WO2008116622A1 - Linearmaschine mit einem primärteil und einem sekundärteil - Google Patents

Linearmaschine mit einem primärteil und einem sekundärteil Download PDF

Info

Publication number
WO2008116622A1
WO2008116622A1 PCT/EP2008/002333 EP2008002333W WO2008116622A1 WO 2008116622 A1 WO2008116622 A1 WO 2008116622A1 EP 2008002333 W EP2008002333 W EP 2008002333W WO 2008116622 A1 WO2008116622 A1 WO 2008116622A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary
coils
linear machine
machine according
secondary coils
Prior art date
Application number
PCT/EP2008/002333
Other languages
English (en)
French (fr)
Inventor
Jan Wiezoreck
Ingolf Hahn
Carsten BÜHRER
Jakob Fallkowski
Original Assignee
Zenergy Power Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zenergy Power Gmbh filed Critical Zenergy Power Gmbh
Priority to AU2008232023A priority Critical patent/AU2008232023B2/en
Priority to MX2009009157A priority patent/MX2009009157A/es
Priority to US12/532,954 priority patent/US20120129700A1/en
Priority to DE502008001089T priority patent/DE502008001089D1/de
Priority to BRPI0808355-0A priority patent/BRPI0808355A2/pt
Priority to EP08734743A priority patent/EP2132866B1/de
Priority to DK08734743.1T priority patent/DK2132866T3/da
Priority to AT08734743T priority patent/ATE476778T1/de
Priority to CA002682241A priority patent/CA2682241A1/en
Priority to JP2010500130A priority patent/JP2010522530A/ja
Publication of WO2008116622A1 publication Critical patent/WO2008116622A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention relates to a linear machine having a primary part, which has a plurality of annular, preferably concentric to an axis spaced by intermediate elements spaced primary coils, and having a secondary part having a plurality of direct current, axially juxtaposed with alternating polarity secondary coils having superconductor windings wherein one part is reciprocable relative to the other part parallel to the axis.
  • a linear motor with a hollow cylindrical primary part which has annular, concentric with a movement axis of a secondary part arranged primary coils, which are operable with multi-phase current.
  • ring plates Arranged between the primary coils of soft magnetic material ring plates are arranged, which serve as intermediate elements for spacing adjacent primary coils and form magnetizable teeth to amplify the magnetic flux and for receiving, in which the secondary part is arranged,USD meetings.
  • the primary coils and the ring plates are accommodated in a hollow cylindrical yoke of magnetizable material forming a magnetic yoke.
  • the secondary part is arranged axially displaceable within the receptacle formed by the primary part.
  • the secondary part has a plurality of field magnets made of superconductor windings, which are arranged one after the other in the axial direction with alternating polarity.
  • the magnetic fields of the secondary windings should be perpendicular to the axis of the secondary part.
  • the axis of each individual current-carrying coil must be perpendicular to the axis of motion of the linear motor. Only when using permanent magnets or superconducting solid state magnets
  • the magnetizability of the soft magnetic teeth is limited because of the occurring magnetic saturation of the soft magnetic material.
  • force densities up to about 8 N / cm 2 have been achieved with these measures in the experimental stage.
  • the size and weight of the linear motors must be significantly increased for this purpose.
  • the object of the invention is to provide a linear machine in which significantly higher force densities are made possible with design measures on the primary part and / or secondary part, even with a small size of the linear machines.
  • the arrangement of the primary coils in the primary part is designed as an air gap winding with intermediate elements of non-magnetizable material and the secondary coils consist of windings of a high-temperature superconductor, whereby force densities of more than 18 N / cm 2 can be achieved.
  • the linear machine is preferably designed as a linear motor, in which by current application of the primary and secondary coils a relative movement between the primary and secondary parts parallel to the axis is effected via the magnetic fields generated thereby, and the invention will be described in the following primarily with reference thereto.
  • the linear machine can also be designed as a generator in which a current induced by the relative movement between the primary and secondary parts in the primary coils is converted into energy.
  • the high power densities can be achieved in the design of the linear machine as a linear motor by applying current to the primary coils with alternating current and the secondary coils with direct current. Since the arrangement of the primary coils and preferably also the arrangement of the secondary coils is designed as an air gap winding, that is arranged between the primary coils nor between the secondary coils magnetizable material for flux guidance, the force density is not limited by a saturation magnetization in the linear machine according to the invention.
  • the current balance of the primary part ie the current in the circumferential direction per axial length of the primary part can be increased compared to the known linear motors without increasing the size of the linear motor, whereby the power density proportional to the current density increases without saturation effects.
  • no iron or magnetizable material for bundling the magnetic flux is arranged between the primary coils.
  • linear motor Another advantage of the linear motor according to the invention is that an almost smooth force curve in the axial direction is achieved, since the air gap winding reluctance virtually eliminated and thus hardly any cogging forces occur.
  • the linear motor since it dispenses with permanent magnets and magnetizable material in the primary and secondary parts and thus occur when switching off the current application no magnetic forces are relatively easy to maintain or clean.
  • a high current balance of the primary part can be achieved in particular by the filling factor of the primary part being selected to be high.
  • the fill factor is defined as the volume ratio of the volume of the primary coils through which current flows to the volume of the intermediate elements and of any interspaces between the primary coils.
  • the filling factor of the primary part is preferably greater than 70% and in particular greater than 85%.
  • adjacent primary coils are preferably acted upon by a 120 ° phase-shifted alternating current, whereby the linear motor forms a three-phase motor (three-phase motor).
  • the phase shift can be adjusted or selected differently.
  • the primary coils may in the preferred embodiment windings of a normal conductor such as in particular a conductor made of aluminum or copper, whereby the primary coils can optionally be cost-effective manner, for example, liquid or gas cooled. Particularly advantageous is a cooling with eg water or oil.
  • the normal conductor can in particular also consist of a waveguide whose inner tube is used for cooling.
  • the windings of the primary coils could consist of a superconductive conductor, in particular a high-temperature superconductive conductor.
  • the current application should then be made with alternating current with a frequency of less than 100 Hz, in particular less than 50 Hz in order to minimize AC losses in the superconducting primary coils, which would otherwise have to be compensated by additional cooling.
  • force densities of more than 18 N / cm 2 can be achieved
  • force densities of more than 25 N / cm 2 can be achieved in both the secondary and primary coils.
  • cooling lines through which a coolant can flow can also be formed between the coils, or gaps between the primary coils and possibly the intermediate elements can be left open.
  • the intermediate elements may be formed annular segment-shaped, whereby a coolant can reach the not covered by the ring segments end faces of the primary coils.
  • the intermediate elements can be full-surface, partial or with gaps extend beyond the radial height of the primary coils.
  • the intermediate elements may also consist of lattice structures, hollow bodies or grid bodies, which have sufficient mechanical stability and at the same time allow a coolant flow.
  • the primary coils and the intermediate elements are sheathed by a yoke, which preferably consists of non-magnetisable material, in particular an iron-free lightweight construction material.
  • the yoke for magnetic field shielding made of ferrous and / or magnetizable material.
  • the yoke and the intermediate elements can in particular form a mechanical holding framework for the primary coils.
  • the yoke may have grooves on its inner circumference, in which the intermediate elements engage in a form-fitting manner.
  • the primary coils can be supported in the axial direction of the intermediate elements, whereby the yoke can absorb the force acting on the primary coils magnetic field forces in the axial direction. It is particularly advantageous if the primary part is formed iron-free in order to achieve at the same time a particularly lightweight construction of the primary part and thus the linear machine while avoiding saturation effects.
  • the yoke may comprise a magnetizable material for recycling the magnetic flux.
  • the primary coils may be cast in plastic, preferably in synthetic resin, in particular in epoxy resin.
  • the intermediate elements are also made of plastic, preferably synthetic resin, in particular epoxy resin in an advantageous embodiment of the invention and can be reinforced with a fiber reinforcement, for example by inserting fiberglass material.
  • the superconducting secondary coils can carry high current densities, preferably current densities of more than 50 A / mm 2 , more preferably more than 70 A / mm 2, and more particularly more than 100 A / mm 2 , thereby producing an extremely strong magnetic field with the secondary coils can be.
  • the flux densities which can be generated by the secondary part can be more than 0.5 Tesla, preferably more than 1 Tesla, in the air gap if necessary reach up to 2 Tesla.
  • the secondary part preferably has a cylindrical support body, on or on the lateral surface of which the secondary coils are arranged.
  • the supporting body of the secondary part is preferably made of a non-magnetic material, for example. Of fiber-reinforced plastic.
  • the support body could also be made of a magnetic material, such as iron, or be made.
  • the secondary coils are annular and arranged concentrically to each other fixed to the axis on the associated support body of the secondary part. In the axial direction adjacent secondary coils are acted upon in opposite polarity in operation by opposite polarity circuit. Between the secondary coils, in turn, in order to realize the air gap winding, non-magnetizable annular spacers can be arranged, against which the secondary coils are supported in the axial direction.
  • Adjacent secondary coils in this embodiment preferably have a spacing from each other which is at least twice as large and preferably greater than the width of the respective secondary coils existing in the axial direction.
  • a plurality of coils can be combined to form a package, all of which have the same direction of current flow (connected in series or in parallel). Only adjacent coil packages are then applied in each case with the reverse current direction.
  • FIG. 1 shows a linear motor according to the invention with a primary part and a secondary part according to a first embodiment in longitudinal section.
  • Fig. 2 shows the secondary part of Fig. 1 in a perspective view.
  • a designated in its entirety by 10 linear motor with a primary part 20 and a secondary part 30 is shown.
  • the primary part 20 delimits a cylindrical receptacle 11, in which the secondary part 30 can be moved back and forth along a central axis A.
  • the primary part 20 has five concentric to the axis A arranged primary coils 21 in the illustrated embodiment.
  • the drawing shows only a motor cutout from a total engine, since, for example, in three-phase operation, the number of coils or coil packages must be divisible by 3.
  • the primary coils 21 are made of ring disk coils, which can be acted upon by not shown contacts on its outer circumference with, for example, 120 ° phase-shifted AC or three-phase current (three-phase current) to produce with the primary coils 21 in the receptacle 11, a magnetic traveling field.
  • the consisting of a copper conductor windings of the primary coils 21 are cast for mechanical stabilization in epoxy resin.
  • annular intermediate elements 22 are arranged, on which the primary coils 21 are supported with their end faces in the axial direction.
  • the intermediate elements 22 extend in the radial direction from the inner circumference of the primary coils 21 to the outer circumference of the primary coils 21.
  • a hollow cylindrical yoke 23 On the outer periphery of the intermediate elements 22 and the primary coils 21 is located on a hollow cylindrical yoke 23, to which the intermediate elements 22 are anchored (not shown).
  • the yoke 23 and the intermediate elements 22 thereby form a mechanical holding framework for the primary coils 21 accommodated therein.
  • the yoke 23 to the primary part 20 may consist of non-magnetizable material or shielding of magnetizable material. In the latter case, even a power density increase can occur. If the yoke 23 from el. conductive material, it may preferably be formed to reduce AC losses by means of laminated and slotted materials.
  • the intermediate elements 22 may for example consist of glass fiber reinforced plastic and are therefore not magnetizable according to the invention, whereby the magnetic field generated in the receptacle 11 when current is applied to the primary coils 21 is not affected by a saturation magnetization. tion of the intermediate elements 22 is limited. There is essentially no magnetizable material for flux guidance between the primary coils 21. The arrangement of the axially adjacent primary coils 21 is therefore designed with a so-called air gap winding. These "air gaps" between the primary coils 21 are filled with the optionally partially hollow and / or exclusively used for isolation intermediate elements 22. Therefore, very wide primary coils 21 with a high number of turns per axial length can be used in the primary part 20.
  • the volume of the intermediate elements 22 takes only a fraction of the volume of the primary coils 21, the filling factor of the primary part with current-carrying and thus a magnetic field (traveling wave) generating turns significantly more than 50% Thus, a higher current can be introduced into the primary coils 21 of the primary part 20.
  • the secondary part 30 shown in FIGS. 1 and 2 has annular secondary coils 31, which are arranged concentrically with respect to the axis A, of a high-temperature superconductor. These at a cryogenic temperature of more than 20 K superconductive secondary coils 31 are subjected to direct current, wherein in the axial direction adjacent secondary coils 31 are connected in anti-phase.
  • the high-temperature superconductor windings or secondary coils 31 in the secondary part 30 can be embodied as pancake coils, double pancake coils, as packages of these pancake coils or as short solenoid coils.
  • annular spacers 32 are arranged, which are arranged concentrically to the axis A.
  • the spacer elements 32 are made of glass fiber reinforced epoxy resin and are arranged together with the secondary coils 31 on a hollow cylindrical support tube 33.
  • the hollow cylindrical support tube 33 may be made of soft magnetic, magnetizable material such as soft magnetic iron or also consist of eg glass fiber reinforced plastic.
  • the cryostat 34 is provided with a double-walled tube 36.
  • the gap, not shown, between the "warm" outer tube wall and the "colder" inner tube wall of the tube 36 is evacuated to prevent or insulate heat input from outside into the cryostat 34. Possibly. can still an insulation layer of commercially available superinsulation film may be applied around the cold tube wall.
  • the power transmission from the secondary part 30 to the cryostat 34 takes place by means of schematically indicated transmission elements 35a and 35b.
  • the transmission elements 35a, 35b are made of a material with a low thermal conductivity and high mechanical strength, for example of glass fiber reinforced plastics.
  • the secondary coils 31 can be operated with current densities of up to 100 A / mm 2 .
  • force densities of more than 18 N / cm 2 can be achieved in the receptacle 11 between the primary and secondary parts in order to move the secondary part 30 parallel to the axis A. to move.
  • the number of primary and secondary coils in the axial direction is only an example and may in particular vary with the width of the coils and the overall length of the linear motor.
  • the secondary coils can also be arranged spirally.
  • the yoke and the support tube of the secondary part may also consist of ferrous material.
  • the support tube for the secondary part may also be omitted if the secondary coils have been firmly connected together with the spacers, for example by a vacuum impregnation.
  • the support tube for the secondary part made of laminated and slotted magnetizable material or also made of eg glass fiber reinforced plastic.
  • hard-magnetic materials can be used in the direct current flowing through the secondary part as a carrier tube.
  • normal-conducting primary coils whose cooling with, for example, water, oil, gas or nitrogen (N 2 ) can be done indirectly or preferably directly.
  • a suitable gas or dry cooling can be used, which allows an operating temperature below 77K, eg 2OK or 3OK.
  • the primary coils can be provided with Litzwire windings. Possibly. could also be arranged a second primary part within the secondary part, in order to increase the power density further.
  • the secondary part could also, the primary part to be moved with the magnetic field generated when current is applied parallel to the axis.
  • the primary part could be inside and the secondary part could be outside.
  • the secondary part acted upon by direct current could be moved mechanically, for example by a buoy of a wave power station rising and falling.
  • the induced by this movement of the secondary part in the primary windings of the primary power could be used to generate energy and the linear machine then works as a generator.
  • the primary part in the case of a stationary secondary part could also execute the reciprocating movement parallel to the axis without departing from the scope of the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Types And Forms Of Lifts (AREA)
  • Crushing And Grinding (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

Die Erfindung betrifft einen Linearmaschine mit einem eine Aufnahme (11) um eine Achse A bildenden Primärteil (20), der mehrere, ringförmige, konzentrisch zu der Achse A angeordnete, mit Wechselstrom beaufschlagbare, durch Zwischenelemente (22) beabstandete Primärspulen (21) zum Erzeugen eines Magnetfelds in der Aufnahme (11) aufweist, und mit einem relativ zum Primärteil (20) durch das Magnetfeld in der Aufnahme (11) entlang der Achse A bewegbaren Sekundärteil (30), das mit Supraleiterwicklungen aufweisenden Sekundärspulen (31) versehen ist. Um einen Linearmotor zu schaffen, der hohe Kraftdichten ermöglicht, sind die Zwischenelemente (22) aus nicht magnetisierbarem Material hergestellt und die Primärspulen (21) und die Sekundärspulen (31) mit Luftspaltwicklung angeordnet, wobei die Sekundärspulen (31) aus einem Hochtemperatursupraleiter gefertigt und mit Gleichstrom beaufschlagbar oder beaufschlagt sind. Mit den Linearmotoren werden in der Aufnahme (11) Kraftdichten von mehr als 18 N/cm2 erreicht.

Description

Titel: Linearmaschine mit einem Primärteil und einem Sekundärteil
Die Erfindung betrifft eine Linearmaschine mit einem Primärteil, der mehrere, ringförmige, vorzugsweise konzentrisch zu einer Achse angeordnete, durch Zwischenelemente voneinander beabstandete Primärspulen aufweist, und mit einem Sekundärteil, der mehrere, mit Gleichstrom beaufschlagbare, axial nebeneinander mit wechselnder Polarität angeordnete Sekundärspulen mit Supraleiterwicklungen aufweist, wobei der eine Teil relativ zum anderen Teil parallel zur Achse hin- und herbewegbar ist.
Aus der DE 195 42 551 Al ist ein Linearmotor mit einem hohlzylindrischen Primärteil bekannt, der ringförmige, konzentrisch zu einer Bewegungsachse eines Sekundärteils angeordnete Primärspulen aufweist, die mit Mehrphasenstrom betreibbar sind. Zwischen den Primärspulen sind aus weichmagnetischem Material bestehende Ringbleche angeordnet, die als Zwischenelemente zum Beabstanden benachbarter Primärspulen dienen und magnetisierbare Zähne bilden, um den magnetischen Fluß zu verstärken und zur Aufnahme, in der der Sekundärteil angeordnet ist, hinzuleiten. Die Primärspulen und die Ringbleche sind in einem hohlzylindrischen Joch aus magnetisierbarem Material aufgenommen, das einen magnetischen Rückschluß bildet. Der Sekundärteil ist axial verschieblich innerhalb der von dem Primärteil gebildeten Aufnahme angeordnet. Der Sekundärteil weist mehrere Feldmagnete aus Supraleiterwicklungen auf, die in Axialrichtung hintereinander mit abwechselnder Polarität angeordnet sind. Bei der DE 195 42 551 sollen die Magnetfelder der Sekundärwicklungen senkrecht zur Achse des Sekundärteils stehen. Um diese Feldrichtung mit gewickelten Spulen zu erzeugen, muss die Achse jeder einzelnen stromdurchflossenen Spule senkrecht zur Bewegungsachse des Linearmotors liegen. Nur bei Verwendung von Dauermagneten oder supraleitenden Festkörpermagneten
BESTÄTIGUNGSKOPSE können diese Magnete mit ihrer inneren Umfangsfläche an einem zylindrischen Joch aus magnetisierbarem Material anliegen. Diese sind dann zwar ringförmig ausgeführt, aber radial magnetisiert . Bei gewickelten Sekundärspulen hingegen muss eine Anordnung gewählt werden, bei der die gewickelten Spulen auf der Mantelfläche des Tragkörpers in Umfangsrichtung und in Axialrichtung nebeneinander versetzt liegen. Die bei Strombeauschlagung der Primär- und Sekundarspulen erzeugten magnetischen Kräfte erzeugen eine Relativbewegung zwischen Primär- und Sekundärteil.
Aus der EP 1 465 328 Al ist ein Linearmotor bekannt, bei der Primär- und Sekundärteil umgekehrt angeordnet sind, so daß der Sekundärteil außen liegt und den Primärteil umgibt.
Die Magnetisierbarkeit der weichmagnetischen Zähne ist wegen der auftretenden magnetischen Sättigung des weichmagnetischen Materials begrenzt. Um bei hohen Stromdichten in den Spulen des Primärteils höhere Kraftdichten zwischen Primär- und Sekundärteil zu erreichen, ist vorgeschlagen worden, die Windungszahl der Primärspulen zu erhöhen oder die Menge an magnetisierbarem Material zu vergrößern. Für runde bzw. polysolenoide Linearmotoren sind mit diesen Maßnahmen im Versuchsstadium Kraftdichten bis etwa 8 N/cm2 erreicht worden. Allerdings müssen die Baugröße und das Gewicht der Linearmotoren hierzu signifikant vergrößert werden.
Aufgabe der Erfindung ist es, eine Linearmaschine zu schaffen, bei der mit konstruktiven Maßnahmen am Primärteil und/oder Sekundärteil auch bei kleiner Baugröße der Linearmaschinen deutlich höhere Kraft - dichten ermöglicht werden.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Anordnung der Primärspulen im Primärteil als Luftspaltwicklung mit Zwischenelementen aus nicht magnetisierbarem Material ausgeführt ist und die Sekundärspulen aus Wicklungen eines Hochtemperatursupraleiters bestehen, wodurch Kraftdichten von mehr als 18 N/cm2 erreichbar sind. Die Linearmaschine ist vorzugsweise als Linearmotor ausgeführt, bei welcher durch Strombeaufschlagung der Primär- und Sekundärspulen über die hierdurch erzeugten Magnetfelder eine Relativbewegung zwischen Primär- und Sekundärteil parallel zur Achse bewirkt wird und die Erfindung wird nachfolgend vorrangig mit Bezug hierzu beschrieben. Die Linearmaschine kann jedoch auch als Generator ausgeführt sein, bei der ein durch die Relativbewegung zwischen Primär- und Sekundärteil in den Primärspulen induzierter Strom zur Energiegewinnung umgewandelt wird. Die hohen Kraftdichten können bei Ausgestaltung der Linearmaschine als Linearmotor durch Strombeaufschlagung der Primärspulen mit Wechselstrom und der Sekundärspulen mit Gleichstrom erreicht werden. Da die Anordnung der Primärspulen und vorzugsweise auch die Anordnung der Sekundärspulen als Luftspaltwicklung ausgeführt ist, d.h. weder zwischen den Primärspulen noch zwischen den Sekundärspulen magnetisierbares Material zur Flußführung angeordnet ist, wird bei der erfindungsgemäßen Linearmaschine die Kraftdichte nicht durch eine Sättigungsmagnetisierung begrenzt.
Der Strombelag des Primärteils, d.h. der Strom in Umfangsrichtung je axialer Länge des Primärteils, kann gegenüber den bekannten Linearmotoren ohne Vergrößerung der Baugröße des Linearmotors erhöht werden, wodurch die zum Strombelag proportionale Kraftdichte ohne Sättigungseffekte steigt. Zwischen den Primärspulen ist vorzugsweise keinerlei Eisen oder magnetisierbares Material zur Bündelung des magnetischen Flusses angeordnet. Durch die Verwendung von Sekundärspulen aus hochtemperatursupraleitfähigem Material, das eine Sprungtemperatur aufweist, die höher als 77K liegt, im Sekundärteil, können die Sekundärspulen mit hohen Gleichströmen beaufschlagt werden, um extrem starke Magnetfelder in der Aufnahme erzeugen können. Ein weiterer Vorteil beim erfindungsgemäßen Linearmotor besteht darin, daß ein in Axialrichtung nahezu glatter Kraftverlauf erreicht wird, da durch die Luftspaltwicklung Reluktanzkräfte praktisch weitgehend entfallen und damit kaum Rastkräfte auftreten. Außerdem kann der Linearmotor, da auf Permanentmagneten und magnetisierbares Material im Primär- und Sekundärteil verzichtet wird und somit bei Abschalten der Strombeaufschlagung keine magnetischen Kräfte auftreten, relativ einfach gewartet oder gereinigt werden. Ein hoher Strombelag des Primärteils kann insbesondere dadurch erreicht werden, daß der Füllfaktor des Primärteils hoch gewählt ist. Der Füllfaktor ist definiert als das Volumenverhältnis vom Volumen der stromdurchflossenen Primärspulen zum Volumen der Zwischenelemente sowie von ggf. vorhandenen Zwischenräumen zwischen den Primärspulen. Der Füllfaktor des Primärteils ist vorzugsweise größer als 70% und insbesondere größer als 85%. In Axialrichtung benachbarte Primärspulen sind vorzugsweise mit einem um 120° phasenverschobenen Wechselstrom beaufschlagt, wodurch der Linearmotor einen Drei- Phasenmotor (Drehstrommotor) bildet. Bei einem Zwei -Phasenmotor oder einem Mehrphasenmotor mit mehr als drei Phasen kann die Phasenverschiebung anders angepaßt oder gewählt werden.
