WO2009000185A1 - Procédé de transmission et dispositif basé sur un multiplexage par répartition orthogonale de la fréquence (ofdm) - Google Patents

Procédé de transmission et dispositif basé sur un multiplexage par répartition orthogonale de la fréquence (ofdm) Download PDF

Info

Publication number
WO2009000185A1
WO2009000185A1 PCT/CN2008/071184 CN2008071184W WO2009000185A1 WO 2009000185 A1 WO2009000185 A1 WO 2009000185A1 CN 2008071184 W CN2008071184 W CN 2008071184W WO 2009000185 A1 WO2009000185 A1 WO 2009000185A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel information
bandwidth
subcarrier
data
area
Prior art date
Application number
PCT/CN2008/071184
Other languages
English (en)
French (fr)
Inventor
Sheng Liu
Xin Chang
Tao Qian
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009000185A1 publication Critical patent/WO2009000185A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path

Definitions

  • the present invention relates to the field of wireless mobile communication technologies, and in particular, to a transmission method and apparatus based on orthogonal frequency division multiplexing, a method for implementing a frame structure, and a transmitter.
  • the system sampling rate also increases, and the time of the symbol is continuously reduced.
  • the distribution of the multipath delay is determined by the environment and is not affected by the system bandwidth selection. Severe Inter Symbol Interference (ISI).
  • ISI Severe Inter Symbol Interference
  • Multipath delay is an environmental effect that cannot be changed by the receiver. Increasing the time interval of transmitting symbols reduces the transmission rate. In this case, Orthogonal Frequency Division Multiplexing (OFDM) has appeared. Since the addition of a cyclic prefix (CP, Cyclic Prefix) during OFDM transmission can reduce ISI interference and improve spectrum utilization, the existing 3G evolution system has adopted OFDM as a basic transmission technology.
  • CP cyclic prefix
  • data needs to be modulated during data transmission, and the modulated data is mapped to an OFDM subcarrier for transmission.
  • the system consists of a certain number of OFDM symbols, and then these subframes constitute a frame, and the subcarrier bandwidths of all OFDM symbols are the same.
  • the first technology is through the third generation partnership program long-term evolution (LTE, Long Term Evolution) A common frame structure in the system for transmitting data.
  • LTE Long Term Evolution
  • the prior art defines two slot structures for downlink transmission, that is, 7 and 6 OFDM symbols, the difference being that the two slot structures have different CP lengths.
  • the downlink transmission parameters are shown in Table 1:
  • the subcarrier bandwidth of the prior art 1 is fixed, and the FFT size is changed to adapt to different Transmission bandwidth.
  • the slots of the uplink transmission and the downlink transmission in the prior art are both 0.5 ms. In the general frame structure, two consecutive 0.5 ms parity slots are combined into one 1 ms subframe, and then 10 consecutive subframes are combined into one. For a 10ms frame, data can only be transmitted to the base station in the specified time slot. This ensures that the data arriving at the base station does not overlap.
  • the second technique is to transmit data through a frame structure of an IEEE 802.16 wireless metropolitan area network (OFDM) orthogonal frequency division multiple access (OFDM) time division duplex (TDD) mode.
  • the TDD frame structure is composed of a downlink subframe, an uplink subframe, a Transmit Transition Gap (RTG), and a Receive Transition Gap (RTG), and the downlink subframe and the uplink subframe are consecutively identical.
  • the length of the OFDM symbol is composed.
  • the prior art subcarrier bandwidth is also fixed, and the FFT Size is changed to adapt to different transmission bandwidths.
  • the transmission parameters corresponding to the prior art 2 are as shown in Table 2:
  • the third technology of the prior art transmits data through a frame structure in a TDD mode in the IEEE802.16j standard.
  • the IEEE 802.16j standard is a wireless broadband access system under a relay structure, and the frame structure in the TDD mode is divided into a transparent mode and Two structures in non-transparent mode.
  • the base station frame structure is composed of a downlink subframe and an uplink subframe and a TTG. RTG composition.
  • the downlink subframe and the uplink subframe are respectively divided into two parts: an access zone and a relay zone, which are respectively used for a subscriber station and a base station (BS, Base Station) or a relay station (Relay Station). Information transmission between the relay station and the base station.
  • the frame structure of the relay station is similar to that of the base station, except that the relay TTG and the relay RTG are added between the access area and the relay area.
  • This prior art subcarrier bandwidth is also fixed and adapts to different transmission bandwidths by changing the FFT Size.
  • the standard specified transmission parameters are consistent with the specifications in IEEE 802.16 Wireless Metropolitan Area Network OFDMA.
  • the above prior art techniques are adapted to different transmission bandwidths by changing the FFT Size, and the subcarrier bandwidths corresponding to different transmission bandwidth conditions are fixed, so that the effective symbol time length is limited, and the utilization efficiency of the spectrum resources cannot be effectively improved. .
  • the ratio of CP to effective symbol time becomes a key indicator to measure the efficiency of the OFDM transmission system.
  • the above three prior art technologies all set the subcarrier bandwidth to ensure the transmission performance under the worst channel condition, and the subcarrier bandwidth requires at least 10-15 times the maximum Doppler frequency shift, and thus the subcarrier bandwidth cannot be used. Optimized design, which can not effectively improve the utilization of spectrum resources.
  • Embodiments of the present invention provide a transmission method and apparatus based on orthogonal frequency division multiplexing, which can improve utilization of spectrum resources.
  • Embodiments of the present invention provide a method for implementing a frame structure, which makes a subcarrier bandwidth in a frame variable.
  • Embodiments of the present invention provide a transmitter capable of making a subcarrier bandwidth in a frame variable.
  • An aspect of the present invention provides a transmission method based on orthogonal frequency division multiplexing, including: acquiring channel information and traffic, setting different subcarrier bandwidths for each region according to the channel information, and according to the The channel information and the traffic volume are allocated to the subcarriers, and the time length of each area is obtained according to the allocation result, and the data is allocated to the area corresponding to the time length for transmission.
  • an embodiment of the present invention provides a transmission apparatus based on orthogonal frequency division multiplexing.
  • the device includes:
  • a partitioning unit configured to acquire channel information and traffic, and divide the transmission data in the frame into at least two regions of variable length, and set different subcarrier bandwidths for each region according to the channel information;
  • a scheduling unit configured to acquire subcarriers corresponding to the bandwidth set by the partitioning unit, allocate subcarriers according to channel information and traffic, and obtain a time length of each region according to the allocation result, and allocate data to the The area corresponding to the length of time is transmitted.
  • Another aspect of the present invention provides a method for implementing a frame structure, including: acquiring channel information, setting different subcarrier bandwidths for each region according to the channel information, and transmitting, by using the subcarriers, Different types of data.
  • an embodiment of the present invention provides a transmitter, where the transmitter includes:
  • a first partition unit configured to acquire channel information, and divide the transmission data in the frame into at least two regions with variable lengths of time, and set different subcarrier bandwidths for each region according to the channel information;
  • a bearer unit configured to acquire a subcarrier corresponding to a bandwidth set by the first partition unit, and carry different types of data that need to be sent by using the subcarrier.
  • the embodiment of the present invention sets different sub-carrier bandwidths for each area, and allocates the sub-carriers according to channel information and traffic volume, and then obtains according to the allocation result.
  • the length of time of each area, and then the data is allocated to the area corresponding to the length of time for transmission.
  • the embodiment of the present invention does not need to obtain different sub-carrier bandwidths by changing the sampling rate of the system, and the sub-carrier bandwidth is variable, so that the utilization of the spectrum resources can be effectively improved.
