WO2008132410A2 - Double joint a levre pressurise - Google Patents

Double joint a levre pressurise Download PDF

Info

Publication number
WO2008132410A2
WO2008132410A2 PCT/FR2008/050532 FR2008050532W WO2008132410A2 WO 2008132410 A2 WO2008132410 A2 WO 2008132410A2 FR 2008050532 W FR2008050532 W FR 2008050532W WO 2008132410 A2 WO2008132410 A2 WO 2008132410A2
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
lip
flow
sealing device
gas
Prior art date
Application number
PCT/FR2008/050532
Other languages
English (en)
Other versions
WO2008132410A3 (fr
Inventor
Monique Fos
Franck Labarthe
Original Assignee
Turbomeca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Turbomeca filed Critical Turbomeca
Priority to CA002682004A priority Critical patent/CA2682004A1/fr
Priority to US12/593,094 priority patent/US20100119368A1/en
Priority to JP2010500334A priority patent/JP2010522857A/ja
Priority to EP08788058A priority patent/EP2140178A2/fr
Priority to BRPI0809521-3A2A priority patent/BRPI0809521A2/pt
Publication of WO2008132410A2 publication Critical patent/WO2008132410A2/fr
Publication of WO2008132410A3 publication Critical patent/WO2008132410A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/406Sealings between relatively-moving surfaces by means of fluid by at least one pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/002Sealings comprising at least two sealings in succession
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3232Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip having two or more lips