Die Primärspulen können bei der bevorzugten Ausgestaltung Wicklungen aus einem Normalleiter wie insbesondere einem Leiter aus Aluminium oder Kupfer aufweisen, wodurch die Primärspulen gegebenenfalls in kostengünstiger Weise z.B. flüssig- oder gasgekühlt werden können. Insbesondere vorteilhaft ist eine Kühlung mit z.B. Wasser oder Öl. Der Normalleiter kann insbesondere auch aus einem Hohlleiter bestehen, dessen Innenröhre für die Kühlung genutzt wird. Alternativ könnten die Wicklungen der Primärspulen aus einem supraleitfähigen, insbesondere einem hochtemperatursupraleitfähigen Leiter bestehen bzw. gefertigt sein. Die Strombeaufschlagung sollte dann mit Wechselstrom mit einer Frequenz von weniger als 100 Hz, insbesondere von weniger als 50 Hz erfolgen, um Wechselstromverluste in den supraleitenden Primärspulen gering zu halten, die ansonsten durch zusätzliche Kühlung ausgeglichen werden müßten. Beim erfindungsgemäßen Linearmotor lassen sich Kraftdichten von mehr als 18 N/cm2 , bei Verwendung von Supraleitern sowohl in den Sekundär- als auch in den Primärspulen sogar Kraftdichten von mehr als 25 N/cm2 erzielen. Zur Kühlung der Primärspulen können auch zwischen den Spulen von einem Kühlmittel durchströmbare Kühlleitungen ausgebildet sein oder Spalte zwischen den Primärspulen und ggf. den Zwischenelementen offengelassen werden. Die Zwischenelemente können ringsegmentförmig ausgebildet sein, wodurch ein Kühlmittel an die von den Ringsegmenten nicht bedeckten Stirnseiten der Primärspulen gelangen kann. Die Zwischenelemente können sich vollflächig, partiell oder mit Zwischenräumen über die radiale Höhe der Primärspulen erstrecken. Die Zwischenelemente können auch aus Gitterstrukturen, Hohlkörpern oder Gitterkörpern bestehen, die ausreichende mechanische Stabilität aufweisen und gleichzeitig einen Kühlmitteldurchfluß erlauben.
Weiter vorzugsweise sind die Primärspulen und die Zwischenelemente von einem Joch ummantelt, das vorzugsweise aus nicht magnetisierba- rem Material, insbesondere einem eisenlosen Leichtbaumaterial besteht. Alternativ kann das Joch zur Magnetfeldabschirmung aus eisenhaltigem und/oder magnetisierbarem Material bestehen. Das Joch und die Zwischenelemente können insbesondere ein mechanisches Haltegerüst für die Primärspulen bilden. Um die Zwischenelemente auch in Axialrichtung zu verankern, kann das Joch an seinem Innenumfang Nuten aufweisen, in die die Zwischenelemente formschlüssig eingreifen. Durch die Verankerung der Zwischenelemente an dem Joch können sich die Primärspulen in Axialrichtung an den Zwischenelementen abstützen, wodurch das Joch die auf die Primärspulen wirkenden Magnetfeld- Kräfte in Axialrichtung aufnehmen kann. Besonders vorteilhaft ist, wenn der Primärteil eisenlos ausgebildet ist, um bei Vermeidung von Sättigungseffekten zugleich eine besonders leichte Bauweise des Primärteils und damit der Linearmaschine zu erzielen. Alternativ kann das Joch ein magnetisierbares Material zur Rückführung des magnetischen Flusses aufweisen.
Die Primärspulen können in Kunststoff, vorzugsweise in Kunstharz, insbesondere in Epoxydharz eingegossen sein. Die Zwischenelemente sind in vorteilhafter Ausgestaltung der Erfindung ebenfalls aus Kunststoff, vorzugsweise Kunstharz, insbesondere Epoxydharz gefertigt und können mit einer Faserverstärkung beispielsweise durch Einlage von Glasfasermaterial verstärkt sein.
Die supraleitenden Sekundärspulen können hohe Stromdichten tragen, vorzugsweise Stromdichten von mehr als 50 A/mm2, weiter vorzugsweise von mehr -als 70 A/mm2 und insbesondere von mehr als 100 A/mm2 , wodurch ein äußerst starkes Magnetfeld mit den Sekundärspulen erzeugt werden kann. Die von dem Sekundärteil erzeugbaren Flußdichten können im Luftspalt mehr als 0,5 Tesla, vorzugsweise mehr als 1 Tesla und ggf. bis zu 2 Tesla erreichen. Der Sekundärteil weist vorzugsweise einen zylindrischen Tragkörper auf, an oder auf dessen Mantelfläche die Sekundärspulen angeordnet sind. Der Tragkörper des Sekundärteils ist vorzugsweise aus einem nicht magnetischen Material hergestellt, bspw. aus faserverstärktem Kunststoff. Der Tragkörper könnte auch aus einem magnetischen Material, beispielsweise Eisen, hergestellt sein oder bestehen. Bei einer Ausgestaltung sind die Sekundärspulen ringförmig ausgebildet und konzentrisch zueinander zur Achse auf dem zugehörigen Tragkörper des Sekundärteils befestigt angeordnet. In Axialrichtung benachbarte Sekundärspulen werden im Betrieb durch gegenpolige Verschaltung gegenphasig mit Gleichstrom beaufschlagt. Zwischen den Sekundärspulen können wiederum, um die Luftspaltwicklung zu verwirklichen, nicht magnetisierbare, ringförmige Abstandselemente angeordnet, an denen sich die Sekundärspulen in Axialrichtung abstützen. Benachbarte Sekundärspulen weisen bei dieser Ausgestaltung vorzugsweise einen Abstand voneinander auf, der wenigstens doppelt so groß und vorzugsweise größer ist als die in Axialrichtung bestehende Breite der jeweiligen Sekundärspulen. Auch können mehrere Spulen zu einem Paket zusammengefaßt werden, die alle die gleiche Stromflußrichtung aufweisen (in Serie oder parallel geschaltet). Erst benachbarte Spulenpakete werden dann jeweils mit umgekehrter Stromrichtung beaufschlagt.
Weitere Vorteile und Merkmale der Erfindung werden unter Bezugnahme auf in der Zeichnung schematisch dargestellte Ausführungsbeispiele eines Linearmotors als Linearmaschine beschrieben. Es zeigen:
Fig. 1 einen erfindungsgemäßen Linearmotor mit einem Primärteil und einem Sekundärteil gemäß einem ersten Ausführungsbeispiel im Längsschnitt; und
Fig. 2 den Sekundärteil aus Fig. 1 in perspektivischer Ansicht . In Fig. 1 ist ein in seiner Gesamtheit mit 10 bezeichneter Linearmotor mit einem Primärteil 20 und einem Sekundärteil 30 dargestellt. Der Primärteil 20 begrenzt eine zylindrische Aufnahme 11, in der der Sekundärteil 30 entlang einer zentralen Achse A hin und her bewegbar ist. Der Primärteil 20 weist im gezeigten Ausführungsbeispiel fünf konzentrisch zur Achse A angeordnete Primärspulen 21 auf. Die Zeichnung stellt nur einen Motorausschnitt dar aus einem Gesamtmotor, da z.B. im Dreiphasenbetrieb die Anzahl der Spulen oder Spulenpakete durch 3 teilbar sein muß. Die Primärspulen 21 bestehen aus Ringscheibenspulen, die über nicht dargestellte Kontakte an ihrem Außenumfang mit z.B. um 120° phasenverschobenem Wechselstrom bzw. Drehstrom (Dreiphasenstrom) beaufschlagt werden können, um mit den Primärspulen 21 in der Aufnahme 11 ein magnetisches Wanderfeld zu erzeugen. Die aus einem Kupferleiter bestehenden Wicklungen der Primärspulen 21 sind zur mechanischen Stabilisierung in Epoxydharz eingegossen. Zwischen den Primärspulen 21 sind ebenfalls ringförmige Zwischenelemente 22 angeordnet, an denen sich die Primärspulen 21 mit ihren Stirnseiten in Axialrichtung abstützen. Die Zwischenelemente 22 erstrecken sich in Radialrichtung vom Innenumfang der Primärspulen 21 bis zum Außenumfang der Primärspulen 21. Am Außenumfang der Zwischenelemente 22 und der Primärspulen 21 liegt ein hohlzy- lindrisches Joch 23 an, an dem die Zwischenelemente 22 verankert sind (nicht dargestellt) . Das Joch 23 und die Zwischenelemente 22 bilden hierdurch ein mechanisches Haltegerüst für die darin aufgenommenen Primärspulen 21.
Das Joch 23 um das Primärteil 20 kann aus nichtmagnetisierbarem Material oder zur Abschirmung auch aus magnetisierbarem Material bestehen. In letzterem Fall kann sogar eine Kraftdichteerhöhung auftreten. Wenn das Joch 23 aus el . leitendem Material besteht, so kann es vorzugsweise zur Verminderung von Wechselstromverlusten mittels geblechten und geschlitzten Materialien gebildet werden.
Die Zwischenelemente 22 können z.B. aus glasfaserverstärktem Kunststoff bestehen und sind somit erfindungsgemäß nicht magnetisierbar, wodurch das in der Aufnahme 11 bei Strombeaufschlagung der Primärspulen 21 erzeugte Magnetfeld nicht durch eine Sättigungsmagnetisie- rung der Zwischenelemente 22 begrenzt wird. Zwischen den Primärspulen 21 befindet sich im wesentlichen kein magnetisierbares Material zur Flußführung. Die Anordnung der in Axialrichtung nebeneinanderliegenden Primärspulen 21 ist daher mit einer sogenannten Luftspaltwicklung ausgeführt. Diese „Luftspalte" zwischen den Primärspulen 21 sind mit den ggf. partiell hohlen und/oder ausschließlich zur Isolierung dienenden Zwischenelementen 22 gefüllt. Im Primärteil 20 könne daher sehr breite Primärspulen 21 mit einer hohen Windungszahl pro axialer Länge eingesetzt werden. Da das Volumen der Zwischenelemente 22 nur ein Bruchteil des Volumens der Primärspulen 21 einnimmt, beträgt der Füllfaktor des Primärteils mit stromtragenden und mithin ein Magnetfeld (Wanderfeld) erzeugenden Windungen deutlich mehr als 50 %. Somit kann ein höherer Strom in die Primärspulen 21 des Primärteils 20 eingebracht werden.
Der in den Fig. 1 und Fig. 2 dargestellte Sekundärteil 30 weist ringförmige, konzentrisch zur Achse A angeordnete Sekundärspulen 31 aus einem Hochtemperatursupraleiter auf. Diese bei kryogenen Temperaturen von mehr als 20 K supraleitfähigen Sekundärspulen 31 werden mit Gleichstrom beaufschlagt, wobei in Axialrichtung benachbarte Sekundärspulen 31 gegenphasig beschaltet sind. Die Hochtemperatursupraleiterwicklungen bzw. Sekundärspulen 31 im Sekundärteil 30 können als Pancake-Spulen, Doppelpancake-Spulen, als Pakete aus diesen Pan- cake-Spulen oder als kurze Solenoidspulen ausgeführt sein. Zwischen den Sekundärspulen 31 sind ebenfalls ringförmige Abstandselemente 32 angeordnet, die konzentrisch zur Achse A angeordnet sind. Die Abstandselemente 32 bestehen aus glasfaserverstärktem Epoxydharz und sind zusammen mit den Sekundärspulen 31 auf einem hohlzylindrischen Tragrohr 33 angeordnet. Das hohlzylindrische Tragrohr 33 kann aus weichmagnetischem, magnetisierbarem Material wie z.B. weichmagnetischem Eisen gefertigt sein oder ebenfalls aus z.B. glasfaserverstärktem Kunststoff bestehen. Um die Sekundärspulen 31 z.B. mit flüssigem Stickstoff kühlen zu können, ist der Kryostat 34 mit einem doppelwandigen Rohr 36 versehen. Der nicht dargestellte Zwischenraum zwischen der „warmen", äußeren Rohrwand und der „kälteren", inneren Rohrwand des Rohrs 36 ist evakuiert, um einen Wärmeeintrag von Außen in den Kryostaten 34 zu verhindern bzw. zu dämmen. Ggf. kann noch eine Isolationsschicht aus kommerziell erhältlicher Superisolationsfolie um die kalte Rohrwandung angebracht sein. Die Kraftübertragung von dem Sekundärteil 30 auf den Kryostaten 34 erfolgt mittels schematisch angedeuteter Übertragungselemente 35a und 35b. Die Übertragungselemente 35a, 35b bestehen aus einem Material mit einer geringen Wärmeleitfähigkeit und hoher mechanischer Festigkeit, z.B. aus glasfaserverstärkten Kunststoffen. Die Sekundärspulen 31 können mit Stromdichten von bis zu 100 A/mm2 betrieben werden. Mit dem Linearmotor 10 mit erfindungsgemäß ausgeführten Primärteil 20 mit Luft- spaltwicklung der Primärspulen und erfindungsgemäß aufgebautem Sekundärteil 30 können zwischen Primär- und Sekundärteil Kraftdichten von mehr als 18 N/cm2 in der Aufnahme 11 erreicht werden, um den Sekundärteil 30 parallel zur Achse A zu verschieben.
Für den Fachmann ergeben sich aus der vorhergehenden Beschreibung und den Unteransprüchen zahlreiche Modifikationen. Die Anzahl der Primär- und Sekundärspulen in Axialrichtung ist nur beispielhaft und kann insbesondere mit der Breite der Spulen und der Gesamtlänge des Linearmotors variieren. Die Sekundärspulen können auch spiralförmig angeordnet sein. Das Joch und das Trägerrohr des Sekundärteils können auch aus eisenhaltigem Material bestehen. Das Trägerrohr für den Sekundärteil kann auch entfallen, wenn die Sekundärspulen zusammen mit den Abstandhaltern z.B. durch eine Vakuumimprägnierung fest miteinander verbunden worden sind. Alternativ kann das Trägerrohr für den Sekundärteil aus geblechtem und geschlitztem magnetisierbarem Material oder ebenfalls aus z.B. glasfaserverstärktem Kunststoff bestehen. Auch hartmagnetische Materialien können in dem gleichstrom- durchflossenen Sekundärteil als Trägerrohr zum Einsatz kommen. Insbesondere bei der Verwendung von normalleitenden Primärspulen kann deren Kühlung mit z.B. Wasser, Öl, Gas oder Stickstoff (N2) indirekt oder vorzugsweise direkt erfolgen. Alternativ kann auch eine geeignete Gas- oder Trockenkühlung eingesetzt werden, die eine Betriebstemperatur unter 77K erlaubt, z.B. 2OK oder 3OK. Um Wirbelstromverluste im Primärteil weiter zu verringern, können die Primärspulen mit Litzwire-Wicklungen versehen sein. Ggf. könnte auch ein zweites Primärteil innerhalb des Sekundärteils angeordnet werden, um die Kraftdichte weiter zu erhöhen. Anstelle des Sekundärteils könnte auch der Primärteil mit dem bei Strombeaufschlagung erzeugten Magnetfeld parallel zur Achse bewegt werden. Der Primärteil könnte innen und der Sekundärteil könnte außen angeordnet sein. Bei einer Ausgestaltung der Linearmaschine als Generator könnte der mit Gleichstrom beaufschlagte Sekundärteil mechanisch bewegt werden, z.B. durch eine auf- und absinkende Boje eines Wellenkraftwerkes. Der mittels dieser Bewegung des Sekundärteils in den Primärwicklungen des Primärteils induzierte Strom könnte zur Energiegewinnung genutzt werden und die Linearmaschine funktioniert dann generatorisch. Anstelle des Sekundarteils könnte auch der Primärteil bei ortsfestem Sekundärteil die Hin- und Herbewegung parallel zur Achse ausführen, ohne den Schutzbereich der anhängenden Ansprüche zu verlassen.

Claims

P a t e n t a n s p r ü c h e :
1. Linearmaschine mit einem Primärteil (20), der mehrere, ringförmige, konzentrisch zu einer Achse (A) angeordnete, durch Zwischenelemente (22) voneinander beabstandete Primärspulen (21) aufweist, und mit einem Sekundärteil (30), der mehrere, mit Gleichstrom beaufschlagbare, axial nebeneinander mit wechselnder Polarität angeordnete Sekundärspulen (31) mit Supraleiterwicklungen aufweist, wobei der eine Teil relativ zum anderen Teil parallel zur Achse bewegbar ist, dadurch gekennzeichnet, daß die Anordnung der Primärspulen (21) im Primärteil (20) als Luftspaltwicklung mit Zwischenelementen (22) aus nicht magneti- sierbarem Material ausgeführt ist und die Sekundärspulen (31) aus Wicklungen eines Hochtemperatursupraleiters bestehen, wodurch Kraftdichten von mehr als 18 N/cm2 erreichbar sind, wobei die Sekundärspulen (31) ringförmig ausgebildet sind und konzentrisch zueinander um den Tragkörper (33) angeordnet sind und wobei zwischen den Sekundärspulen (31) Abstandselemente angeordnet sind, an denen sich die Sekundärspulen (31) in Axialrichtung abstützen.
2. Linearmaschine nach Anspruch 1, dadurch gekennzeichnet, daß die Anordnung der Sekundärspulen (31) im Sekundärteil (20) als Luftspaltwicklung ausgeführt ist .
3. Linearmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zwischen den Primärspulen (21) des Primärteils (20) und zwischen den Sekundärspulen (31) des Sekundärteils (30) kein magnetisierbares Material, insbesondere kein Eisen, zur Bündelung des magnetischen Flusses angeordnet ist.
4. Linearmaschine nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der durch das Volumenverhältnis von Primärspulen (21) zu Zwischenelementen (22) und/oder Luftzwischenräumen definierte Füllfaktor des Primärteils (20) mehr als 70% und insbesondere mehr als 85% beträgt.
Linearmaschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Primärspulen (21) aus Wicklungen eines Normalleiters, insbesondere aus Wicklungen eines Leiter oder Hohlleiters aus Aluminium oder Kupfer, bestehen.
6. Linearmaschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Primärspulen aus Wicklungen eines Supraleiters, vorzugsweise eines Hochtemperatursupraleiter gefertigt sind.
7. Linearmaschine nach einem der Ansprüche 1 bis 6, gekennzeichnet durch ein die Primärspulen (21) und die Zwischenelemente (22) ummantelndes Joch (32) aus vorzugsweise unmagnetischem Material oder nicht magnetisierbarem Material, insbesondere Leichtbaumaterial .
8. Linearmaschine nach Anspruch 7, dadurch gekennzeichnet, daß das Joch an seinem Innenumfang Nuten aufweist, an dem die Zwischenelemente (22) verankert sind.
9. Linearmaschine nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Primärspulen (21) und/oder die Sekundärspulen (31) in Kunststoff, vorzugsweise in Kunstharz, insbesondere in Epoxydharz eingegossen sind, wobei die Zwischenelemente teilweise oder vollständig aus der Kunststoffummantelung bestehen .
10. Linearmaschine nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Sekundärspulen (31) mit einer Stromdichte von mehr als 50 A/mm2, vorzugsweise mehr als 70 A/mm2 und insbesondere mehr als 100 A/mm2 beaufschlagbar oder beaufschlagt sind und/oder dass das Magnetfeld der Sekundärspulen parallel zur Achse ausgerichtet ist.
11. Linearmaschine nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Sekundärteil einen zylindrischen Tragkör- per (33) aufweist, an dessen Mantelfläche die Sekundärspulen (32) angeordnet sind.
12. Linearmaschine nach Anspruch 11, dadurch gekennzeichnet, daß der Tragkörper (33) nicht magnetisierbar ist oder aus nicht ma- gnetisierbarem Material besteht.
13. Linearmaschine nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Abstandselemente (32) nicht magnetisierbar sind oder aus nicht magnetisierbarem Material bestehen. .
14. Linearmaschine nach Anspruch 13, dadurch gekennzeichnet, daß die Sekundärspulen eine Breite aufweisen und der Abstand zwischen benachbarten Sekundärspulen (31) mindestens der doppelten Breite der Sekundärspulen (31) entspricht.
15. Linearmaschine nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Primärspulen mit Wechselstrom beaufschlagbar oder beaufschlagt sind, Primär- und Sekundärteil
(20; 30) durch Strombeaufschlagung der Primär- und Sekundärspulen (21, 31) relativ zueinander bewegbar sind und die Linearmaschine einen Linearmotor (10) bildet.
16. Linearmaschine nach Ansprüche 15, dadurch gekennzeichnet, daß die Primärspulen aus Wicklungen eines Supraleiters, vorzugsweise eines Hochtemperatursupraleiter gefertigt sind, wobei die Wechselstrombeaufschlagung mit einer Frequenz von weniger als 100 Hz, insbesondere von weniger als 50 Hz oszilliert.
17. Linearmaschine nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß der Primärteil oder der Sekundärteil fremdbetätigt parallel zur Achse bewegbar sind, wobei der in den Primärspulen durch die Axialbewegung zwischen Primärteil und Sekundärteil induzierte Strom abgreifbar ist und die Linearmaschine einen Generator bildet.
18. Primärteil einer Linearmaschine insbesondere nach einem der Ansprüche 1 bis 9, 16 oder 17, mit mehreren, ringförmigen, konzentrisch zu einer Achse (A) angeordneten, durch Zwischenelemente (22) beabstandete Primärspulen (21), dadurch gekennzeichnet, dass die Anordnung der Primärspulen (21) im Primärteil (20) als Luftspaltwicklung mit Zwischenelemente (22) aus nicht magnetisierbarem Material ausgeführt ist und nebeneinanderliegende Primärspulen phasenverschoben mit Wechselstrom beaufschlagbar sind.
19. Sekundärteil einer Linearmaschine insbesondere nach einem der Ansprüche 1 oder 9 bis 18, mit mehreren axial nebeneinander angeordneten Sekundärspulen (31) mit Supraleiterwicklungen, dadurch gekennzeichnet, daß die Anordnung der Sekundärspulen (31) als Luftspaltwicklung ausgeführt ist, wobei die Sekundärspulen (31) aus einem Hochtemperatursupraleiter gefertigt und nebeneinanderliegende Sekundärspulen gegensinnig gepolt mit Gleichstrom beaufschlagbar oder beaufschlagt sind.
PCT/EP2008/002333 2007-03-27 2008-03-25 Linearmaschine mit einem primärteil und einem sekundärteil WO2008116622A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU2008232023A AU2008232023B2 (en) 2007-03-27 2008-03-25 Linear machine having a primary part and a secondary part
MX2009009157A MX2009009157A (es) 2007-03-27 2008-03-25 Generador lineal con una parte primaria y una parte secundaria.
US12/532,954 US20120129700A1 (en) 2007-03-27 2008-03-25 Linear machine having a primary part and a secondary part
DE502008001089T DE502008001089D1 (de) 2007-03-27 2008-03-25 Linearmaschine mit einem primärteil und einem sekundärteil
BRPI0808355-0A BRPI0808355A2 (pt) 2007-03-27 2008-03-25 Gerador linear com uma parte primária e uma parte secundária para produção de energia em uma usina de energia das ondas e usina de energia das ondas.
EP08734743A EP2132866B1 (de) 2007-03-27 2008-03-25 Linearmaschine mit einem primärteil und einem sekundärteil
DK08734743.1T DK2132866T3 (da) 2007-03-27 2008-03-25 Lineær maskine med en primærdel og en sekundærdel
AT08734743T ATE476778T1 (de) 2007-03-27 2008-03-25 Linearmaschine mit einem primärteil und einem sekundärteil
CA002682241A CA2682241A1 (en) 2007-03-27 2008-03-25 Linear machine having a primary part and a secondary part
JP2010500130A JP2010522530A (ja) 2007-03-27 2008-03-25 一次側部分および二次側部分を有するリニア電気機械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007015168A DE102007015168A1 (de) 2007-03-27 2007-03-27 Linearmaschine mit einem Primärteil und einem Sekundärteil
DE102007015168.5 2007-03-27

Publications (1)

Publication Number Publication Date
WO2008116622A1 true WO2008116622A1 (de) 2008-10-02

Family

ID=39627583

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2008/002333 WO2008116622A1 (de) 2007-03-27 2008-03-25 Linearmaschine mit einem primärteil und einem sekundärteil
PCT/EP2008/002332 WO2008116621A1 (de) 2007-03-27 2008-03-25 Lineargenerator mit einem primärteil und einem sekundärteil zur energiegewinnung in einem wellenkraftwerk und wellenkraftwerk

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/002332 WO2008116621A1 (de) 2007-03-27 2008-03-25 Lineargenerator mit einem primärteil und einem sekundärteil zur energiegewinnung in einem wellenkraftwerk und wellenkraftwerk

Country Status (17)

Country Link
US (2) US20120129700A1 (de)
EP (2) EP2132865A1 (de)
JP (2) JP2010522530A (de)
KR (2) KR101075434B1 (de)
CN (2) CN101669270A (de)
AT (1) ATE476778T1 (de)
AU (1) AU2008232023B2 (de)
BR (2) BRPI0808357A2 (de)
CA (2) CA2682241A1 (de)
DE (2) DE102007015168A1 (de)
DK (1) DK2132866T3 (de)
ES (1) ES2349179T3 (de)
MX (1) MX2009009157A (de)
PT (1) PT2132866E (de)
RU (1) RU2009133112A (de)
WO (2) WO2008116622A1 (de)
ZA (1) ZA200907483B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102630274A (zh) * 2009-11-30 2012-08-08 三菱重工业株式会社 波力发电装置
US20220231574A1 (en) * 2014-08-18 2022-07-21 Eddy Current Limited Partnership Tuning of a kinematic relationship between members

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101970857A (zh) 2008-02-07 2011-02-09 S·格特勒 波能发电单元
US7855485B2 (en) * 2009-02-04 2010-12-21 TECO - Westinghouse Motor Company Air core stator installation
RU2431758C1 (ru) * 2010-02-16 2011-10-20 Государственное автономное учреждение Тюменской области "Западно-Сибирский инновационный центр" Способ получения электроэнергии и устройство для его реализации
CN101795050A (zh) * 2010-03-31 2010-08-04 哈尔滨工业大学 超导型高动态直接驱动电动作动器
EP2577045B1 (de) * 2010-05-28 2018-08-15 Seabased AB Wellenenergiegerät mit führungsvorrichtung
DK2577849T3 (da) * 2010-05-28 2021-03-08 Seabased Ab Statorramme til en lineær undervandsgenerator
TR201815182T4 (tr) * 2010-05-28 2018-11-21 Seabased Ab Sualtı kullanıma yönelik bir lineer jeneratör ve elektrik enerjisinin üretimine yönelik bir yöntem.
KR101227581B1 (ko) 2011-07-27 2013-01-29 주식회사 포에버그린 다연속 무부하 발전장치
US8907505B2 (en) * 2011-08-03 2014-12-09 Energy Harvesters Llc Method and apparatus for generating electrical energy
DE102011111352B4 (de) * 2011-08-29 2015-11-26 Otto-Von-Guericke-Universität Magdeburg Elektromotor mit eisenloser Wicklung
ES2425296B1 (es) * 2012-03-09 2014-09-02 Rosario CARRETERO BUENO Generador de émbolo vertical y desplazamiento alternativo con palas orientables y conversión de la energía mecánica en eléctrica a través de un dispositivo vertical solenoidal
US9624900B2 (en) * 2012-10-29 2017-04-18 Energystics, Ltd. Linear faraday induction generator for the generation of electrical power from ocean wave kinetic energy and arrangements thereof
KR101505713B1 (ko) 2012-11-23 2015-03-25 김기선 해수면의 파고에 따른 부력과 풍력과 태양광을 이용한 전력발전장치
US20140145444A1 (en) * 2012-11-28 2014-05-29 Industry-Academic Cooperation Foundation, Yonsei University Apparatus and method for wave power generation of underwater type
GB2510928B (en) * 2013-07-05 2015-09-09 William Dick A wave energy converter
US9647522B2 (en) * 2014-04-29 2017-05-09 Ishwar Ram Singh Linear induction generator using magnetic repulsion
US9853529B2 (en) 2014-04-29 2017-12-26 Ishwar Ram Singh Linear induction generator using magnetic repulsion
CN105098998B (zh) * 2014-05-16 2020-02-11 泰科电子(上海)有限公司 无线电力传输装置
CN104314735A (zh) * 2014-08-26 2015-01-28 长沙理工大学 一种使用双浮体结构的点吸收式波浪能转换装置
KR101656401B1 (ko) 2015-04-06 2016-09-22 충남대학교산학협력단 발전 장치
GB2540729B (en) * 2015-05-01 2018-03-21 Oxford Instruments Nanotechnology Tools Ltd Superconducting magnet
CN104976047A (zh) * 2015-06-19 2015-10-14 电子科技大学 一种应用超导线圈的直驱式海浪发电系统
CN105070455B (zh) * 2015-07-20 2017-03-22 中国船舶重工集团公司第七一〇研究所 一种径向开口的无矩螺线管磁场线圈
RS57986B1 (sr) * 2016-04-06 2019-01-31 Dragic Mile Uređaj za pretvaranje energije vodenih talasa u električnu energiju i postupak za njegovo postavljanje na mesto eksploatacije
JP6728523B2 (ja) * 2016-09-29 2020-07-22 株式会社三井E&Sマシナリー 波力発電装置および波力発電装置の設置方法
KR101737510B1 (ko) 2017-02-10 2017-05-29 충남대학교 산학협력단 축방향 자화자석을 이용한 관 모양 영구자석 발전기
US10352290B2 (en) * 2017-02-14 2019-07-16 The Texas A&M University System Method and apparatus for wave energy conversion
US10601299B2 (en) * 2017-09-07 2020-03-24 American Superconductor Corporation High temperature superconductor generator with increased rotational inertia
EP3602760A1 (de) * 2017-11-14 2020-02-05 Tomorrow's Motion GmbH Magnetfeldschubantrieb
CN109915308A (zh) * 2017-12-01 2019-06-21 Z光谱创新设计有限责任公司 一种用于从海浪中产生能量的装置
US11331792B2 (en) * 2019-01-03 2022-05-17 Stmicroelectronics S.R.L. Electromagnetic actuator for artificial muscle fibers and a method of manufacture thereof
KR102177846B1 (ko) * 2019-11-21 2020-11-11 주식회사 포어시스 해양 부유체 플랫폼 연결용 파력발전장치
CN110821958B (zh) * 2019-12-06 2024-05-14 中国工程物理研究院机械制造工艺研究所 一种轴向可动静压气浮主轴
CN111237116B (zh) * 2020-01-14 2021-04-09 河海大学 非线性隐极水轮发电机水门与励磁联合调节方法和系统
US11441532B2 (en) * 2020-03-23 2022-09-13 Idaho State University Submerged oscillating water column energy harvester
IL278902B2 (en) * 2020-11-23 2023-05-01 Alsharif Mahmoud M.S. Marine wave energy
CN114649919B (zh) * 2020-12-18 2024-03-15 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) 多相超导直线电磁推进系统
JP7096613B1 (ja) 2021-04-08 2022-07-06 株式会社ナカムラ 波力発電システム
CN112994403B (zh) * 2021-04-26 2022-04-26 合肥工业大学 一种低涡流损耗的齿槽型圆筒直线电机的初级结构
RU210032U1 (ru) * 2021-12-29 2022-03-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Линейный электрический генератор
CN114300218A (zh) * 2021-12-30 2022-04-08 深圳供电局有限公司 一种大气隙超低温电源变压器结构
JP7254318B1 (ja) 2022-08-01 2023-04-10 株式会社アントレックス 波力発電装置
JP7240692B1 (ja) 2022-08-01 2023-03-16 株式会社アントレックス 波力発電装置
US12068664B1 (en) * 2024-02-26 2024-08-20 Cyclazoom, LLC Energy generating system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2266358A1 (de) * 1974-03-28 1975-10-24 Central Ind Electriq Lab
EP0425314A1 (de) * 1989-10-26 1991-05-02 Doryokuro Kakunenryo Kaihatsu Jigyodan Vorrichtung zum Transport einer vertikalen Last
EP0774826A1 (de) * 1995-11-15 1997-05-21 Oswald Elektromotoren GmbH Synchronmotor
EP1465328A1 (de) * 2003-04-04 2004-10-06 Fachhochschule Aachen Linearmotor mit Primärteil und Sekundärteil
EP1811638A2 (de) * 2006-01-18 2007-07-25 Converteam Ltd Röhrenförmige elektrische Maschinen

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674082A (en) 1979-11-20 1981-06-19 Fujitsu Ltd Linear step motor
JPH0672594B2 (ja) * 1985-05-20 1994-09-14 大洋プラント株式会社 海水等の汲上装置
US5758911A (en) * 1996-02-07 1998-06-02 Northrop Grumman Corporation Linear motion wind driven power plant
US6020653A (en) * 1997-11-18 2000-02-01 Aqua Magnetics, Inc. Submerged reciprocating electric generator
GB2339975A (en) * 1998-07-27 2000-02-09 Asea Brown Boveri Rotating electric machine stator
US6580177B1 (en) * 1999-06-01 2003-06-17 Continuum Control Corporation Electrical power extraction from mechanical disturbances
US6153944A (en) * 1999-11-09 2000-11-28 Clark; Robert O. Apparatus for generating electricity from flowing fluids
DE10045957B4 (de) * 2000-09-16 2008-03-13 Volkswagen Ag Elektromagnetischer Linearaktuator
US6791205B2 (en) 2002-09-27 2004-09-14 Aqua Magnetics, Inc. Reciprocating generator wave power buoy
DE10306500A1 (de) * 2003-02-17 2004-08-26 Bayerische Motoren Werke Ag Aktive Fahrzeug-Radaufhängung mit einem Linearmotor
SE523478C2 (sv) 2003-04-14 2004-04-20 Swedish Seabased Energy Ab vågkraftaggegat innefattande en elektrisk linjärgenerator försedd med elektromekaniskt dämpningsorgan
US7547999B2 (en) * 2003-04-28 2009-06-16 General Electric Company Superconducting multi-pole electrical machine
US7199481B2 (en) * 2003-11-07 2007-04-03 William Walter Hirsch Wave energy conversion system
EP1738071B1 (de) 2004-03-16 2015-08-19 Ocean Power Technologies, Inc. Antirotations-struktur für wellenenergiewandler
JP2007020270A (ja) * 2005-07-06 2007-01-25 Konica Minolta Medical & Graphic Inc リニアモータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2266358A1 (de) * 1974-03-28 1975-10-24 Central Ind Electriq Lab
EP0425314A1 (de) * 1989-10-26 1991-05-02 Doryokuro Kakunenryo Kaihatsu Jigyodan Vorrichtung zum Transport einer vertikalen Last
EP0774826A1 (de) * 1995-11-15 1997-05-21 Oswald Elektromotoren GmbH Synchronmotor
EP1465328A1 (de) * 2003-04-04 2004-10-06 Fachhochschule Aachen Linearmotor mit Primärteil und Sekundärteil
EP1811638A2 (de) * 2006-01-18 2007-07-25 Converteam Ltd Röhrenförmige elektrische Maschinen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102630274A (zh) * 2009-11-30 2012-08-08 三菱重工业株式会社 波力发电装置
US8555632B2 (en) 2009-11-30 2013-10-15 Mitsubishi Heavy Industries, Ltd. Wave power generator
US20220231574A1 (en) * 2014-08-18 2022-07-21 Eddy Current Limited Partnership Tuning of a kinematic relationship between members
US11632016B2 (en) * 2014-08-18 2023-04-18 Eddy Current Limited Partnership Tuning of a kinematic relationship between members

Also Published As

Publication number Publication date
PT2132866E (pt) 2010-11-02
EP2132866B1 (de) 2010-08-04
CN101669270A (zh) 2010-03-10
WO2008116621A1 (de) 2008-10-02
DK2132866T3 (da) 2010-11-22
US20100117367A1 (en) 2010-05-13
RU2009133112A (ru) 2011-05-10
CN101663809A (zh) 2010-03-03
ZA200907483B (en) 2010-07-28
MX2009009157A (es) 2009-10-13
AU2008232023A1 (en) 2008-10-02
BRPI0808357A2 (pt) 2014-07-01
KR101075434B1 (ko) 2011-10-25
BRPI0808355A2 (pt) 2014-07-01
JP2010522530A (ja) 2010-07-01
AU2008232023B2 (en) 2010-08-26
AU2008232023A2 (en) 2009-10-08
KR101118178B1 (ko) 2012-03-20
DE502008001089D1 (de) 2010-09-16
CA2682158A1 (en) 2008-10-02
ES2349179T3 (es) 2010-12-28
KR20090114437A (ko) 2009-11-03
KR20090114438A (ko) 2009-11-03
US8154144B2 (en) 2012-04-10
EP2132865A1 (de) 2009-12-16
ATE476778T1 (de) 2010-08-15
EP2132866A1 (de) 2009-12-16
US20120129700A1 (en) 2012-05-24
JP2010522529A (ja) 2010-07-01
CA2682241A1 (en) 2008-10-02
DE102007015168A1 (de) 2008-10-02

Similar Documents

Publication Publication Date Title
EP2132866B1 (de) Linearmaschine mit einem primärteil und einem sekundärteil
EP3491724B1 (de) Rotor mit spulenanordnung und wicklungsträger
DE10303307B4 (de) Maschine mit einem Rotor und einer supraleltenden Rotorwicklung
DE102006022836A1 (de) Statoranordnung und Rotoranordnung für eine Transversalflußmaschine
WO2017067761A1 (de) Energieübertragungsvorrichtung für ein fahrzeug
DE60023038T3 (de) Supraleitende rotierende elektrische maschine mit hochtemperatursupraleitern
WO2020083671A1 (de) Rotor und maschine mit supraleitendem permanentmagneten in einem rotorträger
DE19943783A1 (de) Supraleitungseinrichtung mit einer mehrpoligen Wicklungsanordnung
WO2013079715A2 (de) Elektrische maschine
EP1869757A1 (de) Primärteil eines linearmotors und linearmotor hiermit
WO2018091330A1 (de) Rotor für hohe drehzahlen mit spulenanordnung und wicklungsträger
EP1955431B1 (de) Primärteil eines linearmotors und linearmotor hiermit
EP2503671A1 (de) Synchronmaschine mit optimierter statorfester Erregereinrichtung
WO2020038909A1 (de) Rotor mit supraleitender wicklung für betrieb im dauerstrommodus
WO2013014043A2 (de) Elektrische maschine und verfahren zu deren betrieb
WO2020089165A1 (de) Rotor, maschine und verfahren zum aufmagnetisieren
WO2020035309A1 (de) Supraleitende stromzuführung
DE102018208368A1 (de) Rotor und Maschine mit zylinderförmigem Tragkörper
WO2010094262A1 (de) Spule für ein supraleitendes magnetlager
EP4218035A1 (de) Bitterprinzipbasierte magnetvorrichtung und verwendung einer bitterprinzipbasierten magnetvorrichtung
Perot Special magnets
WO2020070188A1 (de) Rotor und maschine mit supraleitendem permanentmagneten für hohe magnetische flussdichten

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880009843.0

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08734743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008734743

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 579290

Country of ref document: NZ

Ref document number: 2008232023

Country of ref document: AU

Ref document number: MX/A/2009/009157

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020097018450

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008232023

Country of ref document: AU

Date of ref document: 20080325

Kind code of ref document: A

Ref document number: 2010500130

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3350/KOLNP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2682241

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009133112

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12532954

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0808355

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090908