WO2008113675A1 - Echantillonneur-bloqueur protege contre des parasites de commutation - Google Patents

Echantillonneur-bloqueur protege contre des parasites de commutation Download PDF

Info

Publication number
WO2008113675A1
WO2008113675A1 PCT/EP2008/052574 EP2008052574W WO2008113675A1 WO 2008113675 A1 WO2008113675 A1 WO 2008113675A1 EP 2008052574 W EP2008052574 W EP 2008052574W WO 2008113675 A1 WO2008113675 A1 WO 2008113675A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
blocking
phase
base
voltage
Prior art date
Application number
PCT/EP2008/052574
Other languages
English (en)
Inventor
Richard Morisson
Original Assignee
E2V Semiconductors
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E2V Semiconductors filed Critical E2V Semiconductors
Priority to US12/530,583 priority Critical patent/US7965110B2/en
Publication of WO2008113675A1 publication Critical patent/WO2008113675A1/fr
Priority to IL200652A priority patent/IL200652A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/02Sample-and-hold arrangements
    • G11C27/024Sample-and-hold arrangements using a capacitive memory element
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/02Sample-and-hold arrangements

Definitions

  • the invention relates to sample-and-hold devices, in particular those intended to be placed upstream of an analog-digital converter.
  • a sample-and-hold device operates periodically, under the control of a clock, in two alternating phases: the first phase is the sampling phase during which a level of voltage of an input signal is stored in a storage capacity (especially an analog signal that we want to convert to digital); the second phase is the blocking phase, during which the sampled voltage, that is to say the voltage stored in the capacitor, is maintained at its value, and this all the time that is necessary for the operations carried out downstream of the sample-and-hold
  • the analog-to-digital conversion operation takes a certain time and the blocking phase maintains the sampled voltage level for all the time necessary for the conversion, before passing at a subsequent sampling phase and at a subsequent conversion.
  • Figure 1 shows a sample-and-hold device of the prior art which has good characteristics from this point of view but which has been found to have an annoying defect which will be discussed later.
  • the sampler of Figure 1 is for sampling an input voltage V in . It essentially comprises a pair of differential branches forming a unity gain buffer amplifier intended to avoid unnecessarily charging the upstream circuit which produces the voltage V in .
  • the differential pair comprises two identical transistors T1 and T2 whose emitters are joined and connected to a constant current source (value 2.I 0 ), the base of the transistor T1 receiving the voltage V in .
  • the collector of transistor T1 is connected to a supply voltage Vcc.
  • the collector of the transistor T2 is powered by this voltage Vcc but through a current source which imposes a current I 0 (half of the previous) in the transistor T2.
  • the transistor T2 is diode-mounted, that is to say that its collector is connected to its base.
  • the base of transistor T2 is connected to the base of a follower transistor T3 which has two functions depending on whether the sampler is in sampling mode or in blocking mode.
  • the transistor T3 In sampling mode, the transistor T3 is biased as a voltage follower by a transistor T4 which applies an outgoing current to its emitter. Its emitter voltage then follows the variations of its base voltage, with an offset of a base-emitter voltage Vbe.
  • the transmitter of T3 is connected to the storage capacity C ⁇ Ch and this capacity thus takes the value of V in at the Vbe shift.
  • the offset is constant and therefore it does not pose a problem; it poses even less in a differential system where one would sample a differential voltage V in + - V IN with two sets like that of Figure 1; the output voltage is then the difference between the voltages stored on the capacitors; the Vbe offset disappears in this subtraction.
  • the transistor T3 In blocking mode, the transistor T3 is blocked by a transistor T5 which lowers the base potential of T3 and tends to extract a negative current from its base.
  • Transistor T4 and transistor T5 are turned alternately by complementary clock signals HE (which makes T5 conductive) and HB (which makes T4 conductive); these complementary signals define respectively the sampling phase and the blocking phase.
  • a blocking holding circuit applies to the base of the transistor T3, during the blocking phase, a voltage which copies substantially the voltage on the storage capacity, so that the base-emitter voltage of T3 remains close to zero during the blocking phase. It thus prevents the base-emitter voltage of T3 from going too low, which tends to saturate the transistor T5, slowing down the return to the sampling mode; it also maintains a constant base-emitter voltage of T3 independent of the input voltage V in .
  • FIG. 2 represents a diagram of the signals observed during the operation of the sample-and-hold circuit in the event that the signal V in to be converted is approximately sinusoidal.
  • the clock signal HB is visible in the central part of the diagram.
  • the signal HB is the complement of the signal HE.
  • the voltage V ⁇ Ch at the terminals of the storage capacitor is visible in the lower part of FIG. 2.
  • the voltage V ⁇ Ch follows the evolution of the voltage. V in .
  • the voltage V ⁇ Ch remains frozen at the value it had at the end of the sampling period.
  • these switching peaks may be due mainly to the fact that, when moving to the sampling phase, the transistor T3 becomes conducting faster than transistor T2: both were blocked by turning on transistor T5; they become conductive due to the blocking of the transistor T5 and, as regards the transistor T3, because of the conduction of the transistor T4.
  • the blocking voltage present on the basis of T3, applied by the holding circuit CLMP, is found on the sampling capacity and produces a negative peak since, as we have seen, this voltage is always lower than that of the sampling capacity. This peak disappears as soon as the base of the transistor T3 takes the new value of the input voltage V in .
  • the object of the invention is to propose a circuit which avoids as much as possible the presence of such transition peaks at the moment of the transition from the blocking phase to the sampling phase.
  • the invention proposes a sample-and-hold circuit comprising: a differential pair of transistors constituting a unity gain amplifier receiving an input voltage to be sampled, the differential pair being able to be supplied with current by a current source,
  • a follower transistor connected between the output of the differential pair and a storage capacitor, this transistor being made conductive during a sampling phase by applying an emitter current by means of a first current switch and which can be blocked during a blocking phase by applying a blocking voltage on its base, characterized in that the first current switch is controlled so as to allow the application of the emitter current to the follower transistor with an offset after the end the application of the blocking voltage of the base.
  • the sample-and-hold circuit comprises a second current switch which directs the current of the current source either towards the differential pair, outside the blocking phase, or towards the base of the follower transistor, during the blocking phase.
  • the differential pair comprises a first transistor whose base receives the voltage to be sampled and a second transistor whose base is connected to its collector, the base and the collector together constituting the output of the differential pair; this output is connected to the base of the follower transistor, the emitter of the follower transistor being connected to the storage capacity.
  • the first current switch preferably comprises a second differential pair of transistors fed by a second current source, one of the transistors of the second pair connected to the emitter of the follower transistor being made conductive by a sampling signal. defining the sampling phase, and the other transistor being made conductive by a complementary signal of the sampling signal.
  • the second current switch is preferably constituted from a third differential pair of transistors fed by the first current source, one of the transistors of the third pair being connected to the base of the follower transistor and being made conductive by a blocking signal defining the blocking phase, the other transistor of the third pair being connected to the first pair to supply current and being made conductive by a signal complementary to the blocking signal.
  • FIG. 1 represents a sample-and-hold device of the prior art
  • FIG. 2 represents an operating diagram of the sampler of FIG. 1;
  • FIG. 3 represents a sample-and-hold scheme according to the invention
  • FIG. 4 represents an operating diagram of the sampler of FIG. 3;
  • FIG. 5 represents a circuit for setting blocking and sampling signals from a common clock CLK.
  • NPN NPN
  • PNP PNP
  • PMOS PMOS
  • Figure 3 shows the sample-and-hold scheme according to the invention.
  • the elements corresponding to those of Figure 1 bear the same references.
  • the schema is that of a simple sample-and-hold; it is easily transferable to a differential sample-and-hold device by simple duplication.
  • the voltage V in to be sampled is applied to the input E of a unity gain amplifier comprising a first differential pair of two transistors T1 and T2 having their emitters together.
  • Input E is the base of transistor T1.
  • the output of the amplifier is the base of transistor T2, which is connected to its collector.
  • the differential pair is supplied with current by a constant current source SC1 of value 2.I 0 , but this power supply is supplied, as will be seen, only outside the phases of blocking of the sample-and-hold device. .
  • the T1 collector is connected to a supply voltage Vcc.
  • the collector and the T2 base are connected to this supply voltage Vcc via a current source SC3 which imposes a current of value I 0 (half of the value of the source SC1) between the supply Vcc and transistor T2.
  • Transistors T1 and T2 are identical. If the differential pair is supplied by the current 2.I 0 , outside the blocking phases, the current divides into two equal parts in T2 (current I 0 imposed by the current source SC3) and in T1 (current resulting from the difference between the current 2.I 0 in the source SC3 and the current I 0 in the transistor T2).
  • the currents in T1 and T2 being identical, the base-emitter voltages of T1 and T2 are identical. The voltage on the base of the transistor T2 thus takes the value V in , outside the blocking phases.
  • the combined base and collectors of the transistor T2, which constitute the output of the unity gain amplifier, are connected to the input of a voltage follower stage.
  • the follower stage consists of a transistor T3; the base of T3 is the input of the follower stage; the emitter of T3 is the output of the follower stage.
  • This output is connected to a storage capacity C ⁇ Ch whose function is to receive charges representing the value of V in during a sampling phase, and to keep these charges without losses during a blocking phase.
  • the role of the follower stage (T3) during the sampling phase is to transmit to the capacitor a voltage which represents as exactly as possible the input voltage V in .
  • the input voltage is transmitted to the capacitance with a Vbe shift where Vbe is the base-emitter voltage of the transistor T3.
  • Vbe is the base-emitter voltage of the transistor T3.
  • This offset is not a problem since it is constant (the current flowing through T3 during the sampling phase is constant), and it is even less troublesome in a differential sample-and-hold device suppressing the common mode effects.
  • the voltage across the capacitor is V ⁇ Ch . She follows the tension
  • V in during the sampling phase it does not move during the blocking phase.
  • the sampling phase is defined by a sampling signal HE; this signal at the logic high level during the sampling phase.
  • a current switch including in particular a transistor T4 applies to the emitter of the follower transistor T3 a current from a current source SC2 whose value is preferably I 0 .
  • the base of the transistor T4 is controlled by the sampling signal HE.
  • the transistor T4 is conducting during the sampling phase.
  • the logical complement of the HE signal is designated by HEN, low when HE is high and vice versa; the HEN signal controls the base of a transistor T7 which is part of the current switch; it makes this transistor T7 conductive outside the sampling phase to derive from the transistor T4, and therefore out of the follower transistor T3, the current of the source SC2.
  • a second current switch comprises transistors T5 and T6 and is controlled by a blocking signal HB defining the blocking phase, and by a signal HBN complementary to the blocking signal.
  • the base of transistor T5 receives the blocking signal HB; this transistor is made conductive during the blocking phase. It tends to lower the base potential of transistor T3 to prevent it from being conductive.
  • the base of the transistor T6 receives the complementary signal HBN which makes this transistor conductive out of the blocking phase in order to pass the current of the source SC1 into the differential pair T1, T2.
  • a circuit for controlling and maintaining the basic potential of T3 during the blocking phase is also provided.
  • This CLMP circuit comprises a level shift circuit DN and a transistor T8.
  • This circuit receives at its input the voltage V ⁇ Ch stored on the storage capacitor C ⁇ Ch and it produces on the basis of the follower transistor T3 a voltage which copies the voltage V ⁇ Ch and which is such that the difference between the transmitter voltage of T3 (V ⁇ Ch ) and the base voltage of T3 is close to zero, ensuring the blocking of T3 without excess of negative voltage on the basis of T3.
  • the output voltage of the sampler is taken on the storage capacity, possibly through an AMP buffer amplifier.
  • the HB blocking and HE sampling signals are not exactly complementary; they are shown in FIG. 4.
  • the scale is dilated with respect to the signals represented in FIG. 2 in order to better show the time difference according to the invention between HB and HE.
  • On the upper part of the figure is shown both the signals HEN (complement HE) and HB.
  • the HEN signal is represented only.
  • the rising edge is the same for both HB and HEN signals. But their falling edges are slightly offset, the falling edge of the blocking signal HB slightly preceding the falling edge of the complement HEN of the sampling signal HE.
  • the sampling voltage V ⁇ Ch In the lower part of Figure 4 there is shown the sampling voltage V ⁇ Ch . It can be seen that the strong switching peaks which appeared in FIG. 2 have practically disappeared in FIG.
  • FIG. 5 shows an example of how to make HB and HE blocking and sampling signals and their complements from a single CLK clock.
  • Two cascaded inverters 11, 12 receive the clock CLK and produce a slightly delayed clock CLKr.
  • the clock CLK and the delayed clock CLKr are applied to the inputs of an OR gate.
  • the output of the OR gate produces a signal whose rising edge is the same as the rising edge of CLK and the falling edge is the same as the falling edge of CLKr.
  • the clock CLK serves to produce the blocking signal HB (through a buffer amplifier A1) and its complement HBN (through an inverter and a buffer amplifier A2).
  • the output of the OR gate is used to produce the sampling signal HE (through an inverter and an A4 buffer amplifier) and its complement HEN (through a buffer amplifier A3).

