WO2008151616A1 - Verfahren zur laserbearbeitung transparenter materialien - Google Patents
Verfahren zur laserbearbeitung transparenter materialien Download PDFInfo
- Publication number
- WO2008151616A1 WO2008151616A1 PCT/DE2008/000955 DE2008000955W WO2008151616A1 WO 2008151616 A1 WO2008151616 A1 WO 2008151616A1 DE 2008000955 W DE2008000955 W DE 2008000955W WO 2008151616 A1 WO2008151616 A1 WO 2008151616A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- plasma
- interval
- pulses
- pulse
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
- B23K26/0624—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/55—Working by transmitting the laser beam through or within the workpiece for creating voids inside the workpiece, e.g. for forming flow passages or flow patterns
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F9/00825—Methods or devices for eye surgery using laser for photodisruption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/30—Organic material
- B23K2103/32—Material from living organisms, e.g. skins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
Definitions
- the invention relates to a method for the laser processing of transparent materials, in particular for the production of precisely localized material changes in the interior of a transparent body.
- unpigmented body tissue or cells can undergo localized energy deposition only by non-linear absorption, i. by multiphoton processes in the form of multiphoton ionization and avalanche ionization leading to the formation of a plasma (quasi-free carriers in the material consisting of a mixture of electrons and ions). Since the occurrence of multi-photon processes is non-linearly dependent on the laser light intensity, it is called “non-linear absorption.” And since the plasma formation rate increases extremely much above a threshold depending on material and laser parameters, the plasma formation process in this parameter region is also called “optical breakdown.” ,
- Pulse duration strong - about a factor of 200, when the pulse duration of 10 ns to 100 fs is reduced.
- the occurrence of a luminous plasma is therefore associated with nanosecond pulses with a much higher energy density in the plasma and thus with much stronger mechanical laser effects and side effects of the actual material removal.
- a method for detecting minute transient material changes is proposed in another patent application of the Applicant (DE 10 2007 003 600.2). It is a procedure for the most gentle laser perforation of cell membranes, in which the pulsed laser light in focus generates bubbles in the immediate vicinity of the cell.
- the size of the bubbles can be determined by measuring the oscillation time by detecting the time behavior of the light intensity change of a sample laser beam (cw laser, preferably other wavelength), which passes through the laser focus during processing with pulsed radiation (fs to ps pulses) becomes. Bubble sizes down to 150 nm have been detected.
- the starting point of the invention is the discovery that there is a radiation intensity range in the application of nanosecond pulses on transparent material, in which already material change takes place without it comes to plasma lamps. It moves below the known threshold of the optical breakthrough, are associated with the pulse durations in the nanosecond range far-reaching destruction even outside the laser focus.
- the radiation intensity range which has been discovered and now to be used according to the invention is limited on both sides by measurable threshold values.
- the energy thresholds clearly depend on the pulse duration and laser wavelength used, but the lower intensity threshold for the laser processing range only varies very slightly with the length of the pulses and the wavelength.
- the higher threshold value is indicated in each case by the onset of plasma numbing (in the case of the plasma-opacity threshold). After the onset of plasma ulcer, avalanche ionization and thermal ionization occur to such an extent that material damage is no longer limited to the laser focus.
- the lower threshold is the one at which the first material effects are detectable, in particular the material shows a local phase transition.
- An example of this is the beginning of the formation of bubbles in liquids (or voids in solids).
- the low threshold in the first instance processing threshold
- the machining and plasma luminescence thresholds are the farther apart, the shorter the wavelength used is and the longer the laser pulse duration.
- both thresholds apparently always coincide for pulse durations below 300 ps.
- ultrashort pulse lasers ⁇ 100 ps pulse duration
- nanosecond pulsed lasers would fundamentally lead to statistically scattering laser effects.
- FIG. 1 shows the time course of the laser intensity for pulses of the same energy from a seeded and an unsedded (regular) Nd: YAG laser;
- the figure shows the measurement data for the processing threshold.
- the laser systems used were a Yb: glass laser system with oscillator and regenerative amplifier for the 300-fs pulses, an Nd: YAG microchipper for the 0.9-ns laser pulses and a seeded Nd: YAG laser for the pulses with a duration of 7-11 ns ,
- Laser pulses from "normal” ns laser oscillators have pronounced intensity peaks due to the superimposition of many longitudinal modes ("longitudinal mode beating"), the structure and amplitude of which change from pulse to pulse.This situation has long been known in principle, the extent of the intensity overshoots However, pulse duration averaged over many pulses or pulses is only revealed by measurements with high-resolution photodetectors and oscilloscopes.
- Gaussian laser pulses are emitted when only one longitudinal mode can oscillate in the laser resonator. This can be achieved by operation close to the laser threshold in conjunction with a short laser resonator and / or with an etalon in the resonator (the last two measures lead to large frequency spacing of the longitudinal modes). Because of their short resonator length, microchip lasers generally have a largely smooth pulse shape, but their maximum energy is limited to energies in the microjoule range.
- Gaussian pulses from a single-mode longitudinal laser resonator provide a much sharper optical breakthrough threshold than regular pulses, as the comparison in FIG. 2 discloses.
- the measured values shown in FIG. The measured bubble sizes are in focus compared to the irradiated pulse energy applied. Particularly noteworthy are the measured values in the lower right image area (E ⁇ 0.1 ⁇ J, bubble radius ⁇ 10 ⁇ m). They mark the rise of measurable - and more effective for the processing of cells - bubbles without occurrence of plasma lamps whose size increases with increasing pulse energy.
- the plasma luminescence sets in on a sharply measurable plasma luminescence threshold.
- the appearance of plasma fogging is accompanied by an abrupt increase in plasma size, the size of bubbles produced, and the degree of conversion of laser energy to the mechanical energy of the bubbles. In Fig. 3, this transition is indicated by jumps in the value of the bubble radius. Above the threshold for plasma luminescence, therefore, the spatial localizability and precision of the laser effects decreases drastically.
- Nematic and micro effects can also be generated with femtosecond pulses, but there is no separate area of small bubbles with a relatively slow increase in bubble radius, as observed with pulse durations of 0.9 to 11 ns.
- a separate area of small bubbles begins to form at pulse durations starting at about 300 ps, and its width (in the range of laser pulse energies) increases with increasing pulse duration.
- the processing threshold to be detected in the context of the present invention is the threshold for bubble formation in the example discussed here, in FIG. 3 characterized by the respective left end point of a measuring point row.
- the processing threshold - expressed as Irradiance - for the wavelengths used is 355 nm and 532 nm and pulse durations 0.9 to 11 ns between 90 GW / cm 2 and 170 GW / cm 2 the bright plasmalum fluorescence and large bubbles are higher by a factor of 1.5 (at 1 ns, 532 nm) to 25 (at 1 ns, 355 nm), depending on the pulse duration and wavelength.
- a concrete operating point for example by that irradiance, which for the first time produces a predefined bubble size effective for the processing purpose.
- the working point should have some distance to the plasma luminescence threshold in order to reliably avoid the onset of plasma ulcers. The fact that such an operating point can be found reliably at all was not yet known.
- the irradiance is not only determined by the laser parameters, but also influenced by the light transmission path to the target location and the focusing conditions. It is therefore advisable to determine the processing threshold and the plasma density threshold for the specific processing task prior to using the method and possibly also to include characteristics for the relationship between pulse energy and effect size.
- Wavelengths in the range of 300 nm to 1000 nm should be used.
- the laser light must be able to penetrate into the target material.
- this requires wavelengths greater than 300 nm.
- 1064 nm no area with nano- and microbubbles is detected. , This results in the mentioned range.
- the two-step nature of the optical breakthrough process can be explained by modeling the plasma formation, including multiphoton ionization, avalanche ionization, diffusion losses, recombination, and thermal ionization. Such modeling will be performed for the first time within the framework of the study described here; earlier models usually considered multiphoton ionization, avalanche ionization, and diffusion losses; The recombination is usually mentioned but neglected in the calculations, and the thermal ionization was not considered before in the modeling of the optical breakthrough in transparent media.
- thermal ionization With still increasing laser intensity, energy density and temperature increase in the laser focus, until finally thermal ionization can occur to a significant extent. If the thermal ionization becomes so strong that, together with the avalanche ionization, it overcomes the braking effect by recombination effects, the degree of ionization increases very rapidly until finally full ionization is achieved. This increase at the upper end of the low-density plasma region leads to the formation of high-density plasma and corresponds to the occurrence of intensive plasma fogging, which is usually identified by the optical breakthrough of nanosecond pulses.
- the temperature in the focal volume has increased to such a high level that thermal ionization and avalanche ionization jointly continue the breakdown process until full ionization.
- ⁇ 1064 nm, therefore, the optical breakthrough already at the bubble formation threshold leads to very high energy densities far above the value required for a phase transition and there is no separate energy range in which microeffects can be generated.
- nanosecond pulses can be used to generate free-electron mediated chemical or thermal effects without simultaneous phase transition, as described by Vogel et al. in Appl. Phys. B 81: 1015-1047 (2005) for femtosecond pulses.
- a processing threshold below that of the phase transition is to be defined for this purpose, which is now characterized by the use of measurable material changes, for example a change in the refractive index or structural transformations due to the presence of free electrons.
- This can be e.g. to write waveguides with UVAZ-IS nanosecond pulses.
- a laser which is particularly suitable for the laser treatment of eye diseases.
- the laser according to the invention for example a solid-state or microchip laser, is adapted for processing a transparent material, for example the cornea of the eye, by non-linear absorption of pulsed laser radiation taking place in the region of the laser focus and has a wavelength in a range from 300 to 1000 nm, a pulse length in a range of 300 ps to 20 ns and a means for adjusting the irradiance, wherein the laser generates laser pulses with a temporally smooth beam profile.
- the processing success of the laser is checked by the processing success registering inspection means acting on the irradiation intensity adjusting means acting on the means such that the irradiance is within an interval between the detection limit of the inspection and the occurrence of plasma illuminants in the processed material.
- the inspection means can register blistering during processing in the machined material, so that the detection limit of the inspection is defined by the registration of a first blistering.
- the upper limit of the interval is formed by the appearance of plasma lights, but this condition will not occur because the means for adjusting the irradiance act on the irradiance being within these interval limits. Thus, irreparable damage to the eye can be prevented.
- the spatial localizability is better than with ultrashort laser pulse durations because non-linear propagation effects are negligible.
- the peak power in a UV nanosecond pulse by two orders of magnitude lower than a UV femtosecond pulse.
- Localized material processing at target locations deep within transparent materials can be carried out much more easily with the method according to the invention than with femtosecond pulses, since optics with a large working distance and therefore usually relatively small numerical aperture generally have to be used for this purpose.
- optics with a large working distance and therefore usually relatively small numerical aperture generally have to be used for this purpose.
- femtosecond pulses because of the higher peak powers, nonlinear propagation effects and filamentation more easily occur than with the method according to the invention.
- the usable energy range is greater than for ultrashort laser pulse durations (see Fig. 3).
- Nanosecond lasers especially microchip lasers are much cheaper and more compact than ultrashort pulsed lasers.
Landscapes
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Laser Beam Processing (AREA)
- Lasers (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Verfahren zur Bearbeitung eines transparenten Materials durch im Bereich eines Laserfokus erfolgende nichtlineare Absorption gepulster Laserstrahlung, mit den Schritten Auswählen einer Laserwellenlänge aus dem Intervall von 300 bis 1000 um, Auswählen einer Pulslänge aus dem Intervall von 300 ps bis 20 ns, Applizieren von Laserpulsen mit zeitlich glattem Strahlprofil, dadurch gekennzeichnet, dass die Bestrahlungsstärke aus einem für das zu bearbeitende Material vorbestimmten Intervall ausgewählt ist, in dem Plasmabildung ohne Plasmaleuchten auftritt.
Description
Verfahren zur Laserbearbeitung transparenter Materialien
Die Erfindung betrifft ein Verfahren zur Laserbearbeitung transparenter Materialien, insbesondere zur Erzeugung präzise lokalisierter Materialveränderungen im Inneren eines transpa- renten Körpers.
Die Erzeugung sehr feiner Effekte bei der Lasermaterialbearbeitung setzt die lokalisierte Deponierung sehr geringer Energiemengen voraus. Wenn die Energiedeponierung durch lineare Absorption (1 -Photonen- Absorption) erfolgt, verlangt die gewünschte hohe Präzision der Ma- terialbearbeitung eine geringe optische Eindringtiefe der Laserstrahlung sowie eine hinreichend kurze Laserpulsdauer, um Wärmediffusion während der Laserpulsdauer zu vermeiden.
In transparenten Materialien wie z.B. Glas, Quarz, Wasser, unpigmentiertem Körpergewebe oder Zellen kann eine lokalisierte Energiedeponierung nur durch nichtlineare Absorption er- folgen, d.h. durch Mehrphotonenprozesse in der Form von Multiphotonenionisation und Lawinenionisation, die zur Ausbildung eines Plasmas führen (quasifreie Ladungsträger im Material bestehend aus einer Mischung von Elektronen und Ionen). Da das Auftreten der Mehrphotonenprozesse nichtlinear von der Laserlichtintensität abhängt, spricht man von „nichtlinearer Absorption". Und da die Plasmabildungsrate oberhalb einer Schwelle, die von Material und Laserparametern abhängt, extrem stark zunimmt, wird der Plasmabildungsprozess in diesem Parameterbereich auch „optischer Durchbruch" genannt.
Eine hohe Präzision der Materialbearbeitung durch nichtlineare Absorption erfordert, dass räumlich lokalisiert reproduzierbar geringe Energiemengen in das Material eingetragen (de- poniert) werden können. Die gute räumliche Lokalisation wird in erster Linie durch Fokussie- rung der Laserpulse mittels aberrationsfreier Optiken hoher numerischer Apertur erreicht.
Im Stand der Technik wird davon ausgegangen, dass geringer Energieeintrag bei hoher Reproduzierbarkeit erheblich besser durch ultrakurze Laserpulse mit einer Dauer im Bereich von einigen Femtosekunden bis wenigen Pikosekunden erfolgen kann als mit längeren Pulsen (Nanosekunden oder sogar Mikrosekunden). Hierfür gibt es vor allem drei Gründe:
1. Die experimentell detektierbare Schwelle für den optischen Durchbruch wird - vor allem bei Pulsdauern im Nanosekundenbereich - üblicherweise mit der Beobachtung eines Plasmaleuchtens gleichgesetzt.
2. Die Energieschwelle für die Bildung leuchtender Plasmen nimmt mit sinkender
Pulsdauer stark ab - etwa um einen Faktor 200, wenn die Pulsdauer von 10 ns auf 100 fs verringert wird. Das Auftreten eines leuchtenden Plasmas ist daher bei Na- nosekundenpulsen mit einer viel höheren Energiedichte im Plasma und dadurch mit viel stärkeren mechanischen Lasereffekten und Nebenwirkungen der eigentli- chen Materialabtragung verknüpft.
3. Nahe der Schwelle für den optischen Durchbruch weisen die von üblichen Nano- sekundenpulsen erzeugten Lasereffekte eine viel größere Streubreite auf als die Femtosekundeneffekte.
Dies hat zu der Auffassung geführt, der optische Durchbruch mit Nanosekundenpulsen sei generell „statistischer Natur", während der Femtosekunden-Durchbruch „deterministisch" sei und daher besser für reproduzierbare Materialbearbeitung geeignet. Überdies ist die Aussage berechtigt, das Auftreten von Plasmaleuchten bei Nanosekundenpuls-Laserbearbeitung stehe einer präzisen Lokalisierung der Lasereffekte prinzipiell entgegen.
Bedauerlicherweise sind Pulslasersysteme mit Pulsdauern unter 100 ps komplexe Systeme mit entsprechend hohen Anschaffungskosten. Deshalb wird immer wieder nach Kompromissen gesucht, die den oben begründeten Wunsch nach Kurzzeitpulsen mit erschwinglichen Geräten verbinden.
Dies ist z.B. in der Arbeit von Colombelli et al., „Ultraviolet diffraction limited nanosurgery of live biological tissues", Rev. Sei. Instrum., Vol. 75, 472-478 (2004), der Fall, wo ein UV- Chip-Laser (frequenzverdreifachter Nd: YAG) mit Pulsdauer 500 ps als Laserskalpell u. a. für Einzelzellen erfolgreich verwendet wird. Solche Mikrochip-Laser sind relativ günstig, arbeiten aber üblicherweise mit Nanosekundenpulsen und können Pulsdauern von einigen 100 ps prinzipiell nicht unterschreiten.
Präzise Materialbearbeitung mit Nanosekundenpulsen in transparenten Medien ist nach der Lehre der DE 198 55 623 Cl zur Ausführung der bekannten Laserinnengravur von Glas möglich; dort werden sogar Pulsdauern von 100 ns verwendet. Allerdings besagt die Patentschrift ausdrücklich, dass man Wellenlängen außerhalb des Plateaubereichs des Transmissionsgrades verwenden soll, also solche, für die 'das Material eben gerade nicht optimal transparent ist. Die Bedeutung des dadurch bedingten Auftretens linearer Absorption wird von den Autoren hervorgehoben, aber nicht näher erläutert.
Ein Verfahren zur Detektion kleinster transienter Materialveränderungen wird in einer anderen Patentanmeldung der Anmelderin (DE 10 2007 003 600.2) vorgeschlagen. Es handelt sich um ein Verfahren zur möglichst schonenden Laserperforation von Zellmembranen, bei dem das Pulslaserlicht im Fokus Blasen in unmittelbarer Nachbarschaft der Zelle erzeugt. Die Größenbestimmung der Blasen kann über eine Messung der Oszillationszeit erfolgen, indem man das Zeitverhalten der Lichtintensitätsänderung eines Probelaserstrahls (cw-Laser, bevorzugt andere Wellenlänge) erfasst, der während der Bearbeitung mit gepulster Strahlung (fs- bis ps-Pulse) durch den Laserfokus geführt wird. Blasengrößen bis hinab zu 150 nm sind so detektiert worden.
Es ist nun die Aufgabe der Erfindung, ein Verfahren zur Materialbearbeitung transparenter Medien mittels nichtlinearer Absorption aufzuzeigen, das auch bei Benutzung von Pulslasern mit Pulsdauern im Nanosekundenbereich auf genau lokalisierte Materialveränderungen führt.
Die Aufgabe wird gelöst mit dem Verfahren gemäß Anspruch 1. Die Unteransprüche geben vorteilhafte Ausgestaltungen an.
Den Ausgangspunkt der Erfindung bildet die Entdeckung, dass es bei der Applikation von Nanosekundenpulsen auf transparentes Material einen Strahlungsstärkenbereich gibt, in dem bereits Materialveränderung stattfindet ohne dass es zu Plasmaleuchten kommt. Man bewegt sich dabei unter der bekannten Schwelle des optischen Durchbruchs, mit der bei Pulsdauern im Nanosekundenbereich weit reichende Zerstörungen auch außerhalb des Laserfokus assoziiert sind.
Der entdeckte und nun erfindungsgemäß zu nutzende Strahlungsstärkenbereich wird je nach Material (z.B. Glas oder Wasser) beidseitig durch messbare Schwellenwerte begrenzt. Die Energieschwellen hängen dabei klar von der benutzten Pulsdauer und Laserwellenlänge ab, die untere Intensitätsschwelle für den Bereich der Laserbearbeitung variiert jedoch nur recht schwach mit der Länge der Pulse und der Wellenlänge.
Der höhere Schwellenwert wird jeweils durch das Einsetzen des Plasmaleuchtens angezeigt (i.F. Plasmaleuchtschwelle). Es kommt nach Einsetzen des Plasmaleuchtens zu Lawinenioni- sation und thermischer Ionisation in einem solchen Umfang, dass sich Materialschäden nicht mehr auf den Laserfokus beschränken.
Der niedrigere Schwellenwert ist hingegen jener, bei denen erste Materialeffekte detektierbar sind, insbesondere das Material einen lokalen Phasenübergang zeigt. Ein Beispiel hierfür ist der Beginn der Bildung von Blasen in Flüssigkeiten (oder Hohlräumen in Festkörpern).
Zur Klarstellung sei an dieser Stelle bereits bemerkt, dass alle Materialveränderungen in der vorliegenden Beschreibung mit Plasmabildung verbunden sind. Es ist jedoch zu unterscheiden zwischen dem leuchtenden Plasma (s. u. high-density Plasma) und jenem, welches bereits unterhalb der Plasmaleuchtschwelle - aber eben gerade oberhalb des niedrigen Schwellenwertes - entsteht und auf das Material einwirkt, aber keine weit reichenden Effekte erzeugt (s. u. low-density Plasma).
Mit der im Stand der Technik zitierten Arbeit der Anmelderin gelingt es, den niedrigen Schwellenwert (i. F. Bearbeitungsschwelle) konkret z.B. in Wasser zu erfassen. Dabei zeigt sich die allgemeine Regel, dass Bearbeitungs- und Plasmaleuchtschwelle umso weiter voneinander entfernt sind, desto kürzer die verwendete Wellenlänge gewählt wird und desto länger die Laserpulsdauer ist.
Allerdings fallen beide Schwellwerte offenbar stets zusammen für Pulsdauern unter 300 ps.
Wie eingangs gesagt, herrscht die Auffassung vor, die präzise Laserbearbeitung transparenter Materialien sei nur mit Ultrakurzpulslasern (< 100 ps Pulsdauer) effektiv durchführbar. Von daher überrascht es nicht, dass die Existenz eben jener getrennten Schwellenwerte mit dem dazwischen liegenden, erfindungsgemäß zur präzisen Materialbearbeitung nutzbaren Strah- lungsstärkenbereich bislang verborgen blieb.
Um eine Lehre zum technischen Handeln zu formulieren, bleibt noch das Vorurteil auszuräumen, Nanosekundenpulslaser würden grundsätzlich zu statistisch streuenden Lasereffekten führen.
Dies soll in der folgenden näheren Erläuterung der Erfindung anhand der Figuren geschehen, in denen:
Fig. 1 den zeitlichen Verlauf der Laserintensität bei Pulsen gleicher Energie aus ei- nem geseedeten und einem ungeseedeten (regulären) Nd: YAG Laser zeigt; es werden in Fig. IA die Pulsformen der frequenzverdoppelten (λ = 532 nm) und in Fig. IB die Pulsformen der frequenzverdreifachten (λ = 355 nm) Laserstrahlung gezeigt.
Fig. 2 die Abhängigkeit der Durchbruchswahrscheinlichkeit von der Laserpulsenergie für den optischen Durchbruch in Wasser mit (A) ungeseedeten und (B) geseedeten Laserpulsen (Fokussierung mit NA = 0.8, λ = 1064 nm) zeigt, wobei die Schwelle für den optischen Durchbruch durch den Energiewert E^ definiert ist, bei dem die Durchbruchswahrscheinlichkeit 50% beträgt, und die Schwellen- schärfe S dem Verhältnis von E^ zum Energieintervall ΔE entspricht, in dem die Durchbruchswahrscheinlichkeit von 10% auf 90% ansteigt. Ein hoher Wert von S entspricht einer scharfen, in hohem Maße reproduzierbaren Schwelle. In der Abbildung sind die Messdaten für die Bearbeitungsschwelle dargestellt.
Fig. 3 den Blasenradius als Funktion der Laserpulsenergie für Laserpulse unterschiedlicher Dauer und zeitlich glatter Pulsform (NA = 0.8) zeigt. Die für die Mes-
sung verwendeten Lasersysteme waren ein Yb: Glas Lasersystem mit Oszillator und regenerativem Verstärker für die 300-fs Pulse, ein Nd: YAG Mikrochipla- ser für die 0.9-ns Laserpulse und ein geseedeter Nd: YAG Laser für die Pulse mit 7-11 ns Dauer.
Laserpulse aus „normalen" ns-Laseroszillatoren weisen aufgrund der Überlagerung vieler Longitudinalmoden (,longitudinal mode beating') ausgeprägte Intensitätsspitzen auf, deren Struktur und Amplitude von Puls zu Puls wechselt. Dieser Sachverhalt ist zwar seit langem prinzipiell bekannt, das Ausmaß der Intensitätsüberhöhungen gegenüber der zeitlich oder über viele Pulse gemittelten Pulsform erschließt sich aber erst durch Messungen mit zeitlich hoch auflösenden Fotodetektoren und Oszilloskopen.
Die Messkurven in Fig. 1 wurden mit einem Fotodetektor mit <100 ps Anstiegszeit und einem Oszilloskop mit 3 GHz Bandbreite aufgezeichnet. Aus den Messkurven ist ersichtlich, dass der angeblich „statistische Charakter" des optischen Durchbruchs mit Nanosekundenpulsen weitgehend auf statistische Schwankungen der verwendeten Laserpulse zurückzuführen ist. Mit zeitlich „glatten", z.B. gaußförmigen, Pulsen ist ein erheblich besser reproduzierbares Verhalten zu erzielen.
Gaußförmige Laserpulse werden emittiert, wenn in dem Laserresonator nur ein Longitudinal- mode anschwingen kann. Dies kann durch Betrieb nahe an der Laserschwelle in Verbindung mit einem kurzen Laserresonator und/oder mit einem Etalon im Resonator erreicht werden (die letzten beiden Maßnahmen fuhren zu großem Frequenzabstand der Longitudinalmoden). Mikrochiplaser weisen wegen ihrer kurzen Resonatorlänge in der Regel eine weitgehend glat- te Pulsform auf, ihre Maximalenergie ist aber auf Energien im Mikrojoulebereich beschränkt. Ist man an gaußförmigen Pulsen mit größeren Ausgangsenergien interessiert, benutzt man einen single-longitudinal-mode Laseroszillator als „Seeder" für einen weiteren Oszillator mit hoher Ausgangsleistung, in dem durch die starke Verstärkung des Seed-Mode das Anschwingen anderer Longitudinalmoden unterdrückt wird. Hierfür muss allerdings die Resonatorlänge L des Verstärkungs-Oszillators an die Wellenlänge des Seeders angepaßt werden, um die Re- sonatorumlaufbedingung L = n λ/2 zu erfüllen, was die Komplexität des Gesamtsystems beträchtlich erhöht.
Tatsächlich liefern Gaußpulse aus einem longitudinal einmodigen Laserresonator eine wesentlich schärfere Schwelle für den optischen Durchbruch als reguläre Pulse, wie der Vergleich in Fig. 2 offenbart. Die Schwellenschärfe S = Eu,/ΔE, mit ΔE = Energiebereich zwi- sehen 10% und 90% Durchbruchswahrscheinlichkeit hat für reguläre Nd: YAG Nanosekun- denpulse (tL = 11.2 ns, λ = 1064 nm, NA = 0.8) den Wert S = 2,7, für gaußförmige Nanose- kundenpulse (ti, = 11.2 ns, λ = 1064 nm, NA = 0.8) den Wert S = 25 und für Femtosekunden- pulse (t = 315 fs, λ = 1040 nm, NA = 0.8) den Wert S = 31. Nanosekundenpulse mit zeitlich glattem Strahlprofil erzeugen also auf ähnlich reproduzierbare und vorhersagbare Weise einen optischen Durchbruch wie Femtosekundenpulse.
Dieser deterministische Charakter des optischen Durchbruchs mit Nanosekundenpulsen kann durch Verunreinigungen im Zielmaterial beeinträchtigt werden, welche durch lineare Absorption und thermische Ionisierung zur Erzeugung von Startelektronen für die Lawinenionisation führen. Bei Verwendung großer numerischen Aperturen muss allerdings die Verunreini- gungsdichte sehr hoch sein, um eine solche Auswirkung zu haben. So würde sich z.B. bei NA = 0.8 (NA - numerische Apertur) und einer Verunreinigungsdichte von 1010 cm'3 nur mit 1% Wahrscheinlichkeit eine Verunreinigung im Fokusvolumen befinden. Solch starke Verunreinigungen treten in der Praxis sehr selten auf, und daher kann bei Verwendung zeitlich glatter ns- Laserpulse für eine große Klasse von Fällen von einem deterministischen Zusammenhang zwischen Pulsenergie und Durchbruchschwelle ausgehen.
Es ist deshalb erfindungsgemäß vorgesehen, zur Materialbearbeitung Laserpulse mit glattem zeitlichem Strahlprofil einzusetzen. Die Erzeugung von Nano- und Mikroeffekten setzt zwar die Verwendung zeitlich glatter Laserpulse voraus, nicht aber deren Erzeugung in einem ge- seedeten Lasersystem. Mikrochiplaser mit sehr kurzem Resonator emittieren ebenfalls zeitlich glatte Pulse, die sich für die Erzeugung der Nanoeffekte eignen.
Bei der Untersuchung des optischen Durchbruchs in Wasser mit Laserpulsen aus dem UV-, VIS- und IR-Spektrum (Nd: YAG, 1064 nm und 2. und 3. Harmonische) ergaben sich u. a. die in Fig. 3 gezeigten Messwerte. Die gemessenen Blasengrößen sind gegenüber der im Fokus
eingestrahlten Pulsenergie aufgetragen. Besonders hervorzuheben sind die Messwerte im rechten unteren Bildbereich (E < 0.1 μJ, Blasenradius < 10 μm). Sie markieren das Aufschwingen messbarer - und für die Bearbeitung etwa von Zellen wirksamer - Blasen ohne Auftreten von Plasmaleuchten, deren Größe mit wachsender Pulsenergie ansteigt.
Mittels glatter Nanosekundenpulse lassen sich ebenso wie durch Femtosekundenpulse Blasen mit weniger als 1 μm Maximalradius erzeugen. Das für die Erzeugung von Blasengrößen < 5 μm verfügbare Energieintervall wird mit ansteigender Laserpulsdauer immer breiter. Bei Erhöhung der Laserpulsenergie wird schließlich die Schwelle für die Bildung leuchtender Plas- men überschritten, was die Obergrenze des erfindungsgemäßen Arbeitsbereichs definiert.
Das Plasmaleuchten setzt an einer scharf messbaren Plasmaleuchtschwelle ein. Das Auftreten des Plasmaleuchtens geht mit einer abrupten Zunahme der Plasmagröße, der Größe der erzeugten Blasen und des Umwandlungsgrades von Laserenergie in die mechanische Energie der Blasen einher. In Fig. 3 ist dieser Übergang jeweils durch Sprünge im Wert des Blasenradius gekennzeichnet. Oberhalb der Schwelle für das Plasmaleuchten sinkt daher die räumliche Lokalisierbarkeit und Präzision der Lasereffekte drastisch ab.
Mit Femtosekundenpulsen lassen sich ebenfalls Nano- und Mikroeffekte erzeugen, es existiert aber kein separater Bereich kleiner Blasen mit relativ langsamem Anstieg des Blasenradius, wie er mit Pulsdauern von 0.9 bis 11 ns beobachtet wird. Ein separater Bereich kleiner Blasen beginnt sich bei Pulsdauern ab etwa 300 ps auszubilden und seine Breite (im Bereich der Laserpulsenergien) nimmt mit wachsender Pulsdauer zu.
Die im Sinne der vorliegenden Erfindung zu detektierende Bearbeitungsschwelle ist beim hier diskutierten Beispiel die Schwelle für die Blasenbildung, in Fig. 3 gekennzeichnet durch den jeweiligen linken Endpunkt einer Messpunkt-Reihe.
Sie entspricht der Schwelle für den Phasenübergang in Wasser und somit der Schwelle für Materialabtrag durch Einzelpulse in wasserhaltigen Materialien wie z. B. biologischem Gewebe oder Zellen. Auch oberhalb der Blasenbildungsschwelle bleiben die Blasen zunächst noch sehr klein, d.h. der Lasereffekt weist eine hohe räumliche Präzision auf.
Für Wasser liegt die Bearbeitungsschwelle - ausgedrückt als Bestrahlungsstärke („Irradian- ce") - für die verwendeten Wellenlängen 355 nm und 532 nm und Pulsdauern 0,9 bis 11 ns zwischen 90 GW/cm2 und 170 GW/cm2. Die Plasmaleuchtschwellen für die helle Plasmalu- miniszenz und große Blasen liegen je nach Pulsdauer und Wellenlänge um einen Faktor 1,5 (bei 1 ns, 532 nm) bis 25 (bei 1 ns, 355 nm) höher.
Der Energiebereich, in dem sich Nano- und Mikroeffekte mit Pulsen zwischen 0,9 und 11 ns Pulsdauer erzeugen lassen, ist groß und weist scharfe Grenzen auf, und die Effektgrößen sind sehr gut reproduzierbar. Es ist also möglich, zuverlässig und ohne statistische Ausreißer Nano- und Mikroeffekte zu erzeugen.
Für praktische Anwendungen sollte man vorzugsweise einen konkreten Arbeitspunkt definieren, etwa durch jene Bestrahlungsstärke, die erstmals eine vorab definierte, für den Bearbei- tungszweck wirksame Blasengröße erzeugt. Der Arbeitspunkt sollte dabei einigen Abstand zur Plasmaleuchtschwelle aufweisen, um das Einsetzen des Plasmaleuchtens sicher zu vermeiden. Dass sich ein solcher Arbeitspunkt überhaupt zuverlässig finden lässt, war bislang nicht bekannt.
In der Praxis wird die Bestrahlungsstärke nicht nur durch die Laserparameter bestimmt, sondern auch durch den Lichtübertragungsweg bis zum Zielort und die Fokussierungsbedingun- gen beeinflusst. Es empfiehlt sich daher, vor dem Einsatz des Verfahrens Bearbeitungsschwelle und Plasmaleuchtschwelle für die konkrete Bearbeitungsaufgabe zu bestimmen und eventuell zusätzlich Kennlinien für den Zusammenhang zwischen Pulsenergie und Effektstär- ke aufzunehmen.
Hierzu eignen sich bei Festkörpern mikroskopische Inspektion des Fokusbereichs oder statische Streulichtverfahren (in Transmission, unter 90° oder in Reflexion), bei Flüssigkeiten oder Gewebe müssen dynamische Streulichtverfahren zum Einsatz kommen. Eine mögliche Realisierung hiervon wird im Stand der Technik als Blasengrößenmessung zitiert.
Streulichtverfahren eignen sich auch zur Online-Kontrolle der Nano- und Mikrobearbeitung und als Sicherheitssystem bei klinischen oder kosmetischen Gewebebehandlung, bei der das Auftreten von leuchtenden Plasmen sofort zur Unterbrechung der Behandlung führen sollte. Die Möglichkeit der Erzeugung von Nano-und Mikroeffekten ohne Plasmaleuchten wurde für numerische Aperturen im Bereich 0.25 < NA < 0.9 nachgewiesen, ist aber wahrscheinlich auch bei noch größeren oder kleineren Aperturen möglich.
Es sollten Wellenlängen im Bereich von 300 nm bis 1000 nm verwendet werden. Das Laserlicht muss in das Zielmaterial eindringen können. Das erfordert bei biologischem Gewebe und Glas Wellenlängen größer als 300 nm. Bei 1064 nm wird kein Bereich mit Nano- und Mikro- blasen mehr festgestellt.. Hieraus ergibt sich der genannte Bereich.
Der theoretische Hintergrund des Auftretens separierter Schwellwerte und insbesondere die gefundene Limitierung auf Wellenlängen unter etwa 1000 nm sind mit Hilfe von Modellbe- rechnungen nachvollziehbar. Deren Ergebnisse sollen nachfolgend kurz zusammengefasst werden:
Die Zweistufϊgkeit des optischen Durchbruch-Prozesses lässt sich durch Modellierung der Plasmabildung unter Einbeziehung der Multiphotonenionisation, Lawinenionisation, Diffusi- onsverlusten, Rekombination und thermischer Ionisierung erklären. Eine solche Modellierung wird im Rahmen der hier beschriebenen Untersuchung erstmals durchgeführt; frühere Modelle berücksichtigten in der Regel Multiphotonenionisation, Lawinenionisation und Diffusionsverluste; die Rekombination wird meist erwähnt aber in den Rechnungen vernachlässigt, und die thermische Ionisierung wurde bei der Modellierung des optischen Durchbruchs in transpa- renten Medien zuvor noch gar nicht berücksichtigt.
Die Rechnungen ergeben, dass mit ansteigender Laserintensität der Ionisierungsgrad zunächst rasch ansteigt, dann aber auf einem Plateau annähernd stagniert. In diesem Bereich wird die Ionisierungslawine (proportional zur freien Elektronendichte p und zur Laserintensität) durch die Rekombination (proportional zu p2) gebremst, so dass ein low-density Plasma vorliegt. Während des Laserpulses werden durch Multiphotonen- und Lawinenionisation ständig neue
freie Elektronen erzeugt, die bei Rekombination ihre Energie abgeben und das Medium aufheizen. Sobald die bis zum Ende des Laserpulses deponierte räumliche Energiedichte die für einen Phasenübergang erforderliche Energiedichte übersteigt, wird eine Blase (in Wasser) oder eine Kavität (in Festkörpern) erzeugt.
Bei noch weiter anwachsender Laserintensität steigen Energiedichte und Temperatur im Laserfokus an, bis schließlich thermische Ionisierung in nennenswertem Umfang auftreten kann. Wenn die thermische Ionisierung so stark wird, dass sie zusammen mit der Lawinenionisation die bremsende Wirkung durch Rekombinationseffekte überwindet, steigt der Ionisierungsgrad sehr schnell an, bis schließlich volle Ionisierung erreicht ist. Dieser Anstieg am oberen Ende des low-density Plasmabereichs führt zur Entstehung von high-density Plasma und entspricht dem Auftreten des intensiven Plasmaleuchtens, das üblicherweise mit dem optischen Durchbruch durch Nanosekundenpulse identifiziert wird.
Ein zeitweiliges Gleichgewicht zwischen Lawinenionisation und Rekombinationsvorgängen während des Laserpulses setzt voraus, dass die Laserpulsdauer deutlich länger ist als die Zeitkonstante der Rekombination. Man kann davon ausgehen, dass diese Zeitkonstante für die meisten transparenten Materialien durch etwa 100 ps gut nach oben abgeschätzt ist. Folglich ist das Auftreten des Gleichgewichts erst bei einigen hundert Pikosekunden Pulsdauer mög- lieh. Die experimentellen Befunde legen eine untere Grenze von 300 ps nahe.
Bei kürzeren Pulsdauern gibt es einen fließenden Übergang zwischen dem Auftreten von Blasenbildung und der Entstehung des Plasmaleuchtens bei größeren Laserintenisitäten bzw. Pulsenergien. Bei längeren Pulsdauern gibt es einen separaten low-density Plasmabereich mit niedriger räumlicher Energiedichte und besonders kleinen Blasen und danach einen abrupten Anstieg des Ionisierungsgrades, der Energiedichte und der Blasengröße.
In transparenten Medien müssen für die Initiierung des optischen Durchbruchs generell zunächst durch Multiphotonenionisation Startelektronen für die Ionisierungslawine gebildet werden. Bei λ = 1064 rim ist dies die entscheidende Hürde für die Plasmabildung, da wegen der geringen Photonenenergie ein Multiphotonenprozess hoher Ordnung erforderlich ist. Beispielsweise wird zur Überwindung der Bandlücke in Wasser die Energie von 6 simultan ab-
sortierten Photonen benötigt. Deshalb ist für die Erzeugung der Startelektronen eine sehr hohe Intensität erforderlich. Diese Intensität treibt die nachfolgende Ionisierungslawine zu sehr hohen freien Elektronendichten, deren weiterer Anstieg nur für Bruchteile der Laserpulsdauer durch Rekombinationsprozesse aufgehalten werden kann. Danach ist die Temperatur im Fo- kusvolumen auf so hohe Werte angestiegen, dass thermische Ionisierung und Lawinenionisation gemeinsam den Durchbruchsprozess bis zur vollen Ionisierung weiter treiben. Bei λ = 1064 nm führt der optische Durchbruch daher bereits an der Blasenbildungsschwelle zu sehr hohen Energiedichten weit oberhalb des für einen Phasenübergang erforderlichen Wertes und es existiert kein separater Energiebereich, in dem Mikroeffekte erzeugt werden können.
Diese Analyse lässt sich auf alle transparenten Medien mit Energie-Bänderstruktur anwenden. Daraus folgt aber, dass das erfindungsgemäße Verfahren allgemeingültigen Charakter hat und die Möglichkeit der Erzeugung von Nano- und Mikroeffekten nicht auf Wasser oder wässrige Medien beschränkt ist.
Die Rechnungen zeigen für UV/VIS Nanosekundenpulse insbesondere im Bereich des Phasenübergangs (also z.B; Blasenbildung) einen allmählichen Anstieg des Ionisierungsgrades mit der Laserintensität. Dies bedeutet, dass es auch unterhalb der Schwelle für den Phasenübergang eine große Zahl freier Elektronen gibt und man die Elektronendichte durch Variati- on der Laserintensität einstellen kann. Man kann daher auch mit Nanosekundenpulsen über freie Elektronen vermittelte chemische oder thermische Effekte ohne gleichzeitigen Phasenübergang erzeugen, wie von Vogel et al. in Appl. Phys. B 81:1015-1047 (2005) für Femtose- kundenpulse beschrieben. Erfindungsgemäß ist für diese Zielsetzung eine Bearbeitungsschwelle unterhalb der des Phasenübergangs zu definieren, die sich nunmehr durch das Ein- setzen messbarer Materialveränderungen, beispielsweise eine Änderung des Brechungsindex oder Strukturumwandlungen infolge der Anwesenheit freier Elektronen, auszeichnet. Dies lässt sich z.B. zum Schreiben von Wellenleitern mit UVAZ-IS Nanosekundenpulsen ausnutzen.
Zur Abgrenzung von der Patentschrift DE 198 55 623 Cl sei an dieser Stelle betont, dass mit dem erfindungsgemäßen Verfahren eine Energiedeponierung auch in völlig transparente Medien ohne lineare Absorption mit Nanosekundenpulsen möglich ist. Die dort verwendete Pulsdauer 100 ns ist überdies höchstwahrscheinlich für das hier beschriebene Verfahren nicht
geeignet, da solch lange Pulse sicher kein glattes zeitliches Strahlprofil aufweisen. Bereits einzelne Energiespitzen im Pulsverlauf können das Plasmaleuchten auslösen und würden dadurch die Lokalisierung des Bearbeitungseffektes zerstören. Vorzugsweise sollten Pulslängen bis maximal 20 ns verwendet werden.
Weiterhin ist auch ein Laser vorgesehen, der sich insbesondere zur Laserbehandlung von Augenkrankheiten eignet. Der erfindungsgemäße Laser, beispielsweise ein Festkörper- oder Mikrochip-Laser, ist zur Bearbeitung eines transparenten Materials, beispielsweise der Hornhaut des Auges, durch im Bereich des Laserfokus erfolgende nichtlineare Absorption gepuls- ter Laserstrahlung eingerichtet und weist eine Wellenlänge in einem Bereich von 300 bis 1000 nm, eine Pulslänge in einem Bereich von 300 ps bis 20 ns und ein Mittel zum Einstellen der Bestrahlungsstärke auf, wobei der Laser Laserpulse mit einem zeitlich glatten Strahlprofil erzeugt.
Erfindungsgemäß wird der Bearbeitungserfolg des Lasers durch den Bearbeitungserfolg registrierende, auf das Mittel zum Einstellen der Bestrahlungsstärke wirkende Inspektionsmittel überprüft, die derart auf das Mittel wirken, dass die Bestrahlungsstärke innerhalb eines Intervalls zwischen der Nachweisgrenze der Inspektion und dem Auftreten von Plasmaleuchten im bearbeiteten Material liegt.
Bevorzugt können die Inspektionsmittel während der Bearbeitung im bearbeiteten Material erfolgende Blasenbildung registrieren, sodass die Nachweisgrenze der Inspektion durch die Registrierung einer ersten Blasenbildung definiert ist. Die obere Grenze des Intervalls wird durch das Auftreten von Plasmaleuchten gebildet, wobei dieser Zustand jedoch nicht eintreten wird, da die Mittel zum Einstellen der Bestrahlungsstärke daraufhinwirken, dass die Bestrahlungsstärke innerhalb dieser Intervallgrenzen liegt. So können irreparable Schädigungen des Auges verhindert werden.
Abschließend sollen noch die Vorteile der Erfindung hervorgehoben werden:
Die räumliche Lokalisierbarkeit ist besser als mit ultrakurzen Laserpulsdauern, weil nichtlineare Ausbreitungseffekte vernachlässigbar sind. An der Bearbeitungsschwelle ist die Spitzen-
leistung in einem UV-Nanosekundenpuls um zwei Größenordnungen niedriger als bei einem UV-Femtosekundenpuls.
Lokalisierte Materialbearbeitung an Zielorten tief innerhalb von transparenten Materialien kann mit dem erfindungsgemäßen Verfahren viel einfacher durchgeführt werden als mit Fem- tosekundenpulsen, denn hierfür müssen in der Regel Optiken mit großem Arbeitabstand und daher meist relativ kleiner numerischer Apertur eingesetzt werden. In diesem Fall treten bei Verwendung von Femtosekundenpulsen wegen der höheren Spitzenleistungen leichter nichtlineare Ausbreitungseffekte und Filamentierung auf als mit dem erfindungsgemäßen Verfah- ren.
Der nutzbare Energiebereich ist größer als bei ultrakurzen Laserpulsdauern (vgl. Fig. 3). Nanosekundenlaser (vor allem Mikrochiplaser) sind viel kostengünstiger und kompakter als Ultrakurzpulslaser.
Claims
1. Verfahren zur Bearbeitung eines transparenten Materials durch im Bereich eines Laserfokus erfolgende nichtlineare Absorption gepulster Laserstrahlung, mit den Schrit- ten
- Auswählen einer Laserwellenlänge aus dem Intervall von 300 bis 1000 nm,
- Auswählen einer Pulslänge aus dem Intervall von 300 ps bis 20 ns,
- Applizieren von Laserpulsen mit zeitlich glattem Strahlprofil,
dadurch gekennzeichnet, dass
die Bestrahlungsstärke aus einem für das zu bearbeitende Material vorbestimmten Intervall ausgewählt ist, in dem Plasmabildung ohne Plasmaleuchten auftritt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das für die Bestrahlungs- stärke vorbestimmte Intervall in Abhängigkeit von dem zu bearbeitenden Material unter Variation der Bestrahlungsstärke im Laserfokus durch Inspektion des Bearbeitungserfolges ermittelt ist, wobei die untere Intervallgrenze der Bestrahlungsstärke anhand der Nachweisgrenze der Inspektion und die obere Intervallgrenze anhand des Auftretens von Plasmaleuchten bestimmt ist.
3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das transparente Material ein flüssiges Medium ist und im flüssigen Medium Blasen mit einem fest gewählten Radius gebildet werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das transparente Material ein wässriges Medium ist und die Bestrahlungsstärke für das wässrige Medium wenigstens 90 GW/cm2 beträgt.
5. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das transparente Material ein Festkörper ist und im Festkörper Hohlräume gebildet werden.
6. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das transparente Material ein Festkörper ist und der Brechungsindex im Festkörper lokal verändert wird.
7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Pulsdauer wenigstens das Dreifache der Zeitkonstante der Plasmarekombination des zu bearbeitenden Materials beträgt.
8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Pulsdauer aus dem Intervall von 0,9 bis 11 ns gewählt wird.
9. Vorrichtung mit einem Laser zur Bearbeitung eines transparenten Materials durch im
Bereich des Laserfokus erfolgende nichtlineare Absorption gepulster Laserstrahlung, mit einer Wellenlänge in einem Bereich von 300 bis 1000 nm und einer Pulslänge in einem Bereich von 300 ps bis 20 ns und einem Mittel zum Einstellen der Bestrahlungsstärke, wobei der Laser Laserpulse mit einem zeitlich glatten Strahlprofil er- zeugt,
gekennzeichnet durch den Bearbeitungserfolg des Lasers registrierende, auf das Mittel zum Einstellen der Bestrahlungsstärke derart wirkende Inspektionsmittel, dass die Bestrahlungsstärke innerhalb eines Intervalls zwischen der Nachweisgrenze der Inspektion und dem Auftreten von Plasmaleuchten im bearbeiteten Material liegt.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Inspektionsmittel während der Bearbeitung im bearbeiteten Material erfolgende Blasenbildung registrie- ren.
11. Vorrichtung nach einem der Ansprüche 9 und 10 oder zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Laser ein geseedeter Festkörperlaser oder ein Mikrochip-Laser ist.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08758177.3A EP2152462B1 (de) | 2007-06-14 | 2008-06-07 | Verfahren zur laserbearbeitung transparenter materialien |
US12/663,728 US8350183B2 (en) | 2007-06-14 | 2008-06-07 | Method for laser machining transparent materials |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007028042A DE102007028042B3 (de) | 2007-06-14 | 2007-06-14 | Verfahren zur Laserbearbeitung transparenter Materialien |
DE102007028042.6 | 2007-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008151616A1 true WO2008151616A1 (de) | 2008-12-18 |
Family
ID=39587588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2008/000955 WO2008151616A1 (de) | 2007-06-14 | 2008-06-07 | Verfahren zur laserbearbeitung transparenter materialien |
Country Status (4)
Country | Link |
---|---|
US (1) | US8350183B2 (de) |
EP (1) | EP2152462B1 (de) |
DE (1) | DE102007028042B3 (de) |
WO (1) | WO2008151616A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012007272A1 (de) | 2012-04-12 | 2013-10-17 | Wavelight Gmbh | Lasereinrichtung und Verfahren zur Konfiguration einer solchen Lasereinrichtung |
EP2896458A1 (de) | 2014-01-16 | 2015-07-22 | Euroimmun Medizinische Labordiagnostika AG | Transparenter 0bjektträger mit Kennzeichnung |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8394084B2 (en) | 2005-01-10 | 2013-03-12 | Optimedica Corporation | Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation |
US20090012507A1 (en) * | 2007-03-13 | 2009-01-08 | William Culbertson | Method for patterned plasma-mediated modification of the crystalline lens |
US9901503B2 (en) | 2008-03-13 | 2018-02-27 | Optimedica Corporation | Mobile patient bed |
US10080684B2 (en) | 2008-03-13 | 2018-09-25 | Optimedica Corporation | System and method for laser corneal incisions for keratoplasty procedures |
US9833358B2 (en) * | 2010-01-08 | 2017-12-05 | Optimedica Corporation | Method and system for modifying eye tissue and intraocular lenses |
US10085886B2 (en) | 2010-01-08 | 2018-10-02 | Optimedica Corporation | Method and system for modifying eye tissue and intraocular lenses |
DE102010004696B4 (de) | 2010-01-15 | 2022-04-28 | Schwind Eye-Tech-Solutions Gmbh | Vorrichtung zum Behandeln eines Patientenauges mit Laserstrahlung sowie Verfahren zum Positionieren |
EP2345394A1 (de) | 2010-01-15 | 2011-07-20 | Schwind eye-tech-solutions GmbH & Co. KG | Vorrichtung zum Behandeln eines Auges mit Laserstrahlung |
US8845625B2 (en) | 2010-01-22 | 2014-09-30 | Optimedica Corporation | Method and apparatus for automated placement of scanned laser capsulorhexis incisions |
US9278028B2 (en) | 2010-02-08 | 2016-03-08 | Optimedica Corporation | System and method for plasma-mediated modification of tissue |
JP5694537B2 (ja) | 2010-09-02 | 2015-04-01 | オプティメディカ・コーポレイションOptimedica Corporation | 眼科的診断および介入手技のための患者インターフェース |
WO2012114333A1 (en) | 2011-02-24 | 2012-08-30 | Ilan Ben Oren | Hybrid catheter for vascular intervention |
US9044302B2 (en) | 2011-10-21 | 2015-06-02 | Optimedica Corp. | Patient interface for ophthalmologic diagnostic and interventional procedures |
US8863749B2 (en) | 2011-10-21 | 2014-10-21 | Optimedica Corporation | Patient interface for ophthalmologic diagnostic and interventional procedures |
US9237967B2 (en) | 2011-10-21 | 2016-01-19 | Optimedica Corporation | Patient interface for ophthalmologic diagnostic and interventional procedures |
EP2705812A1 (de) | 2012-09-05 | 2014-03-12 | Universität zu Lübeck | Vorrichtung zum Laserschneiden innerhalb transparenter Materialien |
CA2884235C (en) | 2012-09-07 | 2021-05-25 | Optimedica Corporation | Methods and systems for performing a posterior capsulotomy and for laser eye surgery with a penetrated cornea |
US10702209B2 (en) | 2012-10-24 | 2020-07-07 | Amo Development, Llc | Graphical user interface for laser eye surgery system |
US9549670B2 (en) | 2012-11-02 | 2017-01-24 | Optimedica Corporation | Optical surface identification for laser surgery |
US9987165B2 (en) | 2012-11-02 | 2018-06-05 | Optimedica Corporation | Liquid optical interface for laser eye surgery system |
US10624786B2 (en) | 2012-11-02 | 2020-04-21 | Amo Development, Llc | Monitoring laser pulse energy in a laser eye surgery system |
US10314746B2 (en) | 2012-11-02 | 2019-06-11 | Optimedica Corporation | Laser eye surgery system calibration |
US10285860B2 (en) | 2012-11-02 | 2019-05-14 | Optimedica Corporation | Vacuum loss detection during laser eye surgery |
US9445946B2 (en) | 2012-11-02 | 2016-09-20 | Optimedica Corporation | Laser eye surgery system |
US10292863B2 (en) | 2012-11-02 | 2019-05-21 | Optimedica Corporation | Interface force feedback in a laser eye surgery system |
DE102012110971A1 (de) | 2012-11-14 | 2014-05-15 | Schott Ag | Trennen von transparenten Werkstücken |
CN105338931B (zh) | 2013-03-13 | 2018-08-03 | 光学医疗公司 | 激光眼科手术系统 |
AU2014249863B2 (en) | 2013-03-13 | 2018-07-12 | Amo Development, Llc | Free floating patient interface for laser surgery system |
CA2905321C (en) | 2013-03-14 | 2021-10-12 | Optimedica Corporation | Laser capsulovitreotomy |
DE102013204496A1 (de) * | 2013-03-14 | 2014-09-18 | Carl Zeiss Meditec Ag | Erzeugung gekrümmter Schnitte im Inneren der Augenhornhaut |
AU2014237804B2 (en) | 2013-03-15 | 2018-03-22 | Amo Development, Llc | Microfemtotomy methods and systems |
US10369053B2 (en) | 2013-04-17 | 2019-08-06 | Optimedica Corporation | Corneal topography measurements and fiducial mark incisions in laser surgical procedures |
CA2909684C (en) | 2013-04-17 | 2021-11-16 | Optimedica Corporation | Laser fiducials for axis alignment in cataract surgery |
CA3136577A1 (en) | 2013-04-18 | 2014-10-23 | Amo Development, Llc | Corneal topography measurement and alignment of corneal surgical procedures |
AU2014293542B2 (en) | 2013-07-25 | 2019-03-14 | Amo Development, Llc | In situ determination of refractive index of materials |
EP3054907B1 (de) | 2013-10-08 | 2019-04-03 | Optimedica Corporation | Kalibrierung eines augenlaserchirurgiesystems |
US10327953B2 (en) | 2013-10-31 | 2019-06-25 | Optimedica Corporation | Laser eye surgery lens fragmentation |
CA2938862C (en) | 2014-02-04 | 2022-07-05 | Optimedica Corporation | Confocal detection to minimize capsulotomy overcut while dynamically running on the capsular surface |
US10363173B2 (en) | 2014-02-04 | 2019-07-30 | Optimedica Corporation | Confocal detection to minimize capsulotomy overcut while dynamically running on the capsular surface |
EP3753539A1 (de) | 2014-02-04 | 2020-12-23 | AMO Development, LLC | System und verfahren für lasereinschnitte in die hornhaut für keratoplastikeingriffe |
EP2918252A1 (de) | 2014-03-10 | 2015-09-16 | Schwind eye-tech-solutions GmbH & Co. KG | Vorrichtung zur Durchführung chirurgischer Behandlungen der Augenhornhaut |
EP3845210A1 (de) | 2014-03-24 | 2021-07-07 | AMO Development, LLC | Automatisierte kalibrierung eines lasersystems und tomografiesystem mit fluoreszierender abbildung von abtastmustern |
US10441465B2 (en) | 2014-03-26 | 2019-10-15 | Optimedica Corporation | Registration of LOI fiducials with camera |
US10441463B2 (en) | 2014-03-26 | 2019-10-15 | Optimedica Corporation | Confocal laser eye surgery system and improved confocal bypass assembly |
US10123696B2 (en) | 2014-03-26 | 2018-11-13 | Optimedica Corporation | Confocal laser eye surgery system |
EP3552571B1 (de) | 2014-05-18 | 2024-09-25 | Eximo Medical Ltd. | System zur gewebeablation mit gepulstem laser |
AU2015320309B2 (en) | 2014-09-25 | 2020-07-23 | Amo Development, Llc | Methods and systems for corneal topography, blink detection and laser eye surgery |
JP6675392B2 (ja) | 2014-10-17 | 2020-04-01 | オプティメディカ・コーポレイションOptimedica Corporation | レーザ眼手術システム中の真空喪失検出 |
EP3206562A1 (de) | 2014-10-17 | 2017-08-23 | Optimedica Corporation | Automatische patientenpositionierung in einem laseraugenchirugiesystem |
USD900316S1 (en) | 2014-12-03 | 2020-10-27 | Amo Development, Llc | Docking assembly |
US10406032B2 (en) | 2014-12-19 | 2019-09-10 | Optimedica Corporation | Liquid loss detection during laser eye surgery |
JP6827615B2 (ja) | 2015-02-06 | 2021-02-10 | エーエムオー ディベロップメント エルエルシー | 閉ループのレーザ眼外科手術 |
EP3273839B1 (de) | 2015-03-25 | 2022-06-22 | AMO Development, LLC | System und verfahren zur optischen kohärenztomographie mit mehreren tiefen und augenlaserchirurgiesystem damit |
US10485705B2 (en) | 2015-07-01 | 2019-11-26 | Optimedica Corporation | Sub-nanosecond laser cataract surgery system |
US11083625B2 (en) | 2015-07-01 | 2021-08-10 | Amo Development, Llc | Sub-nanosecond laser surgery system utilizing multiple pulsed laser beams |
CA2991490A1 (en) | 2015-07-08 | 2017-01-12 | Optimedica Coporation | Laser surgical systems with laser scan location verification |
AU2015401596A1 (en) | 2015-07-08 | 2018-01-18 | Optimedica Corporation | Image processing method and system for edge detection and laser eye surgery system incorporating the same |
WO2017023296A1 (en) * | 2015-08-03 | 2017-02-09 | Optimedica Corporation | System for modifying eye tissue and intraocular lenses |
WO2017070473A1 (en) | 2015-10-21 | 2017-04-27 | Optimedica Corporation | Laser beam calibration and beam quality measurement in laser surgery systems |
WO2017191644A1 (en) | 2016-05-05 | 2017-11-09 | Eximo Medical Ltd | Apparatus and methods for resecting and/or ablating an undesired tissue |
US10555835B2 (en) | 2016-05-10 | 2020-02-11 | Optimedica Corporation | Laser eye surgery systems and methods of treating vitreous and ocular floaters |
US10786389B2 (en) | 2016-10-26 | 2020-09-29 | Amo Development, Llc | Ophthalmic laser delivery apparatus using MEMS micromirror arrays for scanning and focusing laser beam |
EP3576695B1 (de) | 2017-01-31 | 2023-02-15 | AMO Development, LLC | Systeme für die laseraugenchirurgie zur ermöglichung von irisexpositionen unterhalb einer vorgegebenen bestrahlungsgrenze |
WO2018145114A1 (en) | 2017-02-06 | 2018-08-09 | Optimedica Corporation | Additive manufacturing inside the human eye |
CN111102930B (zh) * | 2019-12-13 | 2021-10-15 | 遵义医科大学珠海校区 | 脉冲激光束腰半径的测定装置及方法 |
DE102021100675B4 (de) | 2021-01-14 | 2022-08-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Verfahren zum Zerteilen eines transparenten Werkstücks |
US12038322B2 (en) | 2022-06-21 | 2024-07-16 | Eximo Medical Ltd. | Devices and methods for testing ablation systems |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10323422A1 (de) * | 2002-08-23 | 2004-04-15 | Carl Zeiss Meditec Ag | Vorrichtung und Verfahren zur Messung eines optischen Durchbruchs in einem Gewebe |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656186A (en) * | 1994-04-08 | 1997-08-12 | The Regents Of The University Of Michigan | Method for controlling configuration of laser induced breakdown and ablation |
US6392683B1 (en) * | 1997-09-26 | 2002-05-21 | Sumitomo Heavy Industries, Ltd. | Method for making marks in a transparent material by using a laser |
DE19855623C1 (de) * | 1998-12-02 | 2000-02-24 | Lpkf Laser & Electronics Ag | Verfahren zur Erzeugung einer Markierung in einem Glaskörper |
US7649153B2 (en) * | 1998-12-11 | 2010-01-19 | International Business Machines Corporation | Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed laser beam |
US6333485B1 (en) * | 1998-12-11 | 2001-12-25 | International Business Machines Corporation | Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed beam |
US6552301B2 (en) * | 2000-01-25 | 2003-04-22 | Peter R. Herman | Burst-ultrafast laser machining method |
DE10020559A1 (de) * | 2000-04-27 | 2001-10-31 | Hannover Laser Zentrum | Laser-Bearbeitung von Materialien |
US6884960B2 (en) * | 2000-08-21 | 2005-04-26 | National Research Council Of Canada | Methods for creating optical structures in dielectrics using controlled energy deposition |
US20050167410A1 (en) * | 2001-08-21 | 2005-08-04 | Orson Bourne | Methods for creating optical structures in dielectrics using controlled energy deposition |
US6670576B2 (en) * | 2002-04-08 | 2003-12-30 | Igor Troitski | Method for producing images containing laser-induced color centers and laser-induced damages |
US20050064137A1 (en) * | 2003-01-29 | 2005-03-24 | Hunt Alan J. | Method for forming nanoscale features and structures produced thereby |
US6995336B2 (en) * | 2003-01-29 | 2006-02-07 | The Regents Of The University Of Michigan | Method for forming nanoscale features |
US7060933B2 (en) * | 2004-06-08 | 2006-06-13 | Igor Troitski | Method and laser system for production of laser-induced images inside and on the surface of transparent material |
US20060207976A1 (en) * | 2005-01-21 | 2006-09-21 | Bovatsek James M | Laser material micromachining with green femtosecond pulses |
US20060175312A1 (en) * | 2005-02-10 | 2006-08-10 | Igor Troitski | Method and system for production of dynamic laser-induced images inside gaseous medium |
US20070045252A1 (en) * | 2005-08-23 | 2007-03-01 | Klaus Kleine | Laser induced plasma machining with a process gas |
US20070045255A1 (en) * | 2005-08-23 | 2007-03-01 | Klaus Kleine | Laser induced plasma machining with an optimized process gas |
DE102007003600B4 (de) | 2007-01-18 | 2009-06-10 | Universität Zu Lübeck | Laserdosimetrie für die Optoperforation einzelner Zellen |
DE102007018402A1 (de) * | 2007-04-17 | 2008-10-23 | Panasonic Electric Works Europe Ag | Verfahren zum Einbringen einer Struktur in eine Oberfläche eines transparenten Werkstücks |
US7767931B1 (en) * | 2007-06-12 | 2010-08-03 | Sandia Corporation | Ultrashort-pulse laser generated nanoparticles of energetic materials |
US20090045179A1 (en) * | 2007-08-15 | 2009-02-19 | Ellen Marie Kosik Williams | Method and system for cutting solid materials using short pulsed laser |
-
2007
- 2007-06-14 DE DE102007028042A patent/DE102007028042B3/de not_active Expired - Fee Related
-
2008
- 2008-06-07 EP EP08758177.3A patent/EP2152462B1/de active Active
- 2008-06-07 US US12/663,728 patent/US8350183B2/en active Active
- 2008-06-07 WO PCT/DE2008/000955 patent/WO2008151616A1/de active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10323422A1 (de) * | 2002-08-23 | 2004-04-15 | Carl Zeiss Meditec Ag | Vorrichtung und Verfahren zur Messung eines optischen Durchbruchs in einem Gewebe |
Non-Patent Citations (2)
Title |
---|
RAU KAUSTUBH R ET AL: "Pulsed laser microbeam-induced cell lysis: Time-resolved imaging and analysis of hydrodynamic effects", BIOPHYSICAL JOURNAL, NEW YORK, US, US, vol. 91, no. 1, 1 July 2006 (2006-07-01), pages 317 - 329, XP002480409, ISSN: 0006-3495 * |
VOGEL A ET AL: "Mechanisms of femtosecond laser nanosurgery of cells and tissues", APPLIED PHYSICS B ; LASERS AND OPTICS, SPRINGER, BERLIN, DE, vol. 81, no. 8, 1 December 2005 (2005-12-01), pages 1015 - 1047, XP019337596, ISSN: 1432-0649 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012007272A1 (de) | 2012-04-12 | 2013-10-17 | Wavelight Gmbh | Lasereinrichtung und Verfahren zur Konfiguration einer solchen Lasereinrichtung |
WO2013152875A1 (en) | 2012-04-12 | 2013-10-17 | Wavelight Gmbh | Laser device and process for configuring such laser device |
EP2896458A1 (de) | 2014-01-16 | 2015-07-22 | Euroimmun Medizinische Labordiagnostika AG | Transparenter 0bjektträger mit Kennzeichnung |
Also Published As
Publication number | Publication date |
---|---|
EP2152462A1 (de) | 2010-02-17 |
DE102007028042B3 (de) | 2008-08-07 |
US8350183B2 (en) | 2013-01-08 |
EP2152462B1 (de) | 2017-05-24 |
US20100163540A1 (en) | 2010-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2152462B1 (de) | Verfahren zur laserbearbeitung transparenter materialien | |
DE69500997T2 (de) | Verfahren zum konfigurationsteuern von laserinduziertem zerstören und abtragen | |
EP1284839B1 (de) | Laser-bearbeitung von materialien | |
EP1829510B1 (de) | Vorrichtung zur Laserbearbeitung einer Kornea | |
EP1537841B1 (de) | Vorrichtung zur Behandlung von Trübungen und/oder Verhärtungen eines ungeöffneten Auges | |
DE102009005194B4 (de) | Laserbearbeitungsgerät zur Bearbeitung eines Materials | |
EP2760622B1 (de) | Vorrichtung zum laserschneiden innerhalb transparenter materialien | |
EP1871566B1 (de) | Verfahren zum feinpolieren/-strukturieren wärmeempflindlicher dielektrischer materialien mittels laserstrahlung | |
EP1372552A2 (de) | Verfahren und vorrichtung zur bearbeitung und diagnose von augengewebe | |
DE19933231A1 (de) | Quasi-Phasenangepaßte Parametrische Chirpimpulsverstärkungssysteme | |
DE102012007272B4 (de) | Lasereinrichtung und Verfahren zur Konfiguration einer solchen Lasereinrichtung | |
EP1646474A1 (de) | Verfahren zur materialbearbeitung mit laserimpulsen grosser spektraler bandbreite und vorrichtung zur durchf hrung des verfah rens | |
WO2006133676A1 (de) | Verfahren zum bearbeiten eines organischen materials | |
WO2007022948A2 (de) | Vorrichtung und verfahren zur materialtrennung mit laserpulsen, mit energie eines laserpuls kleiner als die energie eines laserpuls zum erzeugung einer materialtrennung | |
EP3624984B1 (de) | Vorrichtung und verfahren zum trennen eines werkstücks entlang einer vorbestimmten bearbeitungslinie unter verwendung eines gepulsten polychromatischen laserstrahles und eines filters | |
WO2021191218A1 (de) | Verfahren, system und werkstück, mit einem grossvolumigen entfernen von material des werkstückes durch laser-unterstütztes ätzen | |
EP2477568B1 (de) | Laserstrahl-ausrichteinheit und laserbearbeitungsgerät zur bearbeitung eines materials | |
DE10250015B3 (de) | Adaptive, rückkopplungsgesteuerte Materialbearbeitung mit ultrakurzen Laserpulsen | |
DE102005055174B3 (de) | Verfahren zum Abtrag von lichtdurchlässigen Materialien mit Laserstrahlung und Vorrichtung hierfür | |
DE10240599A1 (de) | Anordnung und Verfahren zur Erzeugung ultrakurzer Laserimpulse | |
WO2021197929A1 (de) | Verfahren zum herstellen einer lichtablenkungsstruktur, verwendung eines substrats mit einer solchen lichtablenkungsstruktur, und lichtablenkeinheit mit einer solchen lichtablenkungsstruktur | |
DE10232815B4 (de) | Verfahren zur Modifizierung von dielektrischen Materialeigenschaften | |
EP1775806B1 (de) | Verfahren zur Erzeugung zeitlich rechteckiger Ultrakurzpulse | |
EP2780134B1 (de) | Verfahren zum materialabtrag an glasoberflächen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08758177 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2008758177 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008758177 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12663728 Country of ref document: US |