WO2008128471A1 - Biphase separating membrane, its preparing method and method for treating high concentration ammonia nitrogen waste water using the biphase separating membrane - Google Patents

Biphase separating membrane, its preparing method and method for treating high concentration ammonia nitrogen waste water using the biphase separating membrane Download PDF

Info

Publication number
WO2008128471A1
WO2008128471A1 PCT/CN2008/070747 CN2008070747W WO2008128471A1 WO 2008128471 A1 WO2008128471 A1 WO 2008128471A1 CN 2008070747 W CN2008070747 W CN 2008070747W WO 2008128471 A1 WO2008128471 A1 WO 2008128471A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
parts
phase separation
concentration ammonia
ammonia nitrogen
Prior art date
Application number
PCT/CN2008/070747
Other languages
French (fr)
Chinese (zh)
Inventor
Jun Ma
Shengli Sun
Xin Luo
Xiangchun Qi
Yumei Shi
He Huang
Zhongrong Zhao
Original Assignee
Beijing Baicun Environmental Protection Technology Develops Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Baicun Environmental Protection Technology Develops Ltd. filed Critical Beijing Baicun Environmental Protection Technology Develops Ltd.
Publication of WO2008128471A1 publication Critical patent/WO2008128471A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/10Specific pressure applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/302Treatment of water, waste water, or sewage by irradiation with microwaves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Abstract

A biphase separating membrane, its preparing method and a method for treating high concentration ammonia nitrogen waste water using the biphase separating membrane are provided. The biphase separating membrane is prepared from 98-102 parts macromolecule polymeric materials, 0.001-5 parts titania fibre with 5-100 nm fibre length and 0.01-3.5 parts chemical fibre fabric according to the quality parts rate. The biphase separating membrane is prepared according to the following steps: mixing the macromolecule polymeric materials with the nano-titania fibre and the chemical fibre fabric; agitating the mixture under 160-240? and 500-3000 r/min for 0.5-8 h; drying and shaping to get the biphase separating membrane. The high concentration ammonia nitrogen waste water treatment method comprises: (1) the catalyst is added into the waste water which is then subjected to microwave irradiation; and (2) the waste water, after microwave irradiation, is flocculating settled and filtrated, and then the pH value of the waste water is adjusted to execute the biphase separation membranes treatment so as to obtain clear water.

Description

一种双相分离膜、 其制备方法及利用该双相分离膜的  Biphase separation membrane, preparation method thereof and utilization of the same
高浓度氨氮废水处理方法  High concentration ammonia nitrogen wastewater treatment method
[1] 技术领域 [1] Technical field
[2] 本发明涉及一种废水的处理方法和双相分离膜及其制备方法。  [2] The present invention relates to a method for treating wastewater and a two-phase separation membrane and a preparation method thereof.
[3] 背景技术  [3] Background Art
[4] 地表水体富营养化造成水环境恶化、 饮用水水质下降, 近海赤潮达到非常严重 的程度, 而引起水体富营养化的关键因素是大量营养物质进入水体, 其中高浓 度氨氮废水的排入是弓 I起富营养化的首要因素。  [4] The eutrophication of surface water bodies has caused the deterioration of water environment and the decline of drinking water quality. The red tide in the offshore waters has reached a very serious level. The key factor causing eutrophication of water bodies is the influx of large amounts of nutrients into the water bodies, and the discharge of high-concentration ammonia-nitrogen wastewater. It is the primary factor for eutrophication.
[5] 氨氮是多种工业废水的主要成分, 包括煤化工业废水、 化肥工业废水、 制革工 业废水、 农药制造废水、 炸药制造废水、 化工废水等。 这些工业废水中氨氮浓 度由几百 mg/L到几万 mg/L, 且水中往往同吋具有很高的含盐量和很高浓度的有 机物, 十分难于处理。 目前釆用的除氨氮方法有生物工艺 (硝化-反硝化、 同步硝 化-反硝化、 短程硝化-反硝化、 厌氧氨氧化、 好氧反硝化、 人工湿地、 藻类养殖 、 氮硫协同去除法等)、 化学工艺 (离子交换、 吹脱、 化学沉淀、 电渗析、 电化学 处理、 湿式催化氧化、 折点加氯法等)、 物理工艺 (反渗透、 土壤灌溉等)。 生物 工艺和物理工艺只适用于中低浓度 (< 500mg/L) 含氨氮废水的处理, 而目前可 以处理高浓度氨氮废水的方法有存在水处理成本高、 二次污染、 或能耗高的缺 陷。 虽然现有的膜吸收技术可以解决能耗高的问题, 但存在氨氮去除率低 (仅 为 60%左右) , 材料强度低、 耐压性差、 易堵塞、 易污染的问题, 难以在大规模 水处理中运用。  [5] Ammonia nitrogen is the main component of various industrial wastewaters, including coal chemical industry wastewater, chemical fertilizer industrial wastewater, tannery industrial wastewater, pesticide manufacturing wastewater, explosive manufacturing wastewater, and chemical wastewater. The concentration of ammonia nitrogen in these industrial wastewaters ranges from a few hundred mg/L to tens of thousands of mg/L, and the water often has high salt content and high concentration of organic matter, which is very difficult to handle. At present, the ammonia removal method used has biological processes (nitrification-denitrification, simultaneous nitrification-denitrification, short-cut nitrification-denitrification, anaerobic ammonium oxidation, aerobic denitrification, constructed wetland, algae culture, nitrogen-sulfur synergistic removal method, etc. ), chemical processes (ion exchange, stripping, chemical precipitation, electrodialysis, electrochemical treatment, wet catalytic oxidation, fluorination, etc.), physical processes (reverse osmosis, soil irrigation, etc.). Bio-process and physical processes are only suitable for the treatment of low-concentration (<500mg/L) ammonia-containing wastewater. At present, the treatment of high-concentration ammonia-nitrogen wastewater has the disadvantages of high water treatment cost, secondary pollution, or high energy consumption. . Although the existing membrane absorption technology can solve the problem of high energy consumption, there is a low ammonia nitrogen removal rate (only about 60%), low material strength, poor pressure resistance, easy clogging, and easy pollution, and it is difficult to be in large-scale water. Used in processing.
[6] 发明内容  [6] Summary of the invention
[7] 本发明的目的是为了解决目前分离膜强度低、 耐压性差、 易污染及现有高浓度 氨氮废水处理费用高、 运行能耗高、 二次污染的问题, 而提供的一种高浓度氨 氮废水的处理方法和双相分离膜及其制备方法。  [7] The object of the present invention is to solve the problems of low separation strength, poor pressure resistance, easy pollution, high treatment cost of high-concentration ammonia nitrogen wastewater, high energy consumption and secondary pollution. Treatment method of concentration ammonia nitrogen wastewater, dual phase separation membrane and preparation method thereof.
[8] 双相分离膜按质量份数比由 98~102份高分子聚合材料、 0.001~5份纤维长度为 5[8] The phase separation ratio of the two-phase separation membrane is 98~102 parts of polymer material, and the length of the fiber is 0.001~5 parts.
~100nm的二氧化钛纤维和 0.01~3.5份化纤织物制成; 其中高分子聚合材料为聚丙 烯或聚偏氟乙烯; 化纤织物为丙纶或晴纶。 如上所述双相分离膜按以下步骤制备: 按质量份数比将 98~102份高分子聚合材 料、 0.001~5份纤维长度为 5~100nm的二氧化钛纤维和 0.01~3.5份化纤织物混合, 然后在 160~240°C、 搅拌转速为 500~3000r/min的情况下搅拌 0.5~8h, 干燥成型即 得到双相分离膜; 其中高分子聚合材料为聚丙烯或聚偏氟乙烯; 化纤织物为丙 纶或晴纶。 ~100nm titanium dioxide fiber and 0.01~3.5 parts of chemical fiber fabric; wherein the polymer material is polypropylene or polyvinylidene fluoride; the chemical fiber fabric is polypropylene or acrylic. The biphasic separation membrane is prepared as follows: 98 to 102 parts of the polymer material, 0.001 to 5 parts of the titanium dioxide fiber having a fiber length of 5 to 100 nm, and 0.01 to 3.5 parts of the chemical fiber fabric are mixed according to the mass ratio, and then Stirring at 160~240 °C with stirring speed of 500~3000r/min for 0.5~8h, dry forming to obtain a two-phase separation membrane; wherein the polymer material is polypropylene or polyvinylidene fluoride; the chemical fiber fabric is polypropylene Or acrylic.
高浓度氨氮废水按以下步骤处理: (一) 按每吨高浓度氨氮废水加入 0.2~200g 的比例投加催化剂, 然后再进行微波辐照; (二) 微波处理过的废水经絮凝沉 淀、 过滤后调节液体 PH值进行双相分离膜处理, 即可出水; 其中步骤 (一) 中 的催化剂由氧化铁、 氧化锆、 二氧化钛、 氧化镍、 氧化铝、 氧化硅、 氯化铁、 聚合氯化铁、 聚合氯化铝、 聚合硅铝、 二氧化锰中的一种或几种组成; 所述步 骤 (一) 中微波辐照频率为 2450MHz或 915MHz、 微波功率为 5~30KW、 微波辐 照吋间为 l~500s, 废水通过微波场的流速为 0.2~1.8m/s; 其中步骤 (二) 中的双 相分离膜为以上所述的双相分离膜; 所述步骤 (二) 中双相分离膜两侧分别是 原料液和吸收液, 原料液的温度为 15~60°C、 pH值大于 9, 吸收液为酸性溶液、 p H值小于 2, 原料液的压强大于吸收液的压强, 压强差为 0.01~5Kg/cm2。 The high-concentration ammonia-nitrogen wastewater is treated as follows: (1) The catalyst is added in a ratio of 0.2-200 g per ton of high-concentration ammonia-nitrogen wastewater, and then subjected to microwave irradiation; (2) The microwave-treated wastewater is flocculated and filtered, and filtered. Adjusting the liquid P H value for the biphasic separation membrane treatment, the water can be discharged; wherein the catalyst in the step (1) is composed of iron oxide, zirconium oxide, titanium dioxide, nickel oxide, aluminum oxide, silicon oxide, ferric chloride, polyferric chloride One or more of polyaluminum chloride, polyaluminum silicate, manganese dioxide; microwave irradiation frequency of step (1) is 2450MHz or 915MHz, microwave power is 5~30KW, microwave irradiation is diurnal For l~500s, the flow rate of the wastewater through the microwave field is 0.2~1.8m/s ; wherein the biphasic separation membrane in step (2) is the biphasic separation membrane described above; the biphasic separation in the step (2) The two sides of the membrane are raw material liquid and absorption liquid respectively. The temperature of the raw material liquid is 15~60 °C, the pH value is greater than 9, the absorption liquid is acidic solution, the p H value is less than 2, the pressure of the raw material liquid is stronger than the pressure of the absorption liquid, and the pressure is strong. The difference is 0.0 1~5Kg/cm2.
本发明双相分离膜的强度高、 耐压性强, 可以承受 5~6Kg/cm2的压强差, 而且 加入了纳米材料, 双相分离膜的抗污染性提高了 2~3倍, 不易堵塞、 更便于清洗 , 可用于大规模水处理。  The biphasic separation membrane of the invention has high strength and high pressure resistance, can withstand a pressure difference of 5-6 Kg/cm2, and is added with a nano material, and the pollution resistance of the biphasic separation membrane is improved by 2 to 3 times, which is not easy to block, It is easier to clean and can be used for large-scale water treatment.
本发明双相分离膜的制备方法简单, 易于操作。  The preparation method of the biphasic separation membrane of the invention is simple and easy to handle.
本发明高浓度氨氮废水的处理方法是利用微波与催化剂的协同作用下对高浓度 氨氮废水进行处理, 实现了高浓度氨氮废水的强化絮凝, 大幅降低了水体中有 机物的浓度, 减少了后续膜污染的可能性; 然后再利用双相分离膜将氨氮从水 体中分离出来。 本发明高浓度氨氮废水的处理方法的运行成本为 10~20元 /吨, 仅 为现行吹脱除氨氮方法的 1/5。 本发明高浓度氨氮废水的处理方法可脱除水体中 9 9%以上的氨氮, 不仅大幅降低了氨氮向水环境中的排放量, 还有效地回收了氨 氮资源, 而且酸性吸收液经处理后可循环使用, 大量的节省了水资源, 降低了 4 0%~90%的生产成本。 本发明高浓度氨氮废水的处理方法所用设备占地面积小, 操作管理方便, 适合各种规模的高浓度氨氮废水处理。 本发明高浓度氨氮废水 的处理方法不造成二次污染。 本发明高浓度氨氮废水的处理方法可处理氨氮浓 度为 50000mg/L的废水, 而且由于所使用的双相分离膜强度高、 不易破损、 处理 能力大幅提高, 日处理能力为 50~6000吨。 The treatment method of the high-concentration ammonia-nitrogen wastewater of the invention utilizes the synergistic action of microwave and catalyst to treat the high-concentration ammonia-nitrogen wastewater, thereby realizing the enhanced flocculation of the high-concentration ammonia-nitrogen wastewater, greatly reducing the concentration of organic matter in the water body, and reducing the subsequent membrane pollution. The possibility of separating the ammonia nitrogen from the water by means of a two-phase separation membrane. The operating cost of the high-concentration ammonia nitrogen wastewater treatment method of the invention is 10-20 yuan/ton, which is only 1/5 of the current method for removing ammonia nitrogen. The treatment method of the high-concentration ammonia nitrogen wastewater of the invention can remove more than 99% of the ammonia nitrogen in the water body, not only greatly reduces the emission of ammonia nitrogen into the water environment, but also effectively recovers the ammonia nitrogen resource, and the acidic absorption liquid can be treated after being treated. Recycling, saving a lot of water resources, reducing production costs by 40% to 90%. The method for treating high-concentration ammonia nitrogen wastewater of the invention has small floor space, convenient operation and management, and is suitable for high-concentration ammonia nitrogen wastewater treatment of various scales. High concentration ammonia nitrogen wastewater of the invention The treatment method does not cause secondary pollution. The treatment method of the high-concentration ammonia nitrogen wastewater of the invention can treat the wastewater with the ammonia nitrogen concentration of 50,000 mg/L, and the daily treatment capacity is 50-6000 tons because the dual-phase separation membrane used has high strength, is not easy to be broken, and the treatment capacity is greatly improved.
[14] 具体实施方式 [14] Specific implementation
[15] 具体实施方式一: 本实施方式双相分离膜按质量份数比由 98~102份高分子聚合 材料、 0.001~5份纤维长度为 5~100nm的二氧化钛纤维和 0.01~3.5份化纤织物制成 ; 其中高分子聚合材料为聚丙烯或聚偏氟乙烯; 化纤织物为丙纶或晴纶。  [15] Embodiment 1: The biphasic separation membrane of the present embodiment comprises 98 to 102 parts of a polymer material, 0.001 to 5 parts of a titanium dioxide fiber having a fiber length of 5 to 100 nm, and 0.01 to 3.5 parts of a chemical fiber fabric. Made of; wherein the polymer material is polypropylene or polyvinylidene fluoride; the chemical fiber fabric is polypropylene or acrylic.
[16] 本实施方式双相分离膜强度高、 耐压性强, 可以承受 5~6Kg/cm2的压强差。  [16] The dual phase separation membrane of the present embodiment has high strength and high pressure resistance, and can withstand a pressure difference of 5 to 6 kg/cm2.
[17] 具体实施方式二: 本实施方式与具体实施方式一的不同点是: 双相分离膜按质 量份数比由 100份高分子聚合材料、 0.01~4.8份纤维长度为 10~50nm的二氧化钛纤 维和 0.1~3.4份化纤织物制成。 其它与实施方式一相同。  [17] Specific embodiment 2: The difference between this embodiment and the first embodiment is: the biphasic separation membrane is composed of 100 parts of the polymer material, 0.01 to 4.8 parts of titanium dioxide having a fiber length of 10 to 50 nm in mass parts ratio. Made of fiber and 0.1 to 3.4 parts of chemical fiber fabric. Others are the same as in the first embodiment.
[18] 具体实施方式三: 本实施方式双相分离膜按以下步骤制备: 按质量份数比将 98 ~102份高分子聚合材料、 0.001~5份纤维长度为 5~100nm的二氧化钛纤维和 0.01~3 .5份化纤织物混合, 然后在 160~240°C、 搅拌转速为 500~3000r/min的情况下搅拌 0 •5~8h, 干燥成型即得到双相分离膜; 其中高分子聚合材料为聚丙烯或聚偏氟乙 烯; 化纤织物为丙纶或晴纶。  [18] Specific Embodiment 3: The biphasic separation membrane of the present embodiment is prepared according to the following steps: 98 to 102 parts of polymer material, 0.001 to 5 parts of titanium dioxide fiber having a fiber length of 5 to 100 nm and 0.01 by mass fraction ~3. 5 chemical fiber fabrics are mixed, then stirred at 0~5~8h at 160~240°C and stirring speed of 500~3000r/min. After drying, a two-phase separation membrane is obtained. The polymer material is Polypropylene or polyvinylidene fluoride; chemical fiber fabric is polypropylene or acrylic.
[19] 本实施方式制备出的双相分离膜强度高、 耐压性强, 可以承受 5~6Kg/cm2的压 强差。  [19] The two-phase separation membrane prepared in the present embodiment has high strength and high pressure resistance, and can withstand a pressure difference of 5 to 6 kg/cm 2 .
[20] 具体实施方式四: 本实施方式与具体实施方式三的不同点是: 按质量份数比将 100份高分子聚合材料、 0.01~4.8份纤维长度为 10~50nm的二氧化钛纤维和 0.1 3.4 份化纤织物混合。 其它步骤及参数与实施方式三相同。  [20] Specific Embodiment 4: The difference between this embodiment and the third embodiment is: 100 parts of the polymer material, 0.01 to 4.8 parts of titanium dioxide fiber having a fiber length of 10 to 50 nm and 0.1 3.4 by mass fraction. A portion of the chemical fiber fabric is mixed. The other steps and parameters are the same as in the third embodiment.
[21] 具体实施方式五: 本实施方式与具体实施方式三的不同点是: 将高分子聚合材 料、 纳米二氧化钛纤维和化纤织物混合后在 180~230°C、 搅拌转速为 700~2500r/m in的情况下搅拌 l~6h。 其它步骤及参数与实施方式三相同。  [21] Specific Embodiment 5: The difference between the embodiment and the third embodiment is: mixing the polymer polymer material, the nano titanium dioxide fiber and the chemical fiber fabric at 180 to 230 ° C, and the stirring speed is 700 to 2500 r/m. In the case of in, stir for l~6h. The other steps and parameters are the same as in the third embodiment.
[22] 具体实施方式六: 本实施方式高浓度氨氮废水按以下步骤处理: (一) 按每吨 高浓度氨氮废水加入 0.2~200g的比例投加催化剂, 然后再进行微波辐照; (二) 微波处理过的废水经絮凝沉淀、 过滤后调节液体 PH值进行双相分离膜处理, 即 可出水; 其中步骤 (一) 中的催化剂由氧化铁、 氧化锆、 二氧化钛、 氧化镍、 氧化铝、 氧化硅、 氯化铁、 聚合氯化铁、 聚合氯化铝、 聚合硅铝、 二氧化锰中 的一种或几种组成; 所述步骤 (一) 中微波辐照频率为 2450MHz或 915MHz、 微 波功率为 5~30KW、 微波辐照吋间为 l~500s, 废水通过微波场的流速为 0.2~1.8m/ s; 其中步骤 (二) 中的双相分离膜为具体实施方式一中所述的双相分离膜; 所 述步骤 (二) 中双相分离膜两侧分别是原料液和吸收液, 原料液的温度为 15~60 °C、 pH值大于 9, 吸收液为酸性溶液、 pH值小于 2, 原料液的压强大于吸收液的 压强, 压强差为 0.01~5Kg/cm2[22] Specific Embodiment 6: The high-concentration ammonia-nitrogen wastewater in the present embodiment is treated as follows: (1) adding a catalyst in a ratio of 0.2 to 200 g per ton of high-concentration ammonia-nitrogen wastewater, and then performing microwave irradiation; The microwave treated wastewater is flocculated and precipitated, filtered to adjust the liquid P H value to be treated by a two-phase separation membrane, and the water can be discharged; wherein the catalyst in the step (1) is composed of iron oxide, zirconium oxide, titanium dioxide, nickel oxide, One or more of alumina, silica, ferric chloride, polyferric chloride, polyaluminum chloride, polyaluminum silicate, manganese dioxide; the microwave irradiation frequency in the step (1) is 2450 MHz or 915MHz, microwave power is 5~30KW, microwave irradiation is 1~500s, and the flow rate of wastewater through microwave field is 0.2~1.8m/s; wherein the dual phase separation membrane in step (2) is the first embodiment The two-phase separation membrane; in the step (2), the two-phase separation membrane is respectively a raw material liquid and an absorption liquid, and the temperature of the raw material liquid is 15 to 60 ° C, the pH value is greater than 9, and the absorption liquid is an acidic solution. The pH value is less than 2, and the pressure of the raw material liquid is stronger than the pressure of the absorption liquid, and the pressure difference is 0.01 to 5 kg/cm 2 .
[23] 本实施方式在催化剂的协同作用下利用微波高级氧化将废水中的有机氮无机化 、 同吋产生显著的絮凝作用; 废水中的有机物强化脱稳, 形成较大的絮体、 经 沉淀和过滤被从分离出来。 本实施方式将废水中的有机氮转化为氨氮, 而且有 机物还因强化凝聚作用被高效去除, 大分子有机物 (分子量是 2000~60000道尔 顿) 去除率高达 95%以上, 特别是能够干扰膜分离和对膜造成污染的大分子有机 物。 检测证明大分子有机物被氧化后在水中的稳定性大幅度下降, 从而形成很 大的絮体容易从水中分离; 水体中剩余成分主要 (占 99%以上) 是氨氮、 无机盐 和小分子有机物, 再经过双相分离膜处理即可出水。 [23] In the synergistic action of the catalyst, the inorganic nitrogen in the wastewater is inorganicized by the advanced oxidation of the catalyst, and the same flocculation is produced by the same; the organic matter in the wastewater is strengthened and destabilized to form larger flocs and precipitates. And the filter is separated from it. In this embodiment, organic nitrogen in wastewater is converted into ammonia nitrogen, and organic matter is also efficiently removed by enhanced coagulation. The removal rate of macromolecular organic matter (molecular weight is 2000 to 60,000 Daltons) is over 95%, especially capable of interfering with membrane separation. And macromolecular organic matter that pollutes the membrane. The test proves that the stability of the macromolecular organic matter in water is greatly reduced, so that a large floc is easily separated from the water; the main components of the water body (more than 99%) are ammonia nitrogen, inorganic salts and small molecular organic substances. After the treatment by the two-phase separation membrane, water can be discharged.
[24] 氨氮在水中存在着离解平衡, 随着原料液 pH值的升高, 氨氮在原料液中的 NH3 形态比例升高, 在本实施方式的温度和压力下 (根据化学平衡移动原理, 即吕 . 査德里 (A丄丄 E Chatelier) 原理) 原料液中游离氨 NH4+变为氨分子 NH3 , 并经原料液侧介面扩散至膜表面, 在膜表面分压差的作用下, 穿越膜孔, 进 入吸收液, 迅速与酸性溶液中的 反应生成铵盐。 本实施方式所使用的双相分 离膜由纳米材料制成表面具有丰富的微孔结构, 分离膜微孔尺寸小、 饱和蒸气 压低; 在本实施方式限定的温度、 压力和 pH条件下原料液中的氨氮被迅速汽化 , 在膜内介面层形成微气相薄层, 在双相分离膜的另一侧 (吸收液侧) 气相中 的氨氮被吸收, 气液平衡被打破, 致使原料液中的氨氮不断地向吸收液一侧转 移, 从而将氨氮从水体中分离。 本实施方式中双相分离膜一侧的吸收液可生成 质量浓度为 20%~30%的铵盐, 经提纯后可成为清洁的工业原料, 而酸性吸收液 可循环使用。 [24] Ammonia nitrogen has a dissociation equilibrium in water. As the pH of the raw material liquid increases, the proportion of NH 3 in the raw material liquid increases, at the temperature and pressure of the present embodiment (according to the chemical equilibrium movement principle, That is, L. Chadley (A丄丄E Chatelier) principle) The free ammonia NH 4 + in the raw material liquid becomes ammonia molecule NH 3 , and diffuses to the surface of the membrane through the side interface of the raw material liquid, under the action of the partial pressure difference of the membrane surface, Pass through the pores of the membrane, enter the absorption solution, and quickly react with the acidic solution to form an ammonium salt. The biphasic separation membrane used in the embodiment has a microporous structure on the surface made of a nano material, and the separation membrane has a small pore size and a low saturated vapor pressure; in the raw material liquid under the conditions of temperature, pressure and pH defined in the present embodiment. The ammonia nitrogen is rapidly vaporized to form a micro-vapor phase layer in the interfacial layer. The ammonia nitrogen in the gas phase is absorbed on the other side (absorbent side) of the two-phase separation membrane, and the gas-liquid equilibrium is broken, resulting in ammonia nitrogen in the raw material liquid. The ammonia liquid is continuously transferred to the side of the absorption liquid to separate the ammonia nitrogen from the water body. In the present embodiment, the absorption liquid on the side of the two-phase separation membrane can form an ammonium salt having a mass concentration of 20% to 30%, which can be used as a clean industrial raw material after purification, and the acidic absorption liquid can be recycled.
[25] 本实施方式中催化剂由两种或两种以上的组分组成吋, 各组分间可为任意比例 。 本实施方式中用氢氧化钠或氢氧化钾调节原料液的 pH值, 用盐酸、 硝酸或硫 酸调节吸收液的 pH值。 [25] In the present embodiment, the catalyst is composed of two or more components, and each component may be in any ratio. . In the present embodiment, the pH of the raw material liquid is adjusted with sodium hydroxide or potassium hydroxide, and the pH of the absorption liquid is adjusted with hydrochloric acid, nitric acid or sulfuric acid.
[26] 具体实施方式七: 本实施方式与具体实施方式六的不同点是: 步骤 (二) 废水 絮凝沉淀前流经电磁发射装置, 电磁发射波的频率为 0.2KHz~10MHz、 功率为 5 mW~500W。 其它步骤及参数与实施方式六相同。  [26] Specific Embodiment 7: The difference between this embodiment and the specific embodiment 6 is: Step (2) Before the wastewater flocculates and precipitates, it flows through the electromagnetic emission device, and the frequency of the electromagnetic emission wave is 0.2 kHz to 10 MHz, and the power is 5 mW. ~500W. The other steps and parameters are the same as in the sixth embodiment.
[27] 本实施方式可大幅度地降低膜污染、 防止膜结垢, 双相分离膜的使用寿命延长  [27] This embodiment can greatly reduce membrane fouling and prevent membrane fouling, and the service life of the two-phase separation membrane is prolonged.
[28] 具体实施方式八: 本实施方式与具体实施方式六的不同点是: 步骤 (二) 中絮 凝沉淀后的废水依次经过高效过滤器、 袋式过滤器和精密过滤器完成过滤。 其 它步骤及参数与实施方式六相同。 [28] Specific Embodiment 8: The difference between this embodiment and the specific embodiment 6 is: Step (2) The wastewater after flocculation and sedimentation is sequentially filtered through a high-efficiency filter, a bag filter and a precision filter. The other steps and parameters are the same as in the sixth embodiment.
[29] 具体实施方式九: 本实施方式与具体实施方式八的不同点是: 废水在高效过滤 器、 袋式过滤器和精密过滤器中的滤速为 5~40m/h。 其它步骤及参数与实施方式 八相同。 [9] Embodiment 9: The difference between this embodiment and Embodiment 8 is that the filtration rate of the wastewater in the high efficiency filter, the bag filter, and the precision filter is 5 to 40 m/h. The other steps and parameters are the same as in the eighth embodiment.
[30] 本实施方式可有效降低膜的污染度和堵塞, 延长双相分离膜的使用寿命。  [30] This embodiment can effectively reduce the degree of contamination and clogging of the membrane and prolong the service life of the dual phase separation membrane.
[31] 具体实施方式十: 本实施方式与具体实施方式六的不同点是: 步骤 (二) 中絮 凝沉淀吋间为 5~50min。 其它步骤及参数与实施方式六相同。  [31] Specific Embodiment 10: The difference between this embodiment and the specific embodiment 6 is: Step (2) The flocculation sedimentation time is 5 to 50 minutes. The other steps and parameters are the same as in the sixth embodiment.
[32] 具体实施方式十一: 本实施方式与具体实施方式六的不同点是: 步骤 (二) 中[32] Specific Embodiment 11: The difference between this embodiment and the specific embodiment 6 is: Step (2)
1~10组双相分离膜串联进行双相分离膜处理, 每组中有 2~5列双相分离膜, 每组 中的双相分离膜为串联或并联运行。 其它步骤及参数与实施方式六相同。 The 1~10 sets of biphasic separation membranes were treated in series for two-phase separation membrane treatment. There were 2 to 5 columns of biphasic separation membranes in each group, and the biphasic separation membranes in each group were operated in series or in parallel. The other steps and parameters are the same as in the sixth embodiment.
[33] 本实施方式在每组双相分离膜前设置加压泵和 pH调节泵以保持双相分离膜两侧 的液体压强差和原料液的 pH值。 [33] In the present embodiment, a pressurizing pump and a pH adjusting pump are provided in front of each of the two-phase separation membranes to maintain the liquid pressure difference on both sides of the two-phase separation membrane and the pH of the raw material liquid.
[34] 具体实施方式十二: 本实施方式与具体实施方式六的不同点是: 步骤 (二) 中 经过双相分离膜处理的水再进行生物脱氮处理。 其它步骤及参数与实施方式六 相同。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [Twelfth Embodiment] The difference between this embodiment and Embodiment 6 is: Step (2) The water treated by the two-phase separation membrane is subjected to biological nitrogen removal treatment. The other steps and parameters are the same as in the sixth embodiment.
[35] 本实施方式出水中氨氮含量降低到 l~2mg/L。  [35] The ammonia nitrogen content in the effluent of the present embodiment is reduced to l~2 mg/L.
[36] 具体实施方式十三: 本实施方式氨氮浓度为 5000mg/L的废水按以下步骤处理:  [36] Specific Embodiment 13: The waste water having an ammonia nitrogen concentration of 5000 mg/L in the present embodiment is treated as follows:
(一) 按每吨氨氮废水加入 0.2~200g的比例投加催化剂, 然后再进行微波辐照; (1) Adding a catalyst to a ratio of 0.2 to 200 g per ton of ammonia-nitrogen wastewater, and then performing microwave irradiation;
(二) 微波处理过的废水经絮凝沉淀、 过滤后调节液体 pH值进行双相分离膜处 理, 即可出水; 其中步骤 (一) 中的催化剂为氧化铁; 所述步骤 (一) 中微波 辐照频率为 915MHz、 微波功率为 15KW、 微波辐照吋间为 100~200s, 废水通过 微波场的流速为 l~1.8m/s; 其中步骤 (二) 中的双相分离膜为具体实施方式一中 所述的双相分离膜; 所述步骤 (二) 中双相分离膜两侧分别是原料液和吸收液 , 原料液的温度为 25°C、 pH值为 10, 吸收液为酸性溶液、 pH值为 1.7, 原料液的 压强大于吸收液的压强, 压强差为 l~3Kg/cm2。 (2) The microwave treated wastewater is flocculated and precipitated, and the pH of the liquid is adjusted after filtration to carry out the biphasic separation membrane. The effluent can be discharged; wherein the catalyst in the step (1) is iron oxide; in the step (1), the microwave irradiation frequency is 915 MHz, the microwave power is 15 KW, and the microwave irradiation is between 100 and 200 s, and the wastewater passes through the microwave. The flow rate of the field is l~1.8 m/s ; wherein the biphasic separation membrane in the step (2) is the biphasic separation membrane described in the first embodiment; the two phases of the biphasic separation membrane in the step (2) are respectively It is a raw material liquid and an absorption liquid. The temperature of the raw material liquid is 25 ° C, the pH value is 10, the absorption liquid is an acidic solution, the pH value is 1.7, the pressure of the raw material liquid is stronger than the pressure of the absorption liquid, and the pressure difference is 1 to 3 Kg/cm 2 . .
[37] 本实施方式出水中氨氮含量≤5mg/L, 氨氮脱除率为 99.9% , 回收的氨氮可以作 为肥料, 水资源可循环利用。  [37] In the present embodiment, the ammonia nitrogen content in the effluent is ≤5 mg/L, and the ammonia nitrogen removal rate is 99.9%. The recovered ammonia nitrogen can be used as a fertilizer, and the water resources can be recycled.
[38] 具体实施方式十四: 本实施方式氨氮浓度为 6800mg/L的发泡剂行业废水按以下 步骤处理: (一) 按每吨氨氮废水加入 l~100g的比例投加催化剂, 然后再进行 微波辐照; (二) 微波处理过的废水先絮凝沉淀后再依次经过高效过滤器、 袋 式过滤器和精密过滤器过滤, 之后再调节液体 pH值进行双相分离膜处理, 即可 出水; 其中步骤 (一) 中的催化剂为氧化锆和二氧化钛; 所述步骤 (一) 中微 波辐照频率为 2450MHz、 微波功率为 20KW、 微波辐照吋间为 200~300s, 废水通 过微波场的流速为 1.2~1.8m/s; 其中步骤 (二) 中的双相分离膜为具体实施方式 一中所述的双相分离膜; 所述步骤 (二) 中双相分离膜两侧分别是原料液和吸 收液, 原料液的温度为 25°C、 pH值为 11, 吸收液为酸性溶液、 pH值为 1.8, 原料 液的压强大于吸收液的压强, 压强差为 l~2.5Kg/cm2; 所述步骤 (二) 中 7组双相 分离膜串联进行双相分离膜处理, 每组中有 3~4列双相分离膜, 每组中的双相分 离膜为串联运行。 [38] Specific Embodiment 14: In this embodiment, the foaming agent industry wastewater with ammonia nitrogen concentration of 6800 mg/L is treated as follows: (1) The catalyst is added in a ratio of 1 to 100 g per ton of ammonia nitrogen wastewater, and then Microwave irradiation; (2) The microwave treated wastewater is first flocculated and precipitated, and then filtered through a high-efficiency filter, a bag filter and a precision filter, and then the liquid pH is adjusted for biphasic separation membrane treatment to obtain water; The catalyst in the step (1) is zirconia and titania; in the step (1), the microwave irradiation frequency is 2450 MHz, the microwave power is 20 KW, and the microwave irradiation time is 200-300 s, and the flow rate of the wastewater through the microwave field is 1.2~1.8m/s ; wherein the two-phase separation membrane in the step (2) is the two-phase separation membrane described in the first embodiment; in the step (2), the two-phase separation membrane is respectively a raw material liquid and The absorption liquid, the temperature of the raw material liquid is 25 ° C, the pH value is 11, the absorption liquid is an acidic solution, the pH value is 1.8, the pressure of the raw material liquid is stronger than the pressure of the absorption liquid, and the pressure difference is 1 to 2.5 Kg/cm 2 ; step B) Group 7 biphasic biphasic separation process for the separation membrane in series, each group has three to four biphasic separation membrane, the separation membrane in each group in series duplex operation.
[39] 本实施方式出水中氨氮含量≤10mg/L, 氨氮脱除率为 99%以上。 本实施方式废 水处理规模为 100~5000吨 /天。 本实施方式催化剂氧化锆和二氧化钛之间可为任 意比例。  [39] In the present embodiment, the ammonia nitrogen content in the effluent is ≤10 mg/L, and the ammonia nitrogen removal rate is 99% or more. The waste water treatment scale of the present embodiment is 100 to 5000 tons/day. The catalyst zirconium oxide and titanium dioxide of the present embodiment may be in any ratio.
[40] 具体实施方式十五: 本实施方式氨氮浓度为 3000~15000mg/L的稀土加工行业废 水按以下步骤处理: (一) 按每吨氨氮废水加入 10~50g的比例投加催化剂, 然 后再进行微波辐照; (二) 微波处理过的废水先絮凝沉淀后再依次经过高效过 滤器、 袋式过滤器和精密过滤器过滤, 之后再调节液体 pH值进行双相分离膜处 理, 即可出水; 其中步骤 (一) 中的催化剂为氧化硅、 氯化铁、 聚合氯化铁和 二氧化锰; 所述步骤 (一) 中微波辐照频率为 2450MHz、 微波功率为 10~25KW 、 微波辐照吋间为 200~500s, 废水通过微波场的流速为 1.2~1.8m/s; 其中步骤 ( 中的双相分离膜为具体实施方式一中所述的双相分离膜; 所述步骤 中双相分离膜两侧分别是原料液和吸收液, 原料液的温度为 20°C、 pH值为 10, 吸收液为酸性溶液、 pH值为 1.8, 原料液的压强大于吸收液的压强, 压强差为 0.0 l~2Kg/cm2; 所述步骤 (二) 中 5组双相分离膜串联进行双相分离膜处理, 每组 中有 3~4列双相分离膜, 每组中的双相分离膜为并联运行。 [40] Embodiment 15: In the present embodiment, the wastewater of the rare earth processing industry having an ammonia nitrogen concentration of 3000 to 15000 mg/L is treated as follows: (1) The catalyst is added in a ratio of 10 to 50 g per ton of ammonia nitrogen wastewater, and then Microwave irradiation; (2) The microwave treated wastewater is first flocculated and precipitated, and then filtered through a high-efficiency filter, a bag filter and a precision filter, and then the liquid pH is adjusted for biphasic separation membrane treatment, and the water can be discharged. Wherein the catalyst in step (a) is silica, ferric chloride, polyferric chloride and Manganese dioxide; in the step (1), the microwave irradiation frequency is 2450MHz, the microwave power is 10~25KW, the microwave irradiation time is 200~500s, and the flow rate of the wastewater through the microwave field is 1.2~1.8m/s ; The two-phase separation membrane in the step (the two-phase separation membrane described in the first embodiment); in the step, the two-phase separation membrane is respectively a raw material liquid and an absorption liquid, and the temperature of the raw material liquid is 20 ° C, pH The value is 10, the absorption liquid is an acidic solution, the pH value is 1.8, the pressure of the raw material liquid is stronger than the pressure of the absorption liquid, and the pressure difference is 0.01 l~2 Kg/cm 2 ; in the step (2), five sets of dual-phase separation membranes are connected in series. The two-phase separation membrane treatment was carried out, and there were 3 to 4 columns of biphasic separation membranes in each group, and the biphasic separation membranes in each group were operated in parallel.
[41] 本实施方式出水中氨氮含量≤25mg/L, 氨氮脱除率为 99%以上。 本实施方式废 水处理规模为 100~6000吨 /天。 本实施方式催化剂氧化硅、 氯化铁、 聚合氯化铁 和二氧化锰之间可为任意比例。  [41] In the present embodiment, the ammonia nitrogen content in the effluent is ≤25 mg/L, and the ammonia nitrogen removal rate is 99% or more. The waste water treatment scale of the present embodiment is 100 to 6000 tons/day. The catalyst silica, iron chloride, polyferric chloride and manganese dioxide in the present embodiment may be in any ratio.
[42] 具体实施方式十六: 本实施方式氨氮浓度为 10000~50000mg/L的化肥厂废水按 以下步骤处理: (一) 按每吨氨氮废水加入 15~20g的比例投加催化剂, 然后再 进行微波辐照; (二) 微波处理过的废水先絮凝沉淀后再经微滤或超滤过滤, 之后再调节液体 pH值进行双相分离膜处理, 即可出水; 其中步骤 (一) 中的催 化剂为氧化铁、 氧化锆、 二氧化钛、 氧化镍、 氧化铝、 氧化硅、 氯化铁、 聚合 氯化铁、 聚合氯化铝、 聚合硅铝或二氧化锰; 所述步骤 (一) 中微波辐照频率 为 915MHz、 微波功率为 10~25KW、 微波辐照吋间为 100~400s, 废水通过微波场 的流速为 1.2~1.6m/s; 其中步骤 (二) 中的双相分离膜为具体实施方式一中所述 的双相分离膜; 所述步骤 (二) 中双相分离膜两侧分别是原料液和吸收液, 原 料液的温度为 30°C、 pH值为 12, 吸收液为酸性溶液、 pH值为 1.8, 原料液的压强 大于吸收液的压强, 压强差为 0.01~3.5Kg/cm2; 所述步骤 (二) 中 6组双相分离 膜串联进行双相分离膜处理, 每组中有 3~4列双相分离膜, 每组中的双相分离膜 为串联运行。 [42] Specific Embodiment 16: In this embodiment, the wastewater of the fertilizer plant with the ammonia nitrogen concentration of 10000~50000mg/L is treated as follows: (1) The catalyst is added in a ratio of 15-20g per ton of ammonia nitrogen wastewater, and then Microwave irradiation; (2) The microwave treated wastewater is first flocculated and precipitated, then filtered by microfiltration or ultrafiltration, and then the liquid pH is adjusted for biphasic separation membrane treatment to obtain water; wherein the catalyst in step (1) Is iron oxide, zirconium oxide, titanium dioxide, nickel oxide, aluminum oxide, silicon oxide, ferric chloride, polyferric chloride, polyaluminum chloride, polyaluminum silicate or manganese dioxide; microwave irradiation in the step (1) The frequency is 915MHz, the microwave power is 10~25KW, the microwave irradiation time is 100~400s, and the flow rate of wastewater through the microwave field is 1.2~1.6m/s . The biphasic separation membrane in step (2) is the specific implementation method. The two-phase separation membrane described in the above; in the step (2), the two-phase separation membrane is respectively a raw material liquid and an absorption liquid, and the temperature of the raw material liquid is 30 ° C, the pH value is 12, and the absorption liquid is an acidic solution. , pH value 1.8, the pressure of the raw material liquid is stronger than the pressure of the absorption liquid, and the pressure difference is 0.01~3.5Kg/cm 2 ; in the step (2), 6 sets of dual-phase separation membranes are serially processed by the double-phase separation membrane, and each group has 3~ Four columns of two-phase separation membranes, and the two-phase separation membranes in each group were operated in series.
[43] 本实施方式出水中氨氮含量≤15mg/L, 氨氮脱除率为 99%以上。 本实施方式废 水处理规模为 50 1000吨 /天。  [43] In the present embodiment, the ammonia nitrogen content in the effluent is ≤15 mg/L, and the ammonia nitrogen removal rate is 99% or more. The waste water treatment scale of this embodiment is 50 1,000 tons / day.
[44] 具体实施方式十七: 本实施方式与具体实施方式六的不同点是: 步骤 (二) 中 原料液与吸收液的压强差为 l~4Kg/cm2。 其它步骤及参数与实施方式六相同。  [44] BEST MODE FOR CARRYING OUT THE INVENTION Seventeenth: The difference between this embodiment and the specific embodiment 6 is: In step (2), the pressure difference between the raw material liquid and the absorption liquid is l~4Kg/cm2. The other steps and parameters are the same as in the sixth embodiment.
[45] 具体实施方式十八: 本实施方式与具体实施方式六的不同点是: 步骤 (二) 中 原料液与吸收液的压强差为 2~3Kg/cm2。 其它步骤及参数与实施方式六相同。 [45] Embodiment 18: The difference between this embodiment and the specific embodiment 6 is: Step (2) The pressure difference between the raw material liquid and the absorption liquid is 2 to 3 kg/cm 2 . The other steps and parameters are the same as in the sixth embodiment.
[46] 具体实施方式十九: 本实施方式与具体实施方式六的不同点是: 步骤 (二) 中 原料液的温度为 20~55°C。 其它步骤及参数与实施方式六相同。 [19] Specific embodiment 19: The difference between this embodiment and the specific embodiment 6 is: The temperature of the raw material liquid in the step (2) is 20 to 55 °C. The other steps and parameters are the same as in the sixth embodiment.
[47] 具体实施方式二十: 本实施方式与具体实施方式六的不同点是: 步骤 (二) 中 原料液的温度为 30~50°C。 其它步骤及参数与实施方式六相同。 [47] Embodiment 20: The difference between this embodiment and Embodiment 6 is as follows: In step (2), the temperature of the raw material liquid is 30 to 50 °C. The other steps and parameters are the same as in the sixth embodiment.
[48] 具体实施方式二十一: 本实施方式与具体实施方式六的不同点是: 步骤 (二) 中 1~3组双相分离膜串联进行双相分离膜处理, 每组中有 2~3列双相分离膜, 每 组中的双相分离膜为串联或并联运行。 其它步骤及参数与实施方式六相同。 [48] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 21: The difference between this embodiment and the specific embodiment 6 is: Step (2), 1~3 sets of dual-phase separation membranes are processed in series for two-phase separation membrane treatment, and each group has 2~ Three columns of two-phase separation membranes, and the two-phase separation membranes in each group are operated in series or in parallel. The other steps and parameters are the same as in the sixth embodiment.

Claims

权利要求书 Claim
1、 双相分离膜, 其特征在于双相分离膜按质量份数比由 98~102份高分子聚 合材料、 0.001~5份纤维长度为 5~100nm的二氧化钛纤维和 0.01~3.5份化纤 织物制成; 其中高分子聚合材料为聚丙烯或聚偏氟乙烯; 化纤织物为丙纶 或晴纶。  1. A two-phase separation membrane characterized in that the biphasic separation membrane is composed of 98 to 102 parts of a polymer material, 0.001 to 5 parts of a titanium dioxide fiber having a fiber length of 5 to 100 nm, and 0.01 to 3.5 parts of a chemical fiber fabric. The polymer material is polypropylene or polyvinylidene fluoride; the chemical fiber fabric is polypropylene or acrylic.
2、 根据权利要求 1所述的双相分离膜, 其特征在于双相分离膜按质量份数 比由 100份高分子聚合材料、 0.01~4.8份纤维长度为 10~50nm的二氧化钛纤 维和 0.1~3.4份化纤织物制成。  2. The biphasic separation membrane according to claim 1, wherein the biphasic separation membrane is composed of 100 parts by mass of the polymer material, 0.01 to 4.8 parts of titanium dioxide fiber having a fiber length of 10 to 50 nm, and 0.1 to 2 parts by mass. 3.4 parts made of chemical fiber fabric.
3、 制备如权利要求 1所述双相分离膜的方法, 其特征在于双相分离膜按以 下步骤制备: 按质量份数比将 98~102份高分子聚合材料、 0.001~5份纤维长 度为 5~100nm的二氧化钛纤维和 0.01~3.5份化纤织物混合, 然后在 160~240 °C、 搅拌转速为 500~3000r/min的情况下搅拌 0.5~8h, 干燥成型即得到双相 分离膜; 其中高分子聚合材料为聚丙烯或聚偏氟乙烯; 化纤织物为丙纶或 晴纶。  3. A method of preparing a dual phase separation membrane according to claim 1, wherein the dual phase separation membrane is prepared according to the following steps: 98 to 102 parts by weight of the polymer material, and 0.001 to 5 parts of fiber length. The 5~100nm titanium dioxide fiber is mixed with 0.01~3.5 parts of chemical fiber fabric, and then stirred at 160~240 °C for 500~3000r/min for 0.5~8h, and dried to form a biphasic separation film; The molecular polymeric material is polypropylene or polyvinylidene fluoride; the chemical fiber fabric is polypropylene or acrylic.
4、 一种高浓度氨氮废水的处理方法, 其特征在于高浓度氨氮废水按以下步 骤处理: (一) 按每吨高浓度氨氮废水加入 0.2~200g的比例投加催化剂, 然后再进行微波辐照; (二) 微波处理过的废水经絮凝沉淀、 过滤后调节 液体 pH值进行双相分离膜处理, 即可出水; 其中步骤 (一) 中的催化剂由 氧化铁、 氧化锆、 二氧化钛、 氧化镍、 氧化铝、 氧化硅、 氯化铁、 聚合氯 化铁、 聚合氯化铝、 聚合硅铝、 二氧化锰中的一种或几种组成; 所述步骤 4. A method for treating high-concentration ammonia-nitrogen wastewater, characterized in that the high-concentration ammonia-nitrogen wastewater is treated according to the following steps: (1) adding a catalyst in a ratio of 0.2 to 200 g per ton of high-concentration ammonia-nitrogen wastewater, and then performing microwave irradiation. (2) The microwave treated wastewater is flocculated and precipitated, filtered to adjust the pH of the liquid to be treated by a two-phase separation membrane, and the water can be discharged; wherein the catalyst in the step (1) is composed of iron oxide, zirconium oxide, titanium dioxide, nickel oxide, One or more of alumina, silica, ferric chloride, polyferric chloride, polyaluminum chloride, polyaluminum silicate, manganese dioxide;
(一) 中微波辐照频率为 2450MHz或 915MHz、 微波功率为 5~30KW、 微波 辐照吋间为 l~500s, 废水通过微波场的流速为 0.2~1.8m/s; 其中步骤 (二) 中的双相分离膜为权利要求 1中所述的双相分离膜; 所述步骤 (二) 中双相 分离膜两侧分别是原料液和吸收液, 原料液的温度为 15~60°C、 pH值大于 9 , 吸收液为酸性溶液、 pH值小于 2, 原料液的压强大于吸收液的压强, 压 强差为 0.01~5Kg/cm2(1) The frequency of microwave irradiation is 2450MHz or 915MHz, the microwave power is 5~30KW, the microwave irradiation time is l~500s, and the flow rate of wastewater through microwave field is 0.2~1.8m/s ; in step (2) The two-phase separation membrane is the two-phase separation membrane according to claim 1; in the step (2), the two-phase separation membrane is respectively a raw material liquid and an absorption liquid, and the temperature of the raw material liquid is 15 to 60 ° C, The pH value is greater than 9, the absorption liquid is an acidic solution, the pH value is less than 2, the pressure of the raw material liquid is stronger than the pressure of the absorption liquid, and the pressure difference is 0.01 to 5 kg/cm 2 .
5、 根据权利要求 4所述的一种高浓度氨氮废水的处理方法, 其特征在于步 骤 (二) 中絮凝沉淀后的废水依次经过高效过滤器、 袋式过滤器和精密过 滤器完成过滤。 The method for treating high-concentration ammonia nitrogen wastewater according to claim 4, characterized in that the wastewater after flocculation and precipitation in the step (2) is sequentially passed through a high-efficiency filter, a bag filter and a precision filter. The filter is completely filtered.
6、 根据权利要求 5所述的一种高浓度氨氮废水的处理方法, 其特征在于废 水在高效过滤器、 袋式过滤器和精密过滤器中的滤速为 5~40m/h。  6. A method for treating high concentration ammonia nitrogen wastewater according to claim 5, wherein the waste water has a filtration rate of 5 to 40 m/h in the high efficiency filter, the bag filter and the precision filter.
7、 根据权利要求 4所述的一种高浓度氨氮废水的处理方法, 其特征在于步 骤 (二) 中絮凝沉淀吋间为 5~50min。  The method for treating high-concentration ammonia nitrogen wastewater according to claim 4, characterized in that in the step (2), the flocculation and sedimentation time is 5 to 50 minutes.
8、 根据权利要求 4所述的一种高浓度氨氮废水的处理方法, 其特征在于步 骤 (二) 中 1~10组双相分离膜串联进行双相分离膜处理, 每组中有 2~5列双 相分离膜, 每组中的双相分离膜为串联或并联运行。  The method for treating high-concentration ammonia-nitrogen wastewater according to claim 4, wherein in the step (2), 1 to 10 sets of dual-phase separation membranes are serially processed by a dual-phase separation membrane, and each group has 2 to 5 A column of biphasic separation membranes, the biphasic separation membranes in each group operating in series or in parallel.
9、 根据权利要求 4所述的一种高浓度氨氮废水的处理方法, 其特征在于步 骤 (二) 中经过双相分离膜处理的水再进行生物脱氮处理。  A method for treating high-concentration ammonia nitrogen wastewater according to claim 4, wherein the water treated by the two-phase separation membrane in the step (2) is subjected to biological nitrogen removal treatment.
10、 根据权利要求 4所述的一种高浓度氨氮废水的处理方法, 其特征在于步 骤 (二) 中原料液与吸收液的压强差为 l~4Kg/cm2The method for treating high-concentration ammonia nitrogen wastewater according to claim 4, wherein the pressure difference between the raw material liquid and the absorption liquid in the step (2) is 1 to 4 Kg/cm 2 .
PCT/CN2008/070747 2007-04-23 2008-04-17 Biphase separating membrane, its preparing method and method for treating high concentration ammonia nitrogen waste water using the biphase separating membrane WO2008128471A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2007100720873A CN101037244A (en) 2007-04-23 2007-04-23 Treatment method of high-concentration ammonia nitrogenous wastewater and double-phase isolation film and preparation method thereof
CN200710072087.3 2007-04-23

Publications (1)

Publication Number Publication Date
WO2008128471A1 true WO2008128471A1 (en) 2008-10-30

Family

ID=38888451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070747 WO2008128471A1 (en) 2007-04-23 2008-04-17 Biphase separating membrane, its preparing method and method for treating high concentration ammonia nitrogen waste water using the biphase separating membrane

Country Status (2)

Country Link
CN (1) CN101037244A (en)
WO (1) WO2008128471A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624481A (en) * 2021-01-11 2021-04-09 上海环保工程成套有限公司 High ammonia-nitrogen wastewater deamination equipment and application method thereof
CN116161745A (en) * 2023-04-25 2023-05-26 湖南环宏环保科技有限公司 Pretreatment method of garbage squeeze liquid

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101037244A (en) * 2007-04-23 2007-09-19 北京市百村环保科技开发有限公司 Treatment method of high-concentration ammonia nitrogenous wastewater and double-phase isolation film and preparation method thereof
US8916082B2 (en) * 2008-11-17 2014-12-23 The Boeing Company Heat resistance using titanium dioxide nanofibers
CN101822949A (en) * 2010-05-25 2010-09-08 上海应用技术学院 High-hydrophilicity composite PVDF meso-porous film, preparation method and application thereof
CN102139944B (en) * 2011-02-21 2012-07-25 南京大学 Method for treating high-concentration ammonia nitrogen waste water by utilizing ferric sulfate
CN102120663B (en) * 2011-03-29 2012-07-04 北京惟泰安全设备有限公司 Coking wastewater advanced treatment system and process
CN102951745A (en) * 2011-08-19 2013-03-06 天津荣翔正达环保科技有限责任公司 Landfill leachate treatment process based on novel ammonia nitrogen removal technology
CN102910788B (en) * 2012-11-13 2016-01-20 南京大学 A kind of waste water advanced denitrification process
CN103440894A (en) * 2013-08-12 2013-12-11 清华大学 Process for treating high-ammonia radioactive wastewater by membrane absorbing method
CN103553264B (en) * 2013-09-06 2015-04-08 苏州苏净环保工程有限公司 Multistage-membrane-extraction biological integrated treatment system for processing high ammonia nitrogen in wastewater, and method thereof
WO2015151112A1 (en) * 2014-04-01 2015-10-08 Rajah Vijay Kumar Fine particle shortwave thrombotic agglomeration reactor (fpstar)
CN105417826A (en) * 2015-12-30 2016-03-23 北京清大国华环境股份有限公司 Catalyst waste water zero discharge method and device
CN109231476B (en) * 2017-07-11 2022-04-15 温月丽 Synthesis and application of novel ammonia nitrogen adsorption degradation agent
CN113045064A (en) * 2021-03-17 2021-06-29 赣州齐畅新材料有限公司 Method for treating rare earth processing wastewater
CN114737313B (en) * 2022-04-12 2022-12-20 哈尔滨工业大学 Gaseous nanofiber membrane with corrosion-resistant armor structure and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139578A (en) * 1974-10-01 1976-04-02 Mitsui Petrochemical Ind GENGAIROKAMAKU
JPS53122250A (en) * 1977-03-31 1978-10-25 Kanegafuchi Chemical Ind Method of removing and recovering ammonia
JPH0235918A (en) * 1988-07-25 1990-02-06 Terumo Corp Polypropylene porous hollow yarn membrane and its manufacture
JPH06182149A (en) * 1992-12-17 1994-07-05 Tohoku Electric Power Co Inc Removal of ammonia from wastewater
CN1207398A (en) * 1997-08-06 1999-02-10 天津纺织工学院 Inorganic particle filled polymer separation membrane and preparing method thereof
DE19912582A1 (en) * 1999-03-19 2000-09-28 Geesthacht Gkss Forschung Microporous membrane with a polymer matrix and process for its production
KR20040089886A (en) * 2003-04-15 2004-10-22 한국화학연구원 Method for preparation of chemical, microorganism and fouling resistant asymmetric ultrafiltration and microfiltration membranes by blending titania nano particle
CN1546393A (en) * 2003-12-01 2004-11-17 江南大学 Technology for treating high concentration ammonia nitrogen waste water using membrane based absorption method
CN101037244A (en) * 2007-04-23 2007-09-19 北京市百村环保科技开发有限公司 Treatment method of high-concentration ammonia nitrogenous wastewater and double-phase isolation film and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139578A (en) * 1974-10-01 1976-04-02 Mitsui Petrochemical Ind GENGAIROKAMAKU
JPS53122250A (en) * 1977-03-31 1978-10-25 Kanegafuchi Chemical Ind Method of removing and recovering ammonia
JPH0235918A (en) * 1988-07-25 1990-02-06 Terumo Corp Polypropylene porous hollow yarn membrane and its manufacture
JPH06182149A (en) * 1992-12-17 1994-07-05 Tohoku Electric Power Co Inc Removal of ammonia from wastewater
CN1207398A (en) * 1997-08-06 1999-02-10 天津纺织工学院 Inorganic particle filled polymer separation membrane and preparing method thereof
DE19912582A1 (en) * 1999-03-19 2000-09-28 Geesthacht Gkss Forschung Microporous membrane with a polymer matrix and process for its production
KR20040089886A (en) * 2003-04-15 2004-10-22 한국화학연구원 Method for preparation of chemical, microorganism and fouling resistant asymmetric ultrafiltration and microfiltration membranes by blending titania nano particle
CN1546393A (en) * 2003-12-01 2004-11-17 江南大学 Technology for treating high concentration ammonia nitrogen waste water using membrane based absorption method
CN101037244A (en) * 2007-04-23 2007-09-19 北京市百村环保科技开发有限公司 Treatment method of high-concentration ammonia nitrogenous wastewater and double-phase isolation film and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI J. ET AL.: "Preparation and Characterization of TiO2/PVDF Composite Hollow Fiber Membrane", ACTA POLYMERICA SINICA, no. 5, October 2004 (2004-10-01), pages 709 - 712 *
ZHOU Y. ET AL.: "Preparation of PVDF/TPU Blend Hollow Fiber Membranes for Treatment of Dyestuff Wastewater", CHINA PLASTICS INDUSTRY, vol. 35, no. 1, January 2007 (2007-01-01), pages 66 - 68 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624481A (en) * 2021-01-11 2021-04-09 上海环保工程成套有限公司 High ammonia-nitrogen wastewater deamination equipment and application method thereof
CN116161745A (en) * 2023-04-25 2023-05-26 湖南环宏环保科技有限公司 Pretreatment method of garbage squeeze liquid

Also Published As

Publication number Publication date
CN101037244A (en) 2007-09-19

Similar Documents

Publication Publication Date Title
WO2008128471A1 (en) Biphase separating membrane, its preparing method and method for treating high concentration ammonia nitrogen waste water using the biphase separating membrane
CN101734828B (en) Process for treating and recovering dyeing sewage water
CN102126806B (en) Method for completely recycling wastewater containing fluorine and ammonia nitrogen in electronic industry
CN101759313B (en) Method for recycling high-salinity heavy metal-enriched waste water from vanadium extraction from stone coal
CN108033637A (en) A kind of processing method of landfill leachate
CN106396234A (en) Zero-discharge treatment method for reverse osmosis concentrated water
CN101875519A (en) Organic phosphorus pesticide waste water recycling process
CN103771642A (en) Recycling method for saponified ammonium-sulfate wastewater in rare soil
CN111825259A (en) Steel wastewater membrane concentration salt separation zero-discharge treatment method
CN102976510A (en) Treating and recycling method for waste water of lead-acid battery industry
CN110183018A (en) A kind of shunt electroplating sewerage Zero discharge treatment method
CN101781048B (en) Low ammonia nitrogen waste water treatment and recycling method
CN105036425B (en) The recycling processing method of salt-containing organic wastewater
CN107224999B (en) A kind of resin desorption liquid method of disposal based on electrodialytic technique
CN106495415B (en) A kind of leather and fur process without drainage of waste water
CN111115661B (en) Nitric acid wastewater treatment system and method
CN110342740A (en) The purification method and purification system of salt-containing organic wastewater
CN206624737U (en) A kind of organic wastewater reverse osmosis concentrated water oxidation and desalination system
CN102701343A (en) Process for treating ammonium nitrate wastewater according to membrane combination method
CN109809615A (en) A kind of PCB waste water treatment process
CN106565050A (en) Folic acid wastewater treatment process
CN103420520B (en) Processing method of vanadium-containing aluminum-containing wastewater
CN115180767A (en) Treatment method for realizing zero discharge of high-concentration pesticide wastewater
CN114133087A (en) Resourceful treatment process for high-salinity wastewater
CN210367323U (en) High concentration industry organic waste water zero release processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08734105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08734105

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-03-2010 )