Abstract

L'invention concerne les échantillonneurs bloqueurs, et notamment ceux qui sont destinés à être placés en amont d'un convertisseur analogique-numérique. L'échantillonneur-bloqueur comporte classiquement une paire différentielle de transistors (T1, T2), un transistor suiveur (T3) et une capacité de stockage Cech. Le transistor suiveur est rendu conducteur pendant une phase d'échantillonnage par application d'un courant d'émetteur au moyen d'un premier commutateur de courant (T4, T7) et peut être bloqué pendant une phase de blocage par application d'une tension de blocage sur sa base. L'échantillonneur-bloqueur fonctionne selon l'invention avec une phase de blocage (HB) commençant en même temps que la fin d'une phase d'échantillonnage (HE) et se terminant avant le début d'une nouvelle phase d'échantillonnage. On évite ainsi des pics de commutation à la transition entre la fin d'une phase de blocage et le début d'une nouvelle phase d'échantillonnage.

Description

ECHANTILLONNEUR-BLOQUEUR PROTEGE CONTRE DES PARASITES DE COMMUTATION
L'invention concerne les échantillonneurs-bloqueurs, notamment ceux qui sont destinés à être placés en amont d'un convertisseur analogique- numérique.
Un échantillonneur-bloqueur fonctionne périodiquement, sous la commande d'une horloge, selon deux phases alternées : la première phase est la phase d'échantillonnage pendant laquelle on vient stocker dans une capacité de stockage un niveau de tension d'un signal d'entrée (notamment un signal analogique qu'on veut convertir en numérique) ; la deuxième phase est la phase de blocage, pendant laquelle on maintient à sa valeur la tension échantillonnée, c'est-à-dire la tension stockée dans la capacité, et ceci tout le temps qui est nécessaire aux opérations faites en aval de l'échantillonneur- bloqueur. Typiquement, dans une application à un convertisseur analogique- numérique, on sait que l'opération de conversion analogique-numérique prend un certain temps et la phase de blocage maintient le niveau de tension échantillonnée pendant tout le temps nécessaire à la conversion, avant de passer à une phase d'échantillonnage suivante et à une conversion suivante.
Parmi les qualités qu'on attend d'un échantillonneur-bloqueur, il y a notamment la rapidité de fonctionnement, une recopie précise de la tension d'entrée dans la capacité de stockage, et un maintien sans pertes de la tension stockée dans la capacité de stockage pendant le temps du blocage.
La figure 1 représente un échantillonneur-bloqueur de l'art antérieur qui présente de bonnes caractéristiques de ce point de vue mais dont on a constaté qu'il pouvait présenter un défaut gênant sur lequel on reviendra plus loin. L'échantillonneur de la figure 1 est destiné à échantillonner une tension d'entrée Vin. Il comprend essentiellement une paire de branches différentielles formant un amplificateur tampon de gain unitaire destiné à éviter de charger inutilement le circuit amont qui produit la tension Vin. La paire différentielle comprend deux transistors identiques T1 et T2 dont les émetteurs sont réunis et reliés à une source de courant constant (de valeur 2.I0), la base du transistor T1 recevant la tension Vin. Le collecteur du transistor T1 est relié à une tension d'alimentation Vcc. Le collecteur du transistor T2 est alimenté par cette tension Vcc mais à travers une source de courant qui impose un courant I0 (la moitié du précédent) dans le transistor T2. Le transistor T2 est monté en diode, c'est-à-dire que son collecteur est relié à sa base.
Ce montage permet que la tension sur la base de T2 reproduise exactement la tension d'entrée Vin. En effet, le courant dans le collecteur de T1 est égal à I0, comme celui de T2, puisque le courant 2.I0 se partage entre un courant I0 dans T2 et un courant complémentaire 2I0-Io dans T1. Les tensions base-émetteur sont donc les mêmes et la tension de base de T2 prend la valeur de celle de T1.
La base du transistor T2 est connectée à la base d'un transistor suiveur T3 qui a deux fonctions selon que l'échantillonneur est en mode échantillonnage ou en mode blocage. En mode échantillonnage, le transistor T3 est polarisé en suiveur de tension par un transistor T4 qui applique un courant sortant sur son émetteur. Sa tension d'émetteur suit alors les variations de sa tension base, avec un décalage d'une tension base-émetteur Vbe. L'émetteur de T3 est relié à la capacité de stockage CΘCh et cette capacité prend donc la valeur de Vin au décalage Vbe près. Le décalage est constant et de ce fait il ne pose pas de problème ; il en pose encore moins dans un système différentiel où on échantillonnerait une tension différentielle Vin+ - Vin- avec deux ensembles comme celui de la figure 1 ; la tension de sortie est alors la différence entre les tensions stockées sur les capacités ; le décalage Vbe disparaît dans cette soustraction.
En mode blocage, le transistor T3 est bloqué par un transistor T5 qui abaisse le potentiel de base de T3 et tend à extraire un courant négatif de sa base.
Le transistor T4 et le transistor T5 sont rendus conducteurs alternativement par des signaux d'horloge complémentaires HE (qui rend T5 conducteur) et HB (qui rend T4 conducteur) ; ces signaux complémentaires définissent respectivement la phase d'échantillonnage et la phase de blocage.
Enfin, un circuit de maintien de blocage, CLMP, applique à la base du transistor T3, pendant la phase de blocage, une tension qui recopie sensiblement la tension présente sur la capacité de stockage, de sorte que la tension base-émetteur de T3 reste au voisinage de zéro pendant la phase de blocage. Il empêche ainsi la tension base-émetteur de T3 de descendre trop bas, ce qui tendrait à saturer le transistor T5, ralentissant le retour au mode d'échantillonnage ; il maintient aussi une tension base-émetteur de T3 constante, indépendante de la tension d'entrée Vin.
La sortie de l'échantillonneur est prélevée sur la capacité CΘCh, de préférence après un amplificateur tampon AMP de gain unitaire et d'impédance d'entrée élevée. La figure 2 représente un diagramme des signaux observés pendant le fonctionnement de l'échantillonneur-bloqueur dans l'hypothèse où le signal Vin à convertir est à peu près sinusoïdal. Le signal d'horloge HB est visible dans la partie centrale du diagramme. Le signal HB est le complément du signal HE. La tension VΘCh aux bornes de la capacité de stockage est visible à la partie inférieure de la figure 2. Pendant les phases d'échantillonnage (HE au niveau haut, HB au niveau bas) la tension VΘCh suit l'évolution de la tension Vin. Pendant la phase de blocage (HE au niveau bas, HB au niveau haut), la tension VΘCh reste figée à la valeur qu'elle avait à la fin de la période d'échantillonnage. Cependant, on observe aussi des pics de transition négatifs très importants à la fin de la période de blocage, avant que la tension VΘCh ne se remette à suivre l'évolution de la tension Vin. Ces pics n'empêchent pas le fonctionnement de principe de l'échantillonneur-bloqueur : pendant toute la phase de blocage, le niveau de tension VΘCh est stable et les circuits qui sont en aval (par exemple un convertisseur analogique-numérique) peuvent l'utiliser. Cependant, s'ils sont d'amplitude trop importante, ils peuvent avoir un effet sur ces circuits en aval : par exemple, si un amplificateur différentiel tel que AMP est directement placé en aval, il peut être saturé par le pic négatif, ce qui a pour effet de ralentir beaucoup le rétablissement de sa tension de sortie au moment de la phase d'échantillonnage. A haute fréquence, l'amplificateur risque de ne pas pouvoir suivre les variations de Vin en raison de son temps de récupération, et la tension d'échantillonnage VΘCh ne sera pas correcte.
On a trouvé que ces pics de commutation pouvaient être dus principalement au fait que, lors du passage à la phase d'échantillonnage, le transistor T3 devient conducteur plus vite que le transistor T2 : tous deux étaient bloqués par la mise en conduction du transistor T5 ; ils deviennent conducteurs du fait du blocage du transistor T5 et, en ce qui concerne le transistor T3, du fait de la mise en conduction du transistor T4. La tension de blocage présente sur la base de T3, appliquée par le circuit de maintien CLMP, se retrouve sur la capacité d'échantillonnage et produit un pic négatif puisque, comme on l'a vu, cette tension est toujours plus faible que celle de la capacité d'échantillonnage. Ce pic disparaît dès que la base du transistor T3 prend la nouvelle valeur de la tension d'entrée Vin. L'invention a pour but de proposer un circuit qui évite autant que possible la présence de tels pics de transition au moment du passage de la phase de blocage à la phase d'échantillonnage.
Pour y parvenir, l'invention propose un échantillonneur-bloqueur comportant - une paire différentielle de transistors constituant un amplificateur de gain unitaire recevant une tension d'entrée à échantillonner, la paire différentielle pouvant être alimentée en courant par une source de courant,
- un transistor suiveur relié entre la sortie de la paire différentielle et une capacité de stockage, ce transistor étant rendu conducteur pendant une phase d'échantillonnage par application d'un courant d'émetteur au moyen d'un premier commutateur de courant et pouvant être bloqué pendant une phase de blocage par application d'une tension de blocage sur sa base, caractérisé en ce que le premier commutateur de courant est commandé de manière à autoriser l'application du courant d'émetteur au transistor suiveur avec un décalage après la fin de l'application de la tension de blocage de la base.
En d'autres mots, il y a maintenant une phase d'échantillonnage et une phase de blocage qui ne sont pas exactement complémentaires au moment de la commutation de la phase de blocage vers la phase d'échantillonnage . La phase de blocage, qu'on définit ici comme étant la phase d'application d'une tension de blocage à la base du transistor suiveur, peut commencer en même temps que la fin de la phase d'échantillonnage, qu'on définit ici comme étant la phase d'application d'un courant d'émetteur au transistor suiveur ; mais la phase de blocage se termine maintenant avant le début de la phase d'échantillonnage, alors que dans l'art antérieur, la fin de la phase de blocage et le début de la phase d'échantillonnage étaient simultanés. De préférence, l'échantillonneur-bloqueur comporte un deuxième commutateur de courant qui aiguille le courant de la source de courant soit vers la paire différentielle, en dehors de la phase de blocage, soit vers la base du transistor suiveur, pendant la phase de blocage.
L'échantillonneur-bloqueur selon l'invention peut être réalisé de la manière suivante : la paire différentielle comprend un premier transistor dont la base reçoit la tension à échantillonner et un deuxième transistor dont la base est reliée à son collecteur, la base et le collecteur réunis constituant la sortie de la paire différentielle ; cette sortie est reliée à la base du transistor suiveur, l'émetteur du transistor suiveur étant relié à la capacité de stockage. Le premier commutateur de courant comprend de préférence une deuxième paire différentielle de transistors alimentée par une deuxième source de courant, l'un des transistors de la deuxième paire, relié à l'émetteur du transistor suiveur, étant rendu conducteur par un signal d'échantillonnage définissant la phase d'échantillonnage, et l'autre transistor étant rendu conducteur par un signal complémentaire du signal d'échantillonnage.
Le deuxième commutateur de courant est de préférence constitué à partir d'une troisième paire différentielle de transistors alimentée par la première source de courant, l'un des transistors de la troisième paire étant relié à la base du transistor suiveur et étant rendu conducteur par un signal de blocage définissant la phase de blocage, l'autre transistor de la troisième paire étant relié à la première paire pour l'alimenter en courant et étant rendu conducteur par un signal complémentaire du signal de blocage.
Comme dans l'art antérieur, on peut prévoir en outre un circuit de maintien de blocage dont l'entrée est reliée à la capacité d'échantillonnage et dont la sortie applique à la base du transistor suiveur, pendant la phase de blocage, une tension plus faible que la tension présente sur la capacité de stockage. D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :
- la figure 1 représente un échantillonneur-bloqueur de l'art antérieur ;
- la figure 2 représente un diagramme de fonctionnement de l'échantillonneur de la figure 1 ;
- la figure 3 représente un schéma d'échantillonneur-bloqueur selon l'invention ; - la figure 4 représente un diagramme de fonctionnement de l'échantillonneur de la figure 3 ;
- la figure 5 représente un circuit d'établissement de signaux de blocage et d'échantillonnage à partir d'une horloge commune CLK.
L'invention sera décrite à propos de circuits à transistors bipolaires
NPN ; elle est transposable à des circuits à transistors PNP et peut être adaptée aussi à des circuits à transistors NMOS ou PMOS.
La figure 3 représente le schéma d'échantillonneur-bloqueur selon l'invention. Les éléments correspondant à ceux de la figure 1 portent les mêmes références. Le schéma est celui d'un échantillonneur-bloqueur simple ; il est facilement transposable à un échantillonneur-bloqueur différentiel, par simple duplication.
La tension Vin à échantillonner est appliquée à l'entrée E d'un amplificateur à gain unitaire comprenant une première paire différentielle de deux transistors T1 et T2 ayant leurs émetteurs réunis. L'entrée E est la base du transistor T1. La sortie de l'amplificateur est la base du transistor T2, qui est reliée à son collecteur. La paire différentielle est alimentée en courant par une source de courant constant SC1 de valeur 2.I0, mais cette alimentation en courant n'est fournie, comme on le verra, qu'en dehors des phases de blocage de l'échantillonneur-bloqueur.
Le collecteur de T1 est relié à une tension d'alimentation Vcc. Le collecteur et la base de T2 sont reliés à cette tension d'alimentation Vcc par l'intermédiaire d'une source de courant SC3 qui impose un courant de valeur I0 (la moitié de la valeur de la source SC1 ) entre l'alimentation Vcc et le transistor T2. Les transistors T1 et T2 sont identiques. Si la paire différentielle est alimentée par le courant 2.I0, en dehors des phases de blocage, le courant se divise en deux parties égales dans T2 (courant I0 imposé par la source de courant SC3) et dans T1 (courant résultant de la différence entre le courant 2.I0 dans la source SC3 et le courant I0 dans le transistor T2). Les courants dans T1 et T2 étant identiques, les tensions base-émetteur de T1 et T2 sont identiques. La tension sur la base du transistor T2 prend donc la valeur Vin, en dehors des phases de blocage.
La base et le collecteurs réunis du transistor T2, qui constituent la sortie de l'amplificateur à gain unitaire, sont reliées à l'entrée d'un étage suiveur de tension. L'étage suiveur est constitué par un transistor T3 ; la base de T3 est l'entrée de l'étage suiveur ; l'émetteur de T3 est la sortie de l'étage suiveur. Cette sortie est connectée à une capacité de stockage CΘCh dont la fonction est de recevoir des charges représentant la valeur de Vin pendant une phase d'échantillonnage, et de conserver ces charges sans pertes pendant une phase de blocage.
Le rôle de l'étage suiveur (T3) pendant la phase d'échantillonnage est de transmettre à la capacité une tension qui représente aussi exactement que possible la tension d'entrée Vin. Toutefois, la tension d'entrée est transmise à la capacité avec un décalage de Vbe où Vbe est la tension base- émetteur du transistor T3. Ce décalage n'est pas gênant dans la mesure où il est constant (le courant qui traverse T3 pendant la phase d'échantillonnage est constant), et il est encore moins gênant dans un échantillonneur-bloqueur différentiel supprimant les effets de mode commun. La tension aux bornes de la capacité est VΘCh. Elle suit la tension
Vin pendant la phase d'échantillonnage ; elle ne bouge plus pendant la phase de blocage.
La phase d'échantillonnage est définie par un signal d'échantillonnage HE ; ce signal au niveau logique haut pendant la phase d'échantillonnage. Pendant cette phase, un commutateur de courant comprenant notamment un transistor T4 applique à l'émetteur du transistor suiveur T3 un courant provenant d'une source de courant SC2 dont la valeur est de préférence I0. La base du transistor T4 est commandée par le signal d'échantillonnage HE. Le transistor T4 est conducteur pendant la phase d'échantillonnage. Le complément logique du signal HE est désigné par HEN, au niveau bas quand HE est au niveau haut et réciproquement ; le signal HEN commande la base d'un transistor T7 qui fait partie du commutateur de courant ; il rend ce transistor T7 conducteur en dehors de la phase d'échantillonnage pour dériver hors du transistor T4, et donc hors du transistor suiveur T3, le courant de la source SC2.
Un deuxième commutateur de courant comprend des transistors T5 et T6 et est commandé par un signal de blocage HB définissant la phase de blocage, et par un signal HBN complémentaire du signal de blocage. La base du transistor T5 reçoit le signal de blocage HB ; ce transistor est rendu conducteur pendant la phase de blocage. Il tend à abaisser le potentiel de base du transistor T3 pour l'empêcher d'être conducteur. La base du transistor T6 reçoit le signal complémentaire HBN qui rend conducteur ce transistor en dehors de la phase de blocage pour faire passer dans la paire différentielle T1 , T2 le courant de la source SC1 . II est prévu en outre dans cet exemple un circuit de contrôle et maintien du potentiel de base de T3 pendant la phase de blocage. Ce circuit CLMP comprend un circuit de décalage de niveau DN et un transistor T8. Ce circuit reçoit sur son entrée la tension VΘCh stockée sur la capacité de stockage CΘCh et il produit sur la base du transistor suiveur T3 une tension qui recopie la tension VΘCh et qui est telle que la différence entre la tension d'émetteur de T3 (VΘCh) et la tension base de T3 soit proche de zéro, assurant le blocage de T3 sans excès de tension négative sur la base de T3.
La tension de sortie de l'échantillonneur est prise sur la capacité de stockage, éventuellement à travers un amplificateur tampon AMP. Les signaux de blocage HB et d'échantillonnage HE ne sont pas exactement complémentaires ; ils sont représentés sur la figure 4. L'échelle est dilatée par rapport aux signaux représentés sur la figure 2 afin de mieux montrer le décalage temporel selon l'invention, entre HB et HE. Sur la partie supérieure de la figure on a représenté à la fois les signaux HEN (complément de HE) et HB. Dans la partie centrale on a représenté le signal HEN seulement. Le front de montée est le même pour les deux signaux HB et HEN. Mais leurs fronts de descente sont légèrement décalés, le front de descente du signal de blocage HB précédant légèrement le front de descente du complément HEN du signal d'échantillonnage HE. Dans la partie inférieure de la figure 4 on a représenté la tension d'échantillonnage VΘCh. On voit que les forts pics de commutation qui apparaissaient à la figure 2 ont pratiquement disparu sur la figure 4.
Ceci résulte du fait que le transistor T2 se met à conduire dès la fin de la phase de blocage (front de descente de HB) par suite de la mise en conduction du transistor T6, ceci avant la phase d'échantillonnage proprement dite, c'est-à-dire avant que le transistor T4 ne se mette à conduire. La base de T2 tend à prendre la valeur Vin alors que T3 est encore bloqué. Lorsque arrive le signal d'échantillonnage, le transistor se met à conduire mais sa base est presque au niveau de potentiel qui convient pour la phase d'échantillonnage.
On notera que pendant la phase de blocage l'isolation entre l'entrée et la capacité d'échantillonnage est particulièrement efficace avec le circuit selon l'invention. La figure 5 représente un exemple de manière de réaliser des signaux de blocage et d'échantillonnage HB et HE et leurs compléments à partir d'une seule horloge CLK. Deux inverseurs 11 , 12 en cascade reçoivent l'horloge CLK et produisent une horloge légèrement retardée CLKr. L'horloge CLK et l'horloge retardée CLKr sont appliquées au entrées d'une porte OU. La sortie de la porte OU produit un signal dont le front de montée est le même que le front de montée de CLK et le front de descente est le même que le front de descente de CLKr. L'horloge CLK sert à produire le signal de blocage HB (à travers un amplificateur tampon A1 ) et son complément HBN (à travers un inverseur et un amplificateur tampon A2). La sortie de la porte OU sert à produire le signal d'échantillonnage HE (à travers un inverseur et un amplificateur tampon A4) et son complément HEN (à travers un amplificateur tampon A3).

Claims

REVENDICATIONS
1. Echantillonneur-bloqueur comportant
- une paire différentielle de transistors (T1 , T2) constituant un amplificateur de gain unitaire recevant une tension d'entrée (Vin) à échantillonner, la paire différentielle pouvant être alimentée en courant par une source de courant (SC1 ),
- un transistor suiveur (T3) relié entre la sortie de la paire différentielle (Tl , T2) et une capacité de stockage CΘCh, ce transistor étant rendu conducteur pendant une phase d'échantillonnage par application d'un courant d'émetteur au moyen d'un premier commutateur de courant (T4, T7) et pouvant être bloqué pendant une phase de blocage par application d'une tension de blocage sur sa base, caractérisé en ce que le premier commutateur de courant (T4, T7) est commandé de manière à autoriser l'application du courant d'émetteur au transistor suiveur avec un décalage après la fin de l'application de la tension de blocage de la base, le premier commutateur de courant comprenant une deuxième paire différentielle de transistors (T4, T7) alimentée par une deuxième source de courant (SC2), l'un des transistors (T4) de la deuxième paire, relié à l'émetteur du transistor suiveur (T3), étant rendu conducteur par un signal d'échantillonnage (HE) définissant la phase d'échantillonnage, et l'autre transistor étant rendu conducteur par un signal (HEN) complémentaire du signal d'échantillonnage, un deuxième commutateur de courant (T5, T6) étant prévu pour aiguiller le courant de la source de courant (SC1 ) soit vers la paire différentielle (T1 , T2), en dehors de la phase de blocage, soit vers la base du transistor suiveur (T3), pendant la phase de blocage, le signal d'échantillonnage ayant un front de montée retardé par rapport à la fin de la phase de blocage.
2. Echantillonneur-bloqueur selon la revendication 1 , caractérisé en ce qu'il fonctionne avec une phase de blocage commençant en même temps que la fin d'une phase d'échantillonnage et se terminant avant le début d'une nouvelle phase d'échantillonnage.
3. Echantillonneur-bloqueur selon l'une des revendications 1 et 2, caractérisé en ce que la paire différentielle comprend un premier transistor (T1 ) dont la base reçoit la tension à échantillonner (Vin) et un deuxième transistor (T2) dont la base est reliée à son collecteur, la base et le collecteur réunis constituant la sortie de la paire différentielle, reliée à la base du transistor suiveur (T3), l'émetteur du transistor suiveur étant relié à la capacité de stockage.
4. Echantillonneur-bloqueur selon la revendication 3, caractérisé en ce que le deuxième commutateur de courant est constitué à partir d'une troisième paire différentielle de transistors (T5, T6) alimentée par la première source de courant (SC1 ), l'un des transistors (T5) de la troisième paire étant relié à la base du transistor suiveur (T3) et étant rendu conducteur par un signal de blocage (HB) définissant la phase de blocage, l'autre transistor (T6) de la troisième paire étant relié à la première paire pour l'alimenter en courant et étant rendu conducteur par un signal (HBN) complémentaire du signal de blocage.
5. Echantillonneur-bloqueur selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte un circuit de maintien de blocage (CLMP) dont l'entrée est reliée à la capacité de stockage et dont la sortie applique à la base du transistor suiveur (T3), pendant la phase de blocage, une tension plus faible que la tension présente sur la capacité de stockage.
PCT/EP2008/052574 2007-03-13 2008-03-03 Echantillonneur-bloqueur protege contre des parasites de commutation WO2008113675A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/530,583 US7965110B2 (en) 2007-03-13 2008-03-03 Sampler blocker protected against switching parasites
IL200652A IL200652A (en) 2007-03-13 2009-08-31 Blocks Collection of Samples Protected against Alternating Parasites

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0701800 2007-03-13
FR0701800A FR2913807B1 (fr) 2007-03-13 2007-03-13 Echantillonneur-bloqueur protege contre des parasites de commutation

Publications (1)

Publication Number Publication Date
WO2008113675A1 true WO2008113675A1 (fr) 2008-09-25

Family

ID=38220042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/052574 WO2008113675A1 (fr) 2007-03-13 2008-03-03 Echantillonneur-bloqueur protege contre des parasites de commutation

Country Status (5)

Country Link
US (1) US7965110B2 (fr)
CN (1) CN101647071A (fr)
FR (1) FR2913807B1 (fr)
IL (1) IL200652A (fr)
WO (1) WO2008113675A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9270277B2 (en) * 2012-06-28 2016-02-23 Northwestern University Emitter-coupled spin-transistor logic
CN103916106A (zh) * 2014-04-14 2014-07-09 中国电子科技集团公司第二十四研究所 跟踪保持电路
US9432126B1 (en) * 2014-06-25 2016-08-30 Rockwell Collins, Inc. Reconfigurable filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074996A1 (fr) * 1999-08-06 2001-02-07 Atmel Grenoble S.A. Echantillonneur-bloqueur
WO2001073789A1 (fr) * 2000-03-28 2001-10-04 Koninklijke Philips Electronics N.V. Amplificateur échantillonneur-bloqueur
US20050035791A1 (en) * 2003-08-14 2005-02-17 Devendorf Don C. Sample and hold circuit and bootstrapping circuits therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457418A (en) * 1994-12-05 1995-10-10 National Semiconductor Corporation Track and hold circuit with an input transistor held on during hold mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074996A1 (fr) * 1999-08-06 2001-02-07 Atmel Grenoble S.A. Echantillonneur-bloqueur
WO2001073789A1 (fr) * 2000-03-28 2001-10-04 Koninklijke Philips Electronics N.V. Amplificateur échantillonneur-bloqueur
US20050035791A1 (en) * 2003-08-14 2005-02-17 Devendorf Don C. Sample and hold circuit and bootstrapping circuits therefor

Also Published As

Publication number Publication date
FR2913807A1 (fr) 2008-09-19
US20100109710A1 (en) 2010-05-06
IL200652A0 (en) 2010-06-16
CN101647071A (zh) 2010-02-10
FR2913807B1 (fr) 2013-01-18
US7965110B2 (en) 2011-06-21
IL200652A (en) 2014-04-30

Similar Documents

Publication Publication Date Title
EP0635843A1 (fr) Circuit échantillonneur differentiel
EP2769473B1 (fr) Convertisseur numerique-analogique
FR2724072A1 (fr) Etage amplificateur de puissance, de type suiveur.
WO2008113675A1 (fr) Echantillonneur-bloqueur protege contre des parasites de commutation
EP0135412A1 (fr) Circuit d'alimentation régulée notamment pour poste téléphonique
FR2793970A1 (fr) Procede de commande d'un commutateur d'un dispositif de capacite commutee, et dispositif de capacite commutee correspondant
FR2477802A1 (fr) Circuit d'amplification
EP3172837B1 (fr) Convertisseur courant-tension, étage d'entrée d'un amplificateur et amplificateur correspondant
EP0277855A1 (fr) Convertisseur binaire-bipolaire
EP1039477B1 (fr) Echantillonneur bloqueur en technologie bipolaire complémentaire
FR2639489A1 (fr) Dispositif interrupteur de puissance, notamment pour convertisseur de frequence
EP0109106A1 (fr) Circuit convertisseur de niveaux de signaux entre une logique de type saturée et une logique de type non saturée
FR2851379A1 (fr) Convertisseur en transfert direct d'energie
FR2861209A1 (fr) Echantillonneur-bloqueur differentiel, notamment pour convertisseur analogique numerique
FR2575013A1 (fr) Porte logique a coincidence, et circuits logiques sequentiels mettant en oeuvre cette porte a coincidence
EP1499042B1 (fr) Codeur différentiel de signaux électriques
WO2008145753A1 (fr) Echantillonneur-bloqueur a double commutateur
EP0332499B1 (fr) Comparateur rapide avec étage de sortie fonctionnant en deux phases
EP3346609B1 (fr) Dispositif échantillonneur-bloqueur de signal électrique
EP0848547B1 (fr) Circuit d'interface pour caméra vidéo
EP1672802B1 (fr) Dispositif d'échantillonnage hautes fréquences
FR2619972A1 (fr) Etage amplificateur differentiel et configurations de circuits utilisant un tel etage
FR3058011B1 (fr) Systeme d’interrupteur et convertisseur electrique comportant un tel systeme d’interrupteur
EP1326327A1 (fr) Détecteur de phase à échantillonnage
WO2001091295A1 (fr) Thyristor dual, thyristor diode dual, composant formant thyristor, composant formant thyristor diode, convertisseur et interrupteur

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880008089.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08717337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12530583

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08717337

Country of ref document: EP

Kind code of ref document: A1