WO2008116410A1 - Procédé et appareil destinés à la séparation de membrane appliquant une polarisation de concentration, et extracteur utilisé spécialement pour celle-ci - Google Patents

Procédé et appareil destinés à la séparation de membrane appliquant une polarisation de concentration, et extracteur utilisé spécialement pour celle-ci Download PDF

Info

Publication number
WO2008116410A1
WO2008116410A1 PCT/CN2008/070420 CN2008070420W WO2008116410A1 WO 2008116410 A1 WO2008116410 A1 WO 2008116410A1 CN 2008070420 W CN2008070420 W CN 2008070420W WO 2008116410 A1 WO2008116410 A1 WO 2008116410A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
separation
concentration
concentration polarization
polarization layer
Prior art date
Application number
PCT/CN2008/070420
Other languages
English (en)
French (fr)
Inventor
Yinhua Wan
Xiangrong Chen
Zhiguo Su
Guanghui Ma
Xiaoguang Jiao
Fei Shen
Zhanfeng Cui
Original Assignee
Institute Of Process Engineering, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Process Engineering, Chinese Academy Of Sciences filed Critical Institute Of Process Engineering, Chinese Academy Of Sciences
Priority to EP08715156.9A priority Critical patent/EP2092974B1/en
Priority to US12/443,797 priority patent/US8252184B2/en
Publication of WO2008116410A1 publication Critical patent/WO2008116410A1/zh
Priority to US13/555,668 priority patent/US8506812B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • B01D63/0822Plate-and-frame devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/26By suction

