WO2008138864A1 - Procédé et dispositif de fonctionnement d'une unité de commande pour commander une machine électrique - Google Patents

Procédé et dispositif de fonctionnement d'une unité de commande pour commander une machine électrique Download PDF

Info

Publication number
WO2008138864A1
WO2008138864A1 PCT/EP2008/055705 EP2008055705W WO2008138864A1 WO 2008138864 A1 WO2008138864 A1 WO 2008138864A1 EP 2008055705 W EP2008055705 W EP 2008055705W WO 2008138864 A1 WO2008138864 A1 WO 2008138864A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
intermediate circuit
control unit
control
electrical machine
Prior art date
Application number
PCT/EP2008/055705
Other languages
German (de)
English (en)
Inventor
Volker Karrer
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2008138864A1 publication Critical patent/WO2008138864A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock

Definitions

  • the invention relates to a method and a device for operating a control unit with a DC link capacitor and an inverter, which is or is designed for driving an electric machine, in which a fast discharging of the DC link capacitor is controlled by driving the inverter.
  • Electric machines can be used both in an engine operation and in a generator operation.
  • asynchronous and synchronous machines are known with a stator, the three winding strands are assigned, and a rotor.
  • Synchronous machines are used in the field of automotive technology, where they are used, for example, for steering systems of motor vehicles. Synchronous machines can be designed with permanent magnets on the rotor. However, they can also be equipped with exciter windings in the rotor. Synchronous machines can be designed as salient-pole machines in which the rotor has a pole wheel with pronounced poles. However, the synchronous machine can also be designed, for example, as a full-pole machine with a rotationally symmetrical rotor.
  • Asynchronous machines are used in the area of elevator technology, where they are used, for example, for drive motors in elevators.
  • Asynchronous machines can be equipped as short-circuiting machines with short-circuited conductor loops on the rotor. However, they can also be equipped as slip ring machines with conductor loops routed out via slip rings on the rotor.
  • the control unit with the intermediate circuit capacitor and the inverter is designed to drive the respective electrical machine. On the input side, the control unit is supplied with a direct current and a DC voltage, which is provided for example by a rectifier and / or a battery and / or a DC-DC converter.
  • An intermediate circuit assigned to the control unit decouples the rectifier and / or the battery and / or the DC-DC converter from the inverter connected on the output side.
  • the intermediate circuit capacitor assigned to the intermediate circuit assumes the function of an energy store and compensates for fluctuations in the input voltage generated by the rectifier and / or the battery and / or the DC-DC converter.
  • the discharge of the control circuit associated with the intermediate circuit capacitor within a predetermined period of time for safety reasons in certain states of the control unit and / or the electrical machine is predetermined.
  • Such conditions are fault conditions that can be caused for example by the sudden removal of an ignition key. Even when switching off a motor vehicle must be ensured that the battery is disconnected from the DC link capacitor and the DC link capacitor is discharged within the specified period of time. By ensuring the discharge of the DC link capacitor high contact voltages are avoided.
  • a discharge resistor connected in parallel with it can be used for discharging the DC link capacitor.
  • the discharge resistor can be permanently connected in parallel to the intermediate circuit capacitor or switched on via a switch when a state of the control unit and / or the electrical machine is reached, which dictates a discharge of the capacitor.
  • the discharge resistor is in the DC link capacitor stored energy dissipated via the discharge resistor in the form of heat energy. This possibility of discharging the intermediate circuit capacitor presupposes that the inverter is switched to high impedance by the activation at the time of discharging.