  • Another technical solution has the following advantages or advantages: since the embodiment of the present invention first divides the transmission data in the frame into at least two regions according to the length of time, and sets different subcarrier bandwidths for each region according to the channel information, and passes The subcarriers carry data to be transmitted, so that the subcarrier bandwidth is variable, thereby effectively increasing the ratio of the effective symbol time to the CP, thereby achieving the lifting frequency.
  • FIG. 1 is a flowchart of a transmission method based on orthogonal frequency division multiplexing according to an embodiment of the present invention
  • Embodiment 1 of the present invention is a schematic diagram of a frame structure in Embodiment 1 of the present invention.
  • Embodiment 3 is a schematic diagram of a frame structure in Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a frame structure of a base station according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of a frame structure of a third relay station according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a transmission apparatus based on orthogonal frequency division multiplexing according to Embodiment 5 of the present invention.
  • Figure 8 is a schematic diagram of a transmitter of a sixth embodiment of the present invention.
  • Embodiment 1 A transmission method based on orthogonal frequency division multiplexing, the embodiment is applied to a cellular network system, and the method flow is as shown in FIG. 1 , which specifically includes the following steps:
  • Step 101 Receive data that needs to be transmitted, where the party that sends the data may be a base station or a mobile station.
  • Domain 1 and zone 2 for example, the frame structure shown in Figure 2 divides the downlink subframes in the frame into a downlink high speed zone (DL Fast Zone) and a downlink low speed zone (DL Slow Zone), which will be in the frame.
  • the uplink subframes are divided into an uplink fast zone (UL Fast Zone) and an uplink low speed zone (UL Slow Zone).
  • the parameter included in the user channel state has a maximum multipath delay.
  • Step 103 Obtain user channel status and traffic information, and set different subcarrier bandwidths for OFDM transmission in zone 1 and zone 2 according to user channel state information. Usually based on channel status The Doppler shift parameter is used to set the subcarrier bandwidth, for example, to set the subcarrier bandwidth to a maximum Doppler shift greater than 10 to 15 times.
  • the area with a wider subcarrier bandwidth is used for high-speed user data transmission, and the area with a narrow sub-carrier bandwidth is used for medium- and low-speed user data transmission.
  • the DL Fast Zone to which the wider subcarrier bandwidth belongs in FIG. 2 is used for data transmission of high speed mobile users
  • the DL Slow Zone to which the narrower subcarrier bandwidth belongs is used for data transmission of low and medium speed mobile users.
  • the UL Fast Zone and the UL Slow Zone have the same meaning. In order to ensure that the pilot and common control signaling can be reliably received by all users, the signaling of these two parts is also transmitted in the same configuration as the DL Fast Zone.
  • the base station can perform reasonable DL according to the user channel state and traffic volume. Settings for Fast Zone and DL Slow Zone.
  • FDD Frequency Division Dual
  • the user also needs to perform the uplink synchronization process. Although the uplink and downlink bands are separated by a certain frequency band, the estimation of the moving speed range is the same. Therefore, both the user channel state and the traffic information can be considered as known information to the base station, and no additional signaling acquisition is required.
  • Step 104 In order to further improve flexibility and spectrum efficiency, different CP lengths are set according to the maximum multipath delay characteristic of the user channel state to distinguish users, so that each region adds two combinations of long CP and short CP.
  • the subcarrier bandwidths of the long CP area and the short CP area corresponding to each area are the same.
  • Step 105 The total length of the OFDM symbols is inconsistent due to the flexible combination of regions, To ensure consistent frame length, the CP of the OFDM symbol in which the control signaling transmission (for example, broadcast control data) is located can be extended to obtain more reliable transmission performance.
  • the control signaling transmission for example, broadcast control data
  • Step 106 Allocate the subcarriers according to the user channel state and the traffic information, and obtain the length of each area according to the allocation result, and send the time length to all users through the resource assignment broadcast message.
  • allocations are made according to different speeds, locations, and user groups in the subcarrier time domain or frequency domain.
  • Step 107 Allocate data to a corresponding area according to the length of time for transmission.
  • the foregoing embodiment is a preferred embodiment of the present invention.
  • the embodiment not only performs area division on the downlink subframe, but also performs area division on the uplink subframe, and also sets CPs of different lengths for each area. In the upper area, you can also set two or more types of CPs for each area. Divide, then set CPs of different lengths for the area corresponding to the downlink subframe or the uplink subframe.
  • Embodiment 2 A transmission method based on orthogonal frequency division multiplexing, except that there is no step 104 and step 105, the other steps are basically the same as those in the first embodiment.
  • This embodiment divides the downlink subframe in the frame into a downlink high speed. In the area and the downlink low-speed area, the uplink subframes in the frame are divided into an uplink high-speed area and an uplink low-speed area, as shown in FIG. 3, and corresponding transmission parameters are as shown in Table 4:
  • the TDD system should ensure that the uplink and downlink switching points of the neighboring cells are consistent, and the frame length is consistent for the FDD system, the two different area length settings are limited by the consistent subframe length, and some combination schemes need to add additional Idle time reduces efficiency, and Table 4 lists only some of the combined schemes that can improve system spectral efficiency.
  • the uplink configuration is similar to the downstream configuration, and is not listed here. It should be noted that in these combinations, the area of the low- and medium-speed users occupies a larger proportion, which is consistent with the characteristics in the actual application scenario.
  • the system overhead of this embodiment is higher than that of the first embodiment, so that the spectrum efficiency of the system of this embodiment is relatively low.
  • only the uplink subframe or the downlink subframe may be divided into regions, and then the subcarrier bandwidth is set for each region.
  • the second embodiment of the present invention may also use other parameters to implement the embodiments of the present invention.
  • the relay station can expand cell coverage, reduce interference, and increase capacity through channel coding and re-allocation of radio resources.
  • the location of the base station and the relay station (RS, Relay Station) is relatively fixed, the Doppler frequency shift caused by mobility is small, and the distance between the base station and the RS is much smaller than the cell radius, thereby reducing the maximum multipath delay.
  • the existing OFDMA-based wireless relay access systems are designed to meet the sub-carrier spacing settings for cell coverage and high-speed mobility, and do not consider the full use of the radio link characteristics between the base station and the RS, and thus cannot improve the system spectral efficiency.
  • the embodiment of the present invention also provides a corresponding implementation manner.
  • Embodiment 3 A transmission method based on orthogonal frequency division multiplexing, which is applied to relay wireless Accessing the network, the method flow is shown in Figure 4, and specifically includes the following steps:
  • Step 401 Receive data that needs to be transmitted, where the party that sends the data may be a base station or a relay station.
  • the relay zone for example, FIG. 5 and FIG. 6 divide the downlink subframe in the frame into a downlink access zone (DL Access Zone) and a downlink relay zone (DL Relay Zone), and divide the uplink subframe in the frame into uplinks.
  • the user channel status includes parameters with a maximum multipath delay.
  • Step 403 Obtain different channel state and traffic information of the relay link and the access link, and set different OFDM transmissions in zone 1 and zone 2 according to different channel states of the relay link and the access link.
  • Subcarrier bandwidth is typically set based on the Doppler shift parameter of the channel state, e.g., the subcarrier bandwidth is set to a maximum Doppler shift greater than 10 to 15 times.
