WO2008132369A1 - Systeme et procede de refroidissement d'un groupe motopropulseur de vehicule automobile - Google Patents

Systeme et procede de refroidissement d'un groupe motopropulseur de vehicule automobile Download PDF

Info

Publication number
WO2008132369A1
WO2008132369A1 PCT/FR2008/050467 FR2008050467W WO2008132369A1 WO 2008132369 A1 WO2008132369 A1 WO 2008132369A1 FR 2008050467 W FR2008050467 W FR 2008050467W WO 2008132369 A1 WO2008132369 A1 WO 2008132369A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
main
radiator
cooling
coolant
Prior art date
Application number
PCT/FR2008/050467
Other languages
English (en)
Inventor
Benoît JANIER
Cédric Rouaud
Robert Yu
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to EP08775721A priority Critical patent/EP2126308A1/fr
Publication of WO2008132369A1 publication Critical patent/WO2008132369A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit

Definitions

  • the present invention relates to the cooling of motor vehicle powertrains, comprising a heat engine and various organs that should be maintained at a suitable operating temperature.
  • the thermal power to be removed by the radiator to maintain the temperature level is significantly greater than that which can evacuate a radiator operating at a higher temperature. This results in a difficulty of design of the cooling system and a difficulty of integration of these various elements in the vehicle.
  • the conventional cooling circuit of a thermal engine generally comprises a circulation pump mechanically driven by the engine itself and a heater constituted by a heat exchanger that heats the passenger compartment of the vehicle.
  • a thermostatic valve is generally provided to communicate the cooling circuit of the heat engine with another circuit comprising an additional radiator.
  • an expansion vessel in the form of a hermetically sealed jar, through which the coolant passes.
  • a hermetically sealed jar allows the expansion of the water used as heat transfer fluid by maintaining a certain volume of compressible air inside. It also keeps the entire cooling system under pressure, in order to avoid any risk of cavitation of the circulation pump driven by the motor. It is preferable to mount such an expansion tank downstream of the thermostatic valve and in parallel with the engine cooling circuit so as to limit as much as possible the volume of coolant to be heated, which makes it possible to reduce the energy required for operation of the assembly by decreasing the temperature rise time of the heat engine. To ensure two temperature levels for the heat transfer fluid, it has already been proposed in some applications, cooling systems having two cooling circuits, either independent or with common parts.
  • French patent application 2,815,402 describes a cooling system of this type for a hybrid-propulsion vehicle comprising a heat engine and at least one electric motor.
  • the system allows the heat engine to be cooled to a first temperature level, and the electric motor and its control unit to a second temperature level lower than the first level.
  • the described system comprises a radiator subdivided into several compartments.
  • the cooling system includes a main circuit and a secondary circuit which is a bypass of the main circuit. One of the radiator compartments is part of the secondary circuit.
  • the secondary compartment used in this system is completely dedicated to the secondary circuit.
  • the main circuit is not connected to the cooling circuit of the engine, for example during the cold start phase when the thermostatic valve is still closed, it would be interesting to use a larger area exchange of the radiator to lower the temperature of the heat transfer fluid flowing in the secondary circuit.
  • the subject of the present invention is the production of such a cooling system which makes it possible to define two temperature levels for cooling two distinct sets of powertrain members, in particular in the case where the circuit comprises a mounted expansion tank. downstream of the thermostatic valve.
  • the present invention also aims to make it easier to install the various cooling radiators on the front of a vehicle while increasing the efficiency of cooling.
  • the invention also relates to a cooling system which allows to easily cool the gearbox of the motor vehicle without generating significant pressure drop and without substantially increasing the volume of the heat transfer fluid required.
  • a thermal motor vehicle power train cooling system includes a main circuit capable of being traversed by a heat transfer fluid to cool a first set of powertrain members to a first temperature level and a heat transfer fluid.
  • secondary circuit that can be traversed by a coolant to cool a second set of powertrain members to a second temperature level, lower than the first level.
  • a main radiator is part of the main circuit and a secondary radiator is part of the secondary circuit.
  • a first thermostatic or controlled valve for example electrically, is mounted in the main circuit downstream of the heat engine so as to isolate the main radiator when the temperature of the coolant is lower than a first threshold.
  • An expansion vessel is mounted in the main circuit downstream of the thermostatic valve to degas the coolant.
  • the connections are such that the secondary radiator can also be part of the main circuit in an operating mode of the system.
  • the system further comprises an additional radiator mounted in parallel with the main radiator, and a second thermostatic or controlled valve, capable of allowing or preventing the passage of heat transfer fluid from the heat engine to the secondary radiator.
  • the cooling of the engine and the various powertrain members is thus considerably improved without disturbing the degassing of the heat transfer fluid.
  • this configuration reduces the size of the main radiator which can then be more easily implanted on the front of the vehicle, for example by the additional radiator.
  • the reduction of the exchange surface resulting from such reduced dimensions of the main radiator is then compensated, when the need arises, by passing the heat transfer fluid through the secondary radiator of the secondary circuit.
  • a third thermostatic or controlled valve may be mounted in a branch between the return branch of the main circuit and the return branch of the secondary circuit so as to eliminate any communication by said bypass when the temperature of the coolant is lower than a second upper threshold at the first threshold.
  • the main radiator preferably comprises a main inlet and a main outlet connected directly to the circuit and a secondary outlet connected to the main circuit via a thermostatic or controlled valve, and the additional radiator is mounted between the main inlet and the secondary outlet of the main radiator.
  • the first set of powertrain members capable of being cooled by the coolant flowing through the main circuit may for example comprise an additional injector, the engine lubricating oil circuit and the vehicle gearbox.
  • the second set of powertrain members capable of being cooled by the coolant flowing through the secondary circuit may for example comprise the partial exhaust gas recirculation (EGR) circuit and a partial exhaust gas recirculation valve. (EGR).
  • EGR partial exhaust gas recirculation
  • An electric pump is advantageously mounted in the secondary circuit in order to circulate the coolant.
  • gearbox oil cooling exchanger mounted at the outlet of the main radiator, so as to cool the gearbox of the vehicle.
  • the gearbox oil cooling exchanger can be mounted in a branch of the return branch of the main circuit, equipped with a thermostatic or controlled valve.
  • the turbocharger can be mounted in a branch of the main circuit, being associated with an electric pump, to be cooled by the coolant flowing through the main circuit when the engine is stopped. It is advantageous to connect the turbocharger in parallel with the exhaust gas recirculation (EGR) circuit, thereby avoiding the need to provide an electric pump.
  • EGR exhaust gas recirculation
  • the invention also relates to a method for cooling a motor vehicle power unit using a coolant circulating in a cooling circuit, in which the fluid is also passed through.
  • coolant in a main circuit for cooling a first set of powertrain members to a first temperature level
  • the main circuit and the secondary circuit can be isolated from the cooling circuit by a thermostatic or controlled valve and the coolant is degassed downstream of the valve.
  • Calories are extracted from the coolant by passing it through a main radiator and an additional radiator connected in parallel, and the main circuit is placed in communication with the secondary circuit when it is desired to increase the cooling of the coolant.
  • FIG. 1 is a schematic view of a cooling system according to the invention
  • FIG. 2 shows the flow of the heat transfer fluid during the cold start phase of the heat engine, the temperature of the coolant being lower than a first threshold
  • Figure 3 is a view similar to Figure 2, showing the flow of heat transfer fluid when the temperature thereof has exceeded a first threshold while remaining below a second threshold greater than the first
  • Figure 4 is a view similar to Figure 2, illustrating the circulation of the heat transfer fluid when the temperature thereof has exceeded the second threshold
  • - Figure 5 is a view similar to Figure 2 showing the flow of heat transfer fluid for maximum cooling
  • Figure 6 is a view similar to Figure 5 showing an alternative flow of the heat transfer fluid for maximum cooling
  • Figure 7 is a schematic view of a second embodiment of a cooling system according to the invention
  • Figure 8 is a schematic view of a third embodiment of a cooling system according to the invention.
  • the cooling system for powertrain of a motor vehicle is adapted to the cooling of a heat engine 1 and various associated members.
  • the cooling of the engine 1 is obtained firstly by circulation of a coolant such as water, in a cooling circuit 2 comprising a forward branch 2a and a return branch 2b.
  • a water pump 3 driven mechanically by the engine 1 circulates the coolant in the cooling circuit 2.
  • the circuit 2 comprises a heater 4.
  • various members as examples which require a cooling to a temperature level comparable to that of the engine, which level will be called in this description "high level". It is particularly an additional injector that can be mounted for example in the exhaust line of the engine to ensure the regeneration of a particulate filter.
  • This additional injector is cooled by a heat exchanger 5 connected in parallel with the heater 4 in the cooling circuit 2.
  • a heat exchanger 6 capable of cooling the lubricating oil of the 1.
  • the exchanger 6 is mounted in a branch 7 of the cooling circuit 2 on the return branch 2b thereof.
  • a thermostatic valve 8 is mounted in a main circuit 9 which can be traversed by the heat transfer fluid leaving the heat engine 1 when the thermostatic valve 8 is open, that is to say when the temperature of the heat transfer fluid exceeds a first threshold of temperature Ti which corresponds to the lower limit of the level "high".
  • the thermostatic valve 8 can be replaced by a controlled valve, for example electrically, associated with a temperature sensor of the coolant, providing a control signal.
  • the main circuit 9 comprises a forward branch 9a and a return branch 9b.
  • the thermostatic valve 8 is mounted on the forward leg 9a.
  • a main radiator 10 and an additional radiator 11 are mounted in the main circuit 9.
  • An expansion vessel 12 through which the heat transfer fluid passes is mounted downstream of the thermostatic valve 8.
  • a pipe 13 communicating with the forward leg 9a is connected to the inlet 14 of the main radiator 10.
  • a pipe 15 stitched on the forward leg 9a is connected to the inlet of the additional radiator 1 1.
  • a pipe 16 also stitched on the branch 9a, downstream of the thermostatic valve 8, is connected to the inlet of the expansion vessel 12.
  • the expansion vessel 12 allows in particular the degassing of the heat transfer fluid. For this purpose, it comprises a hermetically sealed container, an inlet at the bottom for the coolant and an outlet at the top.
  • the output of the additional radiator January 1 is connected by a pipe 17, on the one hand to the return branch 9b of the main circuit 9, by a branch 18 and on the other hand to the output of the main radiator 10.
  • the thermostatic valve 19 can also be replaced, like the thermostatic valve 8, by a valve ordered of the same type.
  • the outlet 22 of the main radiator 10 is connected to a heat exchanger 23 for cooling the gearbox oil of the motor vehicle.
  • the pipe 24 is stitched onto the return branch 9b of the main circuit 9.
  • the pipe 25 connected to the outlet of the expansion tank 12 is stitched onto the return leg 9b of the circuit principal 9.
  • the cooling system further comprises a secondary cooling circuit 26 with a forward branch 26a and a return branch 26b.
  • An electric circulation pump 27 is mounted in the forward leg 26a.
  • the heat transfer fluid flowing in the secondary circuit 26 is at a temperature level below the "high" level. We will speak here of "low” level.
  • the heat transfer fluid circulated by the pump 27 passes through a first heat exchanger 28 capable of cooling the partial exhaust gas recirculation system (EGR), then a heat exchanger 29 capable of cooling the control valve of the exhaust gas recirculation system EGR.
  • a heat exchanger 30 is also provided for cooling the turbocharger of the engine in the illustrated example.
  • the heat exchanger 30 is connected in parallel with the heat exchanger 29.
  • the secondary circuit 26 comprises a secondary radiator 31 traversed by the heat transfer fluid at the low temperature level.
  • a controlled three-way valve 31b is mounted in the return branch 26b of the secondary circuit 26.
  • the valve 31b is also connected via a duct 32, directly to the cooling circuit 2, at the output of the engine 1. It is therefore able to implement communicating the heat transfer fluid at high temperature with the secondary circuit 26.
  • the valve 31b can be replaced by a thermostatic valve.
  • the return branch 26b of the secondary circuit 26 is also connected directly to the return branch 9b of the main circuit 9, via a conduit 33.
  • a controlled valve 34 is further mounted in a branch 35 putting the forward branch 26a of the secondary circuit 26 into communication with the return branch 9b of the main circuit 9.
  • the valve 34 can be replaced by a thermostatic valve.
  • the two valves 19 and 31 which are, in the illustrated example, two-way valves, can be replaced by a single three-way valve.
  • the thermostatic valve 8 When the heat engine 1 runs cold, for example at startup, as shown in Figure 2, the thermostatic valve 8 is closed. The heat transfer fluid flows into the cooling circuit 2 driven by the water pump 3. The heater 4 transfers the heat transfer fluid calories to the passenger compartment of the vehicle and the cooling of the additional injector through the exchanger 5, and the cooling of the engine lubricating oil through the exchanger 6.
  • the electric pump 27 is in operation and circulates the heat transfer fluid at the "low" temperature level in the secondary circuit 26. This passes through the secondary radiator 31 in the direction of the arrows indicated in FIG. EGR exhaust gas recirculation through the exchangers 28 and 29 as well as the cooling of the turbocharger by the exchanger 30 are effected efficiently since the coolant is well cooled by the secondary radiator 31 while being kept at the "low" level of temperature.
  • the controlled valve 34 is closed to prevent any recirculation upside down in the expansion tank 12, recirculation which could disrupt its operation.
  • the heat transfer fluid always enters through the inlet duct 16 of the expansion vessel 12, which enters the lower position in the vessel 12 and leaves through the outlet pipe 25 located in the upper position, in order to ensure the degassing.
  • the three-way valve 31b is placed so as to let only the heat transfer fluid from the return branch 26b to the secondary radiator 31. No circulation is allowed in the conduit 32.
  • FIG. 3 illustrates the operation of the cooling system when the vehicle is in an intermediate rolling phase, the temperature of the coolant being greater than the first temperature threshold Ti but still less than a second threshold T 2 with T 2 greater than T 1 .
  • the thermostatic valve 8 is then partially open.
  • the electric pump 27 works and the EGR exhaust gas recirculation system is cooled by passing through the secondary radiator 31.
  • the heat transfer fluid also flows into the main circuit 9, which is partially open, and can pass through the expansion vessel 12 from the input pipe 16 to the outlet pipe 25.
  • the heat transfer fluid from the forward leg 9a of the circuit 9 also passes through the additional radiator 11 from the pipe 15.
  • the fluid having passed through the additional radiator January 1 is mixed again with the heat transfer fluid leaving the main radiator 10.
  • the controlled valve 34 is closed and the three-way valve 31b leaves the passage of the heat transfer fluid only from the return branch 26b to the secondary radiator 31 as in the configuration of Figure 2.
  • the thermostatic valve 19 As long as the temperature does not exceed a threshold T 2 greater than the first threshold T 1 , the thermostatic valve 19 remains closed. As soon as this second threshold is crossed, the valve 19 opens to increase the permeability of the circuit 9 and therefore the flow of heat transfer fluid through the exchangers. This configuration is illustrated in FIG. 4.
  • the three-way valve 31b is controlled so as to change its position, leaving the passage of the coolant to the first one. high level of temperature from the engine 1 to the secondary radiator 31 and prohibiting the return of the coolant at the second low temperature level, coming from the return branch 26b of the secondary circuit 26.
  • FIG. 5 This phase is illustrated in FIG. 5.
  • the flow rate of the coolant coming from the engine 1 is distributed in the main radiator 10, the additional radiator 11 and the secondary radiator 31.
  • the thermostatic valve 19 is open.
  • the coolant coming from the return branch 26b of the secondary circuit 26 returns to the return branch 9b of the circuit 9 via the line 33.
  • valve 34 is shown closed. In FIG. 6, on the contrary, the only difference is the valve 34 open, which makes a bipass of the exchangers 28 and 29 of the EGR system so as to further increase the flow rate passing through the secondary radiator.
  • the thermostatic valve 8 which was open, closes gradually.
  • the valve 31 is controlled to return to the position shown in Figure 2.
  • the circulation of the heat transfer fluid in the secondary circuit 26 is then identical to that shown in Figure 2.
  • the electric water pump 27 operates for a certain time after stopping the engine to allow the turbocharger to be cooled by means of the exchanger 30.
  • the controlled valve 34 must be closed in order to prevent any circulation in the opposite direction in the expansion vessel 12. the entire cooling system, the valve 34 is placed in the open position once the circulation pump 27 has stopped.
  • the thermostatic valve 8 is preferably also open.
  • FIG. 7 differs from the embodiment illustrated in FIG. 1 by the mounting of the heat exchanger 30 adapted to the cooling of the turbocharger on a branch 36 in parallel with the heater 4, the exchanger 5 being also mounted on said branch 36.
  • An additional electric water pump 37 is mounted in the branch 36 so as to improve the circulation of the coolant.
  • Such a connection makes it possible to increase the flow of coolant passing through the exchanger 30 with respect to the embodiment illustrated in FIG. 1.
  • FIG. 8 illustrates another embodiment that differs from the embodiment illustrated in FIG. 1 by mounting the exchanger 23 intended for cooling the gearbox.
  • the exchanger 23 is in fact mounted on a bypass 38 of the return branch 9b of the main circuit 9.
  • An additional thermostat 39 is mounted between the input and output taps of the branch 38.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

Système de refroidissement pour groupe motopropulseur de véhicule automobile, comprenant un circuit principal (9) pouvant être parcouru par un fluide caloporteur pour refroidir un premier ensemble d' organes du groupe motopropulseur à un premier niveau de température, un circuit secondaire (26) pouvant être parcouru par un fluide caloporteur pour refroidir un deuxième ensemble d' organes du groupe motopropulseur à un deuxième niveau de température, inférieur au premier niveau, avec un radiateur principal ( 10) faisant partie du circuit principal et un radiateur secondaire (31 ) faisant partie du circuit secondaire, une vanne thermostatique (8) ou commandée étant montée dans le circuit principal en aval du moteur thermique ( 1 ) de façon à isoler le radiateur principal ( 10) lorsque la température du fluide caloporteur est inférieure à un premier seuil, et un vase d' expansion ( 12) monté dans le circuit principal en aval de la vanne thermostatique, caractérisé par le fait que les branchements sont tels que le radiateur secondaire (31 ) peut faire partie également du circuit principal dans un mode de fonctionnement du système. Le système peut comprendre en outre un radiateur supplémentaire ( 1 1 ) monté en parallèle du radiateur principal ( 10), et une deuxième vanne (31b) capable de laisser passer ou d'interdire le passage du fluide caloporteur provenant du moteur thermique ( l )vers le radiateur secondaire.

