WO2008113631A1 - Filter- und katalysatorelement mit erhöhter thermomechanischer stabilität - Google Patents

Filter- und katalysatorelement mit erhöhter thermomechanischer stabilität Download PDF

Info

Publication number
WO2008113631A1
WO2008113631A1 PCT/EP2008/050958 EP2008050958W WO2008113631A1 WO 2008113631 A1 WO2008113631 A1 WO 2008113631A1 EP 2008050958 W EP2008050958 W EP 2008050958W WO 2008113631 A1 WO2008113631 A1 WO 2008113631A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter element
filter
walls
element according
wall
Prior art date
Application number
PCT/EP2008/050958
Other languages
English (en)
French (fr)
Inventor
Holger Dietzhausen
Tobias Hoeffken
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2008113631A1 publication Critical patent/WO2008113631A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0211Arrangements for mounting filtering elements in housing, e.g. with means for compensating thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/10Exhaust treating devices having provisions not otherwise provided for for avoiding stress caused by expansions or contractions due to temperature variations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a filter element for cleaning the exhaust gases of an internal combustion engine according to the preamble of claim 1 and a filter with a filter element according to the independent claim 11.
  • filter elements are used for example as a soot filter for diesel internal combustion engines. But they can also be used as catalyst elements.
  • the filter elements often consist of a ceramic material and have a plurality of mutually parallel inlet channels and outlet channels.
  • Filter elements made of ceramic materials are produced by extrusion.
  • the blank of the filter element is a prismatic body with a plurality of mutually parallel channels.
  • the channels of a blank are initially open at both ends.
  • Such a blank may be completed to a catalyst element if its surface is provided with a catalytically active coating.
  • the invention has for its object to provide filter and catalyst elements whose reliability and service life is increased.
  • the filter elements according to the invention should be able to withstand higher operating temperatures, in particular during regeneration.
  • a catalyst or filter element in particular for filtering exhaust gases of an internal combustion engine, with a parallel to the main flow direction of the exhaust gas longitudinal axis, with a plurality of inlet channels and with a plurality of outlet channels, wherein the inlet channels and / or the outlet channels Filter walls are limited, achieved in that the tensile stiffness of the filter element at an outer diameter in the circumferential direction is at least partially less than or equal to the tensile stiffness of the filter walls.
  • Tensile stiffness is understood to mean the product E x D.
  • E denotes the elastic modulus [N / mm 2 ] and D a thickness [mm].
  • the radially outermost wall be it a jacket wall or a filter wall of the filter element, have significant influence on the resulting internal stresses due to temperature differences within the filter element.
  • the tensile stiffness of the filter walls on the outer diameter of the filter element is selectively reduced at least partially, build at the same temperature differences within the filter element only comparatively low internal mechanical stresses, so that the filter element according to the invention is less loaded.
  • a first, particularly easy to manufacture embodiment of the invention provides that the filter element is limited in the radial direction of the filter walls and thus completely dispense with a separate jacket wall, which usually has the form of a hollow cylinder in a cylindrical filter element.
  • This jacket wall has, especially if it has a thickness which is greater than the thickness of the filter walls, a significant proportion of high mechanical stresses when there are unequal temperatures within the filter element.
  • the jacket wall is only partially available.
  • the jacket walls are designed, for example, as strips which run parallel to one another and extend essentially in the axial direction. Due to the distances which adjacent strips of these shell walls have to each other, the construction of tensile stresses in the circumferential direction is also effectively prevented, so that even in this embodiment, the internal stresses due to temperature differences are reduced.
  • the filter element it is also possible for the filter element to be completely delimited by a jacket wall, wherein the jacket wall has longitudinal grooves and the tensile rigidity of the jacket wall in the region of the longitudinal grooves is at least partially less than or equal to the tensile stiffness of the filter walls.
  • the tensile stiffness can be brought about in this embodiment by reducing the thickness of the jacket wall, in particular in the region of the longitudinal grooves.
  • a sealing ring may be provided which preferably made of the same material as the filter element. This means that after the extrusion of the filter element, a sealing ring is applied or applied to the filter element and then sintered in a heat treatment sealing ring and filter element to form a single component.
  • a further embodiment of the invention provides for reducing the tensile rigidity of the radially outermost filter walls and / or the jacket walls in that the modulus of elasticity of the outer regions of the filter element is smaller than the modulus of elasticity of the inner filter walls. This can be achieved by the targeted introduction of microcracks and / or a modified material composition in the outer region of the filter element.
  • Figure 1 is a schematic representation of an internal combustion engine with an exhaust aftertreatment device according to the invention.
  • Figure 2 shows an exemplary embodiment of a filter element according to the invention in a longitudinal section and Figures 3 - 5 are schematic representations of further exemplary embodiments of inventive filter elements.
  • an internal combustion engine carries the reference numeral 10.
  • the exhaust gases are discharged via an exhaust pipe 12, in which a filter device 14 is arranged. With this soot particles are filtered out of the exhaust gas flowing in the exhaust pipe 12 to comply with legal requirements.
  • the filter device 14 comprises a cylindrical housing 16, in which a filter element 18, which is also rotationally symmetrical in the present exemplary embodiment, is also arranged.
  • a filter element 18 which is also rotationally symmetrical in the present exemplary embodiment, is also arranged.
  • the invention is not limited to these geometries.
  • FIG. 2 shows a cross section through a first exemplary embodiment of a filter element 18 according to the invention.
  • the filter element 18 is manufactured as an extruded shaped body from a ceramic material, such as cordierite.
  • the filter element 18 is flowed through in the direction of the arrows 20 of not shown exhaust gas.
  • An entrance surface has the reference numeral 22 in FIG. 2, while an exit surface in FIG. 2 has the reference numeral 24.
  • inlet channels 28 Parallel to a longitudinal axis 26 of the filter element 18 extend a plurality of inlet channels 28 in alternation with outlet channels 30.
  • the inlet channels 28 are closed at the second end face 24.
  • the sealing plugs are shown in FIG. 2 without reference numerals.
  • the outlet channels 30 are open at the second end face 24 and closed in the region of the first end face 22.
  • the flow path of the unpurified exhaust gas thus leads into one of the inlet channels 28 and from there through a filter wall 34 into one of the outlet channels 30. This is illustrated by the arrows 32 by way of example.
  • a sealing ring 36 is formed both in the region of the inlet surface 22 and in the region of the outlet surface 24.
  • the sealing ring is usually made of the same or at least a similar material as the filter element 18 and is inextricably connected to the filter element 18 during sintering.
  • the sealing rings 36 facilitate the sealing of the filter element 18 in the housing 16.
  • FIG. 3 shows a cross section of a first exemplary embodiment of a filter element 18 according to the invention along the line A-A (see FIG. 2).
  • the outlet channels 28 and the outlet channels 30 are not provided with reference numerals.
  • both the inlet channels 28 and the outlet channels 30 have a square cross-section and are delimited by the filter walls 34. Radially outward, the filter element 18 is bounded by the filter walls 34.
  • the tensile stiffness of the filter element in the circumferential direction in this embodiment is less than or equal to the tensile stiffness in the interior of the filter element 18.
  • the circumferential direction in FIG a double arrow 40 indicated.
  • the circumferential direction 40 is orthogonal to the longitudinal axis 26 and tangential to the outer contour of the filter element 18th
  • a sealing mat 38 may be provided in the axial direction between the sealing rings 36.
  • FIG. 4 shows a further embodiment of a filter element 18 according to the invention is also shown in section along the line AA.
  • a jacket wall 42 is provided, which is formed strip-shaped, wherein the individual strips extend parallel to the longitudinal axis 26 and extend from the entrance surface 22 to the exit surface 24.
  • the filter element 18 is bounded by the filter walls 34 in the radial direction. In this embodiment, too, it is thus ensured that in the circumferential direction (see the double arrow 40) the tensile rigidity at the outer edge of the filter element 18 is at least partially smaller than or equal to the tensile stiffness in the interior of the filter element 18.
  • sealing rings 36 when sealing rings 36 are provided, it may be advantageous for the wall surface 42 to merge into the sealing rings 36.
  • FIG. 5 also shows a further exemplary embodiment of a filter element 18 according to the invention in cross section.
  • the shell wall 42 is formed as a continuous wall, which encloses the filter element 18 over the entire length and over the entire circumference.
  • grooves 44 are introduced into the casing wall. In the region of these grooves 44, the tensile stiffness is reduced in the circumferential direction, so that only relatively low tensile stresses form in the circumferential direction even when temperature differences occur within the filter element 18.
  • a thickness D wall of the wall surface 42 in the region of the grooves 44 D groove is less than or equal to a thickness D Fl i terwand the filter walls 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Es wird ein Filterelement für eine Brennkraftmaschine vorgeschlagen, bei dem die während der Regeneration auftretenden Wärmespannungen deutlich reduziert sind. Dies wird erfindungsgemäß durch eine besondere Gestaltung einer Mantelfläche (42) des Filterelements (18) erreicht. In Folge dessen ist das erfindungsgemäße Filterelement (18) mechanisch robuster und erlaubt höhere Betriebstemperaturen.

Description

Beschreibung
Titel
Filter- und Katalysatorelement mit erhöhter thermomechanischer Stabilität
Stand der Technik
Die Erfindung betrifft ein Filterelement zur Reinigung der Abgase einer Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1 sowie einen Filter mit einem Filterelement nach dem nebengeordneten Anspruch 11. Derartige Filterelemente werden beispielsweise als Rußfilter für Dieselbrennkraftmaschinen eingesetzt. Sie können aber auch als Katalysatorelemente eingesetzt werden.
Die Filterelemente bestehen häufig aus einem keramischen Werkstoff und weisen eine Vielzahl von parallel zueinander verlaufenden Eintrittskanälen und Austrittskanälen auf.
Hergestellt werden Filterelemente aus keramischen Werkstoffen durch Extrudieren. Dies bedeutet, dass der Rohling des Filterelements ein prismatischer Körper mit einer Vielzahl von parallel zueinander verlaufenden Kanälen ist. Die Kanäle eines Rohlings sind zunächst an beiden Enden offen. Ein solcher Rohling kann zu einem Katalysatorelement vervollständigt werden, wenn seine Oberfläche mit einer katalytisch aktiven Beschichtung versehen wird.
Wenn aus dem Rohling ein Filterelement werden soll, wird ein Teil der Kanäle am hinteren Ende des Filterelements verschlossen, während ein anderer Teil der Kanäle am vorderen Ende des Filterelements verschlossen werden. Dadurch werden zwei Gruppen von Kanälen gebildet, nämlich die sogenannten Eintrittskanäle, welche am Ende verschlossen sind, und die sogenannten Austrittskanäle, welche am Anfang des Filterelements verschlossen sind.
Dann besteht zwischen den Eintrittskanälen und den Austrittskanälen nur über die porösen Wände des Filterelements (nachfolgend Filterwände) eine Strömungsverbindung, so dass das Abgas das Filterelement nur durchströmen kann, indem es aus den Eintrittskanälen durch die Wände des Filterelements hindurch in die Austrittskanäle strömt.
Bei der Regeneration der Filterelemente werden die Rußablagerungen oxidiert, wobei Wärme freigesetzt wird. Daraus resultiert eine Temperaturerhöhung im Filterelement. Wenn die bei der Regeneration auftretenden Temperaturen zu groß werden, nimmt das Filterelement Schaden. Diese Gefahr ist vor allem bei Filterelementen aus Cordierit vorhanden, da Cordierit eine vergleichsweise geringe spezifische Wärmekapazität hat und deshalb bei der Oxidation von Rußablagerungen lokal sehr hohe Temperaturen auftreten können. In Folge dessen können bei der Regeneration in kritischen Motorbetriebspunkten so hohe Temperaturen und so große Temperaturunterschiede innerhalb des Filterelements auftreten, dass das Filterelement Risse bekommt, die von der Mantelfläche ausgehen, und dadurch unbrauchbar wird.
Offenbarung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, Filter- und Katalysatorelemente bereitzustellen, deren Zuverlässigkeit und Lebensdauer erhöht ist. Außerdem sollen die erfindungsgemäßen Filterelemente höhere Betriebstemperaturen, insbesondere während der Regeneration, ertragen können.
Diese Aufgabe wird erfindungsgemäß bei einem Katalysator- oder Filterelement, insbesondere zur Filterung von Abgasen einer Brennkraftmaschine, mit einer parallel zur Hauptströmungsrichtung des Abgases verlaufenden Längsachse, mit einer Vielzahl von Eintrittskanälen und mit einer Vielzahl von Austrittskanälen, wobei die Eintrittskanäle und/oder die Austrittskanäle durch Filterwände begrenzt werden, dadurch gelöst, dass die Zugsteifigkeit des Filterelements an einem Außendurchmesser in Umfangsrichtung mindestens bereichsweise kleiner oder gleich der Zugsteifigkeit der Filterwände ist.
Unter Zugsteifigkeit wird das Produkt E x D verstanden. Dabei bezeichnet E den Elastizitätsmodul [N/mm2] und D eine Dicke [mm]. Es ist das Verdienst der Erfinder erkannt zu haben, dass die radial äußerste Wand, sei es eine Mantelwand oder eine Filterwand des Filterelements, maßgeblichen Einfluss auf die infolge von Temperaturunterschieden entstehenden Eigenspannungen innerhalb des Filterelements haben. Dadurch dass erfindungsgemäß die Zugsteifigkeit der Filterwände am Außendurchmesser des Filterelements mindestens bereichsweise gezielt verringert wird, bauen sich bei gleich großen Temperaturunterschieden innerhalb des Filterelements nur vergleichsweise geringe innere mechanische Spannungen auf, so dass das erfindungsgemäße Filterelement weniger belastet wird.
Eine erste, besonders einfach herzustellende Ausführungsform der Erfindung sieht vor, dass das Filterelement in radialer Richtung von den Filterwände begrenzt wird und somit auf eine gesonderte Mantelwand, die üblicherweise bei einem zylindrischen Filterelement die Form eines Hohlzylinders hat, vollständig verzichtet wird. Diese Mantelwand hat, insbesondere wenn sie eine Dicke aufweist, die größer ist als die Dicke der Filterwände, maßgeblichen Anteil an hohen mechanischen Spannungen, wenn innerhalb des Filterelements ungleiche Temperaturen herrschen.
Alternativ ist es auch möglich, dass die Mantelwand nur bereichsweise vorhanden ist. Dabei sind die Mantelwände zum Beispiel als Streifen ausgebildet, die parallel zueinander verlaufen und sich im Wesentlichen in axialer Richtung erstrecken. Durch die Abstände, welche benachbarte Streifen dieser Mantelwände zueinander aufweisen, wird ebenfalls der Aufbau von Zugspannungen in Umfangsrichtung wirksam unterbunden, so dass auch bei dieser Ausführungsform die inneren mechanischen Spannungen aufgrund von Temperaturunterschieden reduziert sind.
Alternativ ist es auch möglich, dass das Filterelement vollständig von einer Mantelwand begrenzt wird, wobei die Mantelwand Längsnuten aufweist und die Zugsteifigkeit der Mantelwand im Bereich der Längsnuten mindestens bereichsweise kleiner oder gleich der Zugsteifigkeit der Filterwände ist.
Die Zugsteifigkeit kann bei diesem Ausführungsbeispiel durch eine Reduktion der Dicke der Mantelwand insbesondere im Bereich der Längsnuten, herbeigeführt werden.
Um eine gute Abdichtung des Filterelements zu einem das Filterelement umgebenden Gehäuse zu ermöglichen, kann in weiterer vorteilhafter Ausgestaltung der Erfindung im Bereich einer Eintrittsfläche oder im Bereich einer Austrittsfläche ein Dichtring vorgesehen sein, der bevorzugt aus dem gleichen Material wie das Filterelement hergestellt ist. Dies bedeutet, dass nach dem Extrudieren des Filterelements ein Dichtring auf das Filterelement aufgebracht oder aufgetragen wird und anschließend bei einer Wärmebehandlung Dichtring und Filterelement zu einem einheitlichen Bauteil gesintert werden.
Eine weitere Ausführungsform der Erfindung sieht vor, die Zugsteifigkeit der radial am weitesten außen liegenden Filterwände und/oder der Mantelwände dadurch zu reduzieren, dass das Elastizitätsmodul der außen liegenden Bereiche des Filterelements kleiner sind als das Elastizitätsmodul der innen liegenden Filterwände. Dies kann durch das gezielte Einbringen von Mikrorissen und/oder einer geänderte Materialzusammensetzung im Außenbereich des Filterelements erzielt werden.
Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Zeichnung, deren Beschreibung und den Patentansprüchen entnehmbar. Alle in der Zeichnung, deren Beschreibung und den Patentansprüchen genannten Vorteile können sowohl Einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein.
Kurze Beschreibung der Zeichnungen
Es zeigen:
Figur 1 eine schematische Darstellung einer Brennkraftmaschine mit einer erfindungsgemäßen Abgasnachbehandlungseinrichtung und
Figur 2 ein Ausfuhrungsbeispiel eines erfindungsgemäßen Filterelements im Längsschnitt und Figuren 3 - 5 schematische Darstellungen weiterer Ausfuhrungsbeispiele erfindungsgemäßer Filterelemente.
Ausführungsformen der Erfindung
In Figur 1 trägt eine Brennkraftmaschine das Bezugszeichen 10. Die Abgase werden über ein Abgasrohr 12 abgeleitet, in dem eine Filtereinrichtung 14 angeordnet ist. Mit dieser werden Rußpartikel aus dem im Abgasrohr 12 strömenden Abgas herausgefiltert, um gesetzliche Bestimmungen einzuhalten.
Bei dem in Figur 1 dargestellten Ausführungsbeispiel umfasst die Filtereinrichtung 14 ein zylindrisches Gehäuse 16, in dem ein im vorliegenden Ausführungsbeispiel rotationssymmetrisches, insgesamt ebenfalls zylindrisches Filterelement 18 angeordnet ist. Selbstverständlich ist die Erfindung nicht auf diese Geometrien beschränkt.
In Figur 2 ist ein Querschnitt durch ein erstes Ausführungsbeispiel eines erfindungsgemäßen Filterelements 18 dargestellt. Das Filterelement 18 ist als extrudierter Formkörper aus einem keramischen Material, wie zum Beispiel Cordierit, hergestellt. Das Filterelement 18 wird in Richtung der Pfeile 20 von nicht dargestelltem Abgas durchströmt. Eine Eintrittsfläche hat in Figur 2 das Bezugszeichen 22, während eine Austrittsfläche in Figur 2 das Bezugszeichen 24 hat.
Parallel zu einer Längsachse 26 des Filterelements 18 verlaufen mehrere Eintrittskanäle 28 im Wechsel mit Austrittskanälen 30. Die Eintrittskanäle 28 sind an der zweiten Stirnfläche 24 verschlossen. Die Verschlussstopfen sind in Figur 2 ohne Bezugszeichen dargestellt. Im Gegensatz dazu sind die Austrittskanäle 30 an der zweiten Stirnfläche 24 offen und im Bereich der ersten Stirnfläche 22 verschlossen.
Der Strömungsweg des ungereinigten Abgases führt also in einen der Eintrittskanäle 28 und von dort durch eine Filterwand 34 in einen der Austrittskanäle 30. Exemplarisch ist dies durch die Pfeile 32 dargestellt.
Bei dem Ausführungsbeispiel gemäß Figur 2 ist sowohl im Bereich der Eintrittsfläche 22 als auch im Bereich der Austrittsfläche 24 ein Dichtring 36 ausgebildet. Der Dichtring besteht in der Regel aus dem gleichen oder zumindest einen ähnlichen Material wie das Filterelement 18 und wird beim Sintern unlösbar mit dem Filterelement 18 verbunden. Die Dichtringe 36 erleichtern die Abdichtung des Filterelements 18 in dem Gehäuse 16.
