WO2008156861A1 - Seed germination acceleration - Google Patents

Seed germination acceleration Download PDF

Info

Publication number
WO2008156861A1
WO2008156861A1 PCT/US2008/007764 US2008007764W WO2008156861A1 WO 2008156861 A1 WO2008156861 A1 WO 2008156861A1 US 2008007764 W US2008007764 W US 2008007764W WO 2008156861 A1 WO2008156861 A1 WO 2008156861A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
germination
crop plant
seeds
composition
Prior art date
Application number
PCT/US2008/007764
Other languages
French (fr)
Inventor
Judith Fugiel
Peter D. Petracek
Prem Warrior
Original Assignee
Valent Biosciences Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valent Biosciences Corporation filed Critical Valent Biosciences Corporation
Priority to EP08768689A priority Critical patent/EP2161978B1/en
Priority to AU2008266741A priority patent/AU2008266741B2/en
Priority to CA2691161A priority patent/CA2691161C/en
Priority to PL08768689T priority patent/PL2161978T3/en
Publication of WO2008156861A1 publication Critical patent/WO2008156861A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/06Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings
    • A01N43/12Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings condensed with a carbocyclic ring
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N45/00Biocides, pest repellants or attractants, or plant growth regulators, containing compounds having three or more carbocyclic rings condensed among themselves, at least one ring not being a six-membered ring
    • A01N45/02Biocides, pest repellants or attractants, or plant growth regulators, containing compounds having three or more carbocyclic rings condensed among themselves, at least one ring not being a six-membered ring having three carbocyclic rings

Definitions

  • the present invention generally relates to the field of seed treatment. More specifically, the invention relates to the use of gibberellin 4/7 (GA4/7) to accelerate germination of canola and rapeseed.
  • GA4/7 gibberellin 4/7
  • early planting of seed crops during sub-optimal cold soil temperatures may allow farmers to improve yields by extending the growing season (Lawton, Progressive Farmer, April 2007: B-I to B-3) and help manage a busy planting schedule.
  • early planting may permit the planting of warmer growing zone varieties of crops.
  • minimum germination temperatures limit crop establishment in early spring and require many seeds to be planted later in the season. A seed treatment that would promote cold temperature germination would be useful.
  • Seed priming has been used to accelerate cold temperature germination.
  • priming requires the seed to be exposed to water for a period of time.
  • the process of priming requires a large facility and is not readily useable for large crops. Therefore, there is a need in the art for an alternative to seed priming.
  • Application of a seed treatment can be logistically simpler and more flexible in allowing a range of chemical treatments that produce different physiological effects, depending on the crop, active ingredient and rate of application.
  • the present invention is generally directed to the treatment of seeds, for example, canola and rapeseed, with GA4/7 to accelerate low temperature germination.
  • This invention would permit the planting of longer season varieties of crops in cold growing regions.
  • This invention would also permit the more rapid establishment of crops in early spring thus allowing for earlier canopy closure and growth during the wet season, and increased yield.
  • This invention would also permit a greater period for planting thus allowing more flexibility in managing the planting date.
  • the present invention generally relates to seed treatment formulations suitable for accelerating crop germination comprising an effective amount of GA4/7.
  • said crops are canola and rapeseed.
  • said crops are members of the Brassicaceae family.
  • the effective amount of GA4/7 is an amount of GA4/7, the application of which results in acceleration of crop germination as compared to crop germination in the absence of GA4/7.
  • the effective amount can vary depending on the crop and is generally in the range of about 0.1 ppm to about 10,000 ppm, more preferably from about 0.5 ppm to about 500 ppm, and most preferably from about 5 ppm to about 50 ppm. It is well within a skill of a person of ordinary skill in the art to determine an effective amount of GAAIl for a specific crop.
  • the present invention generally relates to methods of accelerating crop germination comprising applying to crops an effective amount of GA4/7.
  • GA4/7 is defined as mixture of GA4 ((l ⁇ ,2 ⁇ ,4a ⁇ ,4b ⁇ ,10 ⁇ )- 2,4a-dihydroxy-l-methyl-8-methylenegibb- 1,10-dicarboxylic acid l,4a-lactone) and GA7 ((l ⁇ ,2 ⁇ ,4a ⁇ ,4b ⁇ ,10 ⁇ )- 2,4a,7-trihydroxy-l -methyl- 8- methylenegibb- 1,10-dicarboxylic acid l,4a-lactone); GA3 (gibberellic acid) is defined as (l ⁇ ,2 ⁇ ,4a ⁇ ,4b ⁇ ,10 ⁇ )-2,4a,7-trihydroxy-l-methyl-8-methylenegibb-3-ene- 1,10-dicarboxylic acid l,4a-lactone; 6BA (N 6 -benzyladenine) is defined as N 6 - phenylmethyl)-lH-purin-6-amine; and CPPU (forch
  • the seeds are treated with solutions comprising GA4/7.
  • the amount of the solutions should be enough to wet the seeds.
  • Techniques of seed treatment application are well known to those skilled in the art, and they may be readily used in the context of the present invention.
  • the compositions of the present invention may be applied as a slurry or soak. Film coating and encapsulation may also be used.
  • the coating processes are well known in the art and employ the techniques of film coating, encapsulation, immersion, etc.
  • the methods of application of the compositions of the present invention may be varied, and the invention is intended to include any technique that is to be used by one of skill in the art.
  • 1 ppm active ingredient refers to 1 microgram active ingredient per gram of seed.
  • GA3, GA4/7, 6BA or CPPU were each dispensed into a 15 ml centrifuge tube, and 2.5 ml of de-ionized water was then added to each tube. The solution was mixed on a vortex mixer and 0.015 ml of this solution was then placed in another 15 ml. centrifuge tube along with 0.6 grams of canola seeds (cv. Westar). Seeds were mixed by rotating 360° on a Labquake
  • Petri plate studies Each standard petri plate (100 mm x 50 mm) contained 1 blue Anchor germination circle (3 1/4 inches in diameter) drenched with 8 ml of de- ionized water cooled to 6° C. Each treatment consisted of 3 petri plates of 15 seeds each. After plating, the petri plates were placed in a Nalgene plastic container pre- cooled to 6° C. The plastic container containing the petri plates was placed in a growth chamber at 6° C with a 16-hour light cycle for the duration of the study. Seeds were visually observed daily for germination as determined by emergence of root from the seed coat.
  • Canola seeds (cv. Westar) were treated with solutions containing GA4/7, GA3, 6BA, or CPPU. The solutions were sufficient only to wet the seeds.
  • the amount of applied GA4/7 (0.5, 5 or 50 ppm), GA3 (0.5, 5 or 50 ppm), 6BA (5 or 50 ppm), or CPPU (5 or 50 ppm) is expressed as ppm or micrograms of compound per gram of seed.
  • GA4/7 at 5 ppm surprisingly increased the percent of early germination more than GA3, 6BA, or CPPU at 50 ppm (Table 1).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention is generally directed to the use of gibberellin 4/7 (GA4/7) in the field of seed treatment, specifically to accelerate crop germination.

Description

SEED GERMINATION ACCELERATION
FIELD OF THE INVENTION
The present invention generally relates to the field of seed treatment. More specifically, the invention relates to the use of gibberellin 4/7 (GA4/7) to accelerate germination of canola and rapeseed.
BACKGROUND OF THE INVENTION
In the commercial production of crops it is desirable to be able to plant seeds early. For example, early planting of seed crops during sub-optimal cold soil temperatures may allow farmers to improve yields by extending the growing season (Lawton, Progressive Farmer, April 2007: B-I to B-3) and help manage a busy planting schedule. Also, early planting may permit the planting of warmer growing zone varieties of crops. However, currently, minimum germination temperatures limit crop establishment in early spring and require many seeds to be planted later in the season. A seed treatment that would promote cold temperature germination would be useful.
Seed priming has been used to accelerate cold temperature germination. However, priming requires the seed to be exposed to water for a period of time. Also, the process of priming requires a large facility and is not readily useable for large crops. Therefore, there is a need in the art for an alternative to seed priming.
Application of a seed treatment can be logistically simpler and more flexible in allowing a range of chemical treatments that produce different physiological effects, depending on the crop, active ingredient and rate of application.
SUMMARY OF THE INVENTION The present invention is generally directed to the treatment of seeds, for example, canola and rapeseed, with GA4/7 to accelerate low temperature germination. This invention would permit the planting of longer season varieties of crops in cold growing regions. This invention would also permit the more rapid establishment of crops in early spring thus allowing for earlier canopy closure and growth during the wet season, and increased yield. This invention would also permit a greater period for planting thus allowing more flexibility in managing the planting date.
DETAILED DESCRIPTION OF THE INVENTION
In one embodiment, the present invention generally relates to seed treatment formulations suitable for accelerating crop germination comprising an effective amount of GA4/7. In a preferred embodiment, said crops are canola and rapeseed. In another preferred embodiment, said crops are members of the Brassicaceae family.
The effective amount of GA4/7 is an amount of GA4/7, the application of which results in acceleration of crop germination as compared to crop germination in the absence of GA4/7. The effective amount can vary depending on the crop and is generally in the range of about 0.1 ppm to about 10,000 ppm, more preferably from about 0.5 ppm to about 500 ppm, and most preferably from about 5 ppm to about 50 ppm. It is well within a skill of a person of ordinary skill in the art to determine an effective amount of GAAIl for a specific crop.
In another embodiment, the present invention generally relates to methods of accelerating crop germination comprising applying to crops an effective amount of GA4/7.
For the purposes of this Application, GA4/7 is defined as mixture of GA4 ((lα,2β,4aα,4bβ,10β)- 2,4a-dihydroxy-l-methyl-8-methylenegibb- 1,10-dicarboxylic acid l,4a-lactone) and GA7 ((lα,2β,4aα,4bβ,10β)- 2,4a,7-trihydroxy-l -methyl- 8- methylenegibb- 1,10-dicarboxylic acid l,4a-lactone); GA3 (gibberellic acid) is defined as (lα,2β,4aα,4bβ,10β)-2,4a,7-trihydroxy-l-methyl-8-methylenegibb-3-ene- 1,10-dicarboxylic acid l,4a-lactone; 6BA (N6-benzyladenine) is defined as N6- phenylmethyl)-lH-purin-6-amine; and CPPU (forchlorfenuron) is defined as l-(2- chloro-4-pyridyl)-3-phenylurea.
Surprisingly and unexpectedly, Applicants have discovered that applying GA4/7 to canola seeds significantly increased the percent of early germination as compared to applying GA3, 6BA, and CPPU.
In an embodiment of the present invention, the seeds are treated with solutions comprising GA4/7. The amount of the solutions should be enough to wet the seeds. Techniques of seed treatment application are well known to those skilled in the art, and they may be readily used in the context of the present invention. The compositions of the present invention may be applied as a slurry or soak. Film coating and encapsulation may also be used. The coating processes are well known in the art and employ the techniques of film coating, encapsulation, immersion, etc. The methods of application of the compositions of the present invention may be varied, and the invention is intended to include any technique that is to be used by one of skill in the art.
As used herein, all numerical values relating to amounts, weight percentages and the like are defined as "about" or "approximately" each particular value, plus or minus 10%. For example, the phrase "at least 5.0% by weight" is to be understood as "at least 4.5% to 5.5% by weight." Therefore, amounts within 10% of the claimed values are encompassed by the scope of the claims.
Throughout the application, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. The following examples are intended to illustrate the present invention and to teach one of ordinary skill in the art how to make and use the invention. They are not intended to be limiting in any way.
For all seed treatments, 1 ppm active ingredient refers to 1 microgram active ingredient per gram of seed. For these studies, GA3, GA4/7, 6BA or CPPU were each dispensed into a 15 ml centrifuge tube, and 2.5 ml of de-ionized water was then added to each tube. The solution was mixed on a vortex mixer and 0.015 ml of this solution was then placed in another 15 ml. centrifuge tube along with 0.6 grams of canola seeds (cv. Westar). Seeds were mixed by rotating 360° on a Labquake
Rotisserie for 30 minutes. To simulate commercial seed treatments, the amount of solutions was just sufficient to wet the seeds. After treating, the seeds were placed in weigh boats for overnight drying.
Petri plate studies: Each standard petri plate (100 mm x 50 mm) contained 1 blue Anchor germination circle (3 1/4 inches in diameter) drenched with 8 ml of de- ionized water cooled to 6° C. Each treatment consisted of 3 petri plates of 15 seeds each. After plating, the petri plates were placed in a Nalgene plastic container pre- cooled to 6° C. The plastic container containing the petri plates was placed in a growth chamber at 6° C with a 16-hour light cycle for the duration of the study. Seeds were visually observed daily for germination as determined by emergence of root from the seed coat.
EXAMPLE
Canola seeds (cv. Westar) were treated with solutions containing GA4/7, GA3, 6BA, or CPPU. The solutions were sufficient only to wet the seeds. The amount of applied GA4/7 (0.5, 5 or 50 ppm), GA3 (0.5, 5 or 50 ppm), 6BA (5 or 50 ppm), or CPPU (5 or 50 ppm) is expressed as ppm or micrograms of compound per gram of seed. GA4/7 at 5 ppm surprisingly increased the percent of early germination more than GA3, 6BA, or CPPU at 50 ppm (Table 1).
Figure imgf000006_0001
Figure imgf000007_0001

Claims

1. A composition suitable for accelerating crop plant germination comprising an effective amount of gibberellin 4/7.
2. The composition of claim 1, wherein said crop plant is a member of the Brassicaceae family.
3. The composition of claim 1, wherein said crop plant is canola.
4. The composition of claim 1 , wherein said crop plant is rapeseed.
5. A method of accelerating crop plant germination or increasing crop yield comprising applying to said crop plant an effective amount of the composition of claim 1.
6. The method of claim 5, wherein said crop plant is a member of the Brassicaceae family.
7. The method of claim 5, wherein said crop plant is canola.
8. The method of claim 5, wherein said crop plant is rapeseed.
9. The composition of claim 1, wherein said effective amount is from about 0.1 ppm to about 250 ppm.
10. The composition of claim 1, wherein the gibberellin 4/7 is combined with other agrochemicals.
PCT/US2008/007764 2007-06-20 2008-06-20 Seed germination acceleration WO2008156861A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08768689A EP2161978B1 (en) 2007-06-20 2008-06-20 Seed germination acceleration
AU2008266741A AU2008266741B2 (en) 2007-06-20 2008-06-20 Seed germination acceleration
CA2691161A CA2691161C (en) 2007-06-20 2008-06-20 The use of gibberellin 4/7 to accelerate seed germination
PL08768689T PL2161978T3 (en) 2007-06-20 2008-06-20 Seed germination acceleration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US93638907P 2007-06-20 2007-06-20
US60/936,389 2007-06-20

Publications (1)

Publication Number Publication Date
WO2008156861A1 true WO2008156861A1 (en) 2008-12-24

Family

ID=40137102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/007764 WO2008156861A1 (en) 2007-06-20 2008-06-20 Seed germination acceleration

Country Status (9)

Country Link
US (1) US8716181B2 (en)
EP (1) EP2161978B1 (en)
AR (2) AR067064A1 (en)
AU (1) AU2008266741B2 (en)
CA (1) CA2691161C (en)
CL (1) CL2008001830A1 (en)
PL (1) PL2161978T3 (en)
TW (1) TW200908879A (en)
WO (1) WO2008156861A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244759B2 (en) * 2013-10-08 2019-04-02 Kim-C1, Llc Use of forchlorfenuron for promoting plant growth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532206A (en) * 1991-08-15 1996-07-02 Evans; Lloyd T. Method of treating plants or plant tissues with C-16,17-dihydro gibberellins
US20020039971A1 (en) * 2000-04-28 2002-04-04 Masaharu Hayashi Plant-activating agent

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1547571A (en) * 1975-04-03 1979-06-20 Pharis R P Composition for treating trees
GB1583702A (en) * 1977-04-21 1981-01-28 Hutley Bull P D Treating cereal plants with gibberellins
US4749402A (en) * 1980-06-19 1988-06-07 The Curators Of The University Of Missouri Method and composition for enhancement of mycorrhizal development by foliar fertilization of plants
JPH09208407A (en) * 1996-02-08 1997-08-12 Sagami Chem Res Center Plant growth promoter
CN1964624B (en) 2004-05-24 2010-10-27 瓦伦特生物科学公司 Stable and water-soluble plant growth regulator liquid compositions and methods for use of same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532206A (en) * 1991-08-15 1996-07-02 Evans; Lloyd T. Method of treating plants or plant tissues with C-16,17-dihydro gibberellins
US20020039971A1 (en) * 2000-04-28 2002-04-04 Masaharu Hayashi Plant-activating agent

Also Published As

Publication number Publication date
EP2161978A1 (en) 2010-03-17
AU2008266741A1 (en) 2008-12-24
EP2161978B1 (en) 2013-03-27
CL2008001830A1 (en) 2009-03-06
AR067064A1 (en) 2009-09-30
TW200908879A (en) 2009-03-01
CA2691161A1 (en) 2008-12-24
AU2008266741B2 (en) 2013-09-19
PL2161978T3 (en) 2013-08-30
CA2691161C (en) 2016-04-26
US8716181B2 (en) 2014-05-06
AR109511A2 (en) 2018-12-19
US20080318789A1 (en) 2008-12-25
EP2161978A4 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
TWI415571B (en) Germination acceleration
EP2618663B1 (en) Use of a composition for the increase of crop yield
CN114391538B (en) Sterilization composition containing bronopol
MX2011000930A (en) Salts, aqueous liquid compositions containing salts of s-(+)-abscisic acid and methods of their preparation.
CN111449069A (en) Alginic acid coated seed coating agent and preparation method thereof
Magnitskiy et al. Controlling plug height of verbena, celosia, and pansy by treating seeds with paclobutrazol
CA2691161C (en) The use of gibberellin 4/7 to accelerate seed germination
CN113892425A (en) Rapid cultivation method of hazelnut semi-aseptic seedlings
CN1032999C (en) Increasing the yield of cereals by means of brassinolide derivatives
CN110973131A (en) Dry direct seeding paddy field herbicide and application thereof
CN101204154A (en) Compound herbicide
CN110800750A (en) Pesticide bactericidal composition and preparation thereof
CN106614693A (en) Seed coating agent and use method thereof
SU1409118A3 (en) Method of regulating the growth of summer wheat, summer and winter barley
CN109744238A (en) A kind of plant growth regualting composition containing Duraset
CN109744237A (en) A kind of synergistic composition containing Duraset
CN118177193A (en) Nanometer plant immunity-inducing agent seed coating agent and application thereof
EA016222B1 (en) Composition for treating seeds having grow-regulating action
CN118044520A (en) Glyphosate compound herbicide and preparation method thereof
SU762828A1 (en) Plant growth stimulator
CN115669682A (en) Direct-seeding Zhanshui rice seed coating agent containing reduced iron powder, coating method and application thereof
CN114794126A (en) Weeding composition, pesticide, application method and application
CN113661990A (en) Weeding composition containing benzobicyclon and propanil and application thereof
CN109769818A (en) A kind of composition containing Duraset
CN103039527A (en) Insect-resistant corn seed composite medicament coating technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08768689

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008266741

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2691161

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008266741

Country of ref document: AU

Date of ref document: 20080620

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008768689

Country of ref document: EP