WO2008141902A1 - Coupleur de signaux hyperfrequences en technologie microruban - Google Patents

Coupleur de signaux hyperfrequences en technologie microruban Download PDF

Info

Publication number
WO2008141902A1
WO2008141902A1 PCT/EP2008/055327 EP2008055327W WO2008141902A1 WO 2008141902 A1 WO2008141902 A1 WO 2008141902A1 EP 2008055327 W EP2008055327 W EP 2008055327W WO 2008141902 A1 WO2008141902 A1 WO 2008141902A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupler
main line
protrusion
line
coupling
Prior art date
Application number
PCT/EP2008/055327
Other languages
English (en)
Inventor
Pierre Bertram
Hugues Augereau
Georges Peyresoubes
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to US12/599,598 priority Critical patent/US8314664B2/en
Priority to EP08749916.6A priority patent/EP2147478B1/fr
Publication of WO2008141902A1 publication Critical patent/WO2008141902A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips

Definitions

  • the present invention relates to a microwave signal coupler in microstrip technology. It applies in particular to the measurement of the power of a signal passing through a transmission line.
  • couplers are for example integrated in amplifiers for measuring the power of a signal delivered to an antenna.
  • a proximity coupler hereinafter referred to simply as a "coupler”
  • a proximity coupler comprises a main transmission line for conveying a microwave signal, and a secondary line whose section is placed close to the main line. By electromagnetic radiation, the secondary line is thus coupled to the main line.
  • Signal couplers in microstrip technology are widely used because they are inexpensive to produce and easy to integrate. However, this technology limits their performance.
  • a satisfactory coupling directivity ie a good separation of the incoming and outgoing power measurements in the coupler, is difficult to obtain. This difficulty is mainly due to the asymmetries of the odd and even transmission modes appearing with the use of this technology.
  • insertion losses as well as signal reflections - which result in a non-zero stationary wave ratio - are parameters to be taken into account when designing a coupler.
  • couplers in coaxial technology or triplate technology provide high performance through the shielding surrounding the propagation lines.
  • these technologies increase the size and especially the cost of manufacturing a coupler.
  • the subject of the invention is a single-section coupler with microstrip lines comprising a dielectric substrate, a main line and a secondary line comprising a coupling section, the lines being deposited on the substrate, characterized in that the line main is substantially rectilinear and uniform throughout its length, and in that the coupling section comprises an excrescence at each of its ends, the excrescences being connected to each other by a portion of conductive line whose section, shape and arrangement are adapted to minimize the coupling between said portion and the main line, the coupling being performed mainly between each of the excrescences and the main line.
  • the coupler according to the invention is asymmetrical.
  • a resistive balancing element may be connected between one end of the coupling section and the electrical earth. This resistive element makes it possible to optimize the directivity characteristic of the coupler and, as such, may comprise capacitive or resistive characteristics making it possible to improve the performances. This resistive element does not replace the terminal loads traditionally connected to each of the access ports of the coupler.
  • the coupler according to the invention comprises at least a first resistive balancing element connected to the first protrusion, at least a second resistive element being connected to the second protrusion, the first and second resistive elements having different impedance values.
  • the distance D1 between the first protrusion and the main line on the one hand, and the distance D2 between the second protrusion and the main line on the other hand are unequal.
  • the dimensions of the first protrusion on the one hand, and the dimensions of the second protrusion on the other hand are different.
  • the invention also relates to a power amplifier comprising a coupler according to one of the preceding claims.
  • FIG. 1 a view from above of a first embodiment of the coupler according to the invention
  • FIG. 2 a top view of a second embodiment of the coupler according to the invention
  • FIG. 3 an alternative embodiment of the coupler according to the invention
  • FIG. 1 shows a view from above of a first embodiment of the coupler according to the invention.
  • a coupler 1 comprises a metal plate 2, placed on the underside of the coupler and taking the role of electrical ground. On the metal plate 2 is applied a layer of dielectric substrate 3, above which microstrips of conductive material are deposited.
  • a first conductive microstrip forms a main transmission line 10 carrying a signal S which it is desired to take a fraction of the power.
  • the main line 10 has, at each of its ends, an access port 11, 12.
  • the first access port 11 receives the signal S, of power P, entering the coupler 1 while the second access port 12 is connected to a load, not shown in the figure, for example an antenna. According to the impedance of the load, a power P ref more or less important signal S is reflected in the main line 10.
  • the coupler 1 also comprises a secondary line 20 having at each of its ends a third and a fourth access port 21, 22.
  • the secondary line 20 comprises a relatively thin central conductive line portion 23, conductive protrusions 24, 25, and conductive conductive microstrips 26, 27 to the access ports 21,
  • the coupling section is formed in such a way that the third access port 21 receives a fraction P 'of the power P of the signal S and that the fourth port of access 22 receives a fraction P ref 'of the power P ref reflected in the main line 10.
  • the main line 10 is substantially rectilinear and its width, chosen according to the desired characteristic impedance, remains almost constant over its entire length. This simplicity of design makes it possible to maintain a characteristic line impedance close to the terminal impedances at the access ports 11, 12, thus reducing the standing wave ratio present in the line 10.
  • a metallized layer in contact with the metal plate 2, is applied on the top of the coupler 1 and around the lines 10, 20 to complete the electromagnetic shielding of the coupler.
  • the first conductive protrusion 24 is placed at a first end 23a of the central portion 23 and the second protrusion 25 is placed at its opposite end 23b.
  • the protuberances 24, 25 are, in the example, of quasi-rectangular shape but can take different shapes and dimensions.
  • the centroids of the excrescences 24, 25 are separated by a distance L of the order of a quarter of the median value of the wavelengths corresponding to the operating range of the coupler 1.
  • the distance D1 separating the first protrusion 24 from the line main 10 may be different from the distance D2 separating the second protrusion 25 from the main line 10, but the two protuberances 24, 25 must be sufficiently close to the main line 10 for an electromagnetic coupling to exist with the secondary line 20.
  • the shapes (length and / or width) of each growth can to be different. Indeed, most of the coupling between the two lines 10, 20 is performed via the conductive outgrowths 24, 25.
  • the distances D1 and D2 separating the excrescences 24, 25 of the main line 10 as well as the dimensions of the protuberances 24, 25 are chosen in particular according to the dielectric characteristics (in particular of the permittivity) of the substrate 3, of the thickness of the substrate layer and of the desired coupling level, that is to say of the power ratio P / P '.
  • the width, the shape and the placement of the central portion 23 connecting the two protuberances 24, 25 are chosen so that said central portion 23 does not participate or almost no coupling. between the main line 10 and the secondary line 20.
  • the width of the central portion 23 is chosen thin (in the example, said portion 23 is much thinner than the main line 10 ) in order to minimize the interaction between said central portion 23 and the main line 10.
  • the central portion 23 is moreover neither necessarily parallel to the main line 10, nor even straight, thus making its length adjustable.
  • this central portion 23 forms a U between the two protuberances 24, 25, in order to guarantee that said portion 23 is moved away from the main line 10 making it possible to minimize the interaction with said main line 10.
  • the bottom 29 of the U thus formed is at a distance chosen so that, during the transmission of a signal, in the main line 10, there is virtually no coupling between the central portion 23 and the main line 10.
  • the section of the central portion 23 can also be increased.
  • connection microstrips 26, 27 make it possible to transmit the picked powers P 'and P ref ' to the access ports 21, 22 of the coupler 1.
  • the first connection microstrip 26 connects the third access port 21 to the end of the central portion 23 closest to the first access port 1 1
  • the second connecting microstrip 27 connects the fourth access port 22 to the end of the central portion 23 closest to the second access port 12
  • These connection microstrips 26, 27 are, in the example, connected at the ends 23a, 23b of the central portion 23. They may, in addition, form any angle with the central portion 23, thus providing increased opportunities for integration into complex circuits.
  • a resistive balancing element 30 may be connected to one of the protrusions 24, 25.
  • the resistive element 30 is connected to the nearest protrusion 24 the first access port 1 1.
  • This asymmetry of the coupler 1 makes it possible to compensate for the asymmetries of the odd and even transmission modes appearing with the use of microstrip technology.
  • the optimization of the value of this lateral resistive element 30 makes it possible to improve the performance of the coupler in directivity.
  • the resistive element 30 is placed at a distance D3 from the main line 10 so as not to disturb the propagation of the signal S and is connected to the electrical mass, formed in the example by the metal mass 2.
  • This resistive element 30 can, for example, consist of several sub-elements placed in series and / or in parallel (not shown for reasons of simplification) and having certain inductive or capacitive properties, the operation of which improves the directivity of the coupler 1.
  • connection of this resistive element 30 to an outgrowth 24, 25 makes it possible to avoid that its precise positioning does not affect the performance of the coupler 1, thus facilitating the reproducibility of the performances during a manufacture of couplers in series.
  • the asymmetry of the coupler can, for example, be obtained by integrating into the coupler two resistive elements of different characteristics, a first resistive element being connected to the first protrusion 24, a second resistive element being connected to the second protrusion 25.
  • the resistive element 30 having an effect on the impedance of the secondary line 20, the microstrips 26 and 27 may, in order to improve the adaptation of the third and fourth ports 21 and 22 of the coupler, to include impedance transformation elements.
  • FIG. 4 shows an example of use of a coupler according to the invention in a power amplifier.
  • An amplifier 40 receives a signal S and delivers an amplified signal S AMP -II comprises an amplification cell 41, a coupler 1 according to the invention, a measurement module 42 and a resistive load 43.
  • the measurement module 42 is connected at the third access port 21 of the coupler 1, and the resistive load 43 is connected to its fourth access port 22.
  • the amplification cell 41 receives the signal S and supplies the first access port 1 1 of the coupler 1 a first signal S
  • the coupler 1 takes a fraction of the power of the signal S INT , fraction of power that it transmits to the measurement module 42 via its third access port 21.
  • the coupler 1 also produces a signal S AMP coming from its second port 12 , then directed towards the output of the amplifier 40.
  • the association of the coupler 1 with the measurement module 42 thus makes it possible to know the power of the signal S AMP delivered at the output of the amplifier 40.
  • An advantage of the coupler according to FIG. invention is its simplicity of implementation, allowing, at a lower cost, easy integration into equipment while enjoying good performance with excellent reproducibility.

Landscapes

  • Microwave Amplifiers (AREA)

Abstract

La présente invention concerne un coupleur de puissance pour signaux hyperfréquences. Le coupleur (1 ) mono-section à lignes microrubans comporte un substrat diélectrique (3), une ligne principale (10) et une ligne secondaire (20) comprenant un tronçon de couplage (23, 24, 25), les lignes étant déposées sur le substrat (3), la ligne principale (10) étant sensiblement rectiligne et uniforme sur toute sa longueur, le tronçon de couplage (23, 24, 25) comprenant une excroissance (24, 25) à chacune de ses extrémités (23a, 23b), les excroissances (24, 25) étant reliées entre-elles par une portion de ligne conductrice (23) dont la section, la forme et la disposition sont adaptées pour minimiser le couplage entre ladite portion (23) et la ligne principale (10) par rapport au couplage effectué entre les excroissances (24, 25) et la ligne principale (10). L'invention s'applique notamment à la mesure de la puissance d'un signal transitant par une ligne de transmission.

Description

COUPLEUR DE SIGNAUX HYPERFREQUENCES EN TECHNOLOGIE MICRORUBAN
La présente invention concerne un coupleur de signaux hyperfréquences en technologie microruban. Elle s'applique notamment à la mesure de la puissance d'un signal transitant par une ligne de transmission. Dans le domaine des télécommunications, de tels coupleurs sont par exemple intégrés dans des amplificateurs pour mesurer la puissance d'un signal délivré à une antenne.
Un coupleur de proximité, qualifié simplement par la suite de « coupleur », comporte une ligne de transmission principale permettant d'acheminer un signal hyperfréquence, et une ligne secondaire dont un tronçon est placé à proximité de la ligne principale. Par rayonnement électromagnétique, la ligne secondaire est ainsi couplée à la ligne principale. Les coupleurs de signaux en technologie microruban sont massivement utilisés car peu coûteux à réaliser et faciles à intégrer. Cependant cette technologie limite leurs performances. En particulier, une directivité de couplage satisfaisante, c'est à dire une bonne séparation des mesures de puissances entrantes et sortantes dans le coupleur, est difficile à obtenir. Cette difficulté est due essentiellement aux asymétries des modes de transmission pairs et impairs apparaissant avec l'emploi de cette technologie. Enfin, de manière générale, les pertes d'insertion ainsi que les réflexions de signaux — qui se traduisent par un taux d'onde stationnaire non nul — sont des paramètres à prendre en compte lors de la conception d'un coupleur.
Par opposition, les coupleurs en technologie coaxiale ou en technologie triplaque permettent des performances de haut niveau grâce au blindage entourant les lignes de propagation. Cependant, ces technologies augmentent l'encombrement et surtout le coût de fabrication d'un coupleur.
Afin de rapprocher le niveau de performances des coupleurs en technologie microruban de celui des coupleurs en technologie coaxiale ou triplaque, plusieurs adaptations ont déjà été proposées. Ainsi, il est connu d'ajouter un ou plusieurs composants capacitifs liant la ligne de transmission principale avec la ligne secondaire couplée. Toutefois, cette solution présente plusieurs inconvénients. D'une part, des composants ayant théoriquement les mêmes valeurs capacitives présentent en réalité des valeurs de capacité dispersées autour d'une valeur moyenne. Il est donc difficile de fabriquer des coupleurs en série comportant des performances reproductibles. D'autre part, l'implantation d'éléments capacitifs complexifie la réalisation du coupleur, augmentant par conséquent son coût de fabrication. Une autre solution connue est de concevoir des lignes de transmission aux formes singulières, afin d'optimiser le couplage entre la ligne de transmission principale et la ligne couplée. Cependant, des singularités introduites dans la ligne de transmission principale conduisent souvent à perturber la transmission du signal et donc à augmenter les pertes d'insertion.
Un but de l'invention est d'augmenter la directivité de couplage sans affecter la reproductibilité de fabrication du coupleur, tout en maintenant les pertes d'insertion à de faibles niveaux, pour un coût de fabrication peu élevé. A cet effet, l'invention a pour objet un coupleur mono-section à lignes microrubans comportant un substrat diélectrique, une ligne principale et une ligne secondaire comprenant un tronçon de couplage, les lignes étant déposées sur le substrat, caractérisé en ce que la ligne principale est sensiblement rectiligne et uniforme sur toute sa longueur, et en ce que le tronçon de couplage comprend une excroissance à chacune de ses extrémités, les excroissances étant reliées entre-elles par une portion de ligne conductrice dont la section, la forme et la disposition sont adaptées pour minimiser le couplage entre ladite portion et la ligne principale, le couplage étant effectué majoritairement entre chacune des excroissances et la ligne principale. Selon un mode de réalisation, le coupleur selon l'invention est asymétrique.
Un élément résistif d'équilibrage peut être raccordé entre une extrémité du tronçon de couplage et la masse électrique. Cet élément résistif permet d'optimiser la caractéristique de directivité du coupleur et, à ce titre, peut comporter des caractéristiques capacitives ou résistives permettant d'améliorer les performances. Cet élément résistif ne remplace pas les charges terminales traditionnellement connectées sur chacun des ports d'accès du coupleur.
Selon un mode de réalisation, le coupleur selon l'invention, comprend au moins un premier élément résistif d'équilibrage connecté à la première excroissance, au moins un deuxième élément résistif étant connecté à la deuxième excroissance, les premier et deuxième éléments résistifs ayant des valeurs d'impédance différentes.
Selon un mode de réalisation, la distance D1 entre la première excroissance et la ligne principale d'une part, et la distance D2 entre la deuxième excroissance et la ligne principale d'autre part, sont inégales.
Selon un mode de réalisation, les dimensions de la première excroissance d'une part, et les dimensions de la deuxième excroissance d'autre part, sont différentes. L'invention a également pour objet un amplificateur de puissance comportant un coupleur selon l'une des revendications précédentes.
D'autres caractéristiques et avantages apparaîtront à la lecture de la description détaillée donnée à titre d'exemple et non limitative qui suit faite en regard de dessins annexés qui représentent :
- la figure 1 , une vue de dessus d'un premier mode de réalisation du coupleur selon l'invention,
- la figure 2, une vue de dessus d'un deuxième mode de réalisation du coupleur selon l'invention, - la figure 3, une variante de réalisation du coupleur selon l'invention,
- la figure 4, un exemple d'utilisation d'un coupleur selon l'invention dans un amplificateur de puissance.
La figure 1 présente une vue de dessus d'un premier mode de réalisation du coupleur selon l'invention. Un coupleur 1 comporte une plaque métallique 2, placée sur le dessous du coupleur et tenant le rôle de masse électrique. Sur la plaque métallique 2, est appliquée une couche de substrat diélectrique 3, au-dessus duquel des microrubans de matériau conducteur sont déposés. Un premier microruban conducteur forme une ligne de transmission principale 10 acheminant un signal S dont on souhaite prélever une fraction de la puissance. La ligne principale 10 possède à chacune de ses extrémités un port d'accès 1 1 , 12. Le premier port d'accès 1 1 reçoit le signal S, de puissance P, entrant dans le coupleur 1 tandis que le second port d'accès 12 est relié à une charge, non représentée sur la figure, par exemple une antenne. Selon l'impédance de la charge, une puissance Prθf plus ou moins importante du signal S est réfléchie dans la ligne principale 10.
Le coupleur 1 comporte également une ligne secondaire 20 comportant à chacune de ses extrémités un troisième et un quatrième port d'accès 21 , 22.
La ligne secondaire 20 comprend une portion de ligne conductrice centrale 23 relativement fine, des excroissances conductrices 24, 25, et des microrubans conducteurs de raccordement 26, 27 vers les ports d'accès 21 ,
22. L'ensemble composé des excroissances 24, 25 et de la portion centrale
23 forme un tronçon de couplage avec la ligne principale 10. Le tronçon de couplage est réalisé de manière à ce que le troisième port d'accès 21 reçoive une fraction P' de la puissance P du signal S et que le quatrième port d'accès 22 reçoive une fraction Pref' de la puissance Prθf réfléchie dans la ligne principale 10.
La ligne principale 10 est sensiblement rectiligne et sa largeur, choisie en fonction de l'impédance caractéristique souhaitée, demeure quasiment constante sur toute sa longueur. Cette simplicité de conception permet de conserver une impédance caractéristique de ligne proche des impédances terminales au niveau des ports d'accès 1 1 , 12, réduisant ainsi le taux d'onde stationnaire présent dans la ligne 10.
Par ailleurs, dans l'exemple, une couche métallisée, en contact avec la plaque métallique 2, est appliquée sur le dessus du coupleur 1 et autour des lignes 10, 20 pour parfaire le blindage électromagnétique du coupleur.
La première excroissance conductrice 24 est placée à une première extrémité 23a de la portion centrale 23 et la seconde excroissance 25 est placée à son extrémité opposée 23b. Les excroissances 24, 25 sont, dans l'exemple, de forme quasi-rectangulaire mais peuvent prendre des formes et des dimensions différentes. Les barycentres des excroissances 24, 25 sont séparées d'une distance L de l'ordre du quart de la valeur médiane des longueurs d'onde correspondant à la plage de fonctionnement du coupleur 1. La distance D1 séparant la première excroissance 24 de la ligne principale 10 peut être différente de la distance D2 séparant la seconde excroissance 25 de la ligne principale 10, mais les deux excroissances 24, 25 doivent être suffisamment proches de la ligne principale 10 pour qu'un couplage électromagnétique existe avec la ligne secondaire 20. De même, les formes (longueur et/ou largeur) de chacune des excroissances peuvent être différentes. En effet, l'essentiel du couplage entre les deux lignes 10, 20 est effectué via les excroissances conductrices 24, 25. Les distances D1 et D2 séparant les excroissances 24, 25 de la ligne principale 10 ainsi que les dimensions des excroissances 24, 25 sont choisies en fonction notamment des caractéristiques diélectriques (notamment de la permittivité) du substrat 3, de l'épaisseur de la couche de substrat et du niveau de couplage souhaité, c'est à dire du rapport de puissances P/P'.
Afin d'optimiser les performances du coupleur selon l'invention, la largeur, la forme et le placement de la portion centrale 23 reliant les deux excroissances 24, 25 sont choisis de sorte que ladite portion centrale 23 ne participe pas ou quasiment pas au couplage entre la ligne principale 10 et la ligne secondaire 20. Ainsi, dans l'exemple de la figure 1 , la largeur de la portion centrale 23 est choisie fine (dans l'exemple, ladite portion 23 est beaucoup plus fine que la ligne principale 10) en vue de minimiser l'interaction entre ladite portion centrale 23 et la ligne principale 10. La portion centrale 23 n'est d'ailleurs ni nécessairement parallèle à la ligne principale 10, ni même rectiligne, rendant ainsi sa longueur ajustable.
Par exemple, dans un autre mode de réalisation illustré en figure 2, cette portion centrale 23 forme un U entre les deux excroissances 24, 25, afin de garantir un éloignement de ladite portion 23 par rapport à la ligne principale 10 permettant de minimiser l'interaction avec ladite ligne principale 10. En effet, le bas 29 du U ainsi formé est à une distance choisie pour que, lors de la transmission d'un signal, dans la ligne principale 10, il n'y ait quasiment aucun couplage entre la portion centrale 23 et la ligne principale 10. Par ailleurs, lorsque la distance entre la portion centrale 23 et la ligne principale 10 est augmentée, la section de la portion centrale 23 peut être également augmentée.
Les microrubans de raccordement 26, 27 permettent de transmettre les puissances prélevées P' et Pref' aux ports d'accès 21 , 22 du coupleur 1. Le premier microruban de raccordement 26 relie le troisième port d'accès 21 à l'extrémité de la portion centrale 23 la plus proche du premier port d'accès 1 1 , et le second microruban de raccordement 27 relie le quatrième port d'accès 22 à l'extrémité de la portion centrale 23 la plus proche du second port d'accès 12. Ces microrubans de raccordement 26, 27 sont, dans l'exemple, connectés au niveau des extrémités 23a, 23b de la portion centrale 23. Ils peuvent, en outre, former un angle quelconque avec la portion centrale 23, offrant ainsi des possibilités accrues d'intégration dans des circuits complexes.
Selon une variante de réalisation présentée en figure 3, un élément résistif d'équilibrage 30 peut être connecté à l'une des excroissances 24, 25. Dans l'exemple, l'élément résistif 30 est connecté à l'excroissance 24 la plus proche du premier port d'accès 1 1. Cette asymétrie du coupleur 1 permet de compenser les asymétries des modes de transmission pairs et impairs apparaissant avec l'usage de la technologie microruban. L'optimisation de la valeur de cet élément résistif latéral 30 permet d'améliorer les performances du coupleur en directivité. L'élément résistif 30 est placé à une distance D3 de la ligne principale 10 pour ne pas perturber la propagation du signal S et est relié à la masse électrique, formée dans l'exemple par la masse métallique 2. Cet élément résistif 30 peut, par exemple, être constitué de plusieurs sous-éléments placés en série et/ou en parallèle (non représentés pour des raisons de simplification) et comportant certaines propriétés selfiques ou capacitives, dont l'exploitation permet d'améliorer la directivité du coupleur 1. La connexion de cet élément résistif 30 sur une excroissance 24, 25 (c'est à dire une large plage métallisée) permet d'éviter que son positionnement précis n'affecte les performances du coupleur 1 , facilitant ainsi la reproductibilité des performances lors d'une fabrication de coupleurs en série. Selon un autre mode de réalisation, l'asymétrie du coupleur peut, par exemple, être obtenue en intégrant au coupleur deux éléments résistifs de caractéristiques différentes, un premier élément résistif étant connecté sur la première excroissance 24, un deuxième élément résistif étant connecté sur la deuxième excroissance 25. Enfin, l'élément résistif 30 ayant un effet sur l'impédance de la ligne secondaire 20, les microrubans 26 et 27 peuvent, afin d'améliorer l'adaptation des troisième et quatrième ports 21 et 22 du coupleur, comprendre des éléments de transformation d'impédance.
La figure 4 présente un exemple d'utilisation d'un coupleur selon l'invention dans un amplificateur de puissance. Un amplificateur 40 reçoit un signal S et délivre un signal amplifié SAMP- II comprend une cellule d'amplification 41 , un coupleur 1 selon l'invention, un module de mesure 42 et une charge résistive 43. Le module de mesure 42 est relié au troisième port d'accès 21 du coupleur 1 , et la charge résistive 43 est reliée à son quatrième port d'accès 22. La cellule d'amplification 41 reçoit le signal S et fournit au premier port d'accès 1 1 du coupleur 1 un premier signal S|Nτ amplifié. Le coupleur 1 prélève une fraction de la puissance du signal SINT, fraction de puissance qu'il transmet au module de mesure 42 via son troisième port d'accès 21. Le coupleur 1 produit également un signal SAMP issu de son deuxième port 12, puis dirigé vers la sortie de l'amplificateur 40. L'association du coupleur 1 avec le module de mesure 42 permet donc de connaître la puissance du signal SAMP délivré en sortie de l'amplificateur 40. Un avantage du coupleur selon l'invention est sa simplicité de réalisation, permettant, à moindre coût, son intégration aisée dans des équipements tout en bénéficiant de bonnes performances avec une excellente reproductibilité.

Claims

REVENDICATIONS
1 . Coupleur (1 ) mono-section à lignes microrubans comportant un substrat diélectrique (3), une ligne principale (10) et une ligne secondaire (20) comprenant un tronçon de couplage (23, 24, 25), les lignes étant déposées sur le substrat (3), caractérisé en ce que la ligne principale (10) est sensiblement rectiligne et uniforme sur toute sa longueur, et en ce que le tronçon de couplage (23, 24, 25) comprend une excroissance (24, 25) à chacune de ses extrémités (23a, 23b), les excroissances (24, 25) étant reliées entre-elles par une portion de ligne conductrice (23) dont la section, la forme et la disposition sont adaptées pour minimiser le couplage entre ladite portion (23) et la ligne principale (10) par rapport au couplage effectué entre les excroissances (24, 25) et la ligne principale (10).
2. Coupleur selon la revendication 1 , caractérisé en ce qu'il est asymétrique.
3. Coupleur asymétrique selon la revendication 2, caractérisé en ce qu'un élément résistif (30) d'équilibrage est raccordé entre une extrémité (23a, 23b) du tronçon de couplage (23, 24, 25) et la masse électrique afin d'optimiser la directivité du coupleur.
4. Coupleur asymétrique selon la revendication 2, caractérisé en ce qu'au moins un premier élément résistif d'équilibrage est connecté à la première excroissance (24), au moins un deuxième élément résistif étant connecté à la deuxième excroissance (25), les premier et deuxième éléments résistifs ayant des valeurs d'impédance différentes afin d'optimiser la directivité du coupleur.
5. Coupleur asymétrique selon l'une des revendications 2, 3 et 4, caractérisé en ce que la distance D1 entre la première excroissance (24) et la ligne principale (10) d'une part, et la distance D2 entre la deuxième excroissance (25) et la ligne principale (10) d'autre part, sont inégales.
6. Coupleur asymétrique selon l'une des revendications 2, 3, 4 et 5, caractérisé en ce que les dimensions de la première excroissance (24) d'une part, et les dimensions de la deuxième excroissance (25) d'autre part, sont différentes.
7. Amplificateur de puissance (40) comportant au moins un coupleur selon l'une des revendications précédentes.
PCT/EP2008/055327 2007-05-11 2008-04-30 Coupleur de signaux hyperfrequences en technologie microruban WO2008141902A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/599,598 US8314664B2 (en) 2007-05-11 2008-04-30 Microstrip technology hyperfrequency signal coupler
EP08749916.6A EP2147478B1 (fr) 2007-05-11 2008-04-30 Coupleur de signaux hyperfrequences en technologie microruban

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0703381A FR2916086B1 (fr) 2007-05-11 2007-05-11 Coupleur de signaux hyperfrequences en technologie microruban.
FR0703381 2007-05-11

Publications (1)

Publication Number Publication Date
WO2008141902A1 true WO2008141902A1 (fr) 2008-11-27

Family

ID=38654751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/055327 WO2008141902A1 (fr) 2007-05-11 2008-04-30 Coupleur de signaux hyperfrequences en technologie microruban

Country Status (4)

Country Link
US (1) US8314664B2 (fr)
EP (1) EP2147478B1 (fr)
FR (1) FR2916086B1 (fr)
WO (1) WO2008141902A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267574B2 (ja) * 2009-01-19 2013-08-21 住友電気工業株式会社 方向性結合器とこれを有する無線通信機

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008051914A1 (de) * 2008-10-16 2010-04-22 Rohde & Schwarz Gmbh & Co. Kg Richtkoppler mit Kompensation der Richtschärfe durch gezielte Fehlanpassung
US10522896B2 (en) * 2016-09-20 2019-12-31 Semiconductor Components Industries, Llc Embedded directional couplers and related methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150898A (en) * 1996-03-22 2000-11-21 Matsushita Electric Industrial Co., Ltd. Low-pass filter with directional coupler and cellular phone
EP1215749A1 (fr) 2000-07-04 2002-06-19 Matsushita Electric Industrial Co., Ltd. Coupleur directionnel et procede de couplage directionnel
US20020113667A1 (en) * 2000-06-06 2002-08-22 Yukihiro Tahara Directional coupler
US20030011442A1 (en) * 2001-07-13 2003-01-16 Halappa Ashoka Microstrip directional coupler loaded by a pair of inductive stubs
US20040263281A1 (en) 2003-06-25 2004-12-30 Podell Allen F. Coupler having an uncoupled section
US20070001780A1 (en) * 2005-06-30 2007-01-04 Nichols Todd W Independently adjustable combined harmonic rejection filter and power sampler

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2581256B1 (fr) * 1985-04-26 1988-04-08 France Etat Coupleur directif a large bande pour ligne a microruban
JPS6345901A (ja) * 1986-08-12 1988-02-26 Fujitsu Ltd 方向性結合器
US5111165A (en) * 1989-07-11 1992-05-05 Wiltron Company Microwave coupler and method of operating same utilizing forward coupling
US4999593A (en) * 1989-06-02 1991-03-12 Motorola, Inc. Capacitively compensated microstrip directional coupler
JPH08162812A (ja) * 1994-12-07 1996-06-21 Fujitsu Ltd 高周波結合器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150898A (en) * 1996-03-22 2000-11-21 Matsushita Electric Industrial Co., Ltd. Low-pass filter with directional coupler and cellular phone
US20020113667A1 (en) * 2000-06-06 2002-08-22 Yukihiro Tahara Directional coupler
EP1215749A1 (fr) 2000-07-04 2002-06-19 Matsushita Electric Industrial Co., Ltd. Coupleur directionnel et procede de couplage directionnel
US20030011442A1 (en) * 2001-07-13 2003-01-16 Halappa Ashoka Microstrip directional coupler loaded by a pair of inductive stubs
US20040263281A1 (en) 2003-06-25 2004-12-30 Podell Allen F. Coupler having an uncoupled section
US20070001780A1 (en) * 2005-06-30 2007-01-04 Nichols Todd W Independently adjustable combined harmonic rejection filter and power sampler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHUL-SOO KIM ET AL: "A design of single and multi-section microstrip directional coupler with the high directivity", MICROWAVE SYMPOSIUM DIGEST, 2004 IEEE MTT-S INTERNATIONAL FORT WORTH, TX, USA JUNE 6-11, 2004, PISCATAWAY, NJ, USA,IEEE, vol. 3, 6 June 2004 (2004-06-06), pages 1895 - 1898, XP010728119, ISBN: 0-7803-8331-1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267574B2 (ja) * 2009-01-19 2013-08-21 住友電気工業株式会社 方向性結合器とこれを有する無線通信機

Also Published As

Publication number Publication date
US20100194490A1 (en) 2010-08-05
FR2916086A1 (fr) 2008-11-14
EP2147478A1 (fr) 2010-01-27
FR2916086B1 (fr) 2010-09-03
EP2147478B1 (fr) 2017-07-19
US8314664B2 (en) 2012-11-20

Similar Documents

Publication Publication Date Title
EP1863116B1 (fr) Coupleur directif large bande
EP0201409B1 (fr) Coupleur directif à large bande pour ligne à microruban
EP2223377B1 (fr) Dispositif d'amplification de puissance radiale a compensation de dispersion de phase des voies amplificatrices
FR2467488A1 (fr) Dispositif combinateur/diviseur micro-ondes a trois voies, adapte pour des resistances d'isolement externes
EP1427053A1 (fr) Coupleur directif
FR2911190A1 (fr) Testeur pour transmission de signaux a haute frequence et carte sonde utilisant celui-ci.
EP3602689B1 (fr) Antenne electromagnetique
EP2184803A1 (fr) Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d'ordre supérieur et antenne filtrante munis d'une telle ligne
EP3136499B1 (fr) Système diviseur/combineur pour onde hyperféquence
FR2690020A1 (fr) Circuit mélangeur.
EP0012093B1 (fr) Amplificateur distribué pour hyperfréquences, et dispositif d'amplification comportant un tel amplificateur
EP2147478B1 (fr) Coupleur de signaux hyperfrequences en technologie microruban
FR3003405A3 (fr) Connecteur coaxial a montage vertical pour carte de circuit imprime
FR2680927A1 (fr) Processeur non lineaire a reflexion equilibree utilisant des transistors a effet de champ.
FR2947959A1 (fr) Coupleur de wilkinson integre dans un circuit imprime et dispositif hyperfrequence comportant un tel coupleur
FR2861502A1 (fr) Composant electronique a ligne coplanaire
EP0790503B1 (fr) Dispositif de mesure de puissance radiofréquence
FR3010835A1 (fr) Dispositif de jonction entre une ligne de transmission imprimee et un guide d'ondes dielectrique
EP2507865B1 (fr) Transformateur d'impedance de puissance vhf/uhf planaire compact
EP1568098B1 (fr) Dispositif separateur de bandes hyperfrequences a large bande
FR3144710A1 (fr) Balun Rat-Race et procédé de réduction d'encombrement de Balun Rat-Race associé
EP3955374A1 (fr) Circuit réalisant une fonction de circulateur en technologie siw ; voie d'émission / réception et radar associés
FR3144711A1 (fr) Balun Rat-Race et procédé de réduction d'encombrement de Balun Rat-Race associé
EP3301751A1 (fr) Dispositif électronique à antenne isolée
WO2014096431A1 (fr) Dispositif de commutation de signaux hyperfrequences notamment de dimensions nanometriques, et composant electronique incorporant un tel dispositif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08749916

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2008749916

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008749916

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12599598

Country of ref document: US