Description

SYSTEME ET PROCEDE DE REFROIDISSEMENT D'UN GROUPE MOTOPROPULSEUR DE VEHICULE AUTOMOBILE
La présente invention est relative au refroidissement des groupes motopropulseurs de véhicule automobile, comportant un moteur thermique et différents organes qu' il convient de maintenir à une température de fonctionnement convenable.
En particulier, dans de tels groupes motopropulseurs, on trouve certains organes qui doivent fonctionner à une température inférieure à celle qui correspond au fonctionnement normal d' autres organes. On peut donc chercher à maintenir de tels organes à la température la plus basse possible pour une meilleure performance ou encore maintenir ces organes à un niveau de température inférieur à un seuil critique pour assurer leur fiabilité de fonctionnement. C' est le cas en particulier du système de recyclage partiel des gaz d' échappement, qui comprend un échangeur de chaleur destiné à refroidir les gaz d' échappement avant leur admission dans le moteur thermique, et une vanne commandée pour piloter le débit des gaz d' échappement recyclés dans le moteur thermique (dits EGR) . Il en est de même dans le cas d'un turbocompresseur équipant le moteur thermique et destiné à élever la pression de l' air admis dans le moteur.
Compte tenu du niveau de température relativement faible auquel ces différents organes doivent fonctionner, la puissance thermique à évacuer par le radiateur pour maintenir le niveau de température est nettement plus importante que celle que peut évacuer un radiateur fonctionnant à une température plus élevée. Il en résulte une difficulté de conception du système de refroidissement et une difficulté d' intégration de ces différents éléments dans le véhicule.
On constate par ailleurs une augmentation constante de la masse des véhicules et une augmentation des calories à évacuer pour le fonctionnement du moteur thermique, notamment à forte vitesse de déplacement du véhicule et à forte charge. II en résulte l' apparition d'un besoin pour une boucle de refroidissement à basse température avec une augmentation de la quantité de calories à évacuer, cette augmentation étant liée à la fois aux calories supplémentaires provenant de la boucle à basse température et aux calories rejetées par le moteur thermique.
Le circuit de refroidissement classique d'un moteur thermique comprend généralement une pompe de circulation entraînée mécaniquement par le moteur thermique lui-même et un aérotherme constitué par un échangeur de chaleur qui permet de chauffer l'habitacle du véhicule. Une vanne thermostatique est généralement prévue de façon à faire communiquer le circuit de refroidissement du moteur thermique avec un autre circuit comprenant un radiateur supplémentaire.
On dispose également, dans l' écoulement du fluide caloporteur, un vase d' expansion sous la forme d'un bocal hermétiquement fermé, traversé par le fluide caloporteur. Un tel organe permet la dilatation de l' eau utilisée à titre de fluide caloporteur grâce au maintien d'un certain volume d' air compressible à l' intérieur. Il permet également de maintenir sous pression l' ensemble du circuit de refroidissement, afin d' éviter tout risque de cavitation de la pompe de circulation entraînée par le moteur. Il est préférable de monter un tel vase d'expansion en aval de la vanne thermostatique et en parallèle du circuit de refroidissement du moteur de façon à limiter au maximum le volume de fluide caloporteur à réchauffer, ce qui permet de réduire l' énergie nécessaire au fonctionnement de l'ensemble en diminuant la durée de montée en température du moteur thermique. Pour assurer deux niveaux de température pour le fluide caloporteur, il a déjà été proposé dans certaines applications, des systèmes de refroidissement comportant deux circuits de refroidissement, soit indépendants, soit comportant des parties communes . La demande de brevet français 2 815 402 décrit un système de refroidissement de ce type pour un véhicule à propulsion hybride comportant un moteur thermique et au moins un moteur électrique. Le système permet de refroidir le moteur thermique à un premier niveau de température, et le moteur électrique et son unité de commande à un deuxième niveau de température inférieur au premier niveau. Le système décrit comporte un radiateur subdivisé en plusieurs compartiments. Le circuit de refroidissement comprend un circuit principal et un circuit secondaire qui est une dérivation du circuit principal. L'un des compartiments du radiateur fait partie du circuit secondaire.
Le compartiment secondaire utilisé dans ce système est complètement dédié au circuit secondaire. Cependant, dans certaines situations où le circuit principal n'est pas connecté au circuit de refroidissement du moteur thermique, par exemple lors de la phase de démarrage à froid lorsque la vanne thermostatique est encore fermée, il serait intéressant de pouvoir utiliser une plus grande surface d' échange du radiateur pour abaisser la température du fluide caloporteur s ' écoulant dans le circuit secondaire.
De plus, il est important de prévoir des branchements de faible complexité et conçus de façon à contrôler convenablement la direction d' écoulement du fluide caloporteur dans le vase d' expansion, quelle que soit la température de fonctionnement du système.
La présente invention a pour objet la réalisation d'un tel système de refroidissement qui permette de définir deux niveaux de température pour refroidir deux ensembles distincts d' organes du groupe motopropulseur, en particulier dans le cas où le circuit comprend un vase d'expansion monté en aval de la vanne thermostatique.
La présente invention a également pour objet de permettre d' implanter plus facilement les différents radiateurs de refroidissement sur la face avant d'un véhicule tout en augmentant l' efficacité du refroidissement.
L' invention a également pour objet un système de refroidissement qui permet aisément de refroidir la boîte de vitesses du véhicule automobile sans générer de perte de charge importante et sans augmenter sensiblement le volume du fluide caloporteur nécessaire.
Dans un mode de réalisation, un système de refroidissement pour groupe motopropulseur de véhicule automobile à moteur thermique, comprend un circuit principal pouvant être parcouru par un fluide caloporteur pour refroidir un premier ensemble d' organes du groupe motopropulseur à un premier niveau de température et un circuit secondaire pouvant être parcouru par un fluide caloporteur pour refroidir un deuxième ensemble d' organes du groupe motopropulseur à un deuxième niveau de température, inférieur au premier niveau.
Un radiateur principal fait partie du circuit principal et un radiateur secondaire fait partie du circuit secondaire.
Une première vanne thermostatique ou commandée, par exemple électriquement, est montée dans le circuit principal en aval du moteur thermique de façon à isoler le radiateur principal lorsque la température du fluide caloporteur est inférieure à un premier seuil. Un vase d'expansion est monté dans le circuit principal en aval de la vanne thermostatique afin de dégazer le fluide caloporteur.
Les branchements sont tels que le radiateur secondaire peut faire partie également du circuit principal dans un mode de fonctionnement du système. Le système comprend en outre un radiateur supplémentaire monté en parallèle du radiateur principal, et une deuxième vanne thermostatique ou commandée, capable de laisser passer ou d' interdire le passage du fluide caloporteur provenant du moteur thermique vers le radiateur secondaire. Le refroidissement du moteur thermique et des différents organes du groupe motopropulseur est ainsi considérablement amélioré sans perturber le dégazage du fluide caloporteur. De plus, cette configuration permet de réduire les dimensions du radiateur principal qui peut alors plus facilement être implanté sur la face avant du véhicule, à côté par exemple du radiateur supplémentaire. La diminution de la surface d' échange qui résulte de telles dimensions réduites du radiateur principal est alors compensée, lorsque le besoin se fait sentir, en faisant passer le fluide caloporteur à travers le radiateur secondaire du circuit secondaire. Une troisième vanne thermostatique ou commandée peut être montée dans une dérivation entre la branche de retour du circuit principal et la branche de retour du circuit secondaire de façon à supprimer toute communication par ladite dérivation lorsque la température du fluide caloporteur est inférieure à un deuxième seuil supérieur au premier seuil.