  • the data of the access link is transmitted by the area of the subcarrier to which the bandwidth is wide, and the data of the relay link is transmitted by the area of the subcarrier to which the bandwidth is narrow.
  • the UL Access Zone and the UL Relay Zone have the same meaning.
  • the signaling of these two parts also uses the same configuration parameters as the downlink access area.
  • Step 404 In order to further improve flexibility and spectrum efficiency, different CPs are set according to the maximum multipath delay characteristic of the channel state to distinguish users.
  • a shorter CP is set for the relay area; and the transmission distance between the base station or the relay station and the user is longer, so a longer CP is set in the access area.
  • Step 405 The total length of the OFDM symbols is inconsistent due to the flexible combination of the regions.
  • the CP of the OFDM symbol in which the control signaling transmission (for example, broadcast control data) is located may be extended to obtain more reliable transmission performance. .
  • Step 406 Allocate the subcarriers according to the user channel state and the traffic information, and obtain the length of each area according to the allocation result, and send the time length to all users by using the resource assignment broadcast message.
  • allocations are made according to different speeds, locations, and user groups in the subcarrier time domain or frequency domain.
  • Step 407 Allocate data to an area corresponding to the length of time for transmission.
  • the transmission parameters corresponding to the third embodiment of the present invention are as shown in Table 5:
  • Table 8 assumes that two or more CPs are set for each zone.
  • the embodiment of the present invention may perform area division only on the downlink subframe or the uplink subframe, and then set different CPs for the area corresponding to the downlink subframe or the uplink subframe.
  • the third embodiment of the present invention may also use other parameters to implement the embodiments of the present invention.
  • Embodiment 4 A method for implementing a frame structure, the method includes: In this step, an embodiment of the present invention may divide a subframe in a frame into a high-speed region and a medium-low-speed region, and may further divide the subframe in the frame. It is an access area and a relay area.
  • the step further includes setting CPs of different lengths for each area corresponding to the subframe, such as a long CP and a short CP.
  • the embodiment of the present invention can set a wider subcarrier bandwidth for the high speed region and a narrower subcarrier bandwidth for the medium and low speed region. Then, the wide-band subcarriers are used to carry the high-speed mobile user data that needs to be transmitted, and the sub-carriers with narrow bandwidth are used to carry the medium and low-speed mobile user data that needs to be transmitted.
  • the embodiment of the present invention may further set a wider subcarrier bandwidth for the access region and a narrower subcarrier bandwidth for the relay region. Then, the sub-carriers with wide bandwidth are used to carry the access link data to be transmitted, and the sub-carriers with narrow bandwidth are used to carry the relay link data to be transmitted.
  • the another program may be stored in a computer readable storage medium, and when executed, the program includes the following steps: acquiring channel information, and then setting different subcarrier bandwidths for each region according to the channel information, and by using the The subcarriers carry different types of data that need to be sent.
  • the storage medium may be a ROM, a RAM, a magnetic disk or an optical disk, or the like.
  • Embodiment 5 A transmission device based on orthogonal frequency division multiplexing, as shown in FIG. 7, the device includes: a partitioning unit 701, a scheduling unit 702, where:
  • a partitioning unit 701 configured to acquire channel information and traffic, and divide the transmission data in the frame into at least two regions with variable lengths of time, and set different subcarrier bandwidths for each region according to the channel information, where the channel The information includes the channel status.
  • the subcarrier bandwidth is typically set based on the Doppler shift parameter of the channel state, e.g., the subcarrier bandwidth is set to a maximum Doppler shift greater than 10 to 15 times.
  • the scheduling unit 702 is configured to acquire subcarriers corresponding to the bandwidth set by the partitioning unit 701, and allocate the subcarriers according to the channel information and the traffic volume acquired by the partitioning unit 701, and obtain the length of time of each region according to the allocation result, and The data is allocated to the corresponding area for transmission according to the length of time.
  • the partitioning unit 701 of the above embodiment may divide the uplink subframe or the downlink subframe into a high speed region and a medium and low speed region.
  • CPs of different lengths may be set for each region.
  • the above apparatus may be implemented by software or hardware modules having the same or corresponding functions in addition to the implementations provided in the fifth embodiment.
  • Embodiment 6 a transmitter, as shown in FIG. 8, the transmitter includes: a first partition unit 801, a bearer unit 802;
  • a first partition unit 801 configured to acquire channel information, and divide the transmission data in the frame into There are two regions of variable length, and different subcarrier bandwidths are set for each region according to channel information, and the channel information includes channel states.
  • the subcarrier bandwidth is typically set according to the Doppler shift parameter of the channel state, for example, the subcarrier bandwidth is set to a maximum Doppler shift greater than 10 to 15 times.
  • the bearer unit 802 is configured to acquire subcarriers corresponding to the bandwidth set by the first partitioning unit 801, and carry different types of data that need to be sent by using the subcarriers, for example, use a subcarrier with a wide bandwidth to carry a high speed that needs to be sent.
  • the mobile subscriber data or the access link data is used, and the subcarriers with narrow bandwidth are used to carry the medium and low speed mobile subscriber data or the relay link data that needs to be transmitted.
  • the above apparatus can be implemented by software or hardware modules having the same or corresponding functions in addition to the implementations provided in Embodiment 6.
  • the TDD system divides the frame into the difference between the uplink subframe and the downlink subframe, and the uplink and downlink frame structures may be the same or different.
  • the embodiment of the present invention is also applicable to the FDD system, but the FDD system does not have separate uplink and downlink subframes, and is collectively referred to as a subframe. Setting different subcarrier bandwidths for each of the at least two regions, and according to the channel information, and allocating the subcarriers according to the channel information and the traffic volume, and then obtaining the time length of each region according to the allocation result, and then the data The area corresponding to the length of time is allocated for transmission.
  • the embodiment of the present invention does not need to obtain different subcarrier bandwidths by changing the system sampling rate, and the subcarrier bandwidth is variable, thereby being effective.
  • Improve the utilization of spectrum resources At least two regions, and setting different subcarrier bandwidths for each region according to the channel information, and carrying data to be transmitted through the subcarriers, so that the subcarrier bandwidth is variable, thereby effectively improving the effective symbol time and the CP.
  • the ratio in order to achieve the purpose of improving the utilization of spectrum resources.
  • the embodiment of the present invention sets different CP lengths for each region according to the maximum multipath delay of the channel state, the utilization of the spectrum efficiency can be further improved.
  • the flexible combination of the regions may result in inconsistent total time lengths of the OFDM symbols.
  • the embodiment of the present invention may extend the CP of the OFDM symbol where important transmission data (for example, broadcast control data) is located, thereby obtaining More reliable transmission performance.
  • Orthogonal frequency division multiplexing based transmission method and device and frame knot provided by the embodiment of the present invention
  • the implementation method and the transmitter of the architecture are described in detail.
  • the principles and implementation manners of the present invention are described in the following.
  • the description of the above embodiments is only used to help understand the method and the idea of the present invention.
  • the details of the present invention and the scope of the application are subject to change without departing from the scope of the invention.