Definitions

  • the present invention relates to the field of seals, in particular that of radial friction seals.
  • the present invention relates more particularly to a sealing device for sealing between a casing and a shaft rotatably mounted in said casing, comprising first and second annular lip seals intended to be arranged side by side axially between the casing and the casing. 'tree.
  • the adjectives "axial” and “radial” refer to the direction of the axis of rotation of the shaft.
  • a pair of lip seals is used to seal a chamber by contact on the shaft.
  • An object of the present invention is to provide a sealing device having a longer life than that of the prior art.
  • the invention achieves its object by the fact that the sealing device according to the invention further comprises means for bringing a stream of pressurized gas into an annular cavity delimited by the first lip seal, the second lip seal and a outer surface of the shaft, such that during the rotation of said shaft, the gas flow is able to take off at least one of the two lip seals of the outer surface of the shaft to flow out of the cavity, said means for causing the flow of pressurized gas further comprise a diaphragm for limiting the flow of gas in case of damage to one of the annular lip seals.
  • At least one of the two lip seals preferably both, take off from the outer surface of the shaft due to the flow of gas flow between the seals. lip and surface external of the shaft, as a result of which the friction between the shaft and the sealing device is advantageously eliminated.
  • the sealing function is advantageously preserved thanks to the flow of gas flowing out of the cavity which tends to maintain the outer particles outside the cavity.
  • the sealing device according to the present invention wears substantially less quickly than the device of the prior art which has the effect of increasing its service life.
  • the diaphragm is disposed in this channel or at one of its ends.
  • the gas flow rate is limited by the separation distance of the lips of the lip seals.
  • the flow of gas is advantageously limited in the event of damage to one of the lip seals.
  • the first lip seal has a first lip while the second lip seal has a second lip, and the first and second lips are intended to extend in the axial direction of the shaft while moving away. one from the other.
  • the first and second lips that take off from the outer surface of the shaft during the flow of the gas flow out of the cavity.
  • the means for bringing the flow of pressurized gas comprise a channel disposed between the first and second lip seals, said channel being connected to a source of pressurized gas.
  • the channel extending radially between the two lip seals.
  • the present invention also relates to a turbine engine for a helicopter comprising a housing and a shaft rotatably mounted in said housing, said turbine engine further comprising a sealing device according to the present invention.
  • the turbine engine according to the invention further comprises a source of pressurized gas for supplying the means for bringing a flow of pressurized gas into the annular cavity.
  • a source of pressurized air is a stream disposed at the outlet of the compression stage.
  • FIG. 1 shows a detail of a turbine engine casing of a helicopter in which is mounted a rotary shaft, the turbine engine comprising a sealing device according to the present invention
  • FIG. 2 shows a turbine engine equipped with a sealing device according to the present invention.
  • FIG 1 there is shown a detail of a housing 10 of the speed reducer 11 of a turbine engine 52 for a flying machine, such as a helicopter, in which is mounted a sealing device 12 according to the invention.
  • a shaft 14 having an axis of rotation A is rotatably mounted in the casing 10, in particular via a bearing 16.
  • the housing 10 corresponds to the casing of the gearbox 11 of the turbine engine, that is to say that the end 18 of the shaft 14 on the bearing side is intended to be coupled to gears, while the opposite end 20 is a power take-off intended to be coupled to a shaft transmitting torque to the rotor of the helicopter.
  • the PTO 20 is located outside the turbine engine 52 while the end 18 on the enclosure side 21 of the gear 11 is located inside the turbine engine 52.
  • the sealing device 12 comprises a first annular lip seal 24 and a second annular lip seal 26 which are arranged side by side between the casing 10 and the shaft 14 while being coaxial, it being understood that their common axis corresponds substantially to the axis A of the tree
  • the annular lip seals 24, 26 are radial contact seals and are preferably made of elastomer.
  • the first and second annular lip seals 24, 26 are preferably fixed on a sleeve 28 arranged axially in a bore 30 of the casing 10, the sleeve 28 itself being held integrally with the casing 10 between a flange 32 secured to the casing 10 and the landing 16.
  • first and second annular lip seals 24, 26 respectively comprise a first lip 34 and a second lip 36 which extend in the axial direction of the shaft 14 while moving away from each other. one of the other.
  • the lips 34 and 36 are shaped to have a first position, shown in dashed lines in FIG. 1, in which each of them comes into contact with the outer surface 22 of the shaft 14 in order to ensure the sealing the enclosure 21 of the gearbox 11.
  • the lips 34, 36 are in their first position preferably when the shaft 14 does not rotate.
  • the lips 34,36 in their first position, provide a static seal between the housing 10 and the shaft 14.
  • the first lip 34 prevents the outer particles from entering the the enclosure 21, while the second lip 36 prevents the oil droplets from leaving the enclosure 21 of the gearbox 11.
  • the lips 34 and 36 are able to be in a second position, represented in solid lines in the figure, in which position the lips 34, 36 take off from the outer surface 22 of the shaft 24.
  • the lips 34 and 36 are in their second position when the shaft 14 rotates.
  • an annular cavity 38 delimited by the first lip 34, the second lip 36 and the outer surface 22 of the shaft 14 is pressurized by means 40 to bring a stream of pressurized air F into said cavity 38.
  • Said means comprise a channel 40 formed in a neck 42 of the sleeve 28, said neck 42 extending in a plane orthogonal to the axis A of the shaft 14 so that the channel 40 extending substantially radially.
  • a first end 44 of the channel 40 opens into the annular cavity 38, while a second end 43 of the channel 40 opposite the first end 44 is connected to a connection 46 by the intermediate of a radial pipe 48 formed in the housing 10.
  • the connector 46 is connected via a casing 45 to a pressure source which, in the present case, is a sampling point 49 disposed at the outlet of a compressor 50 of the turbine engine 52 as represented in FIG. 2.
  • the gas corresponds in this case a fraction of air taken from the compressed air by the compressor 50.
  • the gas flow F brought into the cavity 38 has a sufficient pressure to be able to take off the lips 34 and 36 of the outer surface 22 of the shaft 14.
  • the gas flow F detaches the lips 34 and 36 from the outer surface 22 of the shaft 14 to flow out of the cavity 38.
  • the stream of gas leaving the cavity 38 is preferably constituted by a first annular flow Fl flowing axially outwardly of the turbine engine 52 and a second annular flow F2 flowing axially inwardly of the enclosure 21, in a direction opposite to the first annular flow Fl.
  • the first flow Fl prevents the outer particles from entering the enclosure 21 of the reducer
  • the annular lip seals 24,26 wear substantially less because of the absence of friction during the rotation of the tree.
  • the sealing device according to the invention has a longer life than those of the prior art.
  • the sealing device according to the present invention further comprises a diaphragm D to limit the flow of pressurized gas in case of damage to one or other of the lips 34,36.

Abstract

L'invention concerne un dispositif d'étanchéité (12) pour assurer l'étanchéité entre un carter (10) et un arbre (14) monté rotatif dans ledit carter (10), comprenant des premier (24) et second (26) joints à lèvre annulaires destinés à être disposés axialement côte à côte entre le carter (10) et l'arbre (14). L'invention se caractérise en ce que le dispositif comporte en outre des moyens (45,46,48) pour amener un flux de gaz (F) pressurisé dans une cavité annulaire (38) délimitée par le premier joint à lèvre (24), le second joint à lèvre (26) et une surface extérieure de l'arbre (22), de telle sorte que lors de la rotation dudit arbre (14), le flux de gaz (F,F1,F2) est apte à faire légèrement décoller au moins l'un des deux joints à lèvre (24,26) de la surface extérieure (22) de l'arbre (14) pour s'écouler hors de la cavité (38).

Description

Double foint à lèyre pressurisé
La présente invention concerne le domaine des joints d'étanchéité, notamment celui des joints à frottement radial. La présente invention concerne plus particulièrement un dispositif d'étanchéité pour assurer l'étanchéité entre un carter et un arbre monté rotatif dans ledit carter, comprenant des premier et second joints à lèvre annulaires destinés à être disposés côte à côte axialement entre le carter et l'arbre. Dans la suite, les adjectifs « axial » et « radial » se rapportent à la direction de l'axe de rotation de l'arbre.
Traditionnellement, on utilise un couple de joints à lèvre pour assurer l'étanchéité d'une enceinte par contact sur l'arbre.
Du fait du frottement existant entre l'arbre et les lèvres des joints, la rotation de l'arbre entraîne une usure des joints à lèvre qui nécessite le changement des joints, notamment pour éviter les fuites d'huile.
En effet, les fuites d'huile sont néfastes à l'environnement et peuvent conduire à l'endommagement des pièces rotatives tels les engrenages dont la lubrification n'est plus correctement assurée. Dans le cas où un tel dispositif est monté dans un turbomoteur d'hélicoptère, ce dernier doit être immobilisé afin de procéder au changement des joints, ce qui présente un coût que l'on souhaiterait éviter.
Un but de la présente invention est de proposer un dispositif d'étanchéité ayant une durée de vie plus longue que celui de l'art antérieur. L'invention atteint son but par le fait que le dispositif d'étanchéité selon l'invention comporte en outre des moyens pour amener un flux de gaz pressurisé dans une cavité annulaire délimitée par le premier joint à lèvre, le second joint à lèvre et une surface extérieure de l'arbre, de telle sorte que lors de la rotation dudit arbre, le flux de gaz est apte à décoller au moins l'un des deux joints à lèvre de la surface extérieure de l'arbre pour s'écouler hors de la cavité, lesdits moyens pour amener le flux de gaz pressurisé comportent en outre un diaphragme pour limiter le débit de gaz en cas d'endommagement de l'un des joints à lèvre annulaires.
Ainsi, lors de la rotation de l'arbre, au moins l'un des deux joints à lèvres, de préférence les deux, décollent de la surface extérieure de l'arbre du fait de l'écoulement du flux de gaz entre les joints à lèvre et la surface extérieure de l'arbre, en conséquence de quoi le frottement entre l'arbre et le dispositif d'étanchéité est avantageusement supprimé.
Malgré le décollement du ou des joints à lèvre, la fonction d'étanchéité est avantageusement préservée grâce au flux de gaz s'écoulant hors de la cavité qui tend à maintenir les particules extérieures en dehors de la cavité.
On comprend ainsi que des particules d'huile ou de poussière ne peuvent traverser le dispositif d'étanchéité dans un sens ou dans l'autre.
Il en résulte que le dispositif d'étanchéité conforme à la présente invention s'use sensiblement moins vite que le dispositif de l'art antérieur ce qui a pour effet d'augmenter sa durée de vie.
De surcroit, lorsque l'arbre ne tourne pas, l'étanchéité est simplement réalisée par le fait que les joints à lèvre annulaires viennent en contact contre la surface extérieure de l'arbre. En effet, il n'est en effet pas nécessaire de pressuriser la cavité car à ce moment il n'existe pas de frottement entre l'arbre et le dispositif d'étanchéité.
De préférence, le diaphragme est disposé dans ce canal ou bien à l'une de ses extrémités.
Lors du fonctionnement normal du dispositif d'étanchéité selon l'invention, le débit de gaz est limité par la distance de décollement des lèvres des joints à lèvre.
Dans le cas où l'une des deux lèvres venait à être endommager, le débit de gaz pourrait augmenter brutalement engendrant une perte indésirable de gaz.
Grâce au diaphragme, le débit de gaz est avantageusement limité en cas d'endommagement de l'un des joints à lèvre.
De manière préférentielle, le premier joint à lèvre comporte une première lèvre tandis que le second joint à lèvre comporte une seconde lèvre, et les première et seconde lèvres sont destinés à s'étendre selon la direction axiale de l'arbre tout en s'éloignant l'une de l'autre. Ainsi, ce sont les première et seconde lèvres qui décollent de la surface extérieure de l'arbre lors de l'écoulement du flux de gaz hors de la cavité.
Avantageusement, les moyens pour amener le flux de gaz pressurisé comportent un canal disposé entre les premier et second joints à lèvre, ledit canal étant relié à une source de gaz pressurisé. De préférence, le canal s'étendant radialement entre les deux joints à lèvre.
La présente invention concerne également un turbomoteur pour hélicoptère comportant un carter et un arbre monté rotatif dans ledit carter, ledit turbomoteur comportant en outre un dispositif d'étanchéité conforme à la présente invention.
Avantageusement, le turbomoteur selon l'invention comporte en outre une source de gaz pressurisé pour alimenter les moyens pour amener un flux de gaz pressurisé dans la cavité annulaire. De manière préférentielle mais non exclusivement, la source d'air pressurisé est une veine disposée en sortie de l'étage de compression.
On pourrait en effet prévoir une source de gaz pressurisé extérieure sans sortir du cadre de la présente invention.
L'invention sera mieux comprise et ses avantages apparaîtront mieux à la lecture de la description qui suit, d'un mode de réalisation indiqué à titre d'exemple non limitatif. La description se réfère aux figures annexées sur lesquelles : la figure 1 montre un détail d'un carter de turbomoteur d'un hélicoptère dans lequel est monté un arbre rotatif, le turbomoteur comportant un dispositif d'étanchéité conforme à la présente invention ; et la figure 2 représente un turbomoteur muni d'un dispositif d'étanchéité selon la présente invention.
Sur la figure 1, on a représenté un détail d'un carter 10 du réducteur de vitesse 11 d'un turbomoteur 52 pour un engin volant, tel un hélicoptère, dans lequel est monté un dispositif d'étanchéité 12 conforme à l'invention.
Evidemment, cette figure ne représente qu'un exemple non limitatif d'utilisation du dispositif selon l'invention.
Comme on le voit sur la figure 1, un arbre 14 présentant un axe de rotation A est monté rotatif dans le carter 10, notamment par l'intermédiaire d'un palier 16.
En l'espèce, le carter 10 correspond au carter du réducteur 11 du turbomoteur, c'est-à-dire que l'extrémité 18 de l'arbre 14 du côté du palier est destinée à être couplée à des engrenages, tandis que l'extrémité opposée 20 est une prise de mouvement destinée à être couplée à un arbre transmettant le couple au rotor de l'hélicoptère. En d'autres termes, l'extrémité 20 de prise de mouvement est située à l'extérieur du turbomoteur 52 tandis que l'extrémité 18 côté enceinte 21 du réducteur 11 est située à l'intérieur du turbomoteur 52.
Afin de lubrifier les éléments tournants situés dans l'enceinte 21 du réducteur 11, on y injecte de l'huile, si bien qu'il règne une ambiance air/huile dans cette partie du turbomoteur 52.
Tant pour des considérations environnementales que mécaniques, il convient d'éviter que l'huile ne sorte du carter 10 du réducteur 11.
Il convient également d'éviter que des poussières ou toute autre particule indésirable ne pénètrent dans l'enceinte 21 du réducteur 11, qui, dans le cas contraire, risqueraient d'endommager les engrenages 53 du réducteur 11.
Pour ce faire et conformément à l'invention, le dispositif d'étanchéité
12 disposé entre le carter 10 et l'arbre 14 permet d'éviter tant la perte d'huile que l'introduction de particules extérieures dans l'enceinte du réducteur 11, tout en présentant une durée de vie plus longue que le dispositif d'étanchéité de l'art antérieur.
Pour ce faire, le dispositif d'étanchéité 12 comporte un premier joint à lèvre annulaire 24 et un second joint à lèvre annulaire 26 qui sont disposés côte à côte entre le carter 10 et l'arbre 14 tout en étant coaxiaux, étant entendu que leur axe commun correspond sensiblement à l'axe A de l'arbre
14.
De préférence, les joints à lèvre annulaires 24,26 sont des joints à contact radial et sont préférentiellement réalisés en élastomère. Les premier et second joints à lèvre annulaires 24,26 sont de préférence fixés sur un manchon 28 disposé axialement dans un alésage 30 du carter 10, le manchon 28 étant lui-même maintenu solidairement avec le carter 10 entre un flasque 32 solidaire du carter 10 et le palier 16.
Comme on le voit sur la figure 1, les premier et second joints à lèvre annulaires 24,26 comportent respectivement une première lèvre 34 et une seconde lèvre 36 qui s'étendent selon la direction axiale de l'arbre 14 tout en s'éloignant l'une de l'autre.
Par ailleurs, les lèvres 34 et 36 sont conformées pour présenter une première position, représentée en traits pointillés sur la figure 1, dans laquelle chacune d'elles vient en contact avec la surface extérieure 22 de l'arbre 14 afin d'assurer l'étanchéité de l'enceinte 21 du réducteur 11. Conformément à l'invention, les lèvres 34, 36 sont dans leur première position de préférence lorsque l'arbre 14 ne tourne pas. Autrement dit, les lèvres 34,36, dans leur première position, assurent une étanchéité statique entre le carter 10 et l'arbre 14. On comprend en effet que, dans leur première position, la première lèvre 34 empêche les particules extérieures de rentrer dans l'enceinte 21, tandis que la seconde lèvre 36 empêche les gouttelettes d'huile de sortir de l'enceinte 21 du réducteur 11.
De manière particulièrement avantageuse, les lèvres 34 et 36 sont aptes à se trouver dans une seconde position, représentée en traits pleins sur la figure, position dans laquelle les lèvres 34, 36 décollent de la surface extérieure 22 de l'arbre 24.
Préférentiellement, les lèvres 34 et 36 sont dans leur seconde position lorsque l'arbre 14 tourne. Pour ce faire, on pressurise une cavité annulaire 38 délimitée par la première lèvre 34, la seconde lèvre 36 et la surface extérieure 22 de l'arbre 14 grâce à des moyens 40 pour amener un flux d'air F pressurisé dans ladite cavité 38.
Lesdits moyens comportent un canal 40 ménagé dans un col 42 du manchon 28, ledit col 42 s'étendant dans un plan orthogonal à l'axe A de l'arbre 14 de telle sorte que le canal 40 s'étendant sensiblement radialement.
En se référant à la figure 1, on constate qu'une première extrémité 44 du canal 40 débouche dans la cavité annulaire 38, tandis qu'une seconde extrémité 43 du canal 40 opposé à la première extrémité 44 est reliée à un raccord 46 par l'intermédiaire d'une conduite radiale 48 ménagée dans le carter 10.
Le raccord 46 est quant à lui connecté via un tubage 45 à une source de pression qui, dans la présente espèce, est un point de prélèvement 49 disposé en sortie d'un compresseur 50 du turbomoteur 52 tel que représenté sur la figure 2.
Autrement dit, le gaz correspond en l'espèce une fraction d'air prélevée sur l'air comprimé par le compresseur 50.
Un intérêt d'utiliser la sortie du compresseur 50 comme source de pression est de pouvoir s'affranchir d'utiliser une source de pression extérieure bien que cela soit tout à fait possible dans le cadre de la présente invention. Conformément à l'invention, le flux de gaz F amené dans la cavité 38 présente une pression suffisante pour pouvoir décoller les lèvres 34 et 36 de la surface extérieure 22 se l'arbre 14.
Ainsi, comme on le comprend à l'aide des flèches représentées sur la figure 1, le flux de gaz F fait décoller les lèvres 34 et 36 de la surface extérieure 22 de l'arbre 14 pour s'écouler hors de la cavité 38.
Plus précisément, le flux de gaz sortant de la cavité 38 est de préférence constitué par un premier flux annulaire Fl s'écoulant axialement vers l'extérieur du turbomoteur 52 et par un second flux annulaire F2 s'écoulant axialement vers l'intérieur de l'enceinte 21, dans un sens opposé au premier flux annulaire Fl.
On comprend donc que grâce à l'invention, le premier flux Fl empêche les particules extérieures d'entrer dans l'enceinte 21 du réducteur
11, tandis que le second flux F2 empêche les gouttelettes d'huile de sortir de l'enceinte 21, en conséquence de quoi l'étanchéité est assurée malgré le décollement des lèvres 34 et 36 lorsqu'elles sont dans leur seconde position.
Comme on l'a déjà mentionné, grâce au décollement avantageux des lèvres 34 et 36 lors de la rotation de l'arbre 14, les joints à lèvre annulaires 24,26 s'usent sensiblement moins du fait de l'absence de frottement lors de la rotation de l'arbre.
Ainsi le dispositif d'étanchéité conforme à l'invention présente une durée de vie plus longue que ceux de l'art antérieur.
De manière avantageuse, le dispositif d'étanchéité selon la présente invention comporte en outre un diaphragme D permettant de limiter le débit de gaz pressurisé en cas d'endommagement de l'une ou l'autre des lèvres 34,36.

Claims

REVENDICATIONS
1. Dispositif d'étanchéité (12) pour assurer l'étanchéité entre un carter (10) et un arbre (14) monté rotatif dans ledit carter (10), comprenant des premier (24) et second (26) joints à lèvre annulaires destinés à être disposés axialement côte à côte entre le carter (10) et l'arbre (14), ledit dispositif étant caractérisé en ce qu'il comporte en outre des moyens (45,46,48) pour amener un flux de gaz (F) pressurisé dans une cavité annulaire (38) délimitée par le premier joint à lèvre (24), le second joint à lèvre (26) et une surface extérieure de l'arbre (22), de telle sorte que lors de la rotation dudit arbre (14), le flux de gaz (F,F1,F2) est apte à faire légèrement décoller au moins l'un des deux joints à lèvre (24,26) de la surface extérieure (22) de l'arbre (14) pour s'écouler hors de la cavité (38), et en ce que les moyens (45,46,48) pour amener le flux de gaz pressurisé (F) comportent en outre un diaphragme (D) pour limiter le débit d'air pressurisé en cas d'endommagement de l'une des lèvres (34,36) des joints à lèvre annulaires.
2. Dispositif d'étanchéité selon la revendication 1, caractérisé en ce que le premier joint à lèvre (24) comporte une première lèvre (34) tandis que le second joint à lèvre (26) comporte une seconde lèvre (36), et en ce que première et seconde lèvres (34,36) sont destinés à s'étendre selon la direction axiale de l'arbre (14) tout en s'éloignant l'une de l'autre.
3. Dispositif d'étanchéité selon la revendication 2, caractérisé en ce que les moyens (45,46,48) pour amener le flux de gaz (F) pressurisé comportent un canal (48) disposé entre les premier et second joints à lèvre, ledit canal (48) étant relié à une source de gaz pressurisé
(49,50).
4. Turbomoteur (52) pour hélicoptère comportant un carter (10) et un arbre (14) monté rotatif dans ledit carter, caractérisé en ce qu'il comporte en outre un dispositif d'étanchéité (12) selon l'une quelconque des revendications 1 à 3.
5. Turbomoteur pour hélicoptère selon la revendication 4, caractérisé en ce qu'il comporte en outre une source de gaz pressurisé (49,50) pour alimenter les moyens (45,46,48) pour amener un flux de gaz pressurisé (F) dans la cavité annulaire (38).
6. Turbomoteur pour hélicoptère ayant un étage de compression selon la revendication 5, caractérisé en ce que la source de gaz pressurisé est une veine (49) disposée en sortie de l'étage de compression (50).
7. Turbomachine caractérisée en ce qu'elle comporte un dispositif selon l'une quelconque des revendications 1 à 3.
PCT/FR2008/050532 2007-03-27 2008-03-27 Double joint a levre pressurise WO2008132410A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002682004A CA2682004A1 (fr) 2007-03-27 2008-03-27 Double joint a levre pressurise
US12/593,094 US20100119368A1 (en) 2007-03-27 2008-03-27 Double seal with pressurised lip
JP2010500334A JP2010522857A (ja) 2007-03-27 2008-03-27 加圧リップを有する二重シール
EP08788058A EP2140178A2 (fr) 2007-03-27 2008-03-27 Double joint a levre pressurise
BRPI0809521-3A2A BRPI0809521A2 (pt) 2007-03-27 2008-03-27 Dispositivo de estanqueidade para assegurar a estanqueidade entre um cárter e uma árvore, turbomotor para helicóptero e turbomáquina

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754050 2007-03-27
FR0754050A FR2914384B1 (fr) 2007-03-27 2007-03-27 Double joint a levre pressurise.

Publications (2)

Publication Number Publication Date
WO2008132410A2 true WO2008132410A2 (fr) 2008-11-06
WO2008132410A3 WO2008132410A3 (fr) 2008-12-24

Family

ID=38667008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050532 WO2008132410A2 (fr) 2007-03-27 2008-03-27 Double joint a levre pressurise

Country Status (10)

Country Link
US (1) US20100119368A1 (fr)
EP (1) EP2140178A2 (fr)
JP (1) JP2010522857A (fr)
CN (1) CN101652590A (fr)
BR (1) BRPI0809521A2 (fr)
CA (1) CA2682004A1 (fr)
FR (1) FR2914384B1 (fr)
RU (1) RU2009139645A (fr)
WO (1) WO2008132410A2 (fr)
ZA (1) ZA200906987B (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2362119B1 (fr) * 2010-02-19 2015-09-02 Carl Freudenberg KG Joint radial d'arbre destiné à la séparation de deux milieux
CN102011866B (zh) * 2010-12-29 2012-12-05 北京东方精益机械设备有限公司 一种复合减压液体密封结构
EP3077709B1 (fr) * 2013-12-02 2020-02-05 Farrel Corporation Ensemble de joints d'arbre de rotor
US9709172B2 (en) 2013-12-02 2017-07-18 Farrel Corporation Rotor shaft seal assembly
CN103982248B (zh) * 2014-05-21 2016-04-06 南京博沃科技发展有限公司 具有间隙控制功能的叶片式密封装置
US10473222B2 (en) 2016-04-11 2019-11-12 Prippell Technologies, Llc Dynamic fluid seal
US10030777B2 (en) * 2016-04-11 2018-07-24 Prippell Technologies, Llc Dynamic fluid seal
KR101825112B1 (ko) * 2016-12-15 2018-02-07 주식회사 세지테크 분체기계용 에어샤프트 실링장치
US11293554B2 (en) 2017-03-09 2022-04-05 Johnson Controls Technology Company Back to back bearing sealing systems
GB2591524B (en) * 2020-01-17 2022-02-02 Crane John Uk Ltd Rotor following non-contact separation seal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2212165A1 (de) * 1971-03-18 1972-09-28 Aeroquip Ltd Dichtung
EP0243791A1 (fr) * 1986-04-16 1987-11-04 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Joint entre des éléments tournants de machine
GB2270724A (en) * 1992-09-19 1994-03-23 Systematic Drill Head Co Ltd Machine tools

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3039265A (en) * 1955-10-24 1962-06-19 Williams Res Corp Heat exchanger construction for gas turbines
US4021050A (en) * 1976-02-23 1977-05-03 Caterpillar Tractor Co. Air bearing seal with bellows mounting means
JPH0535249Y2 (fr) * 1988-03-31 1993-09-07
BE1010915A3 (nl) * 1997-02-12 1999-03-02 Atlas Copco Airpower Nv Inrichting voor het afdichten van een rotoras en schroefcompressor voorzien van dergelijke inrichting.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2212165A1 (de) * 1971-03-18 1972-09-28 Aeroquip Ltd Dichtung
EP0243791A1 (fr) * 1986-04-16 1987-11-04 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Joint entre des éléments tournants de machine
GB2270724A (en) * 1992-09-19 1994-03-23 Systematic Drill Head Co Ltd Machine tools

Also Published As

Publication number Publication date
BRPI0809521A2 (pt) 2014-10-14
CN101652590A (zh) 2010-02-17
US20100119368A1 (en) 2010-05-13
FR2914384B1 (fr) 2009-08-21
RU2009139645A (ru) 2011-05-10
FR2914384A1 (fr) 2008-10-03
JP2010522857A (ja) 2010-07-08
EP2140178A2 (fr) 2010-01-06
ZA200906987B (en) 2010-06-30
CA2682004A1 (fr) 2008-11-06
WO2008132410A3 (fr) 2008-12-24

Similar Documents

Publication Publication Date Title
WO2008132410A2 (fr) Double joint a levre pressurise
CA2635632C (fr) Turbomachine a double soufflante
EP1577495B1 (fr) Palier à roulement de turbomachine à encombrement réduit
CA2719461C (fr) Turbomoteur comportant une machine electrique reversible
EP2870323B1 (fr) Dispositif de joint d'etancheite de palier de turbomachine avec deux joints elastiques
CA2719472C (fr) Dispositif et procede d'equilibrage de pression dans une enceinte palier de turboreacteur
EP2469100B1 (fr) Groupe motocompresseur à accouplement torsible placé dans un arbre creux du compresseur
FR2944558A1 (fr) Moteur a turbine a gaz double corps pourvu d'un palier de turbine bp supplementaire.
EP3175091B1 (fr) Élément de turbomachine comprenant un moyen d'étanchéité auxiliaire et procédé de test de cet élément
FR3071546B1 (fr) Retention axiale de l'arbre de soufflante dans un moteur a turbine a gaz
FR2940351A1 (fr) Rotor de turbine d'un moteur a turbine a gaz comprenant un disque de rotor et un flasque d'etancheite
WO2013004964A1 (fr) Dispositif d'arbre d'entraînement d'une turbomachine
FR2961260A1 (fr) Architecture de turbomoteur non lubrifie
FR2856440A1 (fr) Compresseur de turbomachine et roue dudit compresseur
FR3114353A1 (fr) Joint dynamique amélioré pour l’étanchéité d’un module de moteur d’aéronef
FR2968062A1 (fr) Dispositif d'evacuation d'huile et turbomachine comprenant un tel dispositif
FR2999237A1 (fr) Guidage d'arbres de turbomachine
FR3023260A1 (fr) Ensemble propulsif d'aeronef
EP2631490B1 (fr) Roue à aubes radiale avec couronne de base radialement libre
FR2980538A1 (fr) Groupe moto-compresseur a cartouche amovible
FR3108660A1 (fr) Actionneur de mise en rotation d’un rotor de turboréacteur pour une opération d’inspection et/ou de maintenance
FR2995016A1 (fr) Turbocompresseur de gaz d'echappement
EP3114379A1 (fr) Dispositif d'etancheite pour arbre tournant
FR3135753A1 (fr) Boitier de relais d’accessoires pour une turbomachine
FR3111671A1 (fr) Turbomachine d’aeronef comportant un systeme de freinage en rotation d’un rotor pour une lubrification d’un reducteur entrainant une soufflante

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880010209.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08788058

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2010500334

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2682004

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6245/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008788058

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009139645

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12593094

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0809521

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090925