In Figur 3 ist ein Querschnitt eines ersten Ausführungsbeispiels eines erfindungsgemäßen Filterelements 18 entlang der Linie A-A (siehe Figur 2) dargestellt. Aus Gründen der Übersichtlichkeit sind die Austrittskanäle 28 und die Austrittskanäle 30 nicht mit Bezugszeichen versehen. Wie aus Figur 3 ersichtlich, haben sowohl die Eintrittskanäle 28 als auch die Austrittskanäle 30 einen quadratischen Querschnitt und werden von den Filterwänden 34 begrenzt. Radial nach außen wird das Filterelement 18 durch die Filterwände 34 begrenzt.
Da die radial außen liegenden Filterwände 34 und die in der Nähe der Längsachse 26 angeordneten Filterwände die gleiche Dicke aufweisen, ist die Zugsteifigkeit des Filterelements in Umfangsrichtung bei diesem Ausführungsbeispiel kleiner oder gleich der Zugsteifigkeit im Inneren des Filterelements 18. Die Umfangsrichtung ist in Figur 3 durch einen Doppelpfeil 40 angedeutet. Die Umfangsrichtung 40 verläuft orthogonal zur Längsachse 26 und tangential zu der Außenkontur des Filterelements 18.
Um die Abdichtung zwischen Gehäuse 16 und Filterelement 18 weiter zu verbessern, kann in axialer Richtung zwischen den Dichtringen 36 eine Dichtmatte 38 vorgesehen sein.
In Figur 4 ist ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Filterelements 18 ebenfalls im Schnitt entlang der Linie A-A dargestellt. Bei diesem Ausführungsbeispiel ist eine Mantelwand 42 vorhanden, die streifenförmig ausgebildet ist, wobei die einzelnen Streifen parallel zur Längsachse 26 verlaufen und sich von der Eintrittsfläche 22 bis zur Austrittsfläche 24 erstrecken.
In den Bereichen zwischen den Streifen der Wandfläche 42 wird das Filterelement 18 durch die Filterwände 34 in radialer Richtung begrenzt. Auch bei diesem Ausführungsbeispiel ist somit gewährleistet, dass in Umfangsrichtung (siehe den Doppelpfeil 40) die Zugsteifigkeit am Außenrand des Filterelements 18 mindestens bereichsweise kleiner oder gleich der Zugsteifigkeit im Inneren des Filterelements 18 ist.
Bei diesem Ausführungsbeispiel kann es, wenn Dichtringe 36 vorgesehen sind, vorteilhaft sein, wenn die Wandfläche 42 in die Dichtringe 36 übergehen.
In Figur 5 ist ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Filterelements 18 ebenfalls im Querschnitt dargestellt. Bei diesem Ausführungsbeispiel ist die Mantelwand 42 als zusammenhängende Wand, welche das Filterelement 18 über die gesamte Länge und über den gesamten Umfang umschließt, ausgebildet. Um die Zugsteifigkeit in Umfangsrichtung (siehe den Doppelpfeil 40) zumindest bereichsweise zu verringern, sind in den Mantelwand Nuten 44 eingebracht. Im Bereich dieser Nuten 44 ist die Zugsteifigkeit in Umfangsrichtung reduziert, so dass sich auch beim Auftreten von Temperaturunterschieden innerhalb des Filterelements 18 nur vergleichsweise geringe Zugspannungen in Umfangsrichtung ausbilden.
Es hat sich als vorteilhaft erwiesen, wenn eine Dicke DWand der Wandfläche 42 im Bereich der Nuten 44 DNut kleiner oder gleich einer Dicke DFliterwand der Filterwände 34 ist.

Claims

Ansprüche
1. Filterelement, insbesondere zur Filterung von Abgasen einer Brennkraftmaschine, mit einer parallel zur Hauptströmungsrichtung des Abgases verlaufenden Längsachse (26), mit einer Vielzahl von Eintrittskanälen (28), und mit einer Vielzahl von Austrittskanälen (30), wobei die Eintrittskanäle (28) und/oder die Austrittskanäle (30) durch Filterwände (34) begrenzt werden, dadurch gekennzeichnet, dass die Zugsteifigkeit des Filterelements (18) an einem Außendurchmesser (Da) in Umfangsrichtung mindestens bereichsweise kleiner oder gleich der Zugsteifigkeit der Filterwände (34) ist.
2. Filterelement nach Anspruch 1, dadurch gekennzeichnet, dass das Filterelement (18) in radialer Richtung mindestens bereichsweise von den Filterwänden (34) begrenzt wird.
3. Filterelement nach Anspruch 1, dadurch gekennzeichnet, dass das Filterelement (18) in radialer Richtung mindestens bereichsweise von einer Mantelwand (42) begrenzt wird.
4. Filterelement nach Anspruch 3, dadurch gekennzeichnet, dass das Filterelement (18) in radialer Richtung vollständig von einer Mantelwand (42) begrenzt wird, dass die Mantelwand (42) Längsnuten (44) aufweist, und dass eine Zugsteifigkeit in Umfangsrichtung der
Mantelwand (42) im Bereich der Längsnuten (44) mindestens bereichsweise kleiner oder gleich der Zugsteifigkeit der Filterwände (34) ist.
5. Filterelement nach Anspruch 4, dadurch gekennzeichnet, dass eine Dicke (Dnut) der Mantelwand (42) im Bereich der Längsnuten (44) kleiner oder gleich einer Dicke (DFliterwand) der Filterwände (34) ist.
6. Filterelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Filterelement (18) im Bereich einer Eintrittsfläche (22) und/oder im Bereich einer Austrittsfläche (24) in radialer Richtung von einem Dichtring (36) begrenzt wird.
7. Filterelement nach Anspruch 6, dadurch gekennzeichnet, dass das Filterelement (18) und der oder die Dichtringe (36) aus dem gleichen Material bestehen.
8. Filterelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Elastizitätsmodul (Eaußen) der radial am weitesten außen liegenden Filterwände (34) und/oder der Mantelwand (42) kleiner als der Elastizitätsmodul (Eimen) der innen liegenden Filterwände (34) ist.
9. Filterelement nach Anspruch 8, dadurch gekennzeichnet, dass der Elastizitätsmodul (Eaußen) der radial am weitesten außen liegenden Filterwände (34) und/oder der Mantelwand (42) durch Einbringen von Mikrorissen und/oder eine geänderte Materialzusammensetzung verringert wird.
10. Filterelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Filterwände (34) aus Aluminium-Magnesium- Silikat, bevorzugt Cordierit, Titandioxid (TiC^), Siliziumcarbid (SiC) und/oder Aluminiumtitanat bestehen.
11. Filtereinrichtung mit einem Filterelement (18), mit einem Gehäuse (16) und mit einem Abgasrohr (12), dadurch gekennzeichnet, dass das Filterelement ein Filterelement (18) nach einem der vorhergehenden Ansprüche ist.
PCT/EP2008/050958 2007-03-22 2008-01-28 Filter- und katalysatorelement mit erhöhter thermomechanischer stabilität WO2008113631A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007013681.3 2007-03-22
DE102007013681A DE102007013681A1 (de) 2007-03-22 2007-03-22 Filter- und Katalysatorelement mit erhöhter thermomechanischer Stabilität

Publications (1)

Publication Number Publication Date
WO2008113631A1 true WO2008113631A1 (de) 2008-09-25

Family

ID=39154050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050958 WO2008113631A1 (de) 2007-03-22 2008-01-28 Filter- und katalysatorelement mit erhöhter thermomechanischer stabilität

Country Status (2)

Country Link
DE (1) DE102007013681A1 (de)
WO (1) WO2008113631A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045583A1 (fr) * 1997-04-10 1998-10-15 Mitsubishi Chemical Corporation Convertisseur catalytique
EP1486242A1 (de) * 2002-03-15 2004-12-15 Ibiden Co., Ltd. Keramikfilter zur abgasreinigung
EP1571303A1 (de) * 2004-02-20 2005-09-07 Arvin Technologies, Inc. Vorrichtung zum Reinigen von Fahrzeugabgasen, insbesondere Dieselrussfilter
US20050235622A1 (en) * 2004-04-23 2005-10-27 Cutler Willard A Diesel engine exhaust filters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045583A1 (fr) * 1997-04-10 1998-10-15 Mitsubishi Chemical Corporation Convertisseur catalytique
EP1486242A1 (de) * 2002-03-15 2004-12-15 Ibiden Co., Ltd. Keramikfilter zur abgasreinigung
EP1571303A1 (de) * 2004-02-20 2005-09-07 Arvin Technologies, Inc. Vorrichtung zum Reinigen von Fahrzeugabgasen, insbesondere Dieselrussfilter
US20050235622A1 (en) * 2004-04-23 2005-10-27 Cutler Willard A Diesel engine exhaust filters

Also Published As

Publication number Publication date
DE102007013681A1 (de) 2008-09-25

Similar Documents

Publication Publication Date Title
EP2027373B1 (de) Filtereinrichtung, insbesondere für ein abgassystem einer brennkraftmaschine
EP1294466B2 (de) Partikelfalle und verfahren zum abscheiden von partikeln aus dem strom eines fluids
DE102006035052A1 (de) Filterelement und Filter zur Abgasnachbehandlung
DE102018205716B4 (de) Wabenfilter
DE112013002164T5 (de) Axial geschnittene keramische Wabeneinheiten
EP1767752B1 (de) Abgasbehandlungseinrichtung
DE102018205711B4 (de) Wabenfilter
EP2069615B1 (de) Filterelement, insbesondere zur filterung von abgasen einer brennkraftmaschine
DE102018206498B4 (de) Wabenfilter
EP2026894B1 (de) Filtereinrichtung, insbesondere für ein abgassystem einer brennkraftmaschine
WO2008113631A1 (de) Filter- und katalysatorelement mit erhöhter thermomechanischer stabilität
EP1787705A1 (de) Filtereinrichtung, insbesondere für ein Abgassystem einer Dieselbrennkraftmaschine
WO2009112384A2 (de) Filtereinrichtung, insbesondere für ein abgassystem einer brennkraftmaschine
WO2008080696A1 (de) Filterelement und filter zur abgasnachbehandlung einer brennkraftmaschine
EP1775010A2 (de) Temperaturvergleichmäßigender Innenkanal für ein Filterelement und Filter zur Abgasnachbehandlung
WO2009016006A1 (de) Abgasanlage einer brennkraftmaschine
EP2100012B1 (de) Durch extrudieren hergestelltes filterelement zur filterung von abgasen einer diesel-brennkraftmaschine
WO2008148634A1 (de) Filter- und katalysatorelement
DE102007063100A1 (de) Abgasnachbehandlungseinrichtung mit mindestens zwei Partikelfiltern
WO2008025600A1 (de) Filtereinrichtung, insbesondere für ein abgassystem einer brennkraftmaschine
DE102006021737B4 (de) Filterelement für einen Rußpartikelfilter einer Brennkraftmaschine
EP2075047A2 (de) Filterelement und Abgasnachbehandlung einer Brennkraftmaschine sowie Verfahren zur Herstellung eines erfindungsgemäßen Filterelements
DE102008022479A1 (de) Partikelfilterkörper und Brennkraftmaschine mit Partikelfilterkörper
WO2008135441A1 (de) Keramischer wabenkörper für den einsatz in abgasreinigungssystemen
DE102004004002B4 (de) Partikelfilter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08708279

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08708279

Country of ref document: EP

Kind code of ref document: A1