Le radiateur principal comprend de préférence une entrée principale et une sortie principale reliées directement au circuit principal ainsi qu'une sortie secondaire reliée au circuit principal par l' intermédiaire d'une vanne thermostatique ou commandée, et le radiateur supplémentaire est monté entre l' entrée principale et la sortie secondaire du radiateur principal. Le premier ensemble d' organes du groupe motopropulseur capables d' être refroidis par le fluide caloporteur parcourant le circuit principal peut par exemple comprendre un injecteur supplémentaire, le circuit d'huile de lubrification du moteur et la boîte de vitesses du véhicule. Le deuxième ensemble d' organes du groupe motopropulseur capables d' être refroidis par le fluide caloporteur parcourant le circuit secondaire peut par exemple comprendre le circuit de recirculation partielle des gaz d' échappement (EGR) et une vanne de recirculation partielle des gaz d'échappement (EGR). Une pompe électrique est avantageusement montée dans le circuit secondaire afin de faire circuler le fluide caloporteur.
On peut également prévoir un échangeur de refroidissement de l'huile de la boîte de vitesses monté en sortie du radiateur principal, de façon à refroidir la boîte de vitesses du véhicule. En variante, l' échangeur de refroidissement de l'huile de la boîte de vitesses peut être monté dans une dérivation de la branche de retour du circuit principal, équipée d'une vanne thermostatique ou commandée.
On peut également refroidir un turbocompresseur dont le moteur thermique est équipé, par le fluide caloporteur parcourant le circuit secondaire.
En variante, le turbocompresseur peut être monté dans une branche du circuit principal, en étant associé à une pompe électrique, afin d'être refroidi par le fluide caloporteur parcourant le circuit principal lorsque le moteur est arrêté. Il est avantageux de raccorder le turbocompresseur en parallèle du circuit de recirculation des gaz d' échappement (EGR), ce qui permet d' éviter la nécessité de prévoir une pompe électrique.
Selon un autre aspect, l'invention concerne également un procédé de refroidissement d'un groupe motopropulseur de véhicule automobile utilisant un fluide caloporteur circulant dans un circuit de refroidissement, dans lequel on fait en outre passer le fluide caloporteur dans un circuit principal pour refroidir un premier ensemble d' organes du groupe motopropulseur à un premier niveau de température, et on fait circuler le fluide caloporteur dans un circuit secondaire pour refroidir un deuxième ensemble d' organes du groupe motopropulseur à un deuxième niveau de température, inférieur au premier niveau. Le circuit principal et le circuit secondaire peuvent être isolés du circuit de refroidissement par une vanne thermostatique ou commandée et on dégaze le fluide caloporteur en aval de la vanne.
On extrait des calories du fluide caloporteur en le faisant passer à travers un radiateur principal et un radiateur supplémentaire montés en parallèle et on met en communication le circuit principal avec le circuit secondaire lorsqu' on souhaite augmenter le refroidissement du fluide caloporteur.
L' invention sera mieux comprise à l' étude de quelques modes de réalisation décrits à titre d' exemples, et illustrés par les dessins annexés, sur lesquels : la figure 1 est une vue schématique d'un système de refroidissement conforme à l'invention ; la figure 2 montre l' écoulement du fluide caloporteur en phase de démarrage à froid du moteur thermique, la température du fluide caloporteur étant inférieure à un premier seuil ; la figure 3 est une vue analogue à la figure 2, montrant l' écoulement du fluide caloporteur lorsque la température de celui-ci a dépassé un premier seuil tout en restant inférieure à un deuxième seuil supérieur au premier ; la figure 4 est une vue analogue à la figure 2, illustrant la circulation du fluide caloporteur lorsque la température de celui-ci a dépassé le deuxième seuil ; - la figure 5 est une vue analogue à la figure 2 montrant l' écoulement du fluide caloporteur pour un refroidissement maximal ; la figure 6 est une vue analogue à la figure 5 montrant une variante d' écoulement du fluide caloporteur pour un refroidissement maximal ; la figure 7 est une vue schématique d'un deuxième mode de réalisation d'un système de refroidissement selon l'invention ; et la figure 8 est une vue schématique d'un troisième mode de réalisation d'un système de refroidissement selon l'invention.
Tel qu' illustré sur la figure 1 , le système de refroidissement pour groupe motopropulseur de véhicule automobile est adapté au refroidissement d'un moteur thermique 1 et de différents organes associés. Le refroidissement du moteur 1 est obtenu tout d' abord par circulation d'un fluide caloporteur tel que de l'eau, dans un circuit de refroidissement 2 comprenant une branche aller 2a et une branche retour 2b. Une pompe à eau 3 entraînée mécaniquement par le moteur 1 , met en circulation le fluide caloporteur dans le circuit de refroidissement 2. Le circuit 2 comprend un aérotherme 4. Sur la figure 1 on a représenté différents organes à titre d' exemples qui nécessitent un refroidissement à un niveau de température comparable à celui du moteur thermique, niveau qui sera appelé dans la présente description « niveau haut » . II s ' agit notamment d'un injecteur supplémentaire qui peut être monté par exemple dans la ligne d' échappement du moteur thermique afin d' assurer la régénération d'un filtre à particules . Cet injecteur supplémentaire est refroidi par un échangeur de chaleur 5 monté en parallèle de l' aérotherme 4 dans le circuit de refroidissement 2. De même, on a représenté sur la figure 1 un échangeur de chaleur 6 capable de refroidir l'huile de lubrification du moteur 1. L' échangeur 6 est monté dans une dérivation 7 du circuit de refroidissement 2 sur la branche de retour 2b de celui-ci. Une vanne thermostatique 8 est montée dans un circuit principal 9 qui peut être parcouru par le fluide caloporteur sortant du moteur thermique 1 lorsque la vanne thermostatique 8 est ouverte, c ' est-à- dire lorsque la température du fluide caloporteur dépasse un premier seuil de température Ti qui correspond à la limite inférieure du niveau « haut » . La vanne thermostatique 8 peut être remplacée par une vanne commandée, par exemple électriquement, associée à un capteur de température du fluide caloporteur, fournissant un signal de commande. Le circuit principal 9 comporte une branche aller 9a et une branche retour 9b . La vanne thermostatique 8 est montée sur la branche aller 9a. Un radiateur principal 10 et un radiateur supplémentaire 1 1 sont montés dans le circuit principal 9. Un vase d' expansion 12 traversé par le fluide caloporteur est monté en aval de la vanne thermostatique 8.
Une conduite 13 communiquant avec la branche aller 9a est reliée à l' entrée 14 du radiateur principal 10. Une conduite 15 piquée sur la branche aller 9a est reliée à l'entrée du radiateur supplémentaire 1 1. Une conduite 16 également piquée sur la branche aller 9a, en aval de la vanne thermostatique 8, est reliée à l' entrée du vase d' expansion 12. Le vase d' expansion 12 permet notamment le dégazage du fluide caloporteur. A cet effet, il comprend un récipient hermétiquement fermé, une entrée en partie basse pour le fluide caloporteur et une sortie en partie haute.
La sortie du radiateur supplémentaire 1 1 est reliée par une conduite 17, d'une part à la branche retour 9b du circuit principal 9, par un branchement 18 et d' autre part à la sortie du radiateur principal 10. Une vanne thermostatique 19, capable de s' ouvrir à partir d'une température T2 supérieure au seuil d' ouverture Ti de la vanne 8, est montée dans le branchement 18. La vanne thermostatique 19 peut également être remplacée, comme la vanne thermostatique 8 , par une vanne commandée du même type.
La sortie 22 du radiateur principal 10 est reliée à un échangeur de chaleur 23 destiné à refroidir l'huile de la boîte de vitesses du véhicule automobile. En sortie de l' échangeur 23, la conduite 24 est piquée sur la branche de retour 9b du circuit principal 9. De même, la conduite 25 reliée à la sortie du vase d' expansion 12 est piquée sur la branche de retour 9b du circuit principal 9.
Le système de refroidissement comprend en outre un circuit de refroidissement secondaire 26 avec une branche aller 26a et une branche retour 26b. Une pompe de circulation électrique 27 est montée dans la branche aller 26a. Le fluide caloporteur s' écoulant dans le circuit secondaire 26 est à un niveau de température inférieur au niveau « haut » . On parlera ici de niveau « bas » . Le fluide caloporteur mis en circulation par la pompe 27 traverse un premier échangeur de chaleur 28 capable de refroidir le système de recirculation partielle des gaz d' échappement (EGR), puis un échangeur de chaleur 29 capable de refroidir la vanne de commande du système de recirculation des gaz d' échappement EGR. Un échangeur de chaleur 30 est également prévu pour refroidir le turbocompresseur du moteur thermique dans l' exemple illustré. L' échangeur de chaleur 30 est monté en parallèle de l' échangeur de chaleur 29.
Le circuit secondaire 26 comprend un radiateur secondaire 31 parcouru par le fluide caloporteur au bas niveau de température.
Une vanne trois voies commandée 31b est montée dans la branche retour 26b du circuit secondaire 26. La vanne 31b est également connectée par un conduit 32, directement au circuit de refroidissement 2, à la sortie du moteur 1. Elle est donc capable de mettre en communication le fluide caloporteur à haute température avec le circuit secondaire 26. La vanne 31b peut être remplacée par une vanne thermostatique.
La branche de retour 26b du circuit secondaire 26 est également reliée directement à la branche retour 9b du circuit principal 9, par un conduit 33.
Une vanne commandée 34 est en outre montée dans une dérivation 35 mettant en communication la branche aller 26a du circuit secondaire 26 et la branche retour 9b du circuit principal 9. La vanne 34 peut être remplacée par une vanne thermostatique. De plus, les deux vannes 19 et 31 qui sont, dans l'exemple illustré, des vannes deux voies, peuvent être remplacées par une seule vanne trois voies .
En se reportant à la figure 2, on va maintenant décrire la circulation du fluide caloporteur dans une phase de démarrage du moteur thermique 1 , c ' est-à-dire lorsque la température du fluide caloporteur est inférieure au premier seuil de température T1. Sur la figure 2 et les figures 3, 4 et 5, le fluide caloporteur à haute température (niveau « haut ») a été représenté par un trait gras, les flèches notant le sens de circulation dans le circuit de refroidissement 2 et dans le circuit principal 9. Le fluide caloporteur s' écoulant à température plus basse (niveau « bas ») dans le circuit secondaire 26 a été représenté en tirets, les flèches montrant le sens de circulation. Les traits fins illustrent les canalisations qui ne sont pas parcourues par le fluide caloporteur.
Lorsque le moteur thermique 1 fonctionne à froid, par exemple au démarrage, comme illustré sur la figure 2, la vanne thermostatique 8 est fermée. Le fluide caloporteur s' écoule dans le circuit de refroidissement 2 entraîné par la pompe à eau 3. L' aérotherme 4 permet de transférer les calories du fluide caloporteur à l'habitacle du véhicule ainsi que le refroidissement de l' injecteur supplémentaire grâce à l' échangeur 5, et le refroidissement de l'huile de lubrification du moteur grâce à l' échangeur 6.
La pompe électrique 27 est en fonctionnement et fait circuler le fluide caloporteur au niveau « bas » de température dans le circuit secondaire 26. Celui-ci traverse le radiateur secondaire 31 dans le sens des flèches indiqué sur la figure 2. Le refroidissement du système de recirculation des gaz d' échappement EGR par les échangeurs 28 et 29 ainsi que le refroidissement du turbocompresseur par l' échangeur 30 sont assurés de manière efficace puisque le fluide caloporteur est bien refroidi par le radiateur secondaire 31 en étant maintenu au niveau « bas » de température. Dans ce mode de fonctionnement, la vanne commandée 34 est fermée pour empêcher toute recirculation à l' envers dans le vase d' expansion 12, recirculation qui risquerait de perturber son fonctionnement. Il est en effet essentiel que le fluide caloporteur pénètre toujours par la conduite d' entrée 16 du vase d'expansion 12, qui pénètre en position basse dans le vase 12 et ressorte par la conduite de sortie 25 située en position haute, afin d' assurer le dégazage. La vanne trois voies 31b est placée de façon à laisser uniquement passer le fluide caloporteur de la branche retour 26b vers le radiateur secondaire 31. Aucune circulation n' est autorisée dans le conduit 32.
La figure 3 illustre le fonctionnement du système de refroidissement lorsque le véhicule est en phase de roulage intermédiaire, la température du fluide caloporteur étant supérieure au premier seuil de température Ti mais cependant inférieure à un deuxième seuil T2 avec T2 supérieur à T1. La vanne thermostatique 8 est alors partiellement ouverte. La pompe électrique 27 fonctionne toujours et le refroidissement du système de recirculation des gaz d' échappement EGR se fait par la traversée du radiateur secondaire 31. Le fluide caloporteur s' écoule également dans le circuit principal 9 partiellement ouvert, et peut traverser le vase d' expansion 12 depuis la conduite d' entrée 16 vers la conduite de sortie 25. Le fluide caloporteur provenant de la branche aller 9a du circuit 9 traverse également le radiateur supplémentaire l i a partir de la conduite 15. Le fluide ayant traversé le radiateur supplémentaire 1 1 revient se mélanger avec le fluide caloporteur sortant du radiateur principal 10. La vanne commandée 34 est fermée et la vanne trois voies 31b laisse le passage du fluide caloporteur uniquement depuis la branche de retour 26b vers le radiateur secondaire 31 comme dans la configuration de la figure 2.
On notera que tout le débit de fluide caloporteur du circuit principal 9 alimentant le moteur thermique 1 traverse l' échangeur
23 de la boîte de vitesses et que le dégazage se fait convenablement grâce à la circulation dans le bon sens à travers le vase d' expansion 12.
Tant que la température ne dépasse pas un seuil T2 supérieur au premier seuil T1 , la vanne thermostatique 19 reste fermée. Dès que ce deuxième seuil est franchi, la vanne 19 s ' ouvre pour augmenter la perméabilité du circuit 9 et donc le débit de fluide caloporteur traversant les échangeurs . Cette configuration est illustrée sur la figure 4. Lorsque le besoin de refroidissement du moteur thermique augmente encore, la vanne thermostatique 8 étant totalement ouverte, la vanne trois voies 31b est commandée de façon à changer de position, laissant le passage du fluide caloporteur au premier niveau haut de température provenant du moteur 1 vers le radiateur secondaire 31 et interdisant le retour du fluide caloporteur au deuxième niveau bas de température, provenant de la branche de retour 26b du circuit secondaire 26.
Cette phase est illustrée sur la figure 5. Le débit du fluide caloporteur provenant du moteur 1 se répartit dans le radiateur principal 10, le radiateur supplémentaire 1 1 et le radiateur secondaire 31. Dans cette configuration, la vanne thermostatique 19 est ouverte. Dans ce mode de fonctionnement, le fluide caloporteur provenant de la branche retour 26b du circuit secondaire 26 revient dans la branche retour 9b du circuit 9 par la conduite 33.
Sur la figure 5 , la vanne 34 est représentée fermée. Sur la figure 6 au contraire, la seule différence est la vanne 34 ouverte, ce qui réalise un bipass des échangeurs 28 et 29 du système EGR de façon à augmenter encore le débit traversant le radiateur secondaire
31.
Dans les modes de fonctionnement illustrés sur les figures 5 et 6, il n' y a plus de risque de recirculation en sens inverse dans le vase d' expansion 12 car le débit de la pompe de circulation 3 est nettement plus important que dans le mode de fonctionnement illustré sur les autres figures . Le système de recirculation des gaz d' échappement EGR ainsi que le turbocompresseur sont toujours refroidis par le circuit secondaire dans lequel circule le fluide caloporteur au bas niveau de température. La pompe électrique 27 peut fonctionner ou être arrêtée selon les conditions de refroidissement souhaitées .
On notera que lorsque le moteur 1 est arrêté après avoir fonctionné comme illustré sur les figures 5 et 6, la vanne thermostatique 8, qui était ouverte, se ferme progressivement. La vanne 31 est commandée pour revenir dans la position illustrée sur la figure 2. La circulation du fluide caloporteur dans le circuit secondaire 26 est alors identique à celle qui est illustrée sur la figure 2. La pompe à eau électrique 27 fonctionne pendant un certain temps après l' arrêt du moteur afin de permettre le refroidissement du turbocompresseur au moyen de l' échangeur 30. La vanne commandée 34 doit être fermée afin d' éviter toute circulation en sens inverse dans le vase d' expansion 12. Lors du remplissage de l' ensemble du système de refroidissement, on place la vanne 34 en position ouverte une fois la pompe de circulation 27 arrêtée. La vanne thermostatique 8 est de préférence également ouverte.
Le mode de réalisation illustré sur la figure 7, sur laquelle les éléments identiques portent les mêmes références, se distingue du mode de réalisation illustré sur la figure 1 par le montage de l' échangeur de chaleur 30 adapté au refroidissement du turbocompresseur sur une branche 36 en parallèle de l' aérotherme 4, l' échangeur 5 étant également monté sur ladite branche 36. Une pompe à eau électrique supplémentaire 37 est montée dans la branche 36 de façon à améliorer la circulation du fluide caloporteur. Un tel branchement permet d' augmenter le débit de fluide caloporteur traversant l' échangeur 30 par rapport au mode de réalisation illustré sur la figure 1.
La figure 8 illustre un autre mode de réalisation qui se différencie du mode de réalisation illustré sur la figure 1 par le montage de l' échangeur 23 destiné au refroidissement de la boîte de vitesses . Dans ce mode de réalisation, l' échangeur 23 est en effet monté sur une dérivation 38 de la branche de retour 9b du circuit principal 9. Un thermostat supplémentaire 39 est monté entre les piquages d'entrée et de sortie de la dérivation 38. On pourrait également adopter dans le mode de réalisation de la figure 8, la modification illustrée sur la figure 7 concernant le montage de l' échangeur 30.

Claims

REVENDICATIONS
1. Système de refroidissement pour groupe motopropulseur de véhicule automobile, comprenant un circuit principal (9) pouvant être parcouru par un fluide caloporteur pour refroidir un premier ensemble d' organes du groupe motopropulseur à un premier niveau de température, un circuit secondaire (26) pouvant être parcouru par un fluide caloporteur pour refroidir un deuxième ensemble d' organes du groupe motopropulseur à un deuxième niveau de température, inférieur au premier niveau, avec un radiateur principal ( 10) faisant partie du circuit principal et un radiateur secondaire (31 ) faisant partie du circuit secondaire, une première vanne thermostatique (8) ou commandée étant montée dans le circuit principal en aval du moteur thermique ( 1 ) de façon à isoler le radiateur principal ( 10) lorsque la température du fluide caloporteur est inférieure à un premier seuil, et un vase d' expansion ( 12) monté dans le circuit principal en aval de la vanne thermostatique, caractérisé par le fait que les branchements sont tels que le radiateur secondaire (31 ) peut faire partie également du circuit principal dans un mode de fonctionnement du système, et que le système comprend en outre un radiateur supplémentaire ( 1 1 ) monté en parallèle du radiateur principal ( 10), et une deuxième vanne (31b) capable de laisser passer ou d' interdire le passage du fluide caloporteur provenant du moteur thermique ( 1 ) vers le radiateur secondaire.
2. Système selon la revendication précédente dans lequel une troisième vanne thermostatique ou commandée (34) est montée dans une dérivation (35) entre la branche de retour (9b) du circuit principal (9) et la branche de retour (26b) du circuit secondaire (26) de façon à supprimer toute communication par ladite dérivation lorsque la température du fluide caloporteur est inférieure à un deuxième seuil supérieur au premier seuil.
3. Système selon l'une des revendications précédentes dans lequel le radiateur principal ( 10) comprend une entrée principale et une sortie principale reliées directement au circuit principal ainsi qu'une sortie secondaire reliée au circuit principal par l'intermédiaire d'une vanne thermostatique ( 19), et le radiateur supplémentaire ( 1 1 ) est monté entre l' entrée principale et la sortie secondaire du radiateur principal.
4. Système selon l'une des revendications précédentes dans lequel le premier ensemble d' organes du groupe motopropulseur capables d' être refroidis par le fluide caloporteur parcourant le circuit principal comprend un injecteur supplémentaire, le circuit d'huile de lubrification du moteur et la boîte de vitesses du véhicule.
5. Système selon l'une des revendications précédentes dans lequel le deuxième ensemble d' organes du groupe motopropulseur capables d' être refroidis par le fluide caloporteur parcourant le circuit secondaire comprend le circuit de recirculation partielle des gaz d' échappement (EGR) et une vanne de recirculation partielle des gaz d' échappement (EGR) .
6. Système selon l'une des revendications précédentes dans lequel une pompe électrique (27) est montée dans le circuit secondaire.
7. Système selon l'une des revendications précédentes dans lequel un échangeur de refroidissement (23) de l'huile de la boîte de vitesses est monté en sortie du radiateur principal.
8. Système selon l'une des revendications 1 à 6 dans lequel un échangeur de refroidissement de l'huile de la boîte de vitesses est monté dans une dérivation de la branche de retour du circuit principal équipée d'une vanne thermostatique ou commandée.
9. Système selon l'une des revendications précédentes dans lequel un turbocompresseur est refroidi par le fluide caloporteur parcourant le circuit secondaire.
10. Système selon l'une des revendications 1 à 8 dans lequel un turbocompresseur monté dans une branche du circuit principal, associé à une pompe électrique (37), est refroidi par le fluide caloporteur parcourant le circuit principal.
1 1. Procédé de refroidissement d'un groupe motopropulseur de véhicule automobile utilisant un fluide caloporteur circulant dans un circuit de refroidissement, dans lequel on fait en outre passer le fluide caloporteur dans un circuit principal pour refroidir un premier ensemble d' organes du groupe motopropulseur à un premier niveau de température, et on fait circuler le fluide caloporteur dans un circuit secondaire pour refroidir un deuxième ensemble d' organes du groupe motopropulseur à un deuxième niveau de température, inférieur au premier niveau, le circuit principal et le circuit secondaire pouvant être isolés du circuit de refroidissement par une vanne thermostatique ou commandée et on dégaze le fluide caloporteur en aval de la vanne thermostatique, caractérisé par le fait qu' on extrait des calories du fluide caloporteur en le faisant passer à travers un radiateur principal et un radiateur supplémentaire montés en parallèle et qu' on met en communication le circuit principal avec le circuit secondaire lorsqu' on souhaite augmenter le refroidissement du fluide caloporteur.
PCT/FR2008/050467 2007-03-26 2008-03-19 Systeme et procede de refroidissement d'un groupe motopropulseur de vehicule automobile WO2008132369A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08775721A EP2126308A1 (fr) 2007-03-26 2008-03-19 Systeme et procede de refroidissement d'un groupe motopropulseur de vehicule automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754036 2007-03-26
FR0754036A FR2914357B1 (fr) 2007-03-26 2007-03-26 Systeme et procede de refroidissement d'un groupe motopropulseur de vehicule automobile.

Publications (1)

Publication Number Publication Date
WO2008132369A1 true WO2008132369A1 (fr) 2008-11-06

Family

ID=38231380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050467 WO2008132369A1 (fr) 2007-03-26 2008-03-19 Systeme et procede de refroidissement d'un groupe motopropulseur de vehicule automobile

Country Status (3)

Country Link
EP (1) EP2126308A1 (fr)
FR (1) FR2914357B1 (fr)
WO (1) WO2008132369A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942004B1 (fr) * 2009-02-06 2011-08-26 Peugeot Citroen Automobiles Sa Moteur avec un collecteur d'echappement integre a la culasse
FR2948727B1 (fr) * 2009-07-29 2011-08-26 Peugeot Citroen Automobiles Sa Circuit de refroidissement d'un moteur suralimente
DE102010055072A1 (de) * 2010-12-18 2012-06-21 Volkswagen Ag Kühlkreis für eine Brennkraftmaschine mit einer Abgasrückführung und Verfahren zum Betrieb einer Brennkraftmaschine mit einem solchen Kühlkreis
FR2970301A1 (fr) * 2011-01-10 2012-07-13 Eddie Essayem Dispositif de regulation de la temperature d'un moteur de cyclomoteur a refroidissement liquide
FR3069288B1 (fr) * 2017-07-19 2020-06-26 Renault S.A.S. Systeme de distribution de liquide dans un circuit de refroidissement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353757A (en) * 1992-07-13 1994-10-11 Nippondenso Co., Ltd. Vehicular use cooling apparatus
WO2003042619A1 (fr) * 2001-11-13 2003-05-22 Valeo Thermique Moteur Module d'echange de chaleur comportant un radiateur principal et un radiateur secondaire
WO2003042515A1 (fr) * 2001-11-13 2003-05-22 Valeo Thermique Moteur Systeme de gestion de l'energie thermique developpee par un moteur thermique de vehicule automobile
WO2004085807A1 (fr) * 2003-03-28 2004-10-07 Scania Cv Ab (Publ) Agencement de refroidissement et procede de refroidissement de ralentisseur
FR2864150A1 (fr) * 2003-12-22 2005-06-24 Valeo Thermique Moteur Sa Systeme de gestion de l'energie thermique d'un moteur thermique de vehicule comportant des moyens de commutation temporisee
GB2420847A (en) * 2004-12-04 2006-06-07 Ford Global Tech Llc Engine cooling system with independent control of coolant supply through a cylinder head and a cylinder block
FR2900197A1 (fr) * 2006-04-21 2007-10-26 Renault Sas Systeme et procede de controle de la temperature d'un moteur suralimente et comportant un circuit de recyclage de gaz d'echappement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353757A (en) * 1992-07-13 1994-10-11 Nippondenso Co., Ltd. Vehicular use cooling apparatus
WO2003042619A1 (fr) * 2001-11-13 2003-05-22 Valeo Thermique Moteur Module d'echange de chaleur comportant un radiateur principal et un radiateur secondaire
WO2003042515A1 (fr) * 2001-11-13 2003-05-22 Valeo Thermique Moteur Systeme de gestion de l'energie thermique developpee par un moteur thermique de vehicule automobile
WO2004085807A1 (fr) * 2003-03-28 2004-10-07 Scania Cv Ab (Publ) Agencement de refroidissement et procede de refroidissement de ralentisseur
FR2864150A1 (fr) * 2003-12-22 2005-06-24 Valeo Thermique Moteur Sa Systeme de gestion de l'energie thermique d'un moteur thermique de vehicule comportant des moyens de commutation temporisee
GB2420847A (en) * 2004-12-04 2006-06-07 Ford Global Tech Llc Engine cooling system with independent control of coolant supply through a cylinder head and a cylinder block
FR2900197A1 (fr) * 2006-04-21 2007-10-26 Renault Sas Systeme et procede de controle de la temperature d'un moteur suralimente et comportant un circuit de recyclage de gaz d'echappement

Also Published As

Publication number Publication date
FR2914357A1 (fr) 2008-10-03
EP2126308A1 (fr) 2009-12-02
FR2914357B1 (fr) 2009-05-01

Similar Documents

Publication Publication Date Title
EP2066884B1 (fr) Circuit de refroidissement d'un moteur thermique de vehicule automobile
EP0733504B1 (fr) Circuit de fluide de climatisation pour véhicule permettant un chauffage à puissance réglable
EP2935853B1 (fr) Dispositif de gestion thermique de l'air d'admission d'un moteur et procédé de gestion thermique associé
WO2009068504A1 (fr) Dispositif et procede de depollution et de chauffage pour vehicule automobile
EP3262290A1 (fr) Dispositif de gestion thermique de l'air d'admission d'un moteur.
WO2008132369A1 (fr) Systeme et procede de refroidissement d'un groupe motopropulseur de vehicule automobile
FR2949515A1 (fr) Equipement de rechauffage d'un fluide d'un organe de vehicule
EP3676516B1 (fr) Ensemble d'un circuit de refroidissement pour un moteur thermique et une boite de vitesses
FR2890697A1 (fr) Moteur de vehicule comprenant un circuit de gaz recircules refroidis a basse temperature
WO2008116992A1 (fr) Systeme et procede de refroidissement d'un groupe motopropulseur de vehicule automobile
EP1963657A1 (fr) Dispositif de refroidissement de l'air d'admission et des gaz d'echappement recircules
FR2976322A1 (fr) Repartiteur d'air comprenant un dispositif adapte a echanger de la chaleur avec de l'air de suralimentation, et systeme de transfert thermique comprenant un tel repartiteur
EP1636479A2 (fr) Procede de regulation de la temperature des gaz admis dans un moteur thermique de vehicule automobile et systeme pour la mise en oeuvre de ce procede
FR2908457A3 (fr) Systeme de refroidissement d'un moteur thermique
FR3078389A1 (fr) Installation thermique pour moteurs thermique et electrique avec transmission automatique electrique et condenseur fluide/fluide
FR2936393A1 (fr) Dispositif de refroidissement par carburant d'un systeme electrique
EP2061959B1 (fr) Systeme de refroidissement d'un groupe motopropulseur de vehicule automobile, et procede de commande d'un tel systeme
EP3557177B1 (fr) Radiateur de refroidissement avec by-pass intégré et circuit de refroidissement
FR2978206A1 (fr) Dispositif de regulation thermique pour vehicule automobile
FR3066151B1 (fr) Procede de regulation d’une temperature d’huile de boite de vitesses par piquage sur conduite de radiateur
FR3066537B1 (fr) Procede de regulation d’une temperature d’huile de lubrification d’un moteur thermique a deux flux de sortie
FR3078388A1 (fr) Installation thermique pour moteur a combustion interne a climatisation optimisee par synergie entre ses boucles froide et chaude
FR3114127A3 (fr) Piquage de dégazage thermostaté
FR3109912A1 (fr) Dispositif de gestion thermique pour un véhicule automobile hybride
FR2865004A1 (fr) Dispositif de regulation thermique de l'air d'admission d'un moteur a combustion interne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08775721

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2008775721

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008775721

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE