WO2008150024A1 - Silencer - Google Patents
Silencer Download PDFInfo
- Publication number
- WO2008150024A1 WO2008150024A1 PCT/JP2008/060730 JP2008060730W WO2008150024A1 WO 2008150024 A1 WO2008150024 A1 WO 2008150024A1 JP 2008060730 W JP2008060730 W JP 2008060730W WO 2008150024 A1 WO2008150024 A1 WO 2008150024A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- control valve
- silencer
- exhaust gas
- opening
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N1/00—Silencing apparatus characterised by method of silencing
- F01N1/16—Silencing apparatus characterised by method of silencing by using movable parts
- F01N1/166—Silencing apparatus characterised by method of silencing by using movable parts for changing gas flow path through the silencer or for adjusting the dimensions of a chamber or a pipe
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N1/00—Silencing apparatus characterised by method of silencing
- F01N1/08—Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
- F01N1/084—Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling the gases flowing through the silencer two or more times longitudinally in opposite directions, e.g. using parallel or concentric tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N1/00—Silencing apparatus characterised by method of silencing
- F01N1/08—Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
- F01N1/089—Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling using two or more expansion chambers in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N1/00—Silencing apparatus characterised by method of silencing
- F01N1/08—Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
- F01N1/10—Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling in combination with sound-absorbing materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2470/00—Structure or shape of gas passages, pipes or tubes
- F01N2470/02—Tubes being perforated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2470/00—Structure or shape of gas passages, pipes or tubes
- F01N2470/14—Plurality of outlet tubes, e.g. in parallel or with different length
Definitions
- the present invention relates to a silencer for reducing noise generated from an exhaust system of an automobile or the like.
- Hybrid vehicles have a quieter running sound than conventional vehicles.
- the demand for noise reduction for air noise is becoming stricter.
- a muffler according to an aspect of the present invention includes a cylindrical muffler shell, a kaffle that divides the inner space of the muffler shell into a first chamber and a second chamber, and a first small hole at a position corresponding to the first chamber.
- the first outlet pipe that discharges the exhaust gas to the outside and the second chamber are the low frequency type resonator chamber that attenuates the discharge sound in the low frequency range, the medium frequency type resonator chamber that attenuates the discharge sound of the medium frequency, and the high frequency A low noise structure that changes to an expansion room that attenuates the discharge sound of the area.
- the muffler volume is increased by changing the second chamber into the low frequency type resonator chamber, the medium frequency type resonator chamber, and the expansion chamber by the noise reduction mechanism. It is possible to attenuate the discharge sound of a wide range of frequencies without hesitation.
- FIG. 1 is a cross-sectional view of the silencer of the first embodiment.
- FIG. 2 (A) is an enlarged vertical cross-sectional view of the main part of the part where the control valve is provided.
- Figure 2 (A) is an enlarged vertical cross-sectional view of the main part of the part where the control valve is provided.
- B) is an enlarged cross-sectional view of a main part of a portion where a control valve is provided.
- Fig. 3 is a characteristic diagram showing the relationship between the valve position and the discharge sound level.
- FIG. 4 (A) shows the flow of exhaust gas when the control valve is closed and the second chamber is a low-frequency resonator chamber.
- FIG. 4 (B) is a diagram showing the flow of exhaust gas when the control valve is slightly opened and the second chamber is used as an intermediate frequency resonator chamber.
- Fig. 4 (A) shows the flow of exhaust gas when the control valve is closed and the second chamber is a low-frequency resonator chamber.
- FIG. 4 (B) is a diagram showing the flow of exhaust gas when the control valve is slightly opened and the second chamber is used as an intermediate frequency resonator chamber.
- Fig. 4 (B) is a diagram showing the flow of exhaust gas when the control valve is slightly opened and the second chamber is used as an intermediate frequency resonator chamber.
- C) is a diagram showing the flow of exhaust gas when the control valve is opened and the second chamber is used as an expansion chamber.
- FIG. 5 is a cross-sectional view of the silencer of the second embodiment.
- FIG. 6 is a cross-sectional view of the silencer of the third embodiment.
- FIG. 7 (A) is a diagram showing the flow of exhaust gas when both the first and second control valves are closed and the second chamber is a low frequency type resonator chamber.
- FIG. 7 (B) is a diagram showing the flow of exhaust gas when the first control valve is opened, the second control valve is closed, and the second chamber is used as an intermediate frequency resonator chamber.
- FIG. 7 (C) is a diagram showing the flow of exhaust gas when both the first and second control valves are opened and the second chamber is used as an expansion chamber.
- FIG. 8 is a cross-sectional view of the silencer of the fourth embodiment.
- FIG. 9 is a cross-sectional view of the silencer of the fifth embodiment.
- FIG. 10 (A) is a diagram showing the flow of exhaust gas when the control valve is closed and the second chamber is used as a low-frequency resonator chamber.
- FIG. 10 (B) is a diagram showing the flow of exhaust gas when the control valve is slightly opened and the second chamber is used as a medium frequency type resonator chamber.
- FIG. 10 (C) is a diagram showing the flow of exhaust gas when the control valve is opened and the second chamber is used as the expansion chamber.
- FIG. 11 is a cross-sectional view of the silencer of the sixth embodiment.
- FIG. 12 is a cross-sectional view of the silencer of the seventh embodiment.
- FIG. 13 (A) is an enlarged vertical cross-sectional view of the main part of the portion where the control valve of the seventh embodiment is provided.
- FIG. 13 (B) is an enlarged cross-sectional view of the main part of the portion where the control valve of the seventh embodiment is provided.
- FIG. 14 (A) is a diagram showing the flow of gas when the control valve of the seventh embodiment is closed and the second chamber is a low-frequency resonator chamber.
- FIG. 14 (B) is a diagram showing the flow of exhaust gas when the control valve of the seventh embodiment is slightly opened and the second chamber is used as a medium frequency type resonator chamber.
- FIG. 14 (C) is a diagram showing the flow of exhaust gas when the control valve of the seventh embodiment is opened and the second chamber is used as an expansion chamber.
- FIG. 15 is a cross-sectional view of the silencer of the eighth embodiment.
- FIG. 16 is a cross-sectional view of the silencer of the ninth embodiment.
- FIG. 17 is a cross-sectional view of the silencer of the 10th embodiment.
- FIG. 18 (A) is an enlarged vertical sectional view of a main part of a portion where the control valve of the first embodiment is provided.
- FIG. 18 (B) is an enlarged cross-sectional view of the main part of the portion where the control valve of the first embodiment is provided.
- Fig. 1 is a cross-sectional view of the silencer of the first embodiment
- Fig. 2 (A) is an enlarged vertical cross-sectional view of the main part where the control valve is provided
- Fig. 2 (B) is a main part of the part where the control valve is provided.
- Fig. 3 is a characteristic diagram showing the relationship between the valve position and the discharge sound level.
- Fig. 4 (A) shows the flow of exhaust gas when the control valve is closed and the second chamber is used as the low-frequency resonator chamber.
- Fig. 4 (B) shows a slightly open control valve and the second chamber in the medium frequency type resonator.
- FIG. 4 (C) is a diagram showing the flow of exhaust gas when the control valve is opened and the second chamber is used as an expansion chamber.
- a silencer (muffler) 1 includes a cylindrical muffler shell 2 and a buff nozzle 5 that partitions the inner space of the muffler shell 2 into a first chamber 3 and a second chamber 4.
- An inlet pipe 6 for introducing exhaust gas into the muffler shell 2, an intermediate pipe 7 for communicating the first chamber 3 and the second chamber 4, and a first outlet for discharging the exhaust gas silenced in the muffler shell 2 to the outside Pipe 8 and second outlet pipe 1 3 and second chamber 4 are divided into a low-frequency resonator chamber that attenuates low-frequency discharge sound, a medium-frequency resonator chamber that attenuates medium-frequency discharge sound, and a high frequency.
- a low noise structure 9 that changes into an expansion room that attenuates the discharge sound in the area.
- the interior of the muffler 2 is divided into two chambers, a first chamber 3 and a second chamber 4, by a baffle 5.
- the first chamber 3 is provided on the inlet side where the inlet pipe 6 is provided.
- the second chamber 4 is provided on the outlet side where the first outlet pipe 8 is provided.
- the inlet pipe 6 is provided through the front end plate 10 of the muffler shell 2. Then, the inlet portion 6a of the inlet pipe 6 is opened to the outside of the muffler casing 2 and communicated with an engine (not shown) which is a sound source, and the outlet portion 6b passes through the baffle 5 and enters the second chamber 4. Is open. A first small hole 11 is formed in the inlet pipe 6 at a position corresponding to the first chamber 3.
- the intermediate pipe 7 is provided through a baffle 5 that partitions the first chamber 3 and the second chamber 4, and is supported by the baffle 5.
- the intermediate pipe 7 has one end portion 7 a opened in the first chamber 3 and the other end portion 7 b opened in the second chamber 4.
- the first outlet pipe 8 is provided through the rear end plate 12 2 and the baffle 5 of the muffler shell 2. It is supported.
- the first outlet pipe 8 has an inlet portion 8 a opened in the first chamber 3 and an outlet portion 8 b opened outside the muffler shell 2.
- the second outlet pipe 13 is connected to the outlet portion 6 b of the inlet pipe 6 by connecting the inlet portion 13 a.
- the second outlet pipe 13 is provided through the rear end plate 12 2 and opens the outlet portion 13 b to the outside of the muffler shell 2.
- the second outlet pipe 13 has a larger diameter than the first outlet pipe 8.
- structure 9 is provided at the connection portion with the second outlet pipe 13 connected to the outlet portion 6 b of the inlet pipe 6 in the second chamber 4, and the exhaust gas flowing through the inlet pipe 6
- a control valve 14 that opens and closes the outlet portion 6 b of the inlet pipe 6 according to the gas flow rate, a variable opening mechanism 15 that changes the opening degree of the control valve 14 stepwise, and a control valve 1 4
- the second small hole 16 formed in the second outlet pipe 13 for allowing the exhaust gas to flow into the second chamber 4 according to the opening position of the second small hole 16 and force.
- the control valve 14 is formed as an opening / closing lid that closes the opening of the outlet portion 6b of the inlet pipe 6, and the inlet pipe is opened and closed with an upper end portion as a fulcrum by a hinge mechanism (not shown). It is attached to the connection between 6 and the second outlet pipe 13.
- the opening variable mechanism 15 is, for example, a coil panel, and the panel locking portion 15 a of the coin panel is locked and fixed to the control valve 14.
- the opening variable mechanism 15 is always urged in the direction to close the control valve 14 by the spring force of the coil panel, but according to the gas flow rate of the exhaust gas flowing through the inlet pipe 6 (exhaust pressure In response to change) Release control valve 14.
- the second small hole 16 formed in the second outlet pipe 13 is formed at a position corresponding to the rotation range of the control valve 14. From this second small hole 1 6 the control valve 1 Exhaust gas flows into the second chamber 4 through the inlet pipe 6 only when it is opened to a certain angle.
- FIG. 3 is a characteristic diagram showing the relationship between the valve position of the control valve 14 and the discharge sound level.
- the middle line A (solid line) in Fig. 3 is a graph when the control valve 14 is in the closed position A as shown in Fig. 2 (A), and the line B (dashed line) is controlled as shown in Fig. 2 (A).
- the engine speed is about 0 to: In the low frequency range below 1 00 0 0, the discharge sound is the lowest when the control valve 14 is in the closed position A, and the engine speed is about 1 0 0 0 to 4 0 0 0 In the middle frequency range of rotation, when the control valve 14 is in the position B opened to the position where the second small hole 16 is released, the discharge sound is the lowest, and the engine speed is In the high frequency range of about 400 to 70,000, the discharge sound is the lowest when the control valve 14 is at the position C where the valve 14 is greatly opened.
- control valve 14 is set to a position A where the exhaust gas discharge sound frequency level is close to the outlet portion 6 b of the inlet pipe 6 in the low frequency range, and the second small hole in the middle frequency range. 1
- Set the panel constant of the opening variable mechanism 15 to a position B where the opening 6 is to be released and set the outlet portion 6b to a position C where the outlet 6b is wide open in the high frequency range. Control the opening state.
- the control valve 1 is used when the flow rate of exhaust gas flowing into the inlet pipe 6 is small (when the exhaust pressure is low).
- the panel force of the opening variable mechanism 15 which is a coil spring that urges the control valve 14 4 is superior to the exhaust pressure, and the outlet portion 6 b of the inlet pipe 6 Block.
- the control valve 14 If the outlet portion 6 b of the inlet pipe 6 is blocked by the control valve 14, the exhaust gas and the exhaust sound flow out from the first small hole 11 formed in the inlet pipe 6 to the first chamber 3. At this time, the first chamber 3 acts as an expansion chamber, and the control valve 14 is closed, so that the second chamber 4 is discharged from the outlet portion 8b through the first outlet pipe 8. Is connected to the first chamber 3 only by the intermediate pipe 7 and functions as a low-frequency resonator chamber that attenuates the discharge sound in the low-frequency range.
- the resonator room is adopted for the purpose of attenuation in the low frequency range. If noise such as the muffled noise in the vehicle interior and the running noise cannot be completely silenced, the resonator room will attenuate the specific frequency.
- the attenuation frequency is determined by the diameter and length that determine the conductivity of the intermediate pipe 7 only (the ease of sound entry), so the attenuation frequency is also the capacity of the second chamber 4 However, it becomes a low-frequency resonator and starts running, and the low-frequency como sound can be significantly attenuated.
- control valve 1 As shown in FIG. 4 (B), 4 is formed in the second outlet pipe 13 against the panel force of the opening variable mechanism 15 which is a coil spring for urging the control valve 14. Open the second small hole 16 to the position where it should be released.
- the opening position of this control valve 14 is the position where air gas and exhaust sound are not discharged from the outlet portion 1 3 b of the second outlet pipe 1 3 (however, the opening ratio of the valve portion is Even if it is not zero, if the hole area ratio is as small as 7% or less, there is an effect as a medium frequency resonator).
- the exhaust gas and the exhaust noise are discharged from the second small hole 16 formed in the second outlet pipe 13 into the second chamber 4.
- the second chamber 4 includes the conductivity of the second small hole 16 and the resonator pipe (the portion of the inlet pipe 6 facing the second chamber 4 from the rear of the small hole 11) and the conductive of the intermediate pipe 7.
- the second chamber 4 functions as a medium frequency resonator chamber that attenuates the discharge sound in the medium frequency range.
- the exhaust gas discharged to the second chamber 4 is discharged to the first chamber 3 through the intermediate pipe 7 and then discharged to the outside of the muffler shell 2 through the first outlet pipe 8.
- the control valve 14 opens largely against the panel force of the opening variable mechanism 15 which is a coil panel that urges the control valve 14.
- the second chamber 4 changes from the middle frequency type resonator chamber to the expansion chamber, and attenuates a wide frequency range from the middle frequency to the high frequency range.
- the expansion chamber plays a role of silencing through the small hole 11 of the inlet pipe 6, expansion from the intermediate pipe 7 to the second chamber, and contraction to the outlet pipe 13. In this way, it is possible to mute the low frequency range to the high frequency range in one room according to changes in the exhaust gas flow rate.
- the silencer 1 configured as described above, the two tail tubes exiting from the muffler shell 2 are connected to the outlet of the second outlet pipe 1 3 to which the control valve 1 4 is attached. While the diameter is increased, the diameter of the first outlet pipe 8 without the control valve 1 4 is set to be narrow, so when the control valve 14 is closed and the flow rate is low, the first outlet pipe 8 is thin. Since exhaust noise is discharged from the outlet pipe, the silencing effect from low to medium frequency is increased, and there is no increase in pressure loss because the flow rate is small.
- the force control valve 14 when the exhaust gas flow rate is high, the force control valve 14 is opened to increase the contribution rate of the air flow noise, and the gas discharge area is increased, so that the pipe diameter is increased.
- the in-pipe flow velocity of the large second outlet pipe 1 3 also decreases, and problems such as an increase in airflow noise level and an increase in pressure loss level are solved.
- the noise reduction mechanism 9 changes the second chamber 4 into a low frequency 3 ⁇ 4 resonator room, a medium frequency 3 ⁇ 4M resonator room, and an expansion chamber without increasing the muffler volume. It is possible to attenuate the discharge sound in a wide range of frequencies.
- control valve 14 can be opened and closed in stages by opening and closing the control valve 14 with the opening degree variable mechanism 15 according to the gas flow rate of the exhaust gas.
- the discharge sound in the targeted frequency band can be attenuated.
- the control valve 14 since the control valve 14 is not opened and closed by using an actuator, but the control valve 14 is controlled to be opened by exhaust gas exhaust pressure, the cost of the apparatus is reduced. It can be simplified.
- the silencer 1 a muffler structure using a single baffle 5 is used, and since a single control valve 14 is not used, a heavy * if is not added.
- the muffler capacity is 20-30% lower than that of the conventional structure. It can be downsized.
- FIG. 5 is a cross-sectional view of the silencer of the second embodiment.
- the structure of the noise reduction mechanism 9 comprising the control valve 14, the opening variable mechanism 15 and the second small hole 16 is the same as that of the first embodiment.
- the intermediate pipe 7 and the first outlet pipe 8 are connected by a substantially U-shaped pipe 17.
- the tail tube with a narrow pipe diameter becomes a so-called U-turn tube, and the muffler of low frequency to medium frequency is suppressed.
- the effect can be increased.
- the silencer 1 of the second embodiment has a structure in which the effect of the U-turn long tail is substantially utilized, but the influence is suppressed by dividing the tail tube resonance.
- the silencer 1 of the first embodiment if there is a concern about tail tube resonance due to the length of the first outlet pipe 8 in FIG. A small hole may be opened.
- the silencer 1 of the second embodiment when the second chamber 4 is closed, the exhaust gas and the exhaust noise are discharged into the first chamber 3 from the first small hole 11 of the inlet pipe 6. Then, it flows into the inside of the first outlet pipe 8 from the small hole 18, but in this case, since the flow rate is small, the influence on the pressure loss and the air flow noise becomes small.
- the conventional resonator structure attenuates the fixed frequency in the specific rotation speed range and is an unnecessary room in the other rotation speed ranges, but in the silencer 1 of the first and second embodiments, Because it changes in stages (in this example, 3 stages) according to the engine speed (gas flow rate of exhaust gas), it is necessary to attenuate the discharge sound in a wide frequency band such as low frequency, medium frequency, and high frequency. Can do. ⁇ Third embodiment '''
- Fig. 6 is a cross-sectional view of the silencer of the third embodiment
- Fig. 7 (A) shows the flow of exhaust gas when both the first and second control valves are closed and the second chamber is a low-frequency 3 ⁇ 4M resonator chamber
- Fig. 7 (B) is a diagram showing the flow of exhaust gas when the first control valve is opened and the second control valve is closed to make the second chamber a medium frequency 3 ⁇ 4M resonator chamber
- Fig. 7 (C) is a diagram FIG. 6 is a diagram showing the flow of exhaust gas when both the first and second control valves are opened and the second chamber is an expansion chamber.
- the second outlet pipe 13 is made independent of the inlet pipe 6 and provided on the extension line of the inlet pipe 6, and the second outlet
- the second control valve 19 is provided at the inlet portion 1 3 a of the pipe 1 3.
- the control valve provided at the outlet portion 6b of the inlet pipe 6 is referred to as a first control valve 14 in the third embodiment.
- the first control valve 14 and the second control valve 19 are both connected to the inlet pipe 6 by the first opening variable mechanism 15 and the second opening variable mechanism 20 made of a coil panel.
- the outlet portion 6 b and the inlet portion 13 a of the second outlet pipe 13 are configured to change the opening stepwise according to the gas flow rate of the exhaust gas.
- the first and second control valves 14 and 19 are in two stages: a position where the opening is closed and a position where the opening is opened.
- the silencer 1 of the third embodiment has the same configuration as that of the first embodiment except for the above-described differences, the description of the same components is omitted.
- the first control valve 7 A
- the panel force of the first opening variable mechanism 15 which is a coil panel for energizing the first control valve 14 is superior to the exhaust pressure, as shown in FIG. Block 6 outlet 6 b.
- the second chamber 4 is It functions as a low-frequency resonator room that attenuates low-frequency discharge sound.
- the attenuation frequency of the resonator chamber is determined by the conductivity of the intermediate pipe 7 alone, so the attenuation frequency depends on the capacity of the second chamber 4, but it becomes a low-frequency resonator, and the low frequency «como Can be greatly attenuated.
- the first control As shown in FIG. 7 (B), the valve 14 is piled on the panel force of the first opening variable mechanism 15 that is a coil spring that urges the first control valve 14, and the outlet portion of the inlet pipe 6 6 Open b.
- the second control valve 19 has an inlet portion 1 3 a of the second outlet pipe 1 3 in order to overcome the panel force S of the second opening degree variable mechanism 20 in this engine speed range. Will remain closed.
- the exhaust gas and the exhaust noise are discharged from the outlet portion 6 b of the inlet pipe 6 to the second chamber 4.
- the exhaust gas discharged into the second chamber 4 flows to the first chamber 3 through the intermediate pipe 7, and then is discharged to the outside of the muffler shell 2 through the first outlet pipe 8.
- the second chamber 4 includes the part of the first control valve 14 and the inlet pipe 6 including the first small hole 11 and the inlet pipe 6 and the resonator pipe portion. Attenuates the slightly higher frequency range (the part of the inlet pipe 6 facing the second chamber 4) and the intermediate pipe 7's conductivity.
- the second chamber 4 functions as an intermediate frequency resonator chamber that attenuates the discharge sound of the intermediate frequency.
- the first control valve 14 and the second control valve 19 are both coil panels that energize the first control valve 14 and the second control valve 19.
- the opening variable mechanism 15 and the second opening variable mechanism 20 open greatly against the panel force.
- the exhaust gas and the exhaust noise are discharged from the outlet portion 13 b of the second outlet pipe 13 to the outside of the muffler shell 2.
- the second chamber 4 changes from the medium frequency i3 ⁇ 4 resonator chamber to the expansion chamber, and attenuates a wide frequency range from the medium frequency to the high frequency. In this way, it is possible to mute the low frequency range to the high frequency range in one room according to the change in the exhaust gas flow rate.
- the second chamber 4 is changed into a low-frequency type resonator room, a medium-frequency type resonator room, and an expansion room, like the silencer 1 of the first embodiment.
- the discharge sound of a wide frequency can be attenuated without increasing the volume of the muffler.
- the silencer 1 of the third embodiment since the two control valves 14 and 19 of the exhaust pressure sensitive type are provided, it is possible to attenuate discharge sound in a wider frequency range.
- FIG. 8 is a cross-sectional view of the silencer of the fourth embodiment.
- the first and first 2 Control valves 1 4 and 1 9 and 1st and 2nd opening variable mechanisms 1 5 and 2 0 The noise low Wm 9 structure is the same as in the third embodiment. 7 and the first outlet pipe 8 are connected by a substantially U-shaped pipe 21.
- the tail tube with a narrow pipe diameter is a so-called U-turn type, similar to the silencer 1 of the second embodiment. It becomes a tube, and the silencing effect from low frequency to medium frequency can be increased.
- the silencer 1 of the fourth embodiment has a structure in which the effect of the U-turn long tail is substantially utilized while the influence of the tail tube resonance is divided to suppress the influence.
- the silencer 1 of the fourth embodiment when the second chamber 4 is closed, the exhaust gas and the exhaust sound are discharged from the first small hole 11 of the inlet pipe 6 to the first chamber 3.
- the small hole 22 2 force flows into the first outlet pipe 8, but in this case, since the flow rate is small, the influence on pressure loss and airflow noise is small.
- the first control valve 14 and the second control valve 19 are stepped (in this example, 2 according to the engine speed (gas flow rate of exhaust gas)).
- the engine speed gas flow rate of exhaust gas
- FIG. 9 is a cross-sectional view of the silencer of the fifth embodiment
- FIG. 10 (A) is a diagram showing the flow of exhaust gas when the control valve is closed and the second chamber is a low-frequency resonator chamber.
- (B) is an exhaust when the control valve is slightly opened and the second chamber is a medium frequency resonator chamber.
- FIG. 10 (C) is a diagram showing the flow of exhaust gas when the control valve is opened and the second chamber is used as the expansion chamber.
- the fifth embodiment is not a double tail tube silencer with two outlet pipes as in the first to fourth embodiments, but a so-called single tail tube silencer with a single outlet pipe.
- the fifth embodiment only parts different from the silencer 1 shown in FIG. 1 of the first embodiment will be described, and the same parts will be described. Is omitted.
- the noise reduction mechanism 9 is provided in the hollow pipe 23 connected to and connected to the outlet portion 6 b of the inlet pipe 6 in the second chamber 4.
- a control valve 14 that opens and closes the outlet portion 6 b of the inlet pipe 6 according to the gas flow rate of the flowing exhaust gas, and a variable opening mechanism 15 that changes the opening degree of the control valve 14 stepwise. It consists of a second small hole 16 formed in the hollow pipe 23 that allows exhaust gas to flow into the second chamber 4 according to the opening position of the control valve 14.
- the hollow pipe 23 is mounted so as to be connected to the outlet portion 6 b of the inlet pipe 6 and is formed as a cylindrical pipe having a hollow inside.
- a second small hole 16 is formed at a position corresponding to a rotation range of the control valve 14 that allows the outlet portion 6b to be opened and closed.
- the control valve 14 and the opening variable mechanism 15 have the same configuration as in the first embodiment, and the mounting structure is also the same.
- the opening of the inlet portion 8 a of the first outlet pipe 8 is made larger than the other portions.
- the shape of the inlet portion 8a of the first outlet pipe 8 is a funnel shape, and the flare is such that the opening area gradually becomes larger from the inlet toward the back.
- the sound absorbing member 24 is provided so as to surround the outer periphery of the first outlet pipe 8 provided in the first chamber 3.
- the sound absorbing member 24 is made of glass wool, for example, and is rubbed against the first outlet pipe 8 to enhance the sound absorbing effect.
- a plurality of third small holes 25 are formed in a portion corresponding to the second chamber 4 of the first outlet pipe 8.
- the powerful third small hole 25 is opened so as to be 10% or less with respect to the surface area of the entire outlet pipe. If the third small hole 25 is formed in the first outlet pipe 8 with an aperture ratio of 10% or less, the influence of the third small hole 25 is small in the low frequency range (100 Hz or less), so that it acts as a resonator chamber.
- the medium frequency 100 Hz to 150 Hz
- the silencing effect of both the resonator room and the expansion chamber can be obtained, and at the high frequency (150 Hz or more), the effect as an expansion chamber can be obtained.
- the third small hole 25 opening to the second chamber 4 has an opening ratio of 10% or less, so that the small hole 25 is not recognized in the low frequency range, and the second chamber 4 functions as a resonator chamber. In the high frequency range, the small hole 25 is recognized, and the second chamber 4 functions as an expansion chamber. When the aperture ratio exceeds 10%, the resonator room does not change to the expansion room, and it becomes an expansion room from the beginning.
- the control valve 14 is shown in Fig. 10 (A). As shown, the panel force of the opening degree varying mechanism 15 which is a coil panel for energizing the control valve 14 overcomes the exhaust pressure, and the outlet portion 6 b of the inlet pipe 6 Occlude.
- the first chamber 3 functions as an expansion chamber and the control valve 14 is in a closed state, so that the second chamber 4 functions as a low frequency type resonator chamber that attenuates discharge sound in a low frequency range.
- the resonance frequency of the resonator chamber is determined by the diameter and length that determine the conductivity of the intermediate pipe 7 only (the ease of sound entry), so the attenuation frequency depends on the capacity of the second chamber 4. It becomes a low frequency type resonator and starts running. Low frequency and como sound can be greatly attenuated.
- the valve 14 is piled on the panel force of the opening degree varying mechanism 15 that is a coil panel that urges the control valve 14, and is formed in the hollow pipe 23. Open 2 small holes 1 6 to release position.
- the second chamber 4 includes the conductivity of the second small hole 16 and the resonator pipe (the portion of the inlet pipe 6 facing the second chamber 4 from the rear of the small hole 11) and the intermediate pipe 7 Attenuates the slightly higher frequency range, which is the frequency range where the conductivity is combined. That is, the second chamber 4 functions as a medium frequency type resonator chamber that attenuates the discharge sound of anyone at medium frequency.
- the exhaust gas discharged to the second chamber 4 is discharged to the first chamber 3 through the intermediate pipe 7, and then discharged to the outside of the muffler shell 2 through the first outlet pipe 8.
- the control valve 14 opens largely against the panel force of the opening variable mechanism 15 that is a coil panel that urges the control valve 14.
- the second chamber 4 changes from the middle frequency resonator chamber to the expansion chamber, and attenuates a wide frequency range from the middle frequency to the high frequency range.
- the second chamber 4 is divided into a low frequency type resonator room, a medium frequency type resonator room, By changing to the expansion chamber, this single tail tube type can attenuate the discharge sound of a wide frequency without increasing the volume of the muffler.
- the first outlet pipe 8 is formed with the third small hole 25 that opens to the second chamber 4, so that the third outlet hole 8 is formed in the high frequency range.
- the second chamber 4 can be changed to an expansion chamber.
- the noise of the exhaust gas flowing into the muffler can be increased by making the opening of the inlet portion 8 a of the first outlet pipe 8 larger than the opening of other portions. And pressure loss can be reduced.
- the sound absorbing member 24 is provided so as to surround the outer periphery of the first outlet pipe 8 provided in the first chamber 3, at the upstream portion of the muffler.
- High-frequency sounds such as generated airflow sounds and high-frequency sounds such as expansion, contraction, and turbulent sound generated when passing through valves can be absorbed before discharge.
- FIG. 11 is a cross-sectional view of the silencer of the sixth embodiment.
- the structure of the noise structure 9 comprising the control valve 14, the opening variable mechanism 15 and the second small hole 16 is the same as that of the fifth embodiment, but the first chamber 3 has
- the intermediate pipe 7 and the first outlet pipe 8 are connected by a substantially U-shaped pipe 26.
- the other end portion 7b of the intermediate pipe 7 that opens to the second chamber 4 has a flare shape.
- the tail tube with a narrow pipe diameter becomes a so-called U-turn tube, and a silencing effect from low to medium frequencies is achieved. Can be increased.
- the silencer 1 of the sixth embodiment has a structure in which the effect of the U-turn mouthtail is substantially utilized, but the influence is suppressed by dividing the tail tube resonance. If the aperture ratio of the small hole 18 opened in the first chamber 3 is set to 10% or less, the tail tube resonance frequency is divided with respect to the sound of 20 Hz or higher which is the tail tube resonance low frequency range. I can refuse.
- the structure of the silencer 1 is such that when the second chamber 4 is closed, the exhaust gas is exhausted from the first small hole 11 formed in the inlet pipe 6 to the first chamber 3, and then the middle It flows into the U-shaped pipe 26 through the small hole 18 formed in the pipe 7, but since the amount of the inflow is small, the effect on pressure loss and airflow noise is small.
- the conventional resonator structure reduces the fixed frequency in the specific rotation speed range. Although it is an unnecessary room in the other rotational speed range, in the silencer 1 of the fifth embodiment and the sixth embodiment, in stages (in this example, depending on the engine rotational speed (gas flow rate of exhaust gas)) (3 steps), it is possible to attenuate the discharge sound in a wide frequency band such as low frequency, medium frequency and high frequency.
- Fig. 12 is a cross-sectional view of the silencer of the seventh embodiment
- Fig. 13 (A) is an enlarged vertical cross-sectional view of the main part where the control valve is provided
- Fig. 13 (B) is provided with the control valve.
- the noise reduction mechanism 9 is configured to close the second small hole 16 when the control valve 14 is closed.
- the silencer 1 shown in FIG. 1 of the first embodiment only parts different from the silencer 1 shown in FIG. 1 of the first embodiment will be described, and description of the same parts will be omitted.
- the control valve 14 is formed as an opening / closing lid that closes the opening of the outlet portion 6b of the inlet pipe 6, and the inlet pipe is opened and closed with an upper end portion as a fulcrum by a hinge mechanism (not shown). It is attached to the connection between 6 and the second outlet pipe 13.
- the surface of the control valve 14 is curved with respect to the gas flow direction. More specifically, when the control valve 14 is in the closed state, it has a curved shape that slightly protrudes from the upper end portion toward the lower end portion on the side opposite to the exhaust gas flow direction. Further, as will be described later, when the control valve 14 is in the position C where it is wide open (see FIG. 13 (A)), the control valve 14 is configured so that the surface facing the exhaust gas flow is convex. The That is, at this time, the control valve 14 has its convex surface facing in a direction perpendicular to the flow of exhaust gas.
- the outlet portion 6 b of the inlet pipe 6 is adapted to match the curvature of this control valve 14 It is configured in shape. As a result, when the control valve 14 is in the closed position A (see FIG. 13 (A)), the outlet portion 6 b of the inlet pipe 6 is blocked, and the exhaust gas flows from the inlet pipe 6 to the outlet pipe 1 3. To be discharged.
- control valve 14 is configured to close the second small hole 16 provided in the outlet pipe 13 when the control valve 14 is closed. As a result, when the control valve 14 is in the closed position A (see FIG. 13 (A)), the control valve 14 closes the second small hole 16 and the exhaust gas flows into the second chamber. Limit the discharge from 4 to the exit pipe 1 3.
- the exhaust valve flowing into the inlet pipe 6 has a small flow rate (when the exhaust pressure is low).
- the outlet force force S of the variable opening mechanism 15 which is a coil panel for energizing the control valve 14 is superior to the exhaust pressure S, and the outlet portion 6 b of the inlet pipe 6 is closed.
- the first chamber 3 acts as an expansion chamber and the control valve 14 is in a closed state, so that the second chamber 4 is discharged from the outlet portion 8b through the first outlet pipe 8.
- the resonance frequency of the resonator chamber is determined by the diameter and length that determine the conductivity of the intermediate pipe 7 only (the ease of sound entry). However, it becomes a low-frequency type resonator and starts running, so that the low-frequency como sound can be significantly attenuated.
- the exhaust gas and the exhaust sound flow out from the first small hole 11 formed in the inlet pipe 6 to the first chamber 3, and pass through the first outlet pipe 8 to the outside from the outlet portion 8b. Is issued.
- the control valve 14 when the control valve 14 is in front of the second small hole 16, a part of the exhaust gas flowing out into the first chamber 3 is Then, it passes through the intermediate pipe 7 and is discharged from the second small hole 16 to the second outlet pipe 13. This may reduce the silencing effect of the resonator room.
- the second small hole 16 is closed when the control valve 14 is in the closed state.
- the sound is discharged only from the outlet pipe 8 without flowing out from the second chamber 4 to the outlet pipe 13.
- the second chamber 4 will surely function as a low-frequency resonator chamber, and the engine speed will be high (as a guideline, about 100 to 400 rpm), the exhaust gas flowing into the inlet pipe 6
- the control valve 14 is a variable opening mechanism that is a coil panel that urges the control valve 14. 1 Open the second small hole 16 formed in the second outlet pipe 1 3 against the panel force of 5 to the position to release it.
- the second chamber 4 is connected to the conductivity of the second small hole 16 and the resonator pipe (the portion of the inlet pipe 6 facing the second chamber 4 from the rear of the first small hole 11) and the middle. Attenuates the slightly higher frequency range, which is the combined frequency range of pipe 7. That is, the second chamber 4 functions as a medium frequency type resonator chamber that attenuates the discharge sound in the medium frequency range.
- the exhaust gas discharged to the second chamber 4 is discharged to the first chamber 3 through the intermediate pipe 7 and then discharged to the outside of the muffler shell 2 through the first outlet pipe 8.
- the control valve 14 opens greatly against the panel force of the opening degree varying mechanism 15 which is a coil panel that urges the control valve 14.
- the exhaust gas and the exhaust noise are discharged from the outlet portion 13 b of the second outlet pipe 13 to the outside of the muffler shell 2.
- the second chamber 4 changes from the medium frequency type resonator chamber to the expansion chamber, and attenuates a wide frequency range from the medium frequency ⁇ to the high frequency range.
- the expansion chamber plays a role of silencing through the first small hole 11 of the inlet pipe 6 and the expansion from the intermediate pipe 7 to the second chamber and the contraction of the outlet pipe 13. In this way, it is possible to mute the low frequency to high frequency range in one room according to changes in the exhaust gas flow rate.
- the control valve 14 is provided with a curved shape that is slightly convex with respect to the exhaust gas flow.
- this shape when the control valve 14 is in the open state, the flow of exhaust gas near the surface of the control valve 14 becomes difficult to separate, and airflow noise can be reduced.
- this shape generates lift due to the blade effect when the exhaust pressure increases, so that the control valve 14 can be opened larger by piled on the panel force, and the pressure loss of the exhaust gas can be reduced.
- the second chamber 4 is changed into a low-frequency type resonator chamber, a medium-frequency type resonator chamber, and an expansion chamber. Reduces discharge noise over a wide range of frequencies without increasing Can be attenuated.
- the silencer 1 of the seventh embodiment when the control valve 14 is in the closed state, the second small hole 16 is closed, so that the silencing effect of the low frequency type resonator chamber can be further enhanced. Can do.
- the control valve 14 is slightly curved with respect to the exhaust gas flow direction, the flow noise of the exhaust gas can be reduced. Furthermore, when the exhaust gas has a high flow rate, lift due to the blade effect is generated and the opening can be made large, so that the pressure loss of the exhaust gas can be reduced.
- FIG. 15 is a cross-sectional view of the silencer of the eighth embodiment.
- the eighth embodiment has a structure in which the intermediate pipe 7 and the first outlet pipe 8 are connected by a substantially U-shaped pipe 21 in the first chamber 3.
- control valve 14 is curved, and the second small hole 16 is closed when the control valve 14 is in the closed state. Configured.
- the tail tube with a narrow pipe diameter is a so-called U-turn type, similar to the silencer 1 of the fourth embodiment. It becomes a tube, and the silencing effect in the low to medium frequency range can be increased.
- the sound absorbing member 28 is provided so as to surround the outer periphery of the first outlet pipe 8 provided in the second chamber 4.
- the sound absorbing member 28 is made of glass wool, for example, and is wound around the first outlet pipe 8 to enhance the sound absorbing effect.
- the silencer 1 of the eighth embodiment As described above, according to the silencer 1 of the eighth embodiment, as in the fourth embodiment, by changing the first control valve 14 and the second control valve 19 stepwise (in this example, two steps) according to the engine speed (exhaust gas flow rate), low frequency, medium frequency «, high frequency And the discharge sound in a wide frequency band can be attenuated.
- the silencer 1 of the eighth embodiment when the control valve 14 is closed, the second small hole 16 is closed, so that the silencing effect of the low frequency type resonator chamber can be further enhanced. Can do.
- the control valve 14 is slightly curved with respect to the flow direction of the exhaust gas, the flow noise of the exhaust gas can be reduced. Furthermore, when the exhaust gas flow rate is high, lift due to the blade effect is generated and can be opened largely, so that the pressure loss of the gas gas can be reduced.
- FIG. 16 is a cross-sectional view of the silencer of the ninth embodiment.
- the ninth embodiment is an example in which the noise reduction mechanism of the present invention is provided in a so-called single tail tube silencer having a single outlet pipe.
- control valve 14 is curved, and the second small hole 16 is closed when the control valve 14 is in the closed state. Configured.
- the single tail tube type silencer 1 is the same as the double tail tube silencer 1 of the first embodiment, as in the fifth embodiment.
- the silencer 1 of the ninth embodiment when the control valve 14 is closed, since the second small hole 16 is closed, the silencing effect of the low-frequency resonator chamber can be further enhanced.
- the control valve 14 is slightly curved with respect to the flow direction of the exhaust gas, the flow noise of the exhaust gas can be reduced. Furthermore, when the exhaust gas flow rate is high, lift due to the blade effect is generated and can be opened greatly, so that the pressure loss of the exhaust gas can be reduced.
- FIG. 17 is a cross-sectional view of the silencer of the 10th embodiment.
- the intermediate pipe 7 and the first outlet pipe 8 are connected to the first chamber 3 by a substantially U-shaped pipe 26.
- the structure is made to be.
- the other end portion 7 b of the intermediate pipe 7 that opens to the second chamber 4 has a flare shape.
- control valve 14 is curved, and the second small hole 16 is closed when the control valve 14 is closed. .
- the single tail tube silencer 1 is also stepwise (in this example, 3) according to the engine speed (gas flow rate of exhaust gas). Therefore, it is possible to attenuate the discharge sound in a wide frequency range such as low frequency range, medium frequency range, and high frequency range.
- the second small hole 16 is closed when the control valve 14 is in the closed state, so that the silencing effect of the low frequency type resonator chamber is obtained. Can be increased.
- Fig. 18 (A) is an enlarged vertical sectional view of the main part where the control valve of the first embodiment is provided
- Fig. 18 (B) is the main part of the part where the control valve of the first embodiment is provided.
- control valve 14 has a curved shape, and the second small hole 16 is closed when the control valve 14 is closed. It was configured to do so.
- the angle of the tip portion (edge) of the control valve 14 is configured to be small. More specifically, as shown in FIG. 18 (B), when the control valve 14 is in the wide open position C, the edge 14 4 a force that becomes the tip of the exhaust gas flow direction Exhaust gas flow The shape gradually becomes acute as it goes in the direction. As described above, in the first embodiment, the effect of the seventh to 11th embodiments is remarked, and the angle of the edge 14 a which is the tip portion of the control valve 14 is directed in the exhaust gas flow direction. Therefore, the occurrence of air flow separation near the surface of the control valve 14 is suppressed. As a result, even when the exhaust gas flow rate is large and the control valve 14 is in the position C where it is greatly opened with respect to the outlet pipe 13, airflow noise generated by the control valve 14 is reduced.
- the silencer of this embodiment can be used as a silencer for an automobile equipped with a normal internal combustion engine, a silencer for a hybrid car that combines an engine and an electric motor, or hydrogen and oxygen. It can also be used as a silencer for fuel cell vehicles powered by the power generated by the reaction.
- the silencer 1 of the fifth embodiment has a flare structure in which the opening of the inlet part 8a of the first outlet pipe 8 is larger than the opening of other parts, but the noise during the inflow of exhaust gas If the pressure loss does not contribute significantly, it is not necessary to adopt the flare structure.
- the sound absorbing member 24 is provided so as to surround the outer periphery of the first outlet pipe 8 provided in the first chamber 3, but the contribution rate of the airflow generated sound is small. ⁇ Does not require the sound absorbing member 24.
- control valve 14 is curved, but any shape can be used as long as the second small hole 16 can be closed when the control valve 14 is closed. .
- the control valve 14 may be flat as in the first embodiment (FIGS. 1 and 2).
- control valve 14 does not have a uniform thickness, and the second small hole 16 around the thin plate-shaped control valve 14 is closed so that the second small hole 16 is closed when the control valve 14 is closed.
- a flange may be provided at the corresponding position.
- control valve 14 may be provided with a groove-shaped unevenness process (so-called vortex generator) so as to reduce airflow noise.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Silencers (AREA)
Abstract
A silencer exhibiting excellent silence characteristics for damping the delivery sound over a wide range including the entire region of low frequency zone, intermediate frequency zone, and high frequency zone without increasing the muffler volume. In the silencer (1) where the inside space of a muffler shell (2) is partitioned into a first chamber (3) and a second chamber (4) and a control valve (14) opening/closing freely depending on the flow rate of exhaust gas is fixed to the outlet portion (6b) of an inlet pipe (6) by means of a torsion coil spring (15), the second chamber (4) is changed to a low frequency resonator chamber for dampingthe delivery sound in the low frequency zone, an intermediate frequency resonator chamber for damping the delivery sound in the intermediate frequency zone, and an expansion chamber for damping the delivery sound in the high frequency zone by varying the opening of the control valve (14) stepwise.
Description
明 細 書 消 技術分野 Paper erase Technical field
本発明は、 自動車等の排気系から発する騒音の低減を図るための消音器に関す るものである。 背景技術 The present invention relates to a silencer for reducing noise generated from an exhaust system of an automobile or the like. Background art
特開 2 0 0 2— 8 9 2 5 6号公報は、 自動車用の消音器 (マフラー) において は、 排気音の低減を図るために、 マフラシェル内に設けたインナーパイプの開口 端に排圧 (排気ガスの流量) で開閉する制御バルブを設けたものを提案している In Japanese Patent Laid-Open No. 2000-0 9 2 5 6, in a muffler for automobiles, in order to reduce exhaust noise, exhaust pressure (at the open end of the inner pipe provided in the muffler shell) Proposed with a control valve that opens and closes at the flow rate of the exhaust gas)
発明の開示 Disclosure of the invention
前記文献に記載の技術では、 一個の制御バルブにて流路をコントロールしても 音響的には O N (オン) - O F F (オフ) の制御であり、 消音特性を細かく制御 するには限界がある。 In the technique described in the above document, even if the flow path is controlled by a single control valve, it is acoustically ON (ON)-OFF (OFF) control, and there is a limit to finely control the silencing characteristics. .
また、 一個の制御バルブによる制御でも消音特性からすれば、 従来では特性的 に充分であつたが、 消音及び圧力損失性能に更なる性能向上を要求されることケ ースが近年多くなつてきた。 In addition, even if the control with a single control valve is based on the silencing characteristics, it has been sufficient in terms of characteristics in the past, but in recent years there has been an increasing demand for further improvements in silencing and pressure loss performance. .
その理由は、 車室内の静粛性に対する要求が更に厳しくなつてきたこと、 ェン ジンとモータの両方で最適走行を実現させるハイプリッド車が普及してきたこと がその理由である。 ハイブリッド車は、 走行音が従来の車に比べ静かであり、 排
気音に対する低騒音化の要求は厳しくなっている。 The reason for this is that the demand for quietness in the passenger compartment has become more stringent, and that hybrid vehicles that achieve optimal driving with both engines and motors have become popular. Hybrid vehicles have a quieter running sound than conventional vehicles. The demand for noise reduction for air noise is becoming stricter.
そこで、 従来問題にならなかった内 «関用排気系を、 ハイブリッド車に適用 した場合には、 排気系の騒音寄与率が大きぐなり、 排気騒音の低減が求められる 。 このように、 従来に増して 気系の低騒音ィヒニーズは高くなつてきているが、 車両レイアウトの関係で、 これ以上マフラ容量を大きくすることは困難 (マフラ 容量を増やせば騒音低減は可能となる) である。 Therefore, when an internal exhaust system that has not been a problem in the past is applied to a hybrid vehicle, the noise contribution ratio of the exhaust system increases, and a reduction in exhaust noise is required. In this way, the low noise noise needs of the air system are becoming higher than before, but it is difficult to increase the muffler capacity further due to the vehicle layout (the noise can be reduced by increasing the muffler capacity) )
このような状況において、 本発明は、 上述した課題を解決するべく、 マフラ容 積を増加させずに、 低周波灘、 中周波觀、 及び高周波誰の全域に亘る広範 囲で吐出音を減衰できる消音特性に優れた消音器を提供することを目的とする。 本発明の一態様に係る消音器は、 筒状のマフラシェルと、 マフラシェルの内部 空間を第 1室と第 2室とに仕切るノ ッフルと、 第 1室と対応する位置に第 1の小 孔を有し且つ出口部分を前記第 2室に設け、 マフラシヱル内に排ガスを導入させ る入口パイプと、 バッフルに固定され、 第 1室と第 2室を連通させる中間パイプ と、 マフラシェル内で消音された排ガスを外部へ排出させる第 1の出口パイプと 、 第 2室を、 低周波数域の吐出音を減衰させる低周波数型レゾネータ室、 中周波 ,の吐出音を減衰させる中周波数型レゾネータ室、 高周波数域の吐出音を減衰 させる拡張室とに変化させる騒音低灘構と、 を備える。 In such a situation, the present invention can attenuate the discharge sound over a wide range of low frequency, medium frequency and high frequency without increasing the muffler volume in order to solve the above-described problems. An object of the present invention is to provide a silencer having excellent silencing characteristics. A muffler according to an aspect of the present invention includes a cylindrical muffler shell, a kaffle that divides the inner space of the muffler shell into a first chamber and a second chamber, and a first small hole at a position corresponding to the first chamber. And having an outlet portion in the second chamber, an inlet pipe for introducing exhaust gas into the muffler shell, an intermediate pipe fixed to the baffle and communicating between the first chamber and the second chamber, and silenced in the muffler shell The first outlet pipe that discharges the exhaust gas to the outside and the second chamber are the low frequency type resonator chamber that attenuates the discharge sound in the low frequency range, the medium frequency type resonator chamber that attenuates the discharge sound of the medium frequency, and the high frequency A low noise structure that changes to an expansion room that attenuates the discharge sound of the area.
本発明の一態様に係る消音器によれば、 騒音低減機構によって、 第 2室を、 低 周波数型レゾネータ室、 中周波数型レゾネータ室、 拡張室とに変化させることに より、 マフラ容積を増カ卩させることなく幅広い周波 の吐出音を減衰させるこ とができる。 図面の簡単な説明 According to the silencer according to one aspect of the present invention, the muffler volume is increased by changing the second chamber into the low frequency type resonator chamber, the medium frequency type resonator chamber, and the expansion chamber by the noise reduction mechanism. It is possible to attenuate the discharge sound of a wide range of frequencies without hesitation. Brief Description of Drawings
図 1は、 第 1実施形態の消音器の断面図である
図 2 (A) は制御バルブが設けられた部位の要部拡大縦断面図である。 図 2 (FIG. 1 is a cross-sectional view of the silencer of the first embodiment. FIG. 2 (A) is an enlarged vertical cross-sectional view of the main part of the part where the control valve is provided. Figure 2 (
B ) は制御バルブが設けられた部位の要部拡大横断面図である。 B) is an enlarged cross-sectional view of a main part of a portion where a control valve is provided.
図 3は、 バルブ位置と吐出音レベルの関係を示す特性図である。 Fig. 3 is a characteristic diagram showing the relationship between the valve position and the discharge sound level.
図 4 (A) は制御バルブを閉じて第 2室を低周波 レゾネータ室としたとき の排気ガスの流れを示す図である。 図 4 (B ) は制御バルブを少し開いて第 2室 を中周波 レゾネータ室としたときの排気ガスの流れを示す図である。 図 4 ( Fig. 4 (A) shows the flow of exhaust gas when the control valve is closed and the second chamber is a low-frequency resonator chamber. FIG. 4 (B) is a diagram showing the flow of exhaust gas when the control valve is slightly opened and the second chamber is used as an intermediate frequency resonator chamber. Fig. 4 (
C) は制御バルブを開いて第 2室を拡張室としたときの排気ガスの流を示す図で ある。 C) is a diagram showing the flow of exhaust gas when the control valve is opened and the second chamber is used as an expansion chamber.
図 5は、 第 2実施形態の消音器の断面図である。 FIG. 5 is a cross-sectional view of the silencer of the second embodiment.
図 6は、 第 3実施形態の消音器の断面図である。 FIG. 6 is a cross-sectional view of the silencer of the third embodiment.
図 7 (A) は第 1及び第 2制御バルブを共に閉じて第 2室を低周波数型レゾネ ータ室としたときの排気ガスの流れを示す図である。 図 7 (B) は第 1制御バル ブを開き第 2制御バルブを閉じて第 2室を中周波 レゾネータ室としたときの 排気ガスの流れを示す図である。 図 7 (C) は第 1及び第 2制御バルブを共に開 いて第 2室を拡張室としたときの排気ガスの流を示す図である。 FIG. 7 (A) is a diagram showing the flow of exhaust gas when both the first and second control valves are closed and the second chamber is a low frequency type resonator chamber. FIG. 7 (B) is a diagram showing the flow of exhaust gas when the first control valve is opened, the second control valve is closed, and the second chamber is used as an intermediate frequency resonator chamber. FIG. 7 (C) is a diagram showing the flow of exhaust gas when both the first and second control valves are opened and the second chamber is used as an expansion chamber.
図 8は、 第 4実施形態の消音器の断面図である。 FIG. 8 is a cross-sectional view of the silencer of the fourth embodiment.
図 9は、 第 5実施形態の消音器の断面図である。 FIG. 9 is a cross-sectional view of the silencer of the fifth embodiment.
図 1 0 (A) は制御バルブを閉じて第 2室を低周波 レゾネータ室としたと きの排気ガスの流れを示す図である。 図 1 0 (B) は制御バルブを少し開いて第 2室を中周波数型レゾネータ室としたときの排気ガスの流れを示す図である。 図 1 0 (C) は制御バルブを開いて第 2室を拡張室としたときの排気ガスの流を示 す図である。 FIG. 10 (A) is a diagram showing the flow of exhaust gas when the control valve is closed and the second chamber is used as a low-frequency resonator chamber. FIG. 10 (B) is a diagram showing the flow of exhaust gas when the control valve is slightly opened and the second chamber is used as a medium frequency type resonator chamber. FIG. 10 (C) is a diagram showing the flow of exhaust gas when the control valve is opened and the second chamber is used as the expansion chamber.
図 1 1は、 第 6実施形態の消音器の断面図である。 FIG. 11 is a cross-sectional view of the silencer of the sixth embodiment.
図 1 2は、 第 7実施形態の消音器の断面図である。
図 1 3 (A) は第 7実施形態の制御バルブが設けられた部位の要部拡大縦断面 図である。 図 1 3 (B) は第 7実施形態の制御バルブが設けられた部位の要部拡 大横断面図である。 FIG. 12 is a cross-sectional view of the silencer of the seventh embodiment. FIG. 13 (A) is an enlarged vertical cross-sectional view of the main part of the portion where the control valve of the seventh embodiment is provided. FIG. 13 (B) is an enlarged cross-sectional view of the main part of the portion where the control valve of the seventh embodiment is provided.
図 1 4 (A) は第 7実施形態の制御バルブを閉じて第 2室を低周波数型レゾネ ータ室としたときの 気ガスの流れを示す図である。 図 1 4 (B) は第 7実施形 態の制御バルブを少し開いて第 2室を中周波数型レゾネータ室としたときの排気 ガスの流れを示す図である。 図 1 4 (C) は第 7実施形態の制御バルブを開いて 第 2室を拡張室としたときの排気ガスの流を示す図である。 FIG. 14 (A) is a diagram showing the flow of gas when the control valve of the seventh embodiment is closed and the second chamber is a low-frequency resonator chamber. FIG. 14 (B) is a diagram showing the flow of exhaust gas when the control valve of the seventh embodiment is slightly opened and the second chamber is used as a medium frequency type resonator chamber. FIG. 14 (C) is a diagram showing the flow of exhaust gas when the control valve of the seventh embodiment is opened and the second chamber is used as an expansion chamber.
図 1 5は、 第 8実施形態の消音器の断面図である。 FIG. 15 is a cross-sectional view of the silencer of the eighth embodiment.
図 1 6は、 第 9実施形態の消音器の断面図である。 FIG. 16 is a cross-sectional view of the silencer of the ninth embodiment.
図 1 7は、 第 1 0実施形態の消音器の断面図である。 FIG. 17 is a cross-sectional view of the silencer of the 10th embodiment.
図 1 8 (A) は第 1 1実施形態の制御バルブが設けられた部位の要部拡大縦断 面図である。 図 1 8 (B) は第 1 1実施形態の制御バルブが設けられた部位の要 部拡大横断面図である。 発明を実施するための最良の形態 FIG. 18 (A) is an enlarged vertical sectional view of a main part of a portion where the control valve of the first embodiment is provided. FIG. 18 (B) is an enlarged cross-sectional view of the main part of the portion where the control valve of the first embodiment is provided. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を適用した具体的な実施の形態について図面を参照しながら詳細 に説明する。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.
「第 1実施形態」 "First embodiment"
図 1は第 1実施形態の消音器の断面図、 図 2 (A) は制御バルブが設けられた 部位の要部拡大縦断面図、 図 2 (B) は制御バルブが設けられた部位の要部拡大 横断面図、 図 3はバルブ位置と吐出音レベルの関係を示す特性図、 図 4 (A) は 制御バルブを閉じて第 2室を低周波 レゾネータ室としたときの排気ガスの流 れを示す図、 図 4 (B) は制御バルブを少し開いて第 2室を中周波数型レゾネー
タ室としたときの排気ガスの流れを示す図、 図 4 (C) は制御バルブを開いて第 2室を拡張室としたときの排気ガスの流れを示す図である。 Fig. 1 is a cross-sectional view of the silencer of the first embodiment, Fig. 2 (A) is an enlarged vertical cross-sectional view of the main part where the control valve is provided, and Fig. 2 (B) is a main part of the part where the control valve is provided. Fig. 3 is a characteristic diagram showing the relationship between the valve position and the discharge sound level. Fig. 4 (A) shows the flow of exhaust gas when the control valve is closed and the second chamber is used as the low-frequency resonator chamber. Fig. 4 (B) shows a slightly open control valve and the second chamber in the medium frequency type resonator. FIG. 4 (C) is a diagram showing the flow of exhaust gas when the control valve is opened and the second chamber is used as an expansion chamber.
第 1実施形態の消音器 (マフラ) 1は、 図 1に示すように、 筒状のマフラシェ ル 2と、 このマフラシェル 2の内部空間を第 1室 3と第 2室 4とに仕切るバッフ ノレ 5と、 マフラシェル 2内に排ガスを導入させる入口パイプ 6と、 第 1室 3と第 2室 4を連通させる中間パイプ 7と、 マフラシェル 2内で消音された排ガスを外 部へ排出させる第 1の出口パイプ 8及び第 2の出口パイプ 1 3と、 第 2室 4を、 低周波数域の吐出音を減衰させる低周波数型レゾネータ室、 中周波数域の吐出音 を減衰させる中周波数型レゾネータ室、 高周波数域の吐出音を減衰させる拡張室 とに変化させる騒音低灘構 9と、 で構成されている。 As shown in FIG. 1, a silencer (muffler) 1 according to the first embodiment includes a cylindrical muffler shell 2 and a buff nozzle 5 that partitions the inner space of the muffler shell 2 into a first chamber 3 and a second chamber 4. An inlet pipe 6 for introducing exhaust gas into the muffler shell 2, an intermediate pipe 7 for communicating the first chamber 3 and the second chamber 4, and a first outlet for discharging the exhaust gas silenced in the muffler shell 2 to the outside Pipe 8 and second outlet pipe 1 3 and second chamber 4 are divided into a low-frequency resonator chamber that attenuates low-frequency discharge sound, a medium-frequency resonator chamber that attenuates medium-frequency discharge sound, and a high frequency. And a low noise structure 9 that changes into an expansion room that attenuates the discharge sound in the area.
マフラシヱル 2の内部は、 バッフル 5によって内部空間が第 1室 3と第 2室 4 の 2つの部屋に仕切られている。 第 1室 3は、 入口パイプ 6が設けられる入口側 に設けられる。 第 2室 4は、 第 1の出口パイプ 8が設けられる出口側に設けられ ている。 The interior of the muffler 2 is divided into two chambers, a first chamber 3 and a second chamber 4, by a baffle 5. The first chamber 3 is provided on the inlet side where the inlet pipe 6 is provided. The second chamber 4 is provided on the outlet side where the first outlet pipe 8 is provided.
入口パイプ 6は、 マフラシェル 2のフロント側エンドプレート 1 0を貫通して 設けられている。 そして、 この入口パイプ 6の入口部分 6 aをマフラシヱル 2の 外部に開口し図示していない音の発生源となるエンジンに連通させ、 出口部分 6 bをバッフル 5を貫通して第 2室 4内に開口させている。 この入口パイプ 6には 、 第 1室 3と対応する位置に第 1の小孔 1 1が形成されている。 The inlet pipe 6 is provided through the front end plate 10 of the muffler shell 2. Then, the inlet portion 6a of the inlet pipe 6 is opened to the outside of the muffler casing 2 and communicated with an engine (not shown) which is a sound source, and the outlet portion 6b passes through the baffle 5 and enters the second chamber 4. Is open. A first small hole 11 is formed in the inlet pipe 6 at a position corresponding to the first chamber 3.
中間パイプ 7は、 第 1室 3と第 2室 4を仕切るバッフル 5を貫通して設けられ 、 当該バッフル 5にて支持されている。 この中間パイプ 7は、 一端部分 7 aを第 1室 3に開口させ、 他端部分 7 bを第 2室 4に開口させている。 The intermediate pipe 7 is provided through a baffle 5 that partitions the first chamber 3 and the second chamber 4, and is supported by the baffle 5. The intermediate pipe 7 has one end portion 7 a opened in the first chamber 3 and the other end portion 7 b opened in the second chamber 4.
第 1の出口パイプ 8は、 マフラシェル 2のリア側エンドプレート 1 2とバッフ ル 5とを貫通して設けられ、 これらリア側エンドプレート 1 2とノ ッフル 5とで
支持されている。 この第 1の出口パイプ 8は、 入口部分 8 aを第 1室 3に開口さ せ、 出口部分 8 bをマフラシェル 2の外部に開口させている。 The first outlet pipe 8 is provided through the rear end plate 12 2 and the baffle 5 of the muffler shell 2. It is supported. The first outlet pipe 8 has an inlet portion 8 a opened in the first chamber 3 and an outlet portion 8 b opened outside the muffler shell 2.
第 2の出口パイプ 1 3は、 入口パイプ 6の出口部分 6 bにその入口部分 1 3 a を連接して接続させている。 そして、 この第 2の出口パイプ 1 3は、 リア側ェン ドプレート 1 2を貫通して設けられると共に出口部分 1 3 bをマフラシェル 2の 外部に開口させている。 また、 この第 2の出口パイプ 1 3は、 第 1の出口パイプ 8に対してその管口径を大きくしている。 The second outlet pipe 13 is connected to the outlet portion 6 b of the inlet pipe 6 by connecting the inlet portion 13 a. The second outlet pipe 13 is provided through the rear end plate 12 2 and opens the outlet portion 13 b to the outside of the muffler shell 2. In addition, the second outlet pipe 13 has a larger diameter than the first outlet pipe 8.
騒音低,構 9は、 第 2室 4で入口パイプ 6の出口部分 6 bに連接して接続さ れる第 2の出口パイプ 1 3との接続部分に設けられ、 この入口パイプ 6を流れる 排気ガスのガス流量に応じて該入口パイプ 6の出口部分 6 bを開閉する制御バル ブ 1 4と、 この制御バルブ 1 4を段階的に開度変化させる開度可変機構 1 5と、 制御バルブ 1 4の開度位置に応じて前記第 2室 4へと排気ガスを流入させる前記 第 2の出口パイプ 1 3に形成された第 2の小孔 1 6と力、らなる。 Low noise, structure 9 is provided at the connection portion with the second outlet pipe 13 connected to the outlet portion 6 b of the inlet pipe 6 in the second chamber 4, and the exhaust gas flowing through the inlet pipe 6 A control valve 14 that opens and closes the outlet portion 6 b of the inlet pipe 6 according to the gas flow rate, a variable opening mechanism 15 that changes the opening degree of the control valve 14 stepwise, and a control valve 1 4 The second small hole 16 formed in the second outlet pipe 13 for allowing the exhaust gas to flow into the second chamber 4 according to the opening position of the second small hole 16 and force.
制御バルブ 1 4は、 入口パイプ 6の出口部分 6 bの開口を閉塞する開閉蓋とし て形成され、 図示を省略するヒンジ機構にて上端部を支点として開閉自在とされ るように、 前記入口パイプ 6と第 2の出口パイプ 1 3との接続部分に取り付けら れている。 The control valve 14 is formed as an opening / closing lid that closes the opening of the outlet portion 6b of the inlet pipe 6, and the inlet pipe is opened and closed with an upper end portion as a fulcrum by a hinge mechanism (not shown). It is attached to the connection between 6 and the second outlet pipe 13.
開度可変機構 1 5は、 例えばコイルパネとされ、 そのコィノレパネのパネ係止部 1 5 aを前記制御バルブ 1 4に係止固定させている。 かかる開度可変機構 1 5は 、 そのコイルパネのバネ力で常に制御バルブ 1 4を閉じる方向に付勢するように なっているが、 入口パイプ 6を流れる排気ガスのガス流量に応じて (排圧変化に 応じて) 制御バルブ 1 4を解放させる。 The opening variable mechanism 15 is, for example, a coil panel, and the panel locking portion 15 a of the coin panel is locked and fixed to the control valve 14. The opening variable mechanism 15 is always urged in the direction to close the control valve 14 by the spring force of the coil panel, but according to the gas flow rate of the exhaust gas flowing through the inlet pipe 6 (exhaust pressure In response to change) Release control valve 14.
第 2の出口パイプ 1 3に形成される第 2の小孔 1 6は、 制御バルブ 1 4の回動 範囲に対応する位置に形成されている。 この第 2の小孔 1 6からは、 制御バルブ
1 4がある角度まで開いたときに始めて入口パイプ 6を通して第 2室 4へと排気 ガスが流れる。 The second small hole 16 formed in the second outlet pipe 13 is formed at a position corresponding to the rotation range of the control valve 14. From this second small hole 1 6 the control valve 1 Exhaust gas flows into the second chamber 4 through the inlet pipe 6 only when it is opened to a certain angle.
開度可変機構 1 5は、 制御バルブ 1 4を段階的に開度変ィ匕させるが、 どの段階 で開度させるのかは次の実験データに基づいている。 図 3は制御バルブ 1 4のバ ルブ位置と吐出音レベルとの関係を示す特性図である。 図 3中線 A (実線) は図 2 (A) で示すように制御バルブ 1 4が閉じた位置 Aにあるときのグラフ、 線 B (一点鎖線) は図 2 (A) で示すように制御バルブ 1 4が第 2の小孔 1 6を解放 させる位置まで開いた位置 Bにあるときのグラフ、 線 Cは図 2 (A) で示すよう に制御バルブ 1 4が大きく開いた位置 Cにあるときのグラフである。 The opening variable mechanism 15 changes the opening of the control valve 14 step by step. The step of opening the control valve 14 is based on the following experimental data. FIG. 3 is a characteristic diagram showing the relationship between the valve position of the control valve 14 and the discharge sound level. The middle line A (solid line) in Fig. 3 is a graph when the control valve 14 is in the closed position A as shown in Fig. 2 (A), and the line B (dashed line) is controlled as shown in Fig. 2 (A). Graph when valve 14 is in position B opened to the position where the second small hole 16 is released, line C is in position C where control valve 14 is widely open as shown in Fig. 2 (A) It is a graph of time.
この特性図より、 エンジン回転数が約 0〜: 1 0 0 0回転以下の低周波数域では 、 制御バルブ 1 4が閉じた位置 Aにあるときが最も吐出音が低く、 エンジン回転 数が約 1 0 0 0〜 4 0 0 0回転の中周波数域では制御バルブ 1 4が第 2の小孔 1 6を解放させた位置まで開いた位置 Bにあるときが最も吐出音が低く、 エンジン 回転数が約 4 0 0 0〜 7 0 0 0回転の高周波数域では制御バルブ 1 4が大きく開 いた位置 Cにあるときが最も吐出音が低い。 From this characteristic chart, the engine speed is about 0 to: In the low frequency range below 1 00 0 0, the discharge sound is the lowest when the control valve 14 is in the closed position A, and the engine speed is about 1 0 0 0 to 4 0 0 0 In the middle frequency range of rotation, when the control valve 14 is in the position B opened to the position where the second small hole 16 is released, the discharge sound is the lowest, and the engine speed is In the high frequency range of about 400 to 70,000, the discharge sound is the lowest when the control valve 14 is at the position C where the valve 14 is greatly opened.
この実験結果に基づいて制御バルブ 1 4を、 排気ガスの吐出音周波数レべノレが 、 低周波数域では入口パイプ 6の出口部分 6 bを閉じる位置 Aとし、 中周波数域 では第 2の小孔 1 6を解放させる位置 Bとし、 高周波数域では出口部分 6 bを大 きく開いた位置 Cとなるように、 前記開度可変機構 1 5のパネ定数を設定して当 該制御バルブ 1 4の開度状態を制御する。 Based on the results of this experiment, the control valve 14 is set to a position A where the exhaust gas discharge sound frequency level is close to the outlet portion 6 b of the inlet pipe 6 in the low frequency range, and the second small hole in the middle frequency range. 1 Set the panel constant of the opening variable mechanism 15 to a position B where the opening 6 is to be released and set the outlet portion 6b to a position C where the outlet 6b is wide open in the high frequency range. Control the opening state.
次に、 このように構成された消音器 1による消音作用について図 4を参照しな がら説明する。 Next, the silencing effect of the silencer 1 configured as described above will be described with reference to FIG.
エンジン回転数が低く (目安として 0〜1 0 0 0回転程度) 入口パイプ 6に流 入する排気ガスのガス流量が少ない場合 (排圧が小さい場合) は、 制御バルブ 1
4は、 図 4 (A) に示すように、 この制御バルブ 1 4を付勢するコイルバネであ る開度可変機構 1 5のパネ力が排圧に勝り、 前記入口パイプ 6の出口部分 6 bを 閉塞する。 If the engine speed is low (approx. 0 to 1 0 0 0), the control valve 1 is used when the flow rate of exhaust gas flowing into the inlet pipe 6 is small (when the exhaust pressure is low). As shown in FIG. 4 (A), the panel force of the opening variable mechanism 15 which is a coil spring that urges the control valve 14 4 is superior to the exhaust pressure, and the outlet portion 6 b of the inlet pipe 6 Block.
入口パイプ 6の出口部分 6 bが制御バルブ 1 4によって閉塞されてしまうと、 排気ガス並びに排気音は、 入口パイプ 6に形成された第 1の小孔 1 1から第 1室 3へと流出し、 第 1の出口パイプ 8を通って出口部分 8 bから外部へ排出される この時、 第 1室 3は拡張室として作用すると共に、 制御バルブ 1 4は閉状態に あるため、 第 2室 4は中間パイプ 7のみで第 1室 3と連通しており、 低周波数域 の吐出音を減衰させる低周波数型レゾネータ室として機能する。 レゾネータ室は 低周波数域の減衰を狙いとして採用するものであり、 車室内こもり音及び走り出 し異音等の騒音が消音しきれない場合は、 レゾネータ室により特定周波数の減衰 を図る。 このときのレゾネータ室は、 中間パイプ 7のみのコンダクテイビティ ( 音の入り易さのこと) を決める径と長さにて減衰周波数が決まるので、 減衰周波 数は第 2室 4の容量にもよるが低周波数型レゾネータとなり、 走り出し低周波数 域コモリ音が大幅に減衰可能となる。 If the outlet portion 6 b of the inlet pipe 6 is blocked by the control valve 14, the exhaust gas and the exhaust sound flow out from the first small hole 11 formed in the inlet pipe 6 to the first chamber 3. At this time, the first chamber 3 acts as an expansion chamber, and the control valve 14 is closed, so that the second chamber 4 is discharged from the outlet portion 8b through the first outlet pipe 8. Is connected to the first chamber 3 only by the intermediate pipe 7 and functions as a low-frequency resonator chamber that attenuates the discharge sound in the low-frequency range. The resonator room is adopted for the purpose of attenuation in the low frequency range. If noise such as the muffled noise in the vehicle interior and the running noise cannot be completely silenced, the resonator room will attenuate the specific frequency. In this case, the attenuation frequency is determined by the diameter and length that determine the conductivity of the intermediate pipe 7 only (the ease of sound entry), so the attenuation frequency is also the capacity of the second chamber 4 However, it becomes a low-frequency resonator and starts running, and the low-frequency como sound can be significantly attenuated.
エンジン回転数が高くなり (目安として 1 0 0 0〜4 0 0 0回転程度) 入口パ イブ 6に流入する排気ガスのガス流量が増えた場合 (排圧が増加した場合) は、 制御バルブ 1 4は、 図 4 (B ) に示すように、 この制御バルブ 1 4を付勢するコ ィルバネである開度可変機構 1 5のパネ力に抗して第 2の出口パイプ 1 3に形成 された第 2の小孔 1 6を解放する位置まで開く。 但し、 この制御バルブ 1 4の開 き位置は、 第 2の出口パイプ 1 3の出口部分 1 3 bから 気ガス並びに排気音を 排出させなレ、位置とする (但しバルブ部の開孔率はゼロでなくても、 開孔率が 7 %以下の小さい場合は、 中周波型レゾネータとしての効果は存在する) 。
これにより、 排気ガス並びに排気音は、 第 2の出口パイプ 1 3に形成された第 2の小孔 1 6から第 2室 4へと排出される。 このとき、 第 2室 4は、 第 2の小孔 1 6のコンダクテイビティとレゾネータパイプ部 (小孔 1 1の後から第 2室 4に 臨む入口パイプ 6の部分) 及び中間パイプ 7のコンダクテイビティの合わさった 周波難であるやや高レヽ周波 «を減衰する。 すなわち、 第 2室 4は、 中周波数 域の吐出音を減衰させる中周波数型レゾネータ室として機能することになる。 そして、 第 2室 4に排出された排気ガスは、 中間パイプ 7を通して第 1室 3へ と排出された後、 第 1の出口パイプ 8を通してマフラシェル 2の外部へ排出され る。 If the engine speed increases (as a guideline, about 1 0 0 0 to 4 0 0 0), and the exhaust gas flow into the inlet pipe 6 increases (if the exhaust pressure increases), the control valve 1 As shown in FIG. 4 (B), 4 is formed in the second outlet pipe 13 against the panel force of the opening variable mechanism 15 which is a coil spring for urging the control valve 14. Open the second small hole 16 to the position where it should be released. However, the opening position of this control valve 14 is the position where air gas and exhaust sound are not discharged from the outlet portion 1 3 b of the second outlet pipe 1 3 (however, the opening ratio of the valve portion is Even if it is not zero, if the hole area ratio is as small as 7% or less, there is an effect as a medium frequency resonator). As a result, the exhaust gas and the exhaust noise are discharged from the second small hole 16 formed in the second outlet pipe 13 into the second chamber 4. At this time, the second chamber 4 includes the conductivity of the second small hole 16 and the resonator pipe (the portion of the inlet pipe 6 facing the second chamber 4 from the rear of the small hole 11) and the conductive of the intermediate pipe 7. Attenuates a slightly higher frequency, which is a combined frequency. That is, the second chamber 4 functions as a medium frequency resonator chamber that attenuates the discharge sound in the medium frequency range. The exhaust gas discharged to the second chamber 4 is discharged to the first chamber 3 through the intermediate pipe 7 and then discharged to the outside of the muffler shell 2 through the first outlet pipe 8.
エンジン回転数が更に高くなり (目安として 4 0 0 0〜7 0 0 0回転程度) 入 口パイプ 6に流入する排気ガスのガス流量が更に増えた場合 (排圧が更に増加し た場合) は、 制御バルブ 1 4は、 図 4 (C) に示すように、 この制御バルブ 1 4 を付勢するコイルパネである開度可変機構 1 5のパネ力に抗して大きく開く。 これにより、 気ガス並びに排気音は、 第 2の出口パイプ 1 3の出口部分 1 3 bからマフラシェル 2の外部へ排出される。 このとき、 第 2室 4は、 先程の中周 波数型レゾネータ室から拡張室へと変化し、 中周波 から高周波数域に渡る幅 広い周波数域を減衰する。 拡張室は、 入り口パイプ 6の小孔 1 1を通してと、 中 間パイプ 7から第 2室への拡張及び出口パイプ 1 3への収縮による消音の役割を する。 このように、 排気ガス流量の変化に応じて低周波数域から高周波数域まで を一つの部屋で消音することが可能となる。 If the engine speed becomes higher (as a guideline, about 400 to 700 rpm), if the exhaust gas flow into the inlet pipe 6 further increases (if the exhaust pressure further increases) As shown in FIG. 4 (C), the control valve 14 opens largely against the panel force of the opening variable mechanism 15 which is a coil panel that urges the control valve 14. As a result, air gas and exhaust noise are discharged from the outlet portion 13 b of the second outlet pipe 13 to the outside of the muffler shell 2. At this time, the second chamber 4 changes from the middle frequency type resonator chamber to the expansion chamber, and attenuates a wide frequency range from the middle frequency to the high frequency range. The expansion chamber plays a role of silencing through the small hole 11 of the inlet pipe 6, expansion from the intermediate pipe 7 to the second chamber, and contraction to the outlet pipe 13. In this way, it is possible to mute the low frequency range to the high frequency range in one room according to changes in the exhaust gas flow rate.
なお、 前記したように制御バルブ 1 4の開度を変化 (コントローノレ) できるよ うに、 開度可変機構 1 5であるコイルパネのパネ定数を設定する必要がある。 以上のように構成された消音器 1によれば、 マフラシェル 2から出る二本のテ ールチューブは、 制御バルブ 1 4が取り付けられる第 2の出口パイプ 1 3の管口
径を大きくする一方で制御バルブ 1 4無しの第 1の出口パイプ 8の管口径を細く 設定しているので、 制御バルブ 1 4が閉状態の低流量時は、 第 1の出口パイプ 8 の細い出口管から排気音が排出されるので、 低周波 から中周波,の消音効 果が増大し、 また、 流量が少ないので圧力損失の上昇もない。 As described above, it is necessary to set the panel constant of the coil panel that is the opening variable mechanism 15 so that the opening of the control valve 14 can be changed (controlled). According to the silencer 1 configured as described above, the two tail tubes exiting from the muffler shell 2 are connected to the outlet of the second outlet pipe 1 3 to which the control valve 1 4 is attached. While the diameter is increased, the diameter of the first outlet pipe 8 without the control valve 1 4 is set to be narrow, so when the control valve 14 is closed and the flow rate is low, the first outlet pipe 8 is thin. Since exhaust noise is discharged from the outlet pipe, the silencing effect from low to medium frequency is increased, and there is no increase in pressure loss because the flow rate is small.
また、 この消音器 1によれば、 排気ガスの高流量時は、 気流騒音の寄与率が大 きくなる力 制御バルブ 1 4が開となってガス排出面積が多くなることで、 管口 径の大きい第 2の出口パイプ 1 3の管内流速も減少し、 気流騒音レベルの上昇及 び圧力損失レベルの上昇等の問題が解消される。 Further, according to the silencer 1, when the exhaust gas flow rate is high, the force control valve 14 is opened to increase the contribution rate of the air flow noise, and the gas discharge area is increased, so that the pipe diameter is increased. The in-pipe flow velocity of the large second outlet pipe 1 3 also decreases, and problems such as an increase in airflow noise level and an increase in pressure loss level are solved.
また、 この消音器 1によれば、 騒音低減機構 9によって、 第 2室 4を、 低周波 ¾レゾネータ室、 中周波 ¾Mレゾネータ室、 拡張室とに変化させるので、 マフ ラ容積を増加させることなく、 幅広い周波 での吐出音を減衰させることがで さる。 Further, according to the silencer 1, the noise reduction mechanism 9 changes the second chamber 4 into a low frequency ¾ resonator room, a medium frequency ¾M resonator room, and an expansion chamber without increasing the muffler volume. It is possible to attenuate the discharge sound in a wide range of frequencies.
また、 この消音器 1によれば、 排気ガスのガス流量に応じて開度可変機構 1 5 にて制御バルブ 1 4を開閉させることで、 制御バルブ 1 4を段階的に開閉させる ことができ、 狙った周波数帯域の吐出音を減衰させることができる。 Further, according to the silencer 1, the control valve 14 can be opened and closed in stages by opening and closing the control valve 14 with the opening degree variable mechanism 15 according to the gas flow rate of the exhaust gas. The discharge sound in the targeted frequency band can be attenuated.
また、 この消音器 1によれば、 ァクチユエータを使用して制御バルブ 1 4を開 閉させるのではなく、 排ガスの排圧により制御バルブ 1 4を開くように制御する ため、 低コスト且つ装置構成を簡 匕することができる。 In addition, according to the silencer 1, since the control valve 14 is not opened and closed by using an actuator, but the control valve 14 is controlled to be opened by exhaust gas exhaust pressure, the cost of the apparatus is reduced. It can be simplified.
また、 この消音器 1によれば、 1枚のバッフル 5を使用したマフラ構造であり 、 しかも制御バルブ 1 4を一つし力使用しないため、 重 *if加にはならない。 また、 この消音器 1によれば、 従来構造のようにァクチユエータを使用して制 御バルブ 1 4を開閉自在とするマフラと同等性能とした場合、 従来構造に比べて マフラ容量を 2〜 3割小型化することができる。 In addition, according to the silencer 1, a muffler structure using a single baffle 5 is used, and since a single control valve 14 is not used, a heavy * if is not added. In addition, according to the silencer 1, when using an actuator as in the conventional structure to achieve the same performance as a muffler that allows the control valve 14 to be opened and closed, the muffler capacity is 20-30% lower than that of the conventional structure. It can be downsized.
「第 2実施形態」
図 5は第 2実施形態の消音器の断面図である。 第 2実施形態では、 制御バルブ 1 4、 開度可変機構 1 5及び第 2の小孔 1 6からなる騒音低灘構 9の構造は第 1実施形態と同一であるが、 第 1室 3において中間パイプ 7と第 1の出口パイプ 8を略 U字状パイプ 1 7で連結させた構造としている。 "Second Embodiment" FIG. 5 is a cross-sectional view of the silencer of the second embodiment. In the second embodiment, the structure of the noise reduction mechanism 9 comprising the control valve 14, the opening variable mechanism 15 and the second small hole 16 is the same as that of the first embodiment. The intermediate pipe 7 and the first outlet pipe 8 are connected by a substantially U-shaped pipe 17.
このように、 略 U字状パイプ 1 7で中間パイプ 7と第 1の出口パイプ 8を連結 させると、 管口径の細いテールチューブがいわゆる Uターン型チューブとなり、 低周波,から中周波 «の消音効果を増大させることができる。 In this way, when the intermediate pipe 7 and the first outlet pipe 8 are connected by the substantially U-shaped pipe 17, the tail tube with a narrow pipe diameter becomes a so-called U-turn tube, and the muffler of low frequency to medium frequency is suppressed. The effect can be increased.
この Uターンチューブを長くすると、 チューブ長から決定されるテールチュー ブ共振の現象があるため、 第 1室 3に对応する部位に小孔 1 8を開孔する。 小孔 1 8を形成するとこで、 テールチューブ共振現象を抑制できる。 このように、 第 2実施形態の消音器 1では、 実質的に Uターンロングテールの効果は生かしなが ら、 テールチューブ共振は分断させてその影響を抑えた構造となっている。 なお、 第 1実施形態の消音器 1において、 図 1の第 1の出口パイプ 8の長さの 影響でテールチューブ共振が懸念される場合は、 同様にこの第 1の出口パイプ 8 に複数個の小孔を開孔しても良い。 When this U-turn tube is lengthened, there is a phenomenon of tail tube resonance that is determined from the tube length, so a small hole 18 is opened at a site corresponding to the first chamber 3. By forming the small holes 18, the tail tube resonance phenomenon can be suppressed. As described above, the silencer 1 of the second embodiment has a structure in which the effect of the U-turn long tail is substantially utilized, but the influence is suppressed by dividing the tail tube resonance. In the silencer 1 of the first embodiment, if there is a concern about tail tube resonance due to the length of the first outlet pipe 8 in FIG. A small hole may be opened.
また、 第 2実施形態の消音器 1によれば、 第 2室 4が閉状態の場合、 排気ガス 並びに排気音は入口パイプ 6の第 1の小孔 1 1力ゝら第 1室 3へ排出されて前記小 孔 1 8から第 1の出口パイプ 8の内部に流入されるが、 その場合、 流量が少ない ので圧力損失及び気流音へ与える影響は小さくなる。 Further, according to the silencer 1 of the second embodiment, when the second chamber 4 is closed, the exhaust gas and the exhaust noise are discharged into the first chamber 3 from the first small hole 11 of the inlet pipe 6. Then, it flows into the inside of the first outlet pipe 8 from the small hole 18, but in this case, since the flow rate is small, the influence on the pressure loss and the air flow noise becomes small.