  • the energy stored in the intermediate circuit capacitor is discharged with the electric machine switched off and the inverter switched off via an existing DC-DC converter to a charge storage unit connected to the DC-DC converter.
  • the DC-DC converter must be controlled so that a low-voltage side output voltage is raised compared to the normal state, so that the charge stored in the intermediate circuit capacitor charge can be supplied to the charge storage.
  • the object underlying the invention is to provide a method and an apparatus for operating a control unit which is simple.
  • the invention is characterized by a method and a corresponding device for operating a control unit having an intermediate circuit capacitor and an inverter, in which a rapid discharging of the intermediate circuit capacitor is controlled by driving the inverter.
  • the intermediate circuit capacitor is discharged in the sense of discharging the stored charge via the inverter.
  • the inverter By using the inverter to discharge the DC link capacitor no additional components are required in the control unit. This results in a cost-effective and simple discharge of the DC link capacitor.
  • the method and the corresponding device can thus also be used in areas of the electrical machine in which DC-DC converters are not used.
  • the intermediate circuit capacitor is discharged via the electrical machine associated winding strands by a multiple times as short control of the inverter that the electric machine associated moment of inertia on the rotor of a torque associated with the discharge torque generation on the rotor largely compensated.
  • the intermediate circuit capacitor is electrically coupled to the winding strands of the electric machine in the sense of discharging the stored charge via the inverter.
  • the stored energy in the DC link capacitor is supplied to the winding strands via the inverter and converted by the windings associated winding resistors into heat energy and degraded.
  • the intermediate circuit capacitor is discharged via the electrical machine associated winding strands by driving the inverter in that within a field-oriented current control a setpoint for a torque-forming current component, a neutral value, which may be zero in particular, and a target value for a magnetic field forming current component is assigned a predetermined discharge value.
  • the predetermined discharge value is predetermined so that the DC link capacitor is discharged to such an extent that an intermediate circuit voltage which drops across the intermediate circuit capacitor is below a predetermined contact voltage, eg 60 V.
  • a condition for controlling the inverter for discharging the intermediate circuit capacitor is that the electrical machine and / or the control unit should assume a switch-off state and / or an error has occurred.
  • the error case corresponds to all unpredictable events which endanger a faultless operation of the electrical machine and / or the control unit and thus require a discharge of the DC link capacitor.
  • the discharge of the DC link capacitor ensures that there is no hazardous contact voltage.
  • Figure 1 shows a circuit arrangement with an electrical machine and a control unit
  • Figure 2 shows a circuit arrangement of a control of the control unit
  • FIG. 3 shows a flow diagram of a control of the
  • a control unit CTL in FIG. 1 comprises, for example, an inverter WR and a DC link ZK with an associated DC link capacitor C.
  • the inverter WR connects the DC link ZK via three supply lines L1, L2 and L3 to an electric machine EM.
  • the intermediate circuit ZK is fed on the input side by a direct current and a DC voltage via a supply voltage source V_IN.
  • the supply voltage source V IN represents, for example, a rectifier and / or a battery and / or a DC-DC converter and generates an intermediate circuit voltage U ZK.
  • An operating control BA which can also be referred to as a device for operating the control unit, is connected to control inputs of switching elements S1, S2, S3, S4, S5 and S6 of the control unit CTL and is designed to control these switching elements by means of switching element signals S 1, S_2, S_3, S_4, S_5 and S_6.
  • the emitter of the switching element Sl is connected via a node Kl to the collector of the switching element S2.
  • the two switching elements Sl and S2 are connected via the third supply line L3 to the electric machine EM.
  • the switching element S1 is connected to a positive supply potential of the intermediate circuit voltage U_ZK.
  • Emitter clar the switching element S2 is connected to a negative supply potential with the intermediate circuit voltage U_ZK.
  • the switching elements S3 and S4 and the switching element S5 and S6 are constructed identical to the switching elements Sl and S2, wherein the collector-emitter path of the switching elements S3 and S4 via the second supply line L2 and the collector-emitter path of the switching elements S5 and S6 are connected via the third supply line L3 to the electric machine EM.
  • the switching elements S1, S2, S3, S4, S5 and S6 can be embodied as MOSFETs, bipolar transistors and power transistors, field effect power transistors, thyristors, IGBTs.
  • the intermediate circuit capacitor C is connected in parallel with the supply voltage source V IN and is charged during operation of the control unit CTL to the intermediate circuit voltage U ZK generated by the supply voltage source V IN.
  • the control unit CTL controls the electric machine EM via the inverter WR.
  • the generated output voltage and frequency of the inverter WR is dependent on the switching state of the switching elements Sl, S2, S3, S4, S5 and S6. In this case, only three of the six switching elements S1, S2, S3, S4, S5 and S6 may be switched on in each switching phase of the inverter, wherein the switching elements connected emitter-collector side are complementarily connected by means of switching element signals S_l, S_2, S_3, S_4, S_5 and S_6.
  • a preferred embodiment of the operating control BA comprises a field-oriented current control as shown in FIG.
  • a transformation unit TR detects a first and second phase current i_1 and i_2 tapped via a first and a second measuring point MP1 and MP2.
  • a third phase current i 3 can be via the relationship
  • the transformation unit TR requires a rotary encoder signal S_N, which is determined by a rotary encoder DG on a rotor shaft of the electric machine EM in order to determine the rotor position therefrom. From these input variables, the transformation unit TR transforms the three phase currents i_l, i_2 and i_3 into a magnetic field-forming current actual value id_ist and a torque-forming current actual value iq_ist by means of a Clarke-Park transformation. The magnetic field-forming factor calculated from the Clark-Park transformation
  • Actual current value id_ist is compared with a magnetic field-forming current setpoint id ref and a resulting difference is fed to a controller RE_1.
  • the magnetic field-forming current setpoint id ref is determined, for example, from the rotary encoder signal S_N and a magnetic flux model of the electric machine EM applied thereto.
  • the moment-forming current actual value iq calculated from the Clark-Park transformation is equal to a moment-forming current setpoint iq ref compared and a resulting difference supplied to a regulator RE 2.
  • the torque-forming current setpoint iq ref is calculated, for example, from a predetermined torque setpoint.
  • a pilot control branch FF 1 and FF 2 can be connected in order to accelerate the control speed of the field-oriented control.
  • a magnetic field-forming reference current signal id generated on the output side by the regulator RE 1 and a torque-forming reference current signal iq generated on the output side by the regulator RE 2 are supplied to an inverse transformation unit TR_INV.
  • the inverse transformation unit TR INV calculates from the reference current signals id and iq a magnetic field-forming reference signal Vd and a moment-forming reference signal Vq, which are fed to a space vector PWM unit SV PWM based on an inverse Park transformation.
  • the space vector PWM unit SV_PWM determines from the reference signals Vd and Vq and an internal model applied to the reference signals Vd and Vq the switching element signals S_l, S_2, S_3, S_4, S_5 and S_6 in order to obtain the switching elements S1, S2, S3, S4, S5 and S6 of the inverter WR to control.
  • the switching elements Sl, S2, S3, S4, S5 and S6 of the inverter WR in the sense of field-oriented current control driven.
  • the DC link capacitor C can also be discharged independently of the presence of the field-oriented current control by a control of the control unit CTL in such a way that, for example, only the switching elements Sl and S4 of
  • Inverter WR are turned on.
  • the intermediate circuit voltage U_ZK across the intermediate circuit capacitor C is connected across the third and second winding circuit.
  • strtress ST_3 and ST_2 of the electric machine EM discharged.
  • the energy stored in the intermediate circuit capacitor C is converted into heat energy in the winding resistances assigned to the winding phases ST_3 and ST_2 and dissipated.
  • the switching elements Sl and S4 are turned on by the control multiple times so briefly that the moment of inertia on the rotor associated with the electric machine EM largely compensates for a rotor torque generated by current flow through the winding phases ST 3 and ST_ 2 on the rotor. Due to the brief and in particular periodic control of the switching elements Sl and S4, the intermediate circuit capacitor C can be discharged within the predetermined time T MAX to below a predetermined contact voltage.
  • the short-term periodic control of the switching elements S1 and S4 can be effected by the operating control BA, although other switching elements than S1 and S4 can be selected to discharge the intermediate circuit capacitor C via the winding phases of the electric machine EM by a short-term and periodic activation.
  • the operating control BA comprises the field-oriented current control.
  • the operating control BA is designed to execute a program, which is explained in more detail with reference to the flowchart of FIG.
  • the program is started in a step 1 and checks whether the electric machine EM and / or the control unit CTL is in a state Zc, which predetermines a discharge of the intermediate-circuit capacitor C.
  • the torque-forming current setpoint iq_ref is set to zero in a step 2. This provides the moment-forming current component in the controller RE_1, in the inverse transformation unit TR_INV and in the space vector PWM unit SV PWM in the control of the switching elements Sl, S2, S3, S4, S5 and S6 of the inverter WR substantially no contribution. Thus, ideally, no torque is generated at the rotor of the electric machine EM.
  • the magnetic field-forming current setpoint id ref is set to a predetermined discharge value Ic, which is predetermined such that a charge on the intermediate circuit capacitor C is reduced in a predefined manner.
  • Ic discharge value
  • the magnetic field-forming current setpoint id_ref may only be set appropriately high to ensure that the discharge current of the intermediate circuit capacitor C resulting from the magnetic field-forming current setpoint id_ref does not damage any components.
  • a step 3 it is checked whether the intermediate circuit voltage U_ZK is discharged below the intermediate circuit capacitor C below a threshold value SW or a predetermined time period T has expired.
  • the threshold value SW is, for example, the touch voltage.
  • the time duration T is predetermined such that, taking into account the properties of the DC link capacitor C and the discharge current predetermined by the magnetic field-forming current setpoint id_ref, the error-free current is obtained
  • step 4 the magnetic field-forming current setpoint id_ref is set to zero and the operating control BA is switched off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Unité de commande (CTL) pour commander une machine électrique (EM), comprenant un condensateur de circuit intermédiaire (C) et un onduleur (WR). Pour faire fonctionner l'unité de commande (CTL), l'onduleur (WR) est commandé de manière à obtenir une rapide décharge du condensateur de circuit intermédiaire (C) et ce, par une commande de l'onduleur (WR) d'une durée aussi courte que le moment d'inertie affecté à la machine électrique (EM) soit largement compensé au niveau du rotor; et par une commande de l'onduleur (WR) de sorte que, dans le cadre d'une régulation de courant orientée champ, une valeur théorique d'une composante courant formant le couple soit prédéterminée par une valeur (notamment zéro) et une valeur théorique d'une composante courant formant aimant soit affectée à une valeur de décharge (IC) prédéterminée.
PCT/EP2008/055705 2007-05-14 2008-05-08 Procédé et dispositif de fonctionnement d'une unité de commande pour commander une machine électrique WO2008138864A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007022515A DE102007022515A1 (de) 2007-05-14 2007-05-14 Verfahren und Vorrichtung zum Betreiben einer Steuereinheit zur Ansteuerung einer elektrischen Maschine
DE102007022515.8 2007-05-14

Publications (1)

Publication Number Publication Date
WO2008138864A1 true WO2008138864A1 (fr) 2008-11-20

Family

ID=39672580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/055705 WO2008138864A1 (fr) 2007-05-14 2008-05-08 Procédé et dispositif de fonctionnement d'une unité de commande pour commander une machine électrique

Country Status (2)

Country Link
DE (1) DE102007022515A1 (fr)
WO (1) WO2008138864A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075593A1 (fr) * 2015-04-01 2016-10-05 MAN Truck & Bus AG Procede de dechargement d'un accumulateur d'energie electrique de vehicule automobile
JP2016226284A (ja) * 2015-06-02 2016-12-28 エルエス産電株式会社Lsis Co., Ltd. インバータ制御方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009001337A1 (de) * 2009-03-04 2010-09-09 Zhafir Plastics Machinery Gmbh Vorrichtung für eine elektrische Anordnung mit mindestens zwei Elektromotoren mit einer Schutzfunktion, sowie Spritzgiessmaschine mit einer derartigen Vorrichtung, sowie entsprechende Betriebsverfahren hierfür
US8115457B2 (en) * 2009-07-31 2012-02-14 Power Integrations, Inc. Method and apparatus for implementing a power converter input terminal voltage discharge circuit
DE102009039770B4 (de) * 2009-09-02 2011-06-16 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Betrieb eines Spannungszwischenkreis-Umrichters bei Transienten im speisenden Netz
US8207577B2 (en) 2009-09-29 2012-06-26 Power Integrations, Inc. High-voltage transistor structure with reduced gate capacitance
DE102010021865B4 (de) * 2010-05-28 2024-03-21 Sew-Eurodrive Gmbh & Co Kg Verfahren zum Regeln oder Abbremsen einer Synchronmaschine und eine umrichtergespeiste Synchronmaschine
DE102010050347B3 (de) * 2010-11-05 2012-05-03 Sew-Eurodrive Gmbh & Co. Kg Vorrichtung und Verfahren zur Herstellung eines sicheren Betriebszustands eines Hochspannungszwischenkreises eines Elektrofahrzeugs
DE102011080058B4 (de) * 2011-07-28 2023-10-05 Bayerische Motoren Werke Aktiengesellschaft Leistungselektronikgerät, insbesondere zur Verwendung in einem Kraftfahrzeug
DE102011084006A1 (de) * 2011-10-05 2013-04-11 Robert Bosch Gmbh Steuereinheit für ein Kraftfahrzeug
DE102011087002A1 (de) * 2011-11-24 2013-05-29 Siemens Aktiengesellschaft Antriebssystem und Verfahren zum Entladen eines Energiespeichers
EP2608376A1 (fr) 2011-12-19 2013-06-26 Siemens Aktiengesellschaft Procédé de décharge d'un condensateur de circuit intermédiaire d'un sous-module dans un circuit de convertisseur
DE102018219398A1 (de) * 2018-11-14 2020-05-14 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Reduzieren einer Überspannung in einem mit einer Asynchronmaschine verbundenen Zwischenkreis bei einem Lastabwurf
DE102018132496A1 (de) * 2018-12-17 2020-06-18 Valeo Siemens Eautomotive Germany Gmbh Schaltungsanordnung zum Übertragen eines Steuersignals, Stromrichter und Fahrzeug
DE102018132495A1 (de) * 2018-12-17 2020-06-18 Valeo Siemens Eautomotive Germany Gmbh Schaltungsanordnung zum Übertragen eines Nutzsignals, Stromrichter für ein Fahrzeug und Verfahren zum Übertragen eines Nutzsignals
DE102020208092A1 (de) * 2020-06-30 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Entladen eines Zwischenkreiskondensators

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970196A (ja) * 1995-08-31 1997-03-11 Toyota Motor Corp インバータ内部蓄電手段の放電装置
EP1110773A2 (fr) * 1999-12-13 2001-06-27 Matsushita Electric Industrial Co., Ltd. Dispositif d'entraínement pour un compresseur entraíné par un moteur
US20040008530A1 (en) * 2002-06-05 2004-01-15 Kabushiki Kaisha Toshiba Inverter control device and electric vehicle thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4235138C2 (de) * 1992-10-19 1998-03-19 Kiepe Bahn Elektrik Gmbh Einrichtung zur Schutzentladung von Gleichspannungskondensatoren in einer Stromrichteranlage
FI106230B (fi) * 1994-03-25 2000-12-15 Abb Industry Oy Menetelmä vaihtovirtamoottorin jarruttamiseksi
DE29815331U1 (de) * 1998-08-26 1999-09-30 Siemens Ag Antriebsvorrichtung für ein Elektrofahrzeug
DE19825972A1 (de) * 1998-06-10 1999-12-23 Bosch Gmbh Robert Sicherheitsvorrichtung für Umrichter-gespeiste Elektromotoren
DE102004057693B4 (de) 2004-11-30 2024-04-25 Robert Bosch Gmbh Vorrichtung zur schnellen Entladung eines Kondensators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970196A (ja) * 1995-08-31 1997-03-11 Toyota Motor Corp インバータ内部蓄電手段の放電装置
EP1110773A2 (fr) * 1999-12-13 2001-06-27 Matsushita Electric Industrial Co., Ltd. Dispositif d'entraínement pour un compresseur entraíné par un moteur
US20040008530A1 (en) * 2002-06-05 2004-01-15 Kabushiki Kaisha Toshiba Inverter control device and electric vehicle thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075593A1 (fr) * 2015-04-01 2016-10-05 MAN Truck & Bus AG Procede de dechargement d'un accumulateur d'energie electrique de vehicule automobile
JP2016226284A (ja) * 2015-06-02 2016-12-28 エルエス産電株式会社Lsis Co., Ltd. インバータ制御方法

Also Published As

Publication number Publication date
DE102007022515A1 (de) 2008-11-20

Similar Documents

Publication Publication Date Title
WO2008138864A1 (fr) Procédé et dispositif de fonctionnement d'une unité de commande pour commander une machine électrique
EP2745394B1 (fr) Circuit d'états de fonctionnement pour un onduleur et procédé de réglage des états de fonctionnement d'un onduleur
DE60314292T2 (de) Spannungswandler-gerät, computerlesbares aufnahmemedium mit darauf aufgenommenen programm zur veranlassung des computers fehlerverarbeitung auszuführen, und fehlerverarbeitungsverfahren
DE60215902T2 (de) Antriebsgerät, Steuerverfahren und Programmspeichermedium für das Antriebsgerät, und Apparatur zur Erzeugung von Energie
DE102014114122B4 (de) Drehende elektrische Maschine, die an einem Fahrzeug befestigt ist
DE112015000835T5 (de) Wechselrichtersteuerungsvorrichtung
DE102009000616A1 (de) Redundante Entladung eines DC-Busses für ein Elektromotorsystem
EP3512737B1 (fr) Procédé pour faire fonctionner un convertisseur et convertisseur fonctionnant de manière correspondante
DE112015006526T5 (de) Wechselstrom-Drehelektromaschinen-Steuervorrichtung
WO2016012300A1 (fr) Moteur électrique permettant l'alimentation en énergie d'un réseau de bord de véhicule automobile
EP0935336B2 (fr) Méthode et dispositif de commande d' un moteur synchron
DE102011075789A1 (de) Verfahren zum Betrieb einer Drehfeldmaschine
WO2017125207A1 (fr) Procédé pour réguler la tension de circuit intermédiaire d'un véhicule hybride ou électrique après déconnexion de la batterie haute tension
DE102018133248B4 (de) Motorsteuervorrichtung und Steuerverfahren für Motorsteuervorrichtung
DE102013215306A1 (de) Verfahren zum Einschalten und zum Ausschalten einer n-phasigen elektrischen Maschine in einem Kraftfahrzeug
WO2013041317A2 (fr) Système d'entraînement et procédé de commande d'un véhicule entraîné par batterie
WO2012107330A2 (fr) Procédé pour régler un couple réel, délivré par une machine électrique dans un véhicule automobile, sur un couple de consigne
EP2648328B1 (fr) Protection d'un convertisseur de courant avec circuit intermédiaire contre les dommages causés par la contre-tension d'une machine synchrone
EP2633616B1 (fr) Procédé permettant de réduire une ondulation de tension due à une irrégularité de rotation sur un générateur entraîné par un moteur à combustion interne
EP1504520A1 (fr) Montage pour alimenter l'electronique de commande de machines electriques
DE102014201063A1 (de) Stromrichterausrüstung
EP1363017B1 (fr) Circuit pour une machine électrique (démarreur-générateur) avec une pompe de charge passive
EP3172831A1 (fr) Procédé de commande d'au moins une machine électrique pouvant fonctionner en générateur et moyen pour mettre en oeuvre celui-ci
DE102020126054A1 (de) Ansteuerschaltkreis für einen Elektromotor mit einstellbarer Zwischenkreisspannung und entsprechendes Verfahren zum Ansteuern eines Elektromotors
EP2570290B1 (fr) Système d'entraînement d'un véhicule fonctionnant sur batterie doté d'une machine synchrone à excitation permanente alimentée par convertisseur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08750199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08750199

Country of ref document: EP

Kind code of ref document: A1