WO2008133217A1 - 鋳造用マグネシウム合金およびマグネシウム合金鋳物 - Google Patents

鋳造用マグネシウム合金およびマグネシウム合金鋳物 Download PDF

Info

Publication number
WO2008133217A1
WO2008133217A1 PCT/JP2008/057644 JP2008057644W WO2008133217A1 WO 2008133217 A1 WO2008133217 A1 WO 2008133217A1 JP 2008057644 W JP2008057644 W JP 2008057644W WO 2008133217 A1 WO2008133217 A1 WO 2008133217A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
magnesium alloy
magnesium
alloy
compound
Prior art date
Application number
PCT/JP2008/057644
Other languages
English (en)
French (fr)
Inventor
Yuki Okamoto
Kyoichi Kinoshita
Motoharu Tanizawa
Kazuhiko Yoshida
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki filed Critical Kabushiki Kaisha Toyota Jidoshokki
Priority to US12/596,810 priority Critical patent/US20100119405A1/en
Priority to EP08740690A priority patent/EP2138594A1/en
Publication of WO2008133217A1 publication Critical patent/WO2008133217A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C

Definitions

  • the present invention relates to a magnesium alloy for fabrication suitable for use at high temperatures.
  • Magnesium alloy which is lighter than aluminum alloy, is being widely used as an aeronautical vehicle material from the viewpoint of weight reduction. However, since magnesium alloys are not sufficient in strength and heat resistance depending on the application, further improvement in properties is required.
  • a common magnesium alloy is AZ91D (ASTM symbol). Since the thermal conductivity of AZ91D is about 73 WZmK, if it is used for a member that is used in a high temperature environment or generates heat during use, heat dissipation may not be performed well, and the member may be thermally deformed. In particular, if a low alloy alloy is used as the magnesium alloy used for the inner cylinder block of the inner Luseki, the cylinder head is thermally deformed, the heat is trapped in the cylinder block, and the cylinder bore is deformed. Adverse effects such as increased friction and reduced airtightness occur. For this reason, there is a demand for a magnesium alloy that has a high heat conductivity and can perform heat dissipation well and is suitable for use at high temperatures.
  • an object of the present invention is to provide a magnesium alloy for forging that is suitable for use at high temperatures. Another object of the present invention is to produce a ceramic made of the magnesium alloy.
  • the inventors of the present invention have added copper as an alloying element of magnesium alloy together with copper and strength russia, thereby preventing creep resistance at high temperatures without adversely affecting the auscultation of the magnesium alloy. Based on this, the present invention has been achieved.
  • the can and the whole was 1 0 0 mass 0/0, and more than 1 wt% 5 wt% or less of copper (C u), 0. 1 wt% to 5 wt%
  • the magnesium alloy for forging of the present invention contains Cu and Ca, so that a crystallized product of Mg-Ca compound together with Mg-Cu compound is networked to the grain boundary of Mg crystal grains. Crystallized into a three-dimensional network.
  • the three-dimensional network structure suppresses intergranular slip, which becomes particularly active at high temperatures, and improves high-temperature strength and creep resistance at high temperatures.
  • the magnesium alloy for forging of the present invention contains Ag together with Cu and Ca, so that the Mg crystal grains become fine and a highly continuous and dense three-dimensional network structure is formed. Ag, unlike other additive elements such as aluminum, has little adverse effect on the 3 ⁇ 4f conductivity of the magnesium alloy.
  • X—Y compounds and the like are compounds having X and Y as X 2 Y as shown in the formula, for example, as X 2 Y.
  • the recorded magnesium alloy of the present invention is a ceramic made of the forging magnesium alloy of the present invention.
  • the magnesium compound of the present invention is 1 mass% or more and 5 mass% or less of copper (C u), 0.1 mass% or more and 5 mass% or less of calcium (Ca), 0.1 mass% or more and 5 mass A pouring process of pouring an alloy intensifier containing silver (Ag) in an amount of not more than% and the balance of magnesium (Mg) and unavoidable impurities;
  • FIG. 1 is a graph showing the acceptance rate of magnesium alloys with different alloys.
  • Fig. 2 is a graph showing the amount of stress reduction 40 hours after the start of the test in the stress relaxation test of magnesium alloys with different alloy yarn destruction.
  • Figure 3 is a graph plotting the JBI stress applied to the specimen every 10 minutes against the stress relaxation test time.
  • FIG. 5 is a drawing-substituting photograph showing a metal alloy of Ca alloy (# 01).
  • Figure 5 A and Figure 5 B is, M g- 3 mass 0 / oC u- 1 wt% C a- 0. 1 mass 0/0
  • a g (# 02 ) is a drawing-substitute photograph showing a metal «alloy.
  • Fig. 6 A and Fig. 6 B are Mg 3 mass% Cu-1 mass. /. C a— 1% by mass A g
  • FIG. 7A and FIG. 7B are photographs in place of drawings showing the metal structure of Mg—3 mass% Cu—1 mass% (: a—2 mass% 8 g (# 04) alloy.
  • FIG. 8A and FIG. 8B are photographs, which substitute for a drawing, showing the metal structure of the Mg 3 mass% u-1 mass% 0 a-3 mass% 8 g (# 05) alloy.
  • the magnesium alloy for forging of the present invention includes copper (Cu), calcium (Ca) and silver
  • the Mg-Cu-based compound and the IVlg-Ca-based compound are crystallized in Mg crystals by adjusting the contents of Cu, Ca and Ag to appropriate amounts. Crystallizes in the form of a network (three-dimensional network) at the grain boundary. Since a three-dimensional network structure with little discontinuity is formed at the crystal grain boundary, the effect of suppressing grain boundary sliding is high.
  • the content of Cu is the entire use of magnesium alloys is 100 mass 0/0, 5% by mass or less 1 mass% or more. If the Cu content is 1% by mass or more, Mg-Cu compounds will crystallize sufficiently at the grain boundaries. If the Cu content is less than 1% by mass, the Mg—Cu compound is insufficiently crystallized at the crystal grain boundary, so the strength is low. The preferable Cu content is 2% by mass or more. On the other hand, as the amount of Cu increases, the amount of Mg-Cu compound that crystallizes at the grain boundary becomes excessive, resulting in a brittle yarn and lowering the strength. The preferred Cu content is 4 mass. /. It is as follows.
  • the magnesium alloy for t according to the present invention contains Ca and Ag together with Cu.
  • C a and Ag are considered to contribute to the formation of a three-dimensional network structure along with Cu by 3 ⁇ 4E.
