WO2010014029A1 - Скважинная струйная установка - Google Patents

Скважинная струйная установка Download PDF

Info

Publication number
WO2010014029A1
WO2010014029A1 PCT/RU2009/000323 RU2009000323W WO2010014029A1 WO 2010014029 A1 WO2010014029 A1 WO 2010014029A1 RU 2009000323 W RU2009000323 W RU 2009000323W WO 2010014029 A1 WO2010014029 A1 WO 2010014029A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
jet pump
well
medium
support
Prior art date
Application number
PCT/RU2009/000323
Other languages
English (en)
French (fr)
Inventor
Зиновии Дмитриевич ХОМИНЕЦ
Original Assignee
Khomynetz Zinoviy Dmitrievich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Khomynetz Zinoviy Dmitrievich filed Critical Khomynetz Zinoviy Dmitrievich
Publication of WO2010014029A1 publication Critical patent/WO2010014029A1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/10Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing liquids, e.g. containing solids, or liquids and elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type

Definitions

  • the invention relates to the field of pumping technology, mainly to downhole pumping units for well development.
  • a well-known jet installation including a jet pump installed in a well on a tubing string and a geophysical instrument located below the jet pump in a tubing string (see patent RU JY22059891 Cl, class F04F 5/02, 05/10/1996).
  • This installation allows pumping various produced media, such as oil, from the well with simultaneous processing of the produced medium and the borehole zone, formation, however, this installation provides for the supply of the working medium to the nozzle of the jet apparatus through a pipe string, which in some cases narrows the scope of use of this installation .
  • a downhole jet installation containing a packer, a pipe string with a support, in which overflow windows are made and on which an ink pump is installed, in the housing of which there is a channel for supplying the active medium to the nozzle of the jet pump, a supply channel to the jet pump pumped out medium wells and a channel for discharging a mixture of fluids from a jet pump, and in the case above the channel for supplying a pumped medium, a passage channel connected to the last with a seat for installing a sealing unit is made and an axial channel with a passage through it and a channel for supplying a pumped logging medium is made in the sealing unit cable for installation on it in the well below the jet pump of the downhole instruments with the possibility of moving them along the wellbore with the jet pump working or not working, while and the active medium in the nozzle of the jet pump is in communication with the bypass windows and through the space surrounding the pipe string, and the channel for discharging the mixture of media
  • This jet installation allows for various technological operations in the well below the installation level of the jet pump, including in the presence of a pressure differential above and below the sealing unit.
  • this installation does not allow to fully use its capabilities, which is associated with the impossibility of injecting chemicals into the reservoir through a jet pump without first installing a special insert in its passage channel that separates the in-pipe and annular space and, as a result, there is a restriction of functionality downhole jet installation. Disclosure of invention
  • the problem to which the present invention is directed is the creation of a downhole jet installation with the possibility of separation of the in-pipe and annular space when the jet pump is idle.
  • the technical result from the use of a downhole jet installation is to expand the functionality of a downhole jet installation.
  • the downhole jet installation contains a pipe string on which a hydromechanical slotted puncher, a packer made with an axial through hole, and a support in which an axial channel with a seat for installing a jet pump on it, and in the wall of the support there is a bypass channel with a check valve installed in it
  • the jet pump includes a cylindrical body, on the outer surface of the cat
  • the downhole installation makes it possible to conduct slotted perforation of the casing in the area of the reservoir, to create a number of different depressions using a jet pump in the sub-packer zone of the well with a given pressure drop, and using stand-alone devices to record pressure, temperature and other physical parameters of the well and pumped out from the well of the medium, conduct research and testing of the well, also record the recovery curve of reservoir pressure in the sub-packer a space of a well without using a special functional insert.
  • Performing in the wall of the support of the bypass channel with a check valve in combination with the diameter of the axial channel of the support below the seat is not less than the diameter of the axial bore of the packer allows you to organize the flow of pipe fluid to the hydrodynamic perforator, as well as the injection of chemical reagents or hydraulic fracturing into the reservoir without using any additional devices or functional inserts, to increase the productivity of work, and the check valve at the same time prevents the fluids pumped into the reservoir into the annular nadpakerny space of the well during their injection. It is important that the above relationship between the diameters of the axial channel of the support and the axial bore of the packer.
  • the diameter of the axial channel of the support below the seat is not less than the diameter of the axial bore of the packer is necessary to reduce the hydraulic resistance when pumping media into the reservoir, and for pumping out of the reservoir formation products and produced from the reservoir while creating a depression on the reservoir .
  • it is possible to control the magnitude of depression by controlling the rate of pumping of the active working medium.
  • it is possible to adjust the pumping mode by changing the pressure of the active working medium supplied to the active nozzle of the jet pump.
  • the possibility of spontaneous overflow of the working medium into the under-packer zone is excluded both with the working and non-working jet pump.
  • the drawing shows a longitudinal section of a well jet device during the injection of chemical agents or hydraulic fracturing fluid into a reservoir.
  • the downhole jet installation comprises a pipe string 1, on which a hydromechanical slotted perforator 2, a packer 3, made with an axial passage hole 4, and a support 5, in which an axial channel 6 with a seat 7 for installing the jet pump 8 on it, are installed moreover, in the wall of the support 5 there is a bypass channel 9 with a check valve 10 installed therein, and the jet pump 8 includes a cylindrical housing 11, on the outer surface of which an annular ledge 24 is made for installing the jet pump 8 to the seat 7 in the support 5.
  • a channel 12 for supplying the active medium to the nozzle 13 of the jet pump 8 a channel 14 for supplying to the jet pump 8 the medium pumped out of the well with the check valve 15 installed in it, the channel 16 for withdrawing the mixture of media from the jet pump 8, and is also made along the axis of the cylindrical body 11 of the jet pump 8, the passage channel 17 with a valve 18 installed in its upper part spring-loaded relative to the cylindrical body 11 with a rod 19 withdrawn from the upper part of the cylindrical body 11 and Making a at the upper end with the head 20.
  • inlet channel 14 pumped out of a well in communication with the passage 16 removing a fluid mixture.
  • autonomous devices 21 are installed for measuring physical parameters, for example, pressure, temperature and flow rate of the medium entering the jet pump 8.
  • the diameter of the axial channel 6 support 5 below the seat 7 is not less than the diameter of the axial bore 4 of the packer 3.
  • a pipe string 1 with a hydromechanical slotted punch 2, a packer 3 and a support 5 is lowered into the well and the packer 3 is placed above the reservoir 22, and the perforator 2 is in the zone of the reservoir 22.
  • slotted holes are made in the casing wall 23.
  • the packer is brought 3 to the working position, separating the surrounding space pipe string 1 space of the well. Hydraulic fracturing fluid or acidic solution is fed under pressure along the pipe string 1 into the reservoir, and then the jet pump 8 is lowered into the pipe string 1, for example, on a cable.
  • the cylindrical body 11 of the jet pump 8 is installed on the seat 7.
  • the annulus In the surrounding pipe string 1 the annulus is pumped with a working (active) medium, for example, water, saline solution, oil, etc.
  • a working (active) medium for example, water, saline solution, oil, etc.
  • the working medium enters through the bypass channel 9 and check valve 10 into the channel 12 for supplying the active medium and then into the nozzle 13 jets of the pump 8.
  • a stable jet is formed at the outlet of it, which, flowing out of the nozzle 13, entrains its environment into the jet pump 8, which causes a decrease in pressure first in the supply channel 14 of the pumped medium , and then in the sub-packer space of the well.
  • the magnitude of the pressure reduction depends on the speed of passage of the working (active) medium through the nozzle 13, which depends, in turn, on the magnitude of the injection pressure of the working (active) medium through the annulus of the well above the packer 3.
  • the jet pump 8 is pumped out productive formation 22 fracturing fluid or chemical treatment products of the productive formation 22, and then pumping out the formation fluid 22 from the reservoir, which through the pipe string 1 through the channel 14 for supplying the pumped medium enters the jet pump 8, where it is mixed with the working (active) medium, and then through the channel 16 of the mixture of fluids due to the energy of the working (active) medium through the pipe string 1 comes from the well to the surface.
  • the parameters of the pumped out formation medium are monitored using the cylindrical housing 11 of the autonomous devices 21 installed below.
  • the pressure of the working (active) medium to intensify the inflow from the reservoir, a number of different depressions on the reservoir are created and, using stand-alone devices 21, the parameters of the inflow of the pumped medium from the reservoir 22 are recorded.
  • the invention can find application in the testing, development and overhaul of oil, gas condensate and methane-coal wells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Изобретение относится к насосной технике для освоения скважин. Установка содержит колонну труб, на которой установлены последовательно снизу вверх гидромеханический щелевой перфоратор, пакер с осевым проходным отверстием и опора. В опоре выполнен осевой канал с посадочным местом для установки на него струйного насоса. В стенке опоры выполнен перепускной канал с обратным клапаном. Насос включает цилиндрический корпус с наружным кольцевым уступом для установки насоса на посадочное место в опоре, каналами, соответственно, подвода активной среды в сопло насоса, подвода откачиваемой из скважины среды и отвода смеси сред и проходным каналом с подпружиненным относительно корпуса клапаном. Шток клапана выведен из верхней части корпуса и выполнен на верхнем конце с головкой. На корпусе ниже насоса установлены автономные приборы для замера физических параметров. Диаметр канала опоры ниже посадочного места не меньше диаметра проходного отверстия пакера. В результате достигается расширение функциональных возможностей скважинной струйной установки.

Description

СКВАЖИННАЯ СТРУЙНАЯ УСТАНОВКА
Область применения
Изобретение относится к области насосной техники, преимущественно к скважинным насосным установкам для освоения скважин.
Предшествующий уровень техники
Известна скважинная струйная установка, включающая установленный в скважине на колонне насосно-компрессорных труб струйный насос и размещенный ниже струйного насоса в колонне насосно-компрессорных труб геофизический прибор (см. патент RU JY22059891 Cl, кл. F04F 5/02, 10.05.1996).
Данная установка позволяет проводить откачку из скважины различных добываемых сред, например нефти, с одновременной обработкой добываемой среды и прискважинной зоны, пласта, однако в данной установке предусмотрена подача рабочей среды в сопло струйного аппарата по колонне труб, что в ряде случаев сужает область использования данной установки.
Наиболее близкой к изобретению по технической сущности и достигаемому результату является скважинная струйная установка, содержащая пакер, колонну труб с опорой, в которой выполнены перепускные окна и на которой установлен струйный насос, в корпусе которого выполнены канал подвода активной среды в сопло струйного насоса, канал подвода в струйный насос откачиваемой из скважины среды и канал отвода смеси сред из струйного насоса, а в корпусе над каналом подвода откачиваемой среды выполнен сообщенный с последним проходной канал с посадочным местом для установки узла герметизации и в узле герметизации выполнен осевой канал с возможностью пропуска через него и канал подвода откачиваемой среды каротажного кабеля для установки на нем в скважине ниже струйного насоса глубинных приборов с возможностью перемещения их вдоль ствола скважины при работающем или неработающем струйном насосе, при этом канал подвода активной среды в сопло струйного насоса сообщен с перепускными окнами и через последние с окружающим колонну труб пространством, а канал отвода смеси сред из струйного насоса сообщен с внутренней полостью труб выше струйного насоса, (см. патент RU, ЖL 188970, кл. F04F 5/54, 10.09.2002). Данная струйная установка позволяет проводить различные технологические операции в скважине ниже уровня установки струйного насоса, в том числе при наличии перепада давлений над и под герметизирующим узлом. Однако данная установка не позволяет в полной мере использовать ее возможности, что связано с невозможностью закачки в продуктивный пласт через струйный насос химических реагентов без предварительной установки в его проходном канале специальной вставки, разобщающей внутритрубное и затрубное пространство и, как следствие, имеет место ограничение функциональных возможностей скважинной струйной установки. Раскрытие изобретения
Задачей, на решение которой направлено настоящее изобретение, является создание скважинной струйной установки с возможностью разобщения внутритрубного и затрубного пространства при неработающем струйном насосе.
Техническим результатом от использования скважинной струйной установки является расширение функциональных возможностей скважинной струйной установки.
Указанная задача решается, а технический результат достигается за счет того, что скважинная струйная установка содержит колонну труб, на которой установлены последовательно снизу вверх гидромеханический щелевой перфоратор, пакер, выполненный с осевым проходным отверстием, и опора, в которой выполнен осевой канал с посадочным местом для установки на него струйного насоса, причем в стенке опоры выполнен перепускной канал с установленным в нем обратным клапаном, а струйный насос включает цилиндрический корпус, на наружной поверхности которого выполнен кольцевой уступ для установки струйного насоса на посадочное место в опоре, при этом в корпусе выполнены канал подвода активной среды в сопло струйного насоса, канал подвода в струйный насос откачиваемой из скважины среды, канал отвода смеси сред из струйного насоса, а также выполнен вдоль оси цилиндрического корпуса струйного насоса проходной канал с установленным в его верхней части и подпружиненным относительно корпуса клапаном со штоком, выведенным из верхней части корпуса и выполненным на верхнем конце с головкой, при этом посредством проходного канала канал подвода откачиваемой из скважины среды сообщен с каналом отвода смеси сред, на цилиндрическом корпусе ниже струйного насоса установлены автономные приборы для замера физических параметров, например, давления, температуры и расхода поступающей в струйный насос среды, диаметр осевого канала опоры ниже посадочного места не меньше диаметра осевого проходного отверстия пакера.
Анализ работы скважинной струйной установки показал, что представляется возможность расширить функциональные возможности скважинной струйной установки путем расширения диапазона работ, которые можно проводить в скважине без подъема струйного насоса на поверхность и установки на струйном насосе дополнительного оборудования.
Скважинная установка дает возможность проводить щелевую перфорацию обсадной колонны в зоне расположения продуктивного пласта, создавать ряд различных депрессий с помощью струйного насоса в подпакерной зоне скважины с заданной величиной перепада давления, а с помощью автономных приборов проводить регистрации давления, температуры и других физических параметров скважины и откачиваемой из скважины среды, проводить исследование и испытание скважины, также проводить регистрацию кривой восстановления пластового давления в подпакерном пространстве скважины без использования специально для этого предназначенной функциональной вставки. Выполнение в стенке опоры перепускного канала с обратным клапаном в сочетании с выполнением диаметра осевого канала опоры ниже посадочного места не меньше диаметра осевого проходного отверстия пакера позволяет организовать подачу по колонне труб рабочей жидкости на гидродинамический перфоратора, а также закачку в продуктивный пласт химических реактивов или жидкости гидроразрыва без использования каких-либо дополнительных приспособлений или функциональных вставок, повысить производительность работ, а обратный клапан при этом предотвращает поступление закачиваемых в продуктивный пласт сред в заколонное надпакерное пространство скважины в период их закачки. При этом важно выполнение указанного выше соотношения между диаметрами осевого канала опоры и осевого проходного отверстия пакера. Выполнение диаметра осевого канала опоры ниже посадочного места не меньше диаметра осевого проходного отверстия пакера необходимо для снижения гидравлического сопротивления как при закачке сред в продуктивный пласт, так и для откачки из продуктивного пласта продуктов его обработки и добываемой из продуктивного пласта среды при создании депрессии на продуктивный пласт. Одновременно представляется возможность контролировать величину депрессии путем управления скоростью прокачки активной рабочей среды. При проведении испытания пластов можно регулировать режим откачки посредством изменения давления активной рабочей среды, подаваемой в активное сопло струйного насоса. В то же время исключена возможность самопроизвольного перетока рабочей среды в подпакерную зону как при работающем, так и при неработающем струйном насосе.
Краткое описание чертежей На чертеже представлен продольный разрез скважинной струйной установки при закачке в продуктивный пласт химических реактивов или жидкости гидроразрыва. Лучший вариант осуществления изобретения
Скважинная струйная установка содержит колонну труб 1, на которой установлены последовательно снизу вверх гидромеханический щелевой перфоратор 2, пакер 3, выполненный с осевым проходным отверстием 4, и опора 5, в которой выполнен осевой канал 6 с посадочным местом 7 для установки на него струйного насоса 8, причем в стенке опоры 5 выполнен перепускной канал 9 с установленным в нем обратным клапаном 10, а струйный насос 8 включает цилиндрический корпус 11, на наружной поверхности которого выполнен кольцевой уступ 24 для установки струйного насоса 8 на посадочное место 7 в опоре 5. В цилиндрическом корпусе 11 выполнены канал 12 подвода активной среды в сопло 13 струйного насоса 8, канал 14 подвода в струйный насос 8 откачиваемой из скважины среды с установленным в нем обратным клапаном 15, канал 16 отвода смеси сред из струйного насоса 8, а также выполнен вдоль оси цилиндрического корпуса 11 струйного насоса 8 проходной канал 17 с установленным в его верхней части подпружиненным относительно цилиндрического корпуса 11 клапаном 18 со штоком 19, выведенным из верхней части цилиндрического корпуса 11 и выполненным на верхнем конце с головкой 20. Посредством проходного канала 17 канал 14 подвода откачиваемой из скважины среды сообщен с каналом 16 отвода смеси сред. На цилиндрическом корпусе 11 ниже струйного насоса 8 установлены автономные приборы 21 для замера физических параметров, например, давления, температуры и расхода поступающей в струйный насос 8 среды. Диаметр осевого канала 6 опоры 5 ниже посадочного места 7 не меньше диаметра осевого проходного отверстия 4 пакера 3.
Колонну труб 1 с гидромеханическим щелевым перфоратором 2, пакером 3 и опорой 5 опускают в скважину и располагают пакер 3 над продуктивным пластом 22, а перфоратор 2 в зоне продуктивного пласта 22. С помощью перфоратора проводят выполнение щелевых отверстий в стенке обсадной колонны 23. Приводят пакер 3 в рабочее положение, разобщая окружающее колонну труб 1 пространство скважины. Подают под напором по колонне труб 1 в продуктивный пласт жидкость гидроразрыва пласта или кислотный раствор, после чего спускают в колонну труб 1, например на тросе, струйный насос 8. Цилиндрический корпус 11 струйного насоса 8 устанавливают на посадочное место 7. В окружающее колонну труб 1 затрубное пространство закачивают рабочую (активную) среду, например, воду, солевой раствор, нефть и др. Из затрубного пространства рабочая среда поступает через перепускной канал 9 и обратный клапан 10 в канал 12 подвода активной среды и далее в сопло 13 струйного насоса 8. В течение нескольких секунд после прокачки рабочей среды через сопло 13 на выходе из него формируется устойчивая струя, которая, истекая из сопла 13, увлекает в струйный насос 8 окружающую ее среду, что вызывает снижение давления сначала в канале 14 подвода откачиваемой среды, а затем и в подпакерном пространстве скважины. Величина снижения давления зависит от скорости прохождения рабочей (активной) среды через сопло 13, которая зависит, в свою очередь, от величины давления нагнетания рабочей (активной) среды через затрубное пространство скважины выше пакера 3. В результате с помощью струйного насоса 8 откачивают из продуктивного пласта 22 жидкость гидроразрыва или продукты химической обработки продуктивного пласта 22, а затем проводят откачку из продуктивного пласта 22 пластовой среды, которая по колонне труб 1 через канал 14 подвода откачиваемой среды поступает в струйный насос 8, где смешивается с рабочей (активной) средой, и далее через канал 16 отвода смеси сред за счет энергии рабочей (активной) среды по колонне труб 1 поступает из скважины на поверхность. Во время откачки пластовой среды с помощью установленных ниже цилиндрического корпуса 11 автономных приборов 21 проводят контроль параметров откачиваемой пластовой среды. Одновременно, путем изменения давления рабочей (активной) среды для интенсификации притока из продуктивного пласта создают ряд разных по величине депрессий на продуктивный пласт и посредством автономных приборов 21 регистрируют параметры притока откачиваемой среды из продуктивного пласта 22. После прекращения исследования скважины и обработки продуктивного пласта 22 спускают в скважину трос с ловильным устройством, которое соединяют с головкой 20 на штоке 19, натягивают трос и, таким образом, открывают клапан 18 и по каналу 17 спускают из колонны труб 1 столб находящейся в ней жидкости в подпакерное пространство скважины, выравнивая таким образом давления над и под струйным насосом, далее тросом извлекают струйный насос 8 из скважины и проводят работы по переводу скважины в эксплуатационный режим. Промышленная применимость
Изобретение может найти применение при испытании, освоении и капитальном ремонте нефтяных, газоконденсатных и метано- угольных скважин.

Claims

Формула изобретения
Скважинная струйная установка, содержащая колонну труб, на которой установлены последовательно снизу вверх гидромеханический щелевой перфоратор, пакер, выполненный с осевым проходным отверстием, и опора, в которой выполнен осевой канал с посадочным местом для установки на него струйного насоса, причем в стенке опоры выполнен перепускной канал с установленным в нем обратным клапаном, а струйный насос включает цилиндрический корпус, на наружной поверхности которого выполнен кольцевой уступ для установки струйного насоса на посадочное место в опоре, при этом в корпусе выполнены канал подвода активной среды в сопло струйного насоса, канал подвода в струйный насос откачиваемой из скважины среды, канал отвода смеси сред из струйного насоса, а также выполненный вдоль оси цилиндрического корпуса струйного насоса проходной канал с установленным в его верхней части подпружиненным относительно корпуса клапаном со штоком, выведенным из верхней части корпуса и выполненным на верхнем конце с головкой, при этом посредством проходного канала канал подвода откачиваемой из скважины среды сообщен с каналом отвода смеси сред, на цилиндрическом корпусе ниже струйного насоса установлены автономные приборы для замера физических параметров, например, давления, температуры и расхода, поступающей в струйный насос среды, а диаметр осевого канала опоры ниже посадочного места не меньше диаметра осевого проходного отверстия пакера.
PCT/RU2009/000323 2008-07-29 2009-07-01 Скважинная струйная установка WO2010014029A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2008130968 2008-07-29
RU2008130968/06A RU2374503C1 (ru) 2008-07-29 2008-07-29 Скважинная струйная установка для перфорации пластов, интенсификации притока и освоения нефтегазовых скважин

Publications (1)

Publication Number Publication Date
WO2010014029A1 true WO2010014029A1 (ru) 2010-02-04

Family

ID=41476764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2009/000323 WO2010014029A1 (ru) 2008-07-29 2009-07-01 Скважинная струйная установка

Country Status (2)

Country Link
RU (1) RU2374503C1 (ru)
WO (1) WO2010014029A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10640296B2 (en) 2016-06-30 2020-05-05 Interroll Holding Ag Drum motor with alternative transmission mount

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2452854C2 (ru) * 2010-06-25 2012-06-10 Олег Павлович Турецкий Способ проведения направленного гидроразрыва пласта

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055002A (en) * 1989-05-12 1991-10-08 Roeder George K Downhole pump with retrievable nozzle assembly
US5372190A (en) * 1993-06-08 1994-12-13 Coleman; William P. Down hole jet pump
RU2188970C1 (ru) * 2001-04-05 2002-09-10 Зиновий Дмитриевич Хоминец Скважинная струйная установка
RU2253760C1 (ru) * 2004-04-26 2005-06-10 Зиновий Дмитриевич Хоминец Насосно-эжекторная импульсная скважинная струйная установка для гидроразрыва пласта

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055002A (en) * 1989-05-12 1991-10-08 Roeder George K Downhole pump with retrievable nozzle assembly
US5372190A (en) * 1993-06-08 1994-12-13 Coleman; William P. Down hole jet pump
RU2188970C1 (ru) * 2001-04-05 2002-09-10 Зиновий Дмитриевич Хоминец Скважинная струйная установка
RU2253760C1 (ru) * 2004-04-26 2005-06-10 Зиновий Дмитриевич Хоминец Насосно-эжекторная импульсная скважинная струйная установка для гидроразрыва пласта

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10640296B2 (en) 2016-06-30 2020-05-05 Interroll Holding Ag Drum motor with alternative transmission mount

Also Published As

Publication number Publication date
RU2374503C1 (ru) 2009-11-27

Similar Documents

Publication Publication Date Title
RU2334131C1 (ru) Скважинная струйная установка эмпи-угис-(31-40)ш
RU2341692C1 (ru) Скважинная струйная установка для гидроразрыва пласта и исследования горизонтальных скважин и способ ее работы
RU2287095C1 (ru) Скважинная струйная установка эмпи-угис-(31-40)г и способ ее работы
CA2644571C (en) Well jet device and the operating method thereof
EA004564B1 (ru) Скважинная струйная установка
WO2007149008A1 (fr) Procédé pour faire fonctionner une installation à jet dans un puits de forage lors de la fracturation hydraulique de gisement d'hydrocarbures à formations multiples
RU2307959C1 (ru) Способ работы струйной установки эмпи угис (31-40)г при освоении и эксплуатации нефтегазовых скважин
RU2473821C1 (ru) Скважинная струйная установка для гидроразрыва пластов и освоения скважин
RU2334130C1 (ru) Скважинная струйная установка эмпи-угис-(11-20)дш и способ ее работы
RU2374503C1 (ru) Скважинная струйная установка для перфорации пластов, интенсификации притока и освоения нефтегазовых скважин
RU2329410C1 (ru) Скважинная струйная установка эмпи-угис-(31-40)д
RU2404374C1 (ru) Способ работы скважинной струйной установки при испытании многопластовых залежей
WO2008066412A1 (fr) Installation à jets de fond de puits destinée à la diagraphie et aux tests de puits horizontaux
RU2404373C1 (ru) Способ работы колтюбинг-эжекторной установки в газлифтной нефтяной скважине
RU2239730C1 (ru) Скважинная струйная установка для каротажа горизонтальных скважин и способ ее работы
EA012238B1 (ru) Скважинная струйная установка для каротажных работ и способ ее работы
WO2008066413A1 (fr) Installation à jets de fond de puits sur tuyau lisse souple destinée à l'exploration de puits horizontaux
RU2263236C1 (ru) Способ работы скважинной струйной установки при гидроразрыве пласта и установка для осуществления способа
RU2320900C1 (ru) Скважинная струйная установка эмпи-угис-(11-20)гд
RU2282760C1 (ru) Скважинная струйная установка и способ ее работы
RU2332592C1 (ru) Скважинная струйная установка для кислотной обработки и исследования горизонтальных скважин
RU2618170C1 (ru) Способ работы скважинного струйного аппарата
WO2007061334A1 (fr) Installation de puits a jets destinee a l'essai et a la mise en exploitation de puits
RU2315208C1 (ru) Скважинная струйная установка для каротажных работ при аномально низких пластовых давлениях и способ ее работы
RU2280787C1 (ru) Способ работы скважинной струйной установки и скважинная струйная установка для осуществления способа

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09803210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09803210

Country of ref document: EP

Kind code of ref document: A1