY150030A (en)
PL (2) PL391036A1 (en)
RU (1) RU2441341C2 (en)
TR (1) TR201000005T1 (en)
TW (1) TWI382746B (en)
WO (1) WO2009004742A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082365A1 (en) * 2009-01-19 2010-07-22 Inaba Minoru Three-dimensional video image pick-up and display system
US20120099836A1 (en) * 2009-06-24 2012-04-26 Welsh Richard J Insertion of 3d objects in a stereoscopic image at relative depth
JP2012220874A (en) * 2011-04-13 2012-11-12 Nikon Corp Imaging device and program
GB2507911A (en) * 2009-01-19 2014-05-14 Minoru Inaba Stereo slide and stereo photo print display apparatus with spacing between left and right screens
US9426441B2 (en) 2010-03-08 2016-08-23 Dolby Laboratories Licensing Corporation Methods for carrying and transmitting 3D z-norm attributes in digital TV closed captioning
US9519994B2 (en) 2011-04-15 2016-12-13 Dolby Laboratories Licensing Corporation Systems and methods for rendering 3D image independent of display size and viewing distance

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632802B (en) * 2009-01-20 2018-08-11 稻葉稔 Three-dimensional image pick-up and display system
TWI573435B (en) * 2009-01-20 2017-03-01 Inaba Minoru Dimensional image camera display system
JP5469911B2 (en) * 2009-04-22 2014-04-16 ソニー株式会社 Transmitting apparatus and stereoscopic image data transmitting method
JP2010258583A (en) * 2009-04-22 2010-11-11 Panasonic Corp 3d image display apparatus, 3d image playback apparatus, and 3d image viewing system
RU2533300C2 (en) * 2009-05-19 2014-11-20 Панасоник Корпорэйшн Recording medium, playback device, encoding device, integrated circuit and playback output device
US8290338B2 (en) 2009-05-27 2012-10-16 Panasonic Corporation Recording medium, playback device, encoding device, integrated circuit, and playback output device
KR20120007289A (en) * 2010-07-14 2012-01-20 삼성전자주식회사 Display apparatus and method for setting depth feeling thereof
JP4804586B1 (en) * 2010-09-21 2011-11-02 稔 稲葉 3D image display device and 3D image viewing glasses
US20120113235A1 (en) * 2010-11-08 2012-05-10 Sony Corporation 3d glasses, systems, and methods for optimized viewing of 3d video content
CN103037233A (en) * 2011-08-09 2013-04-10 索尼电脑娱乐公司 Automatic shutdown of 3D based on glasses orientation
DE102012205271B3 (en) * 2012-03-30 2013-07-18 Carl Zeiss Vision International Gmbh Visualization system for three-dimensional images
US20150062315A1 (en) * 2012-04-18 2015-03-05 The Regents Of The University Of California Simultaneous 2d and 3d images on a display
JP6233870B2 (en) * 2012-08-28 2017-11-22 稔 稲葉 3D image receiver
US20140152785A1 (en) * 2012-12-05 2014-06-05 Shenzhen Coocaa Network Technology Co., Ltd. 3d intelligent terminal and system based on glasses
TWI637348B (en) * 2013-04-11 2018-10-01 緯創資通股份有限公司 Apparatus and method for displaying image
US20140340424A1 (en) * 2013-05-17 2014-11-20 Jeri J. Ellsworth System and method for reconfigurable projected augmented/virtual reality appliance
US10003789B2 (en) 2013-06-24 2018-06-19 The Regents Of The University Of California Practical two-frame 3D+2D TV
CN103488057B (en) 2013-08-15 2014-09-03 京东方科技集团股份有限公司 Self-counterpoint exposure orientation equipment and process method for manufacturing phase difference plate
DE102015206796A1 (en) * 2015-04-15 2016-10-20 Robert Bosch Gmbh A visual field display device for a vehicle and method of displaying an image in a field of view of a person
CN105892215A (en) * 2016-04-14 2016-08-24 刘翔 Three-dimensional image shooting device
CA3086592A1 (en) 2017-08-30 2019-03-07 Innovations Mindtrick Inc. Viewer-adjusted stereoscopic image display
CN111726599B (en) * 2019-03-22 2022-04-05 舜宇光学(浙江)研究院有限公司 Matching method of binocular different-internal-reference camera-imaging optical system, system and electronic equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134648A (en) * 1989-10-20 1991-06-07 Hitachi Ltd Stereoscopic video display device and polarization glasses used for the same
JPH04108288A (en) * 1990-08-29 1992-04-09 Hitachi Ltd Stereoscopic video device
JPH08275207A (en) * 1995-03-30 1996-10-18 Namco Ltd Image display method and image display system
JP2003107603A (en) * 2001-09-28 2003-04-09 Namco Ltd Stereophonic image generating device, stereophonic image generation information and information storage medium
JP2003264851A (en) 2002-03-11 2003-09-19 Sanyo Electric Co Ltd Stereoscopic imaging apparatus
JP2006254074A (en) 2005-03-10 2006-09-21 Minoru Inaba Digital stereoscopic camera or digital stereoscopic camcorder, 3d display or 3d projector, printer, and stereoscopic viewer
JP2006303832A (en) 2005-04-19 2006-11-02 Minoru Inaba Digital stereo camera or digital stereo video camera

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2782681A (en) * 1952-08-07 1957-02-26 Jacob C Copeland Magnifying reflection viewer for stereoscopic pictures
US2922350A (en) * 1956-12-06 1960-01-26 Kamera Werke Niedersedlitz Veb Attachment for stereoscopic camera
US5162897A (en) 1989-08-02 1992-11-10 Hitachi, Ltd. Projection type stereoscopic image display system
EP0425985B1 (en) 1989-10-25 1997-06-11 Hitachi, Ltd. Stereoscopic imaging system
JPH05288532A (en) * 1992-04-06 1993-11-02 Ricoh Co Ltd Stereoscopic image input device
US5615046A (en) * 1995-01-23 1997-03-25 Cyber Scientific Inc. Stereoscopic viewing system
US6657655B1 (en) * 1999-09-30 2003-12-02 Canon Kabushiki Kaisha Stereoscopic-image display apparatus
US7660472B2 (en) * 2004-02-10 2010-02-09 Headplay (Barbados) Inc. System and method for managing stereoscopic viewing
US20060164509A1 (en) * 2004-12-14 2006-07-27 Andrew Marshall Stereo camera/viewer
DE102005063503B4 (en) 2005-03-10 2011-05-19 Inaba, Minoru, Oyama 3D display and 3D projector
US8736672B2 (en) * 2006-08-24 2014-05-27 Reald Inc. Algorithmic interaxial reduction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134648A (en) * 1989-10-20 1991-06-07 Hitachi Ltd Stereoscopic video display device and polarization glasses used for the same
JPH04108288A (en) * 1990-08-29 1992-04-09 Hitachi Ltd Stereoscopic video device
JPH08275207A (en) * 1995-03-30 1996-10-18 Namco Ltd Image display method and image display system
JP2003107603A (en) * 2001-09-28 2003-04-09 Namco Ltd Stereophonic image generating device, stereophonic image generation information and information storage medium
JP2003264851A (en) 2002-03-11 2003-09-19 Sanyo Electric Co Ltd Stereoscopic imaging apparatus
JP2006254074A (en) 2005-03-10 2006-09-21 Minoru Inaba Digital stereoscopic camera or digital stereoscopic camcorder, 3d display or 3d projector, printer, and stereoscopic viewer
JP2006303832A (en) 2005-04-19 2006-11-02 Minoru Inaba Digital stereo camera or digital stereo video camera

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2507911B (en) * 2009-01-19 2015-01-28 Minoru Inaba Method of Fabricating A Stereo Slide or Stereo Photo Print
GB2480193A (en) * 2009-01-19 2011-11-09 Minoru Inaba Three-dimensional video image pick-up and display system
GB2510986A (en) * 2009-01-19 2014-08-20 Minoru Inaba Three-dimensional video image pick-up and display system
GB2480193B (en) * 2009-01-19 2015-01-21 Minoru Inaba Stereoscopic video imaging display system
CN102282855B (en) * 2009-01-19 2014-08-06 稻叶稔 Three-dimensional video image pick-up and display system
US9948923B2 (en) 2009-01-19 2018-04-17 Minoru Inaba Stereoscopic video imaging display system and a stereo slide or stereo slide print
JP5172972B2 (en) * 2009-01-19 2013-03-27 稔 稲葉 3D image display device
GB2507911A (en) * 2009-01-19 2014-05-14 Minoru Inaba Stereo slide and stereo photo print display apparatus with spacing between left and right screens
US10536687B2 (en) 2009-01-19 2020-01-14 Minoru Inaba Stereoscopic video imaging display system having a predetermined width of a viewing field angle
US20110298900A1 (en) * 2009-01-19 2011-12-08 Minoru Inaba Three-dimensional video image pick-up and display system
CN102282855A (en) * 2009-01-19 2011-12-14 稻叶稔 Three-dimensional video image pick-up and display system
GB2510986B (en) * 2009-01-19 2015-01-28 Minoru Inaba Stereoscopic Video Display Apparatus
WO2010082365A1 (en) * 2009-01-19 2010-07-22 Inaba Minoru Three-dimensional video image pick-up and display system
US9215436B2 (en) * 2009-06-24 2015-12-15 Dolby Laboratories Licensing Corporation Insertion of 3D objects in a stereoscopic image at relative depth
US20120099836A1 (en) * 2009-06-24 2012-04-26 Welsh Richard J Insertion of 3d objects in a stereoscopic image at relative depth
US9426441B2 (en) 2010-03-08 2016-08-23 Dolby Laboratories Licensing Corporation Methods for carrying and transmitting 3D z-norm attributes in digital TV closed captioning
JP2012220874A (en) * 2011-04-13 2012-11-12 Nikon Corp Imaging device and program
US9519994B2 (en) 2011-04-15 2016-12-13 Dolby Laboratories Licensing Corporation Systems and methods for rendering 3D image independent of display size and viewing distance

Also Published As

Publication number Publication date
BRPI0721824A2 (en) 2014-02-18
JP2009017207A (en) 2009-01-22
GB2463395B (en) 2012-10-03
CN101690247A (en) 2010-03-31
ES2366067B1 (en) 2012-05-31
MY150030A (en) 2013-11-29
US8451326B2 (en) 2013-05-28
TW200904146A (en) 2009-01-16
GB0920300D0 (en) 2010-01-06
EP2173106A1 (en) 2010-04-07
TR201000005T1 (en) 2010-05-21
ES2366067A1 (en) 2011-10-17
EP2173106A4 (en) 2011-06-22
PL391036A1 (en) 2010-10-25
EP2173106B1 (en) 2018-03-07
DE112007003572T5 (en) 2010-04-29
PL2173106T3 (en) 2018-09-28
RU2009140289A (en) 2011-06-27
AU2007356091B2 (en) 2013-03-14
MX2009012857A (en) 2009-12-11
TWI382746B (en) 2013-01-11
CN101690247B (en) 2013-03-27
BRPI0721824B1 (en) 2018-03-06
GB2463395A (en) 2010-03-17
KR20100039375A (en) 2010-04-15
KR101195192B1 (en) 2012-10-29
AU2007356091A1 (en) 2009-01-08
JP4291862B2 (en) 2009-07-08
US20100134602A1 (en) 2010-06-03
CA2689640A1 (en) 2009-01-08
CA2689640C (en) 2013-10-29
HK1139270A1 (en) 2010-09-10
RU2441341C2 (en) 2012-01-27

Similar Documents

Publication Publication Date Title
WO2009004742A1 (en) Three-dimensional television system, three-dimensional television receiver and three-dimensional image watching glasses
US9948923B2 (en) Stereoscopic video imaging display system and a stereo slide or stereo slide print
TWI440960B (en) Stereoscopic image pickup device
JP4421662B2 (en) 3D image display system
JP4227187B2 (en) 3D image viewing glasses
JP4496122B2 (en) Stereoscopic video shooting and playback device
JPH09182113A (en) Three-dimensional solid video signal conversion device and video camera device using the device
GB2507911A (en) Stereo slide and stereo photo print display apparatus with spacing between left and right screens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780053518.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007356091

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 0920300

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20071022

WWE Wipo information: entry into national phase

Ref document number: 0920300.1

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/012857

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2689640

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2007356091

Country of ref document: AU

Date of ref document: 20071022

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12452096

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009140289

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 200990025

Country of ref document: ES

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P200990025

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 24/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 391036

Country of ref document: PL

Ref document number: 2010/00005

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 2007830704

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PI 20095040

Country of ref document: MY

ENP Entry into the national phase

Ref document number: 20107002194

Country of ref document: KR

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 112007003572

Country of ref document: DE

Date of ref document: 20100429

Kind code of ref document: P

ENP Entry into the national phase

Ref document number: PI0721824

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091230