Description

基于正交频分复用的传输方法及装置
本申请要求于 2007 年 6 月 26 日提交中国专利局、 申请号为 200710112448.2、 发明名称为"基于正交频分复用的传输方法及装置"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线移动通信技术领域,尤其涉及基于正交频分复用的传输方 法及装置、 帧结构的实现方法、 发射机。
背景技术
随着无线接入需求的不断增长,要求无线接入网络系统提供更快的速率和 更高的容量,因此对带宽的需求也越来越高。现有的第三代移动通信(3G, third generation )无线接入网络的带宽已经达到 5MHz, 在 3G的演进系统中无线接 入网络的带宽达到了 20 MHz。
随着带宽的增加,系统釆样率也随之不断提高,釆样符号的时间不断减少, 而多径时延的分布是由环境确定的, 不受系统带宽选择的影响, 这样就会导致 非常严重的符号间干扰( ISI, Inter Symbol Interference )。 对接收机来说, 克服 一个较大的符号间干扰需要很高的成本, 多径时延是一种环境效应, 无法通过 接收机来改变,增加传输符号的时间间隔会降低传输速率,在这种情况下出现 了正交频分复用 ( OFDM, Orthogonal Frequency Division Multiplexing )。 由于 在 OFDM传输时增加循环前缀(CP, Cyclic Prefix ) 能够减少 ISI干扰, 同时 又能提高频谱利用率,因此现有的 3G演进系统都已釆用 OFDM作为基本的传 输技术。
现有的 3G演进系统在数据传输时, 需要对数据进行调制, 并将调制后的 数据映射到 OFDM子载波上进行传输。 该系统都是由一定数量的 OFDM符号 组成子帧, 再由这些子帧构成帧, 并且所有 OFDM符号的子载波带宽一致。
在基于 OFDM的帧结构设计中一般需要规定不同带宽下的釆样率、 快速 傅立叶变换长度( FFT Size, Fast Fourier Transform Size )、 有效 OFDM符号时 间、 CP长度、 OFDM符号数等参数, 因此要满足小区覆盖、 高速移动速度的 支持和频谱高效利用, 就需要设置与帧结构相应的传输参数。
现有技术一是通过第三代伙伴计划长期演进( LTE, Long Term Evolution ) 系统中的通用帧结构来传输数据的,该现有技术为下行传输定义了两种时隙结 构, 也就是 7个和 6个 OFDM符号, 其差别在于两种时隙结构具有不同的 CP 长度, 下行传输参数如表 1所示:
Figure imgf000004_0001
表 1
现有技术一的子载波带宽都是固定的,并通过改变 FFT size来适应不同的 传输带宽。 该现有技术的上行传输和下行传输的时隙都是 0.5ms, 在通用帧结 构中将连续两个 0.5ms的奇偶时隙组成一个 1ms的子帧, 再将 10个连续的子 帧组成一个 10ms的帧, 在帧内只能按指定的时隙传输数据给基站, 这样可以 保证到达基站的数据不会重叠。通常将釆样时间定义为最大系统带宽下的釆样 时间,即 Ts= 1/(15000x2048) ,其中, 15000是子载波带宽 15KHz, 2048是 FFT Size。
现有技术二是通过 IEEE 802.16无线城域网正交频分多址接入( OFDMA, Orthogonal Frequency Division Multiple Access )时分双工 ( TDD, Time Division Duplex )模式下的帧结构来传输数据的, 所述 TDD帧结构是由下行子帧、 上 行子帧、 发送转换间隔 (TTG, Transmit Transition Gap ) 以及接收转换间隔 ( RTG, Receive Transition Gap )构成, 而下行子帧和上行子帧是由连续的相 同时间长度的 OFDM符号组成, 该现有技术的子载波带宽也是固定的, 并通 过改变 FFT Size来适应不同的传输带宽。 其中, 现有技术二对应的传输参数 如表 2所示:
Figure imgf000005_0001
表 2
现有技术三是通过 IEEE802.16j标准中 TDD模式下的帧结构来传输数据, IEEE 802.16j标准是针对中继结构下的无线宽带接入系统, 其 TDD模式下的 帧结构分为透明模式和非透明模式两种结构。 以非透明模式为例,基站帧结构 由下行子顿 ( downlink subframe )和上行子顿 ( uplink subframe ) 以及 TTG、 RTG构成。下行子帧和上行子帧又各自划分为两部分:接入区域( Access Zone ) 和中继区域 ( Relay Zone ), 分别用于用户台和基站(BS, Base Station )或中 继站(Relay Station ), 中继台和基站间的信息传输。 中继台的帧结构和基站的 帧结构类似, 只是在接入区域和中继区域之间要增加中继 TTG和中继 RTG。 该现有技术的子载波带宽也是固定的, 并通过改变 FFT Size来适应不同的传 输带宽。 其中, 标准规定的传输参数与 IEEE 802.16无线城域网 OFDMA中的 规范一致。
发明人在实现本发明过程中, 发现上述三种现有技术中至少存在如下问 题:
上述现有技术都是通过改变 FFT Size来适应不同的传输带宽, 并保持不 同传输带宽条件对应的子载波带宽都是固定的, 从而使有效符号时间长度受 限, 不能有效提升频谱资源的利用效率。
另外, 由于 OFDM传输需要插入 CP以克服 ISI的影响, 因此 CP和有效 符号时间的比值就成为衡量 OFDM传输系统效率的一个关键性指标。 而上述 三种现有技术都是以保障最恶劣信道条件下的传输性能设置子载波带宽,所述 子载波带宽至少要求大于 10 ~ 15倍的最大多普勒频移, 因而不能对子载波带 宽进行优化设计, 进而不能有效提升频谱资源的利用率。
发明内容
本发明实施例提供一种基于正交频分复用的传输方法及装置,该方法及装 置能够提升频谱资源的利用率。
本发明实施例提供一种帧结构的实现方法,该方法使得帧中的子载波带宽 可变。
本发明实施例提供一种发射机, 该发射机能够使帧中的子载波带宽可变。 本发明实施例的一方面提供了一种基于正交频分复用的传输方法, 包括: 获取信道信息和业务量,根据所述信道信息为每个区域设置不同的子载波 带宽, 并根据所述信道信息和业务量对所述子载波进行分配,根据分配结果得 到各个区域的时间长度, 并将数据分配到时间长度对应的区域进行传输。
根据上述方法, 本发明实施例提供了一种基于正交频分复用的传输装置, 所述装置包括:
分区单元, 用于获取信道信息和业务量, 以及将帧中的传输数据划分为至 少两个时间长度可变的区域,以及根据信道信息为每个区域设置不同的子载波 带宽;
调度单元, 用于获取与所述分区单元所设置带宽对应的子载波, 以及根据 信道信息和业务量对子载波进行分配,以及根据分配结果得到各个区域的时间 长度, 以及将数据分配到所述时间长度对应的区域进行传输。
本发明实施例的另一方面提供了一种帧结构的实现方法, 包括: 获取信道信息,根据所述信道信息为每个区域设置不同的子载波带宽, 并 通过所述子载波承载需要发送的不同类型数据。
根据上述帧结构的实现方法, 本发明实施例提供了一种发射机, 所述发射 机包括:
第一分区单元, 用于获取信道信息, 以及将帧中的传输数据划分为至少两 个时间长度可变的区域,以及根据所述信道信息为每个区域设置不同的子载波 带宽;
承载单元, 用于获取与所述第一分区单元所设置带宽对应的子载波, 以及 通过所述子载波承载需要发送的不同类型数据。
上述方案中的一个技术方案具有如下优点或有益效果:由于本发明实施例 为每个区域设置不同的子载波带宽,并根据信道信息和业务量对所述子载波进 行分配,再根据分配结果得到各个区域的时间长度, 然后将数据分配到所述时 间长度对应的区域进行传输。 与现有技术相比较, 本发明实施例不需要通过改 变系统釆样率获得不同的子载波带宽, 并且子载波带宽是可变的,从而能够有 效提升频谱资源的利用率。
另一个技术方案具有如下优点或有益效果:由于本发明实施例首先根据时 间长度将帧中的传输数据划分为至少两个区域,以及根据信道信息为每个区域 设置不同的子载波带宽, 并通过所述子载波承载需要发送的数据, 这样使得子 载波带宽可变, 从而能有效提高有效符号时间和 CP的比值, 进而达到提升频 谱资源利用率的目的。
附图说明
图 1是本发明实施例一基于正交频分复用的传输方法流程图;
图 2是本发明实施例一中帧结构的示意图;
图 3是本发明实施例二中帧结构的示意图;
图 4是本发明实施例三基于正交频分复用的传输方法流程图;
图 5是本发明实施例三中基站帧结构的示意图;
图 6是本发明实施例三中继站帧结构的示意图;
图 7是本发明实施例五基于正交频分复用的传输装置示意图;
图 8是本发明实施例六发射机的示意图。
具体实施方式
域; 获取信道信息和业务量,根据所述信道信息为每个区域设置不同的子载波 带宽, 并根据所述信道信息和业务量对所述子载波进行分配,根据分配结果得 到各个区域的时间长度, 并将数据分配到时间长度对应的区域进行传输。
为使本领域技术人员能够更好地理解本发明实施例,下面结合附图对本发 明实施例的技术方案进行详细说明。
实施例一、一种基于正交频分复用的传输方法, 该实施例应用于蜂窝网络 系统, 方法流程如图 1所示, 具体包括以下步骤:
步骤 101、 接收需要传输的数据, 其中, 发送数据的一方可以是基站或移 动台。 域) 1和 zone (区域) 2 , 例如, 图 2所示的帧结构将帧中的下行子帧分为下 行高速区域 ( DL Fast Zone )和下行中低速区域( DL Slow Zone ), 将帧中的上 行子帧分为上行高速区域( UL Fast Zone )和上行中低速区域( UL Slow Zone )。 其中, 用户信道状态包括的参数有最大多径时延。
步骤 103、 获取用户信道状态和业务量信息, 再根据用户信道状态信息为 zone 1和 zone 2中的 OFDM传输设置不同的子载波带宽。 通常根据信道状态 的多普勒频移参数来设置子载波带宽, 例如, 将子载波带宽设置为大于 10到 15倍的最大多普勒频移。
釆用较宽的子载波带宽所属区域用于高速用户数据传输,釆用较窄的子载 波带宽所属区域用于中低速用户数据传输。例如, 图 2中较宽子载波带宽所属 的 DL Fast Zone用于高速移动用户的数据传输, 而较窄子载波带宽所属的 DL Slow Zone用于中低速移动用户的数据传输。 UL Fast Zone和 UL Slow Zone的 意义相同, 为了保证导频和公共控制信令能被所有的用户可靠接收, 这两部分 的信令也使用和 DL Fast Zone相同的配置传输。
值得说明的是, 由于用户在传输数据前和传输数据中, 都要执行测距过程 实现同步, 因此用户移动速率的信息对基站是可知的,基站可以根据用户信道 状态和业务量进行合理的 DL Fast Zone和 DL Slow Zone的设置。 在频分双工 ( FDD, Frequency Division Dual ) 系统中, 用户也需要执行上行同步的过程, 虽然上下行频带间隔了一定的频段,但移动速度范围的估计还是相同的。 因此 用户信道状态和业务量信息都可以认为对基站是已知的信息,不需要设计额外 的信令获取。
步骤 104、 为了更进一步提高灵活性和频谱效率, 再根据用户信道状态的 最大多径时延特性设置不同的 CP 长度以区分用户, 这样每个区域又增加长 CP和短 CP两种组合, 此时为每个区域对应的长 CP区域和短 CP区域的子载 波带宽是一致的。
在当前基于 OFDM传输技术的无线接入网络中, 为了抑制相邻小区间干 扰又不过分损失频谱效率, 分数频率复用已经被广泛釆纳, 在这样的系统中, 边缘用户釆用高复用因子的方式(即相邻小区正交的频率资源)传输数据, 而 中央用户釆用低复用因子的方式传输数据。最大多径时延是受限于用户和基站 间距离的, 因此可以利用基站已知的距离远近分布信息, 结合子载波带宽的配 置, 设置两种 CP长度。
釆用短 CP的子区域传输中心用户数据, 釆用长 CP的区域传输用户边缘 数据。
步骤 105、 由于区域的灵活组合, OFDM符号的总时间长度不一致, 为了 保证帧长度的一致,可以延长控制信令传输(例如:广播控制数据)所在 OFDM 符号的 CP, 以获得更可靠的传输性能。
步骤 106、 根据用户信道状态和业务量信息对子载波进行分配, 再根据分 配结果得到各个区域的时间长度,并通过资源指配广播消息将时间长度下发给 所有的用户。 通常, 根据不同速度、 位置和用户组在子载波时域或频域上的对 应关系进行分配。
步骤 107、 根据时间长度将数据分配到对应的区域进行传输。
本发明实施例一对应的传输参数如表 3所示: 参数 值 系统带宽 (MHz) 10 釆样率 (MHz) 11.2
前导, 公共控制区域,
区域类型 下行中低速区域 下行高速区域
快速傅立叶变换长度 1024 2048 子载波带宽 (KHz) 10.94 5.47 有效符号时间(μδ) 91.4 182.8
CP^s) 11.4 5.7 5.7 11.4 总符号时间 (: S) 102.9 97.2 188.5 194.2
0.3087/3 0.0972/1 0.1885/1 1.7478/9 区域时间长度 /OFDM
0.3087/3 0.0972/1 0.3770/2 1.5536/8 符号数
0.3087/3 0.0972/1 0.5655/3 1.3594/7
0.3087/3 0.1944/2 0.1885/1 1.7478/9
0.3087/3 0.1944/2 0.3770/2 1.5536/8 1.2348/12 0.0972/1 0.9425/5 0.1942/1
1.2348/12 0.0972/1 1.1310/6 0/0
1.2348/12 0.1944/2 0.1885/1 0.7768/4
1.2348/12 0.2916/3 0.9425/5 0/0
1.3377/13 0.0972/1 0.1885/1 0.7768/4 表 3
下面结合表 3对本发明实施例一中的系统开销进行分析,具体如表 4所示:
Figure imgf000011_0001
表 4
从表 4 的数据可以看出, 本发明实施例的技术方案可以提高系统频谱效 率, 并且没有引入额外的操作和控制。
由上述可知, 上述实施例是本发明优选实施例, 该实施例不仅对下行子帧 进行区域划分, 而且对上行子帧也进行区域划分, 同时还为每个区域设置不同 长度的 CP。 上的区域, 还可以为每个区域设置两种或两种以上的 CP。 分, 然后为下行子帧或上行子帧对应的区域设置不同长度的 CP。
最后, 还值得说明的是, 本发明实施例一除了表 3所例参数之外, 还可以 选用其他参数来实现本发明实施例。
实施例二、一种基于正交频分复用的传输方法, 除了没有步骤 104和步骤 105之外, 其他步骤与实施例一基本相同, 该实施例将帧中的下行子帧分为下 行高速区域和下行中低速区域,将帧中的上行子帧分为上行高速区域和上行中 低速区域, 具体如图 3所示, 其对应的传输参数如表 4所示:
参数 值
系统带宽 (MHz) 10
釆样率 (MHz) 11.2
区域类型 前导, 公共控制区域, 下行中低速区域 下行高速区域
快速傅立叶变换长度 1024 2048
子载波带宽 (KHz) 10.94 5.47
有效符号时间(μδ) 91.4 182.8
CP^s) 11.4 11.4
总符号时间 (: S) 102.9 194.2
区域时间长度和 OFDM 0.3087/3 2.1362/11
符号数目 0.5145/5 1.9420/10
0.7203/7 1.7478/9 由于 TDD系统要保证相邻小区的上下行切换点一致,而对于 FDD系统要 保证帧长一致, 因此两种不同的区域长度设置要受到子帧长度一致的限制,有 些组合方案将需要添加额外的空闲时间反而降低了效率,表 4只列出了部分组 合方案, 所述组合方案可以提高系统频谱效率。 此外, 上行的配置和下行的配 置类似, 在此不——列举。 需要注意的是, 在这几种组合中, 中低速用户的区 域占据了更大的比例, 这和实际应用场景中的特性一致。
下面结合表 5对本发明实施例二中的系统开销进行分析,具体如表 6所示:
Figure imgf000013_0001
表 6
由表 6可知 , 本实施例的系统开销要高于实施例一 , 因此该实施例的系统 频谱效率相对就会低。 另外, 本发明实施例可以仅对上行子帧或下行子帧进行 区域划分, 然后再为每个区域设置子载波带宽。
值得说明的是, 本发明实施例二除了表 5所例参数之外,还可以选用其他 参数来实现本发明实施例。
另外,在中继结构下的无线宽带接入系统中, 中继站能够通过信道编码和 无线资源的重分配, 扩大小区覆盖, 减小干扰和提高容量。 同时, 由于基站和 中继站(RS, Relay Station )的位置相对固定, 由移动性引起的多普勒频移小, 并且基站和 RS的距离远小于小区半径, 从而减小最大多径时延。 但是, 现有 基于 OFDMA 的无线中继接入系统都是针对满足小区覆盖和高速移动的子载 波间隔设置, 没有考虑充分利用基站与 RS之间的无线链路特性, 因此不能提 高系统频谱效率。 为解决现有无线中继接入系统所存在的问题, 本发明实施例 也提供了相应的实施方式。
实施例三、一种基于正交频分复用的传输方法, 本实施例应用于中继无线 接入网络, 方法流程如图 4所示, 具体包括以下步骤:
步骤 401、 接收需要传输的数据, 其中, 发送数据的一方可以是基站或中 继站。 中继区, 例如, 图 5和图 6将帧中的下行子帧分为下行接入区域(DL Access Zone )和下行中继区域( DL Relay Zone ), 将帧中的上行子帧分为上行下行接 入区域( UL Access Zone )和上行中继区域( UL Relay Zone )。 其中, 用户信 道状态包括的参数有最大多径时延。
步骤 403、 获取中继链路和接入链路不同的信道状态和业务量信息, 再根 据中继链路和接入链路不同的信道状态为 zone 1和 zone 2中的 OFDM传输设 置不同的子载波带宽。 通常根据信道状态的多普勒频移参数来设置子载波带 宽, 例如, 将子载波带宽设置为大于 10到 15倍的最大多普勒频移。
釆用带宽较宽的子载波所属区域传输接入链路的数据 ,釆用带宽较窄的子 载波所属区域传输中继链路的数据。 其中, UL Access Zone和 UL Relay Zone 的意义相同。 为了保证导频和公共控制信令能被所有的用户可靠接收, 这两部 分的信令也使用和下行接入区域相同的配置参数。
步骤 404、 为了更进一步提高灵活性和频谱效率, 再根据信道状态的最大 多径时延特性设置不同的 CP以区分用户。
由于基站和中继站间的距离远少于小区半径,故为中继区设置较短的 CP; 而基站或中继站和用户间的传输距离较长, 故为接入区中设置较长的 CP。
步骤 405、 由于区域的灵活组合, OFDM符号的总时间长度不一致, 为了 保证帧长度的一致,可以延长控制信令传输(例如:广播控制数据)所在 OFDM 符号的 CP, 以获得更可靠的传输性能。
步骤 406、 根据用户信道状态和业务量信息对子载波进行分配, 再根据分 配结果得到各个区域的时间长度,并通过资源指配广播消息将时间长度下发给 所有的用户。 通常, 根据不同速度、 位置和用户组在子载波时域或频域上的对 应关系进行分配。
步骤 407、 将数据分配到时间长度对应的区域进行传输。 本发明实施例三对应的传输参数如表 5所示:
Figure imgf000015_0001
表 7
下面结合表 7对本发明实施例三中的系统开销进行分析,具体如表 8所示: 下行接入区域 /下行中继 下行接入区 i或 下行中继区域 开销 (%) 区域 OFDM符号数 持续时间 (ms) 持续时间 (ms)
3/11 0.3087 2.0735 7.46
5/10 0.5145 1.8850 7.45
7/9 0.7203 1.6965 7.45
9/8 0.9261 1.5080 7.44
11/7 1.1319 1.3195 7.43
13/6 1.3377 1.1310 7.42 20/2 2.0580 0.3770 11.09
表 8 以为每个区域设置两种或两种以上的 CP。 此外, 本发明实施例可以仅对下行 子帧或上行子帧进行区域划分,然后为下行子帧或上行子帧对应的区域设置不 同的 CP。
值得说明的是, 本发明实施例三除了表 7所例参数之外,还可以选用其他 参数来实现本发明实施例。 为每个区域设置子载波带宽。
实施例四、 一种帧结构的实现方法, 该方法包括: 在此步骤中, 本发明实施例可以将帧中的子帧分为高速区域和中低速区 域, 还可以将帧中的子帧分为接入区域和中继区域。
可选地, 此步骤还包括为子帧对应的每个区域设置不同长度的 CP, 例如 长 CP和短 CP。
2 )、获取信道状态和业务量,再根据信道状态为每个区域设置不同的子载 波带宽, 并通过所述子载波承载需要发送的不同类型数据。
在此步骤中, 本发明实施例可以为高速区域设置较宽的子载波带宽, 以 及为中低速区域设置较窄的子载波带宽。然后再釆用带宽较宽的子载波承载需 要发送的高速移动用户数据,釆用带宽较窄的子载波承载需要发送的中低速移 动用户数据。
此外, 本发明实施例还可以为接入区域设置较宽的子载波带宽, 以及为中 继区域设置较窄的子载波带宽。然后再釆用带宽较宽的子载波承载需要发送的 接入链路数据, 釆用带宽较窄的子载波承载需要发送的中继链路数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指示相关的硬件来完成,所述的一个程序可以存储于计算机 可读取存储介质中, 该程序在执行时, 包括以下步骤: 获取信道信息和业务量,根据所述信道信息为每个区域设置不同的子载波 带宽, 并根据所述信道信息和业务量对所述子载波进行分配,根据分配结果得 到各个区域的时间长度, 并将数据分配到时间长度对应的区域进行传输。
所述的另一个程序可以存储于计算机可读取存储介质中, 该程序在执行 时, 包括以下步骤: 获取信道信息,再根据信道信息为每个区域设置不同的子载波带宽, 并通 过所述子载波承载需要发送的不同类型数据。
其中, 所述的存储介质可以是 ROM、 RAM, 磁碟或光盘等等。
实施例五、一种基于正交频分复用的传输装置,如图 7所示,该装置包括: 分区单元 701、 调度单元 702; 其中:
分区单元 701 , 用于获取信道信息和业务量, 以及将帧中的传输数据划分 为至少两个时间长度可变的区域,以及根据信道信息为每个区域设置不同的子 载波带宽, 所述信道信息包括信道状态。通常根据信道状态的多普勒频移参数 来设置子载波带宽, 例如, 将子载波带宽设置为大于 10到 15倍的最大多普勒 频移。
调度单元 702 , 用于获取与分区单元 701所设置带宽对应的子载波, 以及 根据分区单元 701获取到的信道信息和业务量对子载波进行分配,以及根据分 配结果得到各个区域的时间长度,以及根据所述时间长度将数据分配到对应的 区域进行传输。
上述实施例的分区单元 701 可以将上行子帧或下行子帧分为高速区域和 中低速区域, 此外, 为了进一步提高频谱利用率, 还可以为每个区域设置不同 长度的 CP。
另外, 上述装置除了实施例五所提供的实现方式之外,还可以用具有相同 或相应功能的软件或硬件模块来实现 。
实施例六、 一种发射机, 如图 8所示, 该发射机包括: 第一分区单元 801、 承载单元 802; 其中:
第一分区单元 801 , 用于获取信道信息, 以及将帧中的传输数据划分为至 少两个时间长度可变的区域,以及根据信道信息为每个区域设置不同的子载波 带宽, 所述信道信息包括信道状态。通常根据信道状态的多普勒频移参数来设 置子载波带宽,例如,将子载波带宽设置为大于 10到 15倍的最大多普勒频移。
承载单元 802, 用于获取与第一分区单元 801所设置带宽对应的子载波, 以及通过所述子载波承载需要发送的不同类型数据, 例如, 釆用带宽较宽的子 载波承载需要发送的高速移动用户数据或接入链路数据,釆用带宽较窄的子载 波承载需要发送的中低速移动用户数据或中继链路数据。
上述装置除了实施例六所提供的实现方式之外,还可以用具有相同或相应 功能的软件或硬件模块来实现 。
最后, 还值得说明的是, 上述六个实施例都是针对 TDD系统来说明的,
TDD 系统将帧分为上行的子帧和下行的子帧的区别, 并且上行和下行的帧结 构可以相同, 也可以不同。 本发明实施例也同样适用 FDD系统, 但在 FDD系 统并没有上行和下行子帧的分别, 统称为子帧。 为至少两个区域, 以及根据信道信息为每个区域设置不同的子载波带宽, 并根 据信道信息和业务量对所述子载波进行分配,再根据分配结果得到各个区域的 时间长度, 然后将数据分配到所述时间长度对应的区域进行传输, 与现有技术 相比较, 本发明实施例不需要通过改变系统釆样率获得不同的子载波带宽, 并 且子载波带宽是可变的, 从而能够有效提升频谱资源的利用率。 至少两个区域, 以及根据信道信息为每个区域设置不同的子载波带宽, 并通过 所述子载波承载需要发送的数据, 这样使得子载波带宽可变,从而能有效提高 有效符号时间和 CP的比值, 进而达到提升频谱资源利用率的目的。
进一步地 ,由于本发明实施例根据信道状态的最大多径时延为每个区域设 置不同的 CP长度, 这样可以进一步提高频谱效率的利用率。
最后, 由于区域的灵活组合可能导致 OFDM符号的总时间长度不一致, 为了保证帧长度的一致性, 本发明实施例可以延长重要传输数据(例如: 广播 控制数据)所在的 OFDM符号的 CP, 从而获得更可靠的传输性能。
以上对本发明实施例所提供的基于正交频分复用的传输方法及装置、帧结 构的实现方法、发射机进行了详细介绍, 本文中应用了具体个例对本发明的原 理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法 及其思想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实 施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对 本发明的限制。

Claims

权 利 要 求
1、 一种基于正交频分复用的传输方法, 其特征是, 包括: 获取信道信息和业务量,根据所述信道信息为每个区域设置不同的子载波 带宽, 并根据所述信道信息和业务量对所述子载波进行分配,根据分配结果得 到各个区域的时间长度, 并将数据分配到时间长度对应的区域进行传输。
2、 如权利要求 1所述的方法, 其特征是, 所述获取的信道信息包括信道 状态。
3、 如权利要求 1或 2所述的方法, 其特征是, 将帧中的传输数据划分为 时间长度可变的高速区域和中低速区域时,根据信道信息为每个区域设置不同 的子载波带宽包括:
根据信道信息为高速区域设置较宽的子载波带宽,为中低速区域设置较窄 的子载波带宽。
4、 如权利要求 1或 2所述的方法, 其特征是, 将帧中的传输数据划分为 时间长度可变的接入区域和中继区域时,根据信道信息为每个区域设置不同的 子载波带宽包括:
根据信道信息为接入区域设置较宽的子载波带宽,为中继区域设置较窄的 子载波带宽。
5、 如权利要求 1所述的方法, 其特征是, 所述根据所述信道信息为每个 区域设置不同的子载波带宽之后进一步包括:
为子帧对应的每个区域设置不同的循环前缀。
6、 如权利要求 5所述的方法, 其特征是, 所述方法进一步包括: 延长控制信令所在正交频分复用符号的循环前缀。
7、 一种基于正交频分复用的传输装置, 其特征是, 包括:
分区单元, 用于获取信道信息和业务量, 以及将帧中的传输数据划分为至 少两个时间长度可变的区域,以及根据信道信息为每个区域设置不同的子载波 带宽;
调度单元, 用于获取与所述分区单元所设置带宽对应的子载波, 以及根据 信道信息和业务量对子载波进行分配,以及根据分配结果得到各个区域的时间 长度, 以及将数据分配到所述时间长度对应的区域进行传输。
8、 一种帧结构的实现方法, 其特征是, 包括: 获取信道信息,根据所述信道信息为每个区域设置不同的子载波带宽, 并 通过所述子载波承载需要发送的不同类型数据。
9、 如权利要求 8所述的方法, 其特征是, 将帧中的传输数据划分为至少 两个时间长度可变的高速区域和中低速区域时,根据信道信息为每个区域设置 不同的子载波带宽包括:
根据信道信息为高速区域设置较宽的子载波带宽,为中低速区域设置较窄 的子载波带宽。
10、 如权利要求 9所述的方法, 其特征是, 通过所述子载波承载需要发送 的不同类型数据包括:
釆用带宽较宽的子载波承载需要发送的高速移动用户数据,釆用带宽较窄 的子载波承载需要发送的中低速移动用户数据。
11、 如权利要求 8所述的方法, 其特征是, 将帧中的传输数据划分为至少 两个时间长度可变的接入区域和中继区域,根据信道信息为每个区域设置不同 的子载波带宽包括:
根据信道信息为接入区域设置较宽的子载波带宽,为中继区域设置较窄的 子载波带宽。
12、 如权利要求 11所述的方法, 其特征是, 通过所述子载波承载需要发 送的不同类型数据包括:
釆用带宽较宽的子载波承载需要发送的接入链路数据,釆用带宽较窄的子 载波承载需要发送的中继链路数据。
13、 如权利要求 8所述的方法, 其特征是, 所述根据所述信道信息为每个 区域设置不同的子载波带宽之后进一步包括:
为子帧对应的每个区域设置不同的循环前缀。
14、 一种发射机, 其特征是, 包括: 第一分区单元, 用于获取信道信息, 以及将帧中的传输数据划分为至少两 个时间长度可变的区域,以及根据所述信道信息为每个区域设置不同的子载波 带宽;
承载单元, 用于获取与所述第一分区单元所设置带宽对应的子载波, 以及 通过所述子载波承载需要发送的不同类型数据。
PCT/CN2008/071184 2007-06-26 2008-06-04 Procédé de transmission et dispositif basé sur un multiplexage par répartition orthogonale de la fréquence (ofdm) WO2009000185A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007101124482A CN101335731B (zh) 2007-06-26 2007-06-26 基于正交频分复用的传输方法及装置
CN200710112448.2 2007-06-26

Publications (1)

Publication Number Publication Date
WO2009000185A1 true WO2009000185A1 (fr) 2008-12-31

Family

ID=40185190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071184 WO2009000185A1 (fr) 2007-06-26 2008-06-04 Procédé de transmission et dispositif basé sur un multiplexage par répartition orthogonale de la fréquence (ofdm)

Country Status (2)

Country Link
CN (1) CN101335731B (zh)
WO (1) WO2009000185A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016022287A1 (en) * 2014-08-07 2016-02-11 Coherent Logix, Incorporated Multi-partition radio frames
EP3308581A4 (en) * 2015-08-26 2018-06-27 Huawei Technologies Co., Ltd. Frame structure for machine-type communications with adjustable pulse bandwidth
US10205619B2 (en) 2014-08-07 2019-02-12 ONE Media, LLC Dynamic configuration of a flexible orthogonal frequency division multiplexing PHY transport data frame

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244558B (zh) * 2010-05-12 2014-09-03 华为技术有限公司 发送数据的方法及装置
CN102547992B (zh) * 2012-01-16 2015-01-14 清华大学 基于正交频分多址接入系统的信令数据混合传输方法
CN102868514B (zh) * 2012-08-30 2015-09-16 北京久华信信息技术有限公司 一种时分双工通信系统无线传输方法
CN103701747B (zh) * 2013-12-20 2017-02-01 西南交通大学 Ofdm系统在非完备信道信息下的子载波带宽、调制方式和功率分配的移动自适应方法
US11050503B2 (en) 2015-03-31 2021-06-29 Huawei Technologies Co., Ltd. System and method of waveform design for operation bandwidth extension
WO2018119749A1 (en) * 2016-12-28 2018-07-05 Mediatek Singapore Pte. Ltd. Methods to support ul transmission on multiple numerologies in nr system
CN106992848A (zh) * 2017-05-26 2017-07-28 电子科技大学 一种用于索引调制的子载波分配方法
CN107135059A (zh) * 2017-05-26 2017-09-05 电子科技大学 一种用于索引调制的子载波分配方法
CN108134660B (zh) * 2017-12-19 2021-04-09 新疆石油管理局数据公司 一种油井数据处理方法及周期设置方法和设备
CN112839000A (zh) * 2020-12-30 2021-05-25 北京神经元网络技术有限公司 符号带宽可变的高速工业总线系统及符号带宽的改变方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588937A (zh) * 2004-08-26 2005-03-02 浙江大学 具有可变子载波数目的自适应正交频分复用传输方法和系统
WO2005104589A1 (en) * 2004-04-23 2005-11-03 Electronics And Telecommunications Research Institute Transmitter and receiver for multicarrier system and subcarrier assignment method thereof
WO2005104582A1 (de) * 2004-04-23 2005-11-03 Siemens Aktiengesellschaft Codec-modus-konfigurationsauswahl bei transcoderfreien operationen
WO2005125139A1 (en) * 2004-06-16 2005-12-29 Samsung Electronics Co., Ltd. Method for transmitting/receiving data in mobile communication systems using an ofdma scheme
CN1894868A (zh) * 2003-04-16 2007-01-10 西门子公司 用于在多载波系统中通过多个发射天线传输数据的方法和发射机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894868A (zh) * 2003-04-16 2007-01-10 西门子公司 用于在多载波系统中通过多个发射天线传输数据的方法和发射机
WO2005104589A1 (en) * 2004-04-23 2005-11-03 Electronics And Telecommunications Research Institute Transmitter and receiver for multicarrier system and subcarrier assignment method thereof
WO2005104582A1 (de) * 2004-04-23 2005-11-03 Siemens Aktiengesellschaft Codec-modus-konfigurationsauswahl bei transcoderfreien operationen
WO2005125139A1 (en) * 2004-06-16 2005-12-29 Samsung Electronics Co., Ltd. Method for transmitting/receiving data in mobile communication systems using an ofdma scheme
CN1588937A (zh) * 2004-08-26 2005-03-02 浙江大学 具有可变子载波数目的自适应正交频分复用传输方法和系统

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11082277B2 (en) 2014-08-07 2021-08-03 Coherent Logix, Incorporated Multi-portion radio transmissions
CN107431583A (zh) * 2014-08-07 2017-12-01 相干逻辑公司 多分区无线电帧
US10574500B2 (en) 2014-08-07 2020-02-25 ONE Media, LLC Dynamic configuration of a flexible orthogonal frequency division multiplexing PHY transport data frame
JP2020114017A (ja) * 2014-08-07 2020-07-27 コーヒレント・ロジックス・インコーポレーテッド マルチパーティションラジオフレーム
US10560299B2 (en) 2014-08-07 2020-02-11 Coherent Logix, Incorporated Multi-portion radio transmissions
US10033566B2 (en) 2014-08-07 2018-07-24 Coherent Logix, Incorporated Multi-portion radio transmissions
US10205619B2 (en) 2014-08-07 2019-02-12 ONE Media, LLC Dynamic configuration of a flexible orthogonal frequency division multiplexing PHY transport data frame
US10389569B2 (en) 2014-08-07 2019-08-20 Coherent Logix, Incorporated Multi-partition radio frames
US11855915B2 (en) 2014-08-07 2023-12-26 ONE Media, LLC Dynamic configuration of a flexible orthogonal frequency division multiplexing PHY transport data frame
US9438459B2 (en) 2014-08-07 2016-09-06 Coherent Logix, Incorporated Multi-partition radio frames
JP2018503990A (ja) * 2014-08-07 2018-02-08 コーヒレント・ロジックス・インコーポレーテッド マルチパーティションラジオフレーム
CN111628854A (zh) * 2014-08-07 2020-09-04 相干逻辑公司 多分区无线电帧
WO2016022287A1 (en) * 2014-08-07 2016-02-11 Coherent Logix, Incorporated Multi-partition radio frames
US11838224B2 (en) 2014-08-07 2023-12-05 One Media , Llc Multi-portion radio transmissions
US11146437B2 (en) 2014-08-07 2021-10-12 ONE Media, LLC Dynamic configuration of a flexible orthogonal frequency division multiplexing PHY transport data frame
US11588591B2 (en) 2014-08-07 2023-02-21 Sinclair Television Group, Inc Multi-portion radio transmissions
US11096028B2 (en) 2015-08-26 2021-08-17 Huawei Technologies Co., Ltd. Frame structure for machine-type communications with adjustable pulse bandwidth
EP3308581A4 (en) * 2015-08-26 2018-06-27 Huawei Technologies Co., Ltd. Frame structure for machine-type communications with adjustable pulse bandwidth

Also Published As

Publication number Publication date
CN101335731B (zh) 2012-08-08
CN101335731A (zh) 2008-12-31

Similar Documents

Publication Publication Date Title
WO2009000185A1 (fr) Procédé de transmission et dispositif basé sur un multiplexage par répartition orthogonale de la fréquence (ofdm)
CN101904125B (zh) 用于通信系统的灵活的ofdm/ofdma帧结构
EP2764745B1 (en) Method and apparatus for operating multi-band and multi-cell
US9490954B2 (en) Method and apparatus for allocating a control channel resource of a relay node in a backhaul subframe
US8290067B2 (en) Spectrum sharing in a wireless communication network
US8520606B2 (en) Synchronous spectrum sharing based on OFDM/OFDMA signaling
US10602392B2 (en) Wireless communication method and wireless communication apparatus
KR101818584B1 (ko) 전용 기준 신호를 위한 공통 제어 채널 자원 할당 방법 및 장치
JP2011524702A (ja) キャリアアグリゲーション
WO2010138921A2 (en) Signal transmission with fixed subcarrier spacing within ofdma communication systems
KR20090069119A (ko) 다중접속영역 다중화 방법
WO2010139155A1 (zh) 帧结构及其配置方法、通信方法
EP2288216B1 (en) Method and apparatus for allocating a control channel resource of a relay node in a backhaul subframe
KR101412328B1 (ko) 효율적인 부반송파 맵핑을 이용한 데이터 전송방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08757595

Country of ref document: EP

Kind code of ref document: A1