WO2008127148A1 - Installation de pompe à jets - Google Patents

Installation de pompe à jets Download PDF

Info

Publication number
WO2008127148A1
WO2008127148A1 PCT/RU2008/000006 RU2008000006W WO2008127148A1 WO 2008127148 A1 WO2008127148 A1 WO 2008127148A1 RU 2008000006 W RU2008000006 W RU 2008000006W WO 2008127148 A1 WO2008127148 A1 WO 2008127148A1
Authority
WO
WIPO (PCT)
Prior art keywords
jet pump
channel
well
rod
medium
Prior art date
Application number
PCT/RU2008/000006
Other languages
English (en)
French (fr)
Inventor
Zinoviy Dmitrievich Khomynets
Original Assignee
Zinoviy Dmitrievich Khomynets
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zinoviy Dmitrievich Khomynets filed Critical Zinoviy Dmitrievich Khomynets
Priority to US12/528,608 priority Critical patent/US7806174B2/en
Priority to CA2679752A priority patent/CA2679752C/en
Publication of WO2008127148A1 publication Critical patent/WO2008127148A1/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/124Adaptation of jet-pump systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/464Arrangements of nozzles with inversion of the direction of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control

Definitions

  • the invention relates to the field of pumping technology, mainly to downhole pumping units for oil production from wells.
  • Known downhole jet installation including a jet pump installed in a well on a tubing string and a geophysical instrument located below the jet pump in a tubing string (RU 2059891 Cl).
  • This installation allows for pumping from the well of various produced environments, for example, oil, while processing the produced environment and the near-wellbore zone of the formation.
  • this installation provides for the supply of a working medium to the nozzle of the jet apparatus through a pipe string, which in some cases narrows the scope of its use.
  • the closest to the invention in technical essence and the achieved result is a downhole jet installation containing a packer, a pipe string with a support, in which bypass windows are made and on which an ink pump is installed, in the housing of which there is a channel for supplying the active medium to the nozzle of the jet pump, a supply channel into the jet pump of the medium pumped out from the well and the channel for discharging the mixture of media from the jet pump, and in the housing above the channel for supplying the pumped medium, the passage channel connected with the last th for installing a sealing assembly and a sealing assembly configured axial bore skippable therethrough and pumped medium channel for supplying the wireline to set it in the well below the jet pump of the downhole instruments with the possibility of moving them along the wellbore with the jet pump working or idle, while the channel for supplying the active medium to the nozzle of the jet pump is in communication with the bypass windows and through the space surrounding the pipe string, and the channel for discharging the medium mixture from the jet the pump is in communication with the internal cavity of
  • the well-known jet installation allows for various technological operations in the well below the installation level of the jet pump, including in the presence of a differential pressure above and below the sealing unit.
  • this installation does not allow to fully use its capabilities, which is due to the impossibility of separating the space in the pipe string above and below the jet pump when the jet pump stops and, as a result, this reduces the scope of work on the study of reservoirs.
  • the object of the present invention is to provide a downhole jet installation with the possibility of separating the space of the pipe string above and below the jet pump when the downhole device is located under the jet pump.
  • the downhole jet installation contains a packer, a pipe string with a support, in which overflow windows and a seat for installing the jet pump are made on it, while an annular ledge is mounted on the body of the jet pump, mounted on a seat in the support of the pipe string, and an active medium supply channel is made in the housing into the nozzle of the jet pump, a channel for supplying a medium pumped out from the well to the jet pump, a channel for withdrawing a mixture of media from the jet pump, and also a passage channel with a sealing unit installed in its upper part, made in parallel the supply channel of the medium pumped out of the well, and in the sealing unit, an axial channel is made with the possibility of passing a wireline through it for installation of a downhole tool on it in the well below the jet pump, for example, for ultrasonic treatment of productive formations, with the possibility of moving it along the wellbore while the well is running or idle jet pump.
  • the channel for supplying the active medium to the nozzle of the jet pump is in communication with the bypass windows and through the latter with the space surrounding the pipe string.
  • a mixing chamber with a diffuser is installed coaxially with the nozzle; the latter is connected to the internal pipe cavity above the jet pump from the outlet side of it through the channel for discharging the mixture of media from the jet pump.
  • a check valve is installed in the supply channel of the medium pumped out from the well from the entrance to it in the lower part of the body and below it a guide sleeve fixed to the jet pump body with a wireline mounted parallel to it with the possibility of axial movement of the rod, while the upper end of the rod is located under the shut-off element of the check valve, and at the lower end of the rod is fixed a plug through which the logging cable is passed, moreover, the rod is installed with the possibility of acting on the locking element of the check valve and squeezing the locking element from the saddle when lifting the depth device, which comes into contact with the plug of the rod.
  • the passage channel with the sealing unit installed in its upper part is made parallel to the channel for supplying the medium pumped out from the well, and the check valve is installed in the lower part of the body in the lower part of the body and below it on the housing of the jet pump, a guide sleeve is fixed with a parallel cable installed in it with the possibility of axial movement of the rod, while the upper end of the rod is located under the locking e with a check valve element, and a plug is fixed at the lower end of the stem, through which a logging cable is passed, the stem being installed with the possibility of acting on the shut-off element of the check valve and squeezing the shut-off element from the seat when lifting the depth tool, which comes into contact with the stem plug.
  • Figure 1 presents a longitudinal section of a downhole jet unit with an operating jet pump.
  • Figure 2 shows a longitudinal section of a downhole jet unit with an idle jet pump and recording a pressure recovery curve.
  • Fig.3 shows a longitudinal section of a downhole jet unit with a pressed shut-off element of the check valve.
  • a channel 8 for supplying an active medium to the nozzle is made 9 of the jet pump 6, a channel 10 for supplying to the jet pump 6 a medium pumped out from the well, a channel 11 for withdrawing a mixture of media from the jet pump 6, and also a passage channel 12 with its upper part by the sealing unit 13, made parallel to the channel 10 for supplying the medium pumped out of the well.
  • an axial channel 22 is made with the possibility of passing a logging cable 14 through it for installation on it in the well below the jet pump 6 of the downhole tool 15, for example, for ultrasonic processing of reservoirs and / or measuring physical parameters, for example, production rate from a well environment, in particular oil.
  • the downhole device 15 is installed with the possibility of moving it along the wellbore with an operating or non-working jet pump 6.
  • the channel 8 for supplying the active medium to the nozzle 9 of the jet pump is in communication with the bypass windows 4 and through the space surrounding the pipe string 2.
  • a mixing chamber 24 with a diffuser 25 is installed.
  • a check valve 16 is installed and below it a guide sleeve 17 fixed on the housing 7 of the jet pump 6 with the well-mounted cable 14 mounted therein with the possibility of axial movement by the rod 18.
  • the upper end of the rod 18 is located under the locking element 19 of the check valve 16.
  • a plug 20 is fixed, passed through the logging cable 14.
  • the stem 18 is mounted with the possibility of acting on the shut-off element 19 of the check valve 16 and squeeze the shut-off element 19 from the seat 23 when lifting the depth tool 15, which is included in this in contact with the plug 20, mounted on the stem 18.
  • Downhole jet installation operates as follows.
  • the pipe string 2 with packer 1 and support 3 is lowered into the well and packer 1 is placed above the reservoir.
  • the packer 1 is brought into operating position, separating the borehole space surrounding the pipe string 2.
  • the jet pump 6 is lowered into the pipe string 2 with a sealing unit 13 installed in the passage 12 and located below the housing 7 of the jetting pump 6 on the wireline 14 with a downhole tool 15.
  • the housing 7 of the jetting pump 6 is installed on the seat 5.
  • annular space injects a working medium, for example, water, saline, oil, etc. From the annular space, the working medium enters through the windows 4 and channel 8 into the nozzle 9 of the jet pump 6.
  • a stable jet is formed at the exit from it, which, flowing out of the nozzle 9, entrains its environment into the mixing chamber 24, which causes a decrease in pressure first in the channel 10 for supplying the pumped medium, and then in the under-packer space of the well, pressure reduction in the under-packer space.
  • the magnitude of the pressure reduction depends on the speed of passage of the working medium through the nozzle 9, which in turn depends on the magnitude of the pressure of the working medium through the annulus of the well above the packer 1.
  • the formation medium along the pipe string 2 through the check valve 16 and the channel 10 for supplying the pumped medium enters the mixing chamber 24 and the diffuser 25, where it is mixed with the working medium, and the mixture of media due to the energy of the working medium through the pipe string 2 comes from the well to the surface.
  • the parameters of the pumped formation medium are monitored, as well as impact on the reservoir with physical fields, for example, ultrasonic fields to intensify the influx from the reservoir.
  • the jet pump 6 is stopped and the formation pressure recovery curve in the under-packer space of the well is recorded using a downhole tool.
  • the depth tool 15 is lifted and the last act on the plug 20 and through the last on the rod 18, causing it to move up until it presses the check valve 19 of the check valve 16 from the saddle, which causes the flow of medium from the above-packed space of the well through the channel for supplying the pumped-out medium 10.
  • the pressure of the medium is equalized above and below the jet pump 6.
  • the invention can find application in the testing, development and operation of oil and gas condensate wells, as well as in their overhaul.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

СКВАЖИННАЯ СТРУЙНАЯ УСТАНОВКА
Область применения
Изобретение относится к области насосной техники, преимущественно к скважинным насосным установкам для добычи нефти из скважин.
Предшествующий уровень техники
Известна скважинная струйная установка, включающая установленный в скважине на колонне насосно-компрессорных труб струйный насос и размещенный ниже струйного насоса в колонне насосно-компрессорных труб геофизический прибор (RU 2059891 Cl).
Данная установка позволяет проводить откачку из скважины различных добываемых сред, например, нефти с одновременной обработкой добываемой среды и прискважинной зоны пласта. Однако в данной установке предусмотрена подача рабочей среды в сопло струйного аппарата по колонне труб, что в ряде случаев сужает область ее использования.
Наиболее близкой к изобретению по технической сущности и достигаемому результату является скважинная струйная установка, содержащая пакер, колонну труб с опорой, в которой выполнены перепускные окна и на которой установлен струйный насос, в корпусе которого выполнены канал подвода активной среды в сопло струйного насоса, канал подвода в струйный насос откачиваемой из скважины среды и канал отвода смеси сред из струйного насоса, а в корпусе над каналом подвода откачиваемой среды выполнен сообщенный с последним проходной канал с посадочным местом для установки узла герметизации, и в узле герметизации выполнен осевой канал с возможностью пропуска через него и канал подвода откачиваемой среды каротажного кабеля для установки на нем в скважине ниже струйного насоса глубинных приборов с возможностью перемещения их вдоль ствола скважины при работающем или неработающем струйном насосе, при этом канал подвода активной среды в сопло струйного насоса сообщен с перепускными окнами и через последние с окружающим колонну труб пространством, а канал отвода смеси сред из струйного насоса сообщен с внутренней полостью труб выше струйного насоса (RU 2188970 Cl).
Известная струйная установка позволяет проводить различные технологические операции в скважине ниже уровня установки струйного насоса, в том числе при наличии перепада давлений над и под герметизирующим узлом. Однако эта установка не позволяет в полной мере использовать ее возможности, что связано с невозможностью разобщения пространства в колонне труб над струйным насосом и под ним при остановке струйного насоса и, как следствие это сужает объем работ по исследованию продуктивных пластов.
Раскрытие изобретения Задачей, на решение которой направлено настоящее изобретение, является создание скважинной струйной установки с возможностью разобщения пространства колонны труб над и под струйным насосом при находящимся под струйным насосом глубинным прибором.
Техническим результатом от использования предлагаемой скважинной струйной установки является расширение ее функциональных возможностей.
Указанная задача решается, а технический результат достигается за счет того, что скважинная струйная установка содержит пакер, колонну труб с опорой, в которой выполнены перепускные окна и посадочное место для установки на него струйного насоса, при этом на корпусе струйного насоса выполнен кольцевой уступ, устанавливаемый на посадочное место в опоре колонны труб, а в корпусе выполнены канал подвода активной среды в сопло струйного насоса, канал подвода в струйный насос откачиваемой из скважины среды, канал отвода смеси сред из струйного насоса, а также проходной канал с установленным в его верхней части узлом герметизации, выполненный параллельно каналу подвода откачиваемой из скважины среды, причем в узле герметизации выполнен осевой канал с возможностью пропуска через него каротажного кабеля для установки на нем в скважине ниже струйного насоса глубинного прибора, например, для ультразвуковой обработки продуктивных пластов, с возможностью перемещения его вдоль ствола скважины при работающем или неработающем струйном насосе. Канал подвода активной среды в сопло струйного насоса сообщен с перепускными окнами и через последние с окружающим колонну труб пространством. Соосно соплу установлена камера смешения с диффузором, последний со стороны выхода из него через канал отвода смеси сред из струйного насоса сообщен с внутренней полостью труб выше струйного насоса. В канале подвода откачиваемой из скважины среды со стороны входа в него в нижней части корпуса установлен обратный клапан и ниже него закрепленная на корпусе струйного насоса направляющая втулка с установленным в ней параллельно каротажному кабелю с возможностью осевого перемещения штоком, при этом верхний конец штока расположен под запорным элементом обратного клапана, а на нижнем конце штока закреплена вилка, через которую пропущен каротажный кабель, причем шток установлен с возможностью воздействия на запорный элемент обратного клапана и отжатия запорного элемента от седла при подъеме глубинного прибора, входящего при этом в контакт с вилкой штока. Анализ работы скважинной струйной установки показал, что предоставляется возможность расширить функциональные возможности скважинной струйной установки путем расширения диапазона работ, которые можно проводить в скважине без подъема струйного насоса на поверхность и монтажа на струйном насосе дополнительного оборудования. В частности, предоставляется возможность регистрировать кривые восстановления пластового давления в подпакерном пространстве, а также измерять дебит скважины как при работающем, так и при неработающем насосе. Указанные возможности обеспечиваются за счет того, что проходной канал с установленным в его верхней части узлом герметизации выполнен параллельно каналу подвода откачиваемой из скважины среды, а в канале подвода откачиваемой из скважины среды со стороны входа в него в нижней части корпуса установлен обратный клапан и ниже него на корпусе струйного насоса закреплена направляющая втулка с установленным в ней параллельно каротажному кабелю с возможностью осевого перемещения штоком, при этом верхний конец штока расположен под запорным элементом обратного клапана, а на нижнем конце штока закреплена вилка, через которую пропущен каротажный кабель, причем шток установлен с возможностью воздействия на запорный элемент обратного клапана и отжатия запорного элемента от седла при подъеме глубинного прибора, входящего при этом в контакт с вилкой штока. Таким образом, обеспечивается возможность создавать депрессию на продуктивные пласты в скважине и затем отделять пространство скважины ниже струйного насоса и посредством глубинного прибора регистрировать кривую восстановления пластового давления. При этом указанную кривую восстановления пластового давления можно регистрировать при различных, созданных струйным насосом, депрессиях на продуктивные пласты скважины. Путем создания импульсной депрессии на продуктивные пласты в сочетании с воздействием на продуктивные пласты, например, ультразвуковыми полями, создаваемыми глубинным прибором, можно проводить работы по интенсификации притока из продуктивным пластов.
Краткое описание чертежей
На фиг.1 представлен продольный разрез скважинной струйной установки при работающем струйном насосе.
На фиг.2 представлен продольный разрез скважинной струйной установки при неработающем струйном насосе и регистрации кривой восстановления давления.
На фиг.З представлен продольный разрез скважинной струйной установки с отжатым запорным элементом обратного клапана.
Лучший вариант осуществления изобретения Предлагаемая скважинная струйная установка содержит пакер
1, колонну труб 2 с опорой 3, в которой выполнены перепускные окна
4 и посадочное место 5 для установки на него струйного насоса 6. На корпусе 7 струйного насоса 6 выполнен кольцевой уступ 21, устанавливаемый на посадочное место 5 в опоре 3 колонны труб 2. В корпусе 7 струйного насоса 6 выполнены канал 8 подвода активной среды в сопло 9 струйного насоса 6, канал 10 подвода в струйный насос 6 откачиваемой из скважины среды, канал 11 отвода смеси сред из струйного насоса 6, а также проходной канал 12 с установленным в его верхней части узлом герметизации 13, выполненный параллельно каналу 10 подвода откачиваемой из скважины среды. В узле герметизации 13 выполнен осевой канал 22 с возможностью пропуска через него каротажного кабеля 14 для установки на нем в скважине ниже струйного насоса 6 глубинного прибора 15, например, для ультразвуковой обработки продуктивных пластов и/или замера физических параметров, например, дебита добываемой из скважины среды, в частности, нефти. Глубинный прибор 15 установлен с возможностью перемещения его вдоль ствола скважины при работающем или неработающем струйном насосе 6. Канал 8 подвода активной среды в сопло 9 струйного насоса сообщен с перепускными окнами 4 и через последние с окружающим колонну труб 2 пространством. Соосно соплу 9 установлена камера смешения 24 с диффузором 25. Последний через канал 11 отвода смеси сред из струйного насоса 6 сообщен с внутренней полостью труб 2 выше струйного насоса 6. В канале 10 подвода откачиваемой из скважины среды со стороны входа в него в нижней части корпуса 7 установлен обратный клапан 16 и ниже него закрепленная на корпусе 7 струйного насоса 6 направляющая втулка 17 с установленным в ней параллельно каротажному кабелю 14 с возможностью осевого перемещения штоком 18. Верхний конец штока 18 расположен под запорным элементом 19 обратного клапана 16. На нижнем конце штока 18 закреплена вилка 20, пропущенная через каротажный кабель 14. Шток 18 установлен с возможностью воздействия на запорный элемент 19 обратного клапана 16 и отжатия запорного элемента 19 от седла 23 при подъеме глубинного прибора 15, входящего при этом в контакт с вилкой 20, закрепленной на штоке 18.
Скважинная струйная установка работает следующим образом. Колонну труб 2 с пакером 1 и опорой 3 опускают в скважину и располагают пакер 1 над продуктивным пластом. Приводят пакер 1 в рабочее положение, разобщая окружающее колонну труб 2 пространство скважины. На каротажном кабеле 14 спускают в колонну труб 2 струйный насос 6 с установленным в проходном канале 12 герметизирующим узлом 13 и размещенным ниже корпуса 7 струйного насоса 6 на каротажном кабеле 14 глубинным прибором 15. Корпус 7 струйного насоса 6 устанавливают на посадочное место 5. В окружающее колонну труб 2 затрубное пространство закачивают рабочую среду, например, воду, солевой раствор, нефть и др. Из затрубного пространства рабочая среда поступает через окна 4 и канал 8 в сопло 9 струйного насоса 6. В течение нескольких секунд после прокачки рабочей среды через сопло 9 на выходе из него формируется устойчивая струя, которая, истекая из сопла 9, увлекает в камеру смешения 24 окружающую ее среду, что вызывает снижение давления сначала в канале 10 подвода откачиваемой среды, а затем и в подпакерном пространстве скважины, создавая снижение давления в подпакерном пространстве. Величина снижения давления зависит от скорости прохождения рабочей среды через сопло 9, которая зависит в свою очередь от величины давления нагнетания рабочей среды через затрубное пространство скважины выше пакера 1. В результате пластовая среда по колонне труб 2 через обратный клапан 16 и канал 10 подвода откачиваемой среды поступает в камеру смешения 24 и диффузор 25, где смешивается с рабочей средой, и смесь сред за счет энергии рабочей среды по колонне труб 2 поступает из скважины на поверхность. Во время откачки пластовой среды с помощью установленного на кабеле 14 глубинного прибора 15 проводят контроль параметров откачиваемой пластовой среды, а также воздействие на продуктивный пласт физическими полями, например, ультразвуковыми полями для интенсификации притока из продуктивных пластов. В зависимости от решаемой задачи возможно перемещение глубинного прибора 15 вдоль ствола скважины. Далее, после создания депрессии на продуктивные пласты прекращают работу струйного насоса 6 и посредством глубинного прибора регистрируют кривую восстановления пластового давления в подпакерном пространстве скважины. После прекращения исследования скважины и обработки продуктивных пластов каротажным кабелем 14 поднимают глубинный прибор 15 и последним воздействуют на вилку 20 и через последнюю на шток 18, вызывая его перемещение вверх до тех пор, пока он не отожмет от седла запорный элемент 19 обратного клапана 16, что вызывает переток среды из надпакереного пространства скважины через канал подвода откачиваемой среды 10. В результате выравнивается давление среды над и под струйным насосом 6. После этого с помощью каротажного кабеля 14 извлекают струйный насос 6 из скважины и проводят работы по переводу скважины в эксплуатационный режим. Промышленная применимость
Изобретение может найти применение при испытании, освоении и эксплуатации нефтяных и газоконденсатных скважин, а также при их капитальном ремонте.

Claims

Формула изобретения
Скважинная струйная установка, содержащая пакер, колонну труб с опорой, в которой выполнены перепускные окна и посадочное место для установки на него струйного насоса, при этом на корпусе струйного насоса выполнен кольцевой уступ, устанавливаемый на посадочное место в опоре колонны труб, а в корпусе выполнены канал подвода активной среды в сопло струйного насоса, канал подвода в струйный насос откачиваемой из скважины среды, канал отвода смеси сред из струйного насоса, а также проходной канал с установленным в его верхней части узлом герметизации, выполненный параллельно каналу подвода откачиваемой из скважины среды, причем в узле герметизации выполнен осевой канал с возможностью пропуска через него каротажного кабеля для установки на нем в скважине ниже струйного насоса глубинного прибора, например, для ультразвуковой обработки продуктивных пластов, с возможностью перемещения его вдоль ствола скважины при работающем или неработающем струйном насосе, канал подвода активной среды в сопло струйного насоса сообщен с перепускными окнами и через последние с окружающим колонну труб пространством, соосно соплу установлена камера смешения с диффузором, последний со стороны выхода из него через канал отвода смеси сред из струйного насоса сообщен с внутренней полостью труб выше струйного насоса, в канале подвода откачиваемой из скважины среды со стороны входа в него в нижней части корпуса установлен обратный клапан и ниже него закрепленная на корпусе струйного насоса направляющая втулка с установленным в ней параллельно каротажному кабелю с возможностью осевого перемещения штоком, при этом верхний конец штока расположен под запорным элементом обратного клапана, а на нижнем конце штока закреплена вилка, через которую пропущен каротажный кабель, причем шток установлен с возможностью воздействия на запорный элемент обратного клапана и отжатия запорного элемента от седла при подъеме глубинного прибора, входящего при этом в контакт с вилкой штока.
PCT/RU2008/000006 2007-04-12 2008-01-10 Installation de pompe à jets WO2008127148A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/528,608 US7806174B2 (en) 2007-04-12 2008-01-10 Well jet device
CA2679752A CA2679752C (en) 2007-04-12 2008-01-10 Well jet device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2007113620/06A RU2329410C1 (ru) 2007-04-12 2007-04-12 Скважинная струйная установка эмпи-угис-(31-40)д
RU2007113620 2007-04-12

Publications (1)

Publication Number Publication Date
WO2008127148A1 true WO2008127148A1 (fr) 2008-10-23

Family

ID=39809211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2008/000006 WO2008127148A1 (fr) 2007-04-12 2008-01-10 Installation de pompe à jets

Country Status (4)

Country Link
US (1) US7806174B2 (ru)
CA (1) CA2679752C (ru)
RU (1) RU2329410C1 (ru)
WO (1) WO2008127148A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181784B2 (en) * 2009-08-17 2015-11-10 Schlumberger Technology Corporation Method and apparatus for logging a well below a submersible pump deployed on coiled tubing
BR112017022110B1 (pt) * 2015-04-13 2023-03-21 Dayco Ip Holdings, Llc Dispositivos para produção de vácuo utilizando o efeito venturi e sistema incluindo um dispositivo para produzir vácuo utilizando o efeito venturi
CN107850092B (zh) 2015-07-17 2020-11-06 戴科知识产权控股有限责任公司 在推进区段中具有多个子通道和推进出口的用于使用文丘里效应来产生真空的装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2059891C1 (ru) * 1989-06-14 1996-05-10 Зиновий Дмитриевич Хоминец Скважинная струйная установка
RU2160364C1 (ru) * 1999-08-20 2000-12-10 Открытое акционерное общество "Технологии оптимизации нефтедобычи" Способ освоения, исследования скважины и интенсификации нефтегазовых притоков и устройство для его осуществления
RU2188970C1 (ru) * 2001-04-05 2002-09-10 Зиновий Дмитриевич Хоминец Скважинная струйная установка

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2059891C1 (ru) * 1989-06-14 1996-05-10 Зиновий Дмитриевич Хоминец Скважинная струйная установка
RU2160364C1 (ru) * 1999-08-20 2000-12-10 Открытое акционерное общество "Технологии оптимизации нефтедобычи" Способ освоения, исследования скважины и интенсификации нефтегазовых притоков и устройство для его осуществления
RU2188970C1 (ru) * 2001-04-05 2002-09-10 Зиновий Дмитриевич Хоминец Скважинная струйная установка
WO2002081928A1 (fr) * 2001-04-05 2002-10-17 Kosanyak, Ivan Nikolaevich Dispositif de puits a jet

Also Published As

Publication number Publication date
US20100032152A1 (en) 2010-02-11
US7806174B2 (en) 2010-10-05
RU2329410C1 (ru) 2008-07-20
CA2679752C (en) 2013-02-26
CA2679752A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
RU2287723C1 (ru) Скважинная струйная установка эмпи-угис-(1-10)к и способ ее работы
RU2341692C1 (ru) Скважинная струйная установка для гидроразрыва пласта и исследования горизонтальных скважин и способ ее работы
RU2287095C1 (ru) Скважинная струйная установка эмпи-угис-(31-40)г и способ ее работы
RU2303172C1 (ru) Скважинная струйная установка эмпи-угис-(21-30)к и способ ее работы
RU2334131C1 (ru) Скважинная струйная установка эмпи-угис-(31-40)ш
RU2372530C1 (ru) Скважинная струйная установка для каротажа и освоения горизонтальных скважин с аномально низкими пластовыми давлениями
RU2473821C1 (ru) Скважинная струйная установка для гидроразрыва пластов и освоения скважин
RU2329410C1 (ru) Скважинная струйная установка эмпи-угис-(31-40)д
RU2324843C1 (ru) Скважинная струйная установка эмпи-угис-(1-10)кд для каротажа и испытания горизонтальных скважин
WO2007126331A1 (fr) Procédé d'exploitation d'un dispositif à jet pour la mise en valeur et l'exploitation de puits de gaz ou de pétrole
RU2334130C1 (ru) Скважинная струйная установка эмпи-угис-(11-20)дш и способ ее работы
RU2397375C1 (ru) Скважинная струйная установка кэу-12 для каротажа и освоения горизонтальных скважин
RU2324079C1 (ru) Скважинная струйная установка на гибкой гладкой трубе для исследования горизонтальных скважин
RU2239730C1 (ru) Скважинная струйная установка для каротажа горизонтальных скважин и способ ее работы
EA012238B1 (ru) Скважинная струйная установка для каротажных работ и способ ее работы
EA200501656A1 (ru) Скважинная струйная установка и способ ее работы при каротаже горизонтальных скважин
US7549478B2 (en) Well jet device and the operating method thereof
RU2320899C1 (ru) Скважинная струйная установка эмпи-угис-(1-10)кд
RU2618170C1 (ru) Способ работы скважинного струйного аппарата
RU2320900C1 (ru) Скважинная струйная установка эмпи-угис-(11-20)гд
WO2010014029A1 (ru) Скважинная струйная установка
RU2384757C1 (ru) Способ работы скважинной струйной установки в фонтанирующей скважине с аномально низким пластовым давлением
RU2340797C2 (ru) Скважинная струйная установка для освоения и испытания скважин с низкими пластовыми давлениями
RU2300671C1 (ru) Скважинная струйная установка для горизонтальных скважин и способ ее работы
RU2287094C1 (ru) Скважинная струйная установка

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08724041

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12528608

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2679752

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08724041

Country of ref document: EP

Kind code of ref document: A1