WO2008120410A1 - エンドリデュプリケーション促進活性を有する遺伝子 - Google Patents

エンドリデュプリケーション促進活性を有する遺伝子 Download PDF

Info

Publication number
WO2008120410A1
WO2008120410A1 PCT/JP2007/069418 JP2007069418W WO2008120410A1 WO 2008120410 A1 WO2008120410 A1 WO 2008120410A1 JP 2007069418 W JP2007069418 W JP 2007069418W WO 2008120410 A1 WO2008120410 A1 WO 2008120410A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
gene
dna
seq
amino acid
Prior art date
Application number
PCT/JP2007/069418
Other languages
English (en)
French (fr)
Inventor
Takeshi Yoshizumi
Minami Matsui
Takanari Ichikawa
Miki Nakazawa
Mika Kawashima
Naoki Takahashi
Chika Akagi
Hiroko Hara
Yuko Tsumoto
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Priority to BRPI0721515-0A2A priority Critical patent/BRPI0721515A2/pt
Priority to US12/593,304 priority patent/US8461414B2/en
Priority to JP2009507389A priority patent/JPWO2008120410A1/ja
Priority to EP07829156A priority patent/EP2128251A4/en
Priority to EP10015052A priority patent/EP2348109A1/en
Publication of WO2008120410A1 publication Critical patent/WO2008120410A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to a gene having endurance promoting activity in a plant, a transformed plant into which the gene is introduced, and the like.
  • Endo-reduplication is a document in which nuclear chromosomal DNA replication occurs without cell division.
  • end-replication occurs repeatedly, the amount of nuclear DNA (nuclear phase) doubles from the basic 2C, resulting in cells with doubled amounts of nuclear DNA such as 4C and 8C.
  • Cells are known to grow in proportion to the increase in nuclear DNA content. Since the size of an organism is determined by the number and size of the cells that make up the individual, end-duplication is considered to be one of the mechanisms that determine the size of an organism.
  • Endoduplication is observed in some tissues in insects and mammals, but is a characteristic feature of plant organs and can distinguish between the growth of plants and the growth of other organisms.
  • organs consist of a mixture of cells at different ploidy levels, a characteristic that is prominent in hypocotyl elongation, cotyledon development, and endosperm development.
  • Ploidy cells are commonly observed in various multicellular organisms such as insects, mammals, and plants (Non-patent Documents 1 and 2). Since ploidy cells are complicated in various developing tissues and are related to differentiation, ploidy is considered to be a marker of differentiation (Non-patent Document 3).
  • Non-Patent Document 4 It is also known that the hypoploid level of the hypocotyl is controlled by plant hormones (Non-patent Document 5).
  • const itutively triple responsel ctrl is an ethylene signal transmutant that is constitutively active and induces triple response without exogenous ethylene. S (Kieber, J.
  • CTR1 a negat ive regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases.
  • Ctrl has an increased ploidy level in the hypocotyl of seedlings grown in some places to have 32C (Non-Patent Document 6). Indicates positive adjustment of end-reduplication.
  • Endoduplication is also involved in the development of plant organs. Tricomes consist of single cells containing nuclei up to 32C (7). Endured duplication is also observed in endosperm, and there are several reports that cell cycle-related genes are involved in the development of endosperm (Non-patent Documents 8 and 9).
  • Non-patent Document 10 the D-type cytalin gene CYCD3; 1 is expressed specifically in meristems and growing leaves in Arabidopsis, but the ploidy level is reduced in transgenic plants overexpressing CYCD3; 1. It has been reported that the cell size is reduced (Non-patent Document 10). This indicates that CYCD3; 1 is involved in cell proliferation by inhibiting endo-reduplication in plant tissues. In addition, it has been reported that the Arabidopsis A-type cyclin gene CYCA2; 1 is expressed in various cells such as guard cells in which almost no end-reduplication occurs (Non-patent Documents 11 and 12).
  • Non-patent Document 13 Overexpression of tobacco CYCA3; 2, which is also an A-type cyclin gene, reduces ploidy levels in various tissues (Non-patent Document 13), and loss of function in Arabidopsis CYCA2; 3 Is reported to increase ploidy in mature true leaves (Non-patent Document 14). Therefore, it can be said that A-type cyclin plays an important role in controlling endurance in plants. As described above, although there are several research reports on end-reduplication, there are many unclear points about the mechanism of end-reduplication in plants, and elucidating this mechanism determines the size of the plant. Understand the mechanism and use it in various ways.
  • Non-Patent Document 1 Edgar, B, and Orr-Weaver, T. L. (2001) Endoreplication cell cycles: more for less. Cell 105, 297-306.
  • Non-Patent Document 2 Joubes, J., and Chevalier, C. (2000) Endoreduplication in higher plants. Plant Mol. Biol. 43, 735-745.
  • Non-Patent Document 3 De Veylder, L., Beeckman, T., Beemster, GT, Krols, L., Terras, F., Landrieu, I., van der Schueren, E., Maes, S., Naudts, M., and Inze, D. (2001) Functional analysis of cycl in-dependent kinase inhibitors of Arabidopsis. Plant Cell 13, 1653-1668.
  • Non-Patent Document 4 Gendreau, E., Traas, J., Desnos, T., Grandjean, 0., Caboche,., And Hofte, H. (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol. 114, 295-305.
  • Non-Patent Document 5 Gendreau, E., Orbovic, V., Hofte, H., and Traas, J. (1999) Gibberellin and ethylene control endoreduplication levels in the Arabidopsis thaliana hypocotyl. Planta 209, 513-516.
  • Non-Patent Document 6 Gendreau, E., Traas, J., Desnos, T., Grandjean, 0., Caboche, M., and Hofte, H. (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114, 295-305.
  • Non-Patent Document 7 Melaragno, J. E., Mehrotra, B., and Coleman, A. W. (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5, 1661—1668
  • Non-patent literature 8 Sun, Y., Flannigan, ⁇ . A., and Setter, TL (1999) Regulation of endoreduplication in maize (Zea mays L.) endosperm. Isolation of a novel Bl-type cyclin and its quantitative analysis Plant Mol. Biol. 41, 245-258.
  • Non-Patent Document 9 Larkins, BA, Dilkes, BP, Dante, RA, Coelho, CM, Woo, YM, and Liu, Y. (2001) Investigating the hows and whys of DNA endoredupl'ication. J. Exp. Bot 52, 183-192.
  • Non-Patent Document 10 Dewitte, W., Riou-Khamlichi, C., Scofield, S., Healy, JM, Jacqmard, A., Kilby, NJ, and Murray, JAH (2003) Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3.Plant Cell 15, 79-92
  • Non-Patent Document 11 Melaragno, J. E., Mehrotra, B., and Coleman, A. W. (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis.Plant Cell 5, 1661-1668.
  • Non-Patent Document 12 Burssens, S., de Almeida Engler, J., Beeckman, T., Richard, C., Shaul, 0., Ferreira, P., Van Montagu, M., and Inze, D. 2000) Developmental expression of the Araoidopsis thaliana CycA2; l gene.Plana 211, 623-631.
  • Non-Patent Document 13 Yu, Y., Steinmetz, S., Meyer, D., Brown, S., Shen, WH (2003).
  • Non-Patent Document 14 Imai, KK, Ohashi, Tsuji., Tsuge, Tsuji., Yoshizumi, Tsuji., Matsui,., Oka, Tsuji .; and Aoyama, T. (2006) The A-Type Cyclin CYCA2; 3 Is a Key Regulator of Ploidy Levels in Arabidopsis Endoreduplication. Plant Cell 18, 382-396.
  • an object of the present invention is to elucidate a gene that controls endoreduplication in plants and to use the gene for breeding for increasing the size of crops.
  • the nucleus of the cell nucleus is measured by flow cytometry from the Arabidopsis activation tagging line.
  • mutant strains with increased DNA levels We searched for mutant strains with increased DNA levels, and obtained several mutant strains with such dominant phenotypes. In these mutants, the amount of DNA in the seedlings grown in some places Increased. For this reason, these mutants were named increased level of polyploidy (ilp). To date, there are six strains of ilpl-D, 2-D, 3-D, 4-D, 5-D, and 7-D that have confirmed the causative gene. In these mutant strains, an increase in cell size with increasing DNA content has also been observed. As an example of analysis, ilpl-lD is described below.
  • ILP1 gene As a result of isolating the causative gene (ILP1 gene) by the plasmidless cue method and analyzing its structure and function, overexpression of the ILP1 gene indicates that the cotyledon expands and the seedling grows.
  • GCF C-terminal region of the binding factor
  • the ILP1 gene is a cyclin in both Arabidopsis and mice. It was confirmed that the expression of A2 was suppressed. Cyclin A 2 has a function of promoting cell division after DNA is replicated. Therefore, it was considered that the ILP1 protein suppresses the expression of the cyclin A2 gene, and as a result, endoreduplication is promoted and the amount of nuclear DNA increases.
  • the present invention has been completed based on such findings.
  • the present invention includes the following inventions.
  • a recombinant vector comprising the gene according to (1) or (2).
  • a plant cell wherein the gene according to (1) or (2) or the recombinant vector according to (4) is introduced into a plant cell, and the plant body is regenerated from the plant cell. To produce transgenic plants with increased nuclear DNA content.
  • FIG. 1A shows the relative ratio of cell ploidy between the wild type (Col-0) and ctrl-1. About 5000 nuclei were counted in the wild strain (Col-0) and the ctrl-1 mutant.
  • Figure 1B shows a mix of Col-0 and ctrl-1 in the ratio of wild strain (Col-0), ctrl-1, and 3: 7 (j J ⁇ 11 ⁇ ⁇ The ratio of 8C / 32C and 16C / 32C of the seedlings grown in the dark.
  • the black bar indicates the category used for the screening of the mutant. Repeated 3 times with at least 20 seedlings, error bars indicate standard deviation.
  • FIG. 2A shows a histogram of ploidy levels of seedling hypocotyl cells grown in the dark at 7 days of age.
  • Left panel wild strain
  • right panel homozygote ilpl_lD
  • X axis nuclear ploidy
  • Y axis cell number.
  • About 5,000 nuclei were strengthened in the wild strain and ilpl-1D.
  • FIG. 2B shows the relative cell ploidy ratios of wild-type and ilpl-lD grown in some places. At least 20 seedlings were used for ploidy analysis and repeated three times.
  • Hyp. D Seedling hypocotyl cells grown in the dark
  • Hyp. WL Seedling hypocotyl cells grown in the light
  • Cot. WL Cotyledon cells grown in the light . Approximately 3000-5000 nuclei were enriched in the wild strain and ilpl_lD.
  • Figure 2C shows DAPI staining of the nucleus in the lower part of the hypocotyl of the wild strain.
  • Figure 2D shows DAPI staining of the nucleus in the lower part of the hypocotyl of ilpl-lD.
  • Fig. 2E shows the morphology of wild strains (two left seedlings) and ilpl-1D (two right seedlings) grown in a 7-day old plant.
  • the white arrow indicates the hypocotyl / root junction.
  • Figure 2F shows the germinal hypocotyls and root lengths of wild-type and ilpl-lD grown in 7-day-old plants.
  • FIG. 2G shows the diameter of the hypocotyl of wild-type and ilpl-1D seedlings grown in the dark at 7 days of age.
  • Figure 2H shows a cross-section of the hypocotyl of a wild strain grown in a saddle.
  • Figure 2I shows a cross-section of the hypocotyl of ilpl-lD grown in a pot.
  • Figure 2 J shows a wild-type cotyledon grown in a 7-day-old daylight.
  • Figure 2K shows ilpl'lD cotyledons grown in a 7-day-old daylight.
  • Figure 2L shows the cotyledon area of a wild strain, ilpl-lD, grown in a 7-day-old daylight.
  • FIG. 2 At least 20 seedlings were measured in F, G, and L.
  • Fig. 2 B, F, G, and sinusoidal bars show standard deviation.
  • Fig. 2 C and D bars are 10 ⁇
  • Fig. 2 E and J ⁇ ⁇ bar is 5mra
  • Fig. 2H I bar is 100 111. 1: 651 ;: Fig. 2 F, G, L * 0.001> p vs. wild strain.
  • Figure 3A shows the T-DNA insertion site in i lpl-lD.
  • Triangles with bars indicate activation tagging T-DNA insertion sites in i lpl-lD.
  • the black line on the bar shows four copies of the CaMV 35S enhancer near RB.
  • Small white and gray triangles indicate the T-DNA insertion sites of i lpl-1 (SALK_030650) and i lpl-2 (SALK-135563), respectively.
  • the short arrow indicates the primer position for real-time PCR in Figure 3B and Figure 6C, and the long arrow indicates the primer position for semi-quantitative RT-PCR in Figure 4B.
  • FIG. 3B shows real-time PCR analysis showing the expression of AT5g08550 (ILPl) in the wild strain (Col-0), ilpl-1D, and ILPlox.
  • Relative expression level Expression level of ILP1 gene in ilpl-lD and AT5 g 08550 (ILPl) overexpression strain (# 2) (ILPlox) relative to the wild strain. Error par indicates standard deviation.
  • FIG. 3C shows the relative ratio of cell ploidy of wild strain (Col-0) and ILPlox (# 2) grown in a certain place. Approximately 5000 nuclei were counted in wild strains and ILPlox.
  • FIG. 3D shows the amino acid sequence of the ILP1 protein.
  • the box surrounded by a broken line shows the motif 1, and the box surrounded by a solid line shows the motif 2.
  • Bold letters indicate putative nuclear localization signals (NLS).
  • FIG 3E shows the alignment of ILP1 motif 1 and its homologue.
  • ILP1 motif 1 was aligned with similar regions of other proteins: Arabidopsis (AT5g09210), human (AAK68721), mouse (AAK68725), and human GCF1 (AAA35598).
  • Arabidopsis AT5g09210
  • human AAK68721
  • mouse AAK68725
  • human GCF1 AAA35598
  • the amino acid identity and homology of ILP1 motif 1 and its homologs was 38% and 42% in Arabidopsis, 27% and 48% in humans, 27% and 48% in mice, and 28% and 52% in human GCF1. It was.
  • Figure 3F shows the alignment of ILP1 motif 2 and its homologue.
  • ILP1 motif 2 Similar to ILP1 motif 2 other proteins: Arabidopsis (AT5g09210), human (AAK68721), mouse (AAK68725), Drosophila (AAF54074), human GCF1 (AAA35598), and nematode (NP492341) Aligned with the area. All alignments were performed using clustalW and Mac Boxshade softwares. The amino acid identity and homology of ILPl motif 2 and its homologs are 72% and 77% in Arabidopsis, 27% and 45% in humans, 27% and 44% in mice, 28% and 48% in Drosophila, It was 22% and 43% for human GCF1, and 25% and 44% for nematodes. ( Figures 3E and F, gray letters indicate functionally conserved amino acid residues in at least 3 members. White letters with black background indicate conserved amino acid residues in all members.) .
  • Figure 3G shows the localization of ILP1: GFP.
  • the left panel shows the fluorescence of ILP1: GFP.
  • the right panel is an image of DAPI-stained nuclei. Triangular arrows indicate nuclei. The experiment was repeated three times.
  • Fig. 3H shows the elongation of the main root of ILP1 overexpressing body (ILPlox) grown in the dark. Error bars indicate standard deviation.
  • Fig. 3 I is the hypocotyl diameter of ILP1 overexpressing body (ILPlox) grown in a certain place. Error bars indicate standard deviation.
  • Figure 3 J is the cotyledon area of ILP4 overexpressing body (ILP4ox) grown in the light. Error bars indicate standard deviation.
  • Figure 4A shows the morphology of wild strains, ilpl_l and ilpl-2, grown in the dark. The seedlings were grown for 5 days. Each pair of seedlings from left to right is a wild strain, ilp l, ilpl-1 and ilpl-2 heterozygotes, and ilpl-2, respectively. The wild-type sibling of ilpl_l was used as a wild strain. The same results were obtained from wild-type sibs of ilpl-2. A white triangle arrow indicates the junction of the hypocotyl and root.
  • Figure 4B shows semi-quantitative RT-PCR for ILP1 expression. The number on the left indicates the number of PCR cycles. ACT2 was used as a control.
  • FIG. 4C shows the length of hypocotyls of wild-type, ilpl-1 and ilpl-2 seedlings grown in 3, 5, and 7 day old nurseries.
  • FIG. 4D shows seedlings grown in a 7 day old light place.
  • the seedling alignment is the same as in Figure 4A.
  • the white arrow indicates the hypocotyl / root junction.
  • Figure 4E shows the root lengths of wild strains, ilpl-l and ilpl-2, grown in the dark or light at 7 days of age (D: drought, WL: white light).
  • FIG. 4F shows the relative ratio of cell ploidy of wild strains, ilpl-1, and ilpl-2 homozygotes grown in the dark at 3, 5, and 7 days of age. Approximately 3000 nuclei were counted in the wild strains, ilpl-1, and ilpl-2.
  • FIG. 5A shows the construct used for the in vivo transcription assay.
  • GAL4-ILP1N A structure in which the GAL4 DNA binding domain (GAL4DB) is fused to the N-terminal region of ILP1 (amino acid residues 1-567).
  • GAL4-ILP1C GAL4DB is the C-terminal region of ILP1 (amino acid residue) 474-908),
  • GAL4ILPlFull A construct in which GAL4DB is fused to full-length ILP1.
  • the reporter plasmid contains a GAL4 binding site and a nopaline synthesis promoter (NOS-pro) upstream of the 0.2 kb LUC reporter gene.
  • the reference plasmid serves to monitor transcription efficiency due to GUS expression controlled by the constitutive CaMV35S promoter.
  • Figure 5B shows the in vivo transcription process in tobacco leaves.
  • LUC / GUS ratio LUC expression (reporter) was standardized by GUS expression (reference). Error bars indicate standard deviation. The experiment was repeated 5 times. .
  • FIG. 6A shows semi-quantitative RT-PCR analysis of cell cycle related genes.
  • CYCD3; 1, HISH4, CYCA2; 1 and CYCB1; 2 are G1-group, S-phase, G2-group and M-phase-specific markers, respectively.
  • ACT2 was used as a control. The number on the left indicates the PCR cycle.
  • FIG. 6B shows real-time PCR analysis of CYCA2 gene family members.
  • the expression level of CYCA2 family gene was normalized by ACT2 expression.
  • Relative expression level The expression level of the CYCA2 gene in the mutant and ILPlox strains compared to the wild strain. RNA was isolated from the hypocotyls grown in 7 days old of i lpl-1D and ILPlox (upper panel) and embryos grown in i lpl-1 and ilpl-2 at 3 days of age Isolated from the shaft (lower panel). Error bars indicate standard deviation. The experiment was repeated 4 times.
  • FIG. 6C shows real-time PCR analysis of ILP1 in the wild strain (Col-0). Error bars indicate standard deviation. Numbers indicate relative expression level of ILP1 relative to day 8. The experiment was repeated four times.
  • FIG. 6D shows real-time PCR analysis of the CYCA2 gene family in the first leaf at the four growth stages i lpl-lD and i lpl-2.
  • the expression level of the CYCA2 gene family was normalized to the ACT2 expression level.
  • Relative expression level The expression level of the CYCA2 gene in each mutant line relative to the wild type. CYCA2; 1 expression is wild after 12 days Not detected in strain and ilpl-ID.
  • Figure 6E shows the ploidy distribution pattern of the first leaves of wild strains, ilpl-1D, and ilpl-2 at different growth stages. Each ploidy fraction was designated as a wild strain (circle), ilpl-lD (square), and ilpl-2 (black triangle). Wild-type siblings of the same quality as ilpl-1D were used as wild strains. The same results were obtained from wild-type sibs of ilpl-2.
  • FIG. 7A shows the construct used for the in vivo transcription assay in mouse NIH3T3 cells.
  • pcDNA-ECFP-40 contained the enhanced cyanfluorescent protein (ECFP) gene, which was used as a control and
  • pcDNA-MusILPl-40 contained mouse ILP1 cDNA (731 aa, AAK68725).
  • the reporter plasmid consists of the Ccna2 promoter region (-170 to +100 bp at the transcription start site) fused to the LUC gene.
  • Reference plasmid serves to monitor the transcriptional efficiency of 3-galactosidase (LacZ) expression (CMVpro: CMV promoter, BGH pA: Ushi growth hormone polyadenylation site).
  • Figure 7B shows the in vivo transcription assay in mouse NIH3T3 cells.
  • LUC activity was normalized by i3_galactosidase activity (relative LUC activity: LUC activity of mouse ILP1 against ECFP). Activity was measured 24 and 48 hours after transfection. Error bars indicate standard deviation. The experiment was repeated 4 times.
  • FIG. 8A shows the locus of T-DNA insertion in CYCA2; 1.
  • the triangles indicate the T-DNA insertion sites of cyca2; l_l (SALK-121077) and cyca2; l-2 (SALK_136750).
  • FIG. 8B shows a semi-quantitative RT-PCR of CYCA2; 1. The numbers on the left indicate the number of PCR cycles.
  • FIG. 8C shows the relative cell ploidy ratios of wild strains, cyca2; l-1, and cyca2; l-2 homozygotes grown in some places.
  • Hyp. D Seedling hypocotyl cells grown in a certain place
  • Hyp. WL Seedling hypocotyl cells grown in a bright place
  • Cot. WL Seedling grown in a certain place Cotyledon cells.
  • C yca2; l- 1 of the same quality of wild-type siblings had use as a wild strain. The same results were obtained from wild-type sibs of cyca2; l-2. Approximately 3000 nuclei were counted in the wild strains, cyca2; l-1, and cyca2; l-2. Error bars indicate standard deviation.
  • Figure 9 shows the ilp2-D phenotype.
  • A The amount of DNA in the cotyledons of ilp2_D grown in the light. The top shows the wild type and the bottom shows ilp2-D.
  • F The amount of DNA in the hypocotyl of ilp2-D grown in ⁇ . The top shows the wild type and the bottom shows ilp2_D.
  • H A sprout form of ilp2-D, a wild strain grown in a 7-day old plant.
  • Figure 10 shows the ilp3-D phenotype.
  • FIG. 11 shows the phenotype of ILP4 overexpressing body (ILP4ox).
  • A. Amount of DNA in hypocotyl of ILP4 overexpressing body (ILP4ox) grown in the dark.
  • the error bar shows the standard deviation.
  • Figure 12 shows the phenotype of il P 5-D.
  • Ilp5-D has a thicker hypocotyl than the wild type.
  • ILP5ox Hypocotyl length and root length of ILP5 overexpressing body (ILP5ox) grown in the dark. Error bars indicate standard deviation. ILP5ox has longer roots than the wild type.
  • ILP5ox Hypocotyl diameter of ILP5 overexpressing body (ILP5ox) grown in some place. Error bars indicate standard deviation. ILP5ox has a thicker hypocotyl than the wild type.
  • ILP5ox ILP5 overexpressing body grown in light. The left shows the wild type and the right shows ILP5ox. ILP5ox has a larger cotyledon than the wild type.
  • Figure 13 shows the ilp7-D phenotype.
  • ILP7ox ILP7 overexpressing body
  • ILP7ox Hypocotyl length and root length of ILP7 overexpressing body grown in some place. Error bars indicate standard deviation. ILP7ox has longer roots than the wild type.
  • ILP7ox Hypocotyl diameter of ILP7 overexpressing body (ILP7ox) grown in the dark. Error bars indicate standard deviation. ILP7ox has a thicker hypocotyl than the wild type.
  • ILP7ox Cotyledon morphology of ILP7 overexpressing body grown in light. The left shows wild type, and the right shows ILP7ox. ILP7ox has a larger cotyledon than the wild type.
  • the gene of the present invention can be obtained by preparing a mutant in which transcription of a plant gene is activated by the activation tagging method, and cloning the causative gene.
  • Actuation T-DNA tagging vectors are randomly inserted into the Arabidopsis genome via agrobacterium to create an activation tag line.
  • T 2 plants were grown from seeds collected from the tag line, and phenotypes that were set in advance (nuclear DNA content, hypocotyl thickness and length, cotyledon size, and trichome branch number and size) Record the phenotypic traits based on the inspection items, etc., and record the digital image at the same time.
  • ⁇ generation means a plant generation obtained from the seeds of the plant of “ ⁇ generation 0 ”, which is a transformed plant generation.
  • One generation is the first set of transformed plants, and can be selected by using a selection agent (eg, antibiotic or herbicide) corresponding to the resistance gene of the transformed plant.
  • ⁇ 2 generation refers to a plant generation that is obtained by the flowers of "1 ⁇ generation” plants that were pre-selected as a trans Jie nick self-pollinated.
  • pPCVICEn4HPT developed by Walden et al. (Hayashi, H. et al, Sience, 258, 1350-1353, 1992) can be used.
  • This vector is a binary vector with four enhancers (-90 to -440) in the CaMV 35S promoter in tandem in close proximity to RB.
  • Arabidopsis thaliana is transformed with Agrobacterium GV3101 (pMP90RK) carrying this pPCVICEn4HPT. Transformation can be performed by a floral dip method in which the above-ground part of Arabidopsis thaliana is dipped in a suspension of agrobacterium and co-cultured.
  • the gene responsible for the mutation is cloned by transcriptional activation.
  • a closing method a plasmidless cue method is preferable, but a tail-PCR method or an adapter PCR method can be applied.
  • the specific method of the plasmid cue method is to purify the mutant DNA, treat it with various restriction enzymes, confirm the size of the Southern blot band, and insert the inserted T-DNA. Look for restriction enzymes that give a 20kb fragment.
  • the DNA is treated with the restriction enzyme, treated with phenol / chloroform, ethanol precipitated, and self-ligated with ligase. This is introduced into a competent cell (E.
  • a resistant strain is selected in a medium containing ampicillin, and then a plasmid is selected by an ordinary method.
  • the border sequence with the T-DNA of the genomic DNA contained in the obtained plasmid is determined, and the position on the genome where the T-DNA is inserted is determined. Based on this position, search using the data source (http: // www. Mips, biochera. Rapg. De) that has a translation start point within 6 kb from the enhancer sequence.
  • genes introduced into plants or recombination Design primers specific to the vector amplify the cDNA from the Arabidopsis cDNA library, and clone it. These cDNA fragments are introduced into plants via agrobacterium and examined to see if the mutant phenotype is reproduced.
  • the base sequence of cDNA can be determined by a known technique such as a chemical modification method of Maxam-Gilbert or a dideoxynucleotide chain termination method using M13 phage. Usually, an automatic base sequencer (eg, Appl. Sequencing is performed using iBI Biosystems ABI373 Sequencer, 310 DNA Sequencer, etc.
  • the obtained base sequence can be analyzed by DNA analysis software such as DNASIS (Hitachi Software Engineering Co., Ltd.), and the protein code portion encoded in the obtained DNA strand can be found.
  • AT5g08550 (Z010521) (the name of the tag line in parentheses) was isolated and identified as a gene having endurance promoting activity, and was named ILP-1.
  • the nucleotide sequence of ILP-1 is shown in SEQ ID NO: 1, and the amino acid sequence encoded by ILP-1 is shown in SEQ ID NO: 2, respectively.
  • AT4g22890 (Z009804), AT5gl4960 (Z 036220), AT5g56790 (Z032529), AT4gl5140 (Z05228), and AT5g57410 (Z058029) were isolated and identified as genes having the same activity for promoting end-reduplication by the above method.
  • ILP-3 ILP-4, ILP-5, and ILP-7.
  • the nucleotide sequences of ILP-2, ILP-3, ILP-4, ILP-5, and ILP-7 are shown in SEQ ID NOs: 3, 5, 7, 9, 11 and the amino acid sequence encoded by them is SEQ ID NO: 4 , 6, 8, 10 and 12 respectively.
  • these gene groups having the activity of promoting end-reduplication are referred to as ILP genes.
  • the ILP gene used in the present invention has one or several amino acids in the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10, or 12, as long as it has endurance promoting activity. It may be a gene encoding a protein consisting of a deleted, substituted or added amino acid sequence.
  • the number of amino acids that may be deleted, substituted, or added is the number that can be deleted, replaced, or added by a known mutant protein production method such as site-specific mutagenesis.
  • Okay preferably 1 to several.
  • 1 to 10 amino acid sequences shown in any of SEQ ID NOs: 2, 4, 6, 8, 10, or 12 Preferably 1 to 5 amino acids may be deleted, 1 to 10 amino acids in the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10, or 12, preferably 1 to 5 amino acids Or 1 to 10, preferably 1 to 5 amino acids of the amino acid sequence shown in SEQ ID NOs: 2, 4, 6, 8, 10 or 12 are replaced with other amino acids. It may be replaced.
  • “Mutation” here means a mutation artificially introduced mainly by a known mutant protein production method, but may be a similar naturally occurring mutation. '
  • the gene of the present invention comprises an amino acid sequence having 80% or more homology with the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10, or 12, and an endurance duplicate. Also included is a gene encoding a protein having Chillon promoting activity. The 80% or higher homology is preferably 85% or higher, more preferably 90% or higher, and most preferably 95% or higher. Sequence identity can be determined by FASTA search or BLAST search.
  • endo-reduplication refers to a special cell cycle in which DNA replicates without cell division
  • endo-reduplication promoting activity promotes the cell cycle and promotes the nucleus of plant cells. The activity that increases the amount of DNA.
  • “having end-duplication promoting activity” means that the above-described activity is the activity possessed by the protein having the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, or 12. It means that it is substantially equivalent.
  • the ILP gene according to the present invention hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the DNA comprising the base sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, or 11 It may be a gene containing DNA encoding a protein having an end-reduplication promoting activity.
  • the stringent condition means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed.
  • nucleic acids with high homology i.e., 80% or more, preferably 85% or more, more preferably 90% or more, with the nucleotide sequence shown in any of SEQ ID NOs: 1, 3, 5, 7, 9, or 11
  • the complementary strand of DNA consisting of a base sequence having 95% or more homology is hybridized, and the complementary strand of a nucleic acid having lower homology is not hybridized.
  • the sodium salt concentration is 15 to 750 mM, preferably 50 to 750 mM, more preferably 300 to 750 mM
  • the temperature is 25 to 70 ° C, preferably 50 to 70 ° C, more preferably 55 to This refers to conditions at 65 ° C. and a formamide concentration of 0-50%, preferably 20-50%, more preferably 35-45%.
  • the filter washing conditions after hybridization are usually 15-600 mM of sodium salt concentration, preferably 50-600 mM, more preferably 300-600 mM, and temperature of 50-70 ° C, preferably Is 55 to 70 ° C, more preferably 60 to 65 ° C.
  • the ILP gene used in the present invention is a nucleic acid obtained by performing PCR amplification using a primer designed based on the information of each nucleotide sequence and using a nucleic acid derived from a cDNA library or a genomic DNA library as a cage. It can be obtained as a fragment.
  • the ILP gene can be obtained as a nucleic acid fragment by performing hybridization using a nucleic acid derived from the above-mentioned library etc. as a cage and using a DNA fragment that is a part of the ILP gene as a probe.
  • the ILP gene may be synthesized as a nucleic acid fragment by various nucleic acid sequence synthesis methods known in the art such as chemical synthesis methods.
  • the amino acid deletion, addition, and substitution can be performed by modifying the gene encoding the protein by a technique known in the art. Mutation can be introduced into a gene by a known method such as the Kunkel method or the Gapped duplex method or a method equivalent thereto, for example, a mutation introduction kit (for example, Mutant-mutation method using site-directed mutagenesis). K (TAKARA) or Mutant-G (TAKARA)), etc., or LA PCR in vitro Mutagenes is series kit from TAKARA is used to introduce mutations.
  • TAKARA Mutant-mutation method using site-directed mutagenesis
  • LA PCR in vitro Mutagenes is series kit from TAKARA is used to introduce mutations.
  • the recombinant vector of the present invention used for plant transformation can be constructed by introducing the above ILP gene (hereinafter also referred to as “target gene”) into an appropriate vector.
  • target gene ILP gene
  • the vector for example, pBI, pPZP, and pSMA vectors that can introduce a target gene into a plant via agrobacterium are preferably used.
  • a pBI binary vector or an intermediate vector system is preferably used, and examples thereof include ⁇ 121, ⁇ 01, ⁇ .2, and ⁇ 3.3.
  • a binary vector is a shuttle vector that can replicate in Escherichia coli and agrobacterium, and when a plant is infected with agrobacterium that holds a binary vector, the LB and RB sequences on the vector It is possible to incorporate the DNA surrounded by the border sequence consisting of the plant nucleus DNA.
  • the vector of the pUC series can be introduced directly genes into plants, for example, P UC18, pUC19, pUC9 like.
  • plant virus vectors such as cauliflower mosaic virus (CaMV), kidney bean mosaic virus (BGMV), and tobacco mosaic virus (TMV) can also be used.
  • the target gene When using a binary vector-based plasmid, the target gene is inserted between the above-mentioned binary vector boundary sequences (LB, RB), and this recombinant vector is amplified in E. coli.
  • the amplified recombinant vector is introduced into Agrobacterium tumefaciens GV3101, C58, LBA4404, EHA101, EHA105, Agrobacterium rhizogenes LBA1334, etc. by the electroporation method, etc., and the agrobacterium is used for transduction of plants. .
  • an agrobacterium for plant infection containing the gene of interest can be prepared by the triple joining method (Nucleic Acids Research, 12: 8711 (1984)).
  • E. coli harboring a plasmid containing the target gene E. coli harboring a helper plasmid (eg, pRK2013, etc.), and agrobacterium are mixed and cultured on a medium containing rifampicillin and kanamycin.
  • a helper plasmid eg, pRK2013, etc.
  • the purified DNA is cleaved with a suitable restriction enzyme, inserted into a suitable vector DNA restriction enzyme site or a multiple cloning site, and ligated to the vector.
  • a suitable restriction enzyme inserted into a suitable vector DNA restriction enzyme site or a multiple cloning site
  • the target gene must be incorporated into a vector so that the function of the gene is exhibited. Therefore, the vector contains a replication origin for using a promoter, enhancer, terminator, and binary vector system upstream, inside, or downstream of the target gene (replication origin derived from Ti or Ri plasmid).
  • a selection marker gene can be linked.
  • the “promoter” does not have to be derived from a plant as long as it functions in plant cells and can induce expression in a specific tissue of a plant or at a specific developmental stage.
  • Specific examples include Cauliflower mosaic virus (CaMV) 35S promoter, nopaline synthase gene promoter (Pnos), corn-derived ubiquitin promoter, rice-derived actin promoter, tabacco-derived PR protein promoter, etc. It is done.
  • enhancer examples include an enhancer region that is used to increase the expression efficiency of the target gene and includes an upstream sequence in the CaMV35S promoter.
  • the terminator may be any sequence that can terminate the transcription of the gene transcribed by the promoter.
  • the terminator of the nopaline synthase (N0S) gene the terminator of the otatobin synthase (0CS) gene, CaMV 35S
  • N0S nopaline synthase
  • 0CS otatobin synthase
  • CaMV 35S One example is the terminator of RNA gene.
  • selection marker gene examples include an ampicillin resistance gene, a neomycin resistance gene, a hygromycin resistance gene, a bialaphos resistance gene, and a dihydrofolate reductase gene.
  • the selection marker gene may be ligated to the same plasmid together with the target gene as described above, or a recombinant vector may be prepared.
  • a recombination obtained by ligating the selection marker gene to the plasmid may be prepared separately. If prepared separately, co-transform each vector into the host.
  • the transformed plant of the present invention introduces the above gene or recombinant vector into the target plant.
  • “gene introduction” means that a target gene is introduced into a cell of the host plant by a known genetic engineering technique, for example.
  • the gene introduced here may be integrated into the genomic DNA of the host plant or may be present as it is contained in the foreign vector.
  • agrobacterium method As a method for introducing the above gene or recombinant vector into a plant, various methods already reported and established can be used as appropriate.
  • the agrobacterium method the PEG-calcium phosphate method, the electro
  • a top-position method a liposome method
  • a particle gun method a particle gun method
  • a microinjection method a method for introducing the above gene or recombinant vector into a plant.
  • protoplasts there are cases where protoplasts are used, tissue pieces are used, and plants themselves are used (in planta method).
  • agrobacterium with Ti or Ri plasmid (Agrobacterium turaefaciens or Agrobacterium rhizogenes, respectively) co-cultivation, fusion with agroplast with a spheroplast
  • agrobacterium with Ti or Ri plasmid Agrobacterium turaefaciens or Agrobacterium rhizogenes, respectively
  • co-cultivation fusion with agroplast with a spheroplast
  • a method spheroplast method
  • tissue piece it can be carried out by sterilizing the target plant; ⁇ infecting leaf-fed pieces (leaf discs) or infecting callus (undifferentiated cultured cells).
  • telomere length is a region of DNA.
  • ILP gene-specific primers are designed and PCR is performed.
  • the amplified product is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, or capillary electrophoresis, etc., stained with bromide zyme, SYBR Green solution, etc., and one amplified product.
  • amplification products can be detected by PCR using primers previously labeled with a fluorescent dye or the like.
  • the amplification product may be bound to a solid phase such as a microplate, and the amplification product may be confirmed by fluorescence or enzyme reaction.
  • the protein is extracted from the plant cell, fractionated by two-dimensional electrophoresis, and the ILP gene introduced into the plant cell is expressed by detecting the protein band encoded by the ILP gene. That is, it may be confirmed that the plant has been transformed. Subsequently, the amino acid sequence of the N-terminal region of the detected protein is determined by Edman degradation, etc., and it is confirmed whether it matches the amino acid sequence of the N-terminal region of SEQ ID NO: 2, 4, 6, 8, 10 or 12. By doing so, the transformation of the plant cell can be further demonstrated.
  • GUS beta-dalclonidase
  • LOC luciferase
  • GFP green fluorescent protein
  • CAT chloramphenico-norreacetyl ⁇ transferase
  • LacZ beta-galactosidase
  • the plant used for transformation in the present invention may be either a monocotyledonous plant or a dicotyledonous plant, such as Brassicaceae (Arabidopsis thaliana, cabbage, rapeseed, etc.), Gramineae (rice, corn, barley, wheat). , Etc.), Solanum (Tomato, Eggplant, Potato, Tobacco, etc.), Legumes (Soybean, Endo, Green Beans, etc.), Convolvulaceae (Satsumaimo, etc.), Euphorbiaceae (Cassava, etc.), Roses (Strawberry, etc.), etc.
  • the plants belonging to are not limited to these plants.
  • plant materials to be transformed include plant organs such as stems, leaves, seeds, embryos, ovules, ovary, shoot tips, plant tissues such as cocoons and pollen, and sections thereof, undifferentiated force It may be any of plant cultured cells such as lupus and proplasts from which cell walls have been removed by enzyme treatment. In the case of applying the in planta method, water-absorbing seeds or the whole plant can be used.
  • a transformed plant refers to the entire plant body, plant organs (eg, leaves, petals, stems, roots, grains, seeds, etc.), plant tissues (eg, epidermis, phloem, soft tissue, xylem, vascular bundles) etc), Or, it means any plant cultured cell (for example, callus).
  • an organ or an individual may be regenerated by a known tissue culture method.
  • a method for regenerating plant cells from plant cells can be performed, for example, as follows.
  • plant tissue or protoplasts are used as plant materials to be transformed, these are used as inorganic elements, vitamins, carbon sources, sugars as energy sources, plant growth regulators (auxin, cytokinin, gibberellin, absidine). Cultivated in a callus formation medium sterilized with the addition of acid, ethylene, brassinosteroid, etc.) to form dedifferentiated callus that grows indefinitely (hereinafter referred to as “force-loss induction”) . The callus thus formed is transferred to a new medium containing a plant growth regulator such as auxin and further propagated (passaged).
  • a plant growth regulator such as auxin
  • redifferentiation induction organ redifferentiation
  • induction of regeneration can be performed by appropriately setting the types and amounts of various components such as plant growth regulators such as auxin and carbon sources, light, temperature, etc. in the medium.
  • plant growth regulators such as auxin and carbon sources, light, temperature, etc.
  • somatic embryos, adventitious roots, adventitious buds, adventitious foliage, etc. are formed and further grown into complete plants.
  • storage or the like may be performed in a state before becoming a complete plant (for example, encapsulated artificial seeds, dried embryos, freeze-dried cells, tissues, etc.).
  • the transformed plant of the present invention is a progeny plant obtained by sexual reproduction or asexual reproduction of a plant into which the gene has been introduced (including a plant regenerated from a transformed cell or a callus), and its It also includes some of the tissues and organs of the progeny plants (seed, protoplasts, etc.).
  • the transformed plant of the present invention can be mass-produced by obtaining propagation materials such as seeds and protoplasts from plants transformed by introducing the ILP gene and cultivating or culturing them.
  • the amount of nuclear DNA in plant cells increases due to the expression of the ILP gene.
  • the transgenic plant can realize large-scale breeding.
  • Each cDNA spanning the entire coding region of the gene was amplified by PCR from the Super Script Arabidopsis cDNA library (Invitrogen, California) using the following primers.
  • ILP1-F 5'-GGGGTACCATGGGAAGTAACCGTCCTAAG-3 '(SEQ ID NO: 13)
  • ILP1-R 5'-ACGCGTCGACTCAAACTGCCTCCTTAAGATT-3 '(SEQ ID NO: 14)
  • ILP2-F 5 -GGGGTACCGGAAAATGGGTAGCAAGATG-3 '(SEQ ID NO: 15)
  • ILP2-R 5 -CGAGCTCAGGGTTTAAGCTTGGCTTCC-3 '(SEQ ID NO: 16)
  • ILP3-F 5 -GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGATTCTCTCGCTCTCGC-3 '(SEQ ID NO: 17)
  • ILP3-R 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTATTTCTCCCGACCAAACT-3 '(SEQ ID NO: 18)
  • ILP4-F 5 -GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAGCAGAAGGGTTTTAAA-3 '(layout Ij number 19)
  • ILP4-R 5 -GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATATTGGATTCATGACAAC-3 '(SEQ ID NO: 20)
  • ILP5-F 5 -GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGTGAATCAAAGAAAGCTA-3 '(IJ number 21)
  • ILP5-R 5 -GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAACACACCATTCCATCCCT-3 '(SEQ ID NO: 22)
  • ILP7-F 5 -GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCGGCGAATGATGCTGAA-3 '(SEQ ID NO: 23)
  • ILP7-R 5 -GGGGACCACTTTGTACAAGAAAGCTGGGTCTCATACTCCCTCAGCTGCCAA-3 '(SEQ ID NO: 24)
  • the resulting ILP1, 2 cDNA was digested with Kpnl and Sail or Sacl, and pPZPY122
  • CIP4 a new C0P1 target, is a nucleus— ⁇ ocal ized pos it ive regulator of Arabidopsi s photomorphogenes i s.
  • cDNA was amplified by PCR using the above primer set.
  • the amplified PCR fragment was cloned into pD0NR207 (Invitrogen Corp., Carlsbad, Calif., USA) betater by the BP reaction of the GATEWAY method.
  • pD0NR207 vector into which each cDNA has been incorporated pBIDAVL-GWRl nokina ri vectora (Nakazawa M, Ichika a T, Ishikawa A, Kooayashi H, Tsuhara Y, Kawashiraa M , Suzuki K, Muto S, Matsui M.
  • Activation tagging a novel tool to dissect the functions of a gene family. Plant J. 2003 34: 7 "-750.
  • 0 yy45 seedlings was transformed is, 50 g kanamycin and lOO ju g / 1 cell Farotakishimu on GM containing, PBIDAVL- the GWR1 50 mu g eight hygromycin and was selected 100 g / 1 cephalotaxine shim .
  • GFP GFP was amplified from yy217 using the following primers (GFPn-F and GFPn-R).
  • GFPn-F 5 -TCTAGAGGATCCCCCGGGGGTACCGTCGACATGGCAATGAGTAAAGGAGAA-3 '(SEQ ID NO: 25)
  • GFPn-R 5 -CGAGCTCTTATTTGTAAAGTTCATC-3 '(SEQ ID NO: 26)
  • the GFP fragment was digested with Xbal and Sacl and cloned into yy45 (yy45GFPn).
  • ILP1 cDNA is amplified by ILP1-F and ILP-R2-SAL (5'- ACGCGTCGACAACTGCCTCCTTAAGATTG- 3 ': SEQ ID NO: 27) using primers and Super Script Arabidopsis cDNA l ibrary force.
  • ILP1: GFP was prepared by cloning into the Kpnl and Sail sites of yy45GFPn. Onion epidermal cells were detached and placed on GM plates.
  • ILP1: GFP construct was loaded onto gold particles (1 ⁇ m diameter) according to the manufacturer's protocol. The particles were delivered to onion epidermal cells using a Biolistic PDS-1000 / He system (BIO-RAD, Calif.).
  • the impact parameters were rapture disc bursting pressure 3 ⁇ 4r 600 psi and the distance to the target tissue was 9 cm. Seen by BX60 microscopy (Olympus, Tokyo, Japan) 18 hours and 36 hours after impact with GFP fluorescence.
  • RT-PCR Semi-quantitative reverse transcription PCR analysis has been reported (Kimura, M., Yoshizumi, T., Manabe, K., Yaraamoto, ⁇ ., And Matsui, ⁇ . (2001) Arabidopsis transcriptional regulation by light stress via hydrogen peroxide-dependent and -independent pathways. Genes Cells 6, 607-617. The seeds were sown on GM plates containing sucrose, the plates were treated for 5 days and incubated at 22 ° C under white light for 3 days. Harvest seedlings and report total RNA (Yoshizumi, T., Nagata, N., Shiraada, H., and Matsui, M. (1999) An Arabidopsis ceil cycle -dependent kinase-related gene, CDC2b, plays a role in Isolated as described in regulating seedling growth in darkness. Plant Cell 11, 1883-1896.).
  • RNA is isolated from the seedlings using TRIzol (Invitrogen, CA) as described above, and the first strand cDNA is prepared in this form using the Superscript first-strand synthesis system (Invitrogen, CA) according to the manufacturer's instructions. Synthesized.
  • SYBR Green Realtime PCR Master Mix T0Y0B0, Osaka, Japan was used and analyzed by Mx3000P multiplex quantitative PCR system (STRATAGENE, CA). The following primer sets were used to investigate the expression levels of the ILPl gene (Fig. 3B, Fig. 6C) and the CYCA2 gene family (Fig. 6B, Fig. 6D).
  • ILPlrealF 5-AGCTTGCCAAGAAGGCATTG-3 '(SEQ ID NO: 30)
  • ILPlrealR 5, -TCATCAACGACGCAGTCAGA_3, (SEQ ID NO: 31)
  • CycA2; 4-R 5,-CTTGTCCGGTAGCTCTCCAG-3 '(SEQ ID NO: 39)
  • Plant material was fixed with 4% paraformaldehyde in buffer containing 20 mM sodium cacodylate at 4X for 24 hours, dehydrated with ethanol series, and then wrapped in Technovit 7100 resin (Kulzer and Co., Wehrheira, Germany). Buried. Sections (2 ⁇ 5 ⁇ thickness) were cut with a glass knife on the ultra-mix mouth tome, placed on a force bar slip and allowed to dry. They were stained with 0.1% phosphate buffered saline (pH 7.0) with 1% toluidine blue for 30 seconds and then washed with distilled water for 10 seconds. Samples were observed with an Olympus 1X70 microscope (Olympus, Tokyo, Japan).
  • primer 5 '-GGG GGA TCC GCG GG
  • a TAC CGA GG_3, (SEQ ID NO: 45), and pMA560 (Ma, J., Przibi l la, E., Hu,
  • Yeast activators stimulated plant gene expression ion (Nature 334, 631-633.)) And was amplified by PCR. J., Bogorad, Shi., And Ptashne,. Amplified fragments were amplified with BamHI and Xbal and cloned into the BamHI / Xbal site of yy76 (Yama raoto, Y. ⁇ ., And Deng, XW (1998) A new vector set for GAL4-dependent tractivation activation assay in plants. Plant Biotech. 15, 217-220.), Leaving a second BamHI site present between the Xbal site and GUS in the resulting clone.
  • This black PBIL221 (Nakaraura, M., Tsunoda, T., and Obokata, J. (2002) Photosynthesis nuclear genes generally lack TATA —boxes: a tobacco photosystem I gene responds to l ight yy97 was obtained by cloning into the BamHI / Hindlll site of through an initia tor. Plant J. 29, 1-10.
  • the yy97 plasmid was prepared from the GM2163 (Danf / Dcnf) strain for this assembly.
  • ILP1 cDNAs of various lengths were used for GAL-ILP1 Full, ILP1-F and ILP1-R primers, and for GAL4-ILP1N, ILP1-F and ILP1-No 2 -R (5, _GGGGTACCTTAGGATCCGTCACTCTCATCAGTGCT-3, SEQ ID NO: 46)
  • ILP1- No 5-F 5'-GCTCTAGAGGATCCATGACAGTT CTAAACAAACAT-3 ': SEQ ID NO: 47
  • the obtained cDNA was deleted with Kpnl and Sail, and yy64 (Yamamoto, YY, and Deng, XW (1998) A new vector set for GAL4— dependent transactivate ion assay in plants. -220.) At the Kpnl / Sall site. The gene gun method was performed on tobacco leaves (Nicotiana tabacura cv SRI) as described above. Luciferase activity was measured with a Lumat LB9507 luminometer (PerkinElmer, Mass.). (8) Cell culture and transformation
  • Mouse NIH3T3 cells were cultured in DMEM medium (Invitrogen, CA) supplemented with 10% fetal urine serum (FBS, Invitrogen, CA).
  • FBS Invitrogen, CA
  • transflector Ekushi Yong were plated NIH3T3 cells about 2. 0 x 10 5 to each Ueru of 12 Werutaita first plate.
  • C0 2 Inkyu 2 days after culturing in the beta one (5% C0 2) was performed using the transflector Ekushi Yon Lipofectamine 2000 (Invitrogen, CA). After 24 and 48 hours of transfection, luciferase activity was measured using a TD-20 / 20 luminometer (Promega, WI) according to the manufacturer's protocol.
  • the mouse ILP1 gene was amplified from total RNA prepared from NIH3T3 cells using the following primer set and confirmed by sequencing.
  • the PCR fragment was cloned into pcDNA-DEST40 using the GATE-WAY cloning system (Invitrogen, CA).
  • raouselLPlF 5 -GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGCCACCATGGACATGGAGAGCGAGAAG G-3 '(SEQ ID NO: 48) mouselLPIR: 5 '-GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATTTTCCTTCAATCAGAGACTT-3 (SEQ ID NO: 9)
  • the ploidy level of hypocotyl cells was measured using Arabidopsis seedlings grown in the dark.
  • the ethylene SIGNALE transmission mutant Ctrl-1 (Gendreau, E., Traas, J., Desnos, T., Grandjean, 0., Caboche, ⁇ ., And Hofte, ⁇ . 1997) Cellular bas is of hypocotyl growth in Arabidopsis thaliana. Plant Phys iol. 114, 295-305 ⁇ ).
  • the ctrl-1 grown in the drought increased the 32C peak significantly.
  • the relative ratio between ctrl-1 and wild type 8C / 32C and 16C / 32C was calculated.
  • ctrl-1 seedlings and wild type were mixed at a ratio of 7: 3 instead of 3: 1.
  • the ratio was calculated.
  • a screening standard of less than 1.0 for 8C / 32C and less than 2.0 for 16C / 32C was established ( Figure 1B), and these values were used to isolate dominant polyploid mutants. Used for.
  • the dominant mutant strain Z010521 called increased level of polyploidy ID (ilpl-ID) was characterized.
  • the sprouted hypocotyls grown in the plant had a ploidy level of 32C in the above-mentioned Atsey (FIG. 2A).
  • the homozygous ilpl-1D also had 32C-level cells, but the 32C peak was larger in some places compared to the wild-type strain (homologous siblings without T-DNA insertion) ( Figure 2A). ). This result was more evident when comparing total cell numbers for each ploidy level ( Figure 2B).
  • the increase in nuclear volume was measured by staining hypocotyls grown in the laboratory with 4 ', 6-diamidino-2-phenylindole (DAPI).
  • DAPI 6-diamidino-2-phenylindole
  • i lpl-lD seedlings had much larger nuclei than the wild type (Fig. 2C and Fig. 2D).
  • the wild-type hypocotyl contained up to 16C cells in this assembly, and the proportion of 16C cells increased in ilpl_lD (Fig. 2B).
  • the number of 16C cells increased in the cotyledons of ilpl-lD grown in the light, similar to hypocotyl cells (Fig. 2B).
  • the i lpl-lD phenotype was compared with that of the wild type in the photo studio and the photo studio. When grown at some point, the ilpl-lD homozygous line did not differ in hypocotyl length compared to the wild type (Fig.
  • the i lpl-1D zygotic mutant had larger cotyledons than the wild type (Fig. 2J-Fig. 2L).
  • the number of cells was examined along the long and short axes of the cotyledons, which means that the large cotyledon size of the mutant strain increased with the increase in the number of cells. But not due to an increase in individual cell size.
  • Adult ilpl-lD plants were almost the same height as the wild type
  • Activation ⁇ - DNA contains the hygromycin resistance gene as a selectable marker. Examination of T 2 progeny of i lpl-1D heterozygous plants revealed that about 70% of the progeny were resistant to hygromycin. This indicates that there is only one T-DNA in the genome. All hygromycin-tolerant plants showed increased ploidy levels in the third generation. These results are converted into action tags.
  • T-DNA is responsible for the increased ploidy phenotype.
  • ⁇ -DNA flanking sequences were isolated by plasmidless cue. After sequencing, the
  • T-DNA was inserted into the coding region of AT5g08560 (Fig. 3A).
  • the distance between the putative start codon and light border (RB) of T-DNA was about 1 kb for AT5g08550 and about 7.4 kb for AT5g08560 (Fig. 3A).
  • Real-time PCR examined the expression of AT5g08550 in ilpl-10 heterozygotes and wild-type strains.
  • AT5g08550 is for these lines
  • the ILP1 gene encodes a protein consisting of 908 amino acid residues.
  • the protein database using the BLASTP program to identify conserved motifs is a protein consisting of 908 amino acid residues.
  • ILP1 homologs were searched. This search revealed that ILP1 has similarity to the C-terminal region of human and other species of GC-binding factor (GCF) ( Figure 3D to Figure 3F).
  • GCF protein was first isolated as a transcriptional repressor that binds to the GC-rich sequence in the promoter region of epidermal growth factor (EGFR),] 3-actin, and force-dependent protease genes (Kageyama, R ., And Pastan,
  • GCF cDNA clone is a chimeric gene, the N-terminus of which is bound to the GC rich region, and the C-terminus is derived from another cDNA whose function is unknown.
  • this DNA-binding domain is called intrinsic GCF, and the gene encoding its C-terminal region is called CTILP1 (C-terminal region of ILP1).
  • ILP1 shows homology with CTILP1.
  • CTILP1 has a para-oral gene in mice, Drosophila, and elegans (Fig. 3 £ and Fig. 3).
  • ILP1 has a paralogous gene in the Arabidopsis genome (AT5g09210) (Fig. 3E and Fig. 3F). Two conserved motifs were found in ILP1 and other CTILP1 proteins. Motif 1 is present at residues 371-465 of ILP1 (FIGS. 3D and 3E), and motif 2 is present at residues 571-852 (FIGS.
  • 3D and 3F These two motifs are well conserved in various species of CTILP1. Motif 2 is particularly well conserved, but motif 1 was not found in the proteins of Drosophila and C. elegans. In addition, no significant homology was found in the N-terminal region of the CTILP1 protein.
  • 3D-PSSM Kelley, Shi, MacCallum, RM, and Sternberg, MJE (2000) Enhanced genome annotation us ing structural prol ries in the program 3D-PSSM. J. Mol. Biol. 299, 499-520.
  • PS0RT a program for detect ing sorting s ignals in proteins and predicting their subcel lular localization.
  • NLS nuclear localization signal
  • ILP1 green fluorescent protein
  • F1 plants also showed shorter hypocotyls and roots compared to the wild type in both the light and dark areas (FIGS. 4A and 4D). This result indicated that these lines are alleles and that deletion of ILP1 causes a short hypocotyl phenotype.
  • the ploidy levels of heterozygous ilpl-1 and ilpl-2 were examined in the dark. Both ilpl-1 and ilpl-2 reduced the number of 32C cells in 3-day-old seeded hypocotyl cells (Figure 4F). Hypocotyl length and fold in ilpl-1 and ilpl-2 In order to investigate the relationship with number, these mutant strains were analyzed at different stages of seedling growth.
  • i lpl-1 and i lpl-2 had shorter hypocotyls than the wild type at all growth stages (Fig. 4C). However, the decrease in the hypoploid level of hypocotyl cells recovered more than that of the wild type after 7 days of water absorption. This indicates that the decrease in ploidy is not a result of short hypocotyl length.
  • the first identified chimeric GCF has been reported to function as a transcriptional repressor (Kageyaraa, R., and Pastan, I. (1989) Molecular cloning and characterization of a human DNA binding factor that represses transcription.
  • GCF N-terminal part of this protein
  • ILP1 is homologous to CTILP1s, they have not been investigated in detail in mammalian cells.
  • in vivo transcription assay Yamamoto, Y. Y., and Deng, X. W. (1998) A new vector set for GAL4-dependent transactivate assay in plants. Plant Biotech.
  • ILP1 cDNA was fused to the C-terminal region of the GAL4 DNA binding domain (GAL4-ILPlFull). This chimera plasmid is placed in the promoter region.
  • a luciferase (LUC) reporter plasmid containing a GAL4 binding sequence was introduced into tobacco leaf cells by the Biolistic Bombardment method (Fig. 5A).
  • a reporter plasmid was prepared from an E. coli strain lacking DNA methylase to confirm that it was demethylated.
  • GAL4-ILPlFul was used, the lipoter activity decreased (Fig. 5B).
  • ILP1 has two conserved motifs. A portion of the ILP1 protein containing one of these motifs along with a nuclear localization signal (NLS) was expressed.
  • GAL4-ILP1N is a GAL4 containing the N-terminal region of ILP1 (residues 1-567)
  • End-reduplication is a type of cell cycle that may involve different cell cycle-related genes to switch to this cycle from the normal mitotic cell cycle. Therefore, several cell cycle-related genes expressed at specific stages of the mitotic cell cycle were examined. CyclinD3; l (CYCD3; l) (Riou-Khamlichi, C., Menges, M., Healy, JM, and Murray, JAH (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol. Cell Biol.
  • S phase-HistonM S phase-HistonM
  • HISH4 S phase-HistonM
  • CyclinA2; l CyCA2; 1) as S / G2 phase-specific gene, CyclinBl; 2 (CYCB1; 2) (Shaul, 0.
  • CYCA2; 1 is part of the gene family, and the Arabidopsis genome has four There are CYCA2 members (Vandepoele, K., Raes, J., De Veylder, L., Rouze, P., Rombauts, S., and Inze, D. (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14, 903-916.).
  • the expression of the CYCA2 gene in ILPlox and ilpl-ID was examined more accurately using real-time PCR.
  • the expression of all CYCA2 members was reduced ( Figure 6B, upper panel), and in particular, the expression of CYCA2; 1 in the ILPlox line was reduced to about 40% of the wild type.
  • CYCA2 gene in the ILP1 insertion mutant almost all CYCA2 gene families increased in both ilpl-1 and ilpl-2 ( Figure 6B, lower panel).
  • ILP1 expression during leaf growth was investigated. Expression gradually decreases with the growth of the first leaf, and after 20 days of water absorption, the first leaf is in the growth phase (Vlieghe, K., Boudolf, V., Beemster, GT, Maes, S., Magyar. ⁇ ., Atanassova, A., de Almeida Engler, J., De Groodt, R., Inze, D., and De Veylder, L. (2005) The DP-E2F-like gene DELI controls the endocycle in Arabidopsis thaliana. Curr. Biol. 15 , 59-63.), it became one-tenth of the level on the 8th day (Fig. 6 C).
  • Cyclone A expression is under Ccna2 promoter (-Huet, X., Rech, J., Plet, A., Vie, A., and Blanchard, JM (1996)) Negative transcriptional control during the cell cycle. Mol. Cell Biol. 16, 3789-3798.) was used. This region is conserved between the mouse and human cyclin A2 promoter.
  • the i3-galactosidase (LacZ) gene was used as an internal standard for this assay. As shown in FIG. 7B, in the cells transfected with the mouse ILP1 gene, a decrease in reporter activity was observed both at 24 hours and 48 hours after the transfection.
  • CYCA2 CYCA2; 1 has been extensively studied and this gene expression has been reported to be specific for the S / G2 phase (Shaul, 0., Mironov, V ⁇ , Burssens,
  • T-DNA collection (Alonso, JM, Stepanova, AN, Leisse, TJ, Kim, CJ, Chen, H., Shinn, P., Stevenson, DK, Zimmerman, J., Barajas, P., Cheuk, R, et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657.
  • the ploidy level of the CYCA2; 1 T-DNA insertion mutant obtained from (1) was examined. Two independent T-DNA insertion lines were examined.
  • T-DNA was in the first exon (SALK_121077) and in inserted line 2 (cyca2; l_2) it was in the fourth intron (SALK_136750) (FIG. 8A).
  • RT-PCR analysis suggested that these two lines were null ( Figure 8B).
  • Both cyca2; ll and cyca2; l-2 homozygous lines showed little morphological differences from the wild type at the adult stage. The form of seedlings grown in the same place was also the same as the wild type. When ploidy levels were observed in these T-DNA-inserted lines, both had an increased proportion of 32C cells in hypocotyls grown in the place compared to the wild type (Fig.
  • the remaining 5 mutants il P 2_D, 3-D, 4-D, 5-D, and 7-D, also showed Group 1 characteristics, and increased DNA content was observed in both light and light.
  • the cotyledon area increased, the trichome, which has three branches appearing on the surface of Arabidopsis thaliana, increased in number of branches, root elongation, and hypocotyl diameter.
  • transformants overexpressing ILP2, ILP5, and ILP7 had increased DNA content in the hypocotyl and showed a phenotype similar to that of the mutant strains (Figs.
  • a gene having an activity of promoting the end-replication of plant cells and increasing the amount of nuclear DNA has been found.
  • the size of the plant body is determined by the number and size of the cells that make up the plant body, and the larger the amount of nuclear DNA, the larger the plant cell. Therefore, by using this gene, plant breeding in which the entire plant body or a part thereof is enlarged is possible.
  • tomato fruits are known to cause end-duplication, so it is expected to be used for breeding such as producing large tomatoes using this gene.
  • the endosperm cells of cereal grains such as rice and corn develop as the DNA content increases, so it can be applied to the enlargement of endosperm.
  • genes related to substance production can also be doubled, increasing the production of various useful substances produced by plants (for example, anthocyanins and flavonoids). It is also possible to make it happen.
  • Mutants that have been promoted by end-reduplication are known to be resistant to ultraviolet rays (Hase Y, Trung KH, Matsunaga T, Tanaka A (2006) A mutation in the uvi4 gene promotes progression of endo-redupl ication and confers increased tolerance towards ultraviolet B l ight. Plant J. 46: 317-326.). This is because the damage of DNA damage can be complemented by increasing the number of genes per cell. As a secondary effect, the use of this gene can be expected to breed stress-resistant crops that cause DNA damage such as ultraviolet rays.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、植物におけるエンドリデュプリケーションを制御する遺伝子を解明し、当該遺伝子を作物の大型化に向けた育種に利用することを課題とする。 本発明によれば、配列番号2、4、6、8、10、又は12に示すシロイヌナズナ由来のエンドリデュプリケーション促進活性を有するタンパク質をコードする遺伝子、当該遺伝子が導入され、植物細胞の核DNA量が増加した形質転換植物、当該遺伝子を用いて植物体全体又はその一部を大型化する方法が提供される。

Description

ェンドリデュプリケ一シヨン促進活性を有する遺伝子
技術分野
本発明は、植物においてェンドリデュプリケーシヨン促進活性を有する遺伝子、 及び当該遺伝子を導入した形質転換植物などに関する。 明
背景技術
エンドリデュプリケ一シヨンは、 核の染色体 DNA複製が細胞分裂なしに起こる 書
一種の細胞周期である。 エンドリデュプリケーシヨンが繰り返し起こると、 核の DNA量 (核相) が基本の 2Cから倍増するので、 4Cや 8Cといった倍化した核 DNA 量を持つ細胞が生まれる。 細胞は核 DNA量の増加と比例して大きくなることが知 られている。 生物の大きさは、 個体を構成する細胞の数と大きさで決まるので、 ェンドリデュプリケーションは生物の大きさを決める仕組みの 1つになると考え られる。
エンドリデュプリケーシヨンは、 昆虫や哺乳類において幾つかの組織で観察さ れるが、 植物器官の特有の特徴であり、 植物の生長と他の生物の生長とを区別し うるものである。 植物において、 多くの器官は異なる倍数性レベルの細胞の混合 物からなり、 この特徴は胚軸伸長、 子葉の展開、 胚乳の発達において際立ってい る。 倍数性細胞は、 例えば、 昆虫、 哺乳類、 植物などの種々の多細胞生物におい て共通して観察される(非特許文献 1、 2 )。 倍数性細胞は種々の発達中の組織に おいて煩雑に見られ、 分化と関係することから、 倍数性は分化のマーカ一である と考えられている(非特許文献 3 )。
幼植物体における下胚軸の伸長は、 ェンドリデュプリケーションによる細胞の 大型化の典型である。 シロイヌナズナ胚軸の細胞は、 明所で生育させた芽生えで は 8C (Cはハプロイ ド染色体のセットである) の核 DNAを含んでおり、暗所で生育 させた芽生えでは 16Cの核 DNAを含んでいる(非特許文献 4 )。 胚軸の倍数性レべ ルは植物ホルモンによって制御されることも知られている (非特許文献 5 )。 const itutively triple responsel (ctrl) はエチレンシグナノレ力構成的に活十生ィ匕 され、 外来性エチレンなしにトリプル応答性を引き起こすエチレンシグナル転移 変異株である力 S (Kieber, J. J". , Rothenberg, M. , Roman, G. , Feldmann, K. A. , and Ecker, J. R. (1993) CTR1, a negat ive regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf fami ly of protein kinases. Cel l 72, 427- 441. )、 ctrl は喑所で生育させた芽生えにおいて胚軸中の倍数性レ ベルが増加して 32Cを有する(非特許文献 6 )。 これは、 エチレンが胚軸細胞にお いてエンドリデュプリケーシヨンを正に調節することを示す。
エンドリデュプリケーシヨンはまた植物器官の発達にも関与している。 トライ コームは 32Cまでの核を含む単一の細胞からなる(非特許文献 7 )。 ェンドリデュ プリケーシヨンはまた胚乳において観察され、 胚乳の発達に細胞周期関連遺伝子 が関与しているという幾つかの報告がある(非特許文献 8 、 9 )。
以上から、 エンドリデュプリケーシヨンの制御は植物の生育と分化に重要な役 割を臬たしているといえる。
これまで、 ェンドリデュプリケーシヨンを制御する因子として細胞周期関連因 子が知られており、 代表的にはサイクリンが挙げられる。 例えば、 D-型サイタリ ン遺伝子 CYCD3 ; 1 はシロイヌナズナにおいて分裂組織や生育中の葉に特異的に 発現するが、 CYCD3 ; 1 を過剰発現させたトランスジヱニック植物においては倍数 性レベルが減少し、 細胞サイズが小さくなることが報告されている(非特許文献 10)。 これは、 CYCD3 ; 1 が 植物組織においてエンドリデュプリケーシヨンを阻害 することによって細胞増殖に関与することを示している。 また、 シロイヌナズナ A-型サイクリン遺伝子 CYCA2 ; 1 は、エンドリデュプリケーションがほとんど生じ ない孔辺細胞のような種々の細胞に発現することが報告されている (非特許文献 11 , 12)。 同じく A-型サイクリン遺伝子である、 タバコ CYCA3 ; 2 をシロイヌナズ ナにおいて過剰発現させると、倍数性レベルが種々の組織で減少すること(非特許 文献 13)、 また、 シロイヌナズナ CYCA2 ; 3 の機能欠失は成熟本葉において倍数性 を増加きせること(非特許文献 14) が報告される。 従って、 特に A-型サイクリン は植物においてェンドリデュプリケーション制御に重要な役割を有しているとい える。 このように、 エンドリデュプリケーションに関する研究報告は幾つか存在する ものの、 植物におけるェンドリデュプリケーションのメカニズムについて解明さ れていない点が多く、 このメカニズムを解明することが、 植物の大きさを決める 仕組みを理解することになり、 さまざまな利用が可能となる。
(非特許文献 1 ) Edgar, B , and Orr-Weaver, T. L. (2001) Endoreplication cell cycles: more for less. Cell 105, 297—306.
(非特許文献 2) Joubes, J., and Chevalier, C. (2000) Endoreduplication in higher plants. Plant Mol. Biol. 43, 735-745.
(非特許文献 3) De Veylder, L. , Beeckman, T. , Beemster, G. T. , Krols, L. , Terras, F. , Landrieu, I., van der Schueren, E. , Maes, S., Naudts, M. , and Inze, D. (2001) Functional analysis of cycl in-dependent kinase inhibitors of Arabidopsis. Plant Cell 13, 1653-1668.
(非特許文献 4) Gendreau, E., Traas, J. , Desnos, T. , Grandjean, 0. , Caboche, ., and Hofte, H. (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol. 114, 295 - 305.
(非特許文献 5) Gendreau, E., Orbovic, V. , Hofte, H. , and Traas, J. (1999) Gibberellin and ethylene control endoreduplication levels in the Arabidopsis thaliana hypocotyl. Planta 209, 513 - 516.
(非特許文献 6 ) Gendreau, E. , Traas, J., Desnos, T. , Grandjean, 0., Caboche, M. , and Hofte, H. (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol. 114, 295 - 305.
(非特許文献 7) Melaragno, J. E. , Mehrotra, B., and Coleman, A. W. (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5, 1661—1668
(非特許文献 8 ) Sun, Y. , Flannigan, Β. A., and Setter, T. L. (1999) Regulation of endoreduplication in maize (Zea mays L. ) endosperm. Isolation of a novel Bl - type cyclin and its quantitative analysis. Plant Mol. Biol. 41, 245-258. (非特許文献 9) Larkins, B. A., Dilkes, B. P. , Dante, R. A., Coelho, C. M. , Woo, Y. M. , and Liu, Y. (2001) Investigating the hows and whys of DNA endoredupl'ication. J. Exp. Bot. 52, 183—192.
(非特許文献 10) Dewitte, W. , Riou - Khamlichi, C. , Scofield, S., Healy, J. M. , Jacqmard, A. , Kilby, N. J. , and Murray, J. A. H. (2003) Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D - type cyclin CYCD3. Plant Cell 15, 79 - 92
(非特許文献 11) Melaragno, J. E. , Mehrotra, B. , and Coleman, A. W. (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5, 1661-1668.
(非特許文献 12) Burssens, S. , de Almeida Engler, J. , Beeckman, T. , Richard, C. , Shaul, 0. , Ferreira, P. , Van Montagu, M. , and Inze, D. (2000) Developmental expression of the Araoidopsis thaliana CycA2;l gene. Planta 211, 623-631.
(非特許文献 13) Yu, Y. , Steinmetz, S., Meyer, D. , Brown, S., Shen, W. H. (2003). The tobacco A- type Cyclin, Nicta;CYCA3;2, at the nexus of cell division and differentiation. Plant Cell 15, 2763-2777.
(非特許文献 14) Imai, K. K. , Ohashi, Υ., Tsuge, Τ. , Yoshizumi, Τ. , Matsui, . , Oka, Α.; and Aoyama, T. (2006) The A-Type Cyclin CYCA2;3 Is a Key Regulator of Ploidy Levels in Arabidopsis Endoreduplication. Plant Cell 18, 382-396.
発明の開示
従って、 本発明の課題は、 植物におけるエンドリデュプリケーシヨンを制御す る遺伝子を解明し、 当該遺伝子を作物の大型化に向けた育種に利用することにあ る。
本発明者らは、 上記課題を解決すべく鋭意研究を重ねた結果、 シロイヌナズナ ァクチべ—ションタギングラインからフローサイ トメ トリ一によつて細胞核の
DNA 量が増加した変異株を探索し、 そのような表現型が優性に表れる幾つかの変 異株を得た。 これら変異株では喑所および明所で生育した芽生えにおいて DNA量 が増大していた。このため、これら変異株を increased level of polyploidy (ilp) と名付けた。 現在までに、 原因遺伝子が確認できている変異株は ilpl- D、 2-D、 3-D、 4- D、 5- D、 そして 7- Dの 6系統ある。 これら変異株では DNA含量の増大に伴 う細胞の大型化も観察されている。 解析の一例として ilpl-lD について、 以下に 述べる。 原因遺伝子(ILP1 遺伝子) をプラスミ ドレスキュー法にて単離し、 その 構造及び機能解析を行った結果、 ILP1遺伝子を過剰発現させると子葉が拡大し芽 生えが長くなること、 ILP1遺伝チは哺乳類 GC-結合因子(GCF)の C末端領域に相同 な新規な核タンパク質をコードすること、 前記核タンパク質は in vivo で転写抑 制因子として機能すること、 ILP1遺伝子はシロイヌナズナにおいてもマウスにお いてもサイクリン A2の発現を抑制することが確認できた。サイクリン A 2は、 DNA が複製された後に細胞分裂を促進する働きを有する。 従って、 ILP1タンパク質が サイクリ ン A2遺伝子の発現を抑制し、その結果、エンドリデュプリケーシヨンが 促進されて核 DNA量が増加すると考えられた。 本発明はかかる知見により完成さ れたものである。
即ち、 本発明は以下の発明を包含する。
(1) 以下の(a)〜(c)のいずれかの遺伝子。
(a) 配列番号 1 、 3 、 5 、 7 、 9、 又は 1 1に示す塩基配列からなる DNAを含む 遺伝子
(b) 配列番号 1 、 3 、 5 、 7 、 9、 又は 1 1に示す塩基配列からなる DNAと相補 的な塩基配列からなる DNAとストリンジェントな条件下でハイブリダイズし、 か っェンドリデュプリケーション促進活性を有するタンパク質をコードする DNAを 含む遺伝子
(c) 配列番号 1 、 3 、 5 、 7 、 9、 又は 1 1に示す塩基配列に対して 80°/ο以上 の相同性を有する塩基配列からなり、 かつェンドリデュプリケーシヨン促進活性 を有するタンパク質をコードする DNAを含む遺伝子
(2) 以下の(d)〜(f)のいずれかのタンパク質をコードする遺伝子。
(d) 配列番号 2 、 4 、 6 、 8 、 1 0、 又は 1 2に示すアミノ酸配列からなるタン パク質
(e) 配列番号 2 、 4 、 6 、 8 、 1 0、 又は 1 2に示すアミノ^配列において 1若 しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつエンドリデュプリケーション促進活性を有するタンパク質
(f) 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すアミノ酸配列に対して 80% 以上の相同性を有するアミノ酸配列からなり、 かつェンドリデュプリケー:ンヨン 促進活性を有するタンパク質
(3) 以下の(c!)〜(f)のタンパク質。
(d) 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すアミノ酸配列からなるタン パク質
(e) 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すアミノ酸配列において 1若 しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつエンドリデュプリケーシヨン促進活性を有するタンパク質
(f) 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すアミノ酸配列に対して 80% 以上の相同性を有するアミノ酸配列からなり、 かつエンドリデュプリケーシヨン 促進活性を有するタンパク質
(4) (1)又は(2)に記載の遺伝子を含む組換えべクター。
(5) (1)若しくは(2)に記載の遺伝子、 又は(4)に記載の組換えベクターが導入さ れ、 植物細胞の核 DNA量が増加した形質転換植物。
(6) 植物が、 植物体、 植物器官、 植物組織、 又は植物培養細胞である、 (5)に記 載の植物細胞の核 DNA量が増加した形質転換植物。
(7) (1)若しくは(2)に記載の遺伝子、 又は(4)に記載の組換えベクターを植物細 胞に導入し、 該植物細胞から植物体を再生することを特徴とする、 植物細胞の核 DNA量が増加した形質転換植物の作出方法。
(8) (1)又は(2)に記載の遺伝子を植物体内で過剰発現させることにより、植物体 全体又はその一部を大型化する方法。 図面の簡単な説明
図 1 Aは、 野生株(Col-0)と ctrl- 1 の各細胞倍数性の相対比を示す。 約 5000 の核を野生株(Col- 0)と ctrl- 1の変異株においてカウントした。
図 1 Bは、 野生株(Col- 0)、 ctrl- 1、 及ぴ 3: 7の比の Col- 0 と ctrl- 1 の混合 (j Jド ώυυ 11 υ · 物を暗所で生育した芽生えの 8C/32Cと 16C/32Cの比率を示す。黒いバーは変異株 スク リーニングに用いたカテゴリーを示す。 各倍数性測定のために、 少なく とも 20芽生えを用い、 3回反復した。 エラーバーは標準偏差を示す。
図 2 Aは、 7 日齢の暗所で生育させた芽生えの胚軸細胞の倍数性レベルのヒス トグラムを示す。 左のパネル:野生株、 右のパネル: ホモ接合体 ilpl_lD、 X軸: 核の倍数性、 Y軸:細胞数。 約 5000の核を野生株及び ilpl- 1D において力ゥント した。
図 2 Bは、喑所及び明所で生育させた野生株及び ilpl-lD の細胞倍数性の相対 比を示す。少なくとも 20芽生えを倍数性分析に用い、それを 3回反復した。 (Hyp. D) : 暗所で生育させた芽生えの胚軸細胞、 (Hyp. WL) : 明所で生育させた芽生え の胚軸細胞、 (Cot. WL) :明所で生育させた子葉細胞。 約 3000-5000の核を野生株 及び ilpl_lDにおいて力ゥントした。
図 2 Cは、 野生株の胚軸の下側部分の核の DAPI染色を示す。
図 2 Dは、 ilpl-lDの胚軸の下側部分の核の DAPI染色を示す。
図 2 Eは、 7 日齢の喑所で生育させた野生株(左側 2つの芽生え)と ilpl- 1D (右 側 2つの芽生え) の形態を示す。 白い矢印は胚軸と根の結合部を示す。
図 2 Fは、 7 日齢の喑所で生育させた野生株及び ilpl-lD の芽生えの胚軸及び 根の長さを示す。
図 2Gは、 7 日齢の暗所で生育させた野生株及び ilpl- 1D の芽生えの胚軸の直 径を示す。
図 2 Hは、 喑所で生育させた野生株の胚軸の横断面を示す。
図 2 Iは、 喑所で生育させた ilpl-lDの胚軸の横断面を示す。
図 2 Jは、 7 日齢の明所で生育させた野生株の子葉を示す。
図 2Kは、 7 日齢の明所で生育させた ilpl」lDの子葉を示す。
図 2 Lは、 7 日齢の明所で生育させた野生株、 ilpl-lDの子葉面積を示す。
(図 2 F, G, Lでは少なく とも 20 芽生えを測定した。 図 2 B, F, G, しの バーは標準偏差を示す。図 2 C、 Dのバーは 10 πι、図 2 E, J , Κのバーは 5mra、 図 2H、 Iのバーは 100 111を示す。 1: 651;: 図 2 F, G, Lの *0.001>p 対野生株。) 図 3 Aは、 i lpl-lD における T-DNA 挿入部位を示す。 バーを有する三角形は i lpl-lDにおけるァクチべーションタギング T-DNA挿入部位を示す。 バー上の黒 ラインは RB近くの CaMV 35S ェンハンサ一の 4つのコピーを示す。 小さい白及び グレーの三角印はそれぞれ i lpl-1 (SALK_030650)と i lpl- 2 (SALK— 135563)の T - DNA揷入部位を示す。 短い矢印は図 3 B、 図 6 Cにおけるリアルタイム PCRの ためのプライマー位置を示し、 長い矢印は図 4 Bにおけるセミ定量 RT- PCR のた めのプライマー位置を示す。
図 3 Bは、 野生株(Col- 0)、 ilpl- 1D、 及び ILPloxにおける AT5g08550 (ILPl) の発現を示すリアルタイム PCR 分析を示す。 相対発現レベル :野生株に対する ilpl-lD 及び AT5g08550 (ILPl)過剰発現株 (#2) (ILPlox)における ILP1遺伝子の 発現レベル。 エラーパーは標準偏差を示す。
図 3 Cは、 喑所で生育させた野生株(Col-0)及び ILPlox (#2)の各細胞倍数性の 相対比を示す。 約 5000の核を野生株及び ILPloxにおいてカウントした。
図 3 Dは、 ILP1タンパク質のアミノ酸配列を示す。 破線で囲ったボックスはモ チーフ 1を、 実線で囲ったボックスはモチーフ 2を示す。 太文字は推定上の核局 在化シグナル(NLS)を示す。
図 3 Eは、 ILP1モチーフ 1とそのホモログのァラインメントを示す。 ILP1モチ ーフ 1を他のタンパク質: シロイヌナズナ (AT5g09210)、 ヒ ト(AAK68721)、 マウ ス(AAK68725)、及びヒ ト GCF1 (AAA35598)の類似の領域と並べた。 ILP1モチーフ 1 とそのホモログのアミノ酸同一性と相同性はシロイヌナズナでは 38%と 42 %、 ヒ トでは 27%と 48 %、 マウスでは 27%と 48%、 ヒ ト GCF1では 28%と 52%であった。 図 3 Fは、 ILP1モチーフ 2とそのホモログのァラインメントを示す。 ILP1モチ ーフ 2を他のタンパク質: シロイヌナズナ (AT5g09210)、 ヒ ト(AAK68721)、 マウ ス(AAK68725)、 ショウジヨウバエ(AAF54074)、 ヒ ト GCF1 (AAA35598)、 及び線虫 (NP492341)の類似の領域と並べた。 全てのアラインメントは clustalW and Mac Boxshade softwaresを用いて実施した。 ILPlモチーフ 2とそのホモログのァミノ 酸同一性と相同性はシロイヌナズナでは 72%と 77%、 ヒ トでは 27%と 45%、 マウス では 27%と 44 %、 ショウジヨウバエでは 28%と 48%、 ヒ ト GCF1では 22%と 43%、 及び線虫でほ 25%と 44 %であった。 (図 3 E、 Fにおいて、 グレーの文字は少なくとも 3メンバーにおける機能的に 保存されたアミノ酸残基を示す。 黒をバックにした白抜き文字はすべてのメンバ 一において保存されたアミノ酸残基を示す。)
図 3 Gは、 ILP1:GFPの局在化を示す。 左のパネルは ILP1:GFPの蛍光を示す。 右のパネルは DAPI-染色した核の画像である。 三角矢印は核を示す。 実験は 3回 繰り返した。
図 3Hは、暗所で生育した ILP1過剰発現体(ILPlox)の主根の伸長。エラーバー は標準偏差を示す。
図 3 Iは、喑所で生育した ILP1過剰発現体(ILPlox)の胚軸径。エラーバーは標 準偏差を示す。
図 3 Jは、明所で生育した ILP4過剰発現体(ILP4ox)の子葉面積。エラーバーは 標準偏差を示す。
図 4 Aは、 暗所で生育させた野生株、— ilpl_l、 及び ilpl-2の形態学を示す。 芽 生えを 5日間生長させた。左から右へ芽生えの各ペアはそれぞれ野生株、 ilp l, ilpl- 1 と ilpl-2のへテロ接合体、 及び ilpl- 2である。 ilpl_lの同質野生型同 胞を野生株として用いた。 同じ結果が ilpl-2の野生型同胞から得られた。 白い三 角矢印は胚軸と根の結合部を示す。
図 4 Bは、 ILP1の発現に対するセミ定量的 RT- PCRを示す。 左の数は PCRサイ クル数を示す。 ACT2をコントロールとして用いた。
図 4 Cは、 3, 5, 及び 7 日齢の喑所で生育させた野生株、 ilpl-1及ぴ ilpl-2 芽 生えの胚軸の長さを示す。
図 4Dは、 7 日齢の明所で生育させた芽生えを示す。 芽生えのアラインメント は図 4 Aと同じである。 白い矢印は胚軸と根の結合部を示す。
図 4 Eは、 7 日齢の暗所又は明所で生育させたた野生株、 ilpl-l、及ぴ ilpl-2 の 根の長さを示す (D:喑所, WL:白色光)。
図 4 Fは、 3, 5, 及び 7 日齢の暗所で生育させた野生株、 ilpl- 1、 及ぴ ilpl - 2 ホモ接合体の各細胞倍数性の相対比を示す。 約 3000の核を野生株、 ilpl- 1、 及び ilpl-2 でカウントした。
(図 4A, Dにおけるノく一は 5 ram を示す。 図 4 C, Eの Student's t- test: * 0. 001〉p対野生株。)
図 5 Aは、 in vivo 転写アツセィに用いた構築物を示す。 GAL4- ILP1N : GAL4 DNA 結合ドメイン(GAL4DB)を ILP1の N末端領域(ァミノ酸残基 1-567)に融合させた構 築物、 GAL4-ILP1C: GAL4DBを ILP1の C末端領域(ァミノ酸残基 474-908)に融合 させた構築物、 GAL4ILPlFull : GAL4DBを全長 ILP1に融合させた構築物。 リポー タープラスミ ドは GAL4 結合部位と 0. 2kbの LUC リポーター遺伝子の上流にある ノパリン合成プロモーター(NOS-pro)を含む。 参照プラスミ ドは構成的 CaMV35S プロモーターによって制御された GUS 発現による転写効率をモニターするよう に働く。
図 5 Bは、 タバコ葉における in vivo 転写アツセィを示す。 LUC/GUS比: LUC 発 現 (リポーター)を GUS 発現(参照)で標準化した。エラーバーは標準偏差を示す。 実験は 5回繰り返した。 .
図 6 Aは、細胞周期関連遺伝子のセミ定量的 RT- PCR分析を示す。 CYCD3 ; 1, HISH4, CYCA2 ; 1及び CYCB1 ; 2はそれぞれ G1基-, S期-, G2基- 及び M期-特異的マーカ 一である。 ACT2をコントロールとして用いた。 左側の数字は PCRのサイクルを示 す。
図 6 Bは、 CYCA2遺伝子ファミリーメンバーのリアルタイム PCR分析を示す。 CYCA2 フアミリー遺伝子の発現レベルを ACT2 発現で標準化した。 相対発現レべ ル: 野生株に対する変異株と ILPlox株それぞれにおける CYCA2遺伝子の発現レ ベル。 RNAを i lpl- 1D と ILPlox の 7 日齢の喑所で生育させた胚軸から単離し(上 のパネル)、 i lpl- 1 と ilpl - 2 の 3 日齢の喑所で生育させた胚軸から単離した(下 のパネル)。 エラーバーは標準偏差を示す。 実験は 4回繰り返した。
図 6 Cは、 野生株(Col-0)における ILP1のリアルタイム PCR分析を示す。 エラ 一バーは標準偏差を示す。数字は 8 日目に対する ILP1相対発現レベルを示す。実 験は 4回繰り返した。
図 6 Dは、 i lpl-lD と i lpl-2の 4つの生育ステージでの第一葉における CYCA2 遺伝子フアミリーのリアルタイム PCR 分析を示す。 CYCA2遺伝子フアミリーの発 現レベルを ACT2発現レベルで標準化した。相対発現レベル:野生株に対する各変 異系統における CYCA2遺伝子の発現レベル。 CYCA2 ; 1 発現は 12 日後において野生 株及び ilpl- IDにおいて検出されなかった。
図 6 Eは、 異なる生育段階における野生株、 ilpl- 1D、 及び ilpl- 2の第一葉の 倍数性分布パターンを示す。 各倍数性のフラクションを野生株(丸)、 ilpl-lD (四 角)、 及び ilpl-2 (黒三角)とした。 ilpl- 1Dの同質の野生型同胞を野生株として 用いた。 同じ結果を ilpl-2 の野生型同胞から得た。
図 7 Aは、 マウス NIH3T3 細胞における in vivo 転写アツセィに用いた構築物 を示す。 pcDNA-ECFP- 40 は増強シアンフルォレツセントタンパク質(ECFP)遺伝子 を含んでおり、 コントローノレとして用レ、、 pcDNA-MusILPl-40はマウス ILP1 cDNA (731 aa,AAK68725)を含んでいた。 リポータープラスミ ドは LUC 遺伝子に融合さ せた Ccna2 プロモーター領域(転写開始部位の- 170から +100 bp)からなる。 参照 プラスミ ドは 3-ガラク トシダーゼ (LacZ)発現による転写効率をモニタ一する役 割を果たす (CMVpro : CMV プロモーター, BGH pA: ゥシ成長ホルモンポリアデニ ル化部位)。
図 7 Bは、 マウス NIH3T3 細胞における in vivo 転写アツセィを示す。 LUC活 性は i3 _ガラク トシダーゼ活性にて標準化した (相対 LUC 活性: ECFPに対するマ ゥス ILP1の LUC 活性)。活性はトランスフエクシヨン 24時間及び 48時間後に測 定した。 エラーバーは標準偏差を示す。 実験は 4回繰り返した。
図 8 Aは、 CYCA2;1における T-DNA挿入の遺伝子座を示す。三角印は cyca2;l_l (SALK— 121077)及び cyca2;l- 2 (SALK_136750)の T-DNAの挿入部位を示す。
図 8 Bは、 CYCA2;1のセミ定量的 RT- PCRを示す。 左側の数字は PCRのサイクル 数を示す。
図 8 Cは、 喑所及び明所で生育させた野生株、 cyca2;l- 1、 及び cyca2;l- 2 ホ モ接合体の細胞倍数性の相対比を示す。 (Hyp. D) : 喑所で生育させた芽生えの胚 軸細胞、 (Hyp. WL) : 明所で生育させた芽生えの胚軸細胞、 (Cot. WL) : 喑所で 生育させた芽生えの子葉細胞。 Cyca2;l- 1 の同質の野生型同胞を野生株として用 いた。 同じ結果が cyca2;l - 2の野生型同胞から得られた。約 3000の核を野生株、 cyca2;l- 1、 及び cyca2;l- 2においてカウントした。 エラーバーは、 標準偏差を示 す。
図 9は、 ilp2- Dの表現型を示す。 A. 明所で生育した ilp2_Dの子葉における DNA量。 上は野生型を、 下は ilp2-D を示す。
B. 明所で生育した ilp2-Dの子葉の形態。 上は野生型を、.下は ilp2- Dを示す。 ilP2-Dは野生型より大きな子葉を有する。
C. 明所で生育した ilp2-Dの子葉面積。 エラーバーは標準偏差を示す。
D. 暗所で生育した ILP2過剰発現体(ILP2ox)の胚軸における DNA量。エラーバー は標準偏差を示す。
E. 喑所で生育した ILP2過剰発現体(ILP20X)の胚軸径。エラーバーは標準偏差を 示す。
F. 喑 で生育した ilp2- Dの胚軸における DNA量。 上は野生型を、 下は ilp2_D を示す。
G.暗所で生育した ilp2_Dの胚軸における DNA量。エラーバーは標準偏差を示す。
H. 7日齢の喑所で生育した野生株、 ilp2-Dの芽生えの形態を示す。
I .喑所で生育した ilP2-Dの胚軸長と根長。ェラ一バーは標準偏差を示す。 ilP2-D は野生型より根が伸長する。
J . 喑所で生育した ilp2- D の胚軸径。 エラーバーは標準偏差を示す。 ilp2-Dは 野生型より太い胚軸を持つ。
図 10は、 ilp3- Dの表現型を示す。
A. 暗所で生育した ilp3-Dの胚軸における DNA量。 左は野生型を、 右は ilp3-D を示す。
B. 明所で生育した ilp3-Dの子葉の形態。 左は野生型を、 右は ilp3-Dを示す。 ilP3-Dは野生型より大きな子葉を有する。
C. 明所で生育した ilp3-Dの子葉面積。 エラーバーは標準偏差を示す。
D. 7日齢の暗所で生育した野生株、 ilp3- Dの芽生えの形態を示す。
E .暗所で生育した ilp3-Dの胚軸長と根長。ェラ一バーは標準偏差を示す。 ilp3-D は野生型より根が伸長する。
F. 暗所で生育した ilp3-Dの胚軸径。 エラーバーは標準偏差を示す。 ilp3-Dは 野生型より太い胚軸を持つ。
図 1 1は、 ILP4過剰発現体(ILP4ox)の表現型を示す。 A. 暗所で生育した ILP4過剰発現体(ILP4ox)の胚軸における DNA量。エラーバ一 は標準偏差を示す。
B. 明所で生育した ILP4過剰発現体(ILP4ox)の子葉面積。エラーバーは標準偏差 を示す。
図 1 2は、 ilP5-Dの表現型を示す。
A.暗所で生育した ilp5-Dの胚軸における DNA量。エラーバーは標準偏差を表す。
B. 喑所で生育した ilp5- Dの胚軸の表面 (電子顕微鏡像)。 左は野生型を、 右は ilp5-Dを示す。 Ilp5-Dは野生型より太い胚軸を持つ。
C. 喑所で生育した ILP5過剰発現体(ILP5ox)の胚軸における DNA量。
D. 7 日齢の暗所で生育した野生株、 ILP5過剰発現体(ILP5ox)の芽生えの形態を 示す。
E. 暗所で生育した ILP5過剰発現体(ILP5ox)の胚軸長と根長。 エラーバーは標準 偏差を示す。 ILP5oxは野生型より根が伸長する。
F. 喑所で生育した ILP5過剰発現体(ILP5ox)の胚軸径。エラーバーは標準偏差を 示す。 ILP5oxは野生型より太い胚軸を持つ。
G. 明所で生育した ILP5過剰発現体(ILP5ox)の子葉の形態。 左は野生型を、 右は ILP5oxを示す。 ILP5oxは野生型より大きな子葉を有する。
H. 明所で生育した ILP5過剰発現体(ILP5ox)の子葉面積。エラーバーは標準偏差 を示す。
図 1 3は、 ilp7- Dの表現型を示す。
A.暗所で生育した ilp7- Dの胚軸における DNA量。エラーバーは標準偏差を表す。
B. ilp7-D の本葉におけるトライコームの分布。 写真上は通常のトライコーム、 下は分枝が 1つ増加し大きくなったトライコーム。 ilp7-Dでは分枝が増えている もの (大型化したトライコーム) の数が野生型に比べて増加する。 エラーバーは 標準偏差を表す。
C. 喑所で生育した ILP7過剰発現体(ILP7ox)の胚軸における DNA量。エラーバー は標準偏差を示す。
D. 7 日齢の喑所で生育した野生株、 ILP7過剰発現体(ILP7ox)の芽生えの形態を 示す。 E . 喑所で生育した ILP7過剰発現体(ILP7ox)の胚軸長と根長。エラーバーは標準 偏差を示す。 ILP7oxは野生型より根が伸長する。
F . 暗所で生育した ILP7過剰発現体(ILP7ox)の胚軸径。エラーバーは標準偏差を 示す。 ILP7oxは野生型より太い胚軸を持つ。
G . 明所で生育した ILP7過剰発現体(ILP7ox)の子葉の形態。 左は野生型を、 右は ILP7oxを示す。 ILP7oxは野生型より大きな子葉を有する。
H . 明所で生育した ILP7過剰発現体(ILP7ox)の子葉面積。エラーバーは標準偏差 を示す。 本願は、 2007年 3月 28 日に出願された日本国特許出願 2007-085500号の優先 権を主張するものであり、 該特許出願の明細書に記載される内容を包含する。 以下に、 本発明について詳細に述べる。
I . エンドリデュプリケーシヨ ン促進活性を有する遺伝子
本発明の遺伝子は、 ァクチべーションタギング法により植物遺伝子の転写を活 性化した突然変異体を作成し、 原因となっている遺伝子をクローユングすること により取得できる。
具体的には、 以下の手順で行うことができる。
(i) ァクチべーシヨン T-DNAタギング用べクタ一を、 ァグロバクテリウムを介 してシロイヌナズナのゲノムに無作為に挿入し、 ァクチべーションタグラインを 作成する。
(i i) タグラインより採取した種子から T2植物を生育させ、 あらかじめ設定した 表現形質 (核 DNA量、 胚軸の太さと長さ、 子葉の大きさ、 及びトライコームの分 枝数と大きさなど) に関する検査項目に基づいて表現形質を記録し、 同時にその デジタルイメージも記録する。
(i i i) T2世代において野生型と明らかに表現形質の異なる変異株のゲノムから Τ- DNAを含んだ DNA断片をプラスミ ドレスキュー法により回収し、 その配列を決 定する。
(iv)上記 DNA断片を野生型シロイヌナズナに導入して、 変異体の表現形質が再現 できるかどうかを調べる。
(V)対応する c DNAをクローニングする。
なお、本明細書において、 「Ί 世代」 とは、形質転換を施した植物世代である 「Τ0 世代」 の植物の種子から得られた植物世代を意味する。 「1 世代」 は、 形質転換植 物の最初の集合であり、その形質転換植物が持つ耐性遺伝子に対応する選択剤(例 えば抗生物質や除草剤) を用いることによって選択することができる。 また、 「Τ2 世代」 とは、 トランスジエニックであるとしてあらかじめ選択した 「1\世代」 植 物の花を自家受粉して得られる植物世代を意味する。
ァクチべーシヨン Τ- DNAタギング用べクタ一としては、 Waldenら (Hayashi, H. et al, Sience, 258, 1350-1353, 1992)の開発した pPCVICEn4HPTを用いることが できる。 本ベクターは、 RBに近接して CaMV 35Sプロモーター中のェンハンサー (-90〜 -440)を 4つタ ンデムに持つバイナ リ ーベク タ一である。 こ の pPCVICEn4HPTを保有するァグロバクテリゥム GV3101 (pMP90RK)にてシロイヌナズ ナを形質転換する。 形質転換は、 シロイヌナズナの地上部をァグロパクテリゥム 懸濁液に浸けて共存培養する floral dip法により行うことができる。
興味深い突然変異体が得られたら、 転写活性化によって変異の原因となる遺伝 子をクローニングする。 クローエングの方法としては、 プラスミ ドレスキュー法 が好ましいが、 Tai l-PCR法やアダプター PCR法などを応用することが出来る。 プ ラスミ ドレスキュー法の具体的な方法は、 変異体の DNAを精製し、 種々の制限酵 素で処理してサザンブロットょりバンドのサイズを確認し、 挿入 T- DNAを含めて 約 10〜20kbの断片を与えるような制限酵素を探す。 次に、 DNAをその制限酵素で 処理し、 フヱノール/クロ口ホルム処理し、 エタノール沈殿した後、 リガーゼに て自己ライゲ一シヨンを行う。 これをコンビテントセル (大腸菌 DH10B)にエレク トロポレーシヨンにて導入し、アンピシリンを含む培地にて耐性株を選択した後、 通常の方法でプラスミ ドを選択する。 得られたプラスミ ド中に含まれるゲノム DNA部分の T-DNAとの境界配列を決定し、 T- DNAが挿入されたゲノム上の位置を決 定する。 その位置をもとにェンハンサー配列から 6kb以内に翻訳開始点を持つ遺 子 ¾rシ口 ヌナズナグノムのデータへース (http : //www. mips, biochera. rapg. de) を用いて検索する。 これらを候補遺伝子として、 植物に導入した遺伝子又は組換 えベクターに特異的プライマーを設計し、シロイヌナズナ cDNAライブラリ一から cDNAを増幅し、 クローニングする。 これらの cDNA断片をァグロバタテリゥムを 介して植物に導入し、 変異体の表現型が再現されるかどうかを調べる。
cDNAの塩基配列の決定はマキサム-ギルバートの化学修飾法、 又は M13 ファー ジを用いるジデォキシヌクレオチド鎖終結法等の公知手法により行うことができ るが、 通常は自動塩基配列決定装置 (例えば Appl ied Biosystems社製 ABI373シ ークェンサ一、 同社 310 DNAシークェンサ一等) を用いて配列決定が行われる。 得られた塩基配列を、 DNASIS (日立ソフトウェアエンジニアリング社) 等の DNA 解析ソフトによって解析し、 得られた DNA鎖中にコードされているタンパク質コ ード部分を見出すことができる。
上記手法により、ェンドリデュプリケーシヨン促進活性を有する遺伝子として、 AT5g08550 (Z010521) (括弧内はタグラインの名称) が単離同定され、 ILP- 1 と命 名した。 ILP-1の塩基配列を配列番号 1に、 ILP- 1によりコードされるアミノ酸配 列を配列番号 2にそれぞれ示す。 また、 上記手法により同じくエンドリデュプリ ケーション促進活性を有する遺伝子として、 AT4g22890 (Z009804)、 AT5gl4960 (Z 036220)、 AT5g56790 (Z032529)、 AT4gl5140 (Z05228)、 AT5g57410 (Z058029) が 単離同定され、 それぞれ ILP-2, ILP-3, ILP-4, ILP- 5, ILP- 7と命名した。 ILP - 2, ILP-3, ILP-4, ILP- 5, ILP-7の塩基配列をそれぞれ配列番号 3、 5、 7、 9、 1 1に、 またそれらによりコードされるアミノ酸配列を配列番号 4、 6、 8、 1 0、 1 2にそれぞれ示す。 以下、 これらのエンドリデュプリケーシヨン促進活性 を有する遺伝子群を ILP遺伝子と称する。
本発明に使用する ILP遺伝子は、 ェンドリデュプリケーシヨン促進活性を有す る限り、 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すアミノ酸配列において 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からな るタンパク質をコードする遺伝子であってもよい。
ここで、 欠失、 置換若しくは付加されてもよいアミノ酸の数としては、 部位特 異的突然変異誘発法等の公知の変異タンパク質作製法により欠失、 置換、 若しく は付加できる程度の数をいい、 好ましくは、 1個から数個である。 例えば、 配列 番号 2、 4、 6、 8、 1 0、又は 1 2のいずれかに示すアミノ酸配列の 1〜10個、 好ましくは 1〜5個のアミノ酸が欠失してもよく、 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すアミノ酸配列に 1〜10個、 好ましくは 1〜5個のアミノ酸が 付加してもよく、 あるいは、 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すァ ミノ酸配列の 1〜10個、好ましくは 1〜5個のアミノ酸が他のアミノ酸に置換し てもよい。 また、 ここにいう 「変異」 は、 主には公知の変異タンパク質作製法に より人為的に導入された変異を意味するが、 天然に存在する同様の変異であって ちょい。 '
また、 本発明の遺伝子には、 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示す アミノ酸配列に対して 80%以上の相同性を有するアミノ酸配列からなり、かつェ ンドリデュプリケーシヨン促進活性を有するタンパク質をコードする遺伝子も含 まれる。 上記 80%以上の相同性は、 好ましくは 85%以上、 より好ましくは 90% 以上、 最も好ましくは 95%以上の相同性をいう。 配列の同一性は、 FASTA検索や BLAST検索により決定することができる。
ここで、 「エンドリデュプリケーシヨン」 とは、 細胞分裂を伴わないで DNA複製 する特殊な細胞周期をいい、 「エンドリデュプリケーシヨン促進活性」 は、 前記細 胞周期を促進し、 植物細胞の核 DNA量を増加させる活性をいう。
また、 「エンドリデュプリケーシヨン促進活性を有する」 とは、 上記の活性が、 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に記載のアミノ酸配列を有するタンパ ク質が有する活性と実質的に同等であることをいう。
本発明に係る ILP遺伝子は、 配列番号 1、 3、 5、 7、 9、 又は 1 1に示す塩 基配列からなる DNAと相補的な塩基配列からなる DNAとストリンジェントな条件 下でハイブリダィズし、 エンドリデュプリケーシヨン促進活性を有するタンパク 質をコードする DNAを含む遺伝子であってもよい。
ここで、 ストリンジェントな条件とは、 いわゆる特異的なハイブリッドが形成 され、 非特異的なハイブリッドが形成されない条件をいう。 例えば、 相同性が高 い核酸、 すなわち配列番号 1、 3、 5、 7、 9、 又は 1 1のいずれかに示す塩基 配列と 80%以上、 好ましくは 85%以上、 より好ましくは 90%以上、 最も好まし く 95%以上の相同性を有する塩基配列からなる DNAの相補鎖がハイブリダィズし、 それより相同性が低い核酸の相補鎖がハイブリダイズしない条件が挙げられる。 より具体的には、 ナトリゥム塩濃度が 15〜750mM、 好ましくは 50〜750mM、 より好 ましくは 300〜750mM、 温度が 25〜70°C、 好ましくは 50〜70°C、 より好ましくは 55〜65°C、 ホルムアミ ド濃度が 0〜50%、 好ましくは 20〜50%、 より好ましくは 35〜45%での条件をいう。 さらに、 ストリンジェントな条件では、 ハイブリダィ ゼーション後のフィルターの洗浄条件が、通常はナトリゥム塩濃度が 15〜600mM、 好ましくは 50〜600mM、 より好ましくは 300〜600mM、 温度が 50〜70°C、 好ましく は 55〜70°C、 より好ましくは 60〜65°Cである。
当 fe者でめれば、 Molecular Cloning ( Sarabrook, J. et al . , Molecular Cloning ' a Laboratory Manual 2nd ed. , Cold Spring Harbor Laboratory Press, 10 Skyl ine Drive Plainview, NY (1989) ) 等を参照することにより、 こうしたホ モログ遺伝子を容易に取得することができる。 また、 上記の配列の相同性は、 同 様に、 FASTA検索や BLAST検索により決定することができる。
本発明に用いる ILP遺伝子は、 それぞれの塩基配列の情報に基づいて設計した プライマーを用いて、 cDNAライブラリ一又はゲノム DNAライブラリ一等由来の核 酸を铸型とした PCR増幅を行うことにより、 核酸断片として得ることができる。 また ILP遺伝子は、 上記ライブラリ一等由来の核酸を铸型とし、 当該 ILP遺伝子 の一部である DNA断片をプローブとしてハイブリダイゼーションを行うことによ り、 核酸断片として得ることができる。 あるいは ILP遺伝子は、 化学合成法等の 当技術分野で公知の各種の核酸配列合成法によって、 核酸断片として合成しても よい。
上記アミノ酸の欠失、 付加、 及び置換は、 上記タンパク質をコードする遺伝子 を、当該技術分野で公知の手法によって改変することによって行うことができる。 遺伝子に変異を導入するには、 Kunkel法又は Gapped duplex法等の公知手法又は これに準ずる方法により行うことができ、 例えば部位特異的突然変異誘発法を利 用した変異導入用キット (例えば Mutant- K (TAKARA社製) や Mutant-G (TAKARA社 製) )などを用いて、 あるいは、 TAKARA社の LA PCR in vi tro Mutagenes i s シリ 一ズキットを用いて変異が導入される。
2 . 組換えベクター 植物形質転換に用いる本発明の組換えベクターは、 上記 ILP遺伝子 (以下、 「目 的遺伝子」 ともいう) を適当なベクターに導入することにより構築することがで きる。 ここで、 ベクターとしては、 例えば、 ァグロパクテリゥムを介して植物に 目的遺伝子を導入することができる、 pBI系、 pPZP系、 pSMA系のベクターなどが 好適に用いられる。 特に pBI系のバイナリーベクター又は中間ベクター系が好適 に用いられ、 例えば、 ρΒΙ 121、 ρΒΠ01、 ρΒΙΙΟΙ. 2、 ρΒΙΙΟΙ. 3等が挙げられる。 バ イナリーベクターとは大腸菌 (Escherichia col i) 及びァグロパクテリゥムにお いて複製可能なシャトルベクターで、 バイナリーベクターを保持するァグロパク テリムを植物に感染させると、 ベクター上にある LB配列と RB配列より成るボー ダー配列で囲まれた部分の DNAを植物核 DNAに組み込むことが可能である。一方、 pUC 系のベクターは、 植物に遺伝子を直接導入することができ、 例えば、 PUC18、 pUC19、 pUC9等が挙げられる。 また、 カリフラワーモザイクウィルス (CaMV)、 ィ ンゲンマメモザイクウィルス (BGMV)、 タバコモザイクウィルス (TMV) 等の植物 ウィルスベクターも用いることができる。
バイナリーベクター系プラスミ ドを用いる場合、 上記のバイナリーベクターの 境界配列(LB,RB)間に、 目的遺伝子を挿入し、 この組換えベクターを大腸菌中で増 幅する。次いで、増幅した組換えべクターを Agrobacterium tumefaciens GV3101、 C58、 LBA4404, EHA101、 EHA105あるいは Agrobacterium rhizogenes LBA1334等 に、 エレク ト口ポレーシヨン法等により導入し、 該ァグロバクテリゥムを植物の 形質導入に用いる。
また、 上記の方法以外にも、 三者接合法 (Nucleic Acids Research, 12 : 8711 (1984) ) によって、 目的遺伝子を含む植物感染用ァグロパクテリゥムを調製 することができる。 すなわち、 目的遺伝子を含むプラスミ ドを保有する大腸菌、 ヘルパープラスミ ド(例えば、 pRK2013 等)を保有する大腸菌、 及びァグロバクテ リウムを混合培養し、 リファンピシリン及びカナマイシンを含む培地上で培養す ることにより植物感染用の接合体ァグロバタテリゥムを得ることができる。
ベクターに目的遺伝子を挿入するには、 まず、 精製された DNAを適当な制限酵 素で切断し、適当なベクター DNAの制限酵素部位又はマルチクローニングサイ ト に挿入してベクターに連結する方法などが採用される。 また、 目的遺伝子は、 その遺伝子の機能が発揮されるようにベクターに組み込 まれることが必要である。 そこで、 ベクターには、 目的遺伝子の上流、 内部、 あ るいは下流に、 プロモーター、 ェンハンサー、 ターミネータ一、 バイナリーべク ター系を使用するための複製開始点 (Ti又は Riプラスミ ド由来の複製開始点な ど)、 選抜マーカ一遺伝子などを連結することができる。
「プロモータ一」 としては、 植物細胞において機能し、 植物の特定の組織内あ るいは特定の発育段階において発現を導くことのできる DNAであれば、 植物由来 のものでなくてもよい。 具体例と しては、 カリ フラワーモザイクウィルス (CaMV) 35Sプロモーター、 ノパリン合成酵素遺伝子のプロモーター (Pnos)、 トウ モロコシ由来ュビキチンプロモーター、 イネ由来のァクチンプロモーター、 タバ コ由来 PRタンパク質プロモーター等が挙げられる。
ェンハンサ一としては、 例えば、 目的遺伝子の発現効率を高めるために用いら れ、 CaMV35S プロモーター内の上流側の配列を含むェンハンサー領域などが挙げ られる。
ターミネータ一としては、 プロモーターにより転写された遺伝子の転写を終結 できる配列であればよく、 例えば、 ノパリン合成酵素 (N0S)遺伝子のターミネ一 ター、 オタ トビン合成酵素(0CS)遺伝子のターミネータ一、 CaMV 35S RNA 遺伝子 のターミネータ一等が挙げられる。
選抜マーカー遺伝子としては、 例えば、 アンピシリン耐性遺伝子、 ネオマイシ ン耐性遺伝子、 ハイグロマイシン耐性遺伝子、 ビアラホス耐性遺伝子、 ジヒ ドロ 葉酸還元酵素遺伝子などが挙げられる。
また、 選抜マーカー遺伝子は、 上記のように目的遺伝子とともに同一のプラス ミ ドに連結させて組換えベクターを調製してもよいが、 あるいは、 選抜マーカー 遺伝子をプラスミ ドに連結して得られる組換えベクターと、 目的遺伝子をプラス ミ ドに連結して得られる組換えベクターとを別々に調製してもよい。 別々に調製 した場合は、 各ベクターを宿主にコトランスフエク ト (共導入) する。
3 . 形質転換植物及びその作出方法
本発明の形質転換植物は、 上記遺伝子又は組換えベクターを対象植物に導入す ることによって作出することができる。 本発明において 「遺伝子の導入」 とは、 例えば公知の遺伝子工学的手法により、 目的遺伝子を上記宿主植物の細胞内に発 現可能な形で導入することを意味する。 ここで導入された遺伝子は、 宿主植物の ゲノム DNA中に組み込まれてもよいし、 外来ベクターに含有されたままで存在し ていてもよい。
上記遺伝子又は組換えベクターを植物中に導入する方法どしては、 既に報告さ れ、 確立されている種々の方法を適宜利用することができ、 例えば、 ァグロパク テリゥム法、 P E G—リン酸カルシウム法、 エレク ト口ポレーシヨン法、 リポソ ーム法、 パーティクルガン法、 マイクロインジェクション法等が挙げられる。 ァ グロバクテリウム法を用いる場合は、 プロ トプラストを用いる場合、 組織片を用 いる場合、 及び植物体そのものを用いる場合 (in planta 法) がある。 プロ トプ ラストを用いる場合は、 Ti プラスミ ドないしは Riプラスミ ドをもつァグロパク テリゥム (てれぞれ Agrobacterium turaefaciens又は Agrobacterium rhizogenes) ど共存培養する方法、 スフエロプラスト化したァグロパクテリゥムと融合する方 法 (スフエロプラスト法)、 組織片を用いる場合は、 対象植物の無菌;^養葉片 (リ ーフディスク) に感染させる方法やカルス (未分化培養細胞) に感染させる等に より行うことができる。 また種子あるいは植物体を用いる in planta法を適用す る場合、 すなわち植物ホルモン添加の組織培養を介さない系では、 吸水種子、 幼 植物(芽生え)、鉢植え植物などへのァグロパクテリゥムの直接処理等にて実施可 能である。 これらの植物形質転換法は、 「島本功、 岡田清孝 監修、 新版 モデル植 物の実験プロ トコール 遺伝学的手法からゲノム解析まで (2001)、 秀潤社」 など の一般的な教科書の記載に従って行うことができる。
遺伝子が植物体に組み込まれたか否かの確認は、 PCR 法、 サザンハイブリダィ ゼーシヨン法、 ノーザンハイブリダィゼーシヨン法、 ウェスタンブロッテイング 法等により行うことができる。 例えば、 形質転換植物から DNAを調製し、 ILP遺 伝子特異的プライマーを設計して PCRを行う。 PCRを行った後は、 増幅産物につ いてァガロースゲル電気泳動、 ポリアクリルアミ ドゲル電気泳動又はキヤビラリ 一電気泳動等を行い、 臭化工チジゥム、 SYBR Green液等により染色し、 そして増 幅産物を 1本のバンドとして検出することにより、 形質転換されたことを確認す ることができる。 また、 予め蛍光色素等により標識したプライマーを用いて PCR を行い、 増幅産物を検出することもできる。 さらに、 マイクロプレート等の固相 に増幅産物を結合させ、 蛍光又は酵素反応等により増幅産物を確認する方法でも よい。 さらに、 その植物細胞からタンパク質を抽出し、 2次元電気泳動を行って 分画し、 ILP 遺伝子がコードするタンパク質のバンドを検出することにより、 植 物細胞に導入された ILP遺伝子が発現されていること、 すなわちその植物が形質 転換されていることを確認してもよい。 続いて、 検出ざれたタンパク質について エドマン分解等により N末端領域のアミノ酸配列決定し、 配列番号 2、 4、 6、 8、 1 0又は 1 2の N末端領域のァミノ配列と一致するかどうかを確認すること により、 その植物細胞の形質転換をさらに実証することができる。
あるいは、 種々のレポーター遺伝子、 例えばベータダルクロニダーゼ (GUS)、 ルシフェラーゼ (LUC) , Green fluorescent protein (GFP)、 クロラムフエニコー ノレアセチ^^トランスフェラーゼ (CAT)、 ベータガラク トシダーゼ (LacZ) 等の遺 伝子を目的遺伝子の下流域に連結したベクターを作製し、 該ベクター導入したァ グロバクテリムを用いて上記と同様にして植物を形質転換させ、 該レポーター遺 伝子の発現を測定することによつても確認できる。
本発明において形質転換に用いられる植物としては単子葉植物又は双子葉植物 のいずれであってもよく、 例えば、 アブラナ科 (シロイヌナズナ、 キャベツ、 ナ タネ等)、 イネ科 (イネ、 トウモロコシ、 ォォムギ、 コムギ、 等)、 ナス科 (トマ ト、 ナス、 ジャガイモ、 タバコ等)、 マメ科 (ダイズ、 エンドゥ、 インゲン等)、 ヒルガオ科 (サツマィモ等)、 トウダイダサ科 (キヤッサバ等)、 バラ科 (イチゴ 等) 等に属する植物が挙げられるが、 これらの植物に限定されるものではない。 本発明において、形質転換の対象とする植物材料としては、茎、葉、種子、胚、 胚珠、 子房、 茎頂等の植物器官、 葯、 花粉等の植物組織やその切片、 未分化の力 ルス、 それを酵素処置して細胞壁を除いたプロプラスト等の植物培養細胞のいず れであってもよい。 また in planta法適用の場合、 吸水種子や植物体全体を利用 できる。
本発明において、 形質転換植物とは、 植物体全体、 植物器官(例えば葉、 花弁、 茎、根、穀実、種子等)、植物組織 (例えば表皮、 師部、柔組織、 木部、維管束等)、 又は植物培養細胞 (例えばカルス) のいずれをも意味するものである。
植物培養細胞を対象とする場合において、 得られた形質転換細胞から形質転換 体を再生させるためには既知の組織培養法により器官又は個体を再生させればよ い。 このような操作は、 植物細胞から植物体への再生方法として一般的に知られ ている方法により、 当業者であれば容易に行うことができる。 植物細胞から植物 体への再生については、 例えば、 以下のように行うことができる。
まず、 形質転換の対象とする植物材料として植物組織又はプロ トプラストを用 いた場合、 これらを無機要素、 ビタミン、 炭素源、 エネルギー源としての糖類、 植物生長調節物質 (オーキシン、 サイ トカイニン、 ジベレリン、 アブシジン酸、 エチレン、 ブラシノステロイ ド等の植物ホルモン) 等を加えて滅菌したカルス形 成用培地中で培養し、不定形に増殖する脱分化したカルスを形成させる(以下「力 ルス誘導」 という)。 このように形成されたカルスをオーキシン等の植物生長調節 物質を含む新しい培地に移しかえて更に増殖 (継代培養) させる。
カルス誘導は寒天等の固型培地で行い、 継代培養は例えば液体培養で行うと、 それぞれの培養を効率良くかつ大量に行うことができる。 次に、 上記の継代培養 により増殖したカルスを適当な条件下で培養することにより器官の再分化を誘導 し (以下、 「再分化誘導」 という)、 最終的に完全な植物体を再生させる。 再分化 誘導は、 培地におけるオーキシン等の植物生長調節物質、 炭素源等の各種成分の 種類や量、 光、 温度等を適切に設定することにより行うことができる。 かかる再 分化誘導により、 不定胚、 不定根、 不定芽、 不定茎葉等が形成され、 更に完全な 植物体へと育成させる。 あるいは、 完全な植物体になる前の状態 (例えばカプセ ル化された人工種子、 乾燥胚、 凍結乾燥細胞及び組織等) で貯蔵等を行ってもよ レ、。
本発明の形質転換植物は、 当該遺伝子を導入した植物体 (形質転換された細胞 やカルスから再生された植物体を含む) の有性生殖又は無性生殖により得られる 子孫の植物体、 及びその子孫植物体の組織や器官等の一部 (種子、 プロ トプラス トなど) も包含するものとする。 本発明の形質転換植物は、 ILP 遺伝子を導入し て形質転換した植物体から、 種子、 プロ トプラストなどの繁殖材料を取得し、 そ れを栽培又は培養することによって量産することができる。 上記のようにして得られる形質転換植物は、 ILP 遺伝子の発現により植物細胞 の核 DNA量が増加する。 その結果、 当該形質転換植物は、 大型化の育種が実現で きる。 従って、 本発明によれば、 ILP 遺伝子やそのホモログ遺伝子を植物に導入 し、 植物体内で過剰発現させることにより植物体全体又はその一部を大型化する 方法もまた提供される。 発明を実施するための最良の形態
以下、 実施例によって本発明を更に具体的に説明するが、 これらの実施例は本 発明を限定するものでない。
〔材料及び方法〕
後記各実施例において用いた材料及び方法は以下のとおりである。
(1)植物材料及び生育条件
全ての植物は抗生物質添加又は無添加の 10mg/mlショ糖を含む GM プレート(GM, Valvekens, D. , Van Montagu, M. , and Van Li jsebettens, M. (1988) Agrobacterium tumefaciens- mediated transformation of Arabidops is thal inana root explants by us ing kanamycin selection. Proc. Nat丄. Acad Sc i. USA 85, 5o3b-5540. ) 上で生育させた。 植物は温度制御インキュベーション室内で白色光条件下 (明所 生育子葉に対して 15 W/m2 又は明所生育胚軸に対して 5 W/m2) 又は完全な喑所に て 22°Cで生育させた。 SALK T-DNA揷入変異株を Col_0 に 2回戻し交配し、 生理 学的実験のために変異株を純化した。
(2) 倍数性分析
核を抽出し、製造業者のプロ トコルに従って CyStain UV preci se P (Partec GmbH, Munster, Germany)で染色した。 フローサイ 卜メ 卜リー分析を Ploidy Analyser (Par tec GmbH, Munster, Germany)によってィ了った。
(3) ILP1, 2, 3, 4, 5, 7過剰発現トランスジェニック系統の作出
それぞれ遺伝子の全コード領域にまたがる cDNAを Super Script Arabidopsi s cDNA ライブラリー(Invitrogen, Cal ifornia)から、 下記のプライマーを用いて PCRによって増幅した。
(ILP1増幅用) ILP1-F: 5'- GGGGTACCATGGGAAGTAACCGTCCTAAG- 3' (配列番号 13)
ILP1-R: 5'- ACGCGTCGACTCAAACTGCCTCCTTAAGATT-3' (配列番号 14)
(ILP2増幅用)
ILP2-F : 5 -GGGGTACCGGAAAATGGGTAGCAAGATG-3' (配列番号 15)
ILP2-R : 5 -CGAGCTCAGGGTTTAAGCTTGGCTTCC-3' (配列番号 16)
(ILP3増幅用)
ILP3-F : 5 -GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGATTCTCTCGCTCTCGC-3' (配列番 号 17)
ILP3-R : 5'- GGGGACCACTTTGTACAAGAAAGCTGGGTATTTCTCCCGACCAAACT- 3' (配列番号 18)
(ILP4増幅用)
ILP4-F : 5 -GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAGCAGAAGGGTTTTAAA-3' (配歹 Ij 番号 19)
ILP4-R : 5 -GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATATTGGATTCATGACAAC-3' (配列番 号 20)
(ILP5増幅用)
ILP5-F : 5 -GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGTGAATCAAAGAAAGCTA-3' (配歹 IJ 番号 21)
ILP5-R : 5 -GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAACACACCATTCCATCCCT-3' (配列番 号 22)
(ILP7増幅用)
ILP7-F : 5 -GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCGGCGAATGATGCTGAA-3' (配列 番号 23)
ILP7-R : 5 -GGGGACCACTTTGTACAAGAAAGCTGGGTCTCATACTCCCTCAGCTGCCAA-3' (配列番 号 24)
得られた ILP1、 2の cDNAを Kpnl及び Sai lもしくは Saclで消化し、 pPZPY122
(Yamamoto, Y. Y. , Deng, X. W. , and Matsui, M. (2001) CIP4, a new C0P1 target, is a nucleus—丄 ocal ized pos it ive regulator of Arabidopsi s photomorphogenes i s.
Plant Cel l 13, 399-411. )の誘導体である yy45ベクター (Yaraamoto, Υ· Y.ら、 同 上) にクローニングした。
ILP3、 4、 5、 7は上記のプライマーセットを用いて PCR法により cDNAを増幅し た。 増幅した PCR断片を pD0NR207 (Invitrogen Corp. , Carlsbad, CA, USA)ベタ ターへ GATEWAY法の BP反応によりクロー -ングした。 それぞれの cDNAが組み込 まれた pD0NR207ベクターから、 GATEWAY法の LR反応により pBI系の pBIDAVL-GWRl ノくィナリ一べクタ一 (Nakazawa M, Ichika a T, Ishikawa A, Kooayashi H, Tsuhara Y, Kawashiraa M, Suzuki K, Muto S, Matsui M. Activation tagging, a novel tool to dissect the functions of a gene family. Plant J. 2003 34 : 7" - 750. )へク ローニングした。
作製したバイナリ一べクターを Agrobacterium tumefaciens (GV3101株)にエレ ク トロポレーションによってトランスフエク トし、 yy45ベクターの場合、 形質転 換体を 70 / g/ml のクロラムフヱニコールを含む LB 培地上で選択した。 pBIDAVL-GWRl を導入したァグロバタテリゥムは 25 μ g/ml のカナマイシン培地で 選抜した。 Arabidopsis thal iana WT (Col- 0)を floral dip法によって形質転換 した (Clough, S. J. , and Bent, A. F. (1998) Floral dip : a simpl ified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743. ) 0 yy45を形質転換した芽生えは、 50 g カナマイシンと lOO ju g/1セ ファロタキシムを含む GM上で、 pBIDAVL- GWR1では 50 μ g八ハイグロマイシンと 100 g/1セファロタキシム選抜した。
(4) 細胞内タンパク質局在
ILP1 : GFP のために、 GFP を下記のプライマー (GFPn- F と GFPn-R) を用いて yy217 から増幅した。
(GFP増幅用)
GFPn- F: 5 -TCTAGAGGATCCCCCGGGGGTACCGTCGACATGGCAATGAGTAAAGGAGAA-3' (配列番号 25)
GFPn-R: 5 -CGAGCTCTTATTTGTAAAGTTCATC-3' (配列番号 26)
GFP 断片を Xbal及び Saclで消化し、 yy45にクローニングした(yy45GFPn)。
ILP1 cDNA を ILP1-Fと ILP- R2-SAL (5'- ACGCGTCGACAACTGCCTCCTTAAGATTG- 3':配列 番号 27) プライマーを用いて Super Script Arabidopsis cDNA l ibrary力 ら増幅 し、 yy45GFPnの Kpnl 及び Sail 部位にクローニングして ILP1 :GFP を作製した。 タマネギ表皮細胞を剥がし、 GM プレートに置いた。 ILP1: GFP 構築物を製造業者 のプロ ト コルに従い金粒子(1 μ m 直径)に搭載した。 粒子を Biolistic PDS-1000/He system (BIO- RAD, Calif ornia)を用いてタマネギ表皮細胞に送達さ せた。 衝撃パラメータは、 rapture disc bursting pressure ¾r 600 psi、 標的組 織までの距離を 9 cm とした。 GFP 蛍光を衝撃 18 時間及び 36 時間後、 BX60 microscopy (Olympus, Tokyo, Japan) によって" ¾察しに。
(5)セミ定量 RT- PCR及ぴリアルタイム PCR分析
(5-1) セミ定量 RT-PCR
セミ定量逆転写 PCR (RT- PCR)分析は既報 (Kimura, M. , Yoshizumi, T., Manabe, K. , Yaraamoto, Υ. Υ. , and Matsui, Μ. (2001) Arabidopsis transcriptional regulation by light stress via hydrogen peroxide-dependent and -independent pathways. Genes Cells 6, 607-617. ) に記載の通り行った。 種子を、 ショ糖を含 む GMプレート上に撒き、 プレートを 5 日間処理し、 22°Cにて白色光下で 3 日間 インキュベートした。芽生えを収穫し、全 RNAを既報(Yoshizumi, T., Nagata, N. , Shiraada, H. , and Matsui, M. (1999) An Arabidopsis ceil cycle -dependent kinase- related gene, CDC2b, plays a role in regulating seedling growth in darkness. Plant Cell 11, 1883-1896.) に記載の通り単離した。
細胞周期関連遺伝子の発現解析 (図 6A) を行う際、 各遺伝子の増幅用プライ マーセットとしては既報のものを用いた。 CYCA2;1, CYCBl;2, 及び CYCD3; 1 cDNA 増幅のために用いたプライヤーセットは Richard, C., Granier, C. , Inze, D. , and De Veylder, L. (2001) Analysis of cell division parameters and cell cycle gene expression during the cultivation of Arabidopsis thaliana cell suspensions. J. Exp. Bot. 52, 1625-1633. に記載されている。 HISH4 cDNA 增 幅に用いるプライマーセッ トは Mariconti, し, Pellegrini, B., Cantoni, R. ,
Stevens, R. , Bergounioux, C., Cella, R. , and Albani, D. (2002) The E2F family of transcription factors from Arabidopsis thaliana. Novel and conserved components of the retinob丄 astoma/E2F pathway in plants. J. Biol. Chem. 277,
9911-9919. に記載されている。 ACT2 cDNA増幅に用いるプライマーは Himanen, K. , Boucheron, E. , Vanneste, S. , de Almeida Engler, J., Inze, D. , and Beeckman, T. (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14, 2339— 2351.に記載されている。
CYCA2;1の T- DNA挿入変異系統 (cyca2;l- 1, cyca2; 1- 1)における CYCA2; 1の発 現解析 (図 8 B) には以下のプライマーセッ トを用いた。 また、 ilpl- 1D 及び ILPloxにおける ILP1の発現解析 (図 4 B) には、 前記配列番号 13及び 14に示 すプライマーセットを用いた。
(CYCA2;1増幅用)
CycA2;l-F: 5'- GGACTAGTGAGCTCGCACACTAATGCGAAGAAAG- 3, (配列番号 28)
CycA2;l-R: 5'- CCGCTCGAGTCTAGAGCAGATGCATCTAAAGATTC- 3, (配列番号 29)
(5-2) リアルタイム PCR分析
リアルタイム PCRは Mx3000P (STRATAGENE, CA)のプロ トコルに従って実施した。 全 RNAを上述したように TRIzol(Invitrogen, CA)を用いて芽生えから単離し、 こ れ 型とし 、 Superscript first-strand synthesis system (Invitrogen, CA) を用いて製造業者の指示に従って第 1鎖 cDNAを合成した。 PCR には SYBR Green Realtime PCR Master Mix (T0Y0B0, Osaka, Japan)を用レヽ、 Mx3000P multiplex quantitative PCR system (STRATAGENE, CA)によって分析した。 ILPl遺伝子 (図 3 B, 図 6 C) と CYCA2遺伝子ファミ リー (図 6 B, 図 6D) の発現レベルを調 査するために、 以下のプライマーセットを用いた。
(ILP1増幅用)
ILPlrealF: 5-AGCTTGCCAAGAAGGCATTG-3' (配列番号 30)
ILPlrealR: 5,-TCATCAACGACGCAGTCAGA_3, (配列番号 31)
(CYCA2;1増幅用)
CycA2;l-F: 5'- CGCTTCAGCGGTTTTCTTAG- 3' (配列番号 32)
CycA2;l-R : 5'- ATCCTCCATTGCAAGTACCG- 3' (配列番号 33)
(CYCA2;2増幅用)
CycA2; 2-F: 5'- TGTATGTGTTGGCCGTAATG- 3, (配列番号 34)
CycA2; 2-R: 5,- TGGTGTCTCTTGCATGCTTA- 3, (配列番号 35)
(CYCA2;3増幅用) CycA2; 3-F: 5 -CTCTATGCCCCTGAAATCCA-3' (配列番号 36)
CycA2 ; 3- R : 5'- ACCTCCACAAGCAATCAAC- 3' (配列番号 37)
(CYCA2 : 4増幅用)
CycA2; 4-F: 5'- CAAAGCCTCCGATCTCAAAG- 3' (配列番号 38)
CycA2; 4-R: 5,- CTTGTCCGGTAGCTCTCCAG- 3' (配列番号 39)
(CYCA1 : 1増幅用)
CycAl; 1-F: 5 -CGATGACGAAGAAACGAGCA-3' (配列番号 40)
CycAl; 1-R : 5 -TGGCATTAACGCAAACACTTG-3' (配列番号 41)
(ACT2増幅用)
Act2-F: 5 -CTGGATCGGTGGTTCCATTC-3' (配列番号 42)
Act2-R: 5 -CCTGGACCTGCCTCATCATAC-3' (配列番号 43)
(6) 光学顕微鏡法
植物材料を 20 mMカコジル酸ナトリゥムを含む緩衝液中 4%パラホルムアルデヒ ドで 4 Xにて 24時間固定化し、エタノールシリーズで脱水し、それから Technovit 7100樹脂(Kulzer and Co., Wehrheira, Germany)に包埋した。 切片 (2· 5 μ πι厚さ) を超ミク口 トーム上においてグラスナイフでカットし、力バースリップ上に置き、 乾燥させた。 それらを 0. 1M リン酸緩衝液生理食塩水(pH 7. 0)中で 1%トルイジン ブルーにて 30秒間染色し、その後、蒸留水にて 10秒間洗浄した。試料は Olympus 1X70 顕微鏡(Olympus, Tokyo, Japan)にて観察した。
(7) in vivo転写アツセィ
N0S プロモーターの- 150から +5 領域を、プライマー: 5' - GGG GGA TCC GCG GG
T TTC TGG AGT TTA ATG- 3' (配列番号 44) 及び 5' - CCT CTA GAG ACT CTA ATT GG
A TAC CGA GG_3, (配列番号 45)を用いて pMA560 (Ma, J. , Przibi l la, E. , Hu,
J. , Bogorad, し. , and Ptashne, . (1988) Yeast act ivators stimulate plant gene express ion. Nature 334, 631-633. ) から PCRによって増幅した。 増幅断 片を BamHI及び Xbalで増幅し、 yy76の BamHI/Xbal 部位にクローニングし(Yama raoto, Y. Υ. , and Deng, X. W. (1998) A new vector set for GAL4- dependent tr ansactivation assay in plants. Plant Biotech. 15, 217-220. )、得られたクロ ーン内の Xbal部位と GUSとの間に存在する第 2の BamHI部位を残した。このクロ ーン、 yy78を BamHI と Hindlllで消化し、 pBIL221 (Nakaraura, M. , Tsunoda, T. , and Obokata, J. (2002) Photosynthesis nuclear genes generally lack TATA —boxes : a tobacco photosystem I gene responds to l ight through an initia tor. Plant J. 29, 1-10. ) の BamHI/Hindlll部位にクローユングして yy97を得 た。 yy97 プラスミ ドは本アツセィのために GM2163 (Danf/Dcnf) 株から調製した。 エフェクタープラスミ ドを作製するために、種々の長さの ILP1 cDNAを GAL- ILP1 Ful l に対しては ILP1- F と ILP1-R プライマー、 GAL4- ILP1N に対しては ILP1- F と ILP1- No 2-R (5,_GGGGTACCTTAGGATCCGTCACTCTCATCAGTGCT-3,:配列番号 46)プラ イマ一、 及び GAL4-ILP1Cに対しては ILP1- No 5- F (5'- GCTCTAGAGGATCCATGACAGTT CTAAACAAACAT- 3':配列番号 47)と ILP1-Rプライマーを用いて増幅した。 得られた cDNAを Kpnlと Sail で消ィ匕し、 yy64 (Yamamoto, Y. Y. , and Deng, X. W. (1998) A new vector set for GAL4— dependent transact i vat ion assay in plants. Pla nt Biotech. 15, 217-220. ) の Kpnl/Sall 部位にクローニングした。 タバコ葉(N icotiana tabacura cv SRI)に対し、 遺伝子銃法を上記のようにして実施した。 ル シフェラーゼ活'性を Lumat LB9507 luminometer (PerkinElmer, MA)で測定した。 (8) 細胞培養及びトランスフエクシヨン
マウス NIH3T3細胞を 10% 胎児ゥシ血清(FBS, Invitrogen, CA)を添加した DMEM 培地(Invitrogen, CA)で培養した。 トランスフエクシヨンのために、 約 2. 0 x 105 の NIH3T3 細胞を 12-ウェルタイタ一プレートの各ゥエルに撒いた。 C02 ィンキュ ベータ一(5% C02) で 2日間培養後、 トランスフエクシヨンを Lipofectamine 2000 (Invitrogen, CA)を用いて実施した。 トランスフエクシヨン 24時間及び 48時間 後、 ルシフェラーゼ活性を TD- 20/20 ルミノメーター (Promega, WI)を用い、 製 造業者のプロ トコルに従って測定した。 マウス ILP1 遺伝子を下記のプライマー セットを用いて NIH3T3 細胞から調製した全 RNAから増幅し、 それをシーケンス によって確認した。 PCR断片は GATE- WAY cloning system (Invitrogen, CA)を用 ヽて pcDNA- DEST40にクローニングした。
(マウス ILP1増幅用)
raouselLPlF: 5 -GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGCCACCATGGACATGGAGAGCGAGAAG G-3' (配列番号 48) mouselLPIR: 5' -GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATTTTCCTTCAATCAGAGACTT- 3 (配列番号 9)
[結果]
(実施例 1 ) エンドリデュプリケーシヨ ン変異株の分類
暗所で生育させたシロイヌナズナ芽生えを用い、 胚軸細胞の倍数性レベルを測 定した。 スクリーニング条件を定めるために、 陽性コントロールとしてエチレン シグナノレ伝達変異株 Ctrl- 1 (Gendreau, E. , Traas, J. , Desnos, T. , Grandjean, 0. , Caboche, Μ. , and Hofte, Η. (1997) Cel lular bas i s of hypocotyl growth in Arabidopsi s thal iana. Plant Phys iol. 114, 295-305· ) を用いた。 喑所で生育 させた ctrl-1では 32Cピークが顕著に増加した。 2C, 4C, 8C 及び 16Cを含む他 の倍数性ピークもまた野生株 (Col-0)と同様に ctrl- 1 では異なる比率であった が現れた(図 1 A) (Gendreau, E.ら, (1997)、 同上) Orbovic, V. , Hofte, Η·, and Traas, J. (1999) Gibberel l in and ethylene control endoredupl ι cat ι on level s in the Arabidopsi s thal iana hypocotyl. Planta 209, 513-516. )。 生肯ゾレー トにショ糖を有するスクリ一二ング条件下では、 暗所で生育させた胚軸において 32Cの細胞を観察できた。
ctrl-1 と野生株の 8C/32C と 16C/32Cの相対比を算出した。 また、 ヘテロ接合 性で表現型が表れる優性変異の遺伝を再現するため、 3: 1の代わりに 7: 3の割. 合で ctrl- 1 芽生えと野生型を混合し、 これについても上記の相対比を算出した。 8C/32C に対しては 1. 0 未満、 16C/ 32Cに対しては 2. 0未満というスクリーニン グ基準を設定し (図 1 B )、 これらの数値を優性倍数体変異株の単離のために用い た。
各 T2 7クチべーションタグラインに対して約 20芽生えを用いた。 本スクリ一 ニングでは、 劣性変異株は Τ2 種子の 4分の 1 しか出現せず、 この頻度では倍数 性レベルに何らかの相違があっても野生型のパターンにおいて隠れてしまうだろ うから、 劣性変異株を単離することは困難である。 機能獲得 (gain- of-f unct ion) 又は優性変異については、 変異同胞は集団の 4分の 3に出現し、 フローサイ トメ トリーによってモニターすることができる。 また、 喑所で生育させた芽生えは収 種が容易で条件が再現可能であるので、 本アツセィに用いた。
4500の独立したァクチべーシヨンタギングライン(Nakazawa, M. , Ichikawa, T., Ishikawa, A., Kobayashi, H. , Tsuhara, Y. , Ka ashima, M. , Suzuki, K. , Muto, S., and Matsui, M. (2003) Activation tagging, a novel tool to di ssect the functions of a gene fami ly. Plant J. 34, 741-750.; Ichikawa, T. , Nakazawa, M. , Kawashima, M., Muto, S. , Gohda, K. , Suzuki, K. , Ishikawa, A. , Kobayashi, H. , Yoshizumi, T. , Tsumoto, Y. , Tsuhara, Y. , I izurai, H. , Goto, Y. , and Matsui, M. (2003) Sequence database of 1172 T- DNA insertion sites in Arabidops i s activat ion- tagging l ines that showed phenotypes in Tl generation. Plant J. 36, 421-429.; http : //rarge. gsc. riken. jp/activationtag/top. php)力 ら 17の優 性変異株を単離した。
これらの変異株は倍数性細胞の数が増加しており、 ctrl - 1 変異株と同様に暗所 で生育させた芽生えの胚軸において高い 32C倍数性ピークを示した。 これらの 17 個の変異株は胚軸の長さ、 根の長さ、 及び光への依存性によって 2つのグループ に分類された。 それらをグループ 1及びグループ 2と名付けた (表 1 )。 表 1
倍数性変異株の 2つのダル
Figure imgf000033_0001
( + :増加、 一 :野生型 (Col)と差異なし) .
グループ 1に属する 12個の変異株は野生株に比べて喑所及び明所で生育させた 芽生えにおいて増加した倍数性レベル示した。 それらは野生株より長い根を有し ていたが胚軸の長さはほとんど同じであった。 グループ 2では、 5個の変異株が 喑所でのみ増加した倍数性を有しており、 明所では野生株とほとんど同じ倍数性 レベルであった。このことはグループ 2の表現型が光依存性であることを示した。 それらはまた喑所で生育させた芽生えより長い胚軸を有していた。
(実施例 2 ) 優性変異株 ilpl- 1Dの特徴づけ
グノレープ 1に属する変異株のうちのひとつ、 increased level of polyploidyト ID (ilpl - ID)と称する優性変異株 Z010521の特徴付けを行った。喑所で生育させた芽 生えの胚軸は、 前記アツセィでは 32Cの倍数性レベルを有していた (図 2 A)。 ホ モ接合性の ilpl- 1D もまた、 32C レベルの細胞を有していたが、 喑所では野生株 (T-DNA挿入のない同種同胞)と比較して 32Cピークが大きかった(図 2 A)。 この 結果は各倍数性レベルについて全細胞数を比べたときより明白であった(図 2 B )。 喑所で生育させた胚軸では、 32C細胞の割合が野生株に比べて i lpl- 1Dにおいて 顕著に増加した。 ilpl- 1Dでは、 8C/32Cと 16C/32Cの数値がそれぞれ 0. 44と 1. 3 であり、 設定した前記のスク リーニング基準にあてはまった。 この結果は、 ェン ドリデュプリケーシヨンの程度が本変異株において増加したことを示した。
喑所で生育させた胚軸を 4' , 6-ジアミジノ- 2 -フエニルインドール (DAPI) で 染色することによって核体積の増加を測定した。 i lpl-lD 芽生えは野生株に比べ てはるかに拡大した核を有していた (図 2 C及び図 2 D )。 明所では、野生株胚軸 は本アツセィにおいて最大 16C の細胞を含んでおり、 その 16C 細胞の割合は ilpl_lDにおいて増加した (図 2 B )。 明所で生育させた ilpl-lDの子葉は胚軸細 胞と同様、 16C細胞の数が増加していた (図 2 B )。
(実施例 3 ) i lpl-lD 表現型の解析
明所及ぴ喑所において i lpl-lD 表現型を野生株と比較した。喑所で生長させた とき、 ilpl-lD ホモ接合体系統は野生株と比べて胚軸長さに違いはなかった (図
2 E及ぴ図2 F )。 伸長の代わりに、 ilpl-lD胚軸は野生株より太く、 これは細胞 が横軸にそってその体積を増加させたことを示す(図 2 G)。横軸切片を作製する ことによって胚軸内の細胞を調べた。 lpl-lDの皮質細胞と内胚葉細胞は直径が増 加し、 その結果、 野生株に比べて太い胚軸となっていることがわかった (図 2 H 及び図 2 I )。皮層と内皮に含まれる細胞の数にはほとんど相違はなかった。 これ らの結果は i lpl-lDにおける倍数性の上昇が胚軸細胞の直径を増加させ、 その結 果、 細胞体積の増加をもたらしたことを示した。
これらの胚軸表現型に加えて、主根の長さの増加も観察された(図 2 E及び図 2 F ) 0
明所で生育させた芽生えにおいて、 i lpl - 1D 接合性変異株は野生株と比較して 大きな子葉を有していた (図 2 J〜図 2 L )。 子葉の長軸及び短軸にそって細胞の 数を調べたところ、 i lpl-lD と野生株とでは細胞数の違いはまったくなく、 この ことは変異株の大きな子葉サイズは細胞数の增加ではなく、 個々の細胞サイズの 増加に起因することを示した。 成体 ilpl-lD植物は野生株とほとんど同じ高さで あった
(実施例 4 ) ILP1遺伝子の構造解析
(1)候補遺伝子の選択
ァクチべーション τ— DNAは選択マーカーとしてハイグロマイシン耐性遺伝子を 含む。 i lpl- 1Dヘテロ接合性植物の T2子孫を調べたところ、 その子孫の約 70 %が ハイグロマイシン耐性を示すことがわかった。 これは、 そのゲノム内にただ一つ の T-DNAが存在することを示す。 全てのハイグロマイシン耐性植物は Τ3 世代に おいて増加した倍数性レベルを示した。 これらの結果はァクチべーシヨンタグ化
T-DNA が増加した倍数性表現型の原因となっていることを強く示唆する。 Τ- DNA フランキング配列をプラスミ ドレスキューによって単離した。 配列決定後、 その
T-DNAを AT5g08560 のコード領域に揷入した (図 3 A)。 T-DNAの推定上の開始コ ドンとライ トボーダー(RB)間の距離は AT5g08550で約 1 kb、AT5g08560で約 7. 4 kb であった(図 3 A)。 リアルタイム PCRによって ilpl- 10のへテロ接合体と野生株 における AT5g08550の発現を調べたところ、 i lpl-lDでは野生株の 13倍高かった
(図 3 B )。 AT5g08560 における揷入が増加した倍数性を引き起こしたかどうかを 決定するために、 SALK T-DNA コ レク ショ ン(SALK_095495) (Alonso, J. M.,
Stepanova, A. N. , Leisse, T. J. , Kim, C. J. , Chen, H. , Shinn, P. , Stevenson,
D. K. , Zimmerman, J. , Barajas, P. , Cheuk, R, et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657. ) から T-DNA 挿入系統を調べた。 T- DNAは AT5g08560 のェクソン 1に挿入されてい た (データは示さず)。 この系統は倍数性の変化はなかった (データは示さず)。 これらの結果から、 AT5g08550 が i lpl - ID のァクチべーシヨン表現型の原因とな る遺伝子候補であると判断した。
(2)候補遺伝子 AT5g08550の同定
これを確かめるため、 RT-PCR によって単離した AT5g08550 cDNAをカリフラヮ 一モザイクウィルス 35S (CaMV 35S)プロモーターの制御下で過剰発現するトラン スジエニック植物を作出した。 15系統のうち 8系統は i lpl- 1D 表現型を繰り返す
T2 世代において顕著に増加した倍数性を示した。 AT5g08550 はこれらの系統
(ILPlox (#2) )で高発現した (図 3 B )。 ホモ接合体系統の喑所で生育させた芽生 えの倍数性を調べたところ、 32Cピークの相対比は増加し、 64C細胞が観察された
(図 3 C )。倍数性表現型を示さなかったトランスジヱニック系統(#1及び #3)は野 生株とほとんど同じ ILP1発現レベルを有していた。 AT5g08550 過剰発現体はまた 大きな子葉、 太い胚軸、 及び主根の伸長のような ilpl- 1Dの他の表現型を再現し た (図 3 H— J )。 しかしながら、 野生株と比較して成体植物の高さと種サイズに おいてほとんど違いはなかった。 これらの結果から、 AT5g08550が i lpl-lD 変異 に対応する遺伝子であることが強く示唆された。 AT5g08550を ILP1 と命名した。
ILP1遺伝子は 908ァミノ酸残基からなるタンパク質をコードする。保存モチ一 フを同定するために BLASTP プログラムを用いてタンパク質データベース内で
ILP1 ホモログをサーチした。 このサーチによれば ILP1はヒ ト及び他の種の GC- 結合因子(GCF)の C末端領域に対して類似性を有していることがわかった(図 3 D から図 3 F )。 GCF タンパグ質は上皮細胞増殖因子(EGFR)、 ]3 -ァクチン、 及び力 ルシゥム依存性プロテアーゼ遺伝子のプロモーター領域における GC-リツチ配列 に結合する転写抑制因子として最初に単離されている(Kageyama, R., and Pastan,
I. (1989) Molecular cloning and characterization of a human DNA binding factor that represses transcription. Cell 59, 815—825. )。 し力 しな力 Sら、 最 初に報告された GCFcDNA クローンはキメラ遺伝子であって、 そのタンパク質の N 末端は GCリツチ領域に結合し、 その C末端は機能未知なもうひとつの cDNAに由 来してレヽた (Reed, A. L. , Yamazaki, Η. , Kaufman, J. D. , Rubinstein, Y., Murphy, B. , and Johnson, A. C. (1998) Molecular cloning and characterizat ion of a transcription regulator with homology to GC- binding factor. J. Biol. Chem. 273, 21594 - 21602.; Takimoto, M. , Mao, P. , Wei, G., Yamazaki, H. , Miura, T. , Johnson, A. C. , and Kuzumaki, N. (1999) Molecular analys i s of the GCF gene identif ies revi s ions to the cDNA and amino acid sequences. Biochim. Biophys. Acta. 1447, 125-131. )。
混乱を避けるために、 この DNA結合性ドメインを真性 GCFと呼び、 そしてその C末端領域をコードする遺伝子を CTILP1 (C-terminal region of ILP1)と呼ぶこ ととする。 ILP1は CTILP1 と相同性を示す。 CTILP1はマウス、 キイ口ショウジョ ゥバエ(Drosophi la)、 線虫( elegans)においてパラ口ガスな遺伝子を有する(図 3 £及び図3 )。 また、 ILP1はシロイヌナズナゲノム(AT5g09210)においてパラ 口ガスな遺伝子を有する(図 3 E及び図 3 F )。 ILP1 と他の CTILP1 タンパク質に おいて 2つの保存されたモチーフが見出された。 モチーフ 1は ILP1 の残基 371-465 に存在し(図 3 D及び図 3 E ) 、 モチーフ 2は残基 571-852 に存在する (図 3 D及び図 3 F )。 これらの 2つのモチーフは、いろいろな種の CTILP1におい てよく保存されている。 モチーフ 2は特によく保存されているが、 モチーフ 1は キイ口ショウジョゥバエ(Drosophi la)、線虫(C. elegans)のタンパク質に見出され なかった。 また、 CTILP1タンパク質の N末端領域においては顕著な相同性は見出 されな力 つた。 3D-PSSM (Kel ley, し , MacCal lum, R. M. , and Sternberg, M. J. E. (2000) Enhanced genome annotation us ing structural pror l ies in the program 3D-PSSM. J. Mol. Biol. 299, 499-520. ) を用いたが、 これら 2つのモチーフの いかなる予測される特徴も得ることができなかった。
一方、 PS0RTプログラム(Nakai, K. , and Horton, P. (1999) PS0RT : a program for detect ing sorting s ignals in proteins and predicting their subcel lular local ization. Trends Biochem. Sci. 24, 34—36· ) を用いたところ、 上記の 2つ の保存領域に推定上の核局在化シグナル (NLS)が見出された。 この配列は ILP1の 残基 522-539に位置し、 アルギニン残基に富んでおり、 典型的な 2分裂 NLSであ る (図 3 D )。 この推定上の NLS モチーフの存在は ILP1が核タンパク質であるこ とを示唆する。 この予測を確認するため、緑色蛍光タンパク質(GFP)の N末端との 融合タンパク質(ILP1:GFP)として CaMV 35S 口モーターの制御下で発現させた。 遺伝子銃法を用いてタマネギ表皮細胞における局在化を調べた。 ILP1:GFP 融合タ ンパク質は核において検出され、 ILP1 が核タンパク質であることがわかった(図 3 G)0
(実施例 5 ) ILP1遺伝子の T-DNA挿入変異株の表現型
SALK T-DNA 挿入系統(Alonso, J. M. , Stepanova, A. N. , Leisse, T. J. , Kim, C. J. ,
Chen, H. , Shinn, P., Stevenson, D. K. , Zimmerman, J. , Barajas, P. , Cheuk, R, et ai. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana.
Science 301, 653-657. )から 2つの T-DNA挿入変異株を単離した。 両方の変異株 とも ILP1の第 5イントロン中の異なる位置に T- DNA 揷入を有している(図 3 A中 の小さい三角印)。これらの両変異株における ILP1遺伝子の発現を調べたところ、 その領域に特異的なプライマーセット(図 3 A中の矢印)は PCR産物を確かに増幅 したけれども (データは示さず)、 全長を増幅するプライマーセット (ILP1-F お よび ILP卜 R) を用いた場合には何も検出されなかった (図 4 B)。 このことは、 これらの変異株が、 ヌル変異を有するというよりむしろ全長転写物を欠くことを 示 す 。 こ れ ら の ホ モ 接合 体 変 異 株 を ilpl-l(SALK_030650) 及 び ilpl - 2(SALK_135563)とそれぞれ命名した。 ilpl-Ι も ilpl - 2 も喑所でそれらの 野生株に比べて短い胚軸と根を有していた (図 4A、 図 4 C、 及び図 4 E)。 光照 射下では、 それらの両方ともが野生株よりも短い胚軸と小さい子葉を呈し、 根の 伸長の阻害があった(図 4 D及び図 4 E)。 第 5イントロンのスプライシングァク セプターに近い T- DNA挿入を有している ilp卜 1は、 ilpl_2よりもより重度な形 態学的表現型を示した。これらの系統の相補性を調べるために、 ilpl- 1 と ilpl- 2 を互いに交配した。 F1植物もまた明所及び喑所の両方において野生株に比べて短 ぃ胚軸と根を示した(図 4 A及び図 4 D)。 この結果は、 これらの系統はアレルで あって、 ILP1の欠失が短い胚軸表現型を引き起こすことを示した。倍数性と ILP1 機能との関係を解明するために、暗所でへテロ接合性 ilpl-1及び ilpl- 2 の倍数 性レベルを調べた。 ilpl- 1 と ilpl - 2の両方とも、 3 日齢の芽生えの胚軸細胞にお いて 32C細胞数が減少した(図 4 F)。 胚軸の長さと ilpl - 1 と ilpl- 2における倍 数性との関係を調べるために、 これらの変異株を芽生えの生育を異なる段階にお いて分析した。 i lpl-1 及び i lpl- 2 は喑所ですベての生育段階で野生株に比べて 短い胚軸を有していた(図 4 C )。 しかしながら、 胚軸細胞の倍数性レベルの減少 は吸水 7日後に野生株のそれよりも回復した。 これは倍数性の減少が短い胚軸長 さの結果ではないことを示す。
(実施例 6 ) 転写抑制因子としての ILP1の機能
最初に同定されたキメラ GCFは転写抑制因子として機能することが報告されて レヽ る (Kageyaraa, R. , and Pastan, I. (1989) Molecular cloning and characterization of a human DNA binding factor that represses transcription.
Cel l 59, 815-825. )。このタンパク質(GCF)の N末端部分は GCF2と相同性があり、
DNA 結合活'性を有している (Reed, A. L. , Yamazaki, H. , Kaufman, J. D. ,
Rubinstein, Y., Murphy, B. , and Johnson, A. C. (1998) Molecular cloning and characterizat ion of a transcription regulator with homology to Gし- binding factor. J. Biol. Chem. 273, 21594-21602. )。 ILP1 は CTILP1類と相同性を有す るが、 それらは哺乳類細胞において詳細に調べられていない。 ILP1の機能を理解 するために、 in vivo転写アツセィ(Yamamoto, Y. Y. , and Deng, X. W. (1998) A new vector set for GAL4- dependent transact i vat ion assay in plants. Plant Biotech.
15, 217-220. )を実施した。 ILP1 cDNA を GAL4 DNA 結合ドメインの C末端領域に 融合させた(GAL4-ILPlFul l)。 このキメラプラスミ ドを、 プロモーター領域内に
GAL4 結合配列を含むルシフェラーゼ(LUC)リポータープラスミ ドとともにタバコ 葉細胞に Biol i stic Bombardment (遺伝子銃) 法によって導入した (図 5 A)。 レ ポータープラスミ ドはそれが脱メチル化されていることを確かめるために、 DNA メチラーゼを欠いた大腸菌株から調製した。 GAL4 - ILPlFul l を用いたとき、 リポ 一ター活性が減少した (図 5 B )。 ILP1 は 2つの保存されたモチーフを有する。 これらのモチーフの一つを核局在化シグナル (NLS) とともに含む ILP1タンパク 質の部分を発現させた。 GAL4-ILP1N は ILP1の N末領域(残基 1-567)を有する GAL4
DNA 結合ドメインを含むキメラである (図 5 A)。 このキメラはモチーフ 1と NLS を含み、 GAL4- ILPlFul lタンパク質ほど強い抑制は示さなかった (図 5 B )。 しか しながら、 モチーフ 2を含む ILP1の C末端領域(残基 474-908)を用いたとき、 は るかに強い LUCリポーター活性の抑制が観察された(図 5 A及び図 5 B)。 これら の結果は ILP1が in vivo で転写抑制因子として機能し、 モチーフ 2がその抑制 活性を担っていることを示す。
(実施例 7 ) ILP1によるサイクリン A2発現調節
エンドリデュプリケーションは一種の細胞周期であり、 通常の有糸分裂細胞周 期からこの周期にスィツチするために異なる細胞周期関連遺伝子が関与している かもしれない。 そこで有糸分裂細胞周期の特定の段階で発現する幾つかの細胞周 期関連遺伝子を調べた。 G1 期-特異的遺伝子と して CyclinD3;l (CYCD3;l) (Riou-Khamlichi, C., Menges, M. , Healy, J. M. , and Murray, J. A. H. (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D - type cyclin gene expression. Mol. Cell Biol. 20, 4513-4521.)、 S期 -特異 的遺伝子として HistonM (HISH4) (Mariconti, L. , Pellegrini, Β. , Cantoni, R., Stevens, R. , Bergounioux, C. , Cella, R. , and Albani, D. (2002) The E2F family of transcription factors from Arabidopsis thaliana. Novel and conserved components of the retinoblastoraa/E2F pathway in plants. J. Biol. Chem. 277, 9911-9919.)、 S/G2期-特異的遺伝子として CyclinA2;l (CYCA2;1)、 G2/M期-特異 的遺伝子として CyclinBl;2 (CYCB1;2) (Shaul, 0. , Mironov, V., Burssens, S. , Van Montagu, . , and Inze, D. (1996) Two Arabidopsis cyclin promoters mediate distinctive transcriptional oscillation in synchronized tobacco BY - 2 cells. Proc. Natl. Acad. Sci. U S A. 93, 4868-4872.) を用いた。 これらの遺伝子の 発現をセミ定量的 RT- PCR によって分析した。 増加した倍数性を示す ILP1 過剰- 発現系統 (ILPlox, line #2, 図 3 B)を用い、 暗所で生育させた芽生えにおける これらの細胞周期関連遺伝子の発現を調べた。
野生株 (Col-0)と ILP1 過剰発現系統 (ILPox) 間で CYCD3;1, HISH4 及び
CYCB1;2 の発現における違いはなかった(図 6 A)。 しかしながら、 CYCA2;1 の発 現は野生株と比較して ILP1 過剰発現系統において顕著に減少した(図 6 A)。
CYCA2; 1 は遺伝子ファミリーの一部であり、 シロイヌナズナゲノムには 4つの CYCA2 メンバーが存在する(Vandepoele, K. , Raes, J. , De Veylder, L., Rouze, P., Rombauts, S., and Inze, D. (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14, 903-916.)。 リアルタイム PCRを用いて より正確に ILPlox と ilpl- IDにおける CYCA2遺伝子の発現を調べた。 すべての CYCA2メンバーの発現が減少し(図 6 B、 上のパネル)、 特に、 ILPlox 系統におけ る CYCA2;1 の発現は野生株の約 40%まで減少した。 ILP1 挿入変異株における CYCA2遺伝子の発現調查では、 ilpl-1と ilpl- 2 の両方において、ほぼ全ての CYCA2 遺伝子ファミ リーの発現が増加した (図 6 B、 下のパネル)。
葉生育中の ILP1発現を調査した。 発現は第 1葉の生育に従って徐々に減少し、 吸水 20 日後、 第 1葉が増殖期(Vlieghe, K., Boudolf, V. , Beemster, G. T. , Maes, S. , Magyar. Ζ., Atanassova, A., de Almeida Engler, J. , De Groodt, R. , Inze, D. , and De Veylder, L. (2005) The DP-E2F-like gene DELI controls the endocycle in Arabidopsis thaliana. Curr. Biol. 15, 59 - 63. )に入ったとき、 それは 8日 目のレベルの 10分の 1になった (図 6 C)。 また、 葉生育中の CYCA2遺伝子ファ ミリーの発現を野生株と比較して調査した (図 6 D)。すべての CYCA2遺伝子ファ ミリ一は 8日目に高い発現量を有していたが、 ILP1 と同様に徐々に減少した(デ ータ示さず)(Imai, K. K. , Ohashi, Y., Tsuge, T. , Yoshizumi, Τ. , Matsui, Μ. , Oka, A. , and Aoyama, Τ. (2006) The A-Type Cyclin CYCA2; 3 Is a Key Regulator of Ploidy Levels in Arabidopsis Endoreduplication. Plant Cell 18, 382 - 396)。 ilpl- IDでは、 すべての CYCA2遺伝子ファミリーの発現は野生株に比べて減少し た(図 6 D、 上のパネル)。 しかしながら、 ilpl- 2では、 すべての CYCA2遺伝子フ アミ リーの発現が野生株に比べて増加し、 比較的高い発現が 12 日目において CYCA2;3 と CYCA2;4において観察された (図 6 D、下のパネル)。 12日後の CYCA2; 1 発現は、 野生株、 ilpl-lD 、 及び ilpl_2において検出できなかった。
一方、 8 日までの分裂中の葉における倍数性レベルの観察によれば、 野生株と ilpl-lD、では何ら明確な違いはなかったにも関わらず、 ilpl-2と比較した場合、
2C フラクションの減少と 8C 及び 16C フラクションの増加を示した。 10 日後、 ilpl-lD は、 野生株に比べて徐々に 8C 及び 16C フラクションが増加した (図 6
E)。 22 日目、 16C細胞のフラクションが野生株では 7 %であるのに対し、 ilpl- 1D では 18%まで増加した (図 6 E)。 8 日目、 ilpl-2 では 2Cフラクションが 60%以 上で、 8C及び 16Cフラクションは検出されなかった。 しかしながら、 10 日後、 8C 及び 16Cフラクションは、 ilpl- 1Dと同様に ilpl- 2 において増加した (図 6 E)。
(実施例 8) マウス ILP1による哺乳類細胞におけるサイクリン A2遺伝子発現の 調節 . .
サイクリン A2 発現の減少が哺乳類細胞においてもまた観察されるかどうかを 理解するために、コ トランスフエクションアツセィを NIH3T3細胞を用いて行った。 マウス ILP1 ホモログ (AAK68725) cDNA (図 3 E及び図 3 F )を RT- PCR によって 単離し、サイ トメガロウィルス(CMV)プロモーターを含む発現ベクターにクローン 化した (図 7 A)。 この cDNAをマウスサイクリン A2(Ccna2)プロモータ一- LUC リ ポーターとともにリボフヱクション法にてコトランスフヱク トした。 転写開始部 位の- 177力、ら +100までを含む Ccna2 プロモーター(Huet, X. , Rech, J., Plet, A., Vie, A. , and Blanchard, J. M. (1996) Cyclin A expression is under negative transcriptional control during the cell cycle. Mol. Cell Biol. 16, 3789-3798. ) を用いた。 この領域は、 マウス及びヒ トサイクリン A2プロモーター 間で保存性を示す。 本アツセィのための内部標準として、 i3-ガラク トシダーゼ (LacZ)遺伝子を用いた。 図 7 Bに示すように、マウス ILP1遺伝子でトランスフエ ク トされた細胞においてトランスフヱクシヨン後 24時間及び 48時間の両方でリ ポーター活性の減少が認められた。
(実施例 9) CYCA2遺伝子の T- DNA挿入変異株の表現型
CYCA2 ファミリーのうち、 CYCA2;1 は熱心に研究されており、 この遺伝子発現 は S/G2 期に特異的であると報告されている(Shaul, 0., Mironov, V·, Burssens,
S. , Van Montagu, . , and Inze, D. (1996) Two Arabidopsis cyclin promoters mediate distinctive transcriptional oscillation in synchronized tobacco
BY- 2 cells. Proc. Natl. Acad. Sci. U S A. 93, 4868-4872. )0 CYCA2; 1 発現の 減少がェンドリデュプリケーションに関連するかどうかを試験するために、 SALK
T-DNA コレクション(Alonso, J. M. , Stepanova, A. N. , Leisse, T. J. , Kim, C. J. , Chen, H., Shinn, P., Stevenson, D. K. , Zimmerman, J. , Barajas, P. , Cheuk, R, et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657.) から得た CYCA2;1 T-DNA 挿入変異株の倍数性レベルを 調べた。 2つの独立した T-DNA 挿入系統について調べた。揷入系統 1 (cyca2;l_l) では、 T- DNAは第 1ェクソン(SALK_121077)にあり、挿入系統 2 (cyca2;l_2) では、 それは第 4イントロン(SALK_136750)にあった(図 8 A)。 RT-PCR 分析ではこれら の 2系統がヌルであることを示唆した(図 8 B)。 cyca2;l-l及び cyca2;l - 2 ホモ 接合体系統の両方が成体段階で野生株とほとんど形態学的相違は示さなかった。 喑所で生育させた芽生えの形態もまた野生株と同じであった。 これらの T-DNA挿 入系統において倍数性レベルを観察したとき、 両方とも喑所で生育させた胚軸に おいて野生株と比較して 32C細胞の割合が増加していた(図 8 C)。 明所で生育さ せた芽生えの胚軸においては、 16C 細胞のレベルの増加が観察された (図 8 C)。 また、 明所で成育させた子葉細胞における倍数性レベルを調べた。 子葉のサイズ は野生株と比べて変化しなかったが、 16C フラクショ ンが cyca2;l_l と cyca2;l-2 の両方で増加した (図 8 C)。 これらのデータは、 CYCA2; 1 発現の欠失 が倍数性増加を誘導することを示す。
(実施例 1 0) 他の変異株の特徴づけ
残りの 5変異株である ilP2_D、 3-D、 4-D、 5- D、 および 7- Dでもグループ 1の 特徴が現れ、 喑所でも明所でも DNA含量の増大が観察された。 ilp4-Dを除くこれ ら変異株では、 子葉面積の増加や、 シロイヌナズナの表面に現れる三つの分枝を 持つ毛であるトライコームの大型化と分枝数増加、 根の伸長、 そして胚軸径が太 くなるなどの細胞の大型化を示す表現型が現れた (図 9、 1 0、 1 2、 1 3)。 さ らに、 ILP2、 ILP5、 ILP7を過剰発現させた形質転換体では、 胚軸における DNA含 量が増大しており、前記変異株と同様の表現型を示した(図 9、 1 2、 1 3)。 ILP4 を過剰発現させた形質転換体(ILP4ox)では、 ilP4-Dより ILP4の発現が強まって いた。 この形質転換体では、 子葉面積が増大していた (図 1 1)。 本明細書で引用した全ての刊行物、 特許及び特許出願をそのまま参考として本 明細書に組み入れるものとする。 産業上の利用可能性
本発明によれば、 植物細胞のエンドリデュプリケーシヨンを促進し、 核 DNA量 を増加させる活性を有する遺伝子が見出された。 植物体の大きさは、 植物体を構 成する細胞の数と大きさで決まり、 植物細胞は核 DNA量が多いほど大きくなる。 従って、 本遺伝子を利用することにより、 植物体全体又はその 部を大型化させ た植物育種が可能となる。 たとえば、 トマトの実ではエンドリデュプリケーショ ンが生じることが知られているので、 本遺伝子を使って大きなトマトを作出する ような品種改良への利用が期待される。 また、 イネやトウモロコシなど穀物の胚 乳細胞でも DNA含量が増大することで、 発達することから、 胚乳の大型化への応 用も考えられる。 さらに、 ILP 遺伝子を利用してエンドリデュプリケーシヨンを 促進すれば、 物質生産に関わる遺伝子も倍化できるので、 植物が生産する様々な 有用物質 (例えば、 アントシァニンゃフラボノイ ド等) の生産量を向上させるこ とも可能である。
エンドリデュプリケーションが促進した変異株では、 紫外線などに強くなるこ と力知られてレヽる (Hase Y, Trung KH, Matsunaga T, Tanaka A (2006) A mutation in the uvi4 gene promotes progression of endo- redupl ication and confers increased tolerance towards ultraviolet B l ight. Plant J. 46 : 317-326. )。 これは、 1細胞当たりの遺伝子数が増えることにより、 DNA損傷の被害を相補でき るためである。 二次的な効果として、 本遺伝子を利用することにより、 紫外線な ど DNA障害を引き起こすストレスに強い作物の育種も期待できる。

Claims

1 . 以下の(a)〜(c)のいずれかの 伝子。
(a) 配列番号 1、 3、 5、 7、 9、 又は 1 1に示す塩基配列からなる DNAを含む 遺伝子
(b) 配列番号 1、 3、 5、 7、 9、 又は 1 1に示す塩基配列からなる DNAと相補 的な塩基配列からなる DNAとストリンジ工ントな条件下でハイブリダイズし、 か っェンドリデュプリケーション促進請活性を有するタンパク質をコードする DNAを 含む遺伝子
(c) 配列番号 1、 3、 5、 7、 9、 又は 1の 1に示す塩基配列に対して 80%以上 の相同性を有する塩基配列からなり、 かつエンドリデュプリケーシヨン促進活性 を有するタンパク質をコードする DNAを含む遺伝子
2 . 以下の(d)〜(f)のいずれかのタンパク質をコードする遺伝子。
(d) 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すアミノ酸配列からなるタン パク質
(e) 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すアミノ酸配列において 1若 しくは数個のァミノ酸が欠失、 置換若しくは付加されたァミノ酸配列からなり、 かつェンドリデュプリケーシヨン促進活性を有するタンパク質
(f) 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すアミノ酸配列に対して 80% 以上の相同性を有するアミノ酸配列からなり、 かつェンドリデュプリケーシヨン 促進活性を有するタンパク質
3 . 以下の(d)〜(f)のダンパク質。
(d) 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すアミノ酸配列からなるタン パク質
(e) 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すアミノ酸配列において 1若 しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつエンドリデュプリケーシヨン促進活性を有するタンパク質
(f) 配列番号 2、 4、 6、 8、 1 0、 又は 1 2に示すアミノ酸配列に対して 80% 以上の相同性を有するアミノ酸配列からなり、 かつエンドリデュプリケーション 促進活性を有するタンパク質
4 . 請求項 1又は 2に記載の遺伝子を含む組換えベクター。
5 . 請求項 1若しくは 2に記載の遺伝子、 又は請求項 4に記載の組換えべクタ 一が導入され、 植物細胞の核 DNA量が増加した形質転換植物。
6 . 植物が、 植物体、 植物器官、 植物組織、 又は植物培養細胞である請求項 5 に記載の植物細胞の核 DNA量が増加した形質転換植物。
7 . 請求項 1若しくは 2に記載の遺伝子、 又は請求項 4に記載の組換えべクタ 一を植物細胞に導入し、 該植物細胞から植物体を再生することを特徴とする、 植 物細胞の核 DNA量が増加した形質転換植物の作出方法。
8 . 請求項 1又は 2に記載の遺伝子を植物体内で過剰発現させることにより、 植物体全体又はその一部を大型化する方法。
PCT/JP2007/069418 2007-03-28 2007-09-27 エンドリデュプリケーション促進活性を有する遺伝子 WO2008120410A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0721515-0A2A BRPI0721515A2 (pt) 2007-03-28 2007-09-27 Gene que tem atividade promotora de endoreduplicação
US12/593,304 US8461414B2 (en) 2007-03-28 2007-09-27 Gene having endoreduplication promoting activity
JP2009507389A JPWO2008120410A1 (ja) 2007-03-28 2007-09-27 エンドリデュプリケーション促進活性を有する遺伝子
EP07829156A EP2128251A4 (en) 2007-03-28 2007-09-27 GENES HAVING AN ACTIVITY ENCOURAGING ENDOREDUPLICATION
EP10015052A EP2348109A1 (en) 2007-03-28 2007-09-27 Genes having activity of promoting endoreduplication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-085500 2007-03-28
JP2007085500 2007-03-28

Publications (1)

Publication Number Publication Date
WO2008120410A1 true WO2008120410A1 (ja) 2008-10-09

Family

ID=39807999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069418 WO2008120410A1 (ja) 2007-03-28 2007-09-27 エンドリデュプリケーション促進活性を有する遺伝子

Country Status (6)

Country Link
US (1) US8461414B2 (ja)
EP (2) EP2128251A4 (ja)
JP (1) JPWO2008120410A1 (ja)
CN (1) CN101636494A (ja)
BR (1) BRPI0721515A2 (ja)
WO (1) WO2008120410A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171466A (ja) * 2013-03-12 2014-09-22 Toyota Central R&D Labs Inc 植物バイオマスの増産方法
US10036005B2 (en) 2013-03-28 2018-07-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Protein having xylose isomerase activity and use of same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212881A (ja) * 2014-10-10 2017-12-07 国立研究開発法人理化学研究所 植物のバイオマスを増大させる新規遺伝子及びその利用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040216190A1 (en) * 2003-04-28 2004-10-28 Kovalic David K. Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
JP2007085500A (ja) 2005-09-26 2007-04-05 Shimadzu Corp 液圧装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040216190A1 (en) * 2003-04-28 2004-10-28 Kovalic David K. Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
JP2007085500A (ja) 2005-09-26 2007-04-05 Shimadzu Corp 液圧装置

Non-Patent Citations (57)

* Cited by examiner, † Cited by third party
Title
"Arabidopsis, encodes a member of the raf family of protein kinases", CELL, vol. 72, pages 427 - 441
"From Genetic engineering to genomic analysis", 2001, SHUJUNSHA
ALONSO, J. M. ET AL.: "Genome-wide insertional mutagenesis of Arabidopsis thaliana", SCIENCE, vol. 301, 2003, pages 653 - 657, XP002300984, DOI: doi:10.1126/science.1086391
BURSSENS, S. ET AL.: "Developmental expression of the Arabidopsis thaliana CycA2; gene", PLANTA, vol. 211, 2000, pages 623 - 631, XP009074954, DOI: doi:10.1007/s004250000333
CLOUGH, S. J.; BENT, A. F.: "Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana", PLANT J., vol. 16, 1998, pages 735 - 743, XP002132452, DOI: doi:10.1046/j.1365-313x.1998.00343.x
DATABASE GENBANK [online] 2 November 2006 (2006-11-02), YOSHIZUMI T. ETA L.: "Arabidopsis thaliana ILP1 mRNA for transcriptional repressor ILP1, complete cds", XP003022983, Database accession no. (AB253763) *
DE VEYLDER, L. ET AL.: "Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis", PLANT CELL, vol. 13, 2001, pages 1653 - 1668
DEWITTE, W. ET AL.: "Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3", PLANT CELL, vol. 15, 2003, pages 79 - 92, XP002292514, DOI: doi:10.1105/tpc.004838
EDGAR, B.A.; ORR-WEAVER, T.L.: "Endoreplication cell cycles: more for less", CELL, vol. 105, 2001, pages 297 - 306
GENDREAU, E. ET AL.: "Cellular basis of hypocotyl growth in Arabidopsis thaliana", PLANT PHYSIOL, vol. 114, 1997, pages 295 - 305
GENDREAU, E. ET AL.: "Cellular basis of hypocotyl growth in Arabidopsis thaliana", PLANT PHYSIOL., vol. 114, 1997, pages 295 - 305
GENDREAU, E. ET AL.: "Gibberellin and ethylene control endoreduplication levels in the Arabidopsis thaliana hypocotyl", PLANTA 209, 1999, pages 513 - 516
GM, VALVEKENS, D.; VAN MONTAGU, M.; VAN LIJSEBETTENS, M.: "Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection", PROC. NATL. ACAD SCI., vol. 85, 1988, pages 5536 - 5540, XP002913699, DOI: doi:10.1073/pnas.85.15.5536
HASE Y ET AL.: "A mutation in the uvi4 gene promotes progression of endo-reduplication and confers increased tolerance towards ultraviolet B light", PLANT J., vol. 46, 2006, pages 317 - 326, XP055143771, DOI: doi:10.1111/j.1365-313X.2006.02696.x
HAYASHI, H. ET AL., SCIENCE, vol. 258, 1992, pages 1350 - 1353
HIMANEN, K. ET AL.: "Auxin-mediated cell cycle activation during early lateral root initiation", PLANT CELL, vol. 14, 2002, pages 2339 - 2351
HUET, X. ET AL.: "Cyclin A expression is under negative transcriptional control during the cell cycle", MOL. CELL BIOL., vol. 16, 1996, pages 3789 - 3798
ICHIKAWA, T. ET AL.: "Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation", PLANT J., vol. 36, 2003, pages 421 - 429
IMAI, K. K. ET AL.: "The A-Type Cyclin CYCA2;3 Is a Key Regulator of Ploidy Levels in Arabidopsis Endoreduplication", PLANT CELL, vol. 18, 2006, pages 382 - 396
IMAI, K.K. ET AL.: "The A-Type Cyclin CYCA2;3 Is a Key Regulator of Ploidy Levels in Arabidopsis Endoreduplication", PLANT CELL, vol. 18, 2006, pages 382 - 396
JOUBES, J.; CHEVALIER, C.: "Endoreduplication in higher plants", PLANT MOL. BIOL., vol. 43, 2000, pages 735 - 745, XP002240147, DOI: doi:10.1023/A:1006446417196
KAGEYAMA, R.; PASTAN, 1.: "Molecular cloning and characterization of a human DNA binding factor that represses transcription", CELL, vol. 59, 1989, pages 815 - 825, XP023908108, DOI: doi:10.1016/0092-8674(89)90605-3
KELLEY, L. A.; MACCALLUM, R. M.; STEMBERG, M. J. E.: "Enhanced genome annotation using structural profiles in the program 3D-PSSM", J. MOL. BIOL., vol. 299, 2000, pages 499 - 520
KIEBER, J.J. ET AL., CTR1, 1993
KIMURA, M. ET AL.: "Arabidopsis transcriptional regulation by light stress via hydrogen peroxide-dependent and -independent pathways", GENES CELLS, vol. 6, 2001, pages 607 - 617
LARKINS, B.A. ET AL.: "Investigating the hows and whys of DNA endoreduplication", J. EXP. BOT, vol. 52, 2001, pages 183 - 192, XP002272977, DOI: doi:10.1093/jexbot/52.355.183
MA, J. ET AL.: "east activators stimulate plant gene expression", NATURE, vol. 334, 1988, pages 631 - 633, XP000645136, DOI: doi:10.1038/334631a0
MARICONTI, L. ET AL.: "The E2F family of transcription factors from Arabidopsis thaliana, Novel and conserved components of the retinoblastoma/E2F pathway in plants", J. BIOL. CHEM., vol. 277, 2002, pages 9911 - 9919, XP002359639, DOI: doi:10.1074/jbc.M110616200
MELARAGNO, J.E.; MEHROTRA, B.; COLEMAN, A.W.: "Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis", PLANT CELL, vol. 5, 1993, pages 1661 - 1668
MELARAGNO, J.E.; MEHROTRA, B.; COLEMAN, A.W.: "Relationship between endopolyploidy and cell size in epidermal tissue ofArabidopsis", PLANT CELL, vol. 5, 1993, pages 1661 - 1668
NAKAI, K.; HORTON, P.: "PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization", TRENDS BIOCHEM. SCI., vol. 24, 1999, pages 34 - 36
NAKAMURA, M.; TSUNODA, T.; OBOKATA, J.: "Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiator", PLANT J., vol. 29, 2002, pages 1 - 10
NAKAZAWA M ET AL.: "Activation tagging, a novel tool to dissect the functions of a gene family", PLANT J., vol. 34, 2003, pages 741 - 750
NAKAZAWA, M. ET AL.: "Activation tagging, a novel tool to dissect the functions of a gene family", PLANT J., vol. 34, 2003, pages 741 - 750
NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 8711
ORBOVIC, V; HONE, H.; TRAAS, J.: "Gibberellin and ethylene control endoreduplication levels in the Arabidopsis thaliana hypocotyl", PLANTA, vol. 209, 1999, pages 513 - 516
REED, A. L. ET AL.: "Molecular cloning and characterization of a transcription regulator with homology to GC-binding factor", J. BIOL. CHEM., vol. 273, 1998, pages 21594 - 21602
RICHARD, C. ET AL.: "Analysis of cell division parameters and cell cycle gene expression during the cultivation of Arabidopsis thaliana cell suspensions", J. EXP. BOT., vol. 52, 2001, pages 1625 - 1633
RIOU-KHAMLICHI, C. ET AL.: "Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression", MOL. CELL BIOL., vol. 20, 2000, pages 4513 - 4521, XP002373823, DOI: doi:10.1128/MCB.20.13.4513-4521.2000
SAMBROOK, J. ET AL.: "Molecular Cloning: A Laboratory Manual", vol. 10, 1989, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP2128251A4 *
SHAUL, 0. ET AL.: "Two Arabidopsis cyclin promoters mediate distinctive transcriptional oscillation in synchronized tobacco BY-2 cells", PROC. NATL. ACAD. SCI. U.S.A., vol. 93, 1996, pages 4868 - 4872
SUN, Y; FLANNIGAN, B.A.; SETTER, T.L.: "Regulation of endoreduplication in maize (Zea mays L.) endosperm. Isolation of a novel Bl-type cyclin and its quantitative analysis", PLANT MOL. BIOL., vol. 41, 1999, pages 245 - 258, XP019262362, DOI: doi:10.1023/A:1006315625486
TAKAHASHI N. ET AL.: "Arabidopsis thaliana no ILP5 wa Endoreduplication o Sei ni Seigyo suru", 27TH ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN PROGRAM.KOEN YOSHISHU, vol. 27TH, 2004, pages 554 + ABSTR. NO. 1PB-217, XP003022982 *
TAKAHASHI N. ET AL.: "Arabidopsis thaliana no ILP5 wa Endoreduplication o Sei ni Seigyo suru", DAI 47 KAI THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS NENKAI YOSHISHU, vol. 47TH, 1 May 2006 (2006-05-01), pages 268 + ABSTR. NO. P102(648), XP003022979 *
TAKIMOTO, M. ET AL.: "Molecular analysis of the GCF gene identifies revisions to the cDNA and amino acid sequences", BIOCHIM. BIOPHYS. ACTA, vol. 1447, 1999, pages 125 - 131, XP004275486, DOI: doi:10.1016/S0167-4781(99)00127-X
VANDEPOELE, K. ET AL.: "Genome-wide analysis of core cell cycle genes in Arabidopsis", PLANT CELL, vol. 14, 2002, pages 903 - 916, XP002259203, DOI: doi:10.1105/tpc.010445
VLIEGHE, K. ET AL.: "The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana", CURR. BIOL., vol. 15, 2005, pages 59 - 63, XP025939538, DOI: doi:10.1016/j.cub.2004.12.038
YAMAMOTO, Y Y; DENG, X. W.: "A new vector set for GAL4-dependent transactivation assay in plants", PLANT BIOTECH., vol. 15, 1998, pages 217 - 220
YAMAMOTO, Y Y; DENG, X. W.; MATSUI, M.: "IP4, a new COP1 target, is a nucleus-localized positive regulator of Arabidopsis photomorphogenesis", PLANT CELL, vol. 13, 2001, pages 399 - 411
YOSHIZUMI T. ET AL.: "Arabidopsis thaliana no Shinki na Tensha Yokusei Inshi de aru ILP1 wa CyclinA2 no Tensha o Yokusei suru Koto de Endoreduplication o Sokushin suru", 27TH ANNUAL MEETING OF THE MOLECULAR BIOLOGY OF SOCIETY OF JAPAN PROGRAM.KOEN YOSHISHU, vol. 27TH, 2004, pages 554 + ABSTR.NO. 1PB-220, XP003022981 *
YOSHIZUMI T. ET AL.: "Arabidopsis thaliana no Shinki na Tensha Yokusei Inshi de aru ILP1 wa CyclinA2 no Tensha o Yokusei suru Koto de Endoreduplication o Sokushin suru", DAI 47 KAI THE JAPANESE SOCIEYT OF PLANT PHYSIOLOGISTS NENKAI YOSHISHU, vol. 47TH, 1 May 2006 (2006-05-01), pages 268 + ABSTR. NO. P103(649), XP003022978 *
YOSHIZUMI T. ET AL.: "Endoreduplication o Sei ni Seigyo suru Inshi ILP1 wa CyclinA2 no Tensha o Yokusei suru", DAI 48 KAI THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS NENKAI YOSHISHU, vol. 48TH, 15 March 2007 (2007-03-15), pages 161 + ABSTR. NO. 2AD05(280), XP003022980 *
YOSHIZUMI T. ET AL.: "Increased level of polyploidyl, a conserved repressor of CYCLINA2 transcription, controls endoreduplication in Arabidopsis", PLANT CELL, vol. 18, no. 10, 2006, pages 2452 - 2468, XP003022976 *
YOSHIZUMI T. ET AL.: "Saibo Bunretsu no Nai Saibo Shuki 'Endoreduplication' o Yokusei suru Idenshi no Hakken", BIONICS, vol. 4, no. 2, 1 February 2007 (2007-02-01), pages 74 - 76, XP003022977 *
YOSHIZUMI, T. ET AL.: "An Arabidopsis cell cycle-dependent kinase-related gene, CDC2b, plays a role in regulating seedling growth in darkness", PLANT CELL, vol. 11, 1999, pages 1883 - 1896
YU, Y ET AL.: "The tobacco A-type Cyclin, Nicta;CYCA3;2, at the nexus of cell division and differentiation", PLANT CELL, vol. 15, 2003, pages 2763 - 2777, XP002335384, DOI: doi:10.1105/tpc.015990

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171466A (ja) * 2013-03-12 2014-09-22 Toyota Central R&D Labs Inc 植物バイオマスの増産方法
US9902968B2 (en) 2013-03-12 2018-02-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for increasing plant biomass using an exogenous gene encoding a thermophilic restriction enzyme
US10036005B2 (en) 2013-03-28 2018-07-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Protein having xylose isomerase activity and use of same
US10533169B2 (en) 2013-03-28 2020-01-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Protein having xylose isomerase activity and use of same

Also Published As

Publication number Publication date
EP2128251A4 (en) 2010-05-05
CN101636494A (zh) 2010-01-27
EP2348109A1 (en) 2011-07-27
EP2128251A1 (en) 2009-12-02
JPWO2008120410A1 (ja) 2010-07-15
US20100199387A1 (en) 2010-08-05
US8461414B2 (en) 2013-06-11
BRPI0721515A2 (pt) 2014-02-18

Similar Documents

Publication Publication Date Title
Fukaki et al. Lateral root formation is blocked by a gain‐of‐function mutation in the SOLITARY‐ROOT/IAA14 gene of Arabidopsis
US11445671B2 (en) Polynucleotide responsible of haploid induction in maize plants and related processes
US11873499B2 (en) Methods of increasing nutrient use efficiency
US20200354735A1 (en) Plants with increased seed size
US11725214B2 (en) Methods for increasing grain productivity
WO2019038417A1 (en) METHODS FOR INCREASING GRAIN YIELD
WO2016124920A1 (en) Rice plants with altered seed phenotype and quality
CA3057759A1 (en) Methods for increasing grain yield
EP4025589A1 (en) Methods of improving seed size and quality
US20180057831A1 (en) Inducible flowering for fast generation times in maize and sorghum
WO2013192081A1 (en) Terminating flower (tmf) gene and methods of use
JP6191996B2 (ja) 単為結果制御遺伝子およびその利用
CA2615249C (en) Method to produce sterile male flowers and partenocarpic fruits by genetic silencing, associated sequences and vectors containing said sequences
US8461414B2 (en) Gene having endoreduplication promoting activity
WO2009072676A1 (ja) 成長が促進された形質転換植物
CA3178261A1 (en) Enhancement of productivity in c3 plants
Jeon et al. Intragenic control of expression of a rice MADS box gene OsMADS1
US20230081195A1 (en) Methods of controlling grain size and weight
Wang et al. The role of Class Ⅱ KNOX family in controlling compound leaf patterning in Medicago truncatula
US7632984B2 (en) Modulation of flowering time by the pft1 locus
KR101592863B1 (ko) 왜성 표현형을 나타내는 D-h 유전자 및 이의 용도
US20170247716A1 (en) Modulation of rtl gene expression and improving agronomic traits
Du Investigating The Functions of Two Transcription Factors in Vascular Development and Wall Biosynthesis in Arabidopsis thaliana
WO2004108931A1 (en) Cytokinin receptor ahk3 involved in senescence regulation of plant and use thereof
EA043050B1 (ru) Способы повышения урожая зерна

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780052353.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009507389

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12593304

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007829156

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6347/CHENP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0721515

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090928