以上のように、 従来のレゾネータ構造は特定回転数域において固定周波数を減 衰させ、 その他の回転数域においては不要な部屋であるが、 第 1実施形態及び第 2実施形態の消音器 1では、 エンジン回転数 (排ガスのガス流量) に応じて段階 的 (この例では 3段階) に変化するので、 低周波数域、 中周波数域、 高周波数域 と幅広い周波数帯域での吐出音を減衰させることができる。
「第 3実施形態」 As described above, the conventional resonator structure attenuates the fixed frequency in the specific rotation speed range and is an unnecessary room in the other rotation speed ranges, but in the silencer 1 of the first and second embodiments, Because it changes in stages (in this example, 3 stages) according to the engine speed (gas flow rate of exhaust gas), it is necessary to attenuate the discharge sound in a wide frequency band such as low frequency, medium frequency, and high frequency. Can do. `` Third embodiment ''
図 6は第 3実施形態の消音器の断面図、 図 7 (A) は第 1及び第 2制御バルブ を共に閉じて第 2室を低周波 ¾Mレゾネータ室としたときの排気ガスの流れを示 す図、 図 7 (B) は第 1制御バルブを開き第 2制御バルブを閉じて第 2室を中周 波 ¾Mレゾネータ室としたときの排気ガスの流れを示す図、 図 7 (C) は第 1及 び第 2制御バルブを共に開レ、て第 2室を拡張室としたときの排気ガスの流を示す 図である。 Fig. 6 is a cross-sectional view of the silencer of the third embodiment, and Fig. 7 (A) shows the flow of exhaust gas when both the first and second control valves are closed and the second chamber is a low-frequency ¾M resonator chamber. Fig. 7 (B) is a diagram showing the flow of exhaust gas when the first control valve is opened and the second control valve is closed to make the second chamber a medium frequency ¾M resonator chamber, and Fig. 7 (C) is a diagram FIG. 6 is a diagram showing the flow of exhaust gas when both the first and second control valves are opened and the second chamber is an expansion chamber.
第 3実施形態の消音器 1においては、 第 1実施形態とは異なり、 第 2の出口パ イブ 1 3を入口パイプ 6と独立させると共に入口パイプ 6の延長線上に設け、 そ の第 2の出口パイプ 1 3の入口部分 1 3 aに第 2制御バルブ 1 9を設けた構造と してレ、る。 入口パイプ 6の出口部分 6 bに設けられた制御バルブは、 第 3実施形 態では第 1制御バルブ 1 4と称する。 In the silencer 1 of the third embodiment, unlike the first embodiment, the second outlet pipe 13 is made independent of the inlet pipe 6 and provided on the extension line of the inlet pipe 6, and the second outlet The second control valve 19 is provided at the inlet portion 1 3 a of the pipe 1 3. The control valve provided at the outlet portion 6b of the inlet pipe 6 is referred to as a first control valve 14 in the third embodiment.
第 1制御バルブ 1 4及び第 2制御バルブ 1 9は、 何れも第 1実施形態と同様、 コイルパネからなる第 1開度可変機構 1 5及び第 2開度可変機構 2 0によって入 口パイプ 6の出口部分 6 b及び第 2の出口パイプ 1 3の入口部分 1 3 aを排気ガ スのガス流量によって段階的に開度変化させるように構成されている。 第 3実施 形態では、 第 1及び第 2制御バルブ 1 4、 1 9は、 開口部分を閉じる位置と開く 位置の 2段階としている。 As in the first embodiment, the first control valve 14 and the second control valve 19 are both connected to the inlet pipe 6 by the first opening variable mechanism 15 and the second opening variable mechanism 20 made of a coil panel. The outlet portion 6 b and the inlet portion 13 a of the second outlet pipe 13 are configured to change the opening stepwise according to the gas flow rate of the exhaust gas. In the third embodiment, the first and second control valves 14 and 19 are in two stages: a position where the opening is closed and a position where the opening is opened.
なお、 第 3実施形態の消音器 1は、 前記した相違点を除いては第 1実施形態と 同一構成であるため、 同一構成部分に関してはその説明を省略する。 Since the silencer 1 of the third embodiment has the same configuration as that of the first embodiment except for the above-described differences, the description of the same components is omitted.
次に、 第 3実施形態の消音器 1による消音作用について図 7を参照しながら説 明する。 Next, the silencing action by the silencer 1 of the third embodiment will be described with reference to FIG.
エンジン回転数が低く (目安として 0〜1 0 0 0回転程度) 入口パイプ 6に流 入する排気ガスのガス流量が少ない場合 (排圧が小さい場合) は、 第 1制御バル
ブ 1 4は、 図 7 (A) に示すように、 この第 1制御バルブ 1 4を付勢するコイル パネである第 1開度可変機構 1 5のパネ力が排圧に勝り、 前記入口パイプ 6の出 口部分 6 bを閉塞する。 If the engine speed is low (approx. 0 to 100 rpm as a guideline), if the exhaust gas flowing into the inlet pipe 6 is small (if the exhaust pressure is low), the first control valve 7 (A), the panel force of the first opening variable mechanism 15 which is a coil panel for energizing the first control valve 14 is superior to the exhaust pressure, as shown in FIG. Block 6 outlet 6 b.
入口パイプ 6の出口部分 6 bが制御バルブ 1 4によって閉塞されてしまうと、 排気ガス並びに排気音は、 入口パイプ 6に形成された第 1の小孔 1 1から第 1室 3へと流出し、 第 1の出口パイプ 8を通って出口部分 8 b力 ら外部へ排出される この時、 第 1制御バルブ 1 4及ぴ第 2制御バルブ 1 9は閉状態にあるため、 第 2室 4は低周波数域の吐出音を減衰させる低周波 レゾネータ室として機能す る。 このときのレゾネータ室は、 中間パイプ 7のみのコンダクテイビティにて減 衰周波数が決まるので、 減衰周波数は第 2室 4の容量にもよるが低周波数型レゾ ネータとなり、 走り出し低周波 «コモリ音が大幅に減衰可能となる。 If the outlet portion 6 b of the inlet pipe 6 is blocked by the control valve 14, the exhaust gas and the exhaust sound flow out from the first small hole 11 formed in the inlet pipe 6 to the first chamber 3. At this time, the first control valve 14 and the second control valve 19 are closed, so that the second chamber 4 is It functions as a low-frequency resonator room that attenuates low-frequency discharge sound. In this case, the attenuation frequency of the resonator chamber is determined by the conductivity of the intermediate pipe 7 alone, so the attenuation frequency depends on the capacity of the second chamber 4, but it becomes a low-frequency resonator, and the low frequency «como Can be greatly attenuated.
エンジン回転数が高くなり (目安として 1 0 0 0〜 4 0 0 0回転程度) 入口パ イブ 6に流入する排気ガスのガス流量が増えた場合 (排圧が増加した場合) は、 第 1制御バルブ 1 4は、 図 7 (B) に示すように、 この第 1制御バルブ 1 4を付 勢するコイルバネである第 1開度可変機構 1 5のパネ力に杭して入口パイプ 6の 出口部分 6 bを開く。 一方、 第 2制御バルブ 1 9は、 このエンジン回転数域では 第 2開度可変機構 2 0のパネ力の方力 S排圧に勝るため、 第 2の出口パイプ 1 3の 入口部分 1 3 aを塞いだ状態のままとなる。 If the engine speed becomes higher (as a guideline, about 1 0 0 0 to 4 0 0 0), if the flow rate of the exhaust gas flowing into the inlet pipe 6 increases (if the exhaust pressure increases), the first control As shown in FIG. 7 (B), the valve 14 is piled on the panel force of the first opening variable mechanism 15 that is a coil spring that urges the first control valve 14, and the outlet portion of the inlet pipe 6 6 Open b. On the other hand, the second control valve 19 has an inlet portion 1 3 a of the second outlet pipe 1 3 in order to overcome the panel force S of the second opening degree variable mechanism 20 in this engine speed range. Will remain closed.
これにより、 排気ガス並びに排気音は、 入口パイプ 6の出口部分 6 bから第 2 室 4へ排出される。 そして、 第 2室 4に排出された排気ガスは、 中間パイプ 7を 通って第 1室 3へと流れた後、 第 1の出口パイプ 8を通ってマフラシェル 2の外 部へと排出される。 このとき、 第 2室 4は、 第 1制御バルブ 1 4の部位と第 1の 小孔 1 1以降の入口パイプ 6を含めたコンダタティビティとレゾネータパイプ部
(第 2室 4に臨む入口パイプ 6の部分) 及び中間パイプ 7のコンダクティビティ の合わさった周波数域であるやや高い周波数域を減衰する。 すなわち、 第 2室 4 は、 中周波 «の吐出音を減衰させる中周波 レゾネータ室として機能するこ とになる。 As a result, the exhaust gas and the exhaust noise are discharged from the outlet portion 6 b of the inlet pipe 6 to the second chamber 4. The exhaust gas discharged into the second chamber 4 flows to the first chamber 3 through the intermediate pipe 7, and then is discharged to the outside of the muffler shell 2 through the first outlet pipe 8. At this time, the second chamber 4 includes the part of the first control valve 14 and the inlet pipe 6 including the first small hole 11 and the inlet pipe 6 and the resonator pipe portion. Attenuates the slightly higher frequency range (the part of the inlet pipe 6 facing the second chamber 4) and the intermediate pipe 7's conductivity. In other words, the second chamber 4 functions as an intermediate frequency resonator chamber that attenuates the discharge sound of the intermediate frequency.
エンジン回転数が更に高くなり (目安として 4 0 0 0〜7 0 0 0回転程度) 入 口パイプ 6に流入する排気ガスのガス流量が更に増えた場合 (排圧が更に増加し た場合) は、 第 1制御バルブ 1 4と第 2制御バルブ 1 9は、 図 7 (C) に示すよ うに、 何れも第 1制御バルブ 1 4及び第 2制御バルブ 1 9を付勢するコイルパネ である第 1開度可変機構 1 5及び第 2開度可変機構 2 0のパネ力に抗して大きく 開く。 If the engine speed becomes higher (as a guideline, about 400 to 700 rpm), if the exhaust gas flow into the inlet pipe 6 further increases (if the exhaust pressure further increases) As shown in FIG. 7C, the first control valve 14 and the second control valve 19 are both coil panels that energize the first control valve 14 and the second control valve 19. The opening variable mechanism 15 and the second opening variable mechanism 20 open greatly against the panel force.
これにより、 排気ガス並びに排気音は、 第 2の出口パイプ 1 3の出口部分 1 3 bからマフラシェル 2の外部へ排出される。 このとき、 第 2室 4は、 先程の中周 波 i¾レゾネータ室から拡張室へと変化し、 中周波 から高周波,に渡る幅 広い周波数域を減衰する。 このように、 排気ガス流量の変化に応じて低周波数域 から高周波 «までを一つの部屋で消音することが可能となる。 As a result, the exhaust gas and the exhaust noise are discharged from the outlet portion 13 b of the second outlet pipe 13 to the outside of the muffler shell 2. At this time, the second chamber 4 changes from the medium frequency i¾ resonator chamber to the expansion chamber, and attenuates a wide frequency range from the medium frequency to the high frequency. In this way, it is possible to mute the low frequency range to the high frequency range in one room according to the change in the exhaust gas flow rate.
以上のように構成された消音器 1によれば、 第 1実施形態の消音器 1と同様、 第 2室 4を、 低周波数型レゾネータ室、 中周波数型レゾネータ室、 拡張室とに変 ィ匕させることにより、 マフラ容積を増加させることなく幅広い周波 の吐出音 を減衰させることができる。 According to the silencer 1 configured as described above, the second chamber 4 is changed into a low-frequency type resonator room, a medium-frequency type resonator room, and an expansion room, like the silencer 1 of the first embodiment. By doing so, the discharge sound of a wide frequency can be attenuated without increasing the volume of the muffler.
また、 第 3実施形態の消音器 1によれば、 排圧感応型からなる 2つの制御バル ブ 1 4、 1 9を有するので、 より一層幅広い周波数域の吐出音を減衰することが できる。 Further, according to the silencer 1 of the third embodiment, since the two control valves 14 and 19 of the exhaust pressure sensitive type are provided, it is possible to attenuate discharge sound in a wider frequency range.
「第 4実施形態」 "Fourth embodiment"
図 8は第 4実施形態の消音器の断面図である。 第 4実施形態では、 第 1及び第
2制御バルブ 1 4、 1 9と第 1及び第 2開度可変機構 1 5、 2 0力 らなる騒音低 Wm 9の構造は第 3実施形態と同一であるが、 第 1室 3において中間パイプ 7 と第 1の出口パイプ 8を略 U字状パイプ 2 1で連結させた構造としている。 FIG. 8 is a cross-sectional view of the silencer of the fourth embodiment. In the fourth embodiment, the first and first 2 Control valves 1 4 and 1 9 and 1st and 2nd opening variable mechanisms 1 5 and 2 0 The noise low Wm 9 structure is the same as in the third embodiment. 7 and the first outlet pipe 8 are connected by a substantially U-shaped pipe 21.
このように、 略 U字状パイプ 2 1で中間パイプ 7と第 1の出口パイプ 8を連結 させると、 第 2実施形態の消音器 1と同様、 管口径の細いテールチューブがいわ ゆる Uターン型チユーブとなり、 低周波 から中周波 «の消音効果を増大さ せることができる。 In this way, when the intermediate pipe 7 and the first outlet pipe 8 are connected by the substantially U-shaped pipe 21, the tail tube with a narrow pipe diameter is a so-called U-turn type, similar to the silencer 1 of the second embodiment. It becomes a tube, and the silencing effect from low frequency to medium frequency can be increased.
Uターンチューブを長くすると、 チューブ長から決定されるテールチューブ共 振の現象があるため、 第 1室 3に対応する部位に小孔 2 2を開孔する。 小孔 2 2 を形成するとこで、 テールチューブ共振現象を抑制できる。 このように、 第 4実 施形態の消音器 1では、 実質的に Uターンロングテールの効果は生かしながら、 テールチューブ共振は分断させてその影響を抑えた構造となっている。 When the U-turn tube is lengthened, there is a phenomenon of tail tube resonance that is determined from the tube length. Therefore, a small hole 22 is opened at the site corresponding to the first chamber 3. By forming the small holes 2 2, the tail tube resonance phenomenon can be suppressed. As described above, the silencer 1 of the fourth embodiment has a structure in which the effect of the U-turn long tail is substantially utilized while the influence of the tail tube resonance is divided to suppress the influence.
また、 第 4実施形態の消音器 1によれば、 第 2室 4が閉状態の場合、 排気ガス 並びに排気音は入口パイプ 6の第 1の小孔 1 1から第 1室 3へ排出されて前記小 孔 2 2力 ら第 1の出口パイプ 8の内部に流入されるが、 その場合、 流量が少ない ので圧力損失及び気流音へ与える影響は小さくなる。 Further, according to the silencer 1 of the fourth embodiment, when the second chamber 4 is closed, the exhaust gas and the exhaust sound are discharged from the first small hole 11 of the inlet pipe 6 to the first chamber 3. The small hole 22 2 force flows into the first outlet pipe 8, but in this case, since the flow rate is small, the influence on pressure loss and airflow noise is small.
以上のように、第 4実施形態の消音器 1によれば、 エンジン回転数 (排ガスの ガス流量) に応じて第 1制御バルブ 1 4と第 2制御バルブ 1 9を段階的 (この例 では 2段階) に変化させることによって、 低周波 ¾¾、 中周波 ¾¾、 高周波数域 と幅広い周波数帯域での吐出音を減衰させることができる。 As described above, according to the silencer 1 of the fourth embodiment, the first control valve 14 and the second control valve 19 are stepped (in this example, 2 according to the engine speed (gas flow rate of exhaust gas)). In other words, it is possible to attenuate the discharge sound in a wide frequency band such as a low frequency ¾¾, a medium frequency ¾¾, and a high frequency range.
「第 5実施形態」 `` Fifth embodiment ''
図 9は第 5実施形態の消音器の断面図、 図 1 0 (A) は制御バルブを閉じて第 2室を低周波数型レゾネータ室としたときの排気ガスの流れを示す図、 図 1 0 ( B ) は制御バルブを少し開いて第 2室を中周波数型レゾネータ室としたときの排
気ガスの流れを示す図、 図 1 0 (C) は制御バルブを開いて第 2室を拡張室とし たときの排気ガスの流を示す図である。 FIG. 9 is a cross-sectional view of the silencer of the fifth embodiment, and FIG. 10 (A) is a diagram showing the flow of exhaust gas when the control valve is closed and the second chamber is a low-frequency resonator chamber. (B) is an exhaust when the control valve is slightly opened and the second chamber is a medium frequency resonator chamber. FIG. 10 (C) is a diagram showing the flow of exhaust gas when the control valve is opened and the second chamber is used as the expansion chamber.
第 5実施形態では、 第 1実施形態から第 4実施形態のように出口パイプをニ本 とするダブルテールチューブの消音器ではなく、 出口パイプを一本とした、 いわ ゆるシングルテールチューブの消音器に本発明の騒音低減機構を設けた例である なお、 第 5実施形態では、 第 1実施形態の図 1に示す消音器 1と異なる部位に ついてのみ説明するものとし、 同一部位に関してはその説明は省略する。 The fifth embodiment is not a double tail tube silencer with two outlet pipes as in the first to fourth embodiments, but a so-called single tail tube silencer with a single outlet pipe. In the fifth embodiment, only parts different from the silencer 1 shown in FIG. 1 of the first embodiment will be described, and the same parts will be described. Is omitted.
第 5実施形態の消音器 1では、 騒音低赚構 9は、 第 2室 4で入口パイプ 6の 出口部分 6 bに連接して接続された中空パイプ 2 3に設けられ、 この入口パイプ 6を流れる排気ガスのガス流量に応じて該入口パイプ 6の出口部分 6 bを開閉す る制御バルブ 1 4と、 この制御バルブ 1 4を段階的に開度変化させる開度可変機 構 1 5と、 制御バルブ 1 4の開度位置に応じて前記第 2室 4へと排気ガスを流入 させる前記中空パイプ 2 3に形成された第 2の小孔 1 6と力 らなる。 In the silencer 1 of the fifth embodiment, the noise reduction mechanism 9 is provided in the hollow pipe 23 connected to and connected to the outlet portion 6 b of the inlet pipe 6 in the second chamber 4. A control valve 14 that opens and closes the outlet portion 6 b of the inlet pipe 6 according to the gas flow rate of the flowing exhaust gas, and a variable opening mechanism 15 that changes the opening degree of the control valve 14 stepwise. It consists of a second small hole 16 formed in the hollow pipe 23 that allows exhaust gas to flow into the second chamber 4 according to the opening position of the control valve 14.
中空パイプ 2 3は、 入口パイプ 6の出口部分 6 bに連接するように装着され、 内部を中空とした円筒パイプとして形成されている。 その中空パイプ 2 3には、 前記出口部分 6 bを開閉自在とする制御バルブ 1 4の回動範囲に対応する位置に 第 2の小孔 1 6を形成している。 なお、 制御バルブ 1 4と開度可変機構 1 5は、 第 1実施形態と同一の構成であり、 その取付け構造も同じである。 The hollow pipe 23 is mounted so as to be connected to the outlet portion 6 b of the inlet pipe 6 and is formed as a cylindrical pipe having a hollow inside. In the hollow pipe 23, a second small hole 16 is formed at a position corresponding to a rotation range of the control valve 14 that allows the outlet portion 6b to be opened and closed. The control valve 14 and the opening variable mechanism 15 have the same configuration as in the first embodiment, and the mounting structure is also the same.
また、 この第 5実施形態の消音器 1では、 第 1の出口パイプ 8の入口部分 8 a の開口を他の部位よりも大としている。 具体的には、 第 1の出口パイプ 8の入口 部分 8 aの形状を漏斗形状とし、 入口から奥に行くに従ってその開口面積が次第 に大から小となるようなフレアーとしている。 第 1の出口パイプ 8の入口部分 8 aをフレアー形状とすることで、 この入口部分 8 aに流入する排気ガスの剥離を
防止しスムーズな流入を可能なものとすることができる。 In the silencer 1 of the fifth embodiment, the opening of the inlet portion 8 a of the first outlet pipe 8 is made larger than the other portions. Specifically, the shape of the inlet portion 8a of the first outlet pipe 8 is a funnel shape, and the flare is such that the opening area gradually becomes larger from the inlet toward the back. By making the inlet portion 8a of the first outlet pipe 8 into a flare shape, the exhaust gas flowing into the inlet portion 8a can be separated. It is possible to prevent and allow smooth inflow.
また、 第 5実施形態の消音器 1では、 第 1室 3に設けられる第 1の出口パイプ 8の外周囲を取り巻くように吸音部材 24が設けられている。 吸音部材 24は、 例えばグラスウールからなり、 第 1の出口パイプ 8に卷き付けられることで、 吸 音効果を高める。 In the silencer 1 of the fifth embodiment, the sound absorbing member 24 is provided so as to surround the outer periphery of the first outlet pipe 8 provided in the first chamber 3. The sound absorbing member 24 is made of glass wool, for example, and is rubbed against the first outlet pipe 8 to enhance the sound absorbing effect.
また、 第 5実施形態の消音器 1では、 第 1の出口パイプ 8の第 2室 4と対応す る部位に第 3の小孔 25を複数個形成している。 力かる第 3の小孔 25は、 全出 口パイプの表面積に対して 10%以下となるように開口してある。 開口率 10% 以下で第 3の小孔 25を第 1の出口パイプ 8に形成すれば、 低周波数域 (100 Hz以下) では第 3の小孔 25の影響は小さいため、 レゾネータ室として作用す る。 また、 中周波 (100Hz〜 150Hz) では、 レゾネータ室と拡張室 との両方の消音効果が得られ、 高周波 « (150Hz以上) では、 拡張室とし ての効果が得られる。 Further, in the silencer 1 of the fifth embodiment, a plurality of third small holes 25 are formed in a portion corresponding to the second chamber 4 of the first outlet pipe 8. The powerful third small hole 25 is opened so as to be 10% or less with respect to the surface area of the entire outlet pipe. If the third small hole 25 is formed in the first outlet pipe 8 with an aperture ratio of 10% or less, the influence of the third small hole 25 is small in the low frequency range (100 Hz or less), so that it acts as a resonator chamber. The Moreover, at the medium frequency (100 Hz to 150 Hz), the silencing effect of both the resonator room and the expansion chamber can be obtained, and at the high frequency (150 Hz or more), the effect as an expansion chamber can be obtained.
つまり、 第 2室 4に開口する第 3の小孔 25は、 開口率を 10%以下とするこ とで、 低周波数域では当該小孔 25が認識されず第 2室 4がレゾネータ室として 機能し、 高周波数域では当該小孔 25が認識されて第 2室 4が拡張室として機能 することになる。 開口率が 10%を超えると、 レゾネータ室から拡張室へと変化 せず、 初めから拡張室になってしまう。 In other words, the third small hole 25 opening to the second chamber 4 has an opening ratio of 10% or less, so that the small hole 25 is not recognized in the low frequency range, and the second chamber 4 functions as a resonator chamber. In the high frequency range, the small hole 25 is recognized, and the second chamber 4 functions as an expansion chamber. When the aperture ratio exceeds 10%, the resonator room does not change to the expansion room, and it becomes an expansion room from the beginning.
次に、 このように構成された消音器 1による消音作用について図 10を参照し ながら説明する。 Next, the silencing effect of the silencer 1 configured as described above will be described with reference to FIG.
エンジン回転数が低く (目安として 0〜1000回転程度) 入口パイプ 6に流 入する排気ガスのガス流量が少ない場合 (排圧が小さい場合) は、 制御バルブ 1 4は、 図 10 (A) に示すように、 この制御バルブ 14を付勢するコイルパネで ある開度可変機構 15のパネ力が排圧に勝り、 前記入口パイプ 6の出口部分 6 b
を閉塞する。 If the engine speed is low (approx. 0 to 1000 rpm as a guide), and the exhaust gas flowing into the inlet pipe 6 is small (if the exhaust pressure is low), the control valve 14 is shown in Fig. 10 (A). As shown, the panel force of the opening degree varying mechanism 15 which is a coil panel for energizing the control valve 14 overcomes the exhaust pressure, and the outlet portion 6 b of the inlet pipe 6 Occlude.
入口パイプ 6の出口部分 6 bが制御バルブ 1 4によって閉塞されてしまうと、 排気ガス並びに排気音は、 入口パイプ 6に形成された第 1の小孔 1 1から第 1室 3へと流出し、 第 1の出口パイプ 8を通って出口部分 8 bから外部へ排出される o If the outlet portion 6 b of the inlet pipe 6 is blocked by the control valve 14, the exhaust gas and the exhaust sound flow out from the first small hole 11 formed in the inlet pipe 6 to the first chamber 3. Discharged through the first outlet pipe 8 from the outlet part 8 b to the outside o
この時、 第 1室 3は拡張室として作用すると共に、 制御バルブ 1 4は閉状態に あるため、 第 2室 4は低周波数域の吐出音を減衰させる低周波数型レゾネータ室 として機能する。 このときのレゾネータ室は、 中間パイプ 7のみのコンダクティ ビティ (音の入り易さのこと) を決める径と長さにて減衰周波数が決まるので、 減衰周波数は第 2室 4の容量にもよるが低周波数型レゾネータとなり、 走り出し 低周波,コモリ音が大幅に減衰可能となる。 At this time, the first chamber 3 functions as an expansion chamber and the control valve 14 is in a closed state, so that the second chamber 4 functions as a low frequency type resonator chamber that attenuates discharge sound in a low frequency range. In this case, the resonance frequency of the resonator chamber is determined by the diameter and length that determine the conductivity of the intermediate pipe 7 only (the ease of sound entry), so the attenuation frequency depends on the capacity of the second chamber 4. It becomes a low frequency type resonator and starts running. Low frequency and como sound can be greatly attenuated.
エンジン回転数が高くなり (目安として 1 0 0 0〜 4 0 0 0回転程度) 入口パ イブ 6に流入する排気ガスのガス流量が増えた場合 (排圧が增カ卩した場合) は、 制御バルブ 1 4は、 図 1 0 (B) に示すように、 この制御バルブ 1 4を付勢する コイルパネである開度可変機構 1 5のパネ力に杭して中空パイプ 2 3に形成され た第 2の小孔 1 6を解放する位置まで開く。 If the engine speed increases (as a guideline, about 1 0 0 0 to 4 0 0 0), the exhaust gas flowing into the inlet pipe 6 increases (if the exhaust pressure increases), control is performed. As shown in FIG. 10 (B), the valve 14 is piled on the panel force of the opening degree varying mechanism 15 that is a coil panel that urges the control valve 14, and is formed in the hollow pipe 23. Open 2 small holes 1 6 to release position.
これにより、 排気ガス並びに排気音は、 中空パイプ 2 3に形成された第 2の小 孔 1 6から第 2室 4へと排出される。 このとき、 第 2室 4は、 第 2の小孔 1 6の コンダクテイビティとレゾネータパイプ部 (小孔 1 1の後から第 2室 4に臨む入 口パイプ 6の部分) 及び中間パイプ 7のコンダクテイビティの合わさった周波数 域であるやや高レヽ周波数域を減衰する。 すなわち、 第 2室 4は、 中周波誰の吐 出音を減衰させる中周波数型レゾネータ室として機能することになる。 As a result, the exhaust gas and the exhaust noise are discharged from the second small hole 16 formed in the hollow pipe 23 into the second chamber 4. At this time, the second chamber 4 includes the conductivity of the second small hole 16 and the resonator pipe (the portion of the inlet pipe 6 facing the second chamber 4 from the rear of the small hole 11) and the intermediate pipe 7 Attenuates the slightly higher frequency range, which is the frequency range where the conductivity is combined. That is, the second chamber 4 functions as a medium frequency type resonator chamber that attenuates the discharge sound of anyone at medium frequency.
そして、 第 2室 4に排出された排気ガスは、 中間パイプ 7を通して第 1室 3へ と排出された後、 第 1の出口パイプ 8を通してマフラシヱル 2の外部へ排出され
る。 The exhaust gas discharged to the second chamber 4 is discharged to the first chamber 3 through the intermediate pipe 7, and then discharged to the outside of the muffler shell 2 through the first outlet pipe 8. The
エンジン回転数が更に高くなり (目安として 4 0 0 0〜7 0 0 0回転程度) 入 口パイプ 6に流入する排気ガスのガス流量が更に増えた場合 (排圧が更に增加し た場合) は、 制御バルブ 1 4は、 図 1 0 (C) に示すように、 この制御バルブ 1 4を付勢するコイルパネである開度可変機構 1 5のパネ力に抗して大きく開く。 これにより、 排気ガス並びに排気音は、 中空パイプ 2 3に形成された第 2の小 孔 1 6と後方開口部から第 2室 4に大量に排気される。 そのため、 第 2室 4は、 先程の中周波 レゾネータ室から拡張室へと変化し、 中周波 から高周波数 域に渡る幅広い周波数域を減衰する。 このように、 第 5実施形態の消音器 1では 、 排気ガス流量の変化に応じて低周波数域から高周波数域までを一つの部屋で消 音することが可能となる。 If the engine speed increases further (as a guideline, about 400 to 700 rpm), if the exhaust gas flow into the inlet pipe 6 further increases (if the exhaust pressure further increases) As shown in FIG. 10 (C), the control valve 14 opens largely against the panel force of the opening variable mechanism 15 that is a coil panel that urges the control valve 14. As a result, a large amount of exhaust gas and exhaust noise is exhausted from the second small hole 16 formed in the hollow pipe 23 and the rear opening to the second chamber 4. Therefore, the second chamber 4 changes from the middle frequency resonator chamber to the expansion chamber, and attenuates a wide frequency range from the middle frequency to the high frequency range. Thus, in the silencer 1 of the fifth embodiment, it is possible to mute the low frequency range to the high frequency range in one room according to the change in the exhaust gas flow rate.
以上のように構成された消音器 1によれば、 ダブルテールチューブ型の第 1実 施形態の消音器 1と同様、 第 2室 4を、 低周波数型レゾネータ室、 中周波数型レ ゾネータ室、 拡張室とに変化させることにより、 マフラ容積を増加させることな く幅広い周波 の吐出音を、 このシングルテールチューブ型でも減衰させるこ とができる。 According to the silencer 1 configured as described above, as in the silencer 1 of the first embodiment of the double tail tube type, the second chamber 4 is divided into a low frequency type resonator room, a medium frequency type resonator room, By changing to the expansion chamber, this single tail tube type can attenuate the discharge sound of a wide frequency without increasing the volume of the muffler.
また、 この実施形態の消音器 1によれば、 第 1の出口パイプ 8には第 2室 4に 開口する第 3の小孔 2 5を形成しているので、 高周波数域でこの第 3の小孔 2 5 が認識されることで前記第 2室 4を拡張室に変化させることができる。 Further, according to the silencer 1 of this embodiment, the first outlet pipe 8 is formed with the third small hole 25 that opens to the second chamber 4, so that the third outlet hole 8 is formed in the high frequency range. By recognizing the small hole 25, the second chamber 4 can be changed to an expansion chamber.
また、 この実施形態の消音器 1によれば、 第 1の出口パイプ 8の入口部分 8 a の開口を他の部位の開口よりも大とすることで、 マフラ内への排ガス流入時の騒 音及び圧力損失を低減させることができる。 Further, according to the silencer 1 of this embodiment, the noise of the exhaust gas flowing into the muffler can be increased by making the opening of the inlet portion 8 a of the first outlet pipe 8 larger than the opening of other portions. And pressure loss can be reduced.
また、 この実施形態の消音器 1によれば、 第 1室 3に設けられる第 1の出口パ イブ 8の外周囲を取り巻くように吸音部材 2 4を設けたので、 マフラ上流部にて
発生した気流音等の高周波数音及びマフラ内部にて発生する拡張、 縮流、 バルブ 通過時の乱流音等の高周波音を吐出前に吸音することができる。 Further, according to the silencer 1 of this embodiment, since the sound absorbing member 24 is provided so as to surround the outer periphery of the first outlet pipe 8 provided in the first chamber 3, at the upstream portion of the muffler. High-frequency sounds such as generated airflow sounds and high-frequency sounds such as expansion, contraction, and turbulent sound generated when passing through valves can be absorbed before discharge.
「第 6実施形態」 "Sixth embodiment"
図 1 1は第 6実施形態の消音器の断面図である。 第 6実施形態では、 制御バル ブ 1 4、 開度可変機構 1 5及び第 2の小孔 1 6からなる騒音低 構 9の構造は 第 5実施形態と同一であるが、 第 1室 3におレ、て中間パイプ 7と第 1の出口パイ プ 8を略 U字状パイプ 2 6で連結させた構造としている。 なお、 第 2室 4に開口 する中間パイプ 7の他端部分 7 bをフレアー形状としている。 FIG. 11 is a cross-sectional view of the silencer of the sixth embodiment. In the sixth embodiment, the structure of the noise structure 9 comprising the control valve 14, the opening variable mechanism 15 and the second small hole 16 is the same as that of the fifth embodiment, but the first chamber 3 has In this structure, the intermediate pipe 7 and the first outlet pipe 8 are connected by a substantially U-shaped pipe 26. The other end portion 7b of the intermediate pipe 7 that opens to the second chamber 4 has a flare shape.
このように、 略 U字状パイプ 2 6で中間パイプ 7と第 1の出口パイプ 8を連結 させると、 管口径の細いテールチューブがいわゆる Uターン型チューブとなり、 低周波 から中周波 の消音効果を増大させることができる。 In this way, when the intermediate pipe 7 and the first outlet pipe 8 are connected by the substantially U-shaped pipe 26, the tail tube with a narrow pipe diameter becomes a so-called U-turn tube, and a silencing effect from low to medium frequencies is achieved. Can be increased.
この uターンチューブを長くすると、 チューブ長から決定されるテールチュー ブ共振の現象があるため、 第 1室 3に対応する部位に小孔 1 8を開孔する。 小孔 1 8を形成するとこで、 テールチューブ共振現象を抑制できる。 このように、 第 6実施形態の消音器 1では、 実質的に Uターン口ングテールの効果は生かしなが ら、 テールチューブ共振は分断させてその影響を抑えた構造となっている。 前記 第 1室 3に開口する小孔 1 8の開口率を 1 0 %以下にすれば、 テールチューブ共 振低周波数域である 2 0 0 H z以上の音に対してテールチューブ共振周波数を分 断することができる。 When this u-turn tube is lengthened, there is a phenomenon of tail tube resonance determined from the tube length, so a small hole 18 is opened at a site corresponding to the first chamber 3. By forming the small holes 18, the tail tube resonance phenomenon can be suppressed. Thus, the silencer 1 of the sixth embodiment has a structure in which the effect of the U-turn mouthtail is substantially utilized, but the influence is suppressed by dividing the tail tube resonance. If the aperture ratio of the small hole 18 opened in the first chamber 3 is set to 10% or less, the tail tube resonance frequency is divided with respect to the sound of 20 Hz or higher which is the tail tube resonance low frequency range. I can refuse.
また、 この消音器 1の構造は、 第 2室 4が閉状態の場合、 排気ガスは入口パイ プ 6に形成された第 1の小孔 1 1から第 1室 3に排気された後、 中間パイプ 7に 形成された小孔 1 8より U字状パイプ 2 6内に流入するが、 その流入量は少ない ので圧力損失及び気流音へ与える影響は小さくなる。 Further, the structure of the silencer 1 is such that when the second chamber 4 is closed, the exhaust gas is exhausted from the first small hole 11 formed in the inlet pipe 6 to the first chamber 3, and then the middle It flows into the U-shaped pipe 26 through the small hole 18 formed in the pipe 7, but since the amount of the inflow is small, the effect on pressure loss and airflow noise is small.
以上のように、 従来のレゾネータ構造は特定回転数域において固定周波数を減
衰させ、 その他の回転数域においては不要な部屋であるが、 第 5実施形態及び第 6実施形態の消音器 1では、 エンジン回転数 (排ガスのガス流量) に応じて段階 的 (この例では 3段階) に変化するので、 低周波数域、 中周波数域、 高周波数域 と幅広い周波数帯域での吐出音を減衰させることができる。 As described above, the conventional resonator structure reduces the fixed frequency in the specific rotation speed range. Although it is an unnecessary room in the other rotational speed range, in the silencer 1 of the fifth embodiment and the sixth embodiment, in stages (in this example, depending on the engine rotational speed (gas flow rate of exhaust gas)) (3 steps), it is possible to attenuate the discharge sound in a wide frequency band such as low frequency, medium frequency and high frequency.
「第 7実施形態」 "Seventh embodiment"
図 1 2は第 7実施形態の消音器の断面図、 図 1 3 (A) は制御バルブが設けら れた部位の要部拡大縦断面図、 図 1 3 (B ) は制御バルブが設けられた部位の要 部拡大横断面図である。 Fig. 12 is a cross-sectional view of the silencer of the seventh embodiment, Fig. 13 (A) is an enlarged vertical cross-sectional view of the main part where the control valve is provided, and Fig. 13 (B) is provided with the control valve. FIG.
第 7実施形態制御では、 騒音低減機構 9において、 制御バルブ 1 4が閉状態の ときに、 第 2の小孔 1 6を閉塞するように構成した。 なお、 第 7実施形態では、 第 1実施形態の図 1に示す消音器 1と異なる部位についてのみ説明し、 同一部位 に関してはその説明は省略する。 In the control of the seventh embodiment, the noise reduction mechanism 9 is configured to close the second small hole 16 when the control valve 14 is closed. In the seventh embodiment, only parts different from the silencer 1 shown in FIG. 1 of the first embodiment will be described, and description of the same parts will be omitted.
制御バルブ 1 4は、 入口パイプ 6の出口部分 6 bの開口を閉塞する開閉蓋とし て形成され、 図示を省略するヒンジ機構にて上端部を支点として開閉自在とされ るように、 前記入口パイプ 6と第 2の出口パイプ 1 3との接続部分に取り付けら れている。 The control valve 14 is formed as an opening / closing lid that closes the opening of the outlet portion 6b of the inlet pipe 6, and the inlet pipe is opened and closed with an upper end portion as a fulcrum by a hinge mechanism (not shown). It is attached to the connection between 6 and the second outlet pipe 13.
制御バルブ 1 4は、 その表面がガスの流れ方向に対して湾曲して形成されてい る。 より具体的には、 制御バルブ 1 4が閉状態のときに、 上端部から下端部に向 かって、 排気ガス流れ方向と逆らう側にわずかに凸となるような湾曲形状を有し ている。 また、 後述するように、 制御バルブ 1 4が大きく開いた位置 Cのとき ( 図 1 3 (A) 参照) は、 制御バルブ 1 4の排気ガスの流れに臨む面が凸となるよ うに構成される。 すなわち、 このとき制御バルブ 1 4は、 排気ガスの流れに対し て垂直の方向に凸側の面が向くようになる。 The surface of the control valve 14 is curved with respect to the gas flow direction. More specifically, when the control valve 14 is in the closed state, it has a curved shape that slightly protrudes from the upper end portion toward the lower end portion on the side opposite to the exhaust gas flow direction. Further, as will be described later, when the control valve 14 is in the position C where it is wide open (see FIG. 13 (A)), the control valve 14 is configured so that the surface facing the exhaust gas flow is convex. The That is, at this time, the control valve 14 has its convex surface facing in a direction perpendicular to the flow of exhaust gas.
入口パイプ 6の出口部分 6 bは、 この制御バルブ 1 4の湾曲に合致するような
形状に構成されている。 これにより、 制御バルブ 1 4が閉じた位置 Aにあるとき (図 1 3 (A) 参照) は、 入口パイプ 6の出口部分 6 bを閉塞して、 排気ガスが 入口パイプ 6から出口パイプ 1 3へと排出されることを制限する。 The outlet portion 6 b of the inlet pipe 6 is adapted to match the curvature of this control valve 14 It is configured in shape. As a result, when the control valve 14 is in the closed position A (see FIG. 13 (A)), the outlet portion 6 b of the inlet pipe 6 is blocked, and the exhaust gas flows from the inlet pipe 6 to the outlet pipe 1 3. To be discharged.
また、 制御バルブ 1 4は、 制御バルブ 1 4が閉状態のときに、 出口パイプ 1 3 に設けられた第 2の小孔 1 6を閉塞するように構成されている。 これにより、 制 御バルブ 1 4が閉じた位置 Aにあるとき (図 1 3 (A) 参照) は、 制御バルブ 1 4が第 2の小孔 1 6を閉塞して、 排気ガスが第 2室 4から出口パイプ 1 3へと排 出されることを制限する。 Further, the control valve 14 is configured to close the second small hole 16 provided in the outlet pipe 13 when the control valve 14 is closed. As a result, when the control valve 14 is in the closed position A (see FIG. 13 (A)), the control valve 14 closes the second small hole 16 and the exhaust gas flows into the second chamber. Limit the discharge from 4 to the exit pipe 1 3.
次に、 このように構成された消音器 1による消音作用について、 図 1 4を参照 しながら説明する。 Next, the silencing effect of the silencer 1 configured as described above will be described with reference to FIG.
エンジン回転数が低く (目安として 0〜1 0 0 0回転程度) 入口パイプ 6に流 入する排気ガスのガス流量が少ない場合 (排圧が小さい場合) は、 制御バルブ 1 4は、 図 1 3 (A) に示すように、 この制御バルブ 1 4を付勢するコイルパネで ある開度可変機構 1 5のパネ力力 S排圧に勝り、 前記入口パイプ 6の出口部分 6 b を閉塞する。 If the engine speed is low (approx. 0 to 1 0 0 0 as a guideline), the exhaust valve flowing into the inlet pipe 6 has a small flow rate (when the exhaust pressure is low). As shown in (A), the outlet force force S of the variable opening mechanism 15 which is a coil panel for energizing the control valve 14 is superior to the exhaust pressure S, and the outlet portion 6 b of the inlet pipe 6 is closed.
入口パイプ 6の出口部分 6 bが制御バルブ 1 4によって閉塞されてしまうと、 排気ガス並びに排気音は、 入口パイプ 6に形成された第 1の小孔 1 1から第 1室 3へと流出し、 第 1の出口パイプ 8を通って出口部分 8 bから外部へ排出される このとき、 第 1室 3は拡張室として作用すると共に、 制御バルブ 1 4は閉状態 にあるため、 第 2室 4は中間パイプ 7のみで第 1室 3と連通しており、 低周波数 域の吐出音を減衰させる低周波 レゾネータ室として機能する。 このときのレ ゾネータ室は、 中間パイプ 7のみのコンダクテイビティ (音の入り易さのこと) を決める径と長さにて減衰周波数が決まるので、 減衰周波数は第 2室 4の容量に
もよるが低周波数型のレゾネータとなり、 走り出し低周波数域コモリ音が大幅に 減衰可能となる。 If the outlet portion 6 b of the inlet pipe 6 is blocked by the control valve 14, the exhaust gas and the exhaust sound flow out from the first small hole 11 formed in the inlet pipe 6 to the first chamber 3. At this time, the first chamber 3 acts as an expansion chamber and the control valve 14 is in a closed state, so that the second chamber 4 is discharged from the outlet portion 8b through the first outlet pipe 8. Is connected to the first chamber 3 only by the intermediate pipe 7 and functions as a low-frequency resonator chamber that attenuates the discharge sound in the low-frequency range. In this case, the resonance frequency of the resonator chamber is determined by the diameter and length that determine the conductivity of the intermediate pipe 7 only (the ease of sound entry). However, it becomes a low-frequency type resonator and starts running, so that the low-frequency como sound can be significantly attenuated.
なお、 排気ガス並びに排気音は、 入口パイプ 6に形成された第 1の小孔 1 1か ら第 1室 3へと流出し、 第 1の出口パイプ 8を通って出口部分 8 bから外部へ 出される。 ここで、 前述の第 1の実施形態 (図 1 ) のように、 制御バルブ 1 4が 第 2の小孔 1 6の手前にある場合は、 第 1室 3に流出した排気ガスの一部は、 中 間パイプ 7を通って第 2の小孔 1 6から第 2の出口パイプ 1 3へと排出される。 これによつて、 レゾネータ室の消音効果が低下してしまう可能性がある。 The exhaust gas and the exhaust sound flow out from the first small hole 11 formed in the inlet pipe 6 to the first chamber 3, and pass through the first outlet pipe 8 to the outside from the outlet portion 8b. Is issued. Here, as in the first embodiment (FIG. 1) described above, when the control valve 14 is in front of the second small hole 16, a part of the exhaust gas flowing out into the first chamber 3 is Then, it passes through the intermediate pipe 7 and is discharged from the second small hole 16 to the second outlet pipe 13. This may reduce the silencing effect of the resonator room.
これに对して、 第 7の実施形態では、 図 1 4 (A) に示すように、 制御バルブ 1 4が閉状態のときに第 2の小孔 1 6を閉塞するので、 排気ガス及び排気音は、 第 2室 4から出口パイプ 1 3へと流出することなく、 出口パイプ 8のみから排出 される。 この結果、 第 2室 4は、 確実に低周波 レゾネータ室として機能する エンジン回転数が高くなり (目安として 1 0 0 0〜4 0 0 0回転程度) 入口パ イブ 6に流入する排気ガスのガス流量が増えた場合 (排圧が増カ卩した場合) は、 制御バルブ 1 4は、 図 1 4 (B) に示すように、 この制御バルブ 1 4を付勢する コイルパネである開度可変機構 1 5のパネ力に抗して第 2の出口パイプ 1 3に形 成された第 2の小孔 1 6を解放する位置まで開く。 In contrast, in the seventh embodiment, as shown in FIG. 14 (A), the second small hole 16 is closed when the control valve 14 is in the closed state. The sound is discharged only from the outlet pipe 8 without flowing out from the second chamber 4 to the outlet pipe 13. As a result, the second chamber 4 will surely function as a low-frequency resonator chamber, and the engine speed will be high (as a guideline, about 100 to 400 rpm), the exhaust gas flowing into the inlet pipe 6 When the flow rate increases (when the exhaust pressure increases), as shown in Fig. 14 (B), the control valve 14 is a variable opening mechanism that is a coil panel that urges the control valve 14. 1 Open the second small hole 16 formed in the second outlet pipe 1 3 against the panel force of 5 to the position to release it.
これにより、 排気ガス並びに排気音は、 第 2の出口パイプ 1 3に形成された第 2の小孔 1 6から第 2室 4へと排出される。 このとき、 第 2室 4は、 第 2の小孔 1 6のコンダクテイビティとレゾネータパイプ部 (第 1の小孔 1 1の後から第 2 室 4に臨む入口パイプ 6の部分) 及ぴ中間パイプ 7のコンダタティビティの合わ さった周波数域であるやや高い周波数域を減衰する。 すなわち、 第 2室 4は、 中 周波数域の吐出音を減衰させる中周波数型レゾネータ室として機能することにな
る。 As a result, the exhaust gas and the exhaust noise are discharged from the second small hole 16 formed in the second outlet pipe 13 into the second chamber 4. At this time, the second chamber 4 is connected to the conductivity of the second small hole 16 and the resonator pipe (the portion of the inlet pipe 6 facing the second chamber 4 from the rear of the first small hole 11) and the middle. Attenuates the slightly higher frequency range, which is the combined frequency range of pipe 7. That is, the second chamber 4 functions as a medium frequency type resonator chamber that attenuates the discharge sound in the medium frequency range. The
そして、 第 2室 4に排出された排気ガスは、 中間パイプ 7を通して第 1室 3へ と排出された後、 第 1の出口パイプ 8を通してマフラシヱル 2の外部へ排出され る。 The exhaust gas discharged to the second chamber 4 is discharged to the first chamber 3 through the intermediate pipe 7 and then discharged to the outside of the muffler shell 2 through the first outlet pipe 8.
エンジン回転数が更に高くなり (目安として 4 0 0 0〜 7 0 0 0回転程度) 入 口パイプ 6に流入する排気ガスのガス流量が更に増えた場合 (排圧が更に増カロし た場合) は、 図 1 4 (C) に示すように、 制御バルブ 1 4は、 この制御バルブ 1 4を付勢するコイルパネである開度可変機構 1 5のパネ力に抗して大きく開く。 これにより、 排気ガス並びに排気音は、 第 2の出口パイプ 1 3の出口部分 1 3 bからマフラシェル 2の外部へ排出される。 このとき、 第 2室 4は、 先程の中周 波数型レゾネータ室から拡張室へと変化し、 中周波^^から高周波数域に渡る幅 広い周波数域を減衰する。 拡張室は、 入り口パイプ 6の第 1の小孔 1 1を通して と、 中間パイプ 7から第 2室への拡張及ぴ出口パイプ 1 3への収縮による消音の 役割をする。 このように、 排気ガス流量の変化に応じて低周波 から高周波数 域までを一つの部屋で消音することが可能となる。 When the engine speed becomes higher (as a guideline, about 400 to 700 rpm) When the flow rate of the exhaust gas flowing into the inlet pipe 6 further increases (when the exhaust pressure further increases) As shown in FIG. 14 (C), the control valve 14 opens greatly against the panel force of the opening degree varying mechanism 15 which is a coil panel that urges the control valve 14. As a result, the exhaust gas and the exhaust noise are discharged from the outlet portion 13 b of the second outlet pipe 13 to the outside of the muffler shell 2. At this time, the second chamber 4 changes from the medium frequency type resonator chamber to the expansion chamber, and attenuates a wide frequency range from the medium frequency ^^ to the high frequency range. The expansion chamber plays a role of silencing through the first small hole 11 of the inlet pipe 6 and the expansion from the intermediate pipe 7 to the second chamber and the contraction of the outlet pipe 13. In this way, it is possible to mute the low frequency to high frequency range in one room according to changes in the exhaust gas flow rate.
特に、 第 7実施形態では、 制御バルブ 1 4力 排気ガス流れに対してわずかに 凸となるような湾曲形状を備えた。 この形状により、 制御バルブ 1 4が開状態の ときに、 制御バルブ 1 4の表面付近の排気ガスの流れが剥離しにくくなり、 気流 騒音を低減することができる。 また、 この形状により、 排圧が増加した場合に翼 効果による揚力が発生し、 パネ力に杭して制御バルブ 1 4をより大きく開口させ ることができ、 排気ガスの圧力損失を低減できる。 In particular, in the seventh embodiment, the control valve 14 is provided with a curved shape that is slightly convex with respect to the exhaust gas flow. With this shape, when the control valve 14 is in the open state, the flow of exhaust gas near the surface of the control valve 14 becomes difficult to separate, and airflow noise can be reduced. In addition, this shape generates lift due to the blade effect when the exhaust pressure increases, so that the control valve 14 can be opened larger by piled on the panel force, and the pressure loss of the exhaust gas can be reduced.
以上のように構成された消音器 1によれ 、 第 1実施形態と同様に、 第 2室 4 を、 低周波数型レゾネータ室、 中周波数型レゾネータ室、 拡張室とに変化させる ことにより、 マフラ容積を増加させることなく、 幅広い周波 での吐出音を減.
衰させることができる。 According to the silencer 1 configured as described above, as in the first embodiment, the second chamber 4 is changed into a low-frequency type resonator chamber, a medium-frequency type resonator chamber, and an expansion chamber. Reduces discharge noise over a wide range of frequencies without increasing Can be attenuated.
また、 この第 7実施形態の消音器 1によれば、 制御バルブ 1 4が閉状態のとき に、 第 2の小孔 1 6を閉塞するため、 低周波数型レゾネータ室の消音効果をより 高めることができる。 Further, according to the silencer 1 of the seventh embodiment, when the control valve 14 is in the closed state, the second small hole 16 is closed, so that the silencing effect of the low frequency type resonator chamber can be further enhanced. Can do.
また、 この第 7実施形態の消音器 1によれば、 制御バルブ 1 4が排気ガス流れ 方向に対してわずかに湾曲しているので、 排気ガスの気流騒音を低減することが できる。 またさらに、 排気ガスの高流量時は、 翼効果による揚力が発生して大き く開口させることができるので、 排気ガスの圧力損失を低減することができる。 Further, according to the silencer 1 of the seventh embodiment, since the control valve 14 is slightly curved with respect to the exhaust gas flow direction, the flow noise of the exhaust gas can be reduced. Furthermore, when the exhaust gas has a high flow rate, lift due to the blade effect is generated and the opening can be made large, so that the pressure loss of the exhaust gas can be reduced.
「第 8実施形態」 `` Eighth embodiment ''
図 1 5は第 8実施形態の消音器の断面図である。 第 8実施形態は、 図 8に示す 第 4実施形態と同様に、 第 1室 3において中間パイプ 7と第 1の出口パイプ 8を 略 U字状パイプ 2 1で連結させた構造としている。 FIG. 15 is a cross-sectional view of the silencer of the eighth embodiment. As in the fourth embodiment shown in FIG. 8, the eighth embodiment has a structure in which the intermediate pipe 7 and the first outlet pipe 8 are connected by a substantially U-shaped pipe 21 in the first chamber 3.
そしてさらに、 図 1 2に示す第 7実施形態と同様に、 制御バルブ 1 4を湾曲形 状とすると共に、 制御バルブ 1 4が閉状態のときに第 2の小孔 1 6を閉塞するよ うに構成した。 Furthermore, as in the seventh embodiment shown in FIG. 12, the control valve 14 is curved, and the second small hole 16 is closed when the control valve 14 is in the closed state. Configured.
このように、 略 U字状パイプ 2 1で中間パイプ 7と第 1の出口パイプ 8を連結 させると、 第 4実施形態の消音器 1と同様、 管口径の細いテールチューブがいわ ゆる Uターン型チユーブとなり、 低周波 から中周波数域の消音効果を増大さ せることができる。 In this way, when the intermediate pipe 7 and the first outlet pipe 8 are connected by the substantially U-shaped pipe 21, the tail tube with a narrow pipe diameter is a so-called U-turn type, similar to the silencer 1 of the fourth embodiment. It becomes a tube, and the silencing effect in the low to medium frequency range can be increased.
また、 第 8実施形態の消音器 1では、 第 2室 4に設けられる第 1の出口パイプ 8の外周囲を取り卷くように吸音部材 2 8が設けられている。 吸音部材 2 8は、 例えばグラスウールからなり、 第 1の出口パイプ 8に巻き付けられることで、 吸 音効果を高める。 In the silencer 1 of the eighth embodiment, the sound absorbing member 28 is provided so as to surround the outer periphery of the first outlet pipe 8 provided in the second chamber 4. The sound absorbing member 28 is made of glass wool, for example, and is wound around the first outlet pipe 8 to enhance the sound absorbing effect.
以上のように、 第 8実施形態の消音器 1によれば、 第 4実施形態と同様に、 ェ
ンジン回転数 (排ガスのガス流量) に応じて第 1制御バルブ 1 4と第 2制御バル ブ 1 9を段階的 (この例では 2段階) に変化させることによって、 低周波 、 中周波 «、 高周波 と幅広い周波数帯域での吐出音を減衰させることができ る。 As described above, according to the silencer 1 of the eighth embodiment, as in the fourth embodiment, By changing the first control valve 14 and the second control valve 19 stepwise (in this example, two steps) according to the engine speed (exhaust gas flow rate), low frequency, medium frequency «, high frequency And the discharge sound in a wide frequency band can be attenuated.
また、 この第 8実施形態の消音器 1によれば、 制御バルブ 1 4が閉状態のとき に、 第 2の小孔 1 6を閉塞するため、 低周波数型レゾネータ室の消音効果をより 高めることができる。 Further, according to the silencer 1 of the eighth embodiment, when the control valve 14 is closed, the second small hole 16 is closed, so that the silencing effect of the low frequency type resonator chamber can be further enhanced. Can do.
また、 この第 8実施形態の消音器 1によれば、 制御バルブ 1 4が排気ガス流れ 方向に対してわずかに湾曲しているので、 排気ガスの気流騒音を低減することが できる。 またさらに、 排気ガスの高流量時は、 翼効果による揚力が発生して大き く開口させることができるので、 気ガスの圧力損失を低減することができる。 Further, according to the silencer 1 of the eighth embodiment, since the control valve 14 is slightly curved with respect to the flow direction of the exhaust gas, the flow noise of the exhaust gas can be reduced. Furthermore, when the exhaust gas flow rate is high, lift due to the blade effect is generated and can be opened largely, so that the pressure loss of the gas gas can be reduced.
「第 9実施形態」 "Ninth embodiment"
図 1 6は第 9実施形態の消音器の断面図である。 第 9実施形態は、 図 9に示す 第 5実施形態と同様に、 出口パイプを一本とした、 いわゆるシングルテールチュ ーブの消音器に本発明の騒音低麵構を設けた例である。 FIG. 16 is a cross-sectional view of the silencer of the ninth embodiment. As in the fifth embodiment shown in FIG. 9, the ninth embodiment is an example in which the noise reduction mechanism of the present invention is provided in a so-called single tail tube silencer having a single outlet pipe.
そしてさらに、 図 1 2に示す第 7実施形態と同様に、 制御バルブ 1 4を湾曲形 状とすると共に、 制御バルブ 1 4が閉状態のときに第 2の小孔 1 6を閉塞するよ うに構成した。 Furthermore, as in the seventh embodiment shown in FIG. 12, the control valve 14 is curved, and the second small hole 16 is closed when the control valve 14 is in the closed state. Configured.
このように、 第 9実施形態の消音器 1では、 第 5実施形態と同様に、 シングル テールチューブ型の消音器 1においても、 第 1実施形態のダブルテールチューブ 型の消音器 1と同様、 第 2室 4を、 低周波数型レゾネータ室、 中周波数型レゾネ ータ室、 拡張室とに変化させることにより、 マフラ容積を増加させることなく幅 広い周波 の吐出音を減衰させることができる。 Thus, in the silencer 1 of the ninth embodiment, the single tail tube type silencer 1 is the same as the double tail tube silencer 1 of the first embodiment, as in the fifth embodiment. By changing the two chambers 4 into a low-frequency resonator chamber, a medium-frequency resonator chamber, and an expansion chamber, it is possible to attenuate the discharge sound of a wide frequency without increasing the volume of the muffler.
また、 この第 9実施形態の消音器 1によれば、 制御バルブ 1 4が閉状態のとき
に、 第 2の小孔 1 6を閉塞するため、 低周波数型レゾネータ室の消音効果をより 高めることができる。 Further, according to the silencer 1 of the ninth embodiment, when the control valve 14 is closed In addition, since the second small hole 16 is closed, the silencing effect of the low-frequency resonator chamber can be further enhanced.
また、 第 9実施形態の消音器 1によれば、 制御バルブ 1 4が排気ガス流れ方向 に対してわずかに湾曲しているので、 排気ガスの気流騒音を低減することができ る。 またさらに、 排気ガスの高流量時は、 翼効果による揚力が発生して大きく開 口させることができるので、 排気ガスの圧力損失を低減することができる。 Further, according to the silencer 1 of the ninth embodiment, since the control valve 14 is slightly curved with respect to the flow direction of the exhaust gas, the flow noise of the exhaust gas can be reduced. Furthermore, when the exhaust gas flow rate is high, lift due to the blade effect is generated and can be opened greatly, so that the pressure loss of the exhaust gas can be reduced.
「第 1 0実施形態」 "First Embodiment"
図 1 7は第 1 0実施形態の消音器の断面図である。 第 1 0実施形態では、 図 1 1に示す第 6実施形態と同様に、 第 1室 3におレ、て中間パイプ 7と第 1の出口パ イブ 8を略 U字状パイプ 2 6で連結させた構造としている。 なお、 第 2室 4に開 口する中間パイプ 7の他端部分 7 bをフレアー形状としている。 FIG. 17 is a cross-sectional view of the silencer of the 10th embodiment. In the 10th embodiment, as in the sixth embodiment shown in FIG. 11, the intermediate pipe 7 and the first outlet pipe 8 are connected to the first chamber 3 by a substantially U-shaped pipe 26. The structure is made to be. The other end portion 7 b of the intermediate pipe 7 that opens to the second chamber 4 has a flare shape.
そしてさらに、 図 1 2に示す第 7実施形態と同様に、 制御バルブ 1 4を湾曲形 状とし、 制御バルブ 1 4が閉状態のときに第 2の小孔 1 6を閉塞するように構成 した。 Further, similarly to the seventh embodiment shown in FIG. 12, the control valve 14 is curved, and the second small hole 16 is closed when the control valve 14 is closed. .
このように、 第 1 0実施形態では、 第 6実施形態と同様に、 シングルテールチ ユーブ型の消音器 1においても、 エンジン回転数 (排ガスのガス流量) に応じて 段階的 (この例では 3段階) に変化するので、 低周波数域、 中周波数域、 高周波 数域と幅広い周波数帯域での吐出音を減衰させることができる。 Thus, in the 10th embodiment, as in the 6th embodiment, the single tail tube silencer 1 is also stepwise (in this example, 3) according to the engine speed (gas flow rate of exhaust gas). Therefore, it is possible to attenuate the discharge sound in a wide frequency range such as low frequency range, medium frequency range, and high frequency range.
また、 この第 1 0実施形態の消音器 1によれば、 制御バルブ 1 4が閉状態のと きに、 第 2の小孔 1 6を閉塞するため、 低周波数型レゾネータ室の消音効果をよ り高めることができる。 Further, according to the silencer 1 of the 10th embodiment, the second small hole 16 is closed when the control valve 14 is in the closed state, so that the silencing effect of the low frequency type resonator chamber is obtained. Can be increased.
また、 第 1 0実施形態の消音器 1によれば、 制御バルブ 1 4が排気ガス流れ方 向に対してわずかに湾曲しているので、 排気ガスの気流騒音を低減することがで きる。 またさらに、 排気ガスの高流量時は、 翼効果による揚力が発生して大きく
開口させることができるので、 排気ガスの圧力損失を低減することができる。 「第 1 1実施形態」 Further, according to the silencer 1 of the tenth embodiment, since the control valve 14 is slightly curved with respect to the exhaust gas flow direction, the flow noise of the exhaust gas can be reduced. Furthermore, when the exhaust gas flow rate is high, lift due to the blade effect is generated and greatly increased. Since it can be opened, the pressure loss of the exhaust gas can be reduced. "First Embodiment 1"
図 1 8 (A) は第 1 1実施形態の制御バルブが設けられた部位の要部拡大縦断 面図、 図 1 8 (B) は第 1 1実施形態の制御バルブが設けられた部位の要部拡大 横断面図である。 Fig. 18 (A) is an enlarged vertical sectional view of the main part where the control valve of the first embodiment is provided, and Fig. 18 (B) is the main part of the part where the control valve of the first embodiment is provided. FIG.
第 1 1実施の形態では、 前述の第 7から第 1 0実施形態と同様に、 制御バルブ 1 4を湾曲形状とし、 制御バルブ 1 4が閉状態のときに第 2の小孔 1 6を閉塞す るよう構成した。 In the first embodiment, as in the seventh to tenth embodiments described above, the control valve 14 has a curved shape, and the second small hole 16 is closed when the control valve 14 is closed. It was configured to do so.
そしてさらに、 制御バルブ 1 4の先端部分 (ェッジ) の角度が小さくなるよう に構成した。 より具体的には、 図 1 8 (B) に示すように、 制御バルブ 1 4が大 きく開いた位置 Cのときに、 排気ガスの流れ方向の先端部分となるエッジ 1 4 a 力 排気ガス流れ方向に向かうに従って、 徐々に鋭角となるような形状とした。 このように、 第 1 1実施形態では、 第 7から第 1 1実施の形態の効果にカロえ、 制御バルブ 1 4の先端部分であるエッジ 1 4 aの角度が、 排気ガス流れ方向に向 かうに従って小さくなるように構成したので、 制御バルブ 1 4表面付近の気流の 剥離の発生が抑制される。 これにより、 排気ガス流量が大きく制御バルブ 1 4が 出口パイプ 1 3に対して大きく開いた位置 Cとなったときにも、 制御バルブ 1 4 により発生する気流騒音が低減される。 Furthermore, the angle of the tip portion (edge) of the control valve 14 is configured to be small. More specifically, as shown in FIG. 18 (B), when the control valve 14 is in the wide open position C, the edge 14 4 a force that becomes the tip of the exhaust gas flow direction Exhaust gas flow The shape gradually becomes acute as it goes in the direction. As described above, in the first embodiment, the effect of the seventh to 11th embodiments is remarked, and the angle of the edge 14 a which is the tip portion of the control valve 14 is directed in the exhaust gas flow direction. Therefore, the occurrence of air flow separation near the surface of the control valve 14 is suppressed. As a result, even when the exhaust gas flow rate is large and the control valve 14 is in the position C where it is greatly opened with respect to the outlet pipe 13, airflow noise generated by the control valve 14 is reduced.
以上、 本発明を適用した具体的な実施形態について説明したが、 本発明は、 上 述の実施形態に限定されることはなく種々の変更が可能である。 While specific embodiments to which the present invention is applied have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made.
例えば、 本実施形態の消音器は、 通常の内燃機関エンジンを搭載する自動車用 の消音器としても使用できる他、 エンジンと電気モータとを組み合わせたハイブ リツドカー用の消音器、 或いは、 水素と酸素を反応させることで発電する電力を 動力とする燃料電池自動車用の消音器としても使用することができる。
また、 第 5実施形態の消音器 1では、 第 1の出口パイプ 8の入口部分 8 aの開 口を他の部位の開口よりも大とするフレアー構造としたが、 排気ガスの流入時の 騒音及び圧力損失が大きく寄与しない場合は、 フレアー構造を採用する必要はな レ、。 For example, the silencer of this embodiment can be used as a silencer for an automobile equipped with a normal internal combustion engine, a silencer for a hybrid car that combines an engine and an electric motor, or hydrogen and oxygen. It can also be used as a silencer for fuel cell vehicles powered by the power generated by the reaction. Further, the silencer 1 of the fifth embodiment has a flare structure in which the opening of the inlet part 8a of the first outlet pipe 8 is larger than the opening of other parts, but the noise during the inflow of exhaust gas If the pressure loss does not contribute significantly, it is not necessary to adopt the flare structure.
また、 第 5実施形態の消音器 1では、 第 1室 3に設けられる第 1の出口パイプ 8の外周囲を取り巻くように吸音部材 2 4を設けたが、 気流発生音の寄与率が小 さい ^は、 吸音部材 2 4を設ける必要はない。 Further, in the silencer 1 of the fifth embodiment, the sound absorbing member 24 is provided so as to surround the outer periphery of the first outlet pipe 8 provided in the first chamber 3, but the contribution rate of the airflow generated sound is small. ^ Does not require the sound absorbing member 24.
また、 第 7から第 1 0実施形態では、 制御バルブ 1 4を湾曲形状としたが、 閉 状態のときに第 2の小孔 1 6を閉塞できるものであれば、 どのような形状でもよ い。 例えば、 制御バルブ 1 4において発生する気流騒音が無視できる程度であれ ば、 第 1実施形態 (図 1及び 2 ) のように平板状であってもよい。 In the seventh to tenth embodiments, the control valve 14 is curved, but any shape can be used as long as the second small hole 16 can be closed when the control valve 14 is closed. . For example, as long as the airflow noise generated in the control valve 14 is negligible, it may be flat as in the first embodiment (FIGS. 1 and 2).
また、 制御バルブ 1 4を均一な厚さとせず、 閉状態のとき第 2の小孔 1 6を閉 塞するように、 薄板状の制御バルブ 1 4の周囲の第 2の小孔 1 6に対応する位置 に、 フランジを設けてもよい。 In addition, the control valve 14 does not have a uniform thickness, and the second small hole 16 around the thin plate-shaped control valve 14 is closed so that the second small hole 16 is closed when the control valve 14 is closed. A flange may be provided at the corresponding position.
また、 制御バルブ 1 4の表面に溝状の凹凸加工 (いわゆるボルテックス ·ジェ ネレータ) を施して、 気流騒音を低減するように構成してもよい。 Further, the surface of the control valve 14 may be provided with a groove-shaped unevenness process (so-called vortex generator) so as to reduce airflow noise.
本願は、 2 0 0 7年 6月 6日に日本国特許庁に出願された特願 2 0 0 7 - 1 5 0 4 8 1、 2 0 0 7年 8月 1 0日に日本国特許庁に出願された特願 2 0 0 7 - 2 0 9 8 6 0及ぴ 2 0 0 8年 5月 8日に日本国特許庁に出願された特願 2 0 0 8 - 1 2 2 2 2 2に基づく優先権を主張するものである。 これらの出願の全ての内容 は参照により本明細書に組み込まれる。
This application is a patent application filed with the Japan Patent Office on June 6, 2007. 0 0 7-1 5 0 4 8 1, 2 0 0 August 10, 2010 The Japan Patent Office 2 0 0 7-2 0 9 8 6 0 and 2 0 0 Patent application filed with the Japan Patent Office on May 8, 2008 2 0 0 8-1 2 2 2 2 2 Claims priority based on. The entire contents of these applications are incorporated herein by reference.
Claims
1. 筒状のマフラシェル (2) と、 1. A cylindrical muffler shell (2),
鹏己マフラシェル (2) の内部空間を第 1室 (3) と第 2室 (4) とに仕切る 仕切り構造 (5) と、 A partition structure (5) that divides the internal space of the self-muffler shell (2) into the first chamber (3) and the second chamber (4);
前記第 1室 (3) と対応する位置に第 1の孔 (11) を有し且つ出口部分 (6 b) を前記第 2室 (4) に設け、 前記マフラシェル (2) 内に排ガスを導入させ る入口通路 (6) と、 The first chamber (3) has a first hole (11) at a position corresponding to the first chamber (3), an outlet portion (6b) is provided in the second chamber (4), and exhaust gas is introduced into the muffler shell (2). The entrance passage (6)
前記仕切り構造 (5) に固定され、 前記第 1室 (3) と前記第 2室 (4) を連 通させる中間通路 (7) と、 An intermediate passage (7) fixed to the partition structure (5) and connecting the first chamber (3) and the second chamber (4);
前記マフラシェル (2) 内で消音された排ガスを外部へ排出させる第 1の出口 通路 (8) と、 A first outlet passage (8) for discharging the exhaust gas silenced in the muffler shell (2) to the outside;
前記第 2室 (4) を、 低周波 «の吐出音を減衰させる低周波 レゾネータ 室、 中周波数域の吐出音を減衰させる中周波数型レゾネータ室、 高周波数域の吐 出音を減衰させる拡張室とに変化させる騒音低,構 (9) と、 を備えた 消音器。 The second chamber (4) includes a low frequency resonator chamber for attenuating low frequency discharge sound, a medium frequency type resonator chamber for attenuating medium frequency discharge sound, and an expansion chamber for attenuating high frequency discharge sound. A silencer equipped with a low noise level, structure (9).
2. 請求項 1に記載の消音器であって、 2. A silencer according to claim 1,
前記騒音低灘構 (9) は、 The low noise structure (9)
前記第 2室 (4) で、 前記入口通路 (6) と前記入口通路 (6) の出口部分 ( 6 b) に連接して接続される第 2の出口通路 (13) と、 の接続部分に設けられ 、 この入口通路 (6) を流れる排気ガスのガス流量に応じて該入口通路 (6) の 出口部分 (6 b) を開閉する制御バルブ (14) と、 In the second chamber (4), a connection portion between the inlet passage (6) and the second outlet passage (13) connected to and connected to the outlet portion (6b) of the inlet passage (6) A control valve (14) provided to open and close the outlet portion (6 b) of the inlet passage (6) according to the flow rate of the exhaust gas flowing through the inlet passage (6);
前記制御バルブ (14) を段階的に開度変ィ匕させる開度可変機構 (15) と、
前記制御バノレブ (14) の開度位置に応じて肅己第 2室 (4) へと排気音及び 排気ガスを流入させる編己第 2の出口通路 (13) に形成された第 2の孔 (1 6 ) と力 らなる An opening variable mechanism (15) for changing the opening of the control valve (14) stepwise; A second hole (13) formed in the second outlet passage (13) for allowing exhaust sound and exhaust gas to flow into the second chamber (4) according to the opening position of the control vanolev (14). 1 6) and power
消音器。 Silencer.
3. 請求項 1に記載の消音器であって、 3. The silencer according to claim 1,
前記騒音低灘構 (9) は、 The low noise structure (9)
前記入口通路 (6) の出口部分 (6 b) に設けられ、 この入口通路 (6) を流 れる排気ガスのガス流量に応じて該入口通路 (6) の出口部分 (6 b) を開閉す る第 1制御バルブ (14) と、 The outlet portion (6b) of the inlet passage (6) is opened and closed according to the gas flow rate of the exhaust gas flowing in the inlet passage (6). The first control valve (14)
前記第 1制御バルブ (14) を段階的に開度変化させる第 1開度可変機構 (1 5) と、 A first opening variable mechanism (15) for changing the opening of the first control valve (14) stepwise;
前記入口通路 (6) の延長線上であって、 前記マフラシェル (2) の後端側の エンドプレート (1 2) を貫通して設けられた第 2の出口通路 (13) の入口部 分 (13 a) に設けられ、 前記第 1制御バルブ (14) が開いて前記第 2室 (4 ) へと流入した排ガスのガス流量に応じてその入口部分 (13 a) を開閉する第 2$lJ御ノ ノレブ (1 9) と、 On the extension line of the inlet passage (6), the inlet portion (13) of the second outlet passage (13) provided through the end plate (12) on the rear end side of the muffler shell (2). The first control valve (14) is opened to open a second $ lJ control that opens and closes the inlet portion (13a) according to the gas flow rate of the exhaust gas flowing into the second chamber (4) when the first control valve (14) is opened. No Nolev (1 9),
前記第 2制御バルブ (1 9) を段階的に開度変化させる第 2開度可変機構 (2 0) と力 らなる And a second opening variable mechanism (2 0) for changing the opening of the second control valve (1 9) stepwise.
消音器。 Silencer.
4. 請求項 1に記載の消音器であって、 4. A silencer according to claim 1,
前記騒音低灘構 (9) は、 The low noise structure (9)
前記第 2室 (4) で前記入口通路 (6) の出口部分 (6 b) に連接して接続さ
れた中空通路 (23) に設けられ、 この入口通路 (6) を流れる排気ガスのガス 流量に応じて該入口通路 (6) の出口部分 (6 b) を開閉する制御バルブ (14 ) と、 The second chamber (4) is connected to the outlet portion (6b) of the inlet passage (6). A control valve (14) provided in the hollow passage (23) for opening and closing the outlet portion (6b) of the inlet passage (6) according to the gas flow rate of the exhaust gas flowing through the inlet passage (6),
前記制御バルブ (14) を段階的に開度変化させる開度可変機構 (15) と、 ΙίίΙΒ制御バルブ (14) の開度位置に応じて前記第 2室 ( 4 ) へと排気音及び 排気ガスを流入させる前記中空通路 (23) に形成された第 2の孔 (16) とか らなる A variable opening mechanism (15) for changing the opening degree of the control valve (14) stepwise, and exhaust sound and exhaust gas to the second chamber (4) according to the opening position of the control valve (14). A second hole (16) formed in the hollow passage (23) through which water flows.
消音器。 Silencer.
5. 請求項 2から請求項 4の何れかに記載の消音器であって、 5. The silencer according to any one of claims 2 to 4,
前記第 1室 (3) において、 前記中間通路 (7) と前記第 1の出口通路 (8) が略 U字状通路 (17、 21、 26) で連結された In the first chamber (3), the intermediate passage (7) and the first outlet passage (8) are connected by a substantially U-shaped passage (17, 21, 26).
消音器。 Silencer.
6. 請求項 4に記載の消音器であって、 6. A silencer according to claim 4,
前記第 1の出口通路 (8) には、 前記第 2室 (4) に開口する第 3の孔 (25 ) が形成された The first outlet passage (8) is formed with a third hole (25) that opens into the second chamber (4).
消音器。 Silencer.
7. 請求項 2に記載の消音器であって、 7. A muffler according to claim 2,
前記第 2の孔 (16) は、 前記出口通路 (13) において、 前記制御バルブ ( 14) が閉状態のときに該制御バルブ (14) によって閉塞される位置に設けら れる The second hole (16) is provided in the outlet passage (13) at a position closed by the control valve (14) when the control valve (14) is in a closed state.
消音器。
Silencer.
8. 請求項 2に記載の消音器であつて、 8. A silencer according to claim 2,
前記制御バルブ (14) は、 開状態のときに、 排気ガスの流れに臨む面が凸と なる湾曲形状を有している The control valve (14) has a curved shape with a convex surface facing the flow of exhaust gas when opened.
消音器。 Silencer.
9. 請求項 8に記載の消音器であって、 9. A silencer according to claim 8,
前記制御バルブ (14) は、 開状態のときに、 排気ガス流れ下流方向側に向か うに従つて鋭角となるように形成されている The control valve (14) is formed to have an acute angle when the control valve (14) is in the open state as it moves toward the downstream side of the exhaust gas flow.
消音器。
Silencer.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007-150481 | 2007-06-06 | ||
JP2007150481 | 2007-06-06 | ||
JP2007209860 | 2007-08-10 | ||
JP2007-209860 | 2007-08-10 | ||
JP2008122222A JP2009062972A (en) | 2007-06-06 | 2008-05-08 | Silencer |
JP2008-122222 | 2008-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008150024A1 true WO2008150024A1 (en) | 2008-12-11 |
Family
ID=40093821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/060730 WO2008150024A1 (en) | 2007-06-06 | 2008-06-05 | Silencer |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008150024A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011117408A (en) * | 2009-12-07 | 2011-06-16 | Calsonic Kansei Corp | Muffler |
KR20110116188A (en) * | 2009-02-02 | 2011-10-25 | 엠콘 테크놀로지스 엘엘씨 | Passive valve assembly with negative start angle |
CN102536386A (en) * | 2011-12-29 | 2012-07-04 | 湛江市华夏消声器有限公司 | Structurally modified automobile exhaust muffler assembly |
CN103277171A (en) * | 2013-05-29 | 2013-09-04 | 华环(苏州)汽车科技有限公司 | Novel exhaust muffling structure |
US20160333756A1 (en) * | 2014-06-04 | 2016-11-17 | Eberspächer Exhaust Technology GmbH & Co. KG | Muffler |
DE102018104239A1 (en) * | 2018-01-22 | 2019-07-25 | Eberspächer Exhaust Technology GmbH & Co. KG | silencer |
EP3557015A1 (en) * | 2018-04-20 | 2019-10-23 | Volvo Car Corporation | Muffler comprising a helmholtz resonator and a vehicle comprising such a muffler |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5873919U (en) * | 1981-11-13 | 1983-05-19 | トヨタ自動車株式会社 | Silencer for internal combustion engines |
JPS61186717U (en) * | 1985-05-15 | 1986-11-21 | ||
JP2006002712A (en) * | 2004-06-21 | 2006-01-05 | Sango Co Ltd | Muffler |
-
2008
- 2008-06-05 WO PCT/JP2008/060730 patent/WO2008150024A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5873919U (en) * | 1981-11-13 | 1983-05-19 | トヨタ自動車株式会社 | Silencer for internal combustion engines |
JPS61186717U (en) * | 1985-05-15 | 1986-11-21 | ||
JP2006002712A (en) * | 2004-06-21 | 2006-01-05 | Sango Co Ltd | Muffler |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110116188A (en) * | 2009-02-02 | 2011-10-25 | 엠콘 테크놀로지스 엘엘씨 | Passive valve assembly with negative start angle |
EP2391805A2 (en) * | 2009-02-02 | 2011-12-07 | EMCON Technologies LLC | Passive valve assembly with negative start angle |
EP2391805A4 (en) * | 2009-02-02 | 2013-08-28 | Emcon Technologies Llc | Passive valve assembly with negative start angle |
KR101652554B1 (en) | 2009-02-02 | 2016-08-30 | 포레시아 이미션스 컨트롤 테크놀로지스, 유에스에이, 엘엘씨 | Passive valve assembly with negative start angle |
JP2011117408A (en) * | 2009-12-07 | 2011-06-16 | Calsonic Kansei Corp | Muffler |
CN102536386A (en) * | 2011-12-29 | 2012-07-04 | 湛江市华夏消声器有限公司 | Structurally modified automobile exhaust muffler assembly |
CN103277171A (en) * | 2013-05-29 | 2013-09-04 | 华环(苏州)汽车科技有限公司 | Novel exhaust muffling structure |
US9638077B2 (en) * | 2014-06-04 | 2017-05-02 | Eberspächer Exhaust Technology GmbH & Co. KG | Muffler |
US20160333756A1 (en) * | 2014-06-04 | 2016-11-17 | Eberspächer Exhaust Technology GmbH & Co. KG | Muffler |
DE102018104239A1 (en) * | 2018-01-22 | 2019-07-25 | Eberspächer Exhaust Technology GmbH & Co. KG | silencer |
CN110067626A (en) * | 2018-01-22 | 2019-07-30 | 埃贝斯佩歇排气技术有限责任两合公司 | Silencer |
US11377989B2 (en) | 2018-01-22 | 2022-07-05 | Purem GmbH | Muffler |
EP3557015A1 (en) * | 2018-04-20 | 2019-10-23 | Volvo Car Corporation | Muffler comprising a helmholtz resonator and a vehicle comprising such a muffler |
CN110388245A (en) * | 2018-04-20 | 2019-10-29 | 沃尔沃汽车公司 | Muffler comprising a Helmholtz resonator and vehicle comprising such a muffler |
CN110388245B (en) * | 2018-04-20 | 2021-05-25 | 沃尔沃汽车公司 | Muffler comprising a Helmholtz resonator and vehicle comprising such a muffler |
US11255238B2 (en) | 2018-04-20 | 2022-02-22 | Volvo Car Corporation | Muffler comprising a Helmholtz resonator and a vehicle comprising such a muffler |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009062972A (en) | Silencer | |
WO2008150024A1 (en) | Silencer | |
US7506723B2 (en) | Muffler for an exhaust gas system | |
JP2006017124A (en) | Dynamic exhaust system for motor cycle | |
CN110388245B (en) | Muffler comprising a Helmholtz resonator and vehicle comprising such a muffler | |
US20110126531A1 (en) | Variable muffler | |
JP4127292B2 (en) | Muffler | |
JPH1181977A (en) | Muffler | |
US20120222643A1 (en) | Swirl guiding acoustic device with an internal coaxially integrated swirl guide structure | |
JP2006283644A (en) | Muffler for internal combustion engine | |
CN104213955A (en) | Dual-mode silencer for internal combustion engine exhausting system | |
JP3017964B2 (en) | Silencer | |
US6912843B2 (en) | Exhaust system for a multi-cylinder internal combustion engine | |
JP2011027038A (en) | Muffler | |
KR20090064161A (en) | Main muffler in vehicle | |
JP6528827B2 (en) | Engine exhaust silencer | |
JP5066067B2 (en) | Silencer | |
KR102283769B1 (en) | Exhaust system for vehicle | |
JP3334540B2 (en) | Automotive exhaust silencer | |
CN107288732B (en) | Selectively tunable exhaust noise attenuation device | |
JP2005069191A (en) | Exhaust device | |
JP4451728B2 (en) | Silencer | |
JPH09137724A (en) | Muffler of vehicular exhaust system | |
CN114893276B (en) | Automobile exhaust muffler, automobile and noise elimination method | |
KR20110052841A (en) | Muffler apparatus for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08765501 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08765501 Country of ref document: EP Kind code of ref document: A1 |