Definitions

  • the present invention relates to a membrane separation method and apparatus, and more particularly to a method and apparatus for separation using a concentration polarization phenomenon in a membrane separation process, and a dedicated skimmer. Background technique
  • the membrane separation process uses a selective permeation membrane as the separation medium.
  • driving force such as pressure difference, concentration difference, potential difference, temperature difference, etc.
  • the raw material side component selectively permeates the membrane.
  • driving force such as pressure difference, concentration difference, potential difference, temperature difference, etc.
  • the raw material side component selectively permeates the membrane.
  • concentration and purification Different membrane processes use different membranes and have different driving forces.
  • Membrane separation processes currently in industrial applications include microfiltration (MF), ultrafiltration (UF), reverse osmosis (RO), dialysis (D), electrodialysis (ED), gas separation (GS), pervaporation (PV), Emulsion film (ELM) and the like.
  • MF microfiltration
  • UF ultrafiltration
  • RO reverse osmosis
  • D dialysis
  • ED electrodialysis
  • GS gas separation
  • PV pervaporation
  • Emulsion film ELM
  • membrane separation technology Compared with the traditional separation method, membrane separation technology has the following obvious advantages: (1) High efficiency: Because the membrane is selective, it can selectively pass certain substances and block the passage of other substances. Selecting a suitable membrane can effectively separate, purify and concentrate the material; (2) Energy saving: Most membrane separation processes work at normal temperature, and the separated material does not undergo phase transformation. It is a low-energy, low-cost unit operation. (3) The process is simple, easy to operate and control; and (4) does not pollute the environment.
  • the membrane separation technology has been rapidly developed in a short period of time, and has been widely and effectively applied to petrochemical, biochemical pharmaceutical, medical and health, metallurgy, electronics, energy, light industry, textile, food, environmental protection, aerospace, sea transportation. In areas such as daily life, it has become one of the most important means in today's separation science.
  • Concentration polarization phenomenon means that the separation membrane selectively allows some components in the separated raw material to pass through while trapping other components, resulting in enrichment of the trapped components on the membrane surface, forming a concentration gradient from the membrane surface to the separated raw material body. , causing the diffusion of the trapped component from the surface of the membrane to the bulk of the raw material, resulting in a decrease in membrane flux.
  • the treated solution is convectively directed to the surface of the membrane by the pressure difference, and the trapped solute accumulates near the surface of the membrane, so that the concentration of the solute on the membrane surface is higher than that in the body.
  • the concentration of the solution forms a concentration gradient between the surface of the membrane and the bulk solution, causing the solute to diffuse from the membrane surface to the bulk solution, resulting in a decrease in flux. This phenomenon is called concentration polarization. Concentration polarization not only causes a decrease in membrane flux, but also aggravates membrane fouling due to enrichment of trapped components on the membrane surface.
  • concentration polarization is generally treated as a problem to be solved during membrane separation, for example,
  • the design and operation of the membrane module is optimized to remove the high concentration of material from the membrane surface through the tangential flow to reduce the concentration polarization of the membrane surface and maintain membrane flux.
  • concentration polarization and membrane fouling are generally treated as a problem to be solved during membrane separation.
  • One aspect of the invention provides a membrane separation method comprising:
  • the fluid may comprise a component capable of forming a concentration polarization layer on the separation side of the separation membrane, for example, the fluid may be a solution, a liquid-solid suspension, Liquid-liquid suspensions, sols, gas mixtures, gas-solid suspensions, gas-liquid suspensions, or aerosols.
  • the entrapment component is any component of the fluid that is at least partially retained by the separation membrane, such as one or more solute molecules or ions, solid particles, droplets, etc., Is an organic and inorganic solute, more particularly a biological macromolecule such as a protein, a nucleic acid, a polysaccharide, etc., and a biological small molecule such as an amino acid, a nucleotide, a sugar, etc.; and the permeating component is any at least partially transparent in the fluid
  • the components of the separation membrane such as one or more liquid solvents, carrier gases, molecules or ions different from the entrapment components.
  • the entrapment component may form a filter cake on the separation side, and/or enter and block the membrane pores, and/or permeate the separation membrane.
  • the separation membrane is any membrane that can be used for separation, such as a nanofiltration membrane, an ultrafiltration membrane, a microfiltration membrane, etc., particularly a cellulose, a polyether oxime, Polyfiltration, ultrafiltration or nanofiltration membranes of polyfluorenes, polyolefins, polyamides, polypiperazines, metals, glass or ceramics.
  • the separation membrane can be in any suitable form, such as flat sheet, plate and frame, coil, tubular or hollow fiber.
  • the separation membrane has a suitable permeate flux, for example between 1 X ⁇ ⁇ ⁇ / s ⁇ 1 ⁇ ⁇ ⁇ ⁇ / s, preferably 2.78 ⁇ 10 7 m / s ⁇ 1.39 X 10 4 m/s, more preferably 1.84 ⁇ 10 6 m/s ⁇ 3.69 ⁇ 10 5 m/s between.
  • the urging force can be produced by any suitable means, such as by a pressure differential, a concentration difference, a potential difference or a temperature differential, particularly by a pressure differential.
  • a positive pressure is applied to the separated side of the membrane or a negative pressure is applied to the permeate side of the membrane by a known method to generate a pressure difference, wherein the positive pressure can be generated by, for example, a pump, a positive pressure fluid, gravity, centrifugal force, etc., and the negative pressure can be
  • the permeate side of the membrane is produced by, for example, a vacuum, a capillary or the like, whereby the permeate component is driven by the pressure difference from the separation side of the membrane to the permeate side, thereby forming a trapped component enriched on the surface of the separation side membrane. Concentration polarization layer.
  • the transmembrane pressure formed by the urging force generated by the pressure differential can be determined depending on the application and needs, for example, between 0.005 MPa and 10 MPa, preferably between 0.1 MPa and 4 MPa. .
  • the steps can be carried out according to the specific circumstances of the embodiment by any known method. For example, exporting through a pipe system, etc.
  • the thickness of the concentration polarization layer and the concentration of the entrapped component therein can be based on the nature of the fluid and its components, the type of membrane module, the membrane variety and specifications, and the operating conditions, such as The type and size of the driving force or the fluid flow rate of the membrane surface are determined and adjusted according to the specific application and needs.
  • the thickness of the concentration polarization layer can be predicted by a model (eg, SP Agashiche, Calculation of concentration polarisation in processes of ultrafiltration of non-Newtonian fluids in tubular channel, Separation/Purification Technology 25 (2001) 523-533; SK Karode, A new unsteady-state model for macromolecular ultrafiltration, Chemical Engineering Science 55 (2000) 1769 - 1773; S. Kim, EMV Hoek, Modeling concentration polarization in reverse osmosis processes, Desalination 186 (2005) 111-128; and Mohd.Z.
  • a model eg, SP Agashiche, Calculation of concentration polarisation in processes of ultrafiltration of non-Newtonian fluids in tubular channel, Separation/Purification Technology 25 (2001) 523-533
  • SK Karode A new unsteady-state model for macromolecular ultrafiltration, Chemical Engineering Science 55 (2000) 1769 - 1773
  • S. Kim EMV Hoek, Modeling concentration polarization in reverse
  • the timing, duration, and amount of removal of the concentration polarization layer are determined based on the predicted, experimentally determined, or real-time measured concentration of the polarization layer and the conditions and requirements of the particular application.
  • the concentration polarization layer may be removed in step C) by any suitable means, such as by at least a portion of the concentration poles being removed by extraction, extraction, isolation, or the like.
  • the layer is such that the removed portion of the concentration polarization layer exits the concentration polarization layer and the fluid.
  • the concentration polarization layer is extracted or extracted by using a piping system; or the concentration polarization layer is isolated from the rest of the fluid using a suitable container.
  • the pumping operation can be performed using a pressure differential between the concentration polarization layer and the picker.
  • the operation of removing at least a portion of the concentration polarization layer can be performed at any position in the concentration polarization layer, particularly at the surface near the separation membrane, and more particularly on the surface of the separation membrane.
  • the fluid is no longer returned to avoid remixing or backmixing between the concentration polarization layer and the fluid body. It may be beneficial in applications such as membrane concentration.
  • the removed portion of the concentration polarization layer may still be remixed with the fluid after exiting the fluid, such as at a location other than the membrane separation site.
  • the fluid and/or the partially removed concentration polarization layer after treatment by the membrane separation process may optionally be at the same or different membrane separation implementation sites according to the present invention.
  • the membrane separation method of the invention is subjected to further processing.
  • the concentration polarization layer exits the separation membrane substantially in a normal direction, a tangential direction, or any direction between the normal and the tangential directions of the separation membrane.
  • all or a portion of the membrane separation process is carried out in a continuous, semi-continuous or batch manner.
  • the operation of removing at least a portion of the concentration polarization layer may be performed in a continuous or intermittent manner to continuously or intermittently remove 0.1% to 99% of the concentration polarization layer.
  • the concentration polarization layer can be continuously extracted;
  • the concentration polarization layer is started to be drawn, and when the transmembrane pressure or the permeation flux or the concentration of the polarization layer reaches the second set value, the stop is stopped. The capture operation is repeated as such.
  • the membrane separation process of the present invention can be used to reduce concentration polarization and membrane fouling in order to maintain membrane flux, as well as to obtain concentrated entrapment components. Therefore, the membrane separation method of the present invention can be applied to any membrane separation process which produces concentration polarization, such as membrane concentration, membrane filtration, membrane distillation, membrane extraction or membrane absorption.
  • the membrane separation process can be A membrane concentration method comprising removing a portion of a concentration polarization layer from a separation side to obtain a concentrated retention component. Since the concentration polarization layer is formed rapidly, the degree of concentration is high, and the concentration conditions are mild, the membrane concentration method is particularly suitable for efficient concentration of biomolecules.
  • the membrane separation method may be a membrane filtration method comprising removing the permeate component on the permeate side to obtain a permeation component having a reduced entrapment component.
  • Membrane fouling can be effectively controlled due to the reduction of the concentration polarization layer, and the membrane flux can be maintained for a long period of time. Therefore, the membrane filtration method can significantly improve the filtration efficiency and prolong the life of the membrane.
  • a membrane separation apparatus comprising a separation membrane and a skimmer, wherein the membrane extractor is configured to remove at least a portion of the concentration polarization layer from a separation side of the separation membrane during membrane separation.
  • the membrane separation device refers to any one of a membrane separation unit, a membrane separation system, a membrane separation system, a membrane separation device, and a membrane separation module.
  • the membrane separation apparatus further has a substantially open or substantially closed outer casing, wherein the outer casing, together with the separation membrane, is separated by the separation fluid and the permeate component.
  • the membrane separation apparatus has no outer casing, wherein the separation membrane itself will be separated by a separation fluid and a permeation component, such as in a hollow fiber membrane or a tubular membrane.
  • the skimmer may be located on the separation side, the permeate side, the separation membrane, or the separation membrane of the separation membrane.
  • the skimmer together with the separation membrane form a membrane module.
  • the skimmer comprises a hollow structure having an opening, and the opening is located within a concentration polarization layer on a separate side of the separation membrane and allows at least a portion of the A concentration polarization layer enters the hollow structure to remove at least a portion of the concentration polarization layer.
  • the extractor has an open hollow structure that is a rigid or flexible hollow vessel.
  • the opening of the hollow structure of the skimmer is at the concentration polarization layer, at least a portion of the concentration polarization layer is allowed to enter the hollow vessel and at least a portion of the concentration polarization layer is removed.
  • the skimmer further includes a passage interconnecting the hollow structure and the exterior of the concentrating device, the passage allowing a concentration polarization layer entering the hollow structure to exit Said concentrating device.
  • the openings are arranged such that the concentration polarization layer is substantially along a normal direction, a tangential direction, or any direction between the normal and the tangential direction of the separation membrane. Leave the separation membrane.
  • the extractor is separated from the separation
  • the distance and relative position of the membrane are fixed or variable.
  • the picker is fixed or movable relative to the separation membrane, but wherein the opening of the hollow structure is fixedly within the concentration polarization layer.
  • the picker is fixed or movable relative to the separation membrane, but wherein the opening of the hollow structure is movable relative to the separation membrane separately or simultaneously in a direction perpendicular to and parallel to the surface of the separation membrane, This allows the opening to enter the concentration polarization layer as needed and to draw the concentration polarization layer at different locations therein and to leave the concentration polarization layer when needed.
  • the opening of the extractor hollow structure can be oriented in any direction relative to the separation membrane, particularly toward the separation membrane.
  • the portion of the extractor hollow structure having an opening is substantially planar, cross-shaped, spiral-shaped, grid-like, needle-like, or a combination thereof.
  • the portion may substantially match the surface of the particular separation membrane used, for example, for a flat sheet membrane, the portion may be substantially planar as a whole, and for a tubular membrane, The portion may be annular in its entirety; however, in any case, the portion of the portion may have other shapes as described above or a combination thereof.
  • the extractor hollow structure has an open portion that is substantially parallel to a surface of the separation membrane, ie, a shortest distance between the portion and the separation membrane surface is substantially Equally everywhere.
  • the opening of the hollow structure of the extractor can be any suitable shape, such as a substantially circular, slit-shaped, polygonal or profiled aperture.
  • the extractor hollow structure has at least one opening, wherein the number of openings can be based on the material, size and shape of the hollow structure of the extractor, the size and shape of the opening, and the separation membrane. The size and shape, the nature of the entrapment component, and the conditions and parameters of other specific applications are determined.
  • the openings may be regularly or randomly arranged on the hollow structure of the picker, in particular on the surface of the hollow structure of the picker facing the separation membrane.
  • the extractor hollow structure opening can have any suitable size, such as 0.01 to 5 mm, preferably 0.1 to 2.0 mm, more preferably 0.1 to 0.5 mm.
  • all or a portion of the skimmer may be rigid, elastic or flexible.
  • all or part of the skimmer may be made of any suitable material or combination thereof: metals such as steel, copper, aluminum, titanium, nickel, gold, silver, etc. and alloys thereof.
  • Plastics such as thermoplastics, thermosets, engineering plastics, etc. and their composites; rubbers such as natural or combined It is a rubber, an elastomer, etc. and its composite.
  • the fluid may contain a component capable of forming a concentration polarization layer on the separation side of the separation membrane, for example, the fluid may be a solution, a liquid-solid suspension, Liquid-liquid suspensions, sols, gas mixtures, gas-solid suspensions, gas-liquid suspensions, or aerosols.
  • the entrapment component is any component of the fluid that is at least partially trapped by the separation membrane, such as one or more solute molecules or ions, solid particles, droplets, etc., Is an organic and inorganic solute, more particularly a biological macromolecule such as a protein, a nucleic acid, a polysaccharide, etc., and a biological small molecule such as an amino acid, a nucleotide, a sugar, etc.; and the permeating component is any at least partially transparent in the fluid
  • the components of the separation membrane such as one or more liquid solvents, carrier gases, and components such as molecules or ions that have different retention components.
  • the entrapment component may form a filter cake on the separation side, and/or enter and block the membrane pores, and/or permeate the separation membrane.
  • the separation membrane is any membrane that can be used for separation, such as a nanofiltration membrane, an ultrafiltration membrane, a microfiltration membrane, etc., particularly a cellulose, a polyether oxime, Polyfiltration, ultrafiltration or nanofiltration membranes of polyfluorenes, polyolefins, polyamides, polypiperazines, metals, glass or ceramics.
  • the separation membrane may be in any suitable form, such as flat sheet, plate and frame, coil, tubular or hollow fiber.
  • the separation membrane has a suitable permeate flux, for example between 1 X ⁇ ⁇ ⁇ / s ⁇ 1 X ⁇ ⁇ ⁇ / s, preferably 2.78 ⁇ 10 7 m / s ⁇ 1.39 X 10 4 m / s, more preferably between 1.84 ⁇ 10 6 m / s ⁇ 3.69 ⁇ 10 5 m / s.
  • a suitable permeate flux for example between 1 X ⁇ ⁇ ⁇ / s ⁇ 1 X ⁇ ⁇ ⁇ / s, preferably 2.78 ⁇ 10 7 m / s ⁇ 1.39 X 10 4 m / s, more preferably between 1.84 ⁇ 10 6 m / s ⁇ 3.69 ⁇ 10 5 m / s.
  • the fluid produces a concentration polarization layer on the separation side surface of the separation membrane under its own weight, and thus the membrane separation apparatus does not use any additional means for the The fluid exerts a driving force.
  • a urging force may be generated by any suitable means, such as may be produced by a device capable of creating a pressure differential, a concentration difference, a potential difference or a temperature difference between the separation side and the permeate side.
  • a pressure difference can be generated by applying a positive pressure on the separation side of the membrane or a pressure on the permeate side of the membrane by using a known device, wherein the positive pressure can be generated by, for example, a pump, a positive pressure fluid, a centrifugal force, or the like, and negative.
  • the pressure can be generated on the permeate side of the membrane by, for example, a vacuum device or the like.
  • the difference in concentration can be produced by known means on the permeate side by evaporation, adsorption, dilution, and the like.
  • the potential difference can be applied to the sides of the membrane by a known device to make the charged ions or molecules pass through.
  • the film migrates to the electrodes on both sides, thereby forming a concentration polarization boundary layer on both sides of the film.
  • the temperature difference can be produced by means capable of controlling the fluid on both sides of the membrane at different temperatures, such as heaters, coolers or heat exchangers.
  • the membrane separation apparatus is a terminal filtration apparatus, the apparatus comprising a terminal filtration tank, a filter membrane as a separation membrane, and a skimmer that draws a concentration polarization layer
  • the filter is in the bottom surface of the terminal filter tank
  • the picker is in the terminal filter tank
  • one end of the picker leads to the outside of the terminal filter tank
  • the other end is substantially planar, cross-shaped, spiral, mesh-shaped, hanging needle-shaped Or a hollow structure of other shape
  • the hollow structure is substantially parallel to the surface of the filter membrane and located in the concentration polarization layer of the surface of the filter membrane, the hollow structure having an opening on a side close to the surface of the filter membrane, the opening preferably It is one or more holes having a diameter of 0.01 to 5 mm, preferably 0.1 to 0.5 mm.
  • the membrane separation apparatus is a plate and frame filtration apparatus, the apparatus comprising a separator-type membrane element that functions as a separation and a skimmer that draws a concentration polarization layer, wherein the membrane The membrane elements are connected in parallel, and a concentration polarization layer extractor is mounted on the surface of each of the flat membrane elements, the extractor having a flat grid-like hollow structure having an opening on a side close to the surface of the membrane.
  • one or more apertures having a diameter of from 0.01 to 5 mm, preferably from 0.1 to 0.5 mm, each of the diverters is also in fluid communication with a hollow tube leading to the exterior of the concentrating device.
  • the membrane separation apparatus is a flat hydrostatic filtration apparatus, the apparatus comprising a vessel, a split-plate membrane element for separation, and a skimmer for extracting the concentrate, wherein One or more parallel flat membrane elements are mounted in the container, and a concentration polarization layer extractor is installed in the concentration polarization layer of each flat membrane element, the picker is substantially planar, a hollow structure having a cross shape, a spiral shape, a mesh shape, a hanging needle shape or the like, having an opening on a side close to the surface of the filter membrane, preferably one or more holes having a diameter of 0.01 to 5 mm, preferably 0.1 to 0.5 mm, Each picker is also in fluid connection with a hollow tube leading to the exterior of the concentrating device.
  • the membrane separation apparatus is a flat suction filtration apparatus, the apparatus comprising a vessel, a flat membrane element for separation, and a draw of a concentration polarization layer a parallel plate-type membrane element is installed in the container, and a concentration polarization layer extractor is installed in the concentration polarization layer of each of the flat membrane elements, and the extractor is substantially planar and cross-shaped.
  • each of the pickers is also The hollow tube is connected to the outside of the concentrating device for fluid connection.
  • Still another aspect of the present invention provides a picker for drawing a concentration polarization layer from a separation side of a separation membrane during a membrane separation process, wherein the extractor includes at least one opening a hollow structure of the mouth, and the skimmer is configured such that the opening is operatively located within the concentration polarization layer on the separation side of the separation membrane and operatively allows at least a portion of the concentration polarization layer to pass through The opening enters the hollow structure to remove at least a portion of the concentration polarization layer.
  • the picker further includes a passageway communicating the hollow structure, the passage being configured to allow a concentration polarization layer entering the hollow structure to exit the hollow structure.
  • the picker forms a membrane module with the separation membrane.
  • the opening is arranged such that the concentration polarization layer substantially exits in a normal direction, a tangential direction, or any direction between the normal and the tangential direction of the separation membrane.
  • the separation membrane is arranged such that the concentration polarization layer substantially exits in a normal direction, a tangential direction, or any direction between the normal and the tangential direction of the separation membrane.
  • the hollow structure is a rigid or flexible hollow container.
  • the picker also has a coupling mechanism configured to provide a fixed or variable distance and relative position of the picker from the separation membrane.
  • the attachment mechanism is a bracket, a cantilever, a hinge, a rail, a lever mechanism configured to fix or move the picker relative to the separation membrane, such that the opening of the hollow structure is fixed relative to the separation membrane And always within the concentration polarization layer, or the opening can be operatively moved relative to the separation membrane separately or simultaneously in a direction perpendicular to and parallel to the surface of the separation membrane, thereby enabling the opening to
  • the concentration polarization layer is entered as needed and the concentration polarization layer is drawn at different locations therein and exits the concentration polarization layer as needed.
  • the opening of the extractor hollow structure can be oriented in any direction relative to the separation membrane, particularly toward the separation membrane.
  • the portion of the hollow structure having an opening is substantially planar, cross-shaped, spiral-shaped, grid-like, needle-like, or a combination thereof, wherein The opening is located at a most protruding position, a side position, or a recessed position of the portion.
  • the portion may be substantially planar as a whole, and for a tubular film, the portion may be annular as a whole; however, in any case, the portion of the portion may have other portions The above shape or a combination thereof.
  • the extractor hollow structure has a portion of the opening that is substantially parallel to the surface of the separation membrane, ie, the shortest distance between the portion and the surface of the separation membrane is substantially everywhere equal.
  • the portion of the extractor hollow structure having an opening can be substantially mated with the surface of the separation membrane used.
  • the portion may be substantially planar as a whole, and for the tubular film, the portion may be annular as a whole; however, in any case, the portion of the portion may have other such shapes Or a combination thereof.
  • the picker can cover at least a portion of the separation surface of the separation membrane either fixedly or by movement.
  • the picker may substantially cover substantially all of the separation surface of the separation membrane either fixedly or by movement, i.e., the opening of the hollow structure of the extractor may substantially reach the entire separation of the separation membrane surface.
  • the opening may reach at least a portion of the separation surface of the separation membrane.
  • the opening of the hollow structure of the picker can be any suitable shape, such as a substantially circular, slit, polygonal or profiled aperture.
  • the picker hollow structure has at least one opening, wherein the number of openings can be based on the material, size and shape of the hollow structure of the picker, the size and shape of the opening, and the size of the separation membrane. It is determined by the shape, the nature of the entrapment component, and the conditions and parameters of other specific applications.
  • the openings may be regularly or randomly arranged on the hollow structure of the picker, for example, on the surface of the hollow structure of the picker facing the separation membrane.
  • the extractor hollow structure opening can have any suitable size, such as 0.01 to 5 mm, preferably 0.1 to 2.0 mm, and more preferably 0.1 to 0.5 mm.
  • all or a portion of the picker can be rigid, resilient or flexible.
  • all or part of the skimmer may be made of any suitable material or combination thereof: metals such as steel, copper, aluminum, titanium, nickel, gold, silver, etc. and alloys thereof.
  • Plastics such as thermoplastics, thermosets, engineering plastics, etc. and their composites; rubbers such as natural or synthetic rubbers, elastomers, etc. and their composites.
  • the picker is fabricated from silicone rubber for micromachining.
  • the membrane separation may be specifically referred to herein as filtration, membrane filtration, ultrafiltration, concentration, membrane, depending on the circumstances.
  • concentration polarization layer may be referred to herein as a concentrate
  • the fluid may be referred to as a solution, a feed liquid, a raw material liquid, and the retention
  • the component may be referred to as a solute
  • the membrane separation device may be referred to as a device, a filtration device
  • the separation membrane may be referred to as a membrane, a membrane element.
  • Ultrafiltration concentration usually uses a terminal filtration or cross-flow filtration process.
  • the terminal filtration is similar to the sand filtration.
  • the liquid flows vertically through the membrane surface, and all the trapped substances accumulate on the membrane surface, and the solvent and small molecules pass through the membrane.
  • the main factors affecting the concentration polarization and the concentration polarization layer in ultrafiltration include transmembrane pressure, filtration mode, feed flow rate and solution properties such as pH, ionic strength, solute diffusion coefficient, solution viscosity, and the like.
  • concentration of solute in the concentration polarization layer can reach several hundred times of the concentration of the main phase in the concentration polarization, even exceeding the solubility in the solvent on the surface of the membrane. Numerous studies have shown that a relatively stable concentration polarization layer can be formed in one minute or several minutes.
  • the membrane separation method and apparatus provided by the invention can be used for concentrating biomacromolecules and small organic molecular products (such as sugars, organic acids, polypeptides, etc.) in order to overcome the serious membrane fouling during the conventional ultrafiltration concentration process, and the biological macromolecules are easily deactivated.
  • the method adjusts the thickness of the concentration polarization layer on the surface of the membrane and the concentration and distribution of the solute in the concentration polarization layer by adjusting operating conditions such as permeate flux, feed solution concentration, extraction rate, and transmembrane pressure. For the best concentration.
  • the permeation flux of the membrane is between 1.84 X 10 6 m/s and 3.69 ⁇ 10 5 m/s, and the concentration of the raw material solution is between 1.0 mg/L and 1000 mg/L.
  • the extraction rate depends on the nature of the raw material liquid and concentration. Depending on the requirements, it is generally one-half to one-thousandth of the flow rate of the raw material liquid into the membrane concentrating device, and the transmembrane pressure is between 0.1 MPa and 4 MPa.
  • biomacromolecules are proteins, polypeptides, amino acids, polysaccharides, ribonucleic acids and deoxyribonucleic acids, etc.; organic small molecule products include sugars, organic acids, polypeptides and the like.
  • the apparatus for applying the membrane filtration method for concentrating biomacromolecules by concentration polarization includes, but is not limited to, the following four types: terminal filtration device, plate-and-frame cross-flow filtration device, and flat Plate hydrostatic filtration device and flat suction filtration device; and devices for membrane filtration of concentrated organic small molecule products (such as sugar, organic acid, polypeptide, etc.) include, but are not limited to, the following two types: terminal filtration device, plate and frame Cross-flow filtration device.
  • the terminal filtering device comprises a terminal filter tank, a filter membrane, a concentrate extractor, a pressure sensor, a feed pump, a syringe pump or a constant flow pump.
  • a flat membrane is arranged on the bottom surface of the terminal filter tank, and the concentrate extractor is installed in the terminal filter tank.
  • One end of the concentrate extractor leads to the outside of the terminal filter tank, and is connected to the injection pump or the constant flow pump; the other end is a cruciform or spiral hollow structure, and the cruciform or spiral hollow structure is parallel to the surface of the filter membrane and abuts against the surface of the filter membrane, the hollow structure having a plurality of small holes on the side close to the surface of the filter membrane;
  • the upper part of the filter tank is provided with a raw material liquid inlet, and a permeate outlet is opened at a lower portion of the terminal filter tank below the filter membrane.
  • the terminal filter tank is a flat membrane filter, which adopts a "short" design, and a pressure sensor is arranged on the raw material liquid side.
  • a feed line with a pressure sensor is installed at the inlet of the raw material liquid, and the line is connected to a feed pump.
  • the small holes have a diameter of 0.1 to 0.5 mm.
  • the concentrated liquid extractor is made by using a micro-machining technique, and is made of a hollow plastic or silicone rubber tube with an outer diameter of 0.5 to 1.5 mm, and one end is a cross-shaped or spiral hollow tube, and the hollow tube is close to There are many small holes with a diameter of 0.1 ⁇ 0.5 mm on one side of the filter surface.
  • the concentrate skimmer is connected to a syringe pump or constant flow pump external to the filter to accurately extract the concentrate from the terminal filter tank at the required flow rate.
  • the filter membranes of the present invention are generally selected from the group consisting of cellulose, polyethersulfones, polysulfones, polyamides or polypiperazines. Or nanofiltration membrane.
  • the plate-and-frame cross-flow filtering device comprises a flat membrane element, a concentrate extractor, a pressure sensor, a feed pump, a syringe pump or a constant flow pump, and a shut-off valve.
  • the plate-and-frame cross-flow filtering device is formed by connecting a plurality of flat membrane elements in parallel, and a liquid extractor is mounted on the surface of each flat membrane element, and the extractor is a flat grid-like hollow structure near the filter membrane.
  • One side of the surface is provided with a plurality of small holes having a diameter of 0.1 to 0.5 mm, and one end of each of the pickers is connected with a hollow tube, which is connected in parallel with the hollow tubes of the other extractors, and leads to the plate-and-frame cross-flow filtering device.
  • a raw material liquid inlet is opened on one side of the plate-and-frame cross-flow filtering device, and a pipe with a pressure sensor and a shut-off valve is installed at the inlet of the raw material liquid, the pipe and a feed pump connection; on the other side of the plate-and-frame cross-flow filter device, a feed liquid or a circulating liquid outlet is opened, and the outlet is connected to a pipeline equipped with a shut-off valve, the pipeline leading to the original ⁇ , during normal operation
  • the shut-off valve in the pipeline is in a closed state, and when the membrane needs to be cleaned, the valve is opened for cross-flow cleaning; a permeate outlet is opened on each of the flat membrane elements, and the plate-and-plate type is discharged in parallel.
  • the concentrated liquid extractor is made by using a micro-machining technique, and is made of a hollow plastic or silicone rubber tube having an outer diameter of 0.5 to 1.5 mm, which is a flat grid-like hollow structure, and the hollow structure is close to the surface of the filter membrane. There are many small holes with a diameter of 0.1 ⁇ 0.5 mm on one side.
  • a hollow tube is connected to one end of the skimmer to discharge the concentrate.
  • the filter membranes of the present invention are generally selected from the group consisting of microfiltrations and ultrafiltrations such as celluloses, polyethersulfones, polysulfones, polyamides or polypiperazines. Or nanofiltration membrane.
  • the flat type hydrostatic pressure filtering device comprises a high-level raw material tank, a liquid tank, a liquid level gauge, a flat membrane element, a concentrate extractor, a pressure sensor, a syringe pump or a constant flow pump, and a shut-off valve.
  • a plurality of flat membrane elements connected in parallel are installed in the liquid tank, and a liquid extractor is installed on the surface of each flat membrane element, and the extractor is a flat grid-like hollow structure, and is adjacent to the surface of the filter membrane.
  • Each of the pickers has a hollow tube at one end, which is connected in parallel with the hollow tube of the other extractor, and leads to the outside of the filter device, and the injection pump or constant current pump.
  • the transmembrane pressure of the permeate is provided by a hydrostatic head controlled by a level gauge in the tank.
  • a raw material liquid inlet is opened in the liquid tank, and the raw material liquid inlet is connected to a pipeline with a shut-off valve and a high-level raw material tank.
  • the configuration of the concentrate skimmer and the selection of the filter are the same as those of the flat-plate cross-flow filter.
  • the flat suction filtration device comprises a liquid tank, a liquid level gauge, a flat membrane element, a concentrate extractor, a pressure sensor, a feed pump, a syringe pump or a constant flow pump, a suction pump, and a shutoff valve.
  • a plurality of flat membrane elements connected in parallel are installed in the liquid tank, and a liquid extractor is installed on the surface of each flat membrane element, and the extractor is a flat grid-like hollow structure, and is adjacent to the surface of the filter membrane.
  • each of the pickers has a hollow tube at one end thereof, which is connected in parallel with the hollow tube of the other extractor, and leads to the outside of the flat suction filter device, and the injection pump Or a constant flow pump connected; a permeate outlet is opened on each of the flat membrane elements, and connected in parallel with a pipeline with a pressure sensor, a shutoff valve and a suction pump; a feed liquid inlet is opened in the liquid tank, A line with a shut-off valve and a feed pump is installed at the inlet of the raw material liquid.
  • the configuration of the concentrate skimmer and the selection of the filter are the same as those of the flat-plate cross-flow filter.
  • the concentrate is discharged from the membrane filtration device, and the potential membrane contaminants are simultaneously discharged from the membrane unit with the concentrate, which effectively reduces the membrane fouling potential and greatly reduces
  • the membrane cleaning frequency has the dual effect of concentrating and mitigating membrane fouling.
  • Membrane concentration process equipment, process and operation are simple, which is conducive to continuous or semi-continuous operation, and the service life of the membrane can be further improved.
  • Concentration is carried out under conditions of no shear or low shear, and the energy consumption is greatly reduced, which effectively reduces the risk of inactivation and denaturation of biomacromolecules caused by shearing, and is particularly suitable for shear sensitive organisms. Concentration of molecules.
  • the invention directly removes the concentration polarization layer from the surface of the membrane, thereby not only reducing the adverse effect of concentration polarization on membrane separation, but also obtaining a highly concentrated trapping component, thereby significantly improving the membrane separation process.
  • the maintenance of membrane flux solves the problem of concentration polarization and membrane fouling during membrane separation, and achieves efficient concentration of trapped components.
  • fluid as used in the present invention shall be understood to include the broadest scope, including but not limited to gases, liquids, colloids, solutions, molecular solutions, liquid-solid suspensions, liquid-liquid suspensions, sols, gas mixtures, gas-solids.
  • the suspension, the gas-liquid suspension, the aerosol or a combination thereof may be any one as long as the fluid contains a component capable of forming a concentration polarization layer on the separation side of the separation membrane.
  • retaining component and “permeating component” as used in the present invention are understood to mean a fluid component which is substantially impermeable to the separation membrane and a fluid component which is substantially permeable to the separation membrane, that is, even if the "retained component” is transparent.
  • the transmission rate is also much lower than the "permeation component", resulting in enrichment of the "retained component” on the separation side.
  • membrane separation refers to an operation or process that utilizes selective permeation of a membrane to reduce or remove one or more components of a feedstock to increase the proportion or concentration of one or more other constituents in the feedstock. .
  • concentration polarization means that the separation membrane selectively allows passage of certain components in the separated raw material to trap other components, resulting in enrichment of the entrapped component near the surface of the separation side membrane, forming from The concentration gradient between the surface of the membrane and the body of the separated material causes diffusion of the trapped component from the surface of the membrane to the bulk of the material, resulting in a decrease in membrane flux.
  • concentration polarization layer the boundary layer having a concentration gradient of the entrapped component from the surface of the film to the main body of the material.
  • FIG. 1 is a schematic view of a terminal membrane filtration apparatus for concentrating biological macromolecules and small organic molecules by concentration polarization in the present invention.
  • Fig. 2 is a schematic view showing a plate-and-frame cross-flow membrane filtering device for concentrating biomacromolecules and small organic molecules by concentration polarization in the present invention.
  • FIG. 3 is a schematic view of a flat suction membrane filtration device for concentrating biological macromolecules by concentration polarization according to the present invention.
  • 4 is a schematic view of a flat hydrostatic membrane filtration device for concentrating biomacromolecules by concentration polarization according to the present invention.
  • the apparatus for filtering a terminal membrane using concentrated polarization to concentrate biomacromolecules includes: a terminal filter tank 3, a membrane 2, a concentrate extractor 1, a pressure sensor 4, a feed pump 5, a syringe pump or a constant flow pump 6.
  • a flat membrane 2 is installed on the bottom surface of the terminal filter tank 3 (effective membrane area of 4.45 cm 2 and volume of about 6.7 mL), and the filter has a high recovery rate of 10% high molecular weight (MWCO) of Ultracel PL.
  • Ultrafiltration membrane (Millipore)
  • a concentrate extractor 1 made of a hollow plastic or silicone rubber tube having an outer diameter of 0.5 to 1.5 mm is provided on the surface of the membrane; one end of the concentrate extractor leads to the terminal
  • the outside of the filter tank 3 is connected to the syringe pump 6, and the head of the other end in contact with the filter membrane is connected with a cross-shaped hollow tube communicating with the main body of the concentrate extractor, and the cross-shaped hollow tube is parallel to the surface of the filter membrane and closely attached to the filter.
  • a raw material liquid inlet is opened in the upper portion of the terminal filter tank 3, and a line with a pressure sensor 4 is attached to the raw material liquid inlet, and the line is connected to a feed pump 5.
  • a permeate outlet is opened in the lower portion of the terminal filtration tank 3 below the membrane.
  • the serum protein concentrated solution has a sampling rate of 300 L/h. The permeate is continuously discharged from the permeate outlet at the lower end of the filter tank below the filter membrane.
  • the concentration of BSA is 6.6 g/L, which is 13.2 times of the concentration of the raw material solution.
  • concentration of BSA in the concentrated liquid is only 3.2 g/L after 6.5 hours of concentration, which is the concentration of the raw material liquid. 6.4 times.
  • the transmembrane pressure (TMP) of the system has reached the limit value of the device (l.OMPa) after 6.5 hours, and with the membrane concentration method of the present invention, the upward trend of the pressure is significantly reduced. Slowly, the pressure after 6.5 hours of filtration is only 20% of the conventional concentration process.
  • the measurement of the film resistance after filtration The results show that with the membrane concentration method of the present invention, the membrane resistance is almost unchanged before and after filtration; while the membrane resistance is increased by more than 20% under the conventional ultrafiltration concentration. Therefore, the membrane concentration method proposed by the invention not only has a good concentration effect, but also can effectively control membrane fouling, and is beneficial to long-term stable operation of the membrane concentration process.
  • the TMP rises to 100 KPa and 150 KPa
  • the concentrate is continuously drawn at a rate of 360 ⁇ L/h and 420 ⁇ L/h, respectively.
  • the TMP under both experimental conditions decreased with the progress of the extraction, and then stabilized at 60 and 107 KPa for a long time. This indicates that membrane fouling is effectively controlled during the concentration process, and the concentration operation can be stably performed for a long period of time.
  • the average concentration of BSA in the concentrate obtained was 8.9 and 7.0 g/L, respectively, and the concentration multiple was 17.8 and 14.0 times the concentration of BSA in the raw material solution, respectively.
  • the permeation flux of the membrane Jv 3.745 x 10 6 m 3 /(m 2 *s).
  • a batch extraction method is used to extract the concentrate.
  • Concentrate extraction rates were 360 ⁇ L/h and 420 L/h, respectively. After 8 hours, the concentration of the concentrated solution reached 11.8 g/L and 12.4 g/L, respectively, which was 23.6 and 24.8 times the concentration of the raw material liquid. Therefore, the use of multiple intermittent extraction operations is conducive to obtaining a high concentration of concentrated liquid, while the transmembrane pressure is controllable, and the average TMP of the system is in a constant state.
  • the concentration of the concentrated solution was 31.5 and 19.0 g/L, respectively. They are 63.0 and 38.0 respectively.
  • the transmembrane pressure is controllable, and the average TMP of the system is in a constant state, indicating that the membrane fouling is effectively controlled during the concentration process, and continuous concentration operation can be realized.
  • a device for filtering a plate-and-frame cross-flow membrane using a concentration polarization to concentrate a biomacromolecule comprises: a flat membrane element 1, a concentrate extractor 2, a pressure sensor 4, a feed pump 5, a syringe pump or a constant flow pump 3.
  • the plate-and-frame cross-flow filtration device consists of three flat membrane elements 1 (the effective membrane area of each membrane element is 0.03 m 2 , and the membrane is selected from polysulfone ultrafiltration membrane with molecular weight cutoff of 50 kD (alfa laval, Sweden)) Parallel formed; a liquid picker 2 is mounted on the surface of each of the flat membrane elements 1, and the picker is made of a hollow plastic or silicone rubber tube having an outer diameter of 0.5 to 1.5 mm, and is a flat mesh shape.
  • the hollow structure has a plurality of small holes having a diameter of 0.1 to 0.5 mm on a side close to the surface of the filter membrane, and one hollow tube is connected to one end of each of the skimmers, and is connected in parallel with the hollow tubes of the other skimmers.
  • the outside of the plate-and-frame cross-flow filtering device is connected to the injection pump 3; the raw material liquid inlet is opened on the plate-and-frame cross-flow filtering device, and the pipeline with the pressure sensor 4 is installed at the inlet of the raw material liquid, and the pipeline is connected with a feed pump 5 is connected; a circulating liquid outlet is opened on the plate-and-frame cross-flow filtering device, and a pipe with a shut-off valve 6 is installed at the outlet of the circulating liquid, the pipe leading to the raw material tank; in each flat membrane The permeate outlet is opened on the component 1, and the plate frame is discharged in parallel.
  • Type cross-flow filtration device is used to the injection pump 3; the raw material liquid inlet is opened on the plate-and-frame cross-flow filtering device, and the pipeline with the pressure sensor 4 is installed at the inlet of the raw material liquid, and the pipeline is connected with a feed pump 5 is connected; a circulating liquid outlet is opened on the plate-and-frame cross-flow filtering device, and
  • the concentrate is taken by intermittent extraction.
  • the permeation flux of the system is 5.25 X l (T 6 m 3 /(m 2 *s)
  • the extraction rate is 18 mL/h
  • the extraction time is fixed at 30, 10, 5 minutes, respectively, after the extraction time is reached.
  • a device for flat-plate suction membrane filtration using concentration polarization to concentrate biomacromolecules including a liquid tank 1, a flat membrane element 2, a concentrate extractor 3, a pressure sensor 5, a feed pump 7, a syringe pump Or constant flow pump 4, suction pump 6.
  • each membrane element 2 Three flat membrane elements 2 are connected in parallel in the liquid tank 1 (the effective membrane area of each membrane element is 0.03 m 2 , and the membrane is a polysulfone ultrafiltration membrane with a molecular weight cut-off of 50 kD (Swedish alfa laval) )), a concentrate picker 3 is mounted on the surface of each of the flat membrane elements 2, and the picker is made of a hollow plastic or silicone rubber tube having an outer diameter of 0.5 to 1.5 mm, and is a flat grid hollow.
  • the structure has a plurality of small holes having a diameter of 0.1 to 0.5 mm on the side close to the surface of the filter membrane, and each of the extractors has a hollow tube at one end thereof,
  • the hollow tubes of the picker are connected in parallel to the outside of the liquid tank 1, and connected to the injection pump 4; a permeate outlet is opened in each of the flat membrane elements 2, and a pressure sensor 5 is connected in parallel with the pump
  • the pipeline of the suction pump 6 is connected; a feed liquid inlet is opened in the liquid tank 1, and a pipeline with a feed pump 7 is installed at the inlet of the raw material liquid.
  • the permeation flux of the system was constant at 5.25 X 10 ⁇ 6 m. 3 / (m 2 -s) o uses a batch extraction method to extract the concentrate.
  • the transmembrane pressure of the system is lOOKPa
  • the extraction rate is 24 mL/h
  • the extraction time is fixed at 30, 10, and 5 minutes respectively. After the extraction time is reached, the extraction is stopped. After the transmembrane pressure is restored to lOOKPa, again. Capture, the whole process is repeated.
  • TMP transmembrane pressure
  • a device for flat-plate hydrostatic membrane filtration using concentration polarization to concentrate biomacromolecules including flat membrane element 1, concentrate extractor 2, liquid tank 3, syringe pump or constant flow pump 4, pressure gauge 5. High level liquid tank 6.
  • each membrane element is connected in parallel in the liquid tank 3 (the effective membrane area of each membrane element is 0.03 m 2 , and the membrane is selected from a polysulfone ultrafiltration membrane with a molecular weight cutoff of 50 kD (Swedish alfa laval) )), a concentrate picker 2 is mounted on the surface of each of the flat membrane elements 1, and the picker is made of a hollow plastic or silicone rubber tube having an outer diameter of 0.5 to 1.5 mm, and is a flat grid hollow.
  • the structure has a plurality of small holes having a diameter of 0.1 to 0.5 mm on the side close to the surface of the filter membrane, and each of the extractors has a hollow tube at one end thereof, which is connected in parallel with the hollow tube of the other extractor, and leads to the liquid tank.
  • the outside of the 3 is connected to the syringe pump 4; a permeate outlet is opened in each of the flat membrane elements 1, and is connected in parallel to a line with a pressure gauge 5; a feed liquid inlet is opened in the liquid tank 3, Connected to the high level tank 6 and the transmembrane pressure is provided by a hydrostatic head in the tank 3.
  • the initial permeate flux is 0.98 ⁇ 10 ⁇ 6 m 3 /(m 2 -s) 0
  • the batch is used to extract the concentrate.
  • the permeation flux of the system is 0.45 X 10 ⁇ 6 m 3 /(m 2 *s)
  • the extraction rate is 24 mL/h
  • the extraction time is fixed at 30, 10, 5 minutes, respectively.
  • the invention aims to solve the problems of serious membrane fouling, prone to inactivation of biological macromolecules, frequent membrane cleaning, and difficulty in continuous concentration process in the conventional membrane concentration process, and proposes the characteristics of rapid formation of concentrated polarization layers and high concentration of solute. Controlling the operating conditions, adjusting the concentration of the concentration polarization layer and the concentration and distribution of the solute in the concentration polarization layer, and then deriving the concentrated solution of the concentration polarization layer through the concentrate extractor, thereby obtaining a high concentration target solution At the same time, the potential pollutants are discharged in time to achieve continuous operation of the concentration process.
  • the method and the idea of concentrating biomacromolecules and small organic molecules by concentration polarization proposed by the invention skillfully solve the problem of concentration polarization and membrane pollution in the membrane concentration process, and are the principle and implementation of membrane concentration technology.
  • the change in approach, the advantages of membrane technology for efficiency, energy efficiency, simplicity of the process and ease of operation are fully reflected in this system.

Description

利用浓差极化进行膜分离的方法和设备以及专用汲取器 技术领域
本发明涉及膜分离方法和设备,特别涉及利用膜分离过程中的浓 差极化现象进行分离的方法和设备以及专用汲取器。 背景技术
膜分离过程是以选择性透过膜为分离介质,当膜两侧存在某种推 动力 (如压力差、 浓度差、 电位差、 温度差等)时, 原料侧组分选择性 地透过膜, 以达到分离, 浓缩、提纯的目的。 不同的膜过程使用不同 的膜, 推动力也不同。 目前已经工业化应用的膜分离过程有微滤 (MF)、超滤 (UF)、反渗透 (RO)、渗析 (D)、电渗析 (ED)、气体分离(GS)、 渗透汽化 (PV)、乳化液膜 (ELM)等。 另外还有许多正在开发研究中的 新膜过程, 如膜萃取、 膜蒸馏、 双极性膜电渗析、 膜分相、 膜吸收、 膜反应、 膜控制释放、 膜生物传 感器等。
膜分离技术与传统的分离方法比较, 具有以下明显的优点: (1 ) 高效: 由于膜具有选择性, 它能有选择性地透过某些物质, 而阻挡另 一些物质的透过。 选择合适的膜, 可以有效地进行物质的分离, 提纯 和浓缩; (2 )节能: 多数膜分离过程在常温下工作, 被分离物质不发 生相变, 是一种低能耗, 低成本的单元操作; ( 3 )过程简单、 容易操 作和控制; 和(4 )不污染环境。
由于这些优点、使膜分离技术在短短的时间迅速发展起来, 已广 泛有效地应用于石油化工、生化制药、 医疗卫生、冶金、 电子、 能源、 轻工、 纺织、 食品、 环保、 航天、 海运、 日常生活等领域, 成为当今 分离科学中最重要的手段之一。
然而, 大量研究表明,膜分离过程中普遍存在的浓差极化现象是 影响膜通量,导致膜污染的关键因素之一。浓差极化现象是指分离膜 选择性允许被分离原料中某些成分透过而截留另一些成分,造成被截 留成分在膜表面的富集, 形成从膜表面到被分离原料主体的浓度梯 度, 引起被截留成分从膜表面向原料主体的扩散,导致膜通量减少的 现象。 例如, 在针对溶液的膜分离过程中, 被处理的溶液在压力差的 推动下, 对流流向膜表面, 被截留的溶质聚积在膜表面附近, 从而使 溶质在膜表面的浓度高于其在主体溶液的浓度,形成了膜表面与主体 溶液之间的浓度梯度, 引起溶质从膜表面向主体溶液扩散,导致通量 的减少, 这种现象就称为浓差极化。 浓差极化不仅造成膜通量的减少,还由于截留成分在膜表面的富 集而加剧膜污染,因此在膜分离过程中浓差极化一般都被作为一种需 要解决的问题对待,例如对膜组件的设计和操作进行优化,通过切向 流带走膜表面的高浓度物质以降低膜表面的浓差极化和维持膜通量。 然而, 仍然需要减少浓差极化和膜污染以及维持膜通量的方法和设 备。 发明内容
本发明的一个方面提供一种膜分离方法, 包括:
a)将含有截留成分和透过成分的流体置于分离膜的分离侧; b)对所述流体施加推动力使至少部分透过成分透过所述分离膜 到达所述分离膜的渗透侧,由此在所述分离膜的分离侧形成富含截留 成分的浓差极化层; 和
c)从分离侧移出至少部分所述浓差极化层。
在本发明膜分离方法的某些实施方案中,只要所述流体含有能够 在分离膜的分离侧形成浓差极化层的成分即可,例如所述流体可以是 溶液、液 -固悬浮体、液 -液悬浮体、溶胶、 气体混合物、 气 -固悬浮体、 气 -液悬浮体、 或气溶胶。
在本发明膜分离方法的某些实施方案中,所述截留成分是流体中 任何能够被分离膜至少部分截留的成分,例如一种或多种溶质分子或 离子、 固体颗粒、 液滴等, 特别是有机和无机溶质, 更特别的是诸如 蛋白质、核酸、 多糖等的生物大分子以及诸如氨基酸、核苷酸、 糖等 的生物小分子;而所述透过成分是流体中任何能够至少部分透过分离 膜的成分, 例如一种或多种液体溶剂、载气、 与截留成分不同的分子 或离子等成分。在一些情况下,所述截留成分除了在分离膜的分离侧 形成浓差极化层外, 还可能在分离侧形成滤饼, 和 /或进入并堵塞膜 孔, 和 /或透过分离膜。
在本发明膜分离方法的某些实施方案中,所述分离膜是任何可用 于分离的膜, 例如纳滤膜、 超滤膜、微滤膜等, 特别是纤维素类、 聚 醚砚类、 聚砚类、 聚烯烃类、 聚酰胺类、 聚哌嗪类、 金属类、 玻璃类 或陶瓷类微滤、 超滤或纳滤膜。
在本发明膜分离方法的某些实施方案中,所述分离膜可以是任何 合适的形式, 例如平片式、 板框式、 卷式、 管式或中空纤维式。
在本发明膜分离方法的某些实施方案中,所述分离膜具有合适的 渗透通量, 例如在 1 X Ιθ η/s ~ 1 χ Ιθ η/s 之间, 优选在 2.78 χ 10 7m/s ~ 1.39 X 10 4m/s之间,更优选在 1.84 χ 10 6m/s ~ 3.69 χ 10 5m/s 之间。
在本发明膜分离方法的某些实施方案中,所述推动力可以通过任 何合适的方式产生, 例如由压力差、 浓度差、 电位差或温度差产生, 特别是由压力差产生。例如通过已知的方式在膜的分离侧施加正压或 在膜的渗透侧施加负压以产生压力差,其中正压可以通过例如泵、正 压流体、 重力、 离心力等产生, 而负压可以在膜的渗透侧通过例如真 空、毛细管等作用产生, 由此透过成分在压力差的驱动下从膜的分离 侧透过膜到达渗透侧,从而在分离侧膜的表面形成截留成分富集的浓 差极化层。
在本发明膜分离方法的某些实施方案中,由压力差产生的推动力 形成的跨膜压力可以根据应用和需要确定, 例如在 0.005MPa ~ lOMPa之间, 优选在 O.OlMPa ~ 4MPa之间。
在本发明膜分离方法的某些实施方案中,还任选地包括从所述分 离膜的渗透侧移走透过成分的步骤。所述步骤可通过任何已知的方法 根据所述实施方案的具体情况实现。 例如, 通过管道系统导出等。
在本发明膜分离方法的某些实施方案中,所述浓差极化层的厚度 和其中截留成分的浓度能够基于流体及其各成分的性质、 膜组件类 型、膜品种和规格以及操作条件如推动力的种类和大小或膜表面流体 流速等根据具体应用和需要确定和调节。例如,浓差极化层的厚度可 以通过模型预测 (如 S.P. Agashiche, Calculation of concentration polarisation in processes of ultrafiltration of non-Newtonian fluids in tubular channel, Separation/Purification Technology 25 (2001) 523-533; S.K. Karode, A new unsteady-state model for macromolecular ultrafiltration, Chemical Engineering Science 55 (2000) 1769 - 1773; S. Kim, E.M.V. Hoek, Modeling concentration polarization in reverse osmosis processes, Desalination 186 (2005) 111—128 ; 和 Mohd.Z. Sulaiman et al., Prediction of dynamic permeate flux during cross-flow ultrafiltration of polyethylene glycol using concentration polarization-gel layer model, Journal of Membrane Science 189 (2001) 151 - 165 )和 /或通过实验测定(如 Z. Zhang et al., Use of capacitive microsensors and ultrasonic time-domain reflectometry for in-situ quantification of concentration polarization and membrane fouling in pressure-driven membrane filtration, Sensors and Actuators B 117 (2006) 323 - 331;和 J.C. Chen et al" In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration, Advances in Colloid and Interface Science 107 (2004) 83-108等)。 因此, 在一些实施方案中, 根据预测的、 实验测定的或 实时测定的浓差极化层厚度以及具体应用的条件和要求来确定移出 浓差极化层的时机、 持续时间和移出量。
在本发明膜分离方法的某些实施方案中,在步骤 C)中可以通过任 何合适的方式移出至少部分浓差极化层, 例如通过汲取、抽出、 隔离 等操作移出至少部分所述浓差极化层,使得所述移出的部分浓差极化 层离开所述浓差极化层和所述流体。特别是通过使用管道系统汲取或 抽出浓差极化层;或使用适当的容器将浓差极化层与流体的其它部分 隔离后取出。在一些实施方案中, 汲取操作可以利用浓差极化层与汲 取器之间的压力差进行。移出至少部分浓差极化层的操作可以在浓差 极化层中的任何位置进行,特别是在靠近分离膜的表面处进行, 更特 别的 本在分离膜的表面上进行。一般地,所述移出的部分浓差极 化层离开所述浓差极化层和后,不再返回所述流体以避免浓差极化层 与流体本体之间的再次混合或返混,这在膜浓缩等应用中可能是有益 的。 然而, 在某些应用中, 所述移出的部分浓差极化层在离开所述流 体后,仍然可能与所述流体再次混合,例如在所述膜分离实施位点之 外的位置进行混合。在某些实施方案中,经所述膜分离方法处理后的 所述流体和 /或所述移出的部分浓差极化层可以任选地在相同的或不 同的膜分离实施位点处根据本发明的膜分离方法进行进一步的处理。
在本发明膜分离方法的某些实施方案中,所述浓差极化层基本沿 所述分离膜的法向方向、切向方向或法向和切向之间任意方向离开所 述分离膜。
在本发明膜分离方法的某些实施方案中,所述膜分离方法的全部 或部分步骤是以连续的、半连续的或间歇的方式进行的。 例如, 移出 至少部分浓差极化层的操作可以采用连续或间歇的方式进行,以便将 浓差极化层的 0.1% ~ 99%连续或间歇地移出。 例如, 对于连续汲取 方式, 当跨膜压力或渗透通量或浓差极化层厚度达到预先设定的值 时, 可以连续不断地汲取浓差极化层; 对于间歇汲取方式, 当跨膜压 力或渗透通量或浓差极化层厚度达到第一设定值时,开始汲取浓差极 化层, 当跨膜压力或渗透通量或浓差极化层厚度达到第二设定值,停 止汲取操作, 如此反复进行。
本发明的膜分离方法既可用于减少浓差极化和膜污染以便维持 膜通量, 也可用于得到浓缩的截留成分。 因此, 本发明的膜分离方法 可以应用于任何产生浓差极化现象的膜分离过程,例如膜浓缩、膜过 滤、 膜蒸馏、 膜萃取或膜吸收等。
在本发明膜分离方法的某些实施方案中,所述膜分离方法可以是 一种膜浓缩方法,包括从分离侧移出部分浓差极化层以得到浓缩的截 留成分。 由于浓差极化层形成迅速、 浓缩程度高并且浓缩条件温和, 所述膜浓缩方法特别适合于对生物分子的高效浓缩。
在本发明膜分离方法的另一些实施方案中,所述膜分离方法可以 是一种膜过滤方法,包括在渗透侧移出透过成分以得到截留成分减少 的透过成分。 由于浓差极化层的减少, 膜污染可以得到有效控制, 膜 通量可以长期维持,因此所述膜过滤方法可以显著地提高过滤效率并 延长滤膜的使用寿命。
本发明的另一方面提供一种膜分离设备, 包括分离膜和汲取器, 其中在膜分离过程中,所述汲取器经配置从所述分离膜的分离侧移出 至少部分浓差极化层。在本发明中,所述膜分离设备是指膜分离单元、 膜分离体系、 膜分离系统、 膜分离装置、 膜分离模块中的任何一种。
在本发明膜分离设备的某些实施方案中,所述膜分离设备还具有 基本开放或基本封闭的外壳,其中该外壳与分离膜一起将被分离流体 和透过成分隔开。在本发明膜分离设备的另一些实施方案中,所述膜 分离设备没有外壳, 其中分离膜本身将被分离流体和透过成分隔开, 例如在中空纤维膜或管状膜中的情形。
在本发明膜分离设备的一些实施方案中,所述汲取器可以位于分 离膜的分离侧、 渗透侧、 分离膜中或分离膜上。
在本发明膜分离设备的某些实施方案中,所述汲取器与分离膜一 起形成膜组件。
在本发明膜分离设备的某些实施方案中,所述汲取器包括具有开 口的中空结构,并且所述开口位于所述分离膜的分离侧的浓差极化层 内,并允许至少部分所述浓差极化层进入所述中空结构以移出至少部 分所述浓差极化层。
在本发明膜分离设备的某些实施方案中,所述汲取器具有开口的 中空结构是刚性或柔性的中空容器。当所述汲取器中空结构的开口处 于浓差极化层时,允许至少部分所述浓差极化层进入所述中空容器并 移出至少部分所述浓差极化层。
在本发明膜分离设备的某些实施方案中,所述汲取器还包括连通 所述中空结构和所述浓缩装置外部的通道,所述通道允许进入所述中 空结构的浓差极化层离开所述浓缩装置。
在本发明膜分离设备的某些实施方案中,所述开口经安排使得所 述浓差极化层基本沿所述分离膜的法向方向、切向方向或法向和切向 之间任意方向离开所述分离膜。
在本发明膜分离设备的某些实施方案中,所述汲取器与所述分离 膜的距离和相对位置是固定的或可变的。例如,所述汲取器相对于分 离膜是固定的或可移动的,但其中空结构的开口固定地处于浓差极化 层内。 又例如, 所述汲取器相对于分离膜是固定的或可移动的, 但其 中空结构的开口相对于所述分离膜可分别或同时沿垂直于和平行于 所述分离膜表面的方向移动,由此使得所述开口能够在需要时进入浓 差极化层并在其中的不同位置汲取浓差极化层以及在需要时离开浓 差极化层。
在本发明膜分离设备的某些实施方案中,所述汲取器中空结构的 开口可以朝向相对于分离膜的任何方向, 特别是朝向所述分离膜。
在本发明膜分离设备的某些实施方案中,所述汲取器中空结构具 有开口的部分是基本平面状的、十字形状的、螺旋形状的、网格状的、 悬针状的或其组合。在一些实施方案中,所述部分可以与所用的特定 分离膜的表面整体上基本相互匹配,例如对于平片式膜,所述部分整 体上可以是基本平面状的, 而对于管状膜,所述部分可以整体上是环 形的; 然而, 在任何情况下, 所述部分的局部还可以具有其它上述形 状或其组合。
在本发明膜分离设备的某些实施方案中,所述汲取器中空结构具 有开口的部分基本平行于所述分离膜的表面,即所述部分与所述分离 膜表面之间的最短距离基本上处处相等。
在本发明膜分离设备的某些实施方案中,所述汲取器中空结构的 开口可以是任何合适的形状, 例如可以是基本圓形、狭缝形、 多边形 或异形的孔。
在本发明膜分离设备的某些实施方案中,所述汲取器中空结构具 有至少一个开口, 其中开口的数目可以根据汲取器中空结构的材质、 尺寸和形状、开口的尺寸和形状、分离膜的尺寸和形状、截留成分的 性质以及其它具体应用的条件和参数决定。 当具有多于一个开口时, 这些开口可以规则地或随机地安排在所述汲取器中空结构上,特别是 安排在所述汲取器中空结构朝向所述分离膜的表面上。
在本发明膜分离设备的某些实施方案中,所述汲取器中空结构开 口可以具有任何合适的尺寸, 例如 0.01~5mm, 优选为 0.1 ~ 2.0 mm, 更优选为 0.1 ~ 0.5 mm。
在本发明膜分离设备的某些实施方案中,所述汲取器的全部或部 分可以是刚性的、 弹性的或柔性的。根据分离膜、 流体和操作条件的 不同,所述汲取器的全部或部分可以选用任何合适的以下材料或其组 合制造: 金属如钢铁、 铜、 铝、 钛、 镍、 金、 银等及其合金; 塑料如 热塑性塑料、 热固性塑料、 工程塑料等及其复合物; 橡胶如天然或合 成橡胶、 弹性体等及其复合物。
在本发明膜分离设备的某些实施方案中,只要所述流体含有能够 在分离膜的分离侧形成浓差极化层的成分即可,例如所述流体可以是 溶液、液 -固悬浮体、液 -液悬浮体、溶胶、 气体混合物、 气 -固悬浮体、 气 -液悬浮体、 或气溶胶。
在本发明膜分离设备的某些实施方案中,所述截留成分是流体中 任何能够被分离膜至少部分截留的成分,例如一种或多种溶质分子或 离子、 固体颗粒、 液滴等, 特别是有机和无机溶质, 更特别的是诸如 蛋白质、核酸、 多糖等的生物大分子以及诸如氨基酸、核苷酸、 糖等 的生物小分子;而所述透过成分是流体中任何能够至少部分透过分离 膜的成分, 例如一种或多种液体溶剂、载气、 以及截留成分不同的分 子或离子等成分。在一些情况下,所述截留成分除了在分离膜的分离 侧形成浓差极化层外, 还可能在分离侧形成滤饼, 和 /或进入并堵塞 膜孔, 和 /或透过分离膜。
在本发明膜分离设备的某些实施方案中,所述分离膜是任何可用 于分离的膜, 例如纳滤膜、 超滤膜、微滤膜等, 特别是纤维素类、 聚 醚砚类、 聚砚类、 聚烯烃类、 聚酰胺类、 聚哌嗪类、 金属类、 玻璃类 或陶瓷类微滤、 超滤或纳滤膜。
在本发明膜分离设备的某些实施方案中,所述分离膜可以是任何 合适的形式, 例如平片式、 板框式、 卷式、 管式或中空纤维式。
在本发明膜分离设备的某些实施方案中,所述分离膜具有合适的 渗透通量, 例如在 1 X Ιθ η/s ~ 1 X Ιθ η/s 之间, 优选在 2.78 χ 10 7m/s ~ 1.39 X 10 4m/s之间,更优选在 1.84 χ 10 6m/s ~ 3.69 χ 105m/s 之间。
在本发明膜分离设备的某些实施方案中,流体在其自身的重力作 用下在分离膜的分离侧表面产生浓差极化层,因此所述膜分离设备未 使用任何另外的装置对所述流体施加推动力。
在本发明膜分离设备的某些实施方案中,还包括另外的装置对所 述流体施加推动力以便在分离膜的分离侧表面产生浓差极化层。所述 推动力可以由任何合适的装置产生,例如可以由能够在分离侧和渗透 侧之间产生压力差、 浓度差、 电位差或温度差的装置产生。 特别地, 可以通过使用已知的装置在膜的分离侧施加正压或在膜的渗透侧施 加负压以产生压力差, 其中正压可以通过例如泵、正压流体、 离心力 等产生, 而负压可以在膜的渗透侧通过例如真空装置等产生。浓度差 可由已知的装置在渗透侧通过蒸发、 吸附、稀释等作用产生。 电位差 可以通过已知的装置在膜两侧施加直流电,使得带电离子或分子透过 膜向两侧电极迁移,从而在膜两侧形成浓差极化边界层。温度差可以 通过能够将膜两侧流体控制在不同温度的装置产生,例如加热器、冷 却器或换热器等。
在本发明膜分离设备的某些实施方案中,所述膜分离设备是终端 过滤装置,所述装置包括终端过滤池、作为分离膜的滤膜和汲取浓差 极化层的汲取器,所述滤膜在终端过滤池内的底面,汲取器在终端过 滤池中,所述汲取器的一端通向终端过滤池外部, 另一端是基本平面 形、 十字形、 螺旋形、 网格形、 悬针形或其他形状的中空结构, 且所 述中空结构基本平行于滤膜表面并位于滤膜表面的浓差极化层内,所 述中空结构在靠近滤膜表面的一侧具有开口,所述开口优选为一个或 多个直径为 0.01~5mm, 优选 0.1 ~ 0.5 mm的孔。
在本发明膜分离设备的某些实施方案中,所述膜分离设备是板框 式过滤装置,所述装置包括起分离作用的平板式膜元件和汲取浓差极 化层的汲取器,其中平板式膜元件是并联的,在每块平板式膜元件的 表面安装有浓差极化层汲取器,所述汲取器具有平板式网格状中空结 构, 在靠近滤膜表面的一侧具有开口, 优选一个或多个直径为 0.01~5mm, 优选 0.1 ~ 0.5 mm的孔, 每块汲取器还与通向所述浓缩 装置外部的中空管流体连通。
在本发明膜分离设备的某些实施方案中,所述膜分离设备是平板 式水力静压过滤装置,所述装置包括容器、起分离作用的平板式膜元 件和汲取浓缩液的汲取器,其中所述容器中安装有一个或多个并联的 平板式膜元件,在每块平板式膜元件的浓差极化层内安装有浓差极化 层汲取器, 所述汲取器为基本平面形、 十字形、 螺旋形、 网格形、 悬 针形或其他形状的中空结构,在靠近滤膜表面的一侧具有开口,优选 一个或多个直径为 0.01~5mm, 优选 0.1 ~ 0.5 mm的孔, 每块汲取器 还与通向浓缩装置外部的中空管流体连接。
在本发明膜分离设备的某些实施方案中,所述膜分离设备是平板 式抽吸过滤装置, 所述装置包括容器、 起分离作用的平板式膜元件、 和汲取浓差极化层的汲取器, 所述容器中安装有并联的平板式膜元 件, 在每块平板式膜元件的浓差极化层内安装有浓差极化层汲取器, 所述汲取器为基本平面形、 十字形、 螺旋形、 网格形、 悬针形或其他 形状的中空结构, 在靠近滤膜表面的一侧具有开口, 优选直径为 0.01~5mm, 优选 0.1 ~ 0.5 mm的孔, 每块汲取器还与通向浓缩装置 外部的中空管流体连接。
本发明的再另一方面提供一种用于在膜分离过程中从分离膜的 分离侧汲取浓差极化层的汲取器,其中该汲取器包括具有至少一个开 口的中空结构,并且该汲取器经配置使所述开口可操作地位于所述分 离膜的分离侧的浓差极化层内,并可操作地允许至少部分所述浓差极 化层通过所述开口进入所述中空结构以移出至少部分所述浓差极化 层。
在本发明汲取器的某些实施方案中,所述汲取器还包括连通所述 中空结构的通道,该通道配置为允许进入所述中空结构的浓差极化层 离开所述中空结构。
在本发明汲取器的某些实施方案中,所述汲取器与分离膜一起形 成膜组件。
在本发明汲取器的某些实施方案中,所述开口经安排使得所述浓 差极化层基本沿所述分离膜的法向方向、切向方向或法向和切向之间 任意方向离开所述分离膜。
在本发明汲取器的某些实施方案中,所述中空结构是刚性或柔性 的中空容器。
在本发明汲取器的某些实施方案中, 所述汲取器还具有连接机 构,该连接机构经配置使所述汲取器与所述分离膜的距离和相对位置 是固定的或可变的。例如, 所述连接机构是支架、悬臂、铰链、轨道、 杠杆机构, 经配置使所述汲取器相对于分离膜是固定的或可移动的, 因此该中空结构的开口相对于所述分离膜固定并始终处于浓差极化 层内,或者所述开口能够可操作地相对于所述分离膜分别或同时地沿 垂直于和平行于所述分离膜表面的方向移动,由此使得所述开口能够 在需要时进入浓差极化层并在其中的不同位置汲取浓差极化层以及 在需要时离开浓差极化层。
在本发明汲取器的某些实施方案中,所述汲取器中空结构的开口 可以朝向相对于分离膜的任何方向, 特别是朝向所述分离膜。
在本发明汲取器的某些实施方案中,所述中空结构具有开口的部 分是基本平面状的、 十字形状的、 螺旋形状的、 网格状的、 悬针状的 或其组合,其中所述开口位于所述部分的最突出位置、侧面位置或凹 陷位置。 例如对于平片式膜, 所述部分整体上可以是基本平面状的, 而对于管状膜,所述部分可以整体上是环形的;然而,在任何情况下, 所述部分的局部还可以具有其它上述形状或其组合。
在本发明汲取器的某些实施方案中,所述汲取器中空结构具有开 口的部分基本平行于所述分离膜的表面,即所述部分与所述分离膜表 面之间的最短距离基本上处处相等。
在本发明汲取器的某些实施方案中,所述汲取器中空结构具有开 口的部分可以与所用分离膜的表面整体上基本相互匹配。例如,对于 平片式膜, 所述部分整体上可以是基本平面状的, 而对于管状膜, 所 述部分可以整体上是环形的; 然而, 在任何情况下, 所述部分的局部 还可以具有其它上述形状或其组合。
在本发明汲取器的某些实施方案中,所述汲取器可以固定地或通 过移动基本覆盖分离膜的至少部分分离表面。在本发明汲取器的另一 些实施方案中,所述汲取器可以固定地或通过移动基本覆盖分离膜的 基本全部分离表面,即所述汲取器中空结构的开口可以基本上到达分 离膜的全部分离表面。 然而, 在本发明的其它实施方案中, 所述开口 可以到达分离膜的至少部分分离表面。
在本发明汲取器的某些实施方案中,所述汲取器中空结构的开口 可以是任何合适的形状, 例如可以是基本圓形、狭缝形、 多边形或异 形的孔。
在本发明汲取器的某些实施方案中,所述汲取器中空结构具有至 少一个开口,其中开口的数目可以根据汲取器中空结构的材质、尺寸 和形状、开口的尺寸和形状、分离膜的尺寸和形状、截留成分的性质 以及其它具体应用的条件和参数决定。 当具有多于一个开口时,这些 开口可以规则地或随机地安排在所述汲取器中空结构上,例如安排在 所述汲取器中空结构朝向所述分离膜的表面上。
在本发明汲取器的某些实施方案中,所述汲取器中空结构开口可 以具有任何合适的尺寸, 例如 0.01~5mm, 优选为 0.1 ~ 2.0 mm, 更 优选为 0.1 ~ 0.5 mm。
在本发明汲取器的某些实施方案中,所述汲取器的全部或部分可 以是刚性的、弹性的或柔性的。根据分离膜、流体和操作条件的不同, 所述汲取器的全部或部分可以选用任何合适的以下材料或其组合制 造: 金属如钢铁、 铜、 铝、 钛、 镍、 金、 银等及其合金; 塑料如热塑 性塑料、 热固性塑料、 工程塑料等及其复合物; 橡胶如天然或合成橡 胶、 弹性体等及其复合物。
在本发明汲取器的某些实施方案中,所述汲取器通过微加工用硅 橡胶制造。
在本发明的其它实施方案中, 除非另有说明,上述任何技术方案 和其技术特征均可单独应用或相互任意结合应用,这对阅读过本发明 的本领域技术人员是显然的。
以下以对生物分子的超滤浓缩为例进一步介绍本发明,但其并非 意欲限制本发明,其中所述膜分离在此根据情况可能具体地被称为过 滤、 膜过滤、 超滤、 浓缩、 膜浓缩或超滤浓缩, 所述浓差极化层在此 可以被称为浓缩液, 所述流体可称为溶液、料液、 原料液, 所述截留 成分可被称为溶质, 所述膜分离设备可称为装置、 过滤装置, 所述分 离膜可称为滤膜、 膜元件。
超滤浓缩作为膜分离技术中的一种, 由于其分离范围为分子量
1000 ~ 1000000, 且过程中无相变, 条件温和, 能较好地保持生物大 分子的活性, 因此特别适合生物大分子尤其是蛋白质、 多糖、 酶、核 酸、 DNA、 单克隆抗体等生物产品的浓缩或脱盐, 并具有成本低, 操作方便, 易于放大, 回收率高等优点, 已在生物技术产业中得到了 广泛应用。超滤浓缩通常采用终端过滤或错流过滤工艺。终端过滤与 砂滤类似, 料液垂直流过膜面, 所有被截留的物质都聚集于膜表面, 溶剂及小分子物质透过膜。 由于被截留的物质在膜表面不断积累,膜 过滤的总阻力持续增大, 膜污染严重, 导致膜通量逐渐下降, 须对膜 频繁清洗。 采用错流过滤时, 料液主体平行于膜面流动, 透过液垂直 透过膜,切向高速流动的料液能将沉积在膜表面的物质带走,从而减 慢过滤阻力的增长速度。但是由于料液在膜表面的切向高速流动,使 得错流过滤应用于对剪切敏感的生物大分子受到限制。可见不论采用 何种过滤方式, 膜污染均不可避免。
在超滤中影响浓差极化以及浓差极化层的主要因素包括跨膜压 力、 过滤方式、 进料流速和溶液性质, 如: pH值、 离子强度、 溶质 扩散系数、溶液粘度等。通过调控这些影响因素,在浓差极化作用下, 浓差极化层内的溶质浓度可达其主体相浓度的几百倍,甚至超过其在 溶剂中的溶解度在膜表面析出。 大量研究表明,相对稳定的浓差极化 层可以在一分钟或数分钟内形成。
本发明提供的膜分离方法与设备可用于浓缩生物大分子和有机 小分子产物 (如糖、 有机酸、 多肽等), 以便克服常规超滤浓缩过程 中膜污染严重、 生物大分子易失活、膜清洗频繁、 浓缩过程难以连续 进行等问题。所述方法通过调控操作条件,如:渗透通量、料液浓度、 汲取速率和跨膜压力等,调节膜表面浓差极化层的厚度和浓差极化层 内溶质的浓度及其分布, 以获得最佳的浓缩效果。 其中, 滤膜的渗透 通量在 1.84 X 10 6m/s ~ 3.69 χ 10 5m/s之间,原料液浓度在 1.0 mg/L ~ 1000mg/L之间, 汲取速率视原料液性质及浓缩要求而定, 一般为原 料液进入膜浓缩装置中流量的二分之一至千分之一, 跨膜压力在 O.OlMPa ~ 4MPa之间。
所述的生物大分子是蛋白质、 多肽、 氨基酸、 多糖、 核糖核酸和 脱氧核糖核酸等; 有机小分子产物包括糖、 有机酸、 多肽等。
本发明适用于利用浓差极化浓缩生物大分子的膜过滤方法的装 置包括但不限于以下四种: 终端过滤装置、板框式错流过滤装置、平 板式水力静压过滤装置和平板式抽吸过滤装置;而浓缩有机小分子产 物(如糖、 有机酸、 多肽等)的膜过滤方法的装置包括但不限于以下 两种: 终端过滤装置、 板框式错流过滤装置。
所述的终端过滤装置, 包括终端过滤池、 滤膜、 浓缩液汲取器、 压力传感器、进料泵、 注射泵或恒流泵。 在终端过滤池的底面有一平 片滤膜,浓缩液汲取器安装在终端过滤池中,所述浓缩液汲取器的一 端通向终端过滤池外部,与注射泵或恒流泵相连; 另一端是十字形或 螺旋形的中空结构,且十字形或螺旋形的中空结构平行于滤膜表面并 紧贴滤膜表面, 所述中空结构在靠近滤膜表面的一侧带有若干小孔; 在终端过滤池的上部开有原料液进口,在滤膜下方的终端过滤池的下 部开有渗透液出口。
所述的终端过滤池为平片膜过滤器, 采用 "矮胖"式设计, 原料 液侧装有压力传感器。
所述的原料液进口处安装有一带有压力传感器的管路,所述管路 与一进料泵连接。
所述的小孔直径为 0.1 ~ 0.5 mm。
所述的浓缩液汲取器采用微加工技术,用外径为 0.5 ~ 1.5 mm的 中空塑料或硅橡胶管制作而成, 一端为一十字形或螺旋形的中空管, 且中空管在靠近滤膜表面的一侧开有许多直径为 0.1 ~ 0.5 mm小孔。 浓缩液汲取器与滤池外部的注射泵或恒流泵相连,以便按要求的流量 准确将浓缩液从终端过滤池中汲取出来。根据被浓缩的生物大分子及 有机小分子产物的性质,本发明中的滤膜通常选用纤维素类、聚醚砜 类、 聚砜类、 聚酰胺类或聚哌嗪类等微滤、 超滤或纳滤膜。
所述的板框式错流过滤装置,包括平板式膜元件、浓缩液汲取器、 压力传感器、 进料泵、 注射泵或恒流泵、 截流阀。 板框式错流过滤装 置由若干平板式膜元件并联而成,在每块平板式膜元件的表面安装有 浓缩液汲取器,所述汲取器为平板式网格状中空结构,在靠近滤膜表 面的一侧带有若干直径为 0.1 ~ 0.5 mm的小孔,每块汲取器的一端连 接有一中空管,与其它汲取器的中空管相并联后,通向板框式错流过 滤装置的外部,与注射泵或恒流泵相连;在板框式错流过滤装置一侧 开有原料液进口,原料液进口处安装有一带有压力传感器和截流阀的 管路,所述管路与一进料泵连接;在板框式错流过滤装置另一侧开有 料液或循环液出口,所述出口与一安装有截流阀的管路相连,所述管 路通向原 ^,正常操作时所述管路中的截流阀处于关闭状态, 而当 膜需要清洗时, 所述阀门打开, 以便错流清洗; 在每块平板式膜元件 上开有渗透液出口, 并联后排出板框式错流过滤装置。 所述的浓缩液汲取器采用微加工技术,用外径为 0.5 ~ 1.5 mm的 中空塑料或硅橡胶管制作而成,为平板式网格状中空结构,且所述中 空结构在靠近滤膜表面的一侧开有许多直径为 0.1 ~ 0.5 mm小孔。汲 取器的一端连接有一中空管, 以便将浓缩液导出。
根据被浓缩的生物大分子及有机小分子产物的性质,本发明中的 滤膜通常选用纤维素类、 聚醚砜类、 聚砜类、 聚酰胺类或聚哌嗪类等 微滤、 超滤或纳滤膜。
所述的平板式水力静压过滤装置, 包括高位原料罐、料液槽、 液 位计、平板式膜元件、浓缩液汲取器、压力传感器、注射泵或恒流泵、 截流阀。料液槽中安装有并联的若干平板式膜元件,在每块平板式膜 元件的表面安装有浓缩液汲取器,所述汲取器为平板式网格状中空结 构, 在靠近滤膜表面的一侧带有若干直径为 0.1 ~ 0.5 mm的小孔,每 块汲取器的一端有一中空管,与其他汲取器的中空管相并联,通向过 滤装置的外部,与注射泵或恒流泵相连;在每块平板式膜元件上开有 渗透液出口, 并联后与一带有压力传感器、截留阀的管路相连, 渗透 液的跨膜压力通过料液槽内液位计控制的静水头提供;在料液槽上开 有原料液进口, 原料液进口与一带有截流阀和高位原料罐的管路相 连。所述的浓缩液汲取器的构造和滤膜的选择与平板式错流过滤装置 的相同。
所述的平板式抽吸过滤装置, 包括料液槽、 液位计、平板式膜元 件、浓缩液汲取器、压力传感器、进料泵、注射泵或恒流泵、抽吸泵、 截流阀。料液槽中安装有并联的若干平板式膜元件,在每块平板式膜 元件的表面安装有浓缩液汲取器,所述汲取器为平板式网格状中空结 构, 在靠近滤膜表面的一侧带有若干直径为 0.1 ~ 0.5 mm的小孔,每 块汲取器的一端有一中空管,与其它汲取器的中空管相并联,通向平 板式抽吸过滤装置的外部,与注射泵或恒流泵相连;在每块平板式膜 元件上开有渗透液出口,并联后与一带有压力传感器、截流阀和抽吸 泵的管路相连;在料液槽上开有原料液进口,原料液进口处安装有一 带有截流阀和进料泵的管路。所述的浓缩液汲取器的构造和滤膜的选 择与平板式错流过滤装置的相同。
本发明提供的利用浓差极化浓缩生物大分子和有机小分子的方 法与常规超滤浓缩过程相比, 具有如下突出的特点和优势:
1. 利用了浓差极化的特性, 即使溶质在主体相浓度较低时都可 取得很好的富集效果, 极大地提高了浓缩速度和浓缩效率。
2. 浓缩过程中, 浓缩液从膜过滤装置中排出, 潜在的膜污染物 同时随浓缩液从膜单元中排出,有效地降低了膜污染潜力, 大大降低 了膜清洗频率, 具有浓缩和减緩膜污染的双重功效。
3. 膜浓缩过程设备、 工艺及操作简单, 有利于连续或半连续操 作, 同时膜的使用寿命可得到进一步提高。
4. 浓缩在无剪切或低剪切的条件下进行, 能耗大大降低, 有效 地减緩了由剪切导致的生物大分子失活、变性的风险,特别适合对剪 切敏感的生物大分子的浓缩。
本发明通过将浓差极化层从膜表面直接取走,不但减小了浓差极 化对膜分离的不利影响,还同时得到了高度浓缩的截留成分,从而显 著地改善了膜分离过程中对膜通量的维持,解决了膜分离过程中浓差 极化和膜污染这一孪生难题, 并实现了对截留成分的高效浓缩。
在本发明中使用的术语 "流体"应当作最宽范围的理解, 包括但 不限于气体、 液体、 胶体、 溶液、 分子溶液、 液固悬浮体、 液液悬浮 体、溶胶、 气体混合物、 气固悬浮体、气液悬浮体、气溶胶或其组合, 只要所述流体含有能够在分离膜的分离侧形成浓差极化层的成分即 可。
在本发明中使用的术语 "截留成分"和 "透过成分"应当理解为 基本不能透过分离膜的流体成分和基本能透过分离膜的流体成分,也 就是说即使 "截留成分" 能透过分离膜, 其透过速率也远低于 "透过 成分", 从而造成 "截留成分" 在分离侧的富集。
在本发明中使用的术语 "膜分离"是指利用选择性透过膜减少或 去除原料中一种或多种成分而使原料中另外一种或多种成分的比例 或浓度增加的操作或过程。
在本发明中使用的术语 "浓差极化"是指分离膜选择性允许被分 离原料中某些成分透过而截留另一些成分,造成截留成分在分离侧膜 表面附近的富集, 形成从膜表面到被分离原料主体之间的浓度梯度, 引起被截留成分从膜表面向原料主体的扩散, 导致膜通量减少的现 象。理论上,从膜表面到原料主体之间凡具有截留成分浓度梯度的边 界层均称为 "浓差极化层"。 附图说明
图 1 是本发明利用浓差极化浓缩生物大分子和有机小分子的终 端膜过滤装置示意图。
图 2 是本发明利用浓差极化浓缩生物大分子和有机小分子的板 框式错流膜过滤装置示意图。
图 3 是本发明利用浓差极化浓缩生物大分子的平板式抽吸膜过 滤装置示意图。 图 4是本发明利用浓差极化浓缩生物大分子的平板式水力静压 膜过滤装置示意图。 实施例
下面结合实施例对本发明做进一步说明。本发明所涉及的主题保 护范围并非仅限于这些实施例。
实施例 1.
请参见图 1。 利用浓差极化浓缩生物大分子的终端膜过滤方法的 装置包括: 终端过滤池 3、 滤膜 2、 浓缩液汲取器 1、 压力传感器 4、 进料泵 5、 注射泵或恒流泵 6。
在终端过滤池 3 (有效膜面积为 4.45 cm2, 体积约为 6.7 mL )的 底面安装有平片滤膜 2,滤膜选用截留分子量(MWCO )为 10 kD 的 Ultracel PL高回收率再生纤维素超滤膜( Millipore公司), 在滤膜的 表面设置有用外径为 0.5 ~ 1.5 mm 的中空塑 ^或硅橡胶管制作而成 的浓缩液汲取器 1; 该浓缩液汲取器的一端通向终端过滤池 3外部与 注射泵 6相连,另一端与滤膜接触的头部连接有十字形与浓缩液汲取 器主管相通的中空管,且十字形中空管平行于滤膜表面并紧贴滤膜表 面, 在十字形中空管上钻有多个直径为 0.1 ~ 0.5 mm的小孔。在终端 过滤池 3的上部开有原料液进口,在原料液进口处安装有一带有压力 传感器 4的管路,该管路与一进料泵 5连接。在滤膜下方的终端过滤 池 3的下部开有渗透液出口。
将浓度为 0.5 g/L的牛血清蛋白 ( BSA ) ( Mb=68 kD, 纯度大于 98% )原料液不断加入到上述终端过滤池中,滤膜的渗透通量为 3.745 X It)-6 m3/(m2-s) ( 0.1 mL/min ); 原料液经滤膜过滤浓缩操作 1小时 后开启注射泵,由靠近滤膜表面的浓缩液汲取器连续汲取浓差极化层 内的牛血清蛋白浓溶液, 汲取速率为 300 L/h。 渗透液由滤膜下方 的终端过滤池下部的渗透液出口不断排出。
将常规终端过滤浓缩方法(即: 不汲取浓缩液的终端过滤方法) 和本发明提出的膜浓缩方法的结果相比较, 发现: 经 6.5小时的连续 膜浓缩操作后, 采用本发明方法所汲取的浓缩液中, BSA浓度为 6.6 g/L , 是原料液浓度的 13.2倍; 而采用常规膜浓缩操作时, 浓缩 6.5 小时后浓缩液中 BSA的浓度仅达 3.2 g/L , 为原料液浓度的 6.4倍。 同时, 采用常规膜浓缩操作时, 6.5 小时后系统的跨膜压力 ( Transmembrane pressure,TMP )已达到装置的极限值( l.OMPa ) , 而采用本发明的膜浓缩方法, 压力的上升趋势明显减緩, 过滤 6.5小 时后的压力值只有常规浓缩过程的 20%。 另外, 由过滤后膜阻的测 定结果表明,采用本发明的膜浓缩方法,过滤前后膜阻几乎没有变化; 而在常规超滤浓缩下膜阻则增加了 20%以上。 因此, 本发明提出的 膜浓缩方法不仅浓缩效果好,还可以有效控制膜污染,有利于膜浓缩 过程的长期稳定运行。
实施例 2
采用和实施例 1相同的方法和装置,原料液中 BSA的浓度 Cf = 0.5 g/L, 滤膜的渗透通量 Jv = 3.745 x 106 m3/(m2*s)。 当 TMP上升 至 100 KPa和 150 KPa时, 分别以 360 μ L/h和 420 μ L/h的速率连 续汲取浓缩液。 在汲取初期, 两种实验条件下的 TMP均随着汲取的 进行而下降, 之后可分别长期稳定在 60和 107 KPa下。 这表明浓缩 过程中膜污染得到了有效控制, 浓缩操作可长期稳定进行。 8小时后 汲取得到的浓缩液中 BSA的平均浓度分别为 8.9和 7.0 g/L, 浓缩倍 数分别为原料液中 BSA浓度的 17.8和 14.0倍。
实施例 3
采用和实施例 1相同的方法和装置,原料液中 BSA的浓度 Cf =
0.5 g/L, 滤膜的渗透通量 Jv = 3.745 x 106 m3/(m2*s)。 为了得到较高 浓度的浓缩液, 采用间歇汲取方式来汲取浓缩液。 分别在 TMP=100 KPa和 150 KPa时开始汲取浓缩液,待压力分别下降到 60和 107 KPa 时, 停止汲取操作。 等压力恢复到开始汲取时的 TMP值时, 再以相 同的速率汲取, 如此反复。 浓缩液汲取速率分别为 360 μ L/h和 420 L/h。 8小时后所得浓缩液浓度分别达到了 11.8 g/L和 12.4 g/L, 是 其原料液浓度的 23.6和 24.8倍。 因此, 采用多次间歇汲取操作方式 有利于获得高浓度浓缩液, 同时跨膜压力可控, 体系的平均 TMP均 处于恒定状态。
实施例 4
采用和实施例 1相同的方法和装置,原料液中 BSA的浓度 Cf = 0.5 g/L, 滤膜的渗透通量 Jv = 3.745 x 106 m3/(m2-s), 采用间歇汲取 方式来汲取浓缩液。 当 TMP=100 KPa时开始汲取, 汲取速率为 360 L/h, 汲取时间分别固定为 30、 10、 5分钟, 达到汲取时间后, 停 止汲取, 待压力恢复到 100 KPa后, 再次汲取, 整个过程反复进行。 结果表明, 当汲取时间为 5分钟时, 浓缩液浓度高达 34.9g/L, 浓缩 倍数为 69.8; 当汲取时间分别为 10、 30分钟时, 浓缩液浓度分别为 31.5和 19.0 g/L, 浓缩倍数分别为 63.0和 38.0。并且在整个汲取过程 中, 跨膜压力可控, 体系的平均 TMP均处于恒定状态, 表明浓缩过 程中膜污染得到了有效控制, 可实现连续的浓缩操作。
实施例 5 请参见图 2。一利用浓差极化浓缩生物大分子的板框式错流膜过 滤方法的装置包括: 平板式膜元件 1、 浓缩液汲取器 2、 压力传感器 4、 进料泵 5、 注射泵或恒流泵 3、 截流阀 6;
板框式错流过滤装置由三块平板式膜元件 1 (每块膜元件的有效 膜面积为 0.03m2, 滤膜选用截留分子量为 50 kD的聚砜超滤膜(瑞 典 alfa laval公司))并联而成; 在每块平板式膜元件 1的表面安装有 浓缩液汲取器 2, 该汲取器由外径为 0.5 ~ 1.5 mm的中空塑料或硅橡 胶管制作而成,为平板式网格状中空结构,在靠近滤膜表面的一侧开 有若干直径为 0.1 ~ 0.5 mm的小孔,每块汲取器的一端连接有一中空 管,与其它汲取器的中空管相并联后,通向板框式错流过滤装置的外 部, 与注射泵 3相连; 在板框式错流过滤装置上开有原料液进口, 原料液进口处安装有一带有压力传感器 4的管路,该管路与一进料泵 5连接; 在板框式错流过滤装置上开有循环液出口, 循环液出口处安 装有一带截流阀 6的管路,该管路通向原料罐;在每块平板式膜元件 1上开有渗透液出口, 并联后排出板框式错流过滤装置。
将浓度为 0.5 g/L的 γ -球蛋白 ( Mb=156kD, 纯度大于 98% )原 料液不断加入板框式错流过滤装置中, 体系的跨膜压力恒定在 100 KPa。 采用间歇汲取方式来汲取浓缩液。 当体系的渗透通量为 5.25 X l(T6 m3/(m2*s)时开始汲取, 汲取速率为 18 mL/h, 汲取时间分别固 定为 30、 10、 5分钟, 达到汲取时间后, 停止汲取, 待渗透通量恢复 到 5.25 X 106 m3/(m2*s)后,再次汲取,整个过程反复进行。结果表明 , 当汲取时间为 5分钟时, 浓缩液浓度高达 25.3g/L, 浓缩倍数为 50.6 倍;当汲取时间分别为 10、 30分钟时,浓缩液浓度分别为 22.6和 13.4 g/L, 浓缩倍数分别为 45.2和 26.8。 在整个没取过程中, 体系的平均 渗透通量恒定,且保持在较高的渗透通量范围内 ,表明浓缩过程中膜 污染得到了有效控制, 可实现连续的浓缩操作。
实施例 6
请参见图 3。一利用浓差极化浓缩生物大分子的平板式抽吸膜过 滤方法的装置, 包括料液槽 1、 平板式膜元件 2、 浓缩液汲取器 3、 压力传感器 5、 进料泵 7、 注射泵或恒流泵 4、 抽吸泵 6。
在料液槽 1中安装有并联的三块平板式膜元件 2 (每块膜元件的 有效膜面积为 0.03m2, 滤膜选用截留分子量为 50 kD的聚砜超滤膜 (瑞典 alfa laval公司)), 在每块平板式膜元件 2的表面安装有浓缩 液汲取器 3, 该汲取器由外径为 0.5 ~ 1.5 mm的中空塑料或硅橡胶管 制作而成,为平板式网格状中空结构,在靠近滤膜表面的一侧带有若 干直径为 0.1 ~ 0.5 mm的小孔,每块汲取器的一端有一中空管, 与其 它汲取器的中空管相并联, 通向料液槽 1的外部, 与注射泵 4相连; 在每块平板式膜元件 2上开有渗透液出口,并联后与一带有压力传感 器 5和抽吸泵 6的管路相连;在料液槽 1上开有原料液进口,原料液 进口处安装有一带有进料泵 7的管路。
将浓度为 0.5 g/L的 γ -球蛋白 ( Mb=156kD, 纯度大于 98% )原 料液加入料液槽中并完全浸没平板式膜元件,体系的渗透通量恒定在 5.25 X 10·6 m3/(m2-s)o采用间歇汲取方式来汲取浓缩液。 当体系的跨 膜压力为 lOOKPa时开始汲取, 汲取速率为 24 mL/h, 汲取时间分别 固定为 30、 10、 5分钟, 达到汲取时间后, 停止汲取, 待跨膜压力恢 复到 lOOKPa后, 再次汲取, 整个过程反复进行。 结果表明, 当汲取 时间为 5分钟时, 浓缩液浓度高达 27.4g/L, 浓缩倍数为 54.8倍; 当 汲取时间分别为 10、 30分钟时, 浓缩液浓度分别为 23.9和 15.0 g/L, 浓缩倍数分别为 47.8和 30.0。 整个浓缩过程跨膜压力(TMP )可控, 体系的平均 TMP均处于恒定状态, 可以长时间运行。
实施例 7
请参见图 4。 一利用浓差极化浓缩生物大分子的平板式水力静压 膜过滤方法的装置, 包括平板式膜元件 1、 浓缩液汲取器 2、 料液槽 3、 注射泵或恒流泵 4、 压力表 5、 高位原液槽 6。
在料液槽 3中安装有并联的三块平板式膜元件 1 (每块膜元件的 有效膜面积为 0.03m2, 滤膜选用截留分子量为 50 kD的聚砜超滤膜 (瑞典 alfa laval公司)), 在每块平板式膜元件 1的表面安装有浓缩 液汲取器 2, 该汲取器由外径为 0.5 ~ 1.5 mm的中空塑料或硅橡胶管 制作而成,为平板式网格状中空结构,在靠近滤膜表面的一侧带有若 干直径为 0.1 ~ 0.5 mm的小孔,每块汲取器的一端有一中空管, 与其 它汲取器的中空管相并联, 通向料液槽 3的外部, 与注射泵 4相连; 在每块平板式膜元件 1上开有渗透液出口, 并联后与一带有压力表 5 的管路相连; 在料液槽 3上开有原料液进口, 与高位原液槽 6相连, 跨膜压力由料液槽 3内的静水头提供。
将浓度为 0.5 g/L的 γ -球蛋白 ( Mb=156kD, 纯度大于 98% )原 料液加入料液槽中并完全浸没平板式膜元件,控制膜元件的位置使得 压力表读数为 10KPa, 体系初始的渗透通量为 0.98 χ 10·6 m3/(m2-s)0 采用间歇汲取方式来汲取浓缩液。 当体系的渗透通量为 0.45 X 10·6 m3/(m2*s)时开始汲取, 汲取速率为 24 mL/h, 汲取时间分别固定为 30、 10、 5分钟,达到汲取时间后,停止汲取,待渗透通量恢复为 0.98 X l(T6 m3/(m2*s)后,再次汲取, 整个过程反复进行。 结果表明, 当汲 取时间为 5分钟时, 浓缩液浓度高达 22.5g/L, 浓缩倍数为 45.0倍; 当汲取时间分别为 10、30分钟时,浓缩液浓度分别为 20.6和 12.0 g/L, 浓缩倍数分别为 41.2和 24.0。
本发明针对常规膜浓缩过程中膜污染严重、 生物大分子易失活、 膜清洗频繁、浓缩过程难以连续进行等问题,提出了利用浓差极化层 形成速度快, 溶质浓度高的特点, 通过操作条件的调控, 调节浓差极 化层厚度和浓差极化层内溶质的浓度及其分布,然后将浓差极化层的 浓溶液通过浓缩液汲取器导出, 从而在获得高浓度目标溶液的同时, 及时将潜在的污染物排出, 实现浓缩过程的连续操作。本发明提出的 利用浓差极化浓缩生物大分子和有机小分子的方法和思路,巧妙地解 决了膜浓缩过程中浓差极化和膜污染这一孪生难题,是膜浓缩技术在 原理和实施方式上的变革, 膜技术高效、 节能、 过程简单及易于操作 的优点在这一系统中得到了充分体现。
通过阅读本发明,本领域技术人员将想到本发明的许多改动和其 它实施方案, 并根据本发明教导预知其益处。 因此, 应当理解, 以上 实施方案和实施例并未限制本发明,并且对其进行的改动和其它的实 施方案也包括在所附权利要求的范围内。 虽然本文使用特定术语,但 是它们仅仅以其一般的和描述性意义使用,并不是为了限制权利要求 中定义的本发明的范围。

Claims

权 利 要 求
1. 一种膜分离方法, 包括:
a)将含有截留成分和透过成分的流体置于分离膜的分离侧; b)对该流体施加推动力使至少部分透过成分透过该分离膜到达 该分离膜的渗透侧,由此在该分离膜的分离侧形成富含截留成 分的浓差极化层; 和
c)从所述分离侧移出至少部分该浓差极化层。
2. 根据权利要求 1的膜分离方法,其中该推动力由压力差、浓度差、 电位差或温度差产生, 特别是由压力差产生。
3. 根据权利要求 2的膜分离方法, 其中由压力差产生的推动力形成 的跨膜压力在 0.005MPa ~ lOMPa之间,优选在 O.OlMPa ~ 4MPa 之间。
4. 根据权利要求 1的膜分离方法, 其中该膜分离方法的全部或部分 步骤是以连续的、 半连续的或间歇的方式进行的。
5. 根据权利要求 3的膜分离方法, 其中以汲取的方式连续移出浓差 极化层。
6. 根据权利要求 3的膜分离方法, 其中以汲取的方式间歇移出浓差 极化层, 其中当跨膜压力或渗透通量或浓差极化层厚度达到第一 设定值时, 开始汲取浓差极化层, 当跨膜压力或渗透通量或浓差 极化层厚度达到第二设定值, 停止汲取操作, 如此反复进行。
7. 根据权利要求 1的膜分离方法,其中该膜分离是膜浓缩、膜过滤、 膜蒸馏、 膜萃取或膜吸收。
8. 一种膜分离设备, 包括分离膜和没取器, 其中在膜分离过程中, 所述汲取器经配置从所述分离膜的分离侧移出至少部分浓差极化 层。
9. 根据权利要求 8的膜分离设备, 其中该汲取器可以位于分离膜的 分离侧、 渗透侧、 分离膜中或分离膜上。
10.根据权利要求 8的膜分离设备, 其中该汲取器与该分离膜的相对 距离和相对位置是固定的或可变的。
11.根据权利要求 8的膜分离设备, 其中该汲取器与分离膜一起形成 膜组件。
12.根据权利要求 8的膜分离设备, 其中该汲取器具有开口的中空结 构, 该开口可操作地位于该分离膜的分离侧的浓差极化层内, 并 可操作地允许至少部分该浓差极化层通过该开口进入该中空结构 以移出至少部分该浓差极化层。
13.根据权利要求 12的膜分离设备,其中该汲取器中空结构的开口是 一个或多个基本圓形、 多边形或异形的孔。
14.根据权利要求 12的膜分离设备,其中该汲取器中空结构开口的尺 寸为 0.01~5mm, 优选为 0.1 ~ 2.0 mm, 更优选为 0.1 ~ 0.5 mm。
15.根据权利要求 8的膜分离设备,其中该分离膜是平片式、板框式、 卷式、 管式或中空纤维式分离膜。
16.根据权利要求 15的膜分离设备,其中该分离膜是纤维素类、聚醚 砜类、 聚砜类、 聚烯烃类、 聚酰胺类、 聚哌嗪类、 金属类、 玻璃 类或陶瓷类微滤、 超滤或纳滤膜。
17.一种用于在膜分离过程中从分离膜的分离侧汲取浓差极化层的汲 取器, 其中该汲取器包括具有至少一个开口的中空结构, 并且该 汲取器经配置使所述开口可操作地位于所述分离膜的分离侧的浓 差极化层内, 并可操作地允许至少部分所述浓差极化层通过所述 开口进入所述中空结构以移出至少部分所述浓差极化层。
18.根据权利要求 17的汲取器,其中所述汲取器还包括连通所述中空 结构的通道, 该通道配置为允许进入所述中空结构的浓差极化层 离开所述中空结构。
19.根据权利要求 17的汲取器,其中所述汲取器还具有连接机构,该 连接机构经配置使所述汲取器与所述分离膜的距离和相对位置是 固定的或可变的。
20.根据权利要求 17的汲取器,其中所述汲取器可以固定地或通过移 动基本覆盖分离膜的至少部分分离表面。
21.根据权利要求 17的汲取器,其中所述中空结构具有开口的部分是 基本平面状的、 十字形状的、 螺旋形状的、 网格状的、 悬针状的 或其组合。
22.根据权利要求 17的汲取器,其中所述中空结构具有开口的部分可 以与所用分离膜的表面整体上基本相互匹配。
23.根据权利要求 17的汲取器,其中所述汲取器中空结构具有多个开 口 , 这些开口可以规则地或随机地安排在所述汲取器中空结构朝 向所述分离膜的表面上。
24.根据权利要求 17的汲取器,其中所述汲取器中空结构的开口可以 本圓形、 狭缝形、 多边形或异形的孔。
25.根据权利要求 17的汲取器, 其中所述开口的尺寸为 0.01~5mm。
PCT/CN2008/070420 2007-03-23 2008-03-05 Procédé et appareil destinés à la séparation de membrane appliquant une polarisation de concentration, et extracteur utilisé spécialement pour celle-ci WO2008116410A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08715156.9A EP2092974B1 (en) 2007-03-23 2008-03-05 A method and apparatus for membrane separation applying concentration polarization
US12/443,797 US8252184B2 (en) 2007-03-23 2008-03-05 Method, equipment and specific drawer for membrane separation utilizing concentration polarization
US13/555,668 US8506812B2 (en) 2007-03-23 2012-07-23 Method, equipment and specific drawer for membrane separation utilizing concentration polarization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710064721.9 2007-03-23
CN2007100647219A CN101269298B (zh) 2007-03-23 2007-03-23 利用浓差极化浓缩生物大分子的膜过滤方法及其装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/443,797 A-371-Of-International US8252184B2 (en) 2007-03-23 2008-03-05 Method, equipment and specific drawer for membrane separation utilizing concentration polarization
US13/555,668 Division US8506812B2 (en) 2007-03-23 2012-07-23 Method, equipment and specific drawer for membrane separation utilizing concentration polarization

Publications (1)

Publication Number Publication Date
WO2008116410A1 true WO2008116410A1 (fr) 2008-10-02

Family

ID=39788053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070420 WO2008116410A1 (fr) 2007-03-23 2008-03-05 Procédé et appareil destinés à la séparation de membrane appliquant une polarisation de concentration, et extracteur utilisé spécialement pour celle-ci

Country Status (4)

Country Link
US (2) US8252184B2 (zh)
EP (1) EP2092974B1 (zh)
CN (1) CN101269298B (zh)
WO (1) WO2008116410A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120238777A1 (en) * 2009-09-11 2012-09-20 Technische Universitat Wien Method and device for concentrating material solutions
CN106238746A (zh) * 2015-06-12 2016-12-21 陶氏环球技术有限责任公司 用于制造经过滤银纳米线的水热法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629766B2 (en) * 2006-07-17 2009-12-08 Bbs Licensing, Inc. Adapter system for battery-powered tools
FR2931081B1 (fr) * 2008-05-14 2010-06-25 Direction Et Pirorites Dispositif de filtration d'un liquide complexe tel que du sang, notamment applicable a un autotransfuseur
TWI469992B (zh) * 2008-08-28 2015-01-21 Baxter Int 濃縮剪切靈敏生物聚合物的方法
CN101745316B (zh) * 2010-01-22 2011-12-28 中国科学院过程工程研究所 一种重力场辅助浓缩生物大分子的新型超滤方法及装置
CN102814121B (zh) * 2012-08-06 2015-02-18 中国科学院过程工程研究所 一种利用浓差极化原理浓缩糖溶液的膜过滤方法和装置
US20140076728A1 (en) * 2012-09-19 2014-03-20 Ohio State Innovation Foundation Concentration polarization identification and mitigation for membrane transport
WO2015142938A1 (en) * 2014-03-17 2015-09-24 Washington University Composite nanostructures having a crumpled graphene oxide shell
PL3183218T3 (pl) 2014-08-18 2022-09-05 Xylem Water Solutions U.S.A., Inc. Dyfuzorowe systemy napowietrzania i sposoby oczyszczania zanieczyszczonych dyfuzorów w systemach napowietrzania
US11344847B2 (en) * 2015-07-01 2022-05-31 King Abdullah University Of Science And Technology Control of distributed heat transfer mechanisms in membrane distillation plants
EP3349884A1 (en) * 2015-09-15 2018-07-25 King Abdullah University Of Science And Technology Soft sensing of system parameters in membrane distillation
EP3400093A4 (en) * 2016-01-07 2019-09-11 Central Gippsland Region Water Corporation MEMBRANE SEPARATION
CN105642120B (zh) * 2016-02-18 2019-01-04 新奥科技发展有限公司 膜蒸馏装置
CN105833730A (zh) * 2016-06-07 2016-08-10 江先庆 一种改进型过滤装置
CN109289528B (zh) * 2018-11-06 2021-07-13 武汉工程大学 一种撞击流振动膜分离组件及分形装置
US20230347291A1 (en) 2022-03-30 2023-11-02 Donaldson Company, Inc. System and method for reclaiming solvent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010088A1 (en) * 1997-08-27 1999-03-04 Millipore Corporation Vibrationally-induced dynamic membrane filtration
WO2004080510A2 (en) * 2003-03-10 2004-09-23 Don Schoendorfer Vortex-enhanced filtration devices
CN1674974A (zh) * 2002-08-21 2005-09-28 美国废水过滤集团公司 充气方法
CN2761253Y (zh) * 2004-12-23 2006-03-01 株洲工学院科技开发部 一种变螺距膜组件装置
CN2761254Y (zh) * 2004-12-23 2006-03-01 株洲工学院科技开发部 一种旋流式湍流发生装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038921A (en) * 1934-02-07 1936-04-28 Blaufuss George Semicontinuous self cleaning filter
US4218314A (en) * 1978-07-20 1980-08-19 Schubert James P Hyperfiltration scoop apparatus and method
US5032281A (en) * 1989-08-09 1991-07-16 Daicel Chemical Industries, Ltd. Separating membrane and separation method
US5256294A (en) * 1990-09-17 1993-10-26 Genentech, Inc. Tangential flow filtration process and apparatus
JPH07185268A (ja) * 1993-12-28 1995-07-25 Toray Ind Inc 中空糸濾過膜エレメントおよびモジュール
US6161435A (en) * 1998-07-21 2000-12-19 University Technology Corporation Method and apparatus for determining the state of fouling/cleaning of membrane modules
JP4230569B2 (ja) * 1998-08-07 2009-02-25 三菱レイヨン株式会社 中空糸膜モジュール
CN2635198Y (zh) * 2003-09-09 2004-08-25 郭孝武 超声强化超滤膜分离器
CN1326597C (zh) * 2005-05-27 2007-07-18 清华大学 一种利用超声在线控制膜污染发展的方法
US8357299B2 (en) * 2005-07-12 2013-01-22 Zenon Technology Partnership Process control for an immersed membrane system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010088A1 (en) * 1997-08-27 1999-03-04 Millipore Corporation Vibrationally-induced dynamic membrane filtration
CN1674974A (zh) * 2002-08-21 2005-09-28 美国废水过滤集团公司 充气方法
WO2004080510A2 (en) * 2003-03-10 2004-09-23 Don Schoendorfer Vortex-enhanced filtration devices
CN2761253Y (zh) * 2004-12-23 2006-03-01 株洲工学院科技开发部 一种变螺距膜组件装置
CN2761254Y (zh) * 2004-12-23 2006-03-01 株洲工学院科技开发部 一种旋流式湍流发生装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
J.C. CHEN ET AL.: "In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration", ADVANCES IN COLLOID AND INTERFACE SCIENCE, vol. 107, 2004, pages 83 - 108
MOHD. Z. SULAIMAN ET AL.: "Prediction of dynamic permeate flux during cross-flow ultrafiltration of polyethylene glycol using concentration polarization-gel layer model", JOURNAL OF MEMBRANE SCIENCE, vol. 189, 2001, pages 151 - 165, XP004242117, DOI: doi:10.1016/S0376-7388(01)00416-1
S. KIM; E.M.V. HOEK: "Modeling concentration polarization in reverse osmosis processes", DESALINATION, vol. 186, 2005, pages 111 - 128, XP005211360, DOI: doi:10.1016/j.desal.2005.05.017
S.K. KARODE: "A new unsteady-state model for macromolecular ultrafiltration", CHEMICAL ENGINEERING SCIENCE, vol. 55, 2000, pages 1769 - 1773
SEPARATION/PURIFICATION TECHNOLOGY, vol. 25, 2001, pages 523 - 533
Z. ZHANG ET AL.: "Use of capacitive microsensors and ultrasonic time-domain reflectometry for in-situ quantification of concentration polarization and membrane fouling in pressure-driven membrane filtration", SENSORS AND ACTUATORS B, vol. 117, 2006, pages 323 - 331, XP025112292, DOI: doi:10.1016/j.snb.2005.11.016

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120238777A1 (en) * 2009-09-11 2012-09-20 Technische Universitat Wien Method and device for concentrating material solutions
CN106238746A (zh) * 2015-06-12 2016-12-21 陶氏环球技术有限责任公司 用于制造经过滤银纳米线的水热法

Also Published As

Publication number Publication date
US20120285889A1 (en) 2012-11-15
US8252184B2 (en) 2012-08-28
EP2092974B1 (en) 2018-07-25
US8506812B2 (en) 2013-08-13
CN101269298B (zh) 2011-06-01
EP2092974A4 (en) 2012-05-30
US20100044310A1 (en) 2010-02-25
CN101269298A (zh) 2008-09-24
EP2092974A1 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
WO2008116410A1 (fr) Procédé et appareil destinés à la séparation de membrane appliquant une polarisation de concentration, et extracteur utilisé spécialement pour celle-ci
US7510654B2 (en) Method and apparatus for the filtration of biological samples
US6168714B1 (en) Flux-enhanced cross-flow membrane filter
Eykamp Microfiltration and ultrafiltration
EP3337597B1 (en) Improved method for enhancing filtration yields in tangential flow filtration system
Luque et al. A new coiled hollow‐fiber module design for enhanced microfiltration performance in biotechnology
CN115060571A (zh) 具有一次性流体路径的液体到液体生物粒子浓缩器
WO2017213892A1 (en) Radial-path filter elements, systems and methods of using same
Ducom et al. Possible effects of air sparging for nanofiltration of salted solutions
Zeman Ultrafiltration
Muthukumarappan et al. Membrane processing
JPH05329339A (ja) 濾過システム
WO2024024336A1 (ja) 微小有用物質を含む液の精製濃縮装置及びそれを用いた微小有用物質の精製濃縮液の製造方法
Ho Membranes for bioseparations
Bhave Liquid filtration and separation with inorganic membranes: operating considerations and some aspects of system design
JPH04118032A (ja) ジェット流型濾過器
Bell et al. Membrane separation processes
JPH06102136B2 (ja) クロスフロ−型精密濾過における逆洗方法
Eykamp Membrane separations in downstream processing
Piskin Synthetic polymeric membranes: separation via membranes
Roh et al. Backflushing, pulsation and inline flocculation techniques for flux improvement in crossflow microfiltration
JPH04190835A (ja) クロスフロー型濾過器
JP2008155079A (ja) 中空糸膜を利用した孔拡散型膜分離システム
Zydney Membrane bioseparations
Wang et al. Membranes: Ultrafiltration and Nanofiltration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08715156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008715156

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12443797

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE