WO2008150031A1 - Inhibitor of biosynthesis of plant hormone auxin, chemical plant regulator comprising the inhibitor as active ingredient, herbicidal agent, and use thereof - Google Patents

Inhibitor of biosynthesis of plant hormone auxin, chemical plant regulator comprising the inhibitor as active ingredient, herbicidal agent, and use thereof Download PDF

Info

Publication number
WO2008150031A1
WO2008150031A1 PCT/JP2008/060811 JP2008060811W WO2008150031A1 WO 2008150031 A1 WO2008150031 A1 WO 2008150031A1 JP 2008060811 W JP2008060811 W JP 2008060811W WO 2008150031 A1 WO2008150031 A1 WO 2008150031A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxin
inhibitor
plant
biosynthesis
avg
Prior art date
Application number
PCT/JP2008/060811
Other languages
French (fr)
Japanese (ja)
Inventor
Yukihisa Shimada
Hideki Goda
Tomoe Tachikawa
Takahiro Ishii
Kazuo Soeno
Shozo Fujioka
Tadao Asami
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Priority to JP2009517932A priority Critical patent/JPWO2008150031A1/en
Publication of WO2008150031A1 publication Critical patent/WO2008150031A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56961Plant cells or fungi
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8291Hormone-influenced development
    • C12N15/8294Auxins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/415Assays involving biological materials from specific organisms or of a specific nature from plants

Definitions

  • the present invention relates to a phytochemical regulator or light herbicide containing an auxin (such as indole-3-acetic acid) biosynthesis inhibitor as an active ingredient. Furthermore, the present invention relates to a method for artificially controlling plant growth in various growth stages and organs in various plant species using the plant chemical regulator.
  • auxin such as indole-3-acetic acid
  • auxin was the first substance recognized as a plant hormone and was identified as a hormone involved in the flexibility of plants. Later, it was revealed that the main natural auxin was indole-3-acetic acid (IAA). In addition to IAA, indole-3-butyric acid, 4-cycloindole acetic acid, and phenol acetic acid were also used. It has been known. Synthetic auxins include 2,4, dichlorophenoxyacetic acid (2,4-D), a-naphthaleneacetic acid (NAA '), 2,6-dichlorobenzoic acid, etc. (non-patented) Reference 1).
  • Synthetic auxin is often used for agricultural applications because IAA, a natural auxin, is unstable and has degradation pathways in plants.
  • IAA a natural auxin
  • 4- (4_chloro-0-tolyloxy) butyri c aci d (MCPB) and 2, 4-D are used as dicotyledonous herbicides in paddy fields.
  • 2, 3, 5-tolyodobenzoic acid (TIBA) can increase the germination and growth of side buds.
  • 2, 4-D and naphthalene acetic acid (NAA) are used for tissue culture. In rooting, NAA and indolebutyric acid are used.
  • 4-chlorophenoxyacetic acid has an effect of promoting fruit set even in unfertilized tomato (Non-patent Document 1).
  • auxin is synthesized from chorismate, formerly L-tryptophan
  • anti-auxin Although it does not exhibit auxin activity, anti-auxin has been synthesized that competitively inhibits auxin action by competing with auxins such as IAA to deprive the binding site of auxin.
  • 2,4-Dichlorophenoxybutyric acid PCIB
  • PCIB 2,4-Dichlorophenoxybutyric acid
  • maleic hydrazide, maleic hydrazide choline, and the like are also known to suppress the action of auxin, inhibit cell division and suppress elongation. It is used to suppress the emergence of buds after the centering of tobacco and to suppress the germination of vegetables (Non-patent Document 2).
  • Non-Patent Document 1 Yoshio Masuda “Introduction to Plant Hormone” Ohmsha (issued July 30, 1992) No. 9-17 1741 Page 45
  • Non-Patent Document 2 Pesticide Handbook 1998 Edition Editorial Board “Agricultural Handbook 1998 Edition” Published by Japan Plant Control Association 10th edition 1998 December 15th pp. 525-526 Disclosure of Invention
  • an anti-auxin that inhibits auxin signal
  • auxin is a diverse network of auxins. It is synthesized through a pathway, and it has been considered difficult to strongly inhibit its biosynthesis with a single compound (ie, inhibition of one enzymatic reaction) in the first place.
  • the plant growth may be more efficiently controlled.
  • the most popular herbicide glyphosate in the international market is an inhibitor of the aromatic amino acid synthesis pathway (ie, inhibiting metabolism upstream of chorismate).
  • the compound provided in the present invention inhibits the biosynthesis pathway of auxin located at the downstream end of the aromatic amino acid synthesis pathway. Therefore, since the control route is narrower and more specific than existing herbicides, the drug provided by the present invention has fewer side effects than existing herbicides, has higher selectivity of action, and is more efficient. Therefore, it can be expected to have an effect of weeding plants (ie at low concentrations).
  • the first object of the present invention is to provide an endogenous auxin synthesis inhibitor. Furthermore, a second object of the present invention is to provide a plant growth regulator or herbicide that uses the auxin biosynthesis inhibitor.
  • the inventors of the present application have found a compound having an auxin biosynthesis inhibitory action based on their insight and completed the present invention.
  • the present invention provides a method for squeezing an auxin biosynthesis inhibitor candidate that prevents expression of an auxin-inducible gene.
  • This includes methods that use a macroarray carrying probes for auxin-responsive genes to screen candidates that interfere with auxin-inducible gene expression.
  • the invention of the present application is that an auxin inhibitor candidate is synthesized in the plant body by actually adding the auxin inhibitor trapping to the plant, and then crushing the plant body and measuring the amount of oxin in the living body.
  • a screening method for an auxin biosynthesis inhibitor is provided, wherein a candidate auxin inhibitor that inhibits auxin is selected as an auxin inhibitor.
  • the auxin inhibitor trap and L-Trp are added to the enzyme extract that synthesizes Indole-3-pyrvic acid (IPyA) from L-Trp to produce IPyA. Including a method of screening for candidate compounds to interfere.
  • the present invention also provides an auxin biosynthesis inhibitor.
  • the present invention is an enzyme that requires pyridoxal phosphate (PLP), which works in the pathway for synthesizing IAA via L-trp.
  • PBP pyridoxal phosphate
  • an inhibitor that inhibits auxin biosynthesis is provided by inhibiting transaminase that deaminates L-tryptophan and converts it into Indole-3-pyrvic acid (IPyA).
  • the present invention relates to AVG (aminoethoxyvinylglycine, 2-amino 4- (2-aminoethoxy) -3-butenoic acid (USP3869277)), AOA (aminooxyacetic acid), 2-aminooxy isobutyric acid hydlochloride (AOIBA), auxin biosynthesis inhibitors containing L-aminooxyphenylpropionic acid (L-AOPP), and plant growth regulators containing these as active ingredients.
  • AVG aminoethoxyvinylglycine, 2-amino 4- (2-aminoethoxy) -3-butenoic acid
  • AOA aminooxyacetic acid
  • AOIBA 2-aminooxy isobutyric acid hydlochloride
  • auxin biosynthesis inhibitors containing L-aminooxyphenylpropionic acid (L-AOPP) auxin biosynthesis inhibitors containing L-aminooxyphenylpropionic acid
  • plant growth regulators containing these
  • FIG. 1 shows the auxin synthesis pathway.
  • Auxin is synthesized from chorismate and has been confirmed to have two pathways: L-Trp route and non-route route.
  • the route through L-Trp branches into four or more branches, each route catalyzed by a different enzyme. Describe the intermediates of each pathway and the names (abbreviations) of enzymes (or genes) that catalyze biosynthetic reactions.
  • Figure 2 shows the behavior of ethylene-inducible gene (A) and auxin-inducible gene (B) to AVG treatment.
  • A Ethylene responsive gene expression.
  • B Expression of an auxin responsive gene.
  • FIG. 3 shows changes in Arabidopsis endogenous IAA levels after AVG treatment.
  • Figure 4 shows a gene expression recovery experiment from AVG treatment using ACC and an auxin biosynthesis intermediate.
  • Fig. 5 shows that AVG and A0A suppress the expression of auxin-responsive genes.
  • Figure 6 shows a root elongation recovery experiment from ⁇ -methyltryptophan (Met-Trp) treatment using auxin and its biosynthetic intermediate.
  • Figure 7 shows a root elongation recovery experiment from AVG treatment using auxin and a biosynthetic intermediate.
  • Figure 8 shows an in vitro conversion enzyme from L-tryptophan to IPyA (from wheat) AVG suppressive action on
  • Fig. 9 shows the effects of AVG and A0A on the growth of Arabidopsis seedlings.
  • Figure 10 shows the effect of AVG, L-A0PP on L-tryptophan-to-IPyA converting enzyme (derived from Arabidopsis thaliana) in vitro.
  • Figure 11 shows the effects of AOA and A0IBA on L-tryptophan-to-IPyA converting enzyme (derived from Arabidopsis thaliana) in vitro.
  • Figure 12 shows the effects of L-A0PP and D-A0PP on auxin-responsive gene expression.
  • L D-A0PP treated IAA-responsive gene expression level
  • Fig. 13 is a photograph showing the effect of L-A0PP on the growth of Arabidopsis thaliana.
  • Figure 14 shows the effect on Arabidopsis IAA endogenous production.
  • A Inhibitor IAA endogenous amount after lh treatment.
  • B Inhibitor IAA endogenous amount per strain after lh treatment.
  • Figure 15 shows the impact on rice IAA endogenous production. Koshihikari inhibitor treatment 3h IAA endogenous amount.
  • Figure 16 shows the structures of inhibitors and IAA precursors.
  • the auxin synthesis pathway in plants has been shown to be complex and reticulated ( Figure 1). To date, it has not been identified which route is the main synthetic route for endogenous auxin. Therefore, it is not clear which enzyme reaction of which pathway can inhibit endogenous auxin biosynthesis and thereby control or inhibit plant growth.
  • the inventors of the present application have already isolated a large number of genes that are affected by expression in response to auxin, that is, auxin-inducible genes.
  • a candidate auxin biosynthesis inhibitor that interferes with the expression of an auxin-inducible gene can be screened using a macroarray carrying a probe for such an auxin-inducible gene.
  • a microarray any gene described in Table 1 below is appropriately selected, and the base of the gene is selected.
  • a probe mounted on at least 20 known microarrays with at least 20 oligonucleotides identical to the sequence as probes can be used.
  • a microarray using a probe comprising 20 oligonucleotides or more for each gene, and a candidate for oxine biosynthesis inhibitor using the microarray Screening methods For example, in Arabidopsis thaliana, select 10 or more of the arbitrary genes listed in Table 1, for example, a microarray using a probe comprising 20 oligonucleotides or more for each gene, and a candidate for oxine biosynthesis inhibitor using the microarray Screening methods.
  • an affymetrix GeneChip system can be used as the microarray system.
  • candidate auxin biosynthesis inhibitors can be obtained.
  • candidate compounds are processed on genetically engineered plants into which a gene that has been artificially created using a promoter of an auxin-responsive gene (for example, DR5-GUS or SAUR-GUS) is incorporated.
  • a candidate compound can also be selected by measuring the expression level of a marker gene.
  • a compound that suppresses the expression of the auxin-responsive gene It is also possible to select candidates from among them.
  • the present inventors have identified AVG as a candidate for an auxin biosynthesis inhibitor by a screening method using such a microarray.
  • a compound that inhibits auxin synthesis in the plant body is actually added to the plant body with a test compound or a target compound such as auxin, and then the plant body is destroyed, using a mass spectrometer etc. Auxin content can be measured and screened.
  • auxin inhibitor candidate selected in 2. above has inhibited auxin synthesis in the plant body, actually add the auxin biosynthesis inhibitor candidate to the plant body, It can be crushed and the amount of auxin in the living body can be measured and confirmed using a mass spectrometer or the like. By this method, the present inventors have confirmed that AVG and its analogs are auxin biosynthesis inhibitors.
  • one of the targets that inhibits auxin biosynthesis is the enzyme that requires pyridoxal phosphate (PLP), or L-tryptophan, which is then indole- A transdeaminase that converts to 3-pyvic acid (IPyA), and a more suitable target to inhibit auxin biosynthesis, is a pyramid that converts L-tryptophan to Indole-3-pyric acid (IPyA) by deamination. It was found to be a trans-deaminase requiring doxalphosphate (PLP). Therefore, screening of inhibitors of these enzyme activities in vitro can also search for inhibitors of auxin synthesis.
  • An inhibitor of auxin biosynthesis containing an inhibitor of pyridoxalphosphate (PLP) -required enzyme or an inhibitor of tributophanaminotransferase as an active ingredient
  • auxin biosynthesis inhibitors of the present invention include inhibitors of pyridoxal phosphate-requiring enzyme consisting of AVG and its analogs.
  • the present invention can inhibit the biosynthesis of auxin using inhibitors of pyridoxalphosphate (PLP) -required enzymes (including trans-deaminase, decarboxylase, C-S lyase, racemase, etc.) It is shown for the first time.
  • PLP pyridoxalphosphate
  • inhibitors of PLP-requiring enzymes it is possible to newly select a compound that inhibits auxin biosynthesis by the method described in 3. above.
  • inhibitors of PLP-requiring enzymes for example, compounds described in Annual Review of Biochemistry 73: 383-415 (2004) are known.
  • AOA aminooxyacetic acid
  • PBP-requiring enzyme ACC synthase
  • the present invention also shows for the first time that it is possible to inhibit the biosynthesis of auxin using an inhibitor of transdeamidinase (eg, Trp aminotransferase, ferulalanin ammonia lyase).
  • an inhibitor of transdeamidinase eg, Trp aminotransferase, ferulalanin ammonia lyase.
  • phenylalanine ammonia lyase is used as an inhibitor of PAL, for example, the compounds described in Phytochemistry 68: 407-415 (2007) and Phytochemistry 62: 415-422 (2003), specifically Are l-amino-3-phenylpropylphosphonate, 1-amino-2- (4-fluorophenyi) ethylphosphonic acid,
  • L-A0PP which is known as a PAL inhibitor
  • auxin biosynthesis inhibitors of the present invention an auxin biosynthesis inhibitor containing, as an active ingredient, a compound selected from the following (formula I) or (formula I I).
  • R 2 represents a hydrogen atom or a methyl group.
  • R 3 represents an amino group or an aminooxy group.
  • R 6 represents an alkyl group having 1 to 4 carbon atoms which may have an amino group. More specifically,
  • R 1 means a carboxyl group or a phosphone group.
  • R 2 represents a hydrogen atom or a methyl group.
  • R 3 represents an amino group or an aminooxy group (-0-NH 2 ).
  • the S form is more preferable when is a force lupoxyl group, and the R form is preferable when Rj is a phosphone group.
  • R 5 represents an indole ring, naphthalene ring, benzene ring, pyridine ring or pyrrole ring, the carbon atom of which may be substituted with chlorine or a methyl group. Specifically, R 5
  • 2,4-diclilorop enyl- 2-methyl.-4-chlo.ro-phenyl- includes ⁇ 11 W, ''-
  • R1 is a carboxyl group, L-A0PP or
  • Rl having a phosphonic group examples include 1-amino-2-phenylethyl-phosphonic acid and
  • 1-amino-2-nH-indol-3-vl) ethvlphosphonic acid, l-amino-2-ohenylethyl-phosphonic acid, and R3 as aminooxy group include A0PP and
  • AMB 2-amino-4-methoxy-3-butenoic acid
  • L-tryptophan analogs compounds having the structure of 2-amino-4-phenol-3-butenoic acid and their salts are effective. See Figure 17.
  • the auxin biosynthesis inhibitor of the present invention can be used as a plant growth inhibitor, a plant growth regulator, or a herbicide, such as inhibition of root elongation, inhibition of seedling growth, and the like.
  • the auxin biosynthesis inhibitor can be mixed with various carriers such as talc, clay, starch, water, etc., and used as a solid preparation or a liquid preparation.
  • Liquid preparations can be made into liquid preparations such as liquids, emulsions, microemulsions, suspensions, oils, and oily flowables using appropriate carriers.
  • As a solid preparation it can be used as a powder, granule, granule, tablet, wettable powder, wettable powder.
  • auxiliary agents used in the preparation of agricultural chemicals for example, spreading agents, emulsifiers, coloring agents and the like can be added as necessary.
  • AVG is known as an inhibitor of ethylene biosynthesis.
  • ACC treatment and AVG treatment were plotted against ethylene-inducible genes (Fig. 2A)
  • a negative correlation was seen as is known.
  • IAA treatment and AVG treatment were compared by plotting auxin-inducible genes (Fig. 2B)
  • a negative correlation was observed. This result is
  • AVG has been considered so far, not only ethylene suppression but also auxin suppression It also suggests that it has an effect.
  • the AVG used is all S, including the following examples.
  • Wild-type Arabidopsis thaliana (Colombia) seeds were low-temperature treated at 4 ° C. for 48 hours, and then cultured in a liquid medium containing 1/2 MS l% Sucrose for 7 days.
  • the Arabidopsis seedlings were treated with AVG4, 10, or 40 / zM for 24 hours.
  • 13C6-IAA was added as an internal standard. After concentrating the extract, it was purified by N (CH3) 2 HPLC column, and IAA elution fraction was collected. The IAA fraction was trimethylsilylated and quantitatively analyzed by GC-MS. The results are shown in Figure 3.
  • AVG treatment reduced Arabidopsis endogenous IAA levels depending on the concentration of AVG treated.
  • Wild-type Arabidopsis thaliana (Col.) seeds were low-temperature treated at 4 ° C for 48 hours, and then cultured in a liquid medium containing 1 / 2MS l% Sucrose for 7 days.
  • 40 ⁇ M AVG and 10 ethylene biosynthetic precursors ACC, IAA, IAA biosynthetic precursors IPyA (Indole-3-pyruvic acid) or IAAld (Indole-3-acetaldehyde) are treated for 24 hours on the seedlings of Arabidopsis thaliana did.
  • RNA from these Arabidopsis seedlings we measured the expression level of the IAA19 / At3gl5540 gene, one of the genes that serve as an indicator of auxin action, using the quantitative PCR method (ABI PRISM7500) using Taqman probe.
  • Primer is forward (GAGCATGGATGGTGTGCCTTAT), linear primer (TTCGCAGTTGTCACCATCTTTC) ⁇ TaqMan probe
  • the vertical axis shows the relative value of the gene expression level with the control group as 1.
  • the expression level of the IAA19 gene was restored to the control level with precursors of auxin biosynthesis via IPyA (IPyA, IAAld). This trend did not change with the addition of ACC. The result is
  • AVG inhibits the expression of auxin-responsive genes by inhibiting IAA biosynthesis.
  • the inhibitory effect of AVG on the expression of auxin-responsive genes is not an indirect action through inhibition of ethylene biosynthesis.
  • Wild-type Arabidopsis thaliana (Colombia) seeds were low-temperature treated at 4 ° C. for 48 hours, and then cultured in a liquid medium containing 1/2 MS l% Sucrose for 7 days.
  • the Arabidopsis seedlings were treated with AVG or A0A at 1, 5, or 20 ⁇ ⁇ ⁇ for 24 hours.
  • A0A is known to inhibit the biosynthesis of ethylene by inhibiting the action of pyridoxalphosphate-dependent enzymes.
  • RNA was purified from Arabidopsis seedlings after treatment, and the expression levels of the IAA1 and IAA2 genes, which are indicators of auxin action, were measured by quantitative PCR using Taqman probes (Fig. 5).
  • the vertical axis shows the relative value of gene expression level with control group as 1.
  • the expression level decreased with AVG treatment depending on the concentration.
  • A0A treatment also reduced auxin-induced live gene expression, but its effect was slightly weaker than AVG.
  • Wild-type Arabidopsis thaliana (Col.) seeds were low-temperature treated at 4 ° C. for 48 hours, and then cultured on an agar medium containing 1/2 MS l% Sucrose for 2 days.
  • the Arabidopsis seedlings were transplanted to 1 / 2MS l% Sucrose agar medium containing ⁇ -methylliptophan (Met-Trp) and allowed to grow vertically for 6 days.
  • Met-Trp inhibits the L-Trp synthesis pathway upstream, but we observed whether growth inhibition by Met-Trp could recover IAA and its biosynthetic precursors using the elongation recovery of roots as an indicator. The result is shown in FIG.
  • the reaction was carried out at 30 ° C for 90 minutes.
  • the product is derivatized to oxime with hydroxyamine in an imidazole buffer containing MeOH.
  • the solution was acidified with hydrochloric acid, extracted with ethyl acetate, purified with an OASIS MCX column, and the amount of IPyA produced was measured using LC / MS / MS (LC: HP 1100 Series HPLC System (Hewlett Packard / Agilent
  • AVG or A0A Decreased by adding AVG or A0A. This indicates that the auxin biosynthesis step from tryptophan to indole pyruvate is catalyzed by PLP enzyme, and its activity is inhibited by AVG and A0A.
  • Wild type Arabidopsis thaliana (Colombia) seeds were treated at 4 ° C for 72 hours, and then cultured for 6 days at 21 ° C in a liquid medium (F) containing lOO w M A0A in 1 / 2MS l% Sucrose. (E) is the control zone. With the addition of A0A, the growth of seedlings was suppressed both above and below, but the effect was slower than AVG (Fig. 9).
  • Example 8 Effect of AVG and L-A0PP on L-tryptophan to IPyA converting enzyme (derived from Arabidopsis thaliana) in vitro
  • Arabidopsis seedlings were grown in 1/2 MS l% sucrose medium for 3 days. The seedlings were frozen and crushed at -80 ° C, extracted buffer (4 O mM HEPES-OKH (pH7.6), 10 raM potassimu chloride, 5 mM magnesium chloriae, 2 mM calcium chloride,
  • Protein was extracted with 4 mM dithiothreitol). This was centrifuged at 20000 g for 10 minutes and then subjected to gel filtration using a Sephadex G-25 column to obtain a polymer fraction as a crude enzyme extract. Using this, an enzymatic reaction from L-tryptophan to indole pyruvate was performed.
  • the reaction was carried out in the presence of extracted protein 76yg / ml, 0.1M borate buffer (pH 8.5), 0.25mM L-tryptophan, 0.5mM 2-oxoglutaric acid, 0.05mM PLP at 35 ° C. C Incubated at some point for 1 hour.
  • the amount of indolpyruvic acid produced was quantified according to Example 6. The result is shown in FIG.
  • an Arabidopsis thaliana extract enzyme treated at 95 ° C for 5 minutes was used (EE Heat).
  • IPyA that can be produced when PLP and 2-oxodaltalic acid are removed from the reaction (No CoE). No activity was detected when the extract was heat-treated, and activity was removed when PLP and 2-oxoglutaric acid were removed.
  • reaction was performed by adding no inhibitor (complete), AVG (10, 20, 50, 100 ⁇ ) or L-A0PP (0.1, 0.3, 1, 2 ⁇ ).
  • the vertical axis shows the amount of IPyA produced as a relative value.
  • Figure 10A shows the average of three iterations. Both AVG and L-A0PP inhibited the activity of IPyA synthase in Arabidopsis thaliana.
  • Example 8 a crude enzyme extract was produced from Arabidopsis seedlings and subjected to enzyme reaction.
  • the reaction conditions were the same as in Example 8.
  • Arabidopsis thaliana extract enzyme treated at 95 ° C for 5 minutes (EE Heat) and the amount of IPyA produced when PLP and 2-oxoglutaric acid were removed from the reaction were shown (No CoE).
  • Indole pyruvate was quantified according to Example 6. The results are shown in Figure 11.
  • the vertical axis shows the amount of indole pyruvic acid produced as a relative value.
  • the graph shows the average of three repetitions.
  • the reaction was performed by adding no inhibitor (complete) and A0IBA (1, 3, 10, 30 ⁇ ) or A0A (0.1, 0.3, 1, 3 ⁇ ).
  • IC50 was calculated to be 0.4 ⁇ for A0A and 1.26 ⁇ for A0IBA, both of which were more active than AVG.
  • Arabidopsis thaliana is grown in a liquid medium containing l / 2MS and l% sucrose for 7 days and treated with L-AOPP (1: 3, 10, 30) and D-A0PP (1, 3, 10, 30 yM) for 3 h. Plants were sampled and RNA was purified. According to the method of Example 3, the expression levels of the IAA19 / At3gl5540 and IAA1 / At4gl4560 genes were measured using quantitative PCR. Figure 12 shows the results. D-A0PP suppressed IAA gene expression from 3 ⁇ . On the other hand, D-A0PP inhibited IAA1 gene expression at 30 ⁇ , but did not inhibit IAA19 gene expression.
  • S-form is more effective than R-form by inhibiting the expression of sputum gene.
  • the steric structure of S-form has a homologous relationship with that of L-trybutophane, and that these compounds work as analogs of L-tryptophan, that is, S-form is more effective in inhibiting oxine biosynthesis. It was shown that. (The experiment is the average of two repetitions.) [Example 1 1] Effect of L-AOPP on Arabidopsis thaliana growth
  • Arabidopsis thaliana was grown in 1% sucrose 1 / 2MS medium containing L-A0PP, but no growth inhibition was observed. This was due to the instability of L-A0PP in MS medium. Therefore, we investigated the effect of L-A0PP on the growth of Arabidopsis thaliana in sugar agar without MS medium components. Arabidopsis seedlings were grown for 4 days in 1 / 2MS medium containing 1% sucrose to a length of about 1 cm. These seedlings were transplanted to 1% sucrose agar supplemented with drugs and cultured at 21 ° C for 4 days. The results are shown in FIG. 13 and FIG.
  • Arabidopsis seedlings were cultured on 1 / 2MS agar medium for 6 days under 22 ° C continuous light. Sprouting seedlings of 20 strains were transferred to 1 / 2MS liquid medium (5 ml), cultured for 24 hours, and treated with 30 AVG or L-A0PP for 1 hour. D5-IAA was added as an internal standard, extracted with MeOH, purified with Oasis HLB, MCX force ram, and the amount of IAA was quantified by LC-MS / MS. The quantitative analysis by LC-MS / MS was performed according to the method described in Example 6. The results are shown in Fig. 15. The average and standard error of the results of three independent experiments are shown. The vertical axis shows the amount of IAA. The left shows the amount of IAA per gram of fresh weight, and the right shows the amount of IAA per seedling. As a result, both AVG and L-A0PP greatly reduced the endogenous amount of IAA.
  • Example 13 Effect on rice IAA endogenous production Rice (Koshihikari) seeds were sterilized and allowed to germinate by absorbing water at 25 ° C for 3 days. Seed this on agar, 2 8. C. cultured for 2 days.
  • the grown seedlings were transferred to 10 ml of water one by one and cultured with shaking at 28 ° C. for 3 hours in the presence of 30 ⁇ of inhibitors Met-Trp, AVG, AOA, and L-AOPP. After incubation, the aerial part of the seedlings, roots, divided into seeds, d5 as 100 p g / mgFW each of shoot and root portion (Fresh Weight, also FW in other figures same.)
  • a - internally IAA In addition to the standard substance, the amount of IAA was quantified using LC-MS / MS according to Example 12. The results are shown in Figure 16. The vertical axis of the graph indicates the amount of IAA per 1 mg of raw weight. The average and standard error of this experiment repeated three times are shown. Met-Trp, which inhibits triftophan biosynthesis, had no effect on endogenous IAA levels. On the other hand, AVG, AOA and L-A0PP decreased the endogenous amount of IAA.
  • the invention of the present application has an extremely excellent effect of providing an auxin biosynthesis inhibitor and a screening method thereof for the first time. This makes it possible to control the amount of auxin in the plant, which was impossible before, and it will be possible to develop completely new plant growth regulators and herbicides in the future.
  • the present invention can be used in plant growth regulators, herbicides and the field of production thereof.

Abstract

The first object is to provide an inhibitor of the synthesis of endogenous auxin. The second object is to provide a plant growth inhibitor or a herbicidal agent utilizing the auxin biosynthesis inhibitor. Thus, disclosed are: a method for screening a candidate for an auxin biosynthesis inhibitor capable of inhibiting the expression of an auxin-inducible gene, by adding each of candidate compounds for the auxin inhibitor to a plant; a method for selecting a compound capable of actually inhibiting the auxin synthesis in a plant, by adding each of candidate compounds to the plant, disrupting the plant and then measuring the amount of endogenous auxin; and a method for selecting a compound capable of inhibiting the production of indolpyruvic acid in the presence of a tryptophan deaminase and tryptophan which are prepared in advance. More specifically disclosed are: an auxin biosynthesis inhibitor comprising AVG, AOA, AOIBA, L-AOPP or an analogue thereof; and a plant growth regulator or a herbicidal agent comprising the compound as an active ingredient.

Description

植物ホルモン · オーキシンの生合成阻害剤及ぴ該阻害剤を有効成分として 含有する植物化学調節剤、 除草剤並びにその使用方法 技術分野  Plant hormones · Auxin biosynthesis inhibitors and phytochemical regulators containing these inhibitors as active ingredients, herbicides and methods of use thereof Technical Field
本願発明は、 オーキシン (インドール- 3-酢酸等) の生合成阻害剤を有効成分と して含有する植物化学調節剤または明除草剤に関する。 更に、 本願発明は、 該植物 化学調節剤を用いて、 様々な植物種にお田いて、 様々な生育段階、 器官において植 物の生育を人為的に制御する方法に関する。 背景技術  The present invention relates to a phytochemical regulator or light herbicide containing an auxin (such as indole-3-acetic acid) biosynthesis inhibitor as an active ingredient. Furthermore, the present invention relates to a method for artificially controlling plant growth in various growth stages and organs in various plant species using the plant chemical regulator. Background art
オーキシンは、 植物ホルモンとして最初に認識された物質で、 植物の示す屈曲 性に関与するホルモンとして、 同定された。 その後、 主要な天然オーキシンとし ては、 インドールー 3 -酢酸 (IAA) であることが明らかにされ、 IAA以外にも、 ィ ンドール- 3 -酪酸、 4一クロ口インドール酢酸、 及びフエ-ル酢酸などが知られて いる。 また合成オーキシンとしては、 2, 4,ジクロロフエノキシ酢酸(2, 4 - D)、 a - ナフ-タレン酢酸 (NAA')、 2, 6-ジクロロ安息香酸などが知られている(非特許文献 1)。  Auxin was the first substance recognized as a plant hormone and was identified as a hormone involved in the flexibility of plants. Later, it was revealed that the main natural auxin was indole-3-acetic acid (IAA). In addition to IAA, indole-3-butyric acid, 4-cycloindole acetic acid, and phenol acetic acid were also used. It has been known. Synthetic auxins include 2,4, dichlorophenoxyacetic acid (2,4-D), a-naphthaleneacetic acid (NAA '), 2,6-dichlorobenzoic acid, etc. (non-patented) Reference 1).
天然オーキシンである IAAは不安定であり、 植物体内では分解経路も存在する ため、 農業用途には、 合成オーキシンが用いられていることが多い。 例えば、 水 田での双子葉植物除草剤としては、 4- (4_chloro- 0 - tolyloxy) butyri c aci d (MCPB) や 2, 4- Dが用いられている。 また 2, 3, 5-トリョード安息香酸 (TIBA) は、 側芽の 発芽、 成長を高めることができる。 さらに、 組織培養には、 2, 4— Dやナフタレ ン酢酸 (NAA) が用いられる。 また、 発根には、 NAAやインドール酪酸が用いられ ている。 また、 例えば、 トマトでは、 4ークロロフエノキシ酢酸は、 未受精のト マトでも着果促進する効果がある(非特許文献 1)。  Synthetic auxin is often used for agricultural applications because IAA, a natural auxin, is unstable and has degradation pathways in plants. For example, 4- (4_chloro-0-tolyloxy) butyri c aci d (MCPB) and 2, 4-D are used as dicotyledonous herbicides in paddy fields. In addition, 2, 3, 5-tolyodobenzoic acid (TIBA) can increase the germination and growth of side buds. In addition, 2, 4-D and naphthalene acetic acid (NAA) are used for tissue culture. In rooting, NAA and indolebutyric acid are used. For example, in tomato, 4-chlorophenoxyacetic acid has an effect of promoting fruit set even in unfertilized tomato (Non-patent Document 1).
植物体内でオーキシンはコリスミ酸から合成され、 以前は、 L-トリプトファン In plants, auxin is synthesized from chorismate, formerly L-tryptophan
(L-Trp)を経由して合成されると考えられていたが、現在では大きく分けて(1 ) L- Trpを経由する経路と、 (2 ) L - Trpを経由しない経路の 2つの経路が確認され ている。 L- Trp を経由する経路は、 さらに 4つ以上の枝に分岐しており、 それぞ れの経路は異なった酵素によって触媒されている(図 1)。 現在でも、 どの経路が 主要経路なのか、 あるいはどのような役割分担があるのかは不明である。 It was thought that it was synthesized via (L-Trp), but now it is roughly divided (1) Two routes have been confirmed: a route that passes through L-Trp and a route that does not pass through (2) L-Trp. The route through L-Trp is further branched into four or more branches, each route catalyzed by a different enzyme (Figure 1). Even today, it is unclear which route is the main route and what role it has.
自身はほとんどオーキシン活性を示さないが、 IAA などのオーキシンと競合し てオーキシンの結合部位を奪うことにより、 オーキシン作用を拮抗的に阻害する 抗オーキシンも合成されている。 抗オーキシンとしては、 2, 4-ジクロロフエノキ シイソ酪酸 (PCIB) 等が知られている。 また、 マレイン酸ヒ ドラジド、 マレイン 酸ヒドラジドコリンなども、 オーキシンの作用を抑制し、 細胞分裂を阻害すると 共に、 伸長を抑制することが知られている。 タバコの芯止め後のえき芽発生抑制 や、 野菜の発芽抑制に用いられている(非特許文献 2)。  Although it does not exhibit auxin activity, anti-auxin has been synthesized that competitively inhibits auxin action by competing with auxins such as IAA to deprive the binding site of auxin. 2,4-Dichlorophenoxybutyric acid (PCIB) is known as an anti-auxin. In addition, maleic hydrazide, maleic hydrazide choline, and the like are also known to suppress the action of auxin, inhibit cell division and suppress elongation. It is used to suppress the emergence of buds after the centering of tobacco and to suppress the germination of vegetables (Non-patent Document 2).
非特許文献 1 増田芳雄編著「植物ホルモン入門」オーム社(平成 4年(1992 年) 7月 30日発行) 第 9一 17及ぴ 41一 45頁  Non-Patent Document 1 Yoshio Masuda “Introduction to Plant Hormone” Ohmsha (issued July 30, 1992) No. 9-17 1741 Page 45
非特許文献 2 農薬ハンドブック 1998年版編集委員会編「農薬ハンドブック 1998年版」 社団法人日本植物防除協会発行 第 10版 平成 10年 (1998年) 12 月 15日 第 525-526頁 発明の開示  Non-Patent Document 2 Pesticide Handbook 1998 Edition Editorial Board “Agricultural Handbook 1998 Edition” Published by Japan Plant Control Association 10th edition 1998 December 15th pp. 525-526 Disclosure of Invention
これまで、 抗オーキシンと呼ばれるオーキシンの信号を阻害するとされる物質 Until now, a substance called an anti-auxin that inhibits auxin signal
(PCIBなど) や、 オーキシン極性輸送阻害剤と呼ばれる TIBAなど、 オーキシン の作用を制御する化合物としては知られていたが、 内在性オーキシンの量を制御 する (減少させる) 物質は知られていなかった。 また、 モデル植物を中心に分子 遺伝学が発達した今日に於いても、 内生オーキシン量が減少する突然変異体は知 られておらず、 RNAi法やアンチセンス法など分子生物学的な手法を用いても内生 オーキシンの量を抑制する技術は存在しなかった。 本年 4月になって、 PLP酵素 の変異体 taal/sav3/wei8が単離され、 本遺伝子とそのファミリー遺伝子 (TAR2) の 2重変異体 wei8 tar2変異体では IAA内生量が半分以下に減少することが報告 された (Cell 133: 177-191 (2008) ; Cell 133 164-176 (2008) )。 (Such as PCIB) and TIBA, which is called an auxin polar transport inhibitor, were known as compounds that control the action of auxin, but no substances that control (reduce) the amount of endogenous auxin were known. . In addition, even today, when molecular genetics has been developed mainly in model plants, mutants that reduce endogenous auxin levels are not known, and molecular biological methods such as RNAi and antisense methods are not used. There was no technology to suppress the amount of endogenous auxin even when used. In April of this year, a mutant of PLP enzyme, taal / sav3 / wei8, was isolated, and IAA endogenous production was reduced to less than half in the double mutant wei8 tar2 mutant of this gene and its family gene (TAR2). A decrease was reported (Cell 133: 177-191 (2008); Cell 133 164-176 (2008)).
今日のオーキシン生合成経路に関する知見では、 オーキシンは網目状の多様な 経路を通して合成されており、 そもそも一つの化合物 (つまり一つの酵素反応の 阻害) で、 その生合成を強く阻害することは困難と考えられてきた。 Today's knowledge of the auxin biosynthetic pathway shows that auxin is a diverse network of auxins. It is synthesized through a pathway, and it has been considered difficult to strongly inhibit its biosynthesis with a single compound (ie, inhibition of one enzymatic reaction) in the first place.
他方、 植物の内在性のオーキシン合成量を調節できれば、 更に効率的に植物成 長を調節できる可能性がある。  On the other hand, if the amount of endogenous auxin synthesized in the plant can be controlled, the plant growth may be more efficiently controlled.
今日、 国際市場で最も良く普及している除草剤グリホサートは、 芳香族ァミノ 酸合成経路の阻害剤である (つまり、 コリスミ酸の上流で代謝を阻害)。 一方、 本 願発明で提供される化合物は、 芳香族アミノ酸合成経路経路の下流末端に位置す るオーキシンの生合成経路を阻害する。 従って、 既存の除草剤よりも制御する経 路がより狭く、 特異的であるため、 本願発明によって提供される薬剤は、 既存の 除草剤よりも副作用が少なく、 作用の選択性が高く、 より効率的に (すなわち低 濃度で) 植物を除草する効果をもたらすことが期待できる。  Today, the most popular herbicide glyphosate in the international market is an inhibitor of the aromatic amino acid synthesis pathway (ie, inhibiting metabolism upstream of chorismate). On the other hand, the compound provided in the present invention inhibits the biosynthesis pathway of auxin located at the downstream end of the aromatic amino acid synthesis pathway. Therefore, since the control route is narrower and more specific than existing herbicides, the drug provided by the present invention has fewer side effects than existing herbicides, has higher selectivity of action, and is more efficient. Therefore, it can be expected to have an effect of weeding plants (ie at low concentrations).
そこで、 本願発明は、 内在性のオーキシンの合成阻害剤を提供することを第 1 の課題とする。 更に本願発明は、 上記オーキシン生合成阻害剤を使用する植物成 長制御剤または除草剤を提供することを第 2の課題とする。  Accordingly, the first object of the present invention is to provide an endogenous auxin synthesis inhibitor. Furthermore, a second object of the present invention is to provide a plant growth regulator or herbicide that uses the auxin biosynthesis inhibitor.
本願発明者等は、 その類まれなる洞察力により、 オーキシン生合成阻害作用を 奏する化合物を見出して、 本願発明を完成させた。  The inventors of the present application have found a compound having an auxin biosynthesis inhibitory action based on their insight and completed the present invention.
本願発明は、 ォーキシン誘導性遺伝子の発現を妨げるォーキシン生合成阻害剤 · 候補をスクーユングする方法を提供する。 これにはォーキシン応答性遺伝子に対 するプローブを担持するマクロアレイを用いて、 オーキシン誘導性遺伝子の発現 を妨げる候補をスクーニングする方法を含む。 さらに、 本願発明は、 実際に植物 に前記オーキシン阻害剤侯捕を添加し、 その後植物体を破砕して生体内のォーキ シン量を測定することにより、 オーキシン阻害剤の候補が植物体内でオーキシン 合成を阻害しているオーキシン阻害剤候補をオーキシン阻害剤として選抜する、 オーキシン生合成阻害剤のスクリーニング方法を提供する。 さらに、 オーキシン 生合成経路のうち、 L - Trpから Indole- 3- pyrvic acid (IPyA)を合成する酵素抽出 液に対して、 前記オーキシン阻害剤候捕と L- Trpを添加し、 IPyAの生成を妨げる 候補化合物をスクーニングする方法を含む。  The present invention provides a method for squeezing an auxin biosynthesis inhibitor candidate that prevents expression of an auxin-inducible gene. This includes methods that use a macroarray carrying probes for auxin-responsive genes to screen candidates that interfere with auxin-inducible gene expression. Furthermore, the invention of the present application is that an auxin inhibitor candidate is synthesized in the plant body by actually adding the auxin inhibitor trapping to the plant, and then crushing the plant body and measuring the amount of oxin in the living body. A screening method for an auxin biosynthesis inhibitor is provided, wherein a candidate auxin inhibitor that inhibits auxin is selected as an auxin inhibitor. Furthermore, in the auxin biosynthetic pathway, the auxin inhibitor trap and L-Trp are added to the enzyme extract that synthesizes Indole-3-pyrvic acid (IPyA) from L-Trp to produce IPyA. Including a method of screening for candidate compounds to interfere.
また、 本願発明は、 オーキシン生合成阻害剤を提供する。 本願発明は、 L- trp を経由して IAAを合成する経路で働く、 ピリ ドキサルリン酸(PLP) 要求性の酵素 又は L- tryptophanを脱アミノ化して Indole- 3- pyrvic acid (IPyA)に変換するト ランスデァミナーゼを阻害することにより、 オーキシン生合成を阻害する阻害剤 を提供する。 The present invention also provides an auxin biosynthesis inhibitor. The present invention is an enzyme that requires pyridoxal phosphate (PLP), which works in the pathway for synthesizing IAA via L-trp. Alternatively, an inhibitor that inhibits auxin biosynthesis is provided by inhibiting transaminase that deaminates L-tryptophan and converts it into Indole-3-pyrvic acid (IPyA).
よ り 具体的 に は 、 本願発明 は 、 AVG (aminoethoxyvinylglycine、 2一 ami no一 4- (2-aminoethoxy) -3-butenoic acid ( USP3869277 ) ) 、 AOA (aminooxyacetic acid)、 2-aminooxy isobutyric acid hydlochloride (AOIBA)、 L-aminooxyphenylpropionic acid (L-AOPP) を含有するオーキシン生合成阻害剤 及びこれらを有効成分とする植物成長調節剤を包含する。  More specifically, the present invention relates to AVG (aminoethoxyvinylglycine, 2-amino 4- (2-aminoethoxy) -3-butenoic acid (USP3869277)), AOA (aminooxyacetic acid), 2-aminooxy isobutyric acid hydlochloride ( AOIBA), auxin biosynthesis inhibitors containing L-aminooxyphenylpropionic acid (L-AOPP), and plant growth regulators containing these as active ingredients.
本明細書は本願の優先権の基礎である日本国特許出願 2007-152808号の明細書 および/または図面に記載される内容を包含する。 図面の簡単な説明  This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2007-152808, which is the basis of the priority of the present application. Brief Description of Drawings
図 1は、 オーキシン合成経路を示す。 オーキシンはコリスミ酸から合成され、 L- Trpを経由する経路と、 経由しない経路の 2つの経路が確認されている。 L - Trp を経由する経路は、 4つ以上の枝に分岐しており、 それぞれの経路は異なった酵 素によって触媒される。それぞれの経路の中間体と生合成反応を触媒する酵素(ま たは遺伝子) の名称 (略号) を記す。  Figure 1 shows the auxin synthesis pathway. Auxin is synthesized from chorismate and has been confirmed to have two pathways: L-Trp route and non-route route. The route through L-Trp branches into four or more branches, each route catalyzed by a different enzyme. Describe the intermediates of each pathway and the names (abbreviations) of enzymes (or genes) that catalyze biosynthetic reactions.
図 2は、 エチレン誘導性遺伝子 (A) とオーキシン誘導性遺伝子 (B) の AVG処 理に対する挙動を示す。 (A) エチレン応答性遺伝子の発現。 (B) オーキシン応答 性遺伝子の発現。  Figure 2 shows the behavior of ethylene-inducible gene (A) and auxin-inducible gene (B) to AVG treatment. (A) Ethylene responsive gene expression. (B) Expression of an auxin responsive gene.
図 3は、 AVG処理後のシロイヌナズナ内生 IAA量の変化を示す。  Figure 3 shows changes in Arabidopsis endogenous IAA levels after AVG treatment.
図 4は、 ACCとオーキシン生合成中間体を用いた、 AVG処理からの遺伝子発現回 復実験を示す。  Figure 4 shows a gene expression recovery experiment from AVG treatment using ACC and an auxin biosynthesis intermediate.
図 5は、 AVG, A0Aがオーキシン応答性遺伝子の発現を抑制する。  Fig. 5 shows that AVG and A0A suppress the expression of auxin-responsive genes.
図 6は、 オーキシンとその生合成中間体を用いた、 αメチルトリプトファン (Met- Trp) 処理からの根の伸長回復実験を示す。  Figure 6 shows a root elongation recovery experiment from α-methyltryptophan (Met-Trp) treatment using auxin and its biosynthetic intermediate.
図 7は、 オーキシンと生合成中間体を用いた、 AVG処理からの根の伸長回復実 験を示す。  Figure 7 shows a root elongation recovery experiment from AVG treatment using auxin and a biosynthetic intermediate.
図 8は、 In vitroでの L-トリプトファンから IPyAへの変換酵素 (コムギ由来) に対する AVGの抑制作用。 Figure 8 shows an in vitro conversion enzyme from L-tryptophan to IPyA (from wheat) AVG suppressive action on
図 9は、 シロイヌナズナ芽生の生育への AVG、 A0Aの効果。  Fig. 9 shows the effects of AVG and A0A on the growth of Arabidopsis seedlings.
図 1 0は、 In vitro での L-トリプトファンから IPyAへの変換酵素 (シロイヌ ナズナ由来) に対する AVG, L- A0PPの効果。  Figure 10 shows the effect of AVG, L-A0PP on L-tryptophan-to-IPyA converting enzyme (derived from Arabidopsis thaliana) in vitro.
図 1 1は、 In vitro での L-トリプトファンから IPyAへの変換酵素 (シロイヌ ナズナ由来) に対する AOA, A0IBAの効果。  Figure 11 shows the effects of AOA and A0IBA on L-tryptophan-to-IPyA converting enzyme (derived from Arabidopsis thaliana) in vitro.
図 1 2は、 L- A0PPと D-A0PPによるオーキシン応答性遺伝子の発現への影響。 L、 D-A0PP処理における IAA応答性遺伝子発現量  Figure 12 shows the effects of L-A0PP and D-A0PP on auxin-responsive gene expression. L, D-A0PP treated IAA-responsive gene expression level
図 1 3は、 L-A0PPのシロイヌナズナ生育への影響を示す写真。  Fig. 13 is a photograph showing the effect of L-A0PP on the growth of Arabidopsis thaliana.
図 1 4は、 シロイヌナズナ IAA内生量への影響。 (A)阻害剤 lh処理後の IAA内 生量。 (B)阻害剤 lh処理後の 1株あたりの IAA内生量。  Figure 14 shows the effect on Arabidopsis IAA endogenous production. (A) Inhibitor IAA endogenous amount after lh treatment. (B) Inhibitor IAA endogenous amount per strain after lh treatment.
図 1 5は、 イネ IAA内生量への影響。 コシヒカリ阻害剤処理 3h IAA内生量。 図 1 6は、 阻害剤と IAA前駆体の構造。 発明を実施するための最良の形態  Figure 15 shows the impact on rice IAA endogenous production. Koshihikari inhibitor treatment 3h IAA endogenous amount. Figure 16 shows the structures of inhibitors and IAA precursors. BEST MODE FOR CARRYING OUT THE INVENTION
1 . はじめに  1.First of all
植物体内でのオーキシンの合成経路は複雑で、 網目状であることが示されてき た (図 1)。 現在までのところ、 どの経路が、 内在性のオーキシンの主要な合成経 路であるかは確認されていない。 そのため、 どの経路のどの酵素反応を阻害すれ ば、 内在性オーキシン生合成を阻害し、 それによつて植物の成長を制御または抑 制できるか明らかではなレ、。  The auxin synthesis pathway in plants has been shown to be complex and reticulated (Figure 1). To date, it has not been identified which route is the main synthetic route for endogenous auxin. Therefore, it is not clear which enzyme reaction of which pathway can inhibit endogenous auxin biosynthesis and thereby control or inhibit plant growth.
2 . 遺伝子発現及ぴマイクロアレイを用いるオーキシン生合成阻害剤候補のス クリ一二ング方法  2. Screening method for candidate auxin biosynthesis inhibitors using gene expression and microarray
本願発明者等は、 既に、 オーキシンに応答して発現の影響を受ける遺伝子、 つ まりオーキシン誘導性遺伝子を多数分離している。  The inventors of the present application have already isolated a large number of genes that are affected by expression in response to auxin, that is, auxin-inducible genes.
本願発明者等は、 このようなオーキシン誘導性遺伝子に対するプローブを担持 するマクロアレイを用いて、 オーキシン誘導性遺伝子の発現を妨げるオーキシン 生合成阻害剤候補をスクーニングできることを見出した。 このようなマイクロア レイとしては、 以下の表 1に記載の任意の遺伝子を適宜選択し、 該遺伝子の塩基 配列と同一の少なくとも 20オリゴヌクレオチドをプローブとして、周知の任意の マイクロアレイ上に載せたものを使用できる。 The inventors of the present application have found that a candidate auxin biosynthesis inhibitor that interferes with the expression of an auxin-inducible gene can be screened using a macroarray carrying a probe for such an auxin-inducible gene. As such a microarray, any gene described in Table 1 below is appropriately selected, and the base of the gene is selected. A probe mounted on at least 20 known microarrays with at least 20 oligonucleotides identical to the sequence as probes can be used.
例えばシロイヌナズナにおいては、表 1に掲げられる任意の遺伝子を、例えば、 10種類以上選択し、 各遺伝子に対するに対する 20オリゴヌクレオチド以上から なるプローブを用いるマイクロアレイ及ぴ当該マイクロアレイを用いるォーキシ ン生合成阻害剤候補のスクリーニング方法を包含する。 ここで、 マイクロアレイ システムとしては、 たとえば、 affymetrixの GeneChip systemを用いることがで さる。  For example, in Arabidopsis thaliana, select 10 or more of the arbitrary genes listed in Table 1, for example, a microarray using a probe comprising 20 oligonucleotides or more for each gene, and a candidate for oxine biosynthesis inhibitor using the microarray Screening methods. Here, for example, an affymetrix GeneChip system can be used as the microarray system.
本マイクロアレイを用いて、 例えば、 オーキシン等対象化合物の存在下で発現 が誘導される程度と、 試験化合物の存在下で発現が抑制される程度を比較するこ とで、 オーキシン生合成阻害剤候補を選抜できる。 具体的には、 例えば、 シロイ ヌナズナ (ァラビドプシス) のようなモデル植物に、 対象化合物としてォーキシ ンを与える場合の遺伝子発現のレベルを測定する。 次にオーキシンを与えない場 合での遺伝子発現の程度を測定して、 これらを比較する。 更に、 該試験植物に試 験化合物を与えた場合と与えない場合での遺伝子発現とを比較する。 オーキシン の存在下で発現が増大する遺伝子群が、 前記試験化合物の存在下で発現が減少す る関係があるようであれば、 当該試験化合物をオーキシン生合成阻害剤候補とし て選抜できる。  By using this microarray, for example, by comparing the degree of expression induced in the presence of the target compound such as auxin with the degree to which expression is suppressed in the presence of the test compound, candidate auxin biosynthesis inhibitors can be obtained. Can be selected. Specifically, for example, the level of gene expression is measured when oxine is given as a target compound to a model plant such as Shiloununa (Arabidopsis). Next, measure the level of gene expression in the absence of auxin and compare them. Furthermore, gene expression is compared between when the test compound is given to the test plant and when it is not given. If a gene group whose expression increases in the presence of auxin seems to be related to a decrease in expression in the presence of the test compound, the test compound can be selected as a candidate for an auxin biosynthesis inhibitor.
一方、 オーキシン応答性遺伝子のプロモーターを利用して人為的に作成したマ 一力一遺伝子 (例えば、 DR5- GUSや SAUR- GUSなど) を組み込んだ遺伝子組換え植 物体に対して、 候補化合物を処理し、 マーカー遺伝子の発現レベルを測定するこ とによっても候補化合物を選抜することができる。 あるいは、 野生型植物に候補 化合物を処理し、 処理後の植物からトータル RNAを抽出して、 オーキシン応答性 遺伝子の発現量を定法に従って測定することによって、 オーキシン応答性遺伝子 の発現を抑制する化合物の中から、 候補を選抜することも可能である。 表 1 On the other hand, candidate compounds are processed on genetically engineered plants into which a gene that has been artificially created using a promoter of an auxin-responsive gene (for example, DR5-GUS or SAUR-GUS) is incorporated. A candidate compound can also be selected by measuring the expression level of a marker gene. Alternatively, by treating a candidate compound in a wild-type plant, extracting total RNA from the treated plant, and measuring the expression level of the auxin-responsive gene according to a standard method, a compound that suppresses the expression of the auxin-responsive gene It is also possible to select candidates from among them. table 1
Figure imgf000009_0001
本発明者等は、このようなマイクロアレイを用いたスクリーニング方法により、 オーキシン生合成阻害剤候補として、 AVGを同定した。
Figure imgf000009_0001
The present inventors have identified AVG as a candidate for an auxin biosynthesis inhibitor by a screening method using such a microarray.
3 . IAA生合成や酵素活性を指標としたオーキシン生合成阻害剤のスクリー二 ング方法 3. Screening of auxin biosynthesis inhibitors based on IAA biosynthesis and enzyme activity Method
植物体内でオーキシン合成を阻害する化合物は、 実際に植物体に試験化合物又 はオーキシン等の対象化合物を添加して、 その後植物体を破碎して、 質量分析装 置等を用いて、 生体内のオーキシン量を測定し、 スクリーニングすることができ る。  A compound that inhibits auxin synthesis in the plant body is actually added to the plant body with a test compound or a target compound such as auxin, and then the plant body is destroyed, using a mass spectrometer etc. Auxin content can be measured and screened.
また、 上記 2. で選ばれたオーキシン阻害剤候補が、 植物体内でオーキシン合 成を阻害している否かは、 実際に植物体にォーキシン生合成阻害剤候補を添加し て、 その後植物体を破砕して、 質量分析装置等を用いて、 生体内のオーキシン量 を測定し確認することもできる。 この方法により、 本願発明者らは、 AVG及ぴそ の類縁体がオーキシン生合成阻害剤であることを確認した。  In addition, whether the auxin inhibitor candidate selected in 2. above has inhibited auxin synthesis in the plant body, actually add the auxin biosynthesis inhibitor candidate to the plant body, It can be crushed and the amount of auxin in the living body can be measured and confirmed using a mass spectrometer or the like. By this method, the present inventors have confirmed that AVG and its analogs are auxin biosynthesis inhibitors.
さらに、オーキシン生合成経路の中間体を AVGと同時に植物に投与することで、 当該化合物が AVGによる成育阻害を回復するか否かを検討した。 これにより、 本 願発明者等は、 AVG の成育阻害の作用点が、 植物体内でのオーキシンの生合成経 路上に存在することを確認した。 さらに、 植物より抽出した酵素活性を in vitro において評価する系を確立した。 この酵素活性の評価系を用いて AVGの作用点を 調べ、 オーキシン生合成を阻害するターゲットの 1つは、 ピリ ドキサルリン酸 (PLP) 要求性の酵素、 又は L - tryptophan を脱ァミノ化して Indole - 3- pyrvic acid (IPyA)に変換するトランスデァミナーゼ、 より好適なオーキシン生合成を阻 害するターゲットとしては、 L— tryptophan を脱アミノィ匕して Indole— 3— pyrvic acid (IPyA)に変換するピリ ドキサルリン酸(PLP)要求性のトランスデアミナーゼ であることを見出した。 従って、 これら酵素活性の阻害剤を in vitroでスクリー ニングすることによつても、 ォーキシン合成阻害剤を探索できる。  Furthermore, we investigated whether the compound restores growth inhibition by AVG by administering an intermediate of the auxin biosynthetic pathway to plants simultaneously with AVG. As a result, the inventors of the present application confirmed that the action point of AVG growth inhibition exists on the auxin biosynthesis pathway in the plant body. In addition, we established a system for in vitro evaluation of enzyme activity extracted from plants. By using this enzyme activity evaluation system to investigate the action point of AVG, one of the targets that inhibits auxin biosynthesis is the enzyme that requires pyridoxal phosphate (PLP), or L-tryptophan, which is then indole- A transdeaminase that converts to 3-pyvic acid (IPyA), and a more suitable target to inhibit auxin biosynthesis, is a pyramid that converts L-tryptophan to Indole-3-pyric acid (IPyA) by deamination. It was found to be a trans-deaminase requiring doxalphosphate (PLP). Therefore, screening of inhibitors of these enzyme activities in vitro can also search for inhibitors of auxin synthesis.
4 . ピリ ドキサルリン酸(PLP) 要求性の酵素の阻害剤又はトリブトファンアミ ノ基転移酵素の阻害剤を有効成分として含有するォーキシン生合成阻害剤  4. An inhibitor of auxin biosynthesis containing an inhibitor of pyridoxalphosphate (PLP) -required enzyme or an inhibitor of tributophanaminotransferase as an active ingredient
本願発明のオーキシン生合成阻害剤には、 AVG及びその類縁体からなるピリ ド キサルリン酸要求性酵素の阻害剤を包含する。  The auxin biosynthesis inhibitors of the present invention include inhibitors of pyridoxal phosphate-requiring enzyme consisting of AVG and its analogs.
また、 本願発明は、 ピリ ドキサルリン酸 (PLP) 要求性の酵素 (トランスデアミ ナーゼ、 デカルボキシラーゼ、 C- S ライエース、 ラセマーゼ等を含む) の阻害剤 を用いて、 オーキシンの生合成を阻害することが可能であることを初めて示す。 特に、 PLP要求性酵素の阻害剤として知られる化合物の中から、 前記 3 . の方法 によってオーキシンの生合成を阻害する化合物を新たに選抜することが可能であ る。 PLP要求性酵素の阻害剤としては、 例えば、 Annual Review of Biochemistry 73 : 383-415 (2004)に記載の化合物が知られている。本発明者等はこのようなスク リーニングを行うことにより、 ACC合成酵素 (PLP要求性酵素) の阻害剤として知 られている AOA (aminooxyacetic acid)がオーキシン生合成を阻害できることを見 いだした。 よって、 A0A の類縁体も本願発明のオーキシン生合成阻害剤に包含す る。 . In addition, the present invention can inhibit the biosynthesis of auxin using inhibitors of pyridoxalphosphate (PLP) -required enzymes (including trans-deaminase, decarboxylase, C-S lyase, racemase, etc.) It is shown for the first time. In particular, among compounds known as inhibitors of PLP-requiring enzymes, it is possible to newly select a compound that inhibits auxin biosynthesis by the method described in 3. above. As inhibitors of PLP-requiring enzymes, for example, compounds described in Annual Review of Biochemistry 73: 383-415 (2004) are known. The present inventors have found that by performing such screening, AOA (aminooxyacetic acid) known as an inhibitor of ACC synthase (PLP-requiring enzyme) can inhibit auxin biosynthesis. Therefore, analogs of A0A are also included in the auxin biosynthesis inhibitor of the present invention. .
また、 本願発明は、 トランスデアミ^ "一ゼ (例えば、 Trp ァミノ トランスフエ ラーゼ、 フエ-ルァラニンアンモニアリアーゼ) の阻害剤を用いて、 オーキシン の生合成を阻害することが可能であることを初めて示す。 特に、 トランスァミナ ーゼ阻害剤として知られる化合物の中から、 前記 3 . の方法によってオーキシン の生合成を阻害する化合物を新たに選抜することが可能である。 PLP を要求しな いトランスアミラーゼとしては、 例えばフエ二ルァラニンアンモニアリァーゼ (PAL)がある。 PALの阻害剤としては、例えば Phytochemistry68 : 407- 415 (2007) や Phytochemistry62 : 415-422 (2003) に記載の化合物、 具体的には、 l-amino-3-phenylpropylphosphonate 、 1 - amino- 2 - (4- f luorophenyi) ethylphosphonic acid 、 The present invention also shows for the first time that it is possible to inhibit the biosynthesis of auxin using an inhibitor of transdeamidinase (eg, Trp aminotransferase, ferulalanin ammonia lyase). In particular, it is possible to select a new compound that inhibits auxin biosynthesis from the compounds known as transaminase inhibitors by the method described in 3. As a transamylase that does not require PLP For example, phenylalanine ammonia lyase (PAL) is used as an inhibitor of PAL, for example, the compounds described in Phytochemistry 68: 407-415 (2007) and Phytochemistry 62: 415-422 (2003), specifically Are l-amino-3-phenylpropylphosphonate, 1-amino-2- (4-fluorophenyi) ethylphosphonic acid,
(R) _1 - amino - 2- phenylwthy丄 phosphonic acid 、 l-amino-2-phenylethyl-phosphonic acid が知られている。 本発明者等はこのよ うなスクリ一二ングを行うことにより、 PALの阻害剤として知られている L - A0PP がオーキシン生合成を阻害できることを見いだした。 よって、 L- A0PPの類縁体も 本願発明のォーキシン生合成阻害剤に包含する。 具体的には、 下記 (式 I ) 又は (式 I I ) から選ばれる化合物を有効成分とし て含有するオーキシン生合成阻害剤が挙げられる。 (R) _1-amino-2-phenylwthy 丄 phosphonic acid and l-amino-2-phenylethyl-phosphonic acid are known. The present inventors have found that L-A0PP, which is known as a PAL inhibitor, can inhibit auxin biosynthesis by performing such screening. Therefore, L-A0PP analogs are also included in the auxin biosynthesis inhibitors of the present invention. Specifically, an auxin biosynthesis inhibitor containing, as an active ingredient, a compound selected from the following (formula I) or (formula I I).
(式 I )
Figure imgf000012_0001
(Formula I)
Figure imgf000012_0001
但し、 はカルボキシル基又はホスホン基を意味する。 R2は水素原子もしくは メチル基を示す。 R 3はァミノ基、 又はアミノォキシ基を示す。 は、 水素又は R5 - CH2 -であって、 ここで、 R5は、 炭素原子が塩素又はメチル基で修飾されていて もよい、 インドール環、 ナフタレン環、 ベンゼン環、 ピリジン環、 ピロール環を 示す。 However, means a carboxyl group or a phosphone group. R 2 represents a hydrogen atom or a methyl group. R 3 represents an amino group or an aminooxy group. Is hydrogen or R 5 —CH 2 —, wherein R 5 is an indole ring, naphthalene ring, benzene ring, pyridine ring, pyrrole ring, the carbon atom of which may be modified with a chlorine or methyl group Indicates.
(式 I I )
Figure imgf000012_0002
(Formula II)
Figure imgf000012_0002
R6は、 アミノ基を有していても良い炭素数 1一 4のアルキル基を示す。 更に具体的には、 R 6 represents an alkyl group having 1 to 4 carbon atoms which may have an amino group. More specifically,
(式 III)
Figure imgf000012_0003
(Formula III)
Figure imgf000012_0003
但し、 R 1はカルボキシル基、 又はホスホン基を意味する。  However, R 1 means a carboxyl group or a phosphone group.
R2は水素原子もしくはメチル基を示す。 R 2 represents a hydrogen atom or a methyl group.
R3はアミノ基、 又はアミノォキシ基 (- 0- NH2) を示す。 不斉炭素の立体構造は、 が力ルポキシル基の場合には S体がより好ましく、 Rjがホスホン基の場合には R体が好ましい。 R 3 represents an amino group or an aminooxy group (-0-NH 2 ). As for the steric structure of the asymmetric carbon, the S form is more preferable when is a force lupoxyl group, and the R form is preferable when Rj is a phosphone group.
R5は炭素原子が塩素又はメチル基で置換されていてもよい、 インドール環、 ナ フタレン環、 ベンゼン環、 ピリジン環、 ピロール環を示す。 具体的には、 R5とし
Figure imgf000013_0001
R 5 represents an indole ring, naphthalene ring, benzene ring, pyridine ring or pyrrole ring, the carbon atom of which may be substituted with chlorine or a methyl group. Specifically, R 5
Figure imgf000013_0001
2,4-diclilorop enyl- 2-methyl.-4-chlo.ro-phenyl- ては、 〜一一一 W 、 ' ' - が挙げられる,  2,4-diclilorop enyl- 2-methyl.-4-chlo.ro-phenyl- includes ˜11 W, ''-
好適には、 R1がカルボキシル基のものとしては、 L- A0PPや  Preferably, when R1 is a carboxyl group, L-A0PP or
Figure imgf000013_0002
Figure imgf000013_0002
(S)-2-(aminooxy)-3-( 1 W-indoi-3-yl)propanoic  (S) -2- (aminooxy) -3- (1 W-indoi-3-yl) propanoic
acid  acid
2-(ammooxv)-3-(lH-indol-j-yl)proDanoic acid ゝヽ  2- (ammooxv) -3- (lH-indol-j-yl) proDanoic acid ゝ ヽ
Rlがホスホン基のものとしては、 1 -amino-2-phenylethyl-phosphonic acidや  Examples of Rl having a phosphonic group include 1-amino-2-phenylethyl-phosphonic acid and
Figure imgf000013_0003
Figure imgf000013_0003
-amino-Z-(l H-indol-3- vOethylphosohonic acid l-amino-2-(lH-indol-3-yl)ethylphosphonic acidがそれぞ; 挙げられる。  -amino-Z- (l H-indol-3-vOethylphosohonic acid l-amino-2- (lH-indol-3-yl) ethylphosphonic acid;
ま た 、 好 適 に は 、 R3 力 S ア ミ ノ 基 の も の と し て は 、 It is also preferable that the R3 force S amino group is
1- amino-2-nH-indol-3-vl)ethvlphosphonic acid や l-amino-2-ohenylethyl-phosphonic acid 、 R3 が ァ ミ ノ ォ キ シ 基 の も の と し て は 、 A0PP や1-amino-2-nH-indol-3-vl) ethvlphosphonic acid, l-amino-2-ohenylethyl-phosphonic acid, and R3 as aminooxy group include A0PP and
2- (aminooxy) -3- (lH-indol-3-yl) propanoic acid力 S拳けられる。 2- (aminooxy) -3- (lH-indol-3-yl) propanoic acid strength
また、 具体的には、 2- amino- 4- methoxy- 3- butenoic acid (AMB)ゃリゾビトキシ ン (2 - amino - 4- (2 - amino - 3 - hydroxypropoxy) - 3 - butenoic acid) を包含する。 特 に、 L - tryptophanの類縁体、 2 - amino - 4- alkoxy-3- butenoic acidの構 を持つ化 合物とそれらの塩は有効である。 図 17参照。 Specifically, 2-amino-4-methoxy-3-butenoic acid (AMB) (2-amino-4- (2-amino-3-hydroxypropoxy) -3-butenoic acid). In particular, L-tryptophan analogs, compounds having the structure of 2-amino-4-phenol-3-butenoic acid and their salts are effective. See Figure 17.
5 . 植物成長制御剤  5. Plant growth regulator
本願発明のオーキシン生合成阻害剤は、 根の伸長の阻害を始め、 芽生えの成長 抑制などの植物成長抑制剤、 植物成長制御剤、 又は除草剤として使用することが できる。 例えば、 オーキシン生合成阻害剤は、 タルク、 クレー、 でんぷん、 水等 の各種担体と混合して、 固体製剤としても、 又は液体製剤としても使用すること ができる。 液体製剤としては、 適宜の担体を用いて、 液剤、 乳剤、 マイクロエマ ルシヨン、 サスボエマルシヨン、 油剤、 油性フロアブルなどの液体製剤化をする ことができる。 固体製剤としては、 粉末剤、 粒剤、 顆粒剤、 錠剤、 水和剤、 顆粒 水和剤などとして用いることができる。更に、農薬等の製剤上使用される補助剤、 例えば展着剤、 乳化剤、 着色剤等を必要に応じて添加することができる。  The auxin biosynthesis inhibitor of the present invention can be used as a plant growth inhibitor, a plant growth regulator, or a herbicide, such as inhibition of root elongation, inhibition of seedling growth, and the like. For example, the auxin biosynthesis inhibitor can be mixed with various carriers such as talc, clay, starch, water, etc., and used as a solid preparation or a liquid preparation. Liquid preparations can be made into liquid preparations such as liquids, emulsions, microemulsions, suspensions, oils, and oily flowables using appropriate carriers. As a solid preparation, it can be used as a powder, granule, granule, tablet, wettable powder, wettable powder. Furthermore, auxiliary agents used in the preparation of agricultural chemicals, for example, spreading agents, emulsifiers, coloring agents and the like can be added as necessary.
[実施例 1 ] オーキシン誘導性遺伝子とエチレン誘導性遺伝子の AVG処理に対す る挙動  [Example 1] Behavior of auxin-inducible gene and ethylene-inducible gene upon AVG treatment
野生型シロイヌナズナ (コロンビア) の種子を 4 °Cで 48時間低温処理した後、 After seeding wild-type Arabidopsis (Colombia) seeds at 4 ° C for 48 hours,
1/2MS (Murashige&Skoog) l°/。Sucroseを含む液体培地で 7日間培養した。 このシ ロイヌナズナの芽生えを 10 /z Mの AVG、 10 Mのエチレン前駆体 ACC (ァミノシク 口プロパンカルボン酸)、 又は Ι μ Μの IAAで 3時間処理した。 このシロイヌナズ ナの芽生えからトータル RNAを精製した後、 Affymetrix社のプロトコールに従つ て GeneChipを用いて遺伝子の発現レベルを測定した。結果を図 2に示す。縦軸は1 / 2MS (Murashige & Skoog) l ° /. The cells were cultured for 7 days in a liquid medium containing Sucrose. The Arabidopsis seedlings were treated with 10 / z M AVG, 10 M ethylene precursor ACC (amino propane carboxylic acid), or ΙμΜ IAA for 3 hours. After total RNA was purified from the Arabidopsis seedlings, the gene expression level was measured using GeneChip according to the Affymetrix protocol. The result is shown in figure 2. The vertical axis is
AVG 処理に対する遺伝子の発現応答を無処理のコントロールに対する比の対数Logarithm of ratio of gene expression response to AVG treatment to untreated control
(Signal Log Ratio) で示す。 横軸はそれぞれ ACC処理 (図 2 A) と IAA処理 (図This is indicated by (Signal Log Ratio). The horizontal axis shows ACC processing (Fig. 2A) and IAA processing (Fig.
2 B) に対する遺伝子発現の応答を無処理のコントロールに対する Signal Log2 B) Gene Log Response to Untreated Control Signal Log
Ratioで示す。 AVGはエチレン生合成の阻害剤として知られており、 ACC処理と AVG 処理をエチレン誘導性遺伝子を対象としてプロットして (図 2 A) 比較すると、既 知のように負の相関が見られた。 一方、 IAA処理と AVG処理を、 オーキシン誘導 性遺伝子をプロットして (図 2 B) 比較すると負の相関が見られた。 この結果はIndicated by Ratio. AVG is known as an inhibitor of ethylene biosynthesis. When ACC treatment and AVG treatment were plotted against ethylene-inducible genes (Fig. 2A), a negative correlation was seen as is known. . On the other hand, when IAA treatment and AVG treatment were compared by plotting auxin-inducible genes (Fig. 2B), a negative correlation was observed. This result is
AVG がこれまで考えられていた、 エチレン抑制作用だけでなく、 オーキシン抑制 作用も持っていることを示唆している。 なお、 使用した AVGは、 以下の実施例も 含む全て S体である。 AVG has been considered so far, not only ethylene suppression but also auxin suppression It also suggests that it has an effect. The AVG used is all S, including the following examples.
[実施例 2 ] AVG処理後のシロイヌナズナ内生 IAA量の変化  [Example 2] Arabidopsis endogenous IAA levels after AVG treatment
野生型シロイヌナズナ (コロンビア) の種子を 4 °Cで 48時間低温処理した後、 1/2MS l%Sucroseを含む液体培地で 7 日間培養した。 このシロイヌナズナの芽生 えに AVG4、 10, 又は 40 /z Mを 24時間処理した。 このシロイヌナズナの芽生えを メタノールで抽出後、内部標準物質として 13C6-IAAを添加した。抽出液を濃縮後、 N (CH3) 2 HPLCカラムで精製し、 IAA溶出画分を分取。 IAA画分をトリメチルシリ ル化後、 GC- MSで定量分析した。 結果を図 3に示す。 AVG処理によりシロイヌナズ ナ内生 IAA量は処理した AVGの濃度に依存して減少した。  Wild-type Arabidopsis thaliana (Colombia) seeds were low-temperature treated at 4 ° C. for 48 hours, and then cultured in a liquid medium containing 1/2 MS l% Sucrose for 7 days. The Arabidopsis seedlings were treated with AVG4, 10, or 40 / zM for 24 hours. After the Arabidopsis seedlings were extracted with methanol, 13C6-IAA was added as an internal standard. After concentrating the extract, it was purified by N (CH3) 2 HPLC column, and IAA elution fraction was collected. The IAA fraction was trimethylsilylated and quantitatively analyzed by GC-MS. The results are shown in Figure 3. AVG treatment reduced Arabidopsis endogenous IAA levels depending on the concentration of AVG treated.
[実施例 3 ] ACCとオーキシン関連化合物を用いた、 AVG処理からの遺伝子発現 回復実験  [Example 3] Gene expression recovery from AVG treatment using ACC and auxin-related compounds
野生型シロイヌナズナ (Col. ) の種子を 4 °Cで 48時間低温処理した後、 1/2MS l%Sucroseを含む液体培地で 7日間培養した。 このシロイヌナズナの芽生えに 40 μ M AVG と 10 のエチレン生合成前駆体 ACC、 IAA、 IAA 生合成前駆体 IPyA (Indole-3-pyruvic acid)、 又は IAAld (Indole-3- acetaldehyde)を 24時間処 理した。 これらシロイヌナズナの芽生えから RNAを精製した後、 Taqmanプローブ を用いた定量 PCR法 (ABI PRISM7500) を用いてオーキシン作用の指標となる遺伝 子の一つである、 IAA19/ At3gl5540遺伝子の発現レベルを測定した。 プライマー は フ ォ ワ ー ド ( GAGCATGGATGGTGTGCCTTAT ) 、 リ ノく 一 ス プ ラ イ マ ー (TTCGCAGTTGTCACCATCTTTC) ヽ TaqMan プ ロ ー ブ Wild-type Arabidopsis thaliana (Col.) seeds were low-temperature treated at 4 ° C for 48 hours, and then cultured in a liquid medium containing 1 / 2MS l% Sucrose for 7 days. 40 μM AVG and 10 ethylene biosynthetic precursors ACC, IAA, IAA biosynthetic precursors IPyA (Indole-3-pyruvic acid) or IAAld (Indole-3-acetaldehyde) are treated for 24 hours on the seedlings of Arabidopsis thaliana did. After purifying RNA from these Arabidopsis seedlings, we measured the expression level of the IAA19 / At3gl5540 gene, one of the genes that serve as an indicator of auxin action, using the quantitative PCR method (ABI PRISM7500) using Taqman probe. . Primer is forward (GAGCATGGATGGTGTGCCTTAT), linear primer (TTCGCAGTTGTCACCATCTTTC) ヽ TaqMan probe
(FAM-ATAAGCTCTTCGGTTTCCGTGGCATCG-TAMRA) を用い、測定は文献に記載の方法に よって行った (PlantPhysioll31 : 287- 297)。 結果を図 4に示す。 (FAM-ATAAGCTCTTCGGTTTCCGTGGCATCG-TAMRA) was used, and the measurement was performed by the method described in the literature (PlantPhysioll31: 287-297). The results are shown in Fig. 4.
縦軸は対照区を 1とした遺伝子発現レベルの相対値を示す。 IAA19遺伝子の発 現レベルは IPyAを経るオーキシン生合成の前駆体 (IPyA, IAAld) で対照区レべ ルまで回復した。この傾向は ACCをさらに加えても変化しなかった。この結果は、 The vertical axis shows the relative value of the gene expression level with the control group as 1. The expression level of the IAA19 gene was restored to the control level with precursors of auxin biosynthesis via IPyA (IPyA, IAAld). This trend did not change with the addition of ACC. The result is
AVGは IAAの生合成を阻害することにより、 オーキシン応答性遺伝子の発現を抑 制することを示す。 また、 AVG によるオーキシン応答性遺伝子の発現抑制効果は エチレンの生合成阻害を介した間接作用ではないことを示す。 [実施例 4 ] AVG、 AOA処理後のオーキシン誘導生遺伝子の発現変化 AVG inhibits the expression of auxin-responsive genes by inhibiting IAA biosynthesis. In addition, it is shown that the inhibitory effect of AVG on the expression of auxin-responsive genes is not an indirect action through inhibition of ethylene biosynthesis. [Example 4] Changes in expression of auxin-induced live genes after treatment with AVG and AOA
野生型シロイヌナズナ (コロンビア) の種子を 4 °Cで 48時間低温処理した後、 1/2MS l%Sucroseを含む液体培地で 7 日間培養した。 このシロイヌナズナの芽生 えに、 AVGまたは A0Aを 1、 5, 又は 20 μ Μで 24時間処理した。 A0Aは AVGと同様 にピリ ドキサルリン酸依存性酵素の作用を阻害することで、 エチレンの生合成を 阻害することが知られている。 処理後のシロイヌナズナの芽生えから RNAを精製 した後、 Taqman プローブを用いた定量 PCR法を用いてオーキシン作用の指標とな る IAA1、 IAA2遺伝子の発現レベルを測定した(図 5 )。縦軸は対照区を 1とした遺 伝子発現レベルの相対値を示す。 IAA1/ At4gl4560、 IAA2/ At3g23030 遺伝子共 に AVG処理では濃度に依存してその発現量が減少した。 同様に A0A処理によって もオーキシン誘導生遺伝子の発現は減少したが、 その作用は AVGよりもやや弱か つた。  Wild-type Arabidopsis thaliana (Colombia) seeds were low-temperature treated at 4 ° C. for 48 hours, and then cultured in a liquid medium containing 1/2 MS l% Sucrose for 7 days. The Arabidopsis seedlings were treated with AVG or A0A at 1, 5, or 20 μ 又 は for 24 hours. Like AVG, A0A is known to inhibit the biosynthesis of ethylene by inhibiting the action of pyridoxalphosphate-dependent enzymes. RNA was purified from Arabidopsis seedlings after treatment, and the expression levels of the IAA1 and IAA2 genes, which are indicators of auxin action, were measured by quantitative PCR using Taqman probes (Fig. 5). The vertical axis shows the relative value of gene expression level with control group as 1. In both IAA1 / At4gl4560 and IAA2 / At3g23030 genes, the expression level decreased with AVG treatment depending on the concentration. Similarly, A0A treatment also reduced auxin-induced live gene expression, but its effect was slightly weaker than AVG.
[実施例 5 ] オーキシンとその関連化合物を用いた、 Met_Trp処理又は AVG処理 からの根の伸長回復実験  [Example 5] Root elongation recovery experiment from Met_Trp treatment or AVG treatment using auxin and related compounds
野生型シロイヌナズナ (Col. ) の種子を 4 °Cで 48時間低温処理した後、 1/2MS l%Sucrose を含む寒天培地で 2日間培養した。 このシロイヌナズナの芽生を αメ チルトリプトファン (Met- Trp) を含む 1/2MS l%Sucrose寒天培地に移植し垂直に 6日間生育させた。 Met- Trp は L- Trp の合成経路を上流で阻害するが、 Met- Trp による生育阻害を IAA とその生合成前駆体が回復できるかどうカ 根の伸長回復 を指標に観察した。 結果を図 6に示す。  Wild-type Arabidopsis thaliana (Col.) seeds were low-temperature treated at 4 ° C. for 48 hours, and then cultured on an agar medium containing 1/2 MS l% Sucrose for 2 days. The Arabidopsis seedlings were transplanted to 1 / 2MS l% Sucrose agar medium containing α-methylliptophan (Met-Trp) and allowed to grow vertically for 6 days. Met-Trp inhibits the L-Trp synthesis pathway upstream, but we observed whether growth inhibition by Met-Trp could recover IAA and its biosynthetic precursors using the elongation recovery of roots as an indicator. The result is shown in FIG.
対照区 (A) と比較して Met - Trp処理により根の伸長が著しく阻害された (B)。 この根の伸長阻害作用はインドール (Indole) とトリプトファン (Trp) で回復す るが (C、 D)、 他のオーキシン前駆物質では回復しなかった (E- K)。 この結果は Met - Trp がトリプトファンゃィンドールの上流でこれらの生合成を阻害している ことを示している。  Compared to the control group (A), Met-Trp treatment significantly inhibited root elongation (B). This root elongation inhibitory effect was restored by indole and tryptophan (Trp) (C, D), but not by other auxin precursors (E-K). This result indicates that Met-Trp inhibits their biosynthesis upstream of tryptophan yandol.
同様に、 発芽 2日後のシロイヌナズナの芽生えを AVGとオーキシンとその前駆 物質を含む 1/2MS l%Sucrose寒天培地培地に垂直に並べ、 6日後根の伸長回復を 観察した。 結果を図 7に示す。 対照区 (A) と比較して AVG処理により根の伸長が 著しく阻害された (B)。 この根の伸長阻害作用はインドールと L -トリブトファン (C、 D) 、 IPyA を経るオーキシン合成経路の前駆体で回復するが (I- J)、 IPyA を経由しない他の前駆体では回復しなかった (E- H)。 またィンドールや L-トリプ トフアンの回復と比較してィンドールピルビン酸を経るオーキシン合成経路の化 合物での回復は顕著であった。 この結果は AVGがインドールから IAAが合成され る途中のステップでオーキシン合成を阻害していることを示している。 一方、 ィ ンドールや、 L-トリプトファンでも根の伸長が部分的に回復するのは、 IAA の合 成経路が複数有り、ィンドールや L-トリプトファンが AVGによって阻害されない 経路を経由して IAAに変換されるからであると考えられる。 Similarly, Arabidopsis seedlings 2 days after germination were arranged vertically in 1/2 MS l% Sucrose agar medium containing AVG, auxin and its precursors, and 6 days later root elongation recovery was observed. The results are shown in FIG. Compared to the control group (A), AVG treatment significantly inhibited root elongation (B). This root elongation inhibitory action is indole and L-tributophan (C, D), but recovered with precursors of the auxin synthesis pathway via IPyA (I-J), but not with other precursors not via IPyA (E-H). In addition, recovery of compounds in the auxin synthesis pathway via indole pyruvate was significant compared with recovery of indole and L-tryptophan. This result indicates that AVG inhibits auxin synthesis during the process of IAA synthesis from indole. On the other hand, indole and L-tryptophan partially recover root elongation because there are multiple IAA synthesis pathways, and indole and L-tryptophan are converted to IAA via a route that is not inhibited by AVG. This is thought to be because of this.
[実施例 6 ] In vitroでの L-トリプトファンから IPyAの変換に対する AVG, A0A の抑制作用  [Example 6] Inhibitory effect of AVG and A0A on in vitro conversion of L-tryptophan to IPyA
コムギ胚芽抽質物 (Wg) と 5mM L-トリプトファン、 0. 2mMピリ ドキサルリン酸 Wheat germ extract (Wg) and 5 mM L-tryptophan, 0.2 mM pyridoxal phosphate
(PLP)、 0. 5mM 2ォキソグルタル酸 (20X)、 及び 4mM EDTAを、 ホウ酸緩衝液中で(PLP), 0.5 mM 2-oxoglutaric acid (20X), and 4 mM EDTA in borate buffer
30°Cで 90分間反応した。 産物を MeOHを含むイミダゾールバッファ一中でヒ ドロ キシァミンによりォキシムに誘導体化する。 溶液を塩酸酸性にした後、 酢酸ェチ ルで抽出、 OASIS MCXカラムで精製し、 生成した IPyAの量を LC/MS/MSを用いて 測定した (LC : HP 1100 Series HPLC System (Hewlett Packard/ AgilentThe reaction was carried out at 30 ° C for 90 minutes. The product is derivatized to oxime with hydroxyamine in an imidazole buffer containing MeOH. The solution was acidified with hydrochloric acid, extracted with ethyl acetate, purified with an OASIS MCX column, and the amount of IPyA produced was measured using LC / MS / MS (LC: HP 1100 Series HPLC System (Hewlett Packard / Agilent
Technologies) , MS : QSTAR Pulsar (PE Sciex/Applied Biosystems) )。 結果を図Technologies), MS: QSTAR Pulsar (PE Sciex / Applied Biosystems)). Figure the result
8に示す。 なお、 図 8中、 一Trpは L-トリプトファンを添加しなかったことを、 一 2 0Xは 2ォキソダルタル酸 (20X) を添加しなかったことを、 更に一 PLPはピリ ドキサルリン酸 (PLP) を添加しなかったことを、 それぞれ示す。 L-トリプトファ ンから生じる IPyAの量は、 PLP, 20Xの添加に依存して増加した。 またその量はShown in 8. In Fig. 8, one Trp added no L-tryptophan, one 20X added two oxodaltaric acid (20X), and one PLP added pyridoxal phosphate (PLP). Indicates that they did not. The amount of IPyA generated from L-tryptophan increased with the addition of PLP and 20X. And the amount is
AVGまたは A0Aを加えることにより減少した。 このことはトリプトフアンからィ ンドールピルビン酸へのォーキシン生合成ステップが PLP酵素によつて触媒され ており、 その活性を AVG、 A0Aが阻害していることを示している。 Decreased by adding AVG or A0A. This indicates that the auxin biosynthesis step from tryptophan to indole pyruvate is catalyzed by PLP enzyme, and its activity is inhibited by AVG and A0A.
[実施例 7 ] シロイヌナズナ芽生えの生育への AVG、 A0Aの効果  [Example 7] Effects of AVG and A0A on the growth of Arabidopsis seedlings
野生型シロイヌナズナ (コロンビア) の種子を 4でで 48 時間処理した後、 l/2MSl°/。Sucroseに AVGを 10 μ Μ (Β)、 2 M (D) 含む寒天培地で培養した。 結 果を図 9に示す。 (A) (C) は対照区。 2 1 °Cで培養し、 1 4日目 (C) (D) と 3Wild-type Arabidopsis (Colombia) seeds were treated with 4 at 48 hours, then l / 2 MSl ° /. Sucrose was cultured in an agar medium containing 10 μΜ (Β) and 2 M (D) of AVG. The results are shown in Fig. 9. (A) (C) is the control zone. 2 Incubate at 1 ° C, 1 Day 4 (C) (D) and 3
0日目 (A) (B) に観察をおこなった。 AVG処理により発芽後の芽生えの育 成が阻害された(D )。また、 ΙΟ μ Μでは、芽生えは発芽直後に白化して枯死した。 根の伸長方向は、 重力に従わず、 方向が定まっていない。 Observations were made on Day 0 (A) and (B). Growth of seedlings after germination by AVG treatment Development was inhibited (D). In ΙΟμΜ, the seedlings were whitened and died immediately after germination. The direction of root extension does not follow gravity and the direction is not fixed.
野生型シロイヌナズナ(コロンビア)の種子を 4 °Cで 72時間処理した後、 1/2MS l%Sucroseに lOO w M A0Aを含む液体培地 (F) で 2 1 °Cで 6日間培養した。 (E) は対照区。 A0Aの添加により、芽生えは地上部、地下部共に生育が抑えられたが、 その作用は AVGよりも緩やかであった(図 9)。  Wild type Arabidopsis thaliana (Colombia) seeds were treated at 4 ° C for 72 hours, and then cultured for 6 days at 21 ° C in a liquid medium (F) containing lOO w M A0A in 1 / 2MS l% Sucrose. (E) is the control zone. With the addition of A0A, the growth of seedlings was suppressed both above and below, but the effect was slower than AVG (Fig. 9).
[実施例 8] In vitro での L-トリプトファンから IPyAの変換酵素 (シロイヌナ ズナ由来) に対する AVG, L- A0PPの効果  [Example 8] Effect of AVG and L-A0PP on L-tryptophan to IPyA converting enzyme (derived from Arabidopsis thaliana) in vitro
シロイヌナズナの芽生えを 1/2MS l%sucroseの培地で 3日間生育させた。 こ の芽生えを- 80°Cで凍結して粉砕し、抽出バッファー(4 O mM HEPES- OKH (pH7. 6), 10 raM potassimu chloride, 5 mM magnesium chloriae, 2 mM calcium chloride, Arabidopsis seedlings were grown in 1/2 MS l% sucrose medium for 3 days. The seedlings were frozen and crushed at -80 ° C, extracted buffer (4 O mM HEPES-OKH (pH7.6), 10 raM potassimu chloride, 5 mM magnesium chloriae, 2 mM calcium chloride,
4 mM dithiothreitol) でタンパク質を抽出した。 これを 20000g 1 0分間遠心し たのち、 Sephadex G- 25 カラムを用いてゲル濾過を行い、 高分子画分を粗酵素抽 出液として得た。 これを用いて、 L-トリプトファンからインドールピルビン酸へ の酵素反応を行った。 Protein was extracted with 4 mM dithiothreitol). This was centrifuged at 20000 g for 10 minutes and then subjected to gel filtration using a Sephadex G-25 column to obtain a polymer fraction as a crude enzyme extract. Using this, an enzymatic reaction from L-tryptophan to indole pyruvate was performed.
反応は、 抽出タンパク質 76yg/ml, 0. 1M borate buffer (pH 8. 5), 0. 25 mM L- トリプトファン、 0. 5mM 2-oxoglutaric acid、 0. 05 mM PLP の存在下で、 3 5 °C 1時間喑所でィンキュベートした。 ィンドールピルビン酸の生成量は実施例 6に 従って定量した。 結果を図 10に示す。 コントロールとして、 シロイヌナズナの抽 出酵素を 9 5 °C 5分間処理したものを用いた (EE Heat)。 また、 反応から PLPと 2ォキソダルタル酸を抜いた際に出来る IPyAの量も示した (No CoE)。 抽出液を 熱処理すると活性は検出されず、 PLP と 2ォキソグルタル酸を除いた際は活性が The reaction was carried out in the presence of extracted protein 76yg / ml, 0.1M borate buffer (pH 8.5), 0.25mM L-tryptophan, 0.5mM 2-oxoglutaric acid, 0.05mM PLP at 35 ° C. C Incubated at some point for 1 hour. The amount of indolpyruvic acid produced was quantified according to Example 6. The result is shown in FIG. As a control, an Arabidopsis thaliana extract enzyme treated at 95 ° C for 5 minutes was used (EE Heat). Also shown is the amount of IPyA that can be produced when PLP and 2-oxodaltalic acid are removed from the reaction (No CoE). No activity was detected when the extract was heat-treated, and activity was removed when PLP and 2-oxoglutaric acid were removed.
5 0 %以下となることから、 この反応は、 PLP と 2ォキソダルタルに依存した酵 素反応であることがわかる。 Since it is 50% or less, it is understood that this reaction is an enzyme reaction depending on PLP and 2-oxodaltal.
次ぎに、 阻害剤無し (complete) , AVG (10, 20, 50, 100 μΜ) 又は L - A0PP (0. 1, 0. 3, 1, 2 μΜ) を加えて反応を行った。  Next, the reaction was performed by adding no inhibitor (complete), AVG (10, 20, 50, 100 μΜ) or L-A0PP (0.1, 0.3, 1, 2 μΜ).
縦軸は IPyAの生成量を相対値で示す。図 10Aには 3回繰り返しの平均値を示す。 AVG, L- A0PPは共にシロイヌナズナの IPyA合成酵素の活性を阻害した。  The vertical axis shows the amount of IPyA produced as a relative value. Figure 10A shows the average of three iterations. Both AVG and L-A0PP inhibited the activity of IPyA synthase in Arabidopsis thaliana.
この結果を基に、 IC50を算出したところ、 AVGは 47. 9 , L - A0PPは 0. 77 μΜと なり、 L- AOPPは AVGよりも 2桁程度高活性であった。 (図 10 B, C) Based on these results, IC50 was calculated to be 47.9 for AVG and 0.77 μΜ for L-A0PP. Thus, L-AOPP was about 2 orders of magnitude more active than AVG. (Fig. 10 B, C)
[実施例 9] In vitro での L-トリプトファンから IPyAの変換酵素 (シロイヌナ ズナ由来) に対する AOA, A0IBAの効果  [Example 9] Effects of AOA and A0IBA on L-tryptophan to IPyA converting enzyme (derived from Arabidopsis thaliana) in vitro
実施例 8と同様にシロイヌナズナの芽生えから粗酵素抽出液を生成し、 酵素反 応を行った。 反応条件は実施例 8と同一とした。 コントロールとして、 シロイヌ ナズナの抽出酵素を 9 5 °C 5分間処理したもの (EE Heat) と、 反応から PLPと 2 ォキソグルタル酸を除いた際の IPyAの生成量を示した (No CoE)。 インドールピ ルビン酸は実施例 6に従って定量した。 結果を図 1 1に示す。 縦軸はィンドール ピルビン酸の生成量を相対値で示す。 グラフは 3回繰り返しの平均値を示す。 次に、 阻害剤無し (complete) と A0IBA (1, 3, 10, 30 μΜ),又は A0A (0. 1, 0. 3, 1, 3 μΜ) を加えて反応を行った。  In the same manner as in Example 8, a crude enzyme extract was produced from Arabidopsis seedlings and subjected to enzyme reaction. The reaction conditions were the same as in Example 8. As a control, Arabidopsis thaliana extract enzyme treated at 95 ° C for 5 minutes (EE Heat) and the amount of IPyA produced when PLP and 2-oxoglutaric acid were removed from the reaction were shown (No CoE). Indole pyruvate was quantified according to Example 6. The results are shown in Figure 11. The vertical axis shows the amount of indole pyruvic acid produced as a relative value. The graph shows the average of three repetitions. Next, the reaction was performed by adding no inhibitor (complete) and A0IBA (1, 3, 10, 30 μΜ) or A0A (0.1, 0.3, 1, 3 μΜ).
A0IBA, A0Aは共にシロイヌナズナの IPyA合成酵素活性を阻害した。 結果を基 に、 IC50を算出したところ、 A0Aは 0. 4 μΜ, A0IBAは 1. 26 μΜとなり、 いずれも AVGより高活性であった。  Both A0IBA and A0A inhibited the IPyA synthase activity of Arabidopsis thaliana. Based on the results, IC50 was calculated to be 0.4 μΜ for A0A and 1.26 μΜ for A0IBA, both of which were more active than AVG.
[実施例 10] L-A0PPと D-A0PPによるオーキシン応答性遺伝子の発現への影響 [Example 10] Effects of L-A0PP and D-A0PP on the expression of auxin-responsive genes
A0PP がィンドールピルビン酸合成酵素を阻害する際の立体構造の特異性を明 らかにするために、 L - A0PP と D- A0PP のオーキシン応答性遺伝子発現に対する影 響を調べた。 To elucidate the specificity of the conformation when A0PP inhibits indolepyruvate synthase, we investigated the effect of L-A0PP and D-A0PP on auxin-responsive gene expression.
シロイヌナズナを l/2MS、l%sucroseを含む液体培地で 7日間生育させ、 L- AOPP (1: 3, 10, 30 )と D- A0PP ( 1, 3, 10, 30 yM) で 3 h処理し、 植物体をサンプリ ングして、 RNAを精製した。 実施例 3の方法に従って、 IAA19/ At3gl5540および IAA1/ At4gl4560遺伝子の発現レベルを定量 PCRを用いて測定した。 結果を図 12 に示す。 D- A0PPは IAA遺伝子の発現を 3 μΜから抑制した。 一方、 D-A0PPは IAA1 遺伝子の発現を 30 μΜで阻害したが、 IAA19遺伝子の発現は阻害しなかった。 こ のことから、 S体は R体よりも ΙΑΑ遺伝子発現の阻害により効果的であると言え る。 S体の立体構造は L-トリブトファンの立体構造と相同の関係があり、 これら 化合物が L -トリプトフアンのアナログとして働いていること、 つまり、 ォーキシ ン生合成阻害には S体がより効果的であることが示された。(実験は 2回繰り返し の平均値である。) [実施例 1 1 ] L- AOPPのシロイヌナズナ生育への影響 Arabidopsis thaliana is grown in a liquid medium containing l / 2MS and l% sucrose for 7 days and treated with L-AOPP (1: 3, 10, 30) and D-A0PP (1, 3, 10, 30 yM) for 3 h. Plants were sampled and RNA was purified. According to the method of Example 3, the expression levels of the IAA19 / At3gl5540 and IAA1 / At4gl4560 genes were measured using quantitative PCR. Figure 12 shows the results. D-A0PP suppressed IAA gene expression from 3 μΜ. On the other hand, D-A0PP inhibited IAA1 gene expression at 30 μΜ, but did not inhibit IAA19 gene expression. From this, it can be said that S-form is more effective than R-form by inhibiting the expression of sputum gene. The steric structure of S-form has a homologous relationship with that of L-trybutophane, and that these compounds work as analogs of L-tryptophan, that is, S-form is more effective in inhibiting oxine biosynthesis. It was shown that. (The experiment is the average of two repetitions.) [Example 1 1] Effect of L-AOPP on Arabidopsis thaliana growth
シロイヌナズナを L- A0PPを含む 1 %シユークロース 1/2MS培地で生育させたが、 生育阻害は見られなかった。 これは L-A0PPが MS培地中で不安定であることが原 因であった。 そこで、 MS培地成分を含まない糖寒天で L- A0PPのシロイヌナズナ の生育への影響を調べた。 シロイヌナズナ芽生えを 4日間 1 %シユークロースを 含む 1/2MS培地で主根の長さが約 1 cmまで育てた。 これらの幼植物体を薬剤を添 加した 1 %シユークロースの寒天に移植し、 4日間 2 1 °Cで培養した。 結果を図 13及ぴ図 14に示す。  Arabidopsis thaliana was grown in 1% sucrose 1 / 2MS medium containing L-A0PP, but no growth inhibition was observed. This was due to the instability of L-A0PP in MS medium. Therefore, we investigated the effect of L-A0PP on the growth of Arabidopsis thaliana in sugar agar without MS medium components. Arabidopsis seedlings were grown for 4 days in 1 / 2MS medium containing 1% sucrose to a length of about 1 cm. These seedlings were transplanted to 1% sucrose agar supplemented with drugs and cultured at 21 ° C for 4 days. The results are shown in FIG. 13 and FIG.
30 μΜ ( L-A0PPの存在下ではシロイヌナズナの根は左側に傾斜し、 かつ波打つ て伸長した。 これは根の重力屈性が正常に働いていないことを示しているとされ ている。 これに対して、 インドール、 L トリプトファン, インドールピルビン酸 を加えた場合には、 根の重力屈性は回復した。 また、 1 nM IAA を添加した場合 には重力屈性はほぼ回復したのに対し、 1 0 nM IAAを添加した場合には、 根の 伸長に若干阻害が見られるが、 根の重力屈性は完全に回復した。 このことから、 L - A0PPは重力屈性を制御するオーキシンの生合成を阻害し、 この阻害はトリブト ファンを経由する IAAの中間体と IAAで回復することが示された。 なお、 L-A0PP を 50μΜ以上の濃度で処理すると主根の伸長が阻害され、 この阻害は IAA、 IPyA で回復した。  30 μΜ (In the presence of L-A0PP, Arabidopsis roots slanted to the left and wavy and elongated. This indicates that the gravitropism of the roots is not working properly. In contrast, the addition of indole, L-tryptophan, and indolepyruvic acid restored the root's gravitropism, while the addition of 1 nM IAA almost recovered the gravitropism. When 0 nM IAA was added, there was a slight inhibition of root elongation, but the gravitropism of the roots was completely restored, which suggests that L-A0PP is a biosynthesis of auxin that controls gravitropism. This inhibition was shown to be recovered with IAA intermediate via tributophan and IAA In addition, when L-A0PP was treated at a concentration of 50 μΜ or more, the elongation of the main root was inhibited. It recovered with IAA and IPyA.
[実施例 12] シロイヌナズナ IAA内生量への影響 [Example 12] Effects on Arabidopsis IAA endogenous production
シロイヌナズナの芽生えを 1/2MS寒天培地で 6日間 2 2 °C連続光下で培養した。 生育がそろっている芽生えを 20株ずつ 1/2MS液体培地 (5 ml)に移植し、 2 4時 間培養し、 30 の AVGまたは L- A0PPで 1時間処理した。 内部標準として d5-IAA を添加して、 MeOHで抽出し、 オアシス HLB, MCX力ラムで精製し、 LC- MS/MSで IAA 量を定量した。 LC-MS/MSによる定量分析は実施例 6に記載の方法に従って行った。 結果は図 1 5に示し、 3回の独立した実験結果の平均と標準誤差で、 縦軸は IAA 量を示す。 左が生重量 1 g当たりの IAA量を示し、 右が芽生え 1本あたりの IAA 量を示す。この結果、 AVGと L-A0PPはどちらも IAAの内生量を大きく減少させた。  Arabidopsis seedlings were cultured on 1 / 2MS agar medium for 6 days under 22 ° C continuous light. Sprouting seedlings of 20 strains were transferred to 1 / 2MS liquid medium (5 ml), cultured for 24 hours, and treated with 30 AVG or L-A0PP for 1 hour. D5-IAA was added as an internal standard, extracted with MeOH, purified with Oasis HLB, MCX force ram, and the amount of IAA was quantified by LC-MS / MS. The quantitative analysis by LC-MS / MS was performed according to the method described in Example 6. The results are shown in Fig. 15. The average and standard error of the results of three independent experiments are shown. The vertical axis shows the amount of IAA. The left shows the amount of IAA per gram of fresh weight, and the right shows the amount of IAA per seedling. As a result, both AVG and L-A0PP greatly reduced the endogenous amount of IAA.
[実施例 13] イネ IAA内生量への影響 イネ (コシヒカリ) の種を滅菌し、 2 5 °C 3日間吸水させて発芽させた。 これ を寒天上に播種し、 2 8。Cで 2日間培養した。 [Example 13] Effect on rice IAA endogenous production Rice (Koshihikari) seeds were sterilized and allowed to germinate by absorbing water at 25 ° C for 3 days. Seed this on agar, 2 8. C. cultured for 2 days.
生育がそろった芽生えを 1 0 ml の水に 1 0本ずつ移して、 30 μΜ の阻害剤 Met-Trp, AVG, AOA, L- AOPP の存在下で 2 8 °C 3時間振とう培養した。 培養後、 芽生えを地上部、根、種子に分け、地上部と地下部のそれぞれに 100 pg/mgFW (Fresh Weight,他の図面中の FWも同じ。) となるように d5 - IAAを内部標準物質として加 え、 実施例 1 2 に従って、 IAAの量を LC- MS/MS を用いて定量した。 結果を図 16 に示す。 グラフの縦軸は生重量 1 m gあたりの IAA量を示す。 この実験を 3回繰 り返した平均値と標準誤差を示している。 トリブトファンの生合成を阻害する Met- Trpは IAAの内生量に影響を与えなかった。 一方、 AVG, AOA, L-A0PPは IAA の内生量を減少させた。 産業上の利用可能性 The grown seedlings were transferred to 10 ml of water one by one and cultured with shaking at 28 ° C. for 3 hours in the presence of 30 μΜ of inhibitors Met-Trp, AVG, AOA, and L-AOPP. After incubation, the aerial part of the seedlings, roots, divided into seeds, d5 as 100 p g / mgFW each of shoot and root portion (Fresh Weight, also FW in other figures same.) A - internally IAA In addition to the standard substance, the amount of IAA was quantified using LC-MS / MS according to Example 12. The results are shown in Figure 16. The vertical axis of the graph indicates the amount of IAA per 1 mg of raw weight. The average and standard error of this experiment repeated three times are shown. Met-Trp, which inhibits triftophan biosynthesis, had no effect on endogenous IAA levels. On the other hand, AVG, AOA and L-A0PP decreased the endogenous amount of IAA. Industrial applicability
本願発明は、 初めて、 オーキシン生合成阻害剤及びそのスクリーニング方法を 提供するというきわめて優れた効果を奏するものである。 これにより従来不可能 であった、 植物体内でのオーキシン量を制御することが可能となり、 今後まった く新たな植物成長調節剤、 除草剤の開発が可能となる。  The invention of the present application has an extremely excellent effect of providing an auxin biosynthesis inhibitor and a screening method thereof for the first time. This makes it possible to control the amount of auxin in the plant, which was impossible before, and it will be possible to develop completely new plant growth regulators and herbicides in the future.
本願発明は、 植物成長調節剤、 除草剤及びその製造分野で利用することができ る。  The present invention can be used in plant growth regulators, herbicides and the field of production thereof.
本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。  All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims

請求の範囲 The scope of the claims
1 . 試験化合物及び対照化合物で植物を処理し、 オーキシン応答性遺伝子の 発現レベルを測定し、 オーキシン応答性遺伝子の発現を抑制する化合物の中から オーキシン生合成阻害剤候補をスクリーユングする方法において、 オーキシン応 答性遺伝子に対するプローブを担持したマイクロアレイを用い、 試験化合物又は 対照化合物で植物を処理し遺伝子発現を測定し、 オーキシン応答性遺伝子群の発 現を抑制する化合物をオーキシン生合成阻害剤候補として選択する、 オーキシン 生合成阻害剤候補をスクリーニングする方法。 1. In a method of treating a plant with a test compound and a control compound, measuring the expression level of an auxin responsive gene, and screening a candidate for an auxin biosynthesis inhibitor from compounds that suppress the expression of the auxin responsive gene. Using a microarray carrying a probe for an auxin-responsive gene, treating the plant with a test compound or a control compound, measuring the gene expression, and using a compound that suppresses the expression of the auxin-responsive gene group as an auxin biosynthesis inhibitor candidate A method for screening candidate auxin biosynthesis inhibitors to be selected.
2 . 試験化合物として、 ピリ ドキサルリン酸要求性酵素又はアミノ基転移酵 素の阻害剤を用いる、 請求項 1のオーキシン生合成阻害剤候補をスクリーニング する方法。  2. The method for screening a candidate for an auxin biosynthesis inhibitor according to claim 1, wherein an inhibitor of pyridoxalphosphate-requiring enzyme or aminotransferase is used as a test compound.
3 . 試験化合物及ぴ対照化合物で植物を処理し、 処理した植物から内生ォー キシンを抽出し、 その量を測定し、 オーキシン合成を阻害するものをオーキシン 生合成阻害剤として選択する、 オーキシン生合成阻害剤をスクリーユングする方 法。  3. A plant is treated with a test compound and a control compound, endogenous auxin is extracted from the treated plant, the amount thereof is measured, and one that inhibits auxin synthesis is selected as an auxin biosynthesis inhibitor. A method of screening biosynthesis inhibitors.
4 試験化合物として、 ピリ ドキサルリン酸要求性酵素又はアミノ基転移酵素 の阻害剤を用いる、 請求項 3記載のォーキシン生合成阻害剤をスクリーニングす る方法。  4. The method for screening an inhibitor of auxin biosynthesis according to claim 3, wherein an inhibitor of pyridoxalphosphate-requiring enzyme or aminotransferase is used as the test compound.
5 . 試験化合物及び対照化合物でトリブトファンを含有するトリブトファン デアミナーゼ抽出物を処理し、 処理した抽出物中のィンドールピルビン酸量を測 定し、 インドールピルビン酸の生成を阻害するものをオーキシン生合成阻害剤と して選択する、 オーキシン生合成阻害剤をスクリーニングする方法。  5. Treat tributophan deaminase extract containing tributophan with test compound and control compound, measure the amount of indolepyruvic acid in the treated extract, and inhibit auxin biosynthesis by inhibiting the production of indolepyruvic acid. A method of screening for an auxin biosynthesis inhibitor selected as an agent.
6 . 試験化合物として、 ピリ ドキサルリン酸要求性酵素又はアミノ基転移酵 素の阻害剤を用いる、 請求項 5記載のオーキシン生合成阻害剤をスクリ一二ング する方法。  6. The method for screening an auxin biosynthesis inhibitor according to claim 5, wherein an inhibitor of pyridoxalphosphate-requiring enzyme or aminotransferase is used as the test compound.
7 . 下記式 (I) 又は式 (II) から選ばれる化合物を有効成分として含有する オーキシン生合成阻害剤。  7. An auxin biosynthesis inhibitor containing a compound selected from the following formula (I) or formula (II) as an active ingredient.
(I)
Figure imgf000023_0001
(I)
Figure imgf000023_0001
伹し、 はカルボキシル基、 又はホスホン基を意味する。 R2は水素原子もしく はメチル基を示す。 R3はァミノ基又はアミノォキシ基 (一 0- NH2) を示す。 R4は、 水素又は R5- CH2 -であって、 ここで、 R5は炭素原子が塩素又はメチル基で修飾され ていてもよい、 インドール環、 ナフタレン環、 ベンゼン環、 ピリジン環、 ピロ一 ル環を示す。 は means a carboxyl group or a phosphone group. R 2 represents a hydrogen atom or a methyl group. R 3 represents an amino group or an aminooxy group (10-NH 2 ). R 4 is hydrogen or R 5 —CH 2 —, where R 5 is an indole ring, naphthalene ring, benzene ring, pyridine ring, pyro, which may be modified with a chlorine or methyl group. Indicates one ring.
(II)
Figure imgf000023_0002
(II)
Figure imgf000023_0002
R6は、 アミノ基を有していても良い炭素数 1一 4のアルキルを示す。 R 6 represents an alkyl having 1 to 4 carbon atoms which may have an amino group.
8 . AVG、 A0A、 A0IBA、 A0PP 又はそれらの類縁体を有効成分として含有する オーキシン生合成阻害剤。 8. An auxin biosynthesis inhibitor containing AVG, A0A, A0IBA, A0PP or an analog thereof as an active ingredient.
9 . ピリ ドキサルリン酸要求性酵素の阻害剤又はトリブトファンアミノ基転 移酵素阻害剤からなるオーキシン生合成阻害剤。  9. An auxin biosynthesis inhibitor comprising an inhibitor of pyridoxalphosphate-requiring enzyme or an inhibitor of tributophan aminotransferase.
1 0 . オーキシン生合成阻害剤を有効成分として含有する植物成長制御剤ま たは除草剤。  1 0. A plant growth regulator or herbicide containing an auxin biosynthesis inhibitor as an active ingredient.
PCT/JP2008/060811 2007-06-08 2008-06-06 Inhibitor of biosynthesis of plant hormone auxin, chemical plant regulator comprising the inhibitor as active ingredient, herbicidal agent, and use thereof WO2008150031A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009517932A JPWO2008150031A1 (en) 2007-06-08 2008-06-06 Plant hormone / auxin biosynthesis inhibitor, phytochemical regulator, herbicide containing the inhibitor as an active ingredient, and method of use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-152808 2007-06-08
JP2007152808 2007-06-08

Publications (1)

Publication Number Publication Date
WO2008150031A1 true WO2008150031A1 (en) 2008-12-11

Family

ID=40093827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060811 WO2008150031A1 (en) 2007-06-08 2008-06-06 Inhibitor of biosynthesis of plant hormone auxin, chemical plant regulator comprising the inhibitor as active ingredient, herbicidal agent, and use thereof

Country Status (2)

Country Link
JP (2) JPWO2008150031A1 (en)
WO (1) WO2008150031A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118216A1 (en) 2011-02-28 2012-09-07 独立行政法人理化学研究所 Auxin biosynthesis inhibitor
JP2014118404A (en) * 2012-12-19 2014-06-30 National Agriculture & Food Research Organization Auxin biosynthesis inhibitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893102B1 (en) * 2017-03-13 2018-08-29 숙명여자대학교산학협력단 Use of TCPs protein in shade avoidance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005527201A (en) * 2002-03-25 2005-09-15 ビーエーエスエフ アクチェンゲゼルシャフト Tryptophan aminotransferase, indole-3-pyruvate decarboxylase, and indole-3-acetaldehyde oxidase as novel targets for herbicides

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69013077T2 (en) * 1989-07-03 1995-01-26 Sumitomo Chemical Co Composition for regulating plant growth.
EP0853676B1 (en) * 1995-10-06 2006-06-21 Bayer BioScience N.V. Seed shattering
US5801119A (en) * 1996-12-31 1998-09-01 Abbott Laboratories Process for inhibiting stem elongation in bulbous plants and cut flowers therefrom

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005527201A (en) * 2002-03-25 2005-09-15 ビーエーエスエフ アクチェンゲゼルシャフト Tryptophan aminotransferase, indole-3-pyruvate decarboxylase, and indole-3-acetaldehyde oxidase as novel targets for herbicides

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ABEL S. ET AL.: "Early genes and auxin action", PLANT PHYSIOL., vol. 111, 1996, pages 9 - 17 *
ELIOT A. ET AL.: "Pyridoxal phosphate enzymes: Mechanistic, structural and evolutionary considerations", ANNU. REV. BIOCHEM., vol. 73, 2004, pages 383 - 415 *
FUKUMOTO M.: "Juvenility Seigyo Gijutsu no Kaihatsu Seicho Chosetsu Busshitsu ni yoru Juvenility Seigyo Gijutsu no Kaihatsu Nihon Nashi", AGRICULTURE, FORESTRY AND FISHERIES RESEARCH COUNCIL SECRETARIAT, MINISTRY OF AGRICULTURE, FORESTRY AND FISHERIES KENKYU SEIKA, vol. 309, 1996, pages 97 - 99 *
KOSHIBA T. ET AL.: "Auxin no Seigosei Keiro to Gosei Bui", REGULATION OF PLANT GROWTH & DEVELOPMENT, vol. 38, 2003, pages 159 - 167 *
LAW D.: "Gibberellin-enhanced indole-3-acetic acid biosynthesis: D-tryptophan as the precursor of indole-3-acetic acid", PHYSIOL. PLANTARUM, vol. 70, 1987, pages 626 - 632 *
MCQUEEN-MASON S. AND HAMILTON R.: "The biosynthesis of indole-3-acetic acids from D-tryptophan in Alaska pea plastids", PLANT CELL PHYSIOL., vol. 30, 1989, pages 999 - 1005 *
TSURUSAKI K. ET AL.: "Conversion of D-tryptophan to indole-3-acetic acid in coleptiles of a normal and a semi-dwarf barley (Hordeum vulgare) strain", PHYSIOLOGIA PLANTARUM, vol. 79, no. 2, PART 1, 1990, pages 221 - 225 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118216A1 (en) 2011-02-28 2012-09-07 独立行政法人理化学研究所 Auxin biosynthesis inhibitor
EP2682383A4 (en) * 2011-02-28 2015-12-09 Riken Auxin biosynthesis inhibitor
US9259000B2 (en) 2011-02-28 2016-02-16 Riken Auxin biosynthesis inhibitor
JP2016169221A (en) * 2011-02-28 2016-09-23 国立研究開発法人理化学研究所 Auxin biosynthesis inhibitor
JP6037392B2 (en) * 2011-02-28 2016-12-07 国立研究開発法人理化学研究所 Auxin biosynthesis inhibitor
JP2014118404A (en) * 2012-12-19 2014-06-30 National Agriculture & Food Research Organization Auxin biosynthesis inhibitor

Also Published As

Publication number Publication date
JPWO2008150031A1 (en) 2010-08-26
JP2013067656A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
Jiang et al. Chemical regulators of plant hormones and their applications in basic research and agriculture
Normanly Approaching cellular and molecular resolution of auxin biosynthesis and metabolism
Suza et al. The role of JAR1 in jasmonoyl-L-isoleucine production during Arabidopsis wound response
Rocha et al. Signal transduction-related responses to phytohormones and environmental challenges in sugarcane
AU2013240193B2 (en) Synthetic compounds for vegetative ABA responses
Siahpoosh et al. Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309
Reinecke 4-Chloroindole-3-acetic acid and plant growth
Mirabella et al. WRKY 40 and WRKY 6 act downstream of the green leaf volatile E‐2‐hexenal in Arabidopsis
Zhao et al. Molecular mechanisms underlying γ-aminobutyric acid (GABA) accumulation in giant embryo rice seeds
Campanella et al. A novel auxin conjugate hydrolase from wheat with substrate specificity for longer side-chain auxin amide conjugates
Jang et al. Production of coumaroylserotonin and feruloylserotonin in transgenic rice expressing pepper hydroxycinnamoyl-coenzyme A: serotonin N-(hydroxycinnamoyl) transferase
He et al. UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination
Koo et al. Characterization of a methyl jasmonate specific esterase in Arabidopsis
Stamm et al. Transcriptional response of soybean to thiamethoxam seed treatment in the presence and absence of drought stress
Lemaire et al. Modulation of ethylene biosynthesis by ACC and AIB reveals a structural and functional relationship between the K15NO3 uptake rate and root absorbing surfaces
WO2008150031A1 (en) Inhibitor of biosynthesis of plant hormone auxin, chemical plant regulator comprising the inhibitor as active ingredient, herbicidal agent, and use thereof
Pholo et al. Cell division and turgor mediate enhanced plant growth in Arabidopsis plants treated with the bacterial signalling molecule lumichrome
La Hovary Allelochemicals in Secale cereale: Biosynthesis and molecular biology of benzoxazinones
Wang et al. Genome-based identification and analysis of the genes involved in auxin biosynthesis and signal transduction during tea plant leaf development
Zhao et al. Effect of auxin on mesocotyl elongation of dark-grown maize under different seeding depths
Ayele et al. Gibberellin metabolism and transport during germination and young seedling growth of pea (Pisum sativum L.)
JP5366474B2 (en) Gibberellin signaling pathway inhibitor for plants containing D-allose as an active ingredient and use thereof
Karami et al. Structure–activity relationship of 2, 4‐D correlates auxinic activity with the induction of somatic embryogenesis in Arabidopsis thaliana
Schwuchow et al. An auxin transport inhibitor interferes with unicellular gravitropism in protonemata of the moss Ceratodon purpureus
JPWO2016035685A1 (en) Adventitious root development inducer and root system development promoter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009517932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08765552

Country of ref document: EP

Kind code of ref document: A1