  • the Mg—Ca compound will crystallize at the grain boundary together with the Mg—Cu compound, and a dense three-dimensional network structure will be formed due to the additive effect of Ag.
  • the content of Ca is 0.1 mass% or more and 5 mass% or less when the total magnesium alloy is 100 mass 0 / o. If the content of Ca is 0.1% by mass or more, the Mg—Ca compound is sufficiently crystallized at the grain boundary. In addition, the addition of Ca to the magnesium alloy increases the ignition temperature of the magnesium alloy, thus preventing combustion that may occur when the magnesium alloy is intensified.
  • a preferable Ca content is 0.5% by mass or more. On the other hand, if the Ca content exceeds 5% by mass, the amount of grain boundary crystallized products increases too much, and mechanical properties such as tensile strength and elongation decrease, which may cause problems in post-processing. is there.
  • a preferable Ca content is 3% by mass or less, and further 2% by mass or less.
  • a g is ⁇ magnesium alloy for the entire 100 mass 0 /.
  • the content of Ag is 5% by mass or less.
  • the content of Ag is 4% by mass or less, and further 3% by mass or less.
  • the forging magnesium alloy of the present invention described above can be used in various fields such as automobiles and electric power as well as in the fields of space and aviation.
  • the magnesium alloy for ftit of the present invention it is possible to make use of its high temperature characteristics, such as products used at high temperatures ⁇ , such as compressors, pumps, various cases, etc.
  • the magnesium alloy ceramic of the present invention is a ceramic made of the magnesium alloy for forging according to the present invention described in detail above. That is, the magnesium alloy cake of the present invention is obtained through a pouring step and a solidification step, and the pouring step is performed in an amount of 1% by mass or more and 5% by mass when the whole is 100% by mass. and the following copper (C u), and 0.1 wt% to 5 wt 0/0 following calcium (C a), 0.
  • the step of pouring the molten alloy consisting of magnesium (Mg) and the inevitable impurities in the remainder, the solidification step is a step of cooling the solid alloy after the pouring step to solidify it.
  • the magnesium alloy of the present invention is not limited to normal gravity pressure but may be die-cast. It does not matter whether it is used for sand molds or molds. There is no particular limitation on the solidification rate (cooling rate) in the solidification step, and solidification for forming a three-dimensional network structure may be appropriately selected according to the size of the koji. If solidified by general solidification, network-like metal fibers can be obtained. Further, it is desirable that the magnesium alloy for magnesium and the magnesium compound of the present invention are release materials. In addition, after heat treatment, You can improve it.
  • the present invention is not limited to the above embodiment.
  • the present invention can be carried out in various forms that are subject to change, improvement, improvement and the like within the scope not departing from the gist of the present invention.
  • Chloride flux was applied to the inner surface of a $ ⁇ crucible preheated in an electric furnace, and weighed pure magnesium ingot, pure Cu, and pure Ag as needed, and dissolved. Furthermore, weighed Ca was added to this molten metal maintained at 75 ° C., and the boiling preparation process) o
  • the agitation was sufficiently stirred to completely dissolve the raw materials, and then kept calm for a while.
  • the various molten alloys obtained in this way were poured into molds of a predetermined shape (the pouring process) and solidified in the air atmosphere (solidification process), and pieces of # 0 1 to # 0 5 (magnesium alloy steel) Forged).
  • the obtained test piece was 30 mm ⁇ 30 mm ⁇ 20,000 mm. Table 1 shows the chemical composition of each specimen.
  • the specimens # 0 1 to # 0 5 shown in Table 1 were subjected to stress relaxation, and the creep resistance of the magnesium alloy was examined.
  • the stress relaxation test measures the process by which the stress decreases over time when a load is applied to a specified amount of deformation during a crack. Specifically, in an air atmosphere at 200 ° C, a compressive stress of 10 OMPa was applied to the test piece, and time was taken so that the displacement of the piece at that time was kept constant. The compressive stress was reduced with the passage of time.
  • Table 1 and Fig. 2 show the amount of stress reduction 40 hours after the start of the test.
  • Figure 3 shows a graph created by plotting the compressive stress applied to the specimen every 10 minutes.
  • test pieces # 01 to # 05 shown in Table 1 were observed. The surface was observed by observing the cross section cut out from each specimen with a metal microscope. The metal yarns on the surface of # 01 to # 05 !; the weaves are the forces shown in Fig. 4A to Fig. 8A and Fig. 4B to Fig. 8B, respectively. Magnification, Figures 4B-8B (b) The same section was observed at high magnification.
  • specimen # 01 had a three-dimensional network structure in which intermetallic compounds were crystallized at the grain boundaries.
  • CuMg 2 appears brighter at the grain boundaries, and Mg 2 Ca appears darker by EPM A (electron probe microanalyzer) and XRD (X-ray diffraction). Ri fi ⁇ .
  • EPM A electron probe microanalyzer
  • XRD X-ray diffraction
  • the pieces from # ⁇ 1 to # 05 were superior in terms of conductivity as compared to AZ 91 D.
  • the thermal conductivity of the # 01 specimen without Ag was 155 WZmK.
  • the # 05 piece there was no decrease in 3 ⁇ 4f conductivity due to the addition of Ag.
  • the higher the Ag content the smaller the amount of stress decrease 4 hours after the start of the stress relaxation test at 200 ° C.
  • the # 03, # 04, and # 05 specimens showed excellent creep resistance even for # 01 and AZ 91 D specimens that did not contain Ag for 40 hours from the start of the test. (Figure 3).
  • each of the above tests within the range of 2.7 mass% to 3.3 mass% for Cu and 0.7 mass% to 1.3 mass% for Ca. Si conductivity and creep resistance similar to those of the piece.
  • a magnesium alloy containing Cu, Ca, and Ag with appropriate contents does not show a decrease in the conductivity due to the addition of Ag, and has excellent creep resistance at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Continuous Casting (AREA)
  • Forging (AREA)

Abstract

本発明の鋳造用マグネシウム合金は、全体を100質量%としたときに、1質量%以上5質量%以下の銅(Cu)と、0.1質量%以上5質量%以下のカルシウム(Ca)と、0.1質量%以上5質量%以下の銀(Ag)と、を含み、残部がマグネシウム(Mg)と不可避不純物とからなることを特徴とする。CuおよびCaを含むことにより、Mg−Cu系化合物とともにMg−Ca系化合物の晶出物が、Mg結晶粒の結晶粒界に三次元網目状に晶出する。三次元網目構造により、高温になると特に活発になる粒界すべりが抑制され、高温強度および高温での耐クリープ性が向上する。また、Agの添加により、Mg結晶粒が微細となり、連続性が高く緻密な三次元網目構造が形成される。さらに、Agは、マグネシウム合金の熱伝導性への悪影響が少ない。

Description

明細書 铸造用マグネシゥム合金およびマグネシゥム合金^ 技術分野
本発明は、 高温下での使用に適した铸造用マグネシゥム合金に関するものであ る。 技膽景
アルミニゥム合金よりもさらに軽量なマグネシゥム合金は、 軽量化の観点から 航空餅才 車両材料などとして広く用いられつつある。 しかしながら、 マグネ シゥム合金は、 用途によっては強度や耐熱性などが充分ではないため、 さらなる 特性の向上が求められている。
たとえば、 一般的なマグネシウム合金として、 AZ91D (ASTM記号) カ ある。 AZ91Dの熱伝導率は 73WZmK程度であるため、 使用環境が高温で あったり使用中に発熱したりする部材に用いられると、 放熱が良好に行われず、 部材に熱変形が生じることがある。 特に、 内羅関のシリンダヘッドゃシリンダ ブロックに用いられるマグネシウム合金として 云導率の低いマグネシウム合金 を用いると、 シリンダヘッドが熱変形したり、 シリンダブロック内に熱がこもり シリンダボアが変形することで、 摩擦が増大したり気密性が低下したりするなど の悪影響が生じる。 そのため、 高レヽ 云導率をもつことで放熱が良好に行われ、 高温下での使用に好適なマグネシゥム合金が求められている。
たとえば、 Mg— 3%Cu— l%Caの合 !^ (単位は 「質量0ん」 ) をもつ マグネシゥム合金の 云導率は、 云導率の高レヽ C uカ含まれることで、 A Z 9
IDの 云導率よりも高い。 し力、しながら、 使用条件によっては高温での耐クリ ープ性などが十分ではない場合がある。
特開平 6— 25791号公報には、 0. 8〜 5質量0 /0のカルシウム (Ca) と、
0〜: L 0質量0 /0の銅 (Cu) と、 3〜8質量0/ 0の»ロゝ (Zn) と、 を含むマグネ シゥム合金が開示されている。 特開平 6— 25791号公報に記載のマグネシゥ ム合金は、 室温および高温において高い強度を示すが、 ¾i云導率については記載 が無く、 亜鉛の添加がマグネシウム合金の熱伝導性に影響する力 かは不明であ る。 発明の開示
本発明は、 上記問題点に鑑み、 高温下での使用に適した铸造用マグネシウム合 金を することを目的とする。 また、 その^ 用マグネシウム合金からなる铸 物を することを目的とする。
本発明者らは、 鋭意研究の結果、 マグネシウム合金の合金元素として、 銅と力 ルシゥムとともに銀を添加することで、 マグネシゥム合金の謝云導性に悪影響を 与えることなく高温における耐クリ一プ性を向上させることができることを見出 し、 これに基づき本発明を ¾ ^するに至った。
すなわち、 本発明の 用マグネシウム合金は、 全体を 1 0 0質量0 /0としたと きに、 1質量%以上 5質量%以下の銅 (C u) と、 0. 1質量%以上 5質量%以 下のカルシウム (C a ) と、 0. 1質量0 /。以上 5質量0 /0以下の銀 (A g ) と、 を 含み、 残部がマグネシウム (M g) と不可避不純物とからなることを特徴とする。 本発明の铸造用マグネシウム合金は、 C uおよび C aを含むことにより、 M g - C u系化合物とともに M g— C a系化合物の晶出物が、 M g結晶粒の結晶粒界 にネットワーク状 (三次元網目状) に晶出する。 三次元網目構造により、 高温に なると特に活発になる粒界すべりが抑制され、 高温強度および高温での耐クリー プ'性が向上する。
さらに、 本発明の铸造用マグネシウム合金は、 C u、 C aとともに A gを含む ことで、 Mg結晶粒が微細となり、 連続性が高く緻密な三次元網目構造が形成さ れる。 また、 A gは、 アルミニウム等の他の添加元素とは異なり、 マグネシウム 合金の ¾f云導性への悪影響が少なレ、。
なお、 本明細書において、 「X— Y系化合物」 等の記載は、 たとえば、 滅式 で X2Yと示されるような Xと Yとを^^分とする化合物である。
また、 本発明のマグネシウム合金録物は、 本発明の铸造用マグネシウム合金か らなる铸物である。 本発明のマグネシウム合^物は、 全体を 100質量%としたときに 1質量%以上 5質量%以下の銅 (C u ) と、 0. 1質量%以上 5質量%以下のカルシウム (Ca) と、 0. 1質量%以上 5質 量%以下の銀 (Ag) と、 を含み、 残部がマグネシウム (Mg) と不可避不純物 とからなる合金激昜を,に注湯する注湯工程と、
該注湯工程後の合金 を冷却させて凝固させる凝固工程と、
を経て得られることを特徴とする。 図面の簡単な説明
図 1は、 合^ の異なるマグネシウム合金の謝云導率を示すグラフである。 図 2は、 合金糸滅の異なるマグネシウム合金の応力緩和試験における、 試験開 始から 40時間後の応力低下量を示すグラフである。
図 3は、 応力緩和 の試験時間に対し、 試験片に付加される JBI応力を 10 分毎にプロットしたグラフである。
図 4Aおよび図 4Bは、 Mg— 3質量0 /oCu— 1質量0 /。Ca合金 (#01) の 金属ネ纖を示す図面代用写真である。
図 5 Aおよび図 5 Bは、 M g— 3質量0 /oC u— 1質量%C a— 0. 1質量0 /0A g (#02) 合金の金属 «を示す図面代用写真である。
図 6 Aおよび図 6 Bは、 M g— 3質量%C u- 1質量。/。 C a— 1質量% A g
(#03) 合金の金属組織を示す図面代用写真である。
図 7 Aおよび図 7 Bは、 Mg— 3質量%C u— 1質量%(: a— 2質量%八 g (#04) 合金の金属組織を示す図面代用写真である。
図 8 Aおよび図 8 Bは、 M g— 3質量%じ u- 1質量%〇 a— 3質量%八 g (#05) 合金の金属組織を示す図面代用写真である。 発明を実施するための最良の形態
以下に、 本発明の铸造用マグネシウム合金を実施するための最良の形態を説明 する。
本発明の铸造用マグネシウム合金は、 銅 (Cu) とカルシウム (Ca) と銀
(Ag) とを含み、 残部がマグネシウム (Mg) と不可避不純物とからなること を特徴とする。
本発明の^ 用マグネシウム合金は、 C u、 Caおよび A gの含有量を適切な 量とすることで、 Mg—Cu系化合物およひ IVlg— Ca系化合物の晶出物が、 M g結晶粒の結晶粒界にネットワーク状 (三次元網目状) に晶出する。 結晶粒界に 不連 分の少ない三次元網目構造が形成されるため、 粒界すべりの抑制効果が 高レ、。
Cuの含有量は、 用マグネシウム合金全体を 100質量0 /0としたときに、 1質量%以上 5質量%以下である。 C uの含有量が 1質量%以上であれば、 結晶 粒界に M g-Cu系化合物が十分に晶出する。 C uの含有量が 1質量%未満では、 Mg— Cu系化合物の結晶粒界への晶出が不十分なため、 強度が低い。 好ましい Cuの含有量は、 2質量%以上である。 一方、 Cuが多い程、 結晶粒界に晶出す る M g— C u系化合物の量が過剰となり、 脆レヽ糸纖となるため強度は低下する。 好ましい Cuの含有量は、 4質量。 /。以下である。
本発明の^ t用マグネシウム合金は、 Cuとともに C aおよび A gを含む。 C aおよび A gは、 C uとともに結晶粒界に ¾Eして、 三次元網目構造の形成に寄 与すると考えられる。 具体的には、 Mg— Cu系化合物とともに Mg— Ca系化 合物が結晶粒界に晶出し、 Agの添加効果により緻密な三次元網目構造が形成さ れると推測される。
C aの含有量は、 用マグネシウム合金全体を 100質量0 /oとしたときに、 0. 1質量%以上5質量%以下でぁる。 C aの含有量が 0. 1質量%以上であれ ば、 結晶粒界に Mg—C a系化合物が十分に晶出する。 また、 マグネシウム合金 へ C aを添加するとマグネシウム合金の発火温度が上昇するため、 マグネシウム 合金を激昜にしたときに発生することがある燃焼が防止される。 好ましい C aの 含有量は、 0. 5質量%以上である。 一方、 C aの含有割合が 5質量%を超える と、 粒界晶出物の生成量が多くなりすぎて、 引張強度や伸びなどの機械的性質が 低下し、 後加工で問題を生じることがある。 好ましい Caの含有量は、 3質量% 以下さらには 2質量%以下である。
A gの含有量は、 ^用マグネシウム合金全体を 100質量0 /。としたときに、
0. 1質量0 /0以上 5質量0 /0以下である。 A gの食有量が 0. 1質量0 /0以上であれ ば、 固液雜 «範囲が狭くなり M g結晶粒が微細となるため、 赚な三次元網 目構造が形成される。 A gの含 合が多いほど M g結晶粒の粒径は小さくなる とともに、 粒界晶出物の幅が太くなり、 高温強度や高温での耐クリープ性が向上 するが、 A gの含有割合が多くなる程、 溶湯の流動性が低下する傾向があり、 コ ストも高くなり経済的でない。 そのため、 A gの含有量は、 5質量%以下とする。 好ましレ、 A gの含有量は、 4質量%以下さらには 3質量%以下である。
以上説明した本発明の铸造用マグネシウム合金は、 宇宙、 航空の分野をはじめ とし、 自動車、 電^^など、 各種分野で用いることができる。 また、 本発明の ftit用マグネシウム合金からなる部材としては、 その高温での特性を生かして、 高温^^下で使用される製品、 たとえば、 使用中に高温となるコンプレッサー、 ポンプ類、 各種ケース類を構成する部品、 また、 高温および高負荷の下で用いら れるエンジン部品、 特に、 内燃機関のシリンダヘッド、 シリンダブロックやオイ ルバン、 内腦幾関のターボチャージヤー用インペラ、 自動車等に用いられるトラ ンスミツションケース等が挙げられる。
また、 本発明のマグネシウム合金铸物は、 以上詳説した本発明の铸造用マグネ シゥム合金からなる铸物である。 すなわち、 本発明のマグネシウム合金铸物は注 湯工程と凝固工程とを経て得られる,であって、 注湯工程は、 全体を 1 0 0質 量%としたときに 1質量%以上 5質量%以下の銅 (C u) と、 0. 1質量%以上 5質量0 /0以下のカルシウム (C a ) と、 0. 1質量0 /o以上 5質量0 以下の銀 (A g ) と、 を含み、 残部がマグネシウム (M g ) と不可避不純物とからなる合金溶 湯を,に注湯する工程、 凝固工程は、 注湯工程後の合金激昜を冷却させて凝固 させる工程、 である。
本発明のマグネシウム合^^は、 通常の重力铸^加圧^ に限らず、 ダイ カスト铸造したものでもよレ、。 また、 に使用される,も砂型、 金型等を問 わない。 凝固工程における凝固速度 (冷却速度) にも特に限定はなく、 三次元網 目構造が形成される の凝固 を铸塊のサイズに応じて適宜選択すればよい。 なお、 一般的な凝固献で凝固させれば、 ネットワーク状の金属繊が得られる。 また、 本発明の^ 用マグネシウム合金およびマグネシウム合^物は、 铸放 し材であるのが望ましい。 さらに、 ^後に熱処理することにより、 ,の特 を向上させてもよレ、。
以上、 本発明の铸造用マグネシゥム合金およびマグネシゥム合金铸物の実施形 態を説明したが、 本発明は、 上記実施形態に限定されるものではない。 本発明の 要旨を逸脱しない範囲において、 当業者が行レ、得る変更、 改良等を施した種々の 形態にて実施することができる。
以下に実施例を挙げて、 本発明を具体的に説明する。
マグネシゥム合金中の合金元素の含有量を変更した試験片を複数製作し、 それ らの特' の評価およ ϋ 属糸 の観察を行つた。
[試験片 # ο 1〜# 0 5の ί«]
電気炉中で予熱した $Λるつぼの内面に塩化物系のフラックスを塗布し、 その 中に枰量した純マグネシウム地金、 純 C uおよび必要に応じて純 A gを投入して 溶解した。 さらに、 7 5 0 °Cに保持したこの溶湯中に秤量した C aを添加した 騰調製工程) o
この激昜を十分に攪拌し、 原料を完全に溶解させた後、 同 でしばらく沈静 保持した。 こうして得た各種の合金溶湯を所定の形状の金型に流し込み (注湯ェ 程) 、 大気雰囲気中で凝固させて (凝固工程) 、 # 0 1〜# 0 5の纖片 (マグ ネシゥム合金铸物) を铸造した。 なお、 得られた試験片は、 3 0 mm X 3 0 m m X 2 0 0 mmであった。 各試験片の化学組成を表 1に示す。
[謝云導率の測定]
上記の手順で讓した # 0 1〜# 0 5の纖片に加え、 市販の A Z 9 1 D (組 成は表 1に記載) カゝら作製した同様の試験片について、 レーザーフラッシュ法に より熱伝導率を求めた。 試験結果を表 1および図 1に示す。
[応力緩和試験]
表 1に示した 片# 0 1〜# 0 5ぉょび八 9 1 Dから «した試験片につ いて、 応力緩和,を行い、 マグネシウム合金の耐クリープ性を調べた。 応力緩 和試験は、 試験片に纖 Bき間中、 所定の変形量まで荷重を加えたときの応力が、 時間とともに減少する過程を測定する。 具体的には、 2 0 0°Cの大気雰囲気中に おいて、 試験片に 1 0 O MP aの圧縮応力を負荷し、 そのときの纖片の変位が 一定に保たれるように、 時間の経過に併せてその圧縮応力を低下させていった。 試験開始から 40時間後の応力低下量を、 表 1および図 2に示す。 また、 試験片 に付加される圧縮応力を 10分毎にプロットして作成したグラフを図 3に示す。
[金属繊の観察]
表 1に示した試験片 # 01〜 # 05の表面を観察した。 表面観察は、 各試験片 から切り出された断面を金属顕^^で観察して行った。 #01〜#05の表面の 金属糸!;織を、 それぞれ図 4 A〜図 8 Aおよび図 4 B〜図 8 Bに示す力 各図にお いて、 図 4A〜図 8Aは (a) 低倍率、 図 4B〜図 8Bは (b) 高倍率で同じ断 面を観察した。
試験片 #01では、 図 4Aからわかるように、 結晶粒界に金属間化合物が晶出 してなる三次元網目構造が された。 また、 図 4 Bにおいて、 結晶粒界で明る く見えるのは CuMg2であり、 暗く見えるのは Mg2C aであることを EPM A (エレクトロンプローブマイクロアナライザ) および XRD (X線回折) によ り fi ^した。 また、 片#02〜#05では、 図 5 A〜図 8 Aからわかるよう に、 #01よりも網目が細かく連続性の高い三次元網目構造力 ¾ ^された。 また、 図 5B〜図 8Bにおいて、 結晶粒界で明るく見えるのは CuMg2であり、 暗く 見えるのは Mg2Caであることを EP M Aおよび X R Dにより した。
なお、 EPMAおよび XRDによれば、 纖片 # 02〜# 05において Agは、 主として結晶粒界で A g 3M gとして することが ¾^できた。
[表 1]
Figure imgf000009_0001
#〇 1〜# 05の纖片は、 レヽずれも AZ 91 Dよりも 云導性に優れた。 A gを含まない #01の試験片の熱伝導率は 155WZmKであったが、 #02〜 #05の,片では、 A gの添加による ¾f云導性の低下は見られなかった。 また、 A gの含有量が多レ、ほど、 200 °Cでの応力緩和試験における試験開始 から 4◦時間後の応力低下量が少なかった。 特に、 #03、 #04および #05 の各試験片は、 試験開始から 40時間までにわたり、 Agを含まない #01や A Z 91 Dの試験片ょりも優れた耐クリ一プ性を示した (図 3)。
なお、 上記の各 片は、 〇11を3質量%、 Caを 1質量0 /0で一定とした。 い ずれの試験片においても、 Cuであれば 2. 7質量%以上 3. 3質量%以下、 C aであれば 0. 7質量%以上1. 3質量%以下の範囲で、 上記の各試験片と同程 度の Si云導率および耐クリープ性を示す。
すなわち、 適切な含有量の C u、 C aおよび A gを含むマグネシウム合金は、 A gの添加による謝云導性の低下がみられず、 高温における耐クリープ性に優れ る。

Claims

請求の範囲
1. 全体を 100質量%としたときに、 1質量%以上 5質量%以下の銅 (C u) と、 0. 1質量%以上 5質量%以下のカルシウム (Ca) と、 0. 1質量0 /0 以上 5質量%以下の銀 (Ag) と、 を含み、 残部がマグネシウム (Mg) と不可 避不純物とからなることを特徴とする^ 用マグネシゥム合
2. 前記銅 (Cu) は、 2質量%以上4質量%以下でぁる請求の範囲第1項記 載の铸造用マグネシゥム合金。
3. 前記カルシウム (Ca) は、 0. 5質量0 /0以上 3質量0 /0以下である請求の 範囲第 1項記載の铸造用マグネシウム合金。
4. 前記銀 (Ag) は、 0. 1質量%以上 3質量%以下である請求の範囲第 1 項記載の^ t用マグネシゥム合 ¾
5. Mg-Cu系化合物および M g-Ca系化合物が M g結晶粒の結晶粒界に ネットワーク状に晶出した糸!^をもつ請求の範囲第 1項記載の^ t用マグネシゥ ム合
6. 全体を 100質量%としたときに、 1質量%以上5質量%以下の銅 (。 u) と、 0. 1質量0 /0以上 5質量%以下のカルシウム (Ca) と、 0. 1質量% 以上 5質量%以下の銀 (Ag) と、 を含み、 残部がマグネシウム (Mg) と不可 避不純物とカゝらなる合金激昜を,に注湯する注湯工程と、
該注湯工程後の合金激易を冷却させて凝固させる凝固工程と、
を経て得られることを特徴とするマグネシウム合^ ¾
7. Mg-Cu系化合物および M g— C a系化合物が M g結晶粒の結晶粒界に ネットワーク状に晶出した組織をもつ請求の範囲第 6項記載のマグネシウム合金 難。
PCT/JP2008/057644 2007-04-20 2008-04-14 鋳造用マグネシウム合金およびマグネシウム合金鋳物 WO2008133217A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/596,810 US20100119405A1 (en) 2007-04-20 2008-04-14 Magnesium alloy for casting and magnesium-alloy cast product
EP08740690A EP2138594A1 (en) 2007-04-20 2008-04-14 Magnesium alloy for casting and magnesium alloy cast

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007112052A JP2008266734A (ja) 2007-04-20 2007-04-20 鋳造用マグネシウム合金およびマグネシウム合金鋳物
JP2007-112052 2007-04-20

Publications (1)

Publication Number Publication Date
WO2008133217A1 true WO2008133217A1 (ja) 2008-11-06

Family

ID=39925671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057644 WO2008133217A1 (ja) 2007-04-20 2008-04-14 鋳造用マグネシウム合金およびマグネシウム合金鋳物

Country Status (4)

Country Link
US (1) US20100119405A1 (ja)
EP (1) EP2138594A1 (ja)
JP (1) JP2008266734A (ja)
WO (1) WO2008133217A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199258A1 (ja) * 2017-04-26 2018-11-01 国立大学法人九州大学 電極、構造体およびその製造方法、接続構造体、並びに、その電極を用いた素子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435444B2 (en) 2009-08-26 2013-05-07 Techmag Ag Magnesium alloy
GB2537576A (en) 2014-02-21 2016-10-19 Terves Inc Manufacture of controlled rate dissolving materials
US10758974B2 (en) 2014-02-21 2020-09-01 Terves, Llc Self-actuating device for centralizing an object
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10150713B2 (en) 2014-02-21 2018-12-11 Terves, Inc. Fluid activated disintegrating metal system
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
US20170268088A1 (en) 2014-02-21 2017-09-21 Terves Inc. High Conductivity Magnesium Alloy
CA2942184C (en) 2014-04-18 2020-04-21 Terves Inc. Galvanically-active in situ formed particles for controlled rate dissolving tools
CA3012511A1 (en) 2017-07-27 2019-01-27 Terves Inc. Degradable metal matrix composite

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511191A (en) * 1978-05-31 1980-01-25 Magnesium Elektron Ltd Magnesium alloy
JPH0625791A (ja) 1992-03-25 1994-02-01 Mitsui Mining & Smelting Co Ltd 高強度マグネシウム合金
JPH0649578A (ja) * 1992-06-30 1994-02-22 Mitsui Mining & Smelting Co Ltd 高強度マグネシウム合金
JPH07316712A (ja) * 1994-05-27 1995-12-05 Honda Motor Co Ltd 引張り強度及びクリープ特性に優れたマグネシウム合金
JP2003113436A (ja) * 2001-10-03 2003-04-18 Matsumoto Seisakusho:Kk 高減衰能マグネシウム合金
JP2005054233A (ja) * 2003-08-04 2005-03-03 Chiba Inst Of Technology 耐熱マグネシウム合金

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678373B2 (ja) * 2004-06-30 2011-04-27 住友電気工業株式会社 マグネシウム合金材の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511191A (en) * 1978-05-31 1980-01-25 Magnesium Elektron Ltd Magnesium alloy
JPH0625791A (ja) 1992-03-25 1994-02-01 Mitsui Mining & Smelting Co Ltd 高強度マグネシウム合金
JPH0649578A (ja) * 1992-06-30 1994-02-22 Mitsui Mining & Smelting Co Ltd 高強度マグネシウム合金
JPH07316712A (ja) * 1994-05-27 1995-12-05 Honda Motor Co Ltd 引張り強度及びクリープ特性に優れたマグネシウム合金
JP2003113436A (ja) * 2001-10-03 2003-04-18 Matsumoto Seisakusho:Kk 高減衰能マグネシウム合金
JP2005054233A (ja) * 2003-08-04 2005-03-03 Chiba Inst Of Technology 耐熱マグネシウム合金

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199258A1 (ja) * 2017-04-26 2018-11-01 国立大学法人九州大学 電極、構造体およびその製造方法、接続構造体、並びに、その電極を用いた素子

Also Published As

Publication number Publication date
US20100119405A1 (en) 2010-05-13
JP2008266734A (ja) 2008-11-06
EP2138594A1 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
WO2008133217A1 (ja) 鋳造用マグネシウム合金およびマグネシウム合金鋳物
JP5146767B2 (ja) 鋳造用マグネシウム合金およびマグネシウム合金鋳物の製造方法
EP0791662B1 (en) Heat-resistant magnesium alloy
JP5703881B2 (ja) 高強度マグネシウム合金およびその製造方法
EP2369025B1 (en) Magnesium alloy and magnesium alloy casting
JP2006291327A (ja) 耐熱マグネシウム合金鋳造品
Nguyen et al. Microstructure and mechanical characteristics of AZ31B/Al2O3 nanocomposite with addition of Ca
JP2002327231A (ja) 耐熱マグネシウム合金鋳造品およびその製造方法
JP6814446B2 (ja) 難燃性マグネシウム合金およびその製造方法
WO2008133218A1 (ja) 鋳造用マグネシウム合金およびマグネシウム合金鋳物
JP2004162090A (ja) 耐熱性マグネシウム合金
JP4145242B2 (ja) 鋳物用アルミニウム合金、アルミニウム合金製鋳物およびアルミニウム合金製鋳物の製造方法
JP2005187896A (ja) 耐熱マグネシウム合金鋳造品
JP3737371B2 (ja) ダイカスト用マグネシウム合金
JP2005240129A (ja) 耐熱マグネシウム合金鋳造品
JP5590413B2 (ja) 高熱伝導性マグネシウム合金
JPWO2008120497A1 (ja) 耐熱性マグネシウム合金
JP4575645B2 (ja) 鋳造用耐熱マグネシウム合金および耐熱マグネシウム合金鋳物
WO2010038893A1 (ja) 耐熱性マグネシウム合金
JP2005187895A (ja) 耐熱マグネシウム合金鋳造品
JP2011219820A (ja) 耐熱マグネシウム合金
Paramsothy et al. Enhancement of compressive strength and failure strain in AZ31 magnesium alloy
JP2010070839A (ja) マグネシウム合金
JP4065977B2 (ja) 高温強度に優れた鋳造用アルミニウム合金
JP2009007676A (ja) 鋳造用耐熱マグネシウム合金および耐熱マグネシウム合金鋳物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008740690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12596810

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE