WO2008111392A1 - Control device for in-cylinder injection type spark ignition internal combustion engine - Google Patents

Control device for in-cylinder injection type spark ignition internal combustion engine Download PDF

Info

Publication number
WO2008111392A1
WO2008111392A1 PCT/JP2008/053338 JP2008053338W WO2008111392A1 WO 2008111392 A1 WO2008111392 A1 WO 2008111392A1 JP 2008053338 W JP2008053338 W JP 2008053338W WO 2008111392 A1 WO2008111392 A1 WO 2008111392A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
combustion engine
internal combustion
cylinder
air density
Prior art date
Application number
PCT/JP2008/053338
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Ashizawa
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2008111392A1 publication Critical patent/WO2008111392A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for a direct injection spark ignition internal combustion engine.
  • An in-cylinder spark ignition internal combustion engine called a direct injection type that obtains driving force by directly injecting and igniting fuel into a cylinder is known.
  • various techniques have been proposed for improving combustion and exhaust emission by forming a vortex flow such as a tumble flow or swirl flow in a cylinder. If a moderate vortex flow is formed in the cylinder, the turbulence of the air-fuel mixture can be increased at the ignition timing, and the combustion speed is improved, so that good combustion can be realized. This can also improve exhaust emissions.
  • Patent Document 1 includes spray characteristic setting means for setting the characteristics such as the direction of fuel injection from the injection hole of the multi-hole injector, the spray penetration force, and the spray particle size according to the combustion chamber shape and combustion performance.
  • a combustion control device for an internal combustion engine is proposed. This combustion control device reduces the adhesion of fuel to the piston cavity by, for example, making the spray particle size smaller than a certain value. Therefore, it is said that the combustion control device of Patent Document 1 can suppress the deterioration of the exhaust performance if the combustion performance.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 0 205-2 4 8 8 5 7
  • an object of the present invention is to provide a control device for a cylinder injection spark ignition internal combustion engine that can surely enhance the vortex airflow formed in the cylinder by fuel injection to improve combustion and exhaust. Is to provide.
  • the object is to control at least one of the spray particle size and the number of sprays of the fuel based on the air density confirmation means for confirming the air density in the cylinder into which the fuel is injected and the air density at the time of fuel injection.
  • In-cylinder injection spark ignition characterized in that it is achieved by a control device for an internal combustion engine.
  • the fuel spray control means controls at least one of the fuel spray particle size and the number of sprays based on the air density in the cylinder at the time of fuel injection, so that the air in the cylinder can be controlled according to the operation of the internal combustion engine. Even if the density changes, it is possible to reliably obtain the effect of strengthening the vortex airflow when fuel is injected (hereinafter referred to as “jet effect”). Therefore, an internal combustion engine to which such a control device is applied can improve combustion and exhaust.
  • the fuel spray control means may control at least one of the spray particle size and the number of sprays so that the injected fuel does not penetrate the vortex.
  • the air density confirmation unit may estimate the air density based on an intake pressure and an intake temperature of an intake passage that supplies intake air into the cylinder.
  • the fuel spray control means changes the spray particle size in proportion to the air density. By doing so, the above jet effect may be obtained with certainty.
  • the fuel spray control means may ensure that the jet effect is obtained by increasing the number of sprays as the air density is lower.
  • the swirl flow is a tumble flow
  • the fuel spray control means assists and strengthens the tumble flow by injecting fuel near the intake bottom dead center.
  • You may comprise as a control apparatus.
  • the swirl flow is a swirl flow
  • the fuel spray control means assists and strengthens the swirl flow by injecting fuel near the intake bottom dead center. It can be configured as a control device.
  • a control device for an in-cylinder injection spark ignition internal combustion engine that can surely enhance the vortex airflow formed in the cylinder by fuel injection to improve combustion and exhaust. it can.
  • FIG. 1 is a diagram schematically showing an internal combustion engine system including a cylinder injection type spark ignition internal combustion engine to which a control device according to Embodiment 1 is applied.
  • FIG. 2 is an enlarged schematic view of the internal combustion engine shown in FIG.
  • FIG. 3 is a diagram showing an example of the relationship between the air density in a cylinder during fuel injection and the spray particle size suitable for obtaining the jet effect.
  • FIG. 4 is a flow chart summarizing a tumble flow enhancement process executed by the control device for an internal combustion engine realized by the ECU of the first embodiment.
  • FIG. 5 is a diagram schematically showing the relationship between the air density in the cylinder during fuel injection and the number of sprays suitable for obtaining the jet effect.
  • FIG. 6 is a flowchart summarizing a tumble flow enhancement process executed by a control device realized by ECU of the second embodiment.
  • FIG. 7 is a diagram schematically showing an internal combustion engine system including a direct injection spark ignition internal combustion engine to which a control device according to a third embodiment is applied.
  • FIG. 1 is a diagram schematically showing an internal combustion engine system 100 including an in-cylinder spark ignition internal combustion engine 50 (hereinafter simply referred to as an internal combustion engine 50) to which the control device according to the first embodiment is applied. is there.
  • the internal combustion engine system 100 includes an internal combustion engine 50, an intake system 10, a fuel injection system 20, an exhaust system 30 and the like attached thereto.
  • This internal combustion engine system 100 is entirely controlled by E (Electronic Control Unit) 1 A.
  • the ECU 1 A confirms the air density in the cylinder and changes the fuel spray particle size accordingly to ensure the jet effect that assists and strengthens the tumble flow formed in the cylinder. It also functions as each means for obtaining. This ECU 1 A will be described in detail later.
  • the intake system 10 is configured to introduce intake air (air) into the internal combustion engine 50.
  • the intake system 10 includes an air cleaner 1 1 for filtering the intake air, a air flow meter 12 for measuring the amount of air, a throttle valve 13 for adjusting the flow rate of the intake air, a surge tank 14 for temporarily storing the intake air, and an intake air for the internal combustion engine. It includes an internal hold 15 that distributes to each of the 50 cylinders, an intake port 52a formed in the cylinder head of the internal combustion engine 50, and the like. Therefore, an intake passage is formed including the passage downstream of the air cleaner 11, the surge tank 14, the intake manifold 15, the intake port 52 a, and the like.
  • the intake bear hold 15 is provided with an intake pressure sensor 16 for detecting the intake pressure and an intake air temperature sensor 17 for detecting the intake air temperature.
  • the outputs of these sensors 16 and 17 are supplied to ECU 1A.
  • the fuel injection system 20 is configured to pump the fuel FE and inject it directly into the combustion chamber 57 (also referred to as “in-cylinder”).
  • the fuel injection system 20 includes an injector 21 and a fuel tank 22 that stores a fuel FE supplied to the injector 21.
  • Injector 21 Between the fuel tank 2 2 and the fuel tank 2 2, the fuel feed pump 2 3 that supplies fuel to the injector 21 and the high-pressure pump 2 that changes the pressure of the fuel supplied to the injector 21 (hereinafter referred to as “fuel pressure”) 4 is deployed.
  • the injector 21 is opened at an appropriate injection timing under the control of the ECU 1A and injects the fuel FE into the cylinder.
  • the fuel injection amount is adjusted by the length of the valve opening period until the injector 21 is closed under the control of the ECU 1A. That is, the ECU 1 A controls the drive of the injector 21 to appropriately control the number of fuel injections and the fuel injection amount.
  • the high-pressure pump 24 is configured to make the spray particle size. When the fuel pressure is controlled via the high-pressure pump 24 under the control of the ECU 1A, the spray particle size can be increased or decreased by changing the injection pressure of the fuel injected from the injector 21. For example, if ECU 1 A raises the fuel pressure to increase the spray pressure, the spray particle size will decrease proportionally.
  • the exhaust system 30 is configured to exhaust the exhaust gas generated in the cylinder of the internal combustion engine 50 to the outside of the machine.
  • the exhaust system 30 includes an exhaust port 5 2 b formed in the cylinder head, an exhaust manifold 31 and the like.
  • FIG. 2 is an enlarged schematic view of the internal combustion engine 50 shown in FIG.
  • the same parts are denoted by the same reference numerals as in FIG. With reference to FIG. 2, the structure of the internal combustion engine 50 will be described in more detail.
  • the internal combustion engine 50 includes a cylinder block 5 1, a cylinder head 5 2, a piston 5 3, an ignition bracket 5 4, an intake valve 5 5, an exhaust valve 5 6, and the like, in the same manner as a general internal combustion engine. It consists of
  • the internal combustion engine 50 shown in the first embodiment is, for example, an in-line 4-cylinder in-cylinder spark ignition internal combustion engine.
  • the internal combustion engine 50 may have other appropriate cylinder arrangement structure and number of cylinders.
  • FIG. 2 the main part of the cylinder 51a is shown as a representative of each cylinder with respect to the internal combustion engine 50.
  • the other cylinders have the same structure.
  • the cylinder block 51 is formed with a substantially cylindrical cylinder 51a.
  • a piston 53 is accommodated in the cylinder 5 l a.
  • a cylinder head 52 is fixed to the upper surface of the cylinder block 51.
  • Combustion chamber 5 7 is a space surrounded by cylinder block 5 1, cylinder head 5 2 and biston 5 3 It is formed as.
  • the cylinder head 52 has an exhaust port 5 2 b for exhausting the burned gas from the combustion chamber 5 7.
  • an intake valve 55 and an exhaust valve 56 are provided for opening and closing the intake port 52a and the exhaust port 52b.
  • the internal combustion engine 50 may have an intake / exhaust valve structure including an appropriate number of intake valves 55 and exhaust valves 56 per cylinder.
  • the ignition bracket 54 is fixed to the cylinder head 52 with an electrode projecting approximately at the center above the combustion chamber 57.
  • the injector 21 is also disposed in the cylinder head 52 with the fuel injection hole projecting into the combustion chamber 57 from a position adjacent to the spark plug 5 4 above the combustion chamber 57.
  • An intake control valve 5 8 for generating a tumble flow (vertical vortex flow) T in the combustion chamber 5 7 is disposed in the intake port 5 2 a.
  • the intake control valve 58 has a structure for generating a tumble flow T in the combustion chamber 57 by causing the intake air AR to drift in the intake port 52a under the control of ECU1A.
  • the intake control valve 58 has a plate-like valve body and is set so as to rotate around a support shaft 59 set on the lower side of the inner wall of the intake port 52a. Although not shown here, the opening degree of the intake control valve 58 is adjusted by an actuator whose drive is controlled by E C U 1 A.
  • FIG. 2 illustrates a state in which a tumble flow T is formed in the cylinder by closing the intake control valve 58 to restrict the flow path in the intake board 52a.
  • the tumble flow T formed here is a forward tumble flow T that turns clockwise so as to rise in the intake valve 55 in the combustion chamber 57.
  • the injector 21 is set to inject the fuel FE in the vicinity of the intake stroke bottom dead center.
  • the nozzle hole 2 1 HL of the indicator 21 is directed in the direction along the tumble flow T.
  • the injected fuel FE assists and strengthens the tumbling flow T.
  • the strengthened tumble flow T is maintained until the ignition timing.
  • good combustion can be obtained by increasing the turbulence of the air-fuel mixture at the ignition timing and appropriately increasing the combustion speed.
  • the atmosphere (gas state) in the combustion chamber 57 (in the cylinder) changes every moment. More specifically, the atmosphere in the cylinder differs between when the internal combustion engine is in a low load state and when it is in a high load state.
  • the weight ratio (AZ F) between the air and the fuel that make up the air-fuel mixture filled in the cylinder is generally set to the theoretical air-fuel ratio (around 14.3) regardless of the load.
  • the air density is low at low loads, and the air density is high at high loads.
  • the fuel injection condition of the injector 21 is set so that the tumble flow is enhanced at the time of fuel injection (so that the jet effect is obtained). It is possible to set.
  • the air density is low as in the case where the internal combustion engine 50 is in an addling operation, there may be a problem that the tumble flow cannot be enhanced by fuel injection.
  • the fuel injection conditions for high load and high air density are set so that the spray speed is relatively high and the fuel is blown away.
  • this condition setting is applied to an atmosphere with a low air density, the sprayed fuel penetrates the tumble flow that is to be assisted (that is, the spray assists in enhancing the flow of the tumble flow. Without impact) may collide with the wall of the combustion chamber 57. This means that if the air density is changed to a low level, the jet effect cannot be obtained.
  • the injection conditions are set so that the jet effect can be obtained when the air density is low and the load is low, the opposite inconvenience occurs. That is, in an atmosphere where the internal combustion engine is highly loaded and the air density is high, the spray rate from the injector 21 is too low to strengthen the tumble flow.
  • ECU 1 A a control device realized by ECU 1 A is applied to the internal combustion engine 50 shown in FIG. 1 so as to obtain the jet effect as described above. This point will be described in detail below.
  • equation (1) can be modified and expressed as equation (2).
  • the Reynolds number is an index that characterizes an object moving in a fluid, and is expressed by velocity X length ⁇ fluid viscosity coefficient.
  • the Reynolds number increases as the object is larger, the speed is faster, and the viscosity is smaller. Therefore, a large Reynolds number means a flow with relatively strong inertial action.
  • the air density p in the cylinder is obtained by the constant C_ (1 + 0.00367 X air temperature) X air absolute pressure. If the spray particle radius is r, the front projected area S of the spray particle is proportional to r 2 and the mass m of the spray particle is proportional to r 3 .
  • the inventor of the present application pays attention to the mechanism described above, and has devised a control device that can reliably obtain the jet effect by adjusting the spray particle size according to the air density in the cylinder.
  • the control device for the internal combustion engine 50 is realized by the ECU 1A.
  • the ECU 1A functions as an air density confirmation means for confirming the air density in the cylinder and a fuel spray control means.
  • the ECU 1A confirms by estimating the air density P in the cylinder based on the outputs of the sensors 16 and 17, sets the fog conditions suitable for the atmosphere in the cylinder at that time, and sends the fuel FE from the injector 21. Let spray. Therefore, the tumbling flow formed in the cylinder can be reinforced stably.
  • the internal combustion engine 50 includes a crank angle sensor 71 that generates an output pulse proportional to the rotational speed NE, a water temperature sensor 72 for detecting the water temperature of the internal combustion engine 50, an accelerator pedal (not shown) ) Various sensors such as an accelerator sensor 73 for detecting the amount of depression (accelerator opening) are provided and supplied to ECU 1A. Therefore, the ECU 1 A can also confirm the operating state of the internal combustion engine 50.
  • the ECU 1A includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input / output circuit, and the like (not shown).
  • the ROM is configured to store a program in which various processes executed by the CPU are described and a series of data used in the program.
  • an intake pressure sensor A program for estimating the air density in the cylinder from 16 and the intake temperature sensor 17 and setting the spray particle size based on this is stored.
  • the ECU 1 A controls the high pressure pump 24 to change the fuel pressure. Then, the fuel injection pressure from the injector 21 is changed.
  • the ECU 1 A estimates the air density in the combustion chamber 57 from the outputs of the intake pressure sensor 16 and the intake temperature sensor 17, and changes the fuel pressure according to the estimated result. More specifically, the ECU 1A increases the spray particle size in proportion to the air density when the air density changes. Conversely, if the air density changes toward lowering, the spray particle size is reduced in proportion to this.
  • FIG. 3 shows an example of the relationship between the air density in the cylinder during fuel injection and the spray particle size suitable for obtaining the jet effect.
  • ECU 1 A stores a table associating the air density and the preferred spray particle size (target spray particle size) as shown in FIG. Therefore, the ECU 1 A specifies the target spray particle size when the air density is estimated from the outputs of the intake pressure sensor 16 and the intake temperature sensor 17 as described above.
  • the ECU 1A controls the fuel pressure with the high-pressure pump 24 so that the spray particle diameter from the injector 21 becomes the target spray particle diameter.
  • FIG. 4 is a flowchart summarizing the tumble flow enhancement processing executed by the control device for the internal combustion engine 50 realized by the ECU 1A.
  • the ECU 1A starts this routine when the internal switch of the internal combustion engine 50 is turned on.
  • the ECU 1A confirms the intake air pressure in the intake hold 15 from the output of the intake pressure sensor 16 in FIG. 1 and the intake air temperature from the output of the intake air temperature sensor 17 (S101). Based on these outputs, the air density in the cylinder is estimated (S102). As shown in FIG. 1, the air density in the cylinder can be estimated relatively easily by using the outputs of the intake pressure sensor 16 and the intake air temperature sensor 17 provided in the internal hold 15. However, estimating the air density in this way is only one example of confirming the air density.
  • the output may be used. Also, instead of intake hold, the intake pressure sensor 16 and the intake air temperature sensor 17 may be arranged in the surge tank 14 to detect the intake air pressure and the intake air temperature.
  • the ECU 1A confirms whether or not the obtained air density is changing (S103).
  • the ECU 1A executes the above steps S101 to S103 at a predetermined cycle to periodically monitor the change in air density. Then, when the change in the air density is confirmed in step S103, the ECU 1A further confirms whether or not the air density has increased as compared to before (S104).
  • step S104 If it is determined in step S104 that the air density is increasing, the ECU 1A controls the fuel pressure so that the spray particle size increases in proportion to the air density (S105). ECU 1 A controls the high pressure pump 24 that changes the fuel pressure to the injector 21 and changes the spray pressure To do. This enlarges the spray particle diameter from the injector 21 and surely strengthens the tumble flow formed in the cylinder at that time.
  • E C U 1 A controls the fuel pressure so that the spray particle size decreases (decreases) in proportion to the air density (S 1 0 6).
  • E C U 1 A controls the high-pressure pump 24 that changes the fuel pressure to the injector 21 to change the spray pressure. This reduces the spray particle diameter from the injector 21 and reliably strengthens the tumble flow formed in the cylinder at that time.
  • an internal combustion engine that employs such a control device can be provided as an internal combustion engine that can achieve good combustion and exhaust emission.
  • the control device of the first embodiment can reliably obtain the “jet effect” by changing the spray particle size in proportion to the change in the air density in the cylinder.
  • the low air density in the cylinder is equivalent to the low load of the internal combustion engine 50
  • the high air density in the cylinder means that the internal combustion engine 50 is in a high load. May be understood to be equivalent to That is, when the internal combustion engine 50 is idling, etc., the load is light and the air density is low. Further, when the internal combustion engine 50 is at high speed, the load is high and the air density is high. Therefore, at first glance, adjusting the fuel spray particle size according to the air density in the cylinder is the same as adjusting the fuel spray particle size according to the load state of the internal combustion engine 50. It may be understood as if. However, this understanding is incorrect. The following explanation shows that this is an error.
  • the stoichiometric gasoline engine has an AZ F value of about 14.5. This means that gasoline is “1” and air is “14.5”.
  • an engine that burns with a lean burn that is burned with a lean air-fuel mixture For this lean burn engine, For example, air is “2 0” or more for “1”.
  • the load of the internal combustion engine can be understood as gasoline weight, the stoichiometric and lean burn are almost the same load, where the gasoline weight is both “1”. Therefore, when the spray particle size of the fuel is adjusted according to the load state of the internal combustion engine, the spray particle size is not changed.
  • the control device of the first embodiment described above functions and adjusts the fuel pressure so that the spray particle diameter is expanded according to the air density. From this explanation, it is understood that the method according to the first embodiment is different from adjusting the spray particle size in accordance with the load state of the internal combustion engine.
  • Example 2 a control device according to Embodiment 2 applied to a spark ignition internal combustion engine will be described.
  • the spray particle size was changed in accordance with the change in air density.
  • the second embodiment is configured to change the fuel injection pattern to cope with the change in the air density in the cylinder and to reliably obtain the jet effect. More specifically, in the control device of Example 1, the spray particle size was changed to be proportional to the air density, but in the control device of Example 2, the number of sprays increased as the air density decreased. Take action to make it happen.
  • the present inventor confirmed that changing the number of sprays of the injector 21 also can assist the tumble flow by coping with the change in the air density in the cylinder as in the case of changing the spray particle size. It is a thing.
  • the response to the air density change executed by the ECU which is the control device is merely changed from the adjustment based on the spray particle size to the adjustment based on the number of sprays. Therefore, the hardware configuration as the control device is the same as in the first embodiment even in the second embodiment. Therefore, the second embodiment will be described with reference to FIGS.
  • the control contents executed by ECU are different between the case of the first embodiment and the case of the second embodiment. Therefore, it is distinguished as E C U 1 A in Example 1 and E C U 1 B in Example 2.
  • FIG. 5 is a diagram schematically showing the relationship between the air density in the cylinder during fuel injection and the number of fogs suitable for obtaining the jet effect.
  • spraying is performed once when the air density is high (close to the atmosphere), but the number of sprays increases as the air density decreases (as the pressure decreases). It is set to be added. Note that increasing the number of sprays here is not an increase in the same injection amount as in one fog, but an operation in which the injection amount for one injection is divided into a plurality of injections in small amounts.
  • the ECU 1 B stores a table associating the air density in the cylinder as shown in FIG. 5 with a preferable number of sprays at that time (target number of sprays) in a ROM or the like. Therefore, the ECU 1 B specifies the target number of sprays when the air density is estimated from the outputs of the intake pressure sensor 16 and the intake temperature sensor 17. Then, the ECU 1 B executes the valve opening operation of the indicator 21 with the target number of sprays.
  • FIG. 6 is a flowchart summarizing the tumble flow enhancement processing executed by the control device realized by the ECU 1B.
  • the ECU 1B starts this routine when the ignition switch of the internal combustion engine 50 is turned on.
  • the ECU 1 B checks the intake pressure in the intake hold 15 from the output of the intake pressure sensor 16 in FIG. 1 and the intake air temperature from the output of the intake temperature sensor 17 (S 201). To estimate the air density (S 202).
  • ECU 1 B confirms whether or not the air density is changing (S 203). If the air density changes, the ECU 1 B determines whether or not the air density has increased compared to before. Check (S204). Steps S201 to S204 so far are the same as those in the first embodiment, but the subsequent processing is different.
  • ECU 1B decreases the number of sprays as opposed to the increased air density change (S205).
  • the ECU 1 B controls the valve opening operation of the injector 21 to reduce the number of sprays, and reliably assists and strengthens the tumble flow formed in the cylinder at that time. However, even when the number of sprays is reduced the most, one fuel injection is performed (see Fig. 5).
  • step S204 it is determined in step S204 that the air density has not increased when the air density has decreased.
  • the ECU 1 B increases the number of sprays contrary to the change in the air density (S 206).
  • the ECU 1 B controls the valve opening operation of the injector 21 to increase the number of sprays, and reliably assists the tumble flow formed in the cylinder at that time.
  • control device of the embodiment 2 described above it is possible to cope with the change in the air density in the cylinder. Since the number of fogs is changed, it is possible to reliably obtain the jet effect while coping with changes in the state of the internal combustion engine 50.
  • the ECU 1 A of the first embodiment described above adjusts the spray particle size in proportion to the change in air density so that the fuel mist does not penetrate the tumble flow and reach the inner wall surface of the cylinder.
  • the tumble flow can be reliably strengthened by adjusting to.
  • ECU 1 B of Example 2 can similarly strengthen the tumble flow by increasing the number of sprays as the air density is lower. Therefore, the internal combustion engine to which the control devices of Embodiments 1 and 2 are applied can always enhance the tumble flow formed in response to the situation change in the cylinder, so that combustion and exhaust can be improved.
  • Example 1 and Example 2 described above are examples in the case where a tumble flow (vertical vortex flow) is formed in the cylinder (inside the combustion chamber 57). The same effect can be obtained by forming a swirl flow (lateral vortex flow) in the cylinder.
  • Example 3 described below is a case where a scroll flow is formed.
  • FIG. 7 is a diagram schematically showing an internal combustion engine system 200 including an internal combustion engine 150 to which the control device according to the third embodiment is applied. In FIG. 7, the same parts as those in FIG.
  • an intake control valve 1558 for generating a swirl flow S in the combustion chamber 57 is provided in the intake port 52a.
  • This intake control valve 1 5 8 generates a spool flow S in the combustion chamber 5 7 by deflecting the intake AR in the intake port 5 2 a under the control of the ECU 1 C.
  • the intake control valve 15 8 is plate-shaped and is set so as to rotate about a support shaft 15 9 set on the inner wall side of the intake port 52a.
  • the valve body is arranged so as to lie down in the intake port 5 2 a, and forms a tumble flow by forming a posture that rises obliquely.
  • the swirl flow S is formed by the valve body coming out obliquely from the side and narrowing the inside of the intake port 52a. It should be noted that when the scale flow S is formed, it is preferable to set the fuel FE to be injected near the bottom dead center of the intake stroke. This ensures swirl flow S with the injected fuel FE. Can assist and strengthen.
  • the ECU 1 C of the internal combustion engine system 200 may control the spray particle diameter from the injector in accordance with the change in the air density in the cylinder, like the ECU 1 A of the first embodiment. As with ECU1B, the number of sprays may be controlled according to changes in the air density in the cylinder.
  • the internal combustion engine system 200 can reliably enhance the swirl flow when fuel is injected in response to changes in the internal combustion engine 150. Therefore, the internal combustion engine 150 that employs such a control device can be provided as an internal combustion engine that can realize good combustion and exhaust emission.
  • Example 1 and Example 2 described above show a case where a tumble flow is formed
  • Example 3 shows a case where a swirl flow is formed as an example.
  • the present invention can be similarly applied to a case where a vortex air flow is formed by combining a tumble flow and a scale flow.

Abstract

A control device (1A) has air density confirmation means for confirming the density of air in a cylinder (57) into which fuel (FE) is injected, and also has fuel spray control means that, based on the air density at the time of fuel injection, controls at least either the diameter of particles of the sprayed fuel (FE) or the number of times of spraying. Because the fuel spray control means controls at least either the diameter of particles of sprayed fuel or the number of times of spraying with the control based on the air density in a cylinder at the time of the fuel injection, a swirl flow occurring when the fuel is injected can be reliably assisted and reinforced even if the air density in the cylinder changes depending on operation of the internal combustion engine.

Description

明細書  Specification
筒内噴射式火花点火内燃機関の制御装置 In-cylinder injection spark ignition internal combustion engine control device
技術分野 Technical field
[ 0 0 0 1 ]  [0 0 0 1]
本発明は、 筒内噴射式火花点火内燃機関の制御装置に関する。  The present invention relates to a control device for a direct injection spark ignition internal combustion engine.
背景技術 Background art
[ 0 0 0 2 ]  [0 0 0 2]
筒内へ燃料を直接に噴射し点火することで駆動力を得る、 直噴タイプと称される筒 内噴射型の火花点火内燃機関が知られている。 そして、 このタイプの内燃機関に関し ては、 筒内にタンブル流、 スワール流などの渦気流を形成して燃焼や排気エミッショ ンの改善を図る技術が従来から種々提案されている。 筒内に適度な渦気流を形成させ ると、 点火時期において混合気の乱れを増大させることができ、 燃焼速度が向上する ので良好な燃焼を実現できる。 また、 これにより排気ェミッションの改善を図ること もできる。  2. Description of the Related Art An in-cylinder spark ignition internal combustion engine called a direct injection type that obtains driving force by directly injecting and igniting fuel into a cylinder is known. With regard to this type of internal combustion engine, various techniques have been proposed for improving combustion and exhaust emission by forming a vortex flow such as a tumble flow or swirl flow in a cylinder. If a moderate vortex flow is formed in the cylinder, the turbulence of the air-fuel mixture can be increased at the ignition timing, and the combustion speed is improved, so that good combustion can be realized. This can also improve exhaust emissions.
[ 0 0 0 3 ]  [0 0 0 3]
ところが、 筒内へ燃料を直接に噴射する直噴型の内燃機関では、 噴射された燃料が 点火プラグ、シリンダ、或いは筒内壁面(シリンダ壁面)などに付着する場合がある。 このように噴射された燃料が筒内の種々の箇所に付着すると、 燃焼性能や排気を悪化 させる原因となる。 そこで、 特許文献 1は、 燃焼室形状や燃焼性能に応じて、 マルチ ホールインジェクタの噴孔からの燃料噴射の方向、 噴霧貫徹力、 噴霧粒径などの特性 を設定する噴霧特性設定手段を備えた内燃機関の燃焼制御装置について提案する。 こ の燃焼制御装置は、 例えば噴霧粒径を一定以下にすることで、 燃料がピストンキヤビ ティへ付着するのを低減する。 よって、 特許文献 1の燃焼制御装置は、 燃焼性能ゃ排 気の悪化を抑制できるとされている。  However, in a direct injection type internal combustion engine that directly injects fuel into a cylinder, the injected fuel may adhere to a spark plug, a cylinder, a cylinder inner wall surface (cylinder wall surface), or the like. If the fuel injected in this way adheres to various locations in the cylinder, it may cause deterioration in combustion performance and exhaust. Therefore, Patent Document 1 includes spray characteristic setting means for setting the characteristics such as the direction of fuel injection from the injection hole of the multi-hole injector, the spray penetration force, and the spray particle size according to the combustion chamber shape and combustion performance. A combustion control device for an internal combustion engine is proposed. This combustion control device reduces the adhesion of fuel to the piston cavity by, for example, making the spray particle size smaller than a certain value. Therefore, it is said that the combustion control device of Patent Document 1 can suppress the deterioration of the exhaust performance if the combustion performance.
[ 0 0 0 4 ]  [0 0 0 4]
特許文献 1 :特開 2 0 0 5— 2 4 8 8 5 7号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2 0 205-2 4 8 8 5 7
発明の開示 Disclosure of the invention
発明が解決しようとする課題 Problems to be solved by the invention
[ 0 0 0 5 ]  [0 0 0 5]
し力 しながら、 特許文献 1の燃焼制御装置は、 燃料がシリンダ壁面などに付着する と点火性能や排気ガスが悪ィ匕するので、 付着が発生しないように噴霧方向、 噴霧貫徹 力、 噴霧粒径などを設定する噴霧特性設定手段を設けることだけを提案するものであ る。 すなわち、 この燃焼制御装置は単に筒内での燃料付着を低減することで、 燃焼及 び排気が悪化することを抑制するもので、 積極的に燃焼性能の向上や排気改善を意図 していない。 よって、 特許文献 1の燃焼制御装置では、 内燃機関の燃焼の改善や排気 ェミッションの向上を図ることができない。 なお、 特許文献 1においては、 燃料噴射 でタンブル流をアシストして燃焼向上を図ること、 また噴霧粒径ゃ嘖霧回数とアシス ト強化の関係などについても何ら検討がされていない。 However, in the combustion control device of Patent Document 1, if the fuel adheres to the cylinder wall surface or the like, the ignition performance and exhaust gas deteriorate, so the spray direction and spray penetration are prevented so that the adhesion does not occur. It is only proposed to provide a spray characteristic setting means for setting force, spray particle size, etc. In other words, this combustion control device suppresses the deterioration of combustion and exhaust by simply reducing fuel adhesion in the cylinder, and does not intend to actively improve combustion performance or exhaust. Therefore, the combustion control device of Patent Document 1 cannot improve the combustion of the internal combustion engine and the exhaust emission. In Patent Document 1, no attempt is made to improve combustion by assisting the tumble flow by fuel injection, and the relationship between the spray particle size and the number of times of fogging and assist enhancement is not studied.
[ 0 0 0 6 ]  [0 0 0 6]
そこで、 本発明の目的は、 燃料噴射によって、 筒内に形成した渦気流を確実に強化 して、 燃焼の改善及び排気の向上を図ることができる筒内噴射式火花点火内燃機関の 制御装置を提供することである。  Accordingly, an object of the present invention is to provide a control device for a cylinder injection spark ignition internal combustion engine that can surely enhance the vortex airflow formed in the cylinder by fuel injection to improve combustion and exhaust. Is to provide.
課題を解決するための手段 Means for solving the problem
[ 0 0 0 7 ]  [0 0 0 7]
上記目的は、 燃料が噴射される筒内の空気密度を確認する空気密度確認手段と、 燃 料噴射時の前記空気密度に基づいて、 前記燃料の噴霧粒径及び噴霧回数の少なくとも 一方を制御する燃料噴霧制御手段とを備える、 ことを特徴とする筒内噴射式火花点火 内燃機関の制御装置によって達成できる。  The object is to control at least one of the spray particle size and the number of sprays of the fuel based on the air density confirmation means for confirming the air density in the cylinder into which the fuel is injected and the air density at the time of fuel injection. In-cylinder injection spark ignition, characterized in that it is achieved by a control device for an internal combustion engine.
[ 0 0 0 8 ]  [0 0 0 8]
本発明によると、 燃料噴霧制御手段が燃料噴射時に筒内の空気密度に基づいて、 燃 料の噴霧粒径及び噴霧回数の少なくとも一方を制御するので、 内燃機関の運転に応じ て筒内の空気密度が変化しても、 燃料を噴射したときに渦気流をアシス卜して強化す る効果 (以下、 「噴流効果」 と称する) を確実に得ることができる。 よって、 このよう な制御装置を適用した内燃機関は、 燃焼の改善及び排気の向上を図ることができる。  According to the present invention, the fuel spray control means controls at least one of the fuel spray particle size and the number of sprays based on the air density in the cylinder at the time of fuel injection, so that the air in the cylinder can be controlled according to the operation of the internal combustion engine. Even if the density changes, it is possible to reliably obtain the effect of strengthening the vortex airflow when fuel is injected (hereinafter referred to as “jet effect”). Therefore, an internal combustion engine to which such a control device is applied can improve combustion and exhaust.
[ 0 0 0 9 ]  [0 0 0 9]
そして、 前記燃料噴霧制御手段は、 噴射された燃料が前記渦気流を突き抜けないよ うに、 前記噴霧粒径及び噴霧回数の少なくとも一方を制御するようにすればよレ、。  The fuel spray control means may control at least one of the spray particle size and the number of sprays so that the injected fuel does not penetrate the vortex.
[ 0 0 1 0 ]  [0 0 1 0]
また、 前記空気密度確認手段は、 前記筒内に吸気を供給する吸気通路の吸気圧及び 吸気温度に基づいて、 前記空気密度を推定するようにしてもよい。  The air density confirmation unit may estimate the air density based on an intake pressure and an intake temperature of an intake passage that supplies intake air into the cylinder.
[ 0 0 1 1 ]  [0 0 1 1]
そして、 前記燃料噴霧制御手段は、 前記空気密度に比例して前記噴霧粒径を変更す ることで、 上記噴流効果が確実に得られるようにしてもよい。 また、 前記燃料噴霧制 御手段は、 前記空気密度が低いほど前記噴霧回数を増加させることで、 上記噴流効果 が確実に得られるようにしてもよレ、。 The fuel spray control means changes the spray particle size in proportion to the air density. By doing so, the above jet effect may be obtained with certainty. The fuel spray control means may ensure that the jet effect is obtained by increasing the number of sprays as the air density is lower.
[ 0 0 1 2 ]  [0 0 1 2]
なお、 前記渦気流がタンブル流であって、 前記燃料噴霧制御手段は、 吸気下死点近 傍で燃料を噴射させることにより前記タンブル流をアシストして強化する筒内噴射式 火花点火内燃機関の制御装置として構成してもよい。  The swirl flow is a tumble flow, and the fuel spray control means assists and strengthens the tumble flow by injecting fuel near the intake bottom dead center. You may comprise as a control apparatus.
[ 0 0 1 3 ]  [0 0 1 3]
また、 前記渦気流がスワール流であって、 前記燃料噴霧制御手段は、 吸気下死点近 傍で燃料を噴射させることにより前記スワール流をアシストして強化する筒内噴射式 火花点火内燃機関の制御装置として構成してもよレ、。  The swirl flow is a swirl flow, and the fuel spray control means assists and strengthens the swirl flow by injecting fuel near the intake bottom dead center. It can be configured as a control device.
発明の効果 The invention's effect
[ 0 0 1 4 ]  [0 0 1 4]
本発明によれば、 燃料噴射によって、 筒内に形成した渦気流を確実に強化して、 燃 焼の改善及び排気の向上を図ることができる筒内噴射式火花点火内燃機関の制御装置 を提供できる。  According to the present invention, there is provided a control device for an in-cylinder injection spark ignition internal combustion engine that can surely enhance the vortex airflow formed in the cylinder by fuel injection to improve combustion and exhaust. it can.
図面の簡単な説明 Brief Description of Drawings
[ 0 0 1 5 ]  [0 0 1 5]
[図 1 ] 実施例 1に係る制御装置が適用されている筒內噴射式の火花点火内燃機 関を含む内燃機関システムを模式的に示した図である。  1 is a diagram schematically showing an internal combustion engine system including a cylinder injection type spark ignition internal combustion engine to which a control device according to Embodiment 1 is applied.
[図 2 ] 図 1で示している内燃機関を拡大して示した模式図である。  FIG. 2 is an enlarged schematic view of the internal combustion engine shown in FIG.
[図 3 ] 燃料噴射時における筒内の空気密度と噴流効果を得るのに適した噴霧粒 径との関係例を示した図である。  FIG. 3 is a diagram showing an example of the relationship between the air density in a cylinder during fuel injection and the spray particle size suitable for obtaining the jet effect.
[図 4 ] 実施例 1の E C Uによつて実現される内燃機関の制御装置が実行するタ ンブル流強化の処理をまとめたフローチャートである。  FIG. 4 is a flow chart summarizing a tumble flow enhancement process executed by the control device for an internal combustion engine realized by the ECU of the first embodiment.
[図 5 ] 燃料噴射時における筒内の空気密度と噴流効果を得るのに適した噴霧回 数との関係を模式的に示した図である。  FIG. 5 is a diagram schematically showing the relationship between the air density in the cylinder during fuel injection and the number of sprays suitable for obtaining the jet effect.
[図 6 ] 実施例 2の E C Uによって実現される制御装置が実行するタンブル流の 強化の処理をまとめたフローチャートである。  FIG. 6 is a flowchart summarizing a tumble flow enhancement process executed by a control device realized by ECU of the second embodiment.
[図 7 ] 実施例 3に係る制御装置が適用されている筒内噴射式の火花点火内燃機 関を含む内燃機関システムを模式的に示した図である。 発明を実施するための最良の形態 FIG. 7 is a diagram schematically showing an internal combustion engine system including a direct injection spark ignition internal combustion engine to which a control device according to a third embodiment is applied. BEST MODE FOR CARRYING OUT THE INVENTION
[0016]  [0016]
以下、 本発明に係る好ましい形態について図面を参照して詳細に説明する。  Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the drawings.
実施例 1 Example 1
[0017]  [0017]
図 1は、 実施例 1に係る制御装置が適用されている筒内噴射式の火花点火内燃機関 50 (以下、 単に内燃機関 50と称する) を含む内燃機関システム 100を模式的に 示した図である。 内燃機関システム 100は、 内燃機関 50と、 これに付属する吸気 系 10、 燃料噴射系 20、 排気系 30などを含んで構成されている。 この内燃機関シ ステム 100は、 E (Electronic Control Unit:電子制御装置) 1 Aにより全体 的に制御されている。 そして、 この ECU 1 Aは、 筒内の空気密度を確認し、 これに 応じて燃料の噴霧粒径を変更して筒内に形成されているタンブル流をアシストして強 化する噴流効果を確実に得るための各手段としても機能する。 この ECU 1 Aについ ては、 後に詳述する。  FIG. 1 is a diagram schematically showing an internal combustion engine system 100 including an in-cylinder spark ignition internal combustion engine 50 (hereinafter simply referred to as an internal combustion engine 50) to which the control device according to the first embodiment is applied. is there. The internal combustion engine system 100 includes an internal combustion engine 50, an intake system 10, a fuel injection system 20, an exhaust system 30 and the like attached thereto. This internal combustion engine system 100 is entirely controlled by E (Electronic Control Unit) 1 A. The ECU 1 A confirms the air density in the cylinder and changes the fuel spray particle size accordingly to ensure the jet effect that assists and strengthens the tumble flow formed in the cylinder. It also functions as each means for obtaining. This ECU 1 A will be described in detail later.
[0018]  [0018]
まず、 図 1を参照して内燃機関システム 100の概略を説明する。 吸気系 10は、 内燃機関 50に吸気 (空気) を導入するための構成である。 吸気系 10は、 吸気を濾 過するためのエアクリーナ 1 1、 空気量を計測するェアフロメータ 12、 吸気の流量 を調節するスロットル弁 13、 吸気を一時的に貯蔵するためサージタンク 14、 吸気 を内燃機関 50の各気筒に分配するインテ一クマ-ホールド 15、 また内燃機関 50 のシリンダへッドに形成されている吸気ポート 52 aなどを含んで構成されている。 よって、 エアクリーナ 1 1より下流の通路、 サージタンク 14、 インテークマ二ホー ノレド 15及び吸気ポート 52 aなど含んで、 吸気通路が形成されている。  First, an outline of the internal combustion engine system 100 will be described with reference to FIG. The intake system 10 is configured to introduce intake air (air) into the internal combustion engine 50. The intake system 10 includes an air cleaner 1 1 for filtering the intake air, a air flow meter 12 for measuring the amount of air, a throttle valve 13 for adjusting the flow rate of the intake air, a surge tank 14 for temporarily storing the intake air, and an intake air for the internal combustion engine. It includes an internal hold 15 that distributes to each of the 50 cylinders, an intake port 52a formed in the cylinder head of the internal combustion engine 50, and the like. Therefore, an intake passage is formed including the passage downstream of the air cleaner 11, the surge tank 14, the intake manifold 15, the intake port 52 a, and the like.
[0019]  [0019]
そして、 本実施例ではインテークマ-ホールド 15に、 吸気圧を検出する吸気圧セ ンサ 16及び吸気温度を検出する吸気温度センサ 17が配備されている。 これらセン サ 16、 17の出力は ECU 1 Aへ供給されている。  In this embodiment, the intake bear hold 15 is provided with an intake pressure sensor 16 for detecting the intake pressure and an intake air temperature sensor 17 for detecting the intake air temperature. The outputs of these sensors 16 and 17 are supplied to ECU 1A.
[0020]  [0020]
燃料噴射系 20は、燃料 FEを圧送して燃焼室 57内 (「筒内」 とも称する) に直接 噴射するための構成である。 燃料噴射系 20はィンジェクタ 21、 このィンジェクタ 21へ供給する燃料 FEを貯留する燃料タンク 22を含んでいる。 インジェクタ 21 と燃料タンク 2 2との間には、 インジェクタ 2 1に向け燃料を供給する燃料フィード ポンプ 2 3及びインジヱクタ 2 1へ供給する燃料の圧力 (以下、 「燃圧」 と称する) を 変更する高圧ポンプ 2 4が配備されている。 インジェクタ 2 1は E C U 1 Aの制御下 で適宜の噴射時期に開弁されて燃料 F Eを筒内に噴射する。 その燃料噴射量は、 E C U 1 Aの制御の下でィンジェクタ 2 1が閉弁されるまでの間の開弁期間の長さで調節 される。 すなわち、 E C U 1 Aはインジェクタ 2 1の駆動を制御して、 燃料噴射の回 数や燃料噴射量を適宜に制御する。 また、 高圧ポンプ 2 4は噴霧粒径するための構成 である。 E C U 1 Aの制御下で高圧ポンプ 2 4を介して燃圧を制御すると、 インジェ クタ 2 1から噴射する燃料の噴射圧を変更して噴霧粒径を拡大或いは縮小できる。 例 えば、 E C U 1 Aが燃圧を上昇させて噴霧圧を上げると、 噴霧粒径はこれに比例して 減少する。 The fuel injection system 20 is configured to pump the fuel FE and inject it directly into the combustion chamber 57 (also referred to as “in-cylinder”). The fuel injection system 20 includes an injector 21 and a fuel tank 22 that stores a fuel FE supplied to the injector 21. Injector 21 Between the fuel tank 2 2 and the fuel tank 2 2, the fuel feed pump 2 3 that supplies fuel to the injector 21 and the high-pressure pump 2 that changes the pressure of the fuel supplied to the injector 21 (hereinafter referred to as “fuel pressure”) 4 is deployed. The injector 21 is opened at an appropriate injection timing under the control of the ECU 1A and injects the fuel FE into the cylinder. The fuel injection amount is adjusted by the length of the valve opening period until the injector 21 is closed under the control of the ECU 1A. That is, the ECU 1 A controls the drive of the injector 21 to appropriately control the number of fuel injections and the fuel injection amount. Further, the high-pressure pump 24 is configured to make the spray particle size. When the fuel pressure is controlled via the high-pressure pump 24 under the control of the ECU 1A, the spray particle size can be increased or decreased by changing the injection pressure of the fuel injected from the injector 21. For example, if ECU 1 A raises the fuel pressure to increase the spray pressure, the spray particle size will decrease proportionally.
[ 0 0 2 1 ]  [0 0 2 1]
排気系 3 0は、 内燃機関 5 0の筒内で発生した排気ガスを機外へ排出するため構成 である。 排気系 3 0はシリンダへッドに形成した排気ポート 5 2 b、 ェキゾーストマ 二ホールド 3 1などを含んで構成されている。  The exhaust system 30 is configured to exhaust the exhaust gas generated in the cylinder of the internal combustion engine 50 to the outside of the machine. The exhaust system 30 includes an exhaust port 5 2 b formed in the cylinder head, an exhaust manifold 31 and the like.
[ 0 0 2 2 ]  [0 0 2 2]
図 2は、 図 1で示している内燃機関 5 0を拡大して示した模式図である。 同一の部 位については、 図 1と同じ符号を付してある。 この図 2を参照して、 内燃機関 5 0の 構造をより詳細に説明する。  FIG. 2 is an enlarged schematic view of the internal combustion engine 50 shown in FIG. The same parts are denoted by the same reference numerals as in FIG. With reference to FIG. 2, the structure of the internal combustion engine 50 will be described in more detail.
[ 0 0 2 3 ]  [0 0 2 3]
内燃機関 5 0は、 一般の内燃機関と同様に、 シリンダブ口ック 5 1、 シリンダへッ ド 5 2、 ピストン 5 3、 点火ブラグ 5 4、 吸気弁 5 5、 及び排気弁 5 6などを含んで 構成されている。 本実施例 1に示す内燃機関 5 0は、 例えば直列 4気筒の筒内噴射式 火花点火内燃機関である。 ただし、 内燃機関 5 0は他の適宜の気筒配列構造及び気筒 数を有していてもよい。 また図 2では内燃機関 5 0に関し、 各気筒の代表としてシリ ンダ 5 1 aについて要部を示しているが本実施例では他の気筒についても同様の構造 となっている。 シリンダブロック 5 1には、 略円筒状のシリンダ 5 1 aが形成されて いる。 シリンダ 5 l a内には、 ピストン 5 3が収容されている。  The internal combustion engine 50 includes a cylinder block 5 1, a cylinder head 5 2, a piston 5 3, an ignition bracket 5 4, an intake valve 5 5, an exhaust valve 5 6, and the like, in the same manner as a general internal combustion engine. It consists of The internal combustion engine 50 shown in the first embodiment is, for example, an in-line 4-cylinder in-cylinder spark ignition internal combustion engine. However, the internal combustion engine 50 may have other appropriate cylinder arrangement structure and number of cylinders. In FIG. 2, the main part of the cylinder 51a is shown as a representative of each cylinder with respect to the internal combustion engine 50. In this embodiment, the other cylinders have the same structure. The cylinder block 51 is formed with a substantially cylindrical cylinder 51a. A piston 53 is accommodated in the cylinder 5 l a.
[ 0 0 2 4 ]  [0 0 2 4]
シリンダブロック 5 1の上面にはシリンダヘッド 5 2が固定されている。 燃焼室 5 7は、 シリンダブ口ック 5 1、 シリンダへッド 5 2及びビストン 5 3に囲まれた空間 として形成されている。 シリンダへッド 5 2には燃焼室 5 7に吸気を導くための吸気 ポート 5 2 aのほか、 燃焼したガスを燃焼室 5 7から排気するための排気ポート 5 2 bが形成されている。 さらに、 これら吸気ポート 5 2 a及び排気ポート 5 2 bを開閉 するための吸気弁 5 5及び排気弁 5 6が配設されている。 なお、 内燃機関 5 0は 1気 筒あたりに適宜の数量の吸気弁 5 5及び排気弁 5 6を備えた吸排気弁構造であっても よい。 A cylinder head 52 is fixed to the upper surface of the cylinder block 51. Combustion chamber 5 7 is a space surrounded by cylinder block 5 1, cylinder head 5 2 and biston 5 3 It is formed as. In addition to the intake port 5 2 a for guiding the intake air to the combustion chamber 5 7, the cylinder head 52 has an exhaust port 5 2 b for exhausting the burned gas from the combustion chamber 5 7. Further, an intake valve 55 and an exhaust valve 56 are provided for opening and closing the intake port 52a and the exhaust port 52b. Note that the internal combustion engine 50 may have an intake / exhaust valve structure including an appropriate number of intake valves 55 and exhaust valves 56 per cylinder.
[ 0 0 2 5 ]  [0 0 2 5]
点火ブラグ 5 4は、 燃焼室 5 7の上方略中央に電極を突出させた状態でシリンダへ ッド 5 2に固定されている。 インジェクタ 2 1も燃焼室 5 7の上方で点火プラグ 5 4 と隣り合う位置から燃焼室 5 7内に燃料嘖射孔を突出させた状態でシリンダへッド 5 2に配設されている。  The ignition bracket 54 is fixed to the cylinder head 52 with an electrode projecting approximately at the center above the combustion chamber 57. The injector 21 is also disposed in the cylinder head 52 with the fuel injection hole projecting into the combustion chamber 57 from a position adjacent to the spark plug 5 4 above the combustion chamber 57.
[ 0 0 2 6 ]  [0 0 2 6]
吸気ポート 5 2 aには、 燃焼室 5 7内にタンブル流 (縦の渦気流) Tを生成するた めの吸気制御弁 5 8が配設されている。 吸気制御弁 5 8は、 E C U 1 Aの制御のもと 吸気ポート 5 2 a内で吸気 A Rを偏流させて燃焼室 5 7内にタンブル流 Tを生成させ るための構造である。  An intake control valve 5 8 for generating a tumble flow (vertical vortex flow) T in the combustion chamber 5 7 is disposed in the intake port 5 2 a. The intake control valve 58 has a structure for generating a tumble flow T in the combustion chamber 57 by causing the intake air AR to drift in the intake port 52a under the control of ECU1A.
[ 0 0 2 7 ]  [0 0 2 7]
吸気制御弁 5 8は弁体が板状であって、 吸気ポート 5 2 aの内壁下側に設定した支 軸 5 9を中心に回動するように設定されている。 ここでは図示を省略しているが、 E C U 1 Aにより駆動が制御されるァクチユエータにより吸気制御弁 5 8の開度が調整 される。 そして、 図 2は、 吸気制御弁 5 8を閉じることにより吸気ボード 5 2 a内の 流路を絞って筒内にタンブル流 Tを形成するようにした様子を例示している。 ここで 形成するタンブル流 Tは、 燃焼室 5 7内で吸気弁 5 5側を上昇するように時計回りに 旋回する順タンブル流 Tとなっている。  The intake control valve 58 has a plate-like valve body and is set so as to rotate around a support shaft 59 set on the lower side of the inner wall of the intake port 52a. Although not shown here, the opening degree of the intake control valve 58 is adjusted by an actuator whose drive is controlled by E C U 1 A. FIG. 2 illustrates a state in which a tumble flow T is formed in the cylinder by closing the intake control valve 58 to restrict the flow path in the intake board 52a. The tumble flow T formed here is a forward tumble flow T that turns clockwise so as to rise in the intake valve 55 in the combustion chamber 57.
[ 0 0 2 8 ]  [0 0 2 8]
そして、 E C U 1 Aの制御の下で、 ィンジェクタ 2 1が吸気行程下死点近傍で燃料 F Eを噴射するように設定されている。 インジヱクタ 2 1の噴孔 2 1 H Lはタンブル 流 Tの流れに沿う方向に向けられている。 これにより、 噴射された燃料 F Eはタンブ ル流 Tをアシストして強化する。強化されたタンブル流 Tは点火時期まで維持される。 その結果、 点火時期に混合気の乱れを増大させ、 燃焼速度を適度に向上させることで 良好な燃焼を得ることができる。 [ 0 0 2 9 ] Under the control of the ECU 1 A, the injector 21 is set to inject the fuel FE in the vicinity of the intake stroke bottom dead center. The nozzle hole 2 1 HL of the indicator 21 is directed in the direction along the tumble flow T. As a result, the injected fuel FE assists and strengthens the tumbling flow T. The strengthened tumble flow T is maintained until the ignition timing. As a result, good combustion can be obtained by increasing the turbulence of the air-fuel mixture at the ignition timing and appropriately increasing the combustion speed. [0 0 2 9]
ところで、 内燃機関 5 0が運転状態にあるときには、 燃焼室 5 7内 (筒内) の雰囲 気 (気体の状態) は刻々と変化する。 より具体的には、 内燃機関が低負荷状態にある 場合と、 高負荷状態にある場合とでは筒内の雰囲気が異なる。 筒内に充填される混合 気を構成している空気と燃料との重量比 (AZ F ) は、 一般に負荷によらず理論空燃 比(1 4 . 3前後)に設定されているので少空気量となる低負荷では空気密度が低く、 これとは逆に高負荷では空気密度が高くなる。  By the way, when the internal combustion engine 50 is in an operating state, the atmosphere (gas state) in the combustion chamber 57 (in the cylinder) changes every moment. More specifically, the atmosphere in the cylinder differs between when the internal combustion engine is in a low load state and when it is in a high load state. The weight ratio (AZ F) between the air and the fuel that make up the air-fuel mixture filled in the cylinder is generally set to the theoretical air-fuel ratio (around 14.3) regardless of the load. The air density is low at low loads, and the air density is high at high loads.
[ 0 0 3 0 ]  [0 0 3 0]
ここで、 例えば空気密度が高である高負荷状態の方を基準として、 燃料噴射時にタ ンブル流が強化されるように(噴流効果が得られるように)、ィンジヱクタ 2 1の燃料 噴射の条件を設定することが考えられる。 しかし、 このようにすると、 内燃機関 5 0 がァドリング運転されたときのように空気密度が低いときに、 燃料噴射でタンブル流 を強化できないという不都合が発生する場合がある。  Here, for example, on the basis of the high load state where the air density is high, the fuel injection condition of the injector 21 is set so that the tumble flow is enhanced at the time of fuel injection (so that the jet effect is obtained). It is possible to set. However, in this case, when the air density is low as in the case where the internal combustion engine 50 is in an addling operation, there may be a problem that the tumble flow cannot be enhanced by fuel injection.
[ 0 0 3 1 ]  [0 0 3 1]
上記のように高負荷で空気密度が高い状態に合わせた燃料噴射装条件は、 相対的に 噴霧速度を速くして、 燃料を遠くへ飛ばすような設定となる。 ところが、 この条件設 定を空気密度が低い雰囲気に適用すると、 噴霧された燃料がアシストすべき対象であ るタンブル流を突き抜けて (すなわち、 噴霧がタンブル流の流れをアシストして強化 する仕事をせずに)、燃焼室 5 7の壁面へ衝突する場合がある。 これでは、空気密度が 低く変更された場合には噴流効果が得られないことになる。  As described above, the fuel injection conditions for high load and high air density are set so that the spray speed is relatively high and the fuel is blown away. However, when this condition setting is applied to an atmosphere with a low air density, the sprayed fuel penetrates the tumble flow that is to be assisted (that is, the spray assists in enhancing the flow of the tumble flow. Without impact) may collide with the wall of the combustion chamber 57. This means that if the air density is changed to a low level, the jet effect cannot be obtained.
[ 0 0 3 2 ]  [0 0 3 2]
そして、 上記とは逆に、 低負荷で空気密度が低い状態のときに、 噴流効果が得られ ように噴射条件を設定すると、 反対の不都合が発生する。 すなわち、 内燃機関が高負 荷で空気密度が高い雰囲気では、 インジェクタ 2 1からの噴霧速度が低く過ぎてタン ブル流を強化できないという事態になる。  On the contrary, if the injection conditions are set so that the jet effect can be obtained when the air density is low and the load is low, the opposite inconvenience occurs. That is, in an atmosphere where the internal combustion engine is highly loaded and the air density is high, the spray rate from the injector 21 is too low to strengthen the tumble flow.
よって、図 1で示す内燃機関 5 0には、前述したように噴流効果が得られるように、 E C U 1 Aにより実現される制御装置が適用されている。 以下、 この点について詳述 する。  Therefore, a control device realized by ECU 1 A is applied to the internal combustion engine 50 shown in FIG. 1 so as to obtain the jet effect as described above. This point will be described in detail below.
[ 0 0 3 3 ]  [0 0 3 3]
まず、 内燃機関 5 0で採用している、 筒内に直接に燃料嘖を射することによりタン ブル流をアシストし、 強化するメカニズムの概略を説明する。 インジヱクタ 2 1から噴射された噴霧の 1粒の運動方程式は、 次式 (1) で表わす ことができる。 First, an outline of the mechanism employed in the internal combustion engine 50 for assisting and strengthening the tumble flow by directly injecting fuel into the cylinder will be described. The equation of motion of one spray sprayed from the indicator 21 can be expressed by the following equation (1).
ma= (-C d X p X V2X S) /2 - · · (1) ma = (-C d X p XV 2 XS) / 2-(1)
ここで、 m:嘖霧粒の質量  Where, m: mass of fog
a :噴霧の進行方向加速度  a: Acceleration of spray direction
C d :噴霧粒の空気抵抗係数  C d: Air resistance coefficient of spray particles
P :筒内の空気密度  P: Air density in the cylinder
V:噴霧速度  V: Spraying speed
s:噴霧粒の前面投影面積 である。  s: Front projected area of spray particles.
上記式 (1) を変形して、 式 (2) と表わすことができる。  The above equation (1) can be modified and expressed as equation (2).
a= (-C d X ,ο X V2X S) / ( 2 X m) - · - (2) a = (-C d X, ο XV 2 XS) / (2 X m)---(2)
[0034]  [0034]
ここで、 直噴型の内燃機関の場合には、 レイノルズ数 (Reynolds number) が十分 に大きいので、 C d値は条件によらず略一定となる。  Here, in the case of a direct injection type internal combustion engine, the Reynolds number is sufficiently large, so the Cd value is substantially constant regardless of the conditions.
なお、 レイノルズ数は、 流体中を運動する物体を特徴付ける指標で、 速度 X長さ ÷ 流体の粘性係数によって表されるものである。 レイノルズ数は、 物体が大きいほど、 速度が速いほど、 そして粘性が小さいほどその値が大きくなる。 よって、 レイノルズ 数が大きいということは、 相対的に慣性作用が強い流れということになる。  The Reynolds number is an index that characterizes an object moving in a fluid, and is expressed by velocity X length ÷ fluid viscosity coefficient. The Reynolds number increases as the object is larger, the speed is faster, and the viscosity is smaller. Therefore, a large Reynolds number means a flow with relatively strong inertial action.
[0035]  [0035]
筒内の空気密度 pは、 定数 C_ (1 + 0.00367 X空気温度) X空気絶対圧、 で求めら れる。 また、 噴霧粒半径 rとすると、 噴霧粒の前面投影面積 Sは r 2に比例し、 噴霧 粒の質量 mは r 3に比例することになる。 The air density p in the cylinder is obtained by the constant C_ (1 + 0.00367 X air temperature) X air absolute pressure. If the spray particle radius is r, the front projected area S of the spray particle is proportional to r 2 and the mass m of the spray particle is proportional to r 3 .
[0036]  [0036]
よって、 上記式 (2) は、 更に下記の概略式 (3) のように表示できる。  Therefore, the above formula (2) can be further expressed as the following general formula (3).
a= (- (定数) X空気密度 / (噴霧粒半径 r X噴霧速度 V) · · · (3) 上記式 (3) は、 空気密度 pが増加したときに、 噴霧粒半径 rをこれに比例させて 大きくすれば、 (空気密度 /o) / (噴霧粒半径 r) は変化せず、時間に対する噴霧飛行 距離を略同一にすることができることを示している。 よって、 筒内の空気密度が変化 する場合には、 噴霧粒半径 rを空気密度 pに比例させて変化させることで、 前述した ような噴霧速度が速過ぎてタンブル流を突き抜けるなどの事態を抑制できる。 これに より、 燃料噴射によりタンブル流をアシストして強化するという 「噴流効果」 を確実 に得ることができる。 a = (-(constant) X air density / (spray particle radius r X spray velocity V) ··· (3) The above equation (3) shows that when the air density p increases, the spray particle radius r is When proportionally increased, (air density / o) / (spray particle radius r) does not change, indicating that the spray flight distance with respect to time can be made substantially the same. Is changed in proportion to the air density p, it is possible to suppress the above-mentioned situation such as the spray velocity being too fast and penetrating the tumble flow. Reliable `` jet effect '' that assists and strengthens tumble flow by injection Can get to.
[0037]  [0037]
本願発明者は、 以上で説明したメカニズムに着目し、 筒内の空気密度に応じて噴霧 粒径を調整して噴流効果を確実に得ることができる制御装置を案出したものである。 そして、 前述したように内燃機関 50の制御装置は、 ECU 1 Aによって実現されて レ、る。 ECU 1 Aは、 筒内の空気密度を確認する空気密度確認手段及び燃料噴霧制御 手段として機能する。 ECU1Aは、 センサ 16、 17の出力に基づいて筒内の空気 密度 Pを推定することで確認し、 そのときの筒内の雰囲気に適した嘖霧条件を設定し て、 インジヱクタ 21から燃料 FEを噴射させる。 よって、 筒内に形成されるタンブ ル流を安定的に強化することができる。  The inventor of the present application pays attention to the mechanism described above, and has devised a control device that can reliably obtain the jet effect by adjusting the spray particle size according to the air density in the cylinder. As described above, the control device for the internal combustion engine 50 is realized by the ECU 1A. The ECU 1A functions as an air density confirmation means for confirming the air density in the cylinder and a fuel spray control means. The ECU 1A confirms by estimating the air density P in the cylinder based on the outputs of the sensors 16 and 17, sets the fog conditions suitable for the atmosphere in the cylinder at that time, and sends the fuel FE from the injector 21. Let spray. Therefore, the tumbling flow formed in the cylinder can be reinforced stably.
[0038]  [0038]
なお、 図 1で示すように内燃機関 50には、 回転数 N Eに比例した出力パルスを発 生するクランク角センサ 71、内燃機関 50の水温を検出するための水温センサ 72、 アクセルペダル (図示省略) の踏み込み量 (アクセル開度) を検知するためのァクセ ルセンサ 73など各種のセンサが配設されて ECU 1 Aに供給されている。 よって、 ECU 1 Aは内燃機関 50の運転状態も確認できる。  As shown in FIG. 1, the internal combustion engine 50 includes a crank angle sensor 71 that generates an output pulse proportional to the rotational speed NE, a water temperature sensor 72 for detecting the water temperature of the internal combustion engine 50, an accelerator pedal (not shown) ) Various sensors such as an accelerator sensor 73 for detecting the amount of depression (accelerator opening) are provided and supplied to ECU 1A. Therefore, the ECU 1 A can also confirm the operating state of the internal combustion engine 50.
[0039]  [0039]
ECU 1 Aは、図示しない CPU (Central Processing Unit:中央演算処理装置) と、 ROM (Read Only Memory) と、 RAM (Random Access Memory) と、 入出 力回路などを有して構成されている。 ROMは CPUが実行する種々の処理が記述さ れたプログラムや、 プログラムで使用する一連のデータなどを格納するための構成で あり、 本実施例では内燃機関 50制御用プログラムのほか、 吸気圧センサ 16及び吸 気温度センサ 17から筒内の空気密度を推定して、 これに基づいて噴霧粒径を設定す るプログラムなどが格納してある。  The ECU 1A includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input / output circuit, and the like (not shown). The ROM is configured to store a program in which various processes executed by the CPU are described and a series of data used in the program. In this embodiment, in addition to the program for controlling the internal combustion engine 50, an intake pressure sensor A program for estimating the air density in the cylinder from 16 and the intake temperature sensor 17 and setting the spray particle size based on this is stored.
[0040]  [0040]
本実施例では、 ECU 1 Aが高圧ポンプ 24を制御して燃圧を変更する。 そして、 インジェクタ 21からの燃料噴射圧を変更する。 ECU 1 Aは吸気圧センサ 16及び 吸気温度センサ 17の出力から燃焼室 57内の空気密度を推定し、 この推定した結果 に応じて燃圧を変更する。 より具体的には、 ECU1Aは、 空気密度が高くなる方へ 変化した場合には、 これに比例させて噴霧粒径を大きくする。 これとは逆に、 空気密 度が低くなる方へ変化した場合には、 これに比例させて噴霧粒径を小さくする。 [0041] In this embodiment, the ECU 1 A controls the high pressure pump 24 to change the fuel pressure. Then, the fuel injection pressure from the injector 21 is changed. The ECU 1 A estimates the air density in the combustion chamber 57 from the outputs of the intake pressure sensor 16 and the intake temperature sensor 17, and changes the fuel pressure according to the estimated result. More specifically, the ECU 1A increases the spray particle size in proportion to the air density when the air density changes. Conversely, if the air density changes toward lowering, the spray particle size is reduced in proportion to this. [0041]
図 3は、 燃料噴射時における筒内の空気密度と噴流効果を得るのに適した噴霧粒径 との関係例を示した図である。 ECU 1 Aは、 図 3で示すような空気密度と好ましい 噴霧粒径 (目標の噴霧粒径) とを関連付けたテーブルを ROMなどに格納している。 よって、 ECU 1 Aは前述したように吸気圧センサ 16及び吸気温度センサ 1 7の出 力から空気密度を推定したときに、 目標の噴霧粒径を特定する。 そして、 ECU1A は、 インジェクタ 21からの噴霧粒径が目標の噴霧粒径となるように高圧ポンプ 24 で燃圧を制御する。  FIG. 3 shows an example of the relationship between the air density in the cylinder during fuel injection and the spray particle size suitable for obtaining the jet effect. ECU 1 A stores a table associating the air density and the preferred spray particle size (target spray particle size) as shown in FIG. Therefore, the ECU 1 A specifies the target spray particle size when the air density is estimated from the outputs of the intake pressure sensor 16 and the intake temperature sensor 17 as described above. The ECU 1A controls the fuel pressure with the high-pressure pump 24 so that the spray particle diameter from the injector 21 becomes the target spray particle diameter.
[0042]  [0042]
図 4は、 上記 ECU 1 Aによって実現される内燃機関 50の制御装置が実行するタ ンブル流強化の処理をまとめたフローチャートである。 ECU1Aは、 内燃機関 50 のイダニッシヨンスィッチがオン (ON) されたときに、 このルーチンを起動する。 ECU1Aは、 図 1の吸気圧センサ 16の出力からインテークマ二ホールド 15内の 吸気圧、また吸気温度センサ 17の出力から吸気温度を確認する(S 101)。そして、 これら出力に基づいて、 筒内の空気密度を推定する (S 102)。 なお、 図 1で示すよ うに、 ィンテークマ二ホールド 15に配備した吸気圧センサ 16及び吸気温度センサ 17の出力を利用すると筒内の空気密度を比較的容易に推定できる。 しかし、 このよ うに空気密度を推定するのは、 空気密度を確認する場合の単なる一実施例である。 内 燃機関 50の筒内圧を検出する筒内圧センサを配備してある場合は、 その出力を利用 してもよい。 また、 インテークマ二ホールドではなく、 サージタンク 14に吸気圧セ ンサ 16及び吸気温度センサ 17を配設して吸気圧及び吸気温度を検出してもよレ、。  FIG. 4 is a flowchart summarizing the tumble flow enhancement processing executed by the control device for the internal combustion engine 50 realized by the ECU 1A. The ECU 1A starts this routine when the internal switch of the internal combustion engine 50 is turned on. The ECU 1A confirms the intake air pressure in the intake hold 15 from the output of the intake pressure sensor 16 in FIG. 1 and the intake air temperature from the output of the intake air temperature sensor 17 (S101). Based on these outputs, the air density in the cylinder is estimated (S102). As shown in FIG. 1, the air density in the cylinder can be estimated relatively easily by using the outputs of the intake pressure sensor 16 and the intake air temperature sensor 17 provided in the internal hold 15. However, estimating the air density in this way is only one example of confirming the air density. If an in-cylinder pressure sensor that detects the in-cylinder pressure of the internal combustion engine 50 is provided, the output may be used. Also, instead of intake hold, the intake pressure sensor 16 and the intake air temperature sensor 17 may be arranged in the surge tank 14 to detect the intake air pressure and the intake air temperature.
[0043]  [0043]
つぎに、 ECU 1 Aは求めた空気密度が変化している力否かを確認する(S 103)。 ECU 1 Aは所定周期で上記ステップ S 101〜S 103を実行して、 空気密度の変 化を周期的に監視する。 そして、 ECU 1 Aは、 ステップ S 103で空気密度の変化 を確認した場合、さらにそれ以前と比較して空気密度が増加した力否かを確認する( S 104)。  Next, the ECU 1A confirms whether or not the obtained air density is changing (S103). The ECU 1A executes the above steps S101 to S103 at a predetermined cycle to periodically monitor the change in air density. Then, when the change in the air density is confirmed in step S103, the ECU 1A further confirms whether or not the air density has increased as compared to before (S104).
[0044]  [0044]
上記ステップ S 104で、 空気密度が増加していると判断した場合、. ECU1Aは 噴霧粒径が空気密度と比例して拡大するように燃圧を制御する (S 105)。 ECU 1 Aは、 インジェクタ 21への燃圧を変更する高圧ポンプ 24を制御して噴霧圧を変更 する。 これによりイン ェクタ 2 1からの噴霧粒径を拡大させ、 そのときに筒内に形 成されているタンブル流を確実に強化する。 If it is determined in step S104 that the air density is increasing, the ECU 1A controls the fuel pressure so that the spray particle size increases in proportion to the air density (S105). ECU 1 A controls the high pressure pump 24 that changes the fuel pressure to the injector 21 and changes the spray pressure To do. This enlarges the spray particle diameter from the injector 21 and surely strengthens the tumble flow formed in the cylinder at that time.
[ 0 0 4 5 ]  [0 0 4 5]
一方、 上記ステップ S 1 0 4で空気密度が増加していないと判断されるのは、 空気 密度が減少している場合である。 このときには、 E C U 1 Aは噴霧粒径が空気密度と 比例して縮小 (減少) するように燃圧を制御する (S 1 0 6 )。 この場合も同様に、 E C U 1 Aはインジェクタ 2 1への燃圧を変更する高圧ポンプ 2 4を制御して噴霧圧を 変更する。 これによりインジェクタ 2 1からの噴霧粒径を小さくさせて、 そのときに 筒内に形成されているタンブル流を確実に強化する。  On the other hand, it is determined that the air density has not increased in step S 10 4 above when the air density has decreased. At this time, E C U 1 A controls the fuel pressure so that the spray particle size decreases (decreases) in proportion to the air density (S 1 0 6). In this case as well, E C U 1 A controls the high-pressure pump 24 that changes the fuel pressure to the injector 21 to change the spray pressure. This reduces the spray particle diameter from the injector 21 and reliably strengthens the tumble flow formed in the cylinder at that time.
[ 0 0 4 6 ]  [0 0 4 6]
以上で説明した実施例 1の制御装置によると、 筒内の空気密度の変化に応じてィン ジェクタからの噴霧粒径が調整されるので、 内燃機関 5 0の変化に対処して燃料噴射 したときにタンブル流を確実に強化できる。 よって、 このような制御装置を採用する 内燃機関は、 良好な燃焼及び排気ェミツションを実現できる内燃機関として提供でき る。 '  According to the control device of the first embodiment described above, since the spray particle diameter from the injector is adjusted according to the change in the air density in the cylinder, the fuel was injected in response to the change in the internal combustion engine 50. Sometimes the tumble flow can be reliably strengthened. Therefore, an internal combustion engine that employs such a control device can be provided as an internal combustion engine that can achieve good combustion and exhaust emission. '
[ 0 0 4 7 ]  [0 0 4 7]
なお、 上記実施例 1の制御装置は、 筒内の空気密度の変化に比例させて噴霧粒径を 変更することにより 「噴流効果」 を確実に得るものである。 ここで、 筒内の空気密度 が低いことは、 内燃機関 5 0が低負荷にあることと同値であり、 また、 筒内の空気密 度が高いことは、 内燃機関 5 0が高負荷にあることと同値であるように理解される可 能性がある。 すなわち、 内燃機関 5 0のアイ ドル運転時などは軽負荷であって空気密 度が低い。 また、 内燃機関 5 0の高速時などは高負荷であって空気密度が高い。 よつ て、 一見すると、 筒内の空気密度に応じて燃料の噴霧粒径を調整することは、 内燃機 関 5 0の負荷状態に応じて燃料の噴霧粒径を調整することと同じことであるかのよう に理解される可能性がある。 しかしながら、 この理解は誤りである。 次の説明から、 これが誤りであることが分かる。  In addition, the control device of the first embodiment can reliably obtain the “jet effect” by changing the spray particle size in proportion to the change in the air density in the cylinder. Here, the low air density in the cylinder is equivalent to the low load of the internal combustion engine 50, and the high air density in the cylinder means that the internal combustion engine 50 is in a high load. May be understood to be equivalent to That is, when the internal combustion engine 50 is idling, etc., the load is light and the air density is low. Further, when the internal combustion engine 50 is at high speed, the load is high and the air density is high. Therefore, at first glance, adjusting the fuel spray particle size according to the air density in the cylinder is the same as adjusting the fuel spray particle size according to the load state of the internal combustion engine 50. It may be understood as if. However, this understanding is incorrect. The following explanation shows that this is an error.
[ 0 0 4 8 ]  [0 0 4 8]
一般的なガソリンエンジンでストイキは、 AZ F値が 1 4 . 5程度である。これは、 ガソリンが 「1」 に対して、 空気が 「1 4 . 5」 の重量ということである。 これに対 して、 ストィキより薄い (リーン) 混合気で燃焼させるリーンバーン (Lean burn) で燃焼を行うエンジンも知られている。 このリーンバーンエンジンの場合は、 ガソリ ンが 「1」 に対して、 例えば空気が 「2 0」 以上とされる。 ここで、 内燃機関の負荷 はガソリン重量と理解できるので、 ガソリン重量が共に 「1」 である、 ストィキとリ ーンバーンとでは略同一の負荷となる。 よって、 内燃機関の負荷状態に応じて、 燃料 の噴霧粒径を調整するとした場合には噴霧粒径を変化させないことになる。 The stoichiometric gasoline engine has an AZ F value of about 14.5. This means that gasoline is “1” and air is “14.5”. On the other hand, there is also known an engine that burns with a lean burn that is burned with a lean air-fuel mixture. For this lean burn engine, For example, air is “2 0” or more for “1”. Here, since the load of the internal combustion engine can be understood as gasoline weight, the stoichiometric and lean burn are almost the same load, where the gasoline weight is both “1”. Therefore, when the spray particle size of the fuel is adjusted according to the load state of the internal combustion engine, the spray particle size is not changed.
[ 0 0 4 9 ]  [0 0 4 9]
し力 し、 空気密度からストィキ状態とリーンバーン状態とを比較すると、 リーンバ —ンの方が明らかに空気密度が高い。 よって、 ストィキからリーンバーン状態に変化 したときには、 空気密度の変化に比例して噴霧粒径を大きくすることになる。 すなわ ち、 この場合には前述した実施例 1の制御装置が機能して、 空気密度に応じて噴霧粒 径が拡大するように燃圧を調整する。 この説明から実施例 1に係る手法が、 内燃機関 の負荷状態に応じて噴霧粒径を調整するのとは異なることが理解される。  However, when comparing the stoichiometric state with the lean burn state based on the air density, the lean burn clearly has a higher air density. Therefore, when the state changes from stoichiometric to lean burn, the spray particle size increases in proportion to the change in air density. That is, in this case, the control device of the first embodiment described above functions and adjusts the fuel pressure so that the spray particle diameter is expanded according to the air density. From this explanation, it is understood that the method according to the first embodiment is different from adjusting the spray particle size in accordance with the load state of the internal combustion engine.
実施例 2 Example 2
[ 0 0 5 0 ]  [0 0 5 0]
更に、 火花点火内燃機関に適用される実施例 2に係る制御装置について説明する。 上記実施例 1は、 空気密度の変化に応じて噴霧粒径を変更するものであった。 実施例 2は燃料噴射のパターンを変更することにより、 筒内の空気密度の変化に対処して確 実に噴流効果が得られるように構成したものである。 より具体的には、 実施例 1の制 御装置では噴霧粒径を空気密度と比例するように変更するものであつたが、 実施例 2 の制御装置では、 空気密度が低くなるほど噴霧回数を増加させるという対処を実行す る。 本願発明者は、 インジェクタ 2 1の噴霧回数を変更することによつても、 噴霧粒 径を変更する場合と同様に筒内の空気密度の変化に対処してタンブル流をアシストで きることを確認したものである。 よって、 実施例 2は、 制御装置となる E C Uによつ て実行される空気密度変化への対処が、 噴霧粒径による調整から噴霧回数による調整 に変わるだけである。 よって、 制御装置としてのハード構成は、 実施例 2の場合も実 施例 1と同様である。そこで、実施例 2は、図 1、図 2を流用して説明する。 ただし、 —実施例 1の場合と実施例 2の場合とでは、 E C Uが実行する制御内容が異なる。 よつ て、 実施例 1では E C U 1 A、 実施例 2では E C U 1 Bとして区別している。  Furthermore, a control device according to Embodiment 2 applied to a spark ignition internal combustion engine will be described. In Example 1, the spray particle size was changed in accordance with the change in air density. The second embodiment is configured to change the fuel injection pattern to cope with the change in the air density in the cylinder and to reliably obtain the jet effect. More specifically, in the control device of Example 1, the spray particle size was changed to be proportional to the air density, but in the control device of Example 2, the number of sprays increased as the air density decreased. Take action to make it happen. The present inventor confirmed that changing the number of sprays of the injector 21 also can assist the tumble flow by coping with the change in the air density in the cylinder as in the case of changing the spray particle size. It is a thing. Therefore, in the second embodiment, the response to the air density change executed by the ECU which is the control device is merely changed from the adjustment based on the spray particle size to the adjustment based on the number of sprays. Therefore, the hardware configuration as the control device is the same as in the first embodiment even in the second embodiment. Therefore, the second embodiment will be described with reference to FIGS. However, the control contents executed by ECU are different between the case of the first embodiment and the case of the second embodiment. Therefore, it is distinguished as E C U 1 A in Example 1 and E C U 1 B in Example 2.
[ 0 0 5 1 ]  [0 0 5 1]
図 5は、 燃料噴射時における筒内の空気密度と噴流効果を得るのに適した嘖霧回数 との関係を模式的に示した図である。 この図 5では、 空気密度が高い場合 (大気に近 い場合) は 1回噴霧であるが、 空気密度が低い程 (負圧側になる程) に噴霧回数が増 加するように設定してある。 なお、 ここで噴霧回数を増加するというのは、 1回嘖霧 と同じ噴射量を複数回に増加するというではなく、 1回分の噴射量を複数に分割して 少量ずつ噴射する操作である。 ECU 1 Bは、 図 5で示すような筒内の空気密度とそ のときの好ましい噴霧回数 (目標の噴霧回数) とを関連付けたテーブルを ROMなど に格納している。 よって、 ECU 1 Bは吸気圧センサ 1 6及び吸気温度センサ 1 7の 出力から空気密度を推定したときに、 目標の噴霧回数を特定する。 そして、 ECU 1 Bは、 目標の噴霧回数でインジヱクタ 2 1の開弁動作を実行する。 FIG. 5 is a diagram schematically showing the relationship between the air density in the cylinder during fuel injection and the number of fogs suitable for obtaining the jet effect. In Fig. 5, spraying is performed once when the air density is high (close to the atmosphere), but the number of sprays increases as the air density decreases (as the pressure decreases). It is set to be added. Note that increasing the number of sprays here is not an increase in the same injection amount as in one fog, but an operation in which the injection amount for one injection is divided into a plurality of injections in small amounts. The ECU 1 B stores a table associating the air density in the cylinder as shown in FIG. 5 with a preferable number of sprays at that time (target number of sprays) in a ROM or the like. Therefore, the ECU 1 B specifies the target number of sprays when the air density is estimated from the outputs of the intake pressure sensor 16 and the intake temperature sensor 17. Then, the ECU 1 B executes the valve opening operation of the indicator 21 with the target number of sprays.
[0052]  [0052]
図 6は、 上記 ECU 1 Bによって実現される制御装置が実行するタンブル流の強化 の処理をまとめたフローチャートである。 ECU1 Bは、 内燃機関 50のィグニッシ ヨンスィッチがオン(ON) されたときに、 このルーチンを起動する。 ECU1 Bは、 図 1の吸気圧センサ 1 6の出力からインテークマ二ホールド 1 5内の吸気圧、 また吸 気温度センサ 1 7の出力から吸気温度を確認し(S 201)、 これら出力に基づいて空 気密度を推定する (S 202)。 更に、 ECU 1 Bは空気密度が変化している力否かを 確認し (S 203)、 空気密度の変化を確認した場合には、 それ以前と比較して空気密 度が増加しかた否かを確認する (S 204)。 ここまでのステップ S 201〜S 204 は、 実施例 1と同様であるが、 これ以後の処理が異なる。  FIG. 6 is a flowchart summarizing the tumble flow enhancement processing executed by the control device realized by the ECU 1B. The ECU 1B starts this routine when the ignition switch of the internal combustion engine 50 is turned on. The ECU 1 B checks the intake pressure in the intake hold 15 from the output of the intake pressure sensor 16 in FIG. 1 and the intake air temperature from the output of the intake temperature sensor 17 (S 201). To estimate the air density (S 202). Furthermore, ECU 1 B confirms whether or not the air density is changing (S 203). If the air density changes, the ECU 1 B determines whether or not the air density has increased compared to before. Check (S204). Steps S201 to S204 so far are the same as those in the first embodiment, but the subsequent processing is different.
[0053]  [0053]
上記ステップ S 204で、 空気密度が増加していると判断した場合、 ECU 1 Bは 増加した空気密度の変化とは逆に噴霧回数を減少させる (S 205)。 ECU 1 Bはィ ンジェクタ 21の開弁動作を制御して噴霧回数を減少させて、 そのときに筒内に形成 されているタンブル流を確実にアシストして強化する。 ただし、 最も噴霧回数を減少 させた場合でも、 1回の燃料噴射は実行する (図 5参照)。  If it is determined in step S204 above that the air density has increased, ECU 1B decreases the number of sprays as opposed to the increased air density change (S205). The ECU 1 B controls the valve opening operation of the injector 21 to reduce the number of sprays, and reliably assists and strengthens the tumble flow formed in the cylinder at that time. However, even when the number of sprays is reduced the most, one fuel injection is performed (see Fig. 5).
[0054]  [0054]
一方、 上記ステップ S 204で空気密度が増加していないと判断されるのは、 空気 密度が減少している場合である。 このときには、 ECU 1 Bは空気密度の変化と逆に 噴霧回数を増加させる (S 206)。 この場合も同様に、 ECU 1 Bはインジェクタ 2 1の開弁動作を制御して噴霧回数を増加させて、 そのときに筒内に形成されているタ ンブル流を確実にアシストする。  On the other hand, it is determined in step S204 that the air density has not increased when the air density has decreased. At this time, the ECU 1 B increases the number of sprays contrary to the change in the air density (S 206). In this case as well, the ECU 1 B controls the valve opening operation of the injector 21 to increase the number of sprays, and reliably assists the tumble flow formed in the cylinder at that time.
[0055]  [0055]
以上で説明した実施例 2の制御装置によると、 筒内の空気密度の変化に対応して嘖 霧回数が変更されるので、 内燃機関 5 0の状態変化に対処しながら噴流効果を確実に 得ることができる。 According to the control device of the embodiment 2 described above, it is possible to cope with the change in the air density in the cylinder. Since the number of fogs is changed, it is possible to reliably obtain the jet effect while coping with changes in the state of the internal combustion engine 50.
[ 0 0 5 6 ]  [0 0 5 6]
以上で説明した実施例 1の E C U 1 Aは、 空気密度変化に比例して噴霧粒径を調整 することで、 燃料の嘖霧がタンブル流を突き抜けて筒内壁面に到達しないようにしな いように調整してタンブル流を確実に強化できる。 また、 実施例 2の E C U 1 Bは、 空気密度が低いほど噴霧回数を増加することで同様にタンブル流を強化できる。 よつ て、 実施例 1、 2の制御装置を適用した内燃機関は、 筒内の状況変化に対応して形成 したタンブル流を常に強化できるので燃焼及び排気の改善を図ることができる。なお、 実施例 1と実施例 2との場合を組合せ、 空気密度の変化に対応して、 噴霧粒径及び噴 霧回数を同時に調整する制御装置としてもよい。 この場合には、 それぞれの調整範囲 The ECU 1 A of the first embodiment described above adjusts the spray particle size in proportion to the change in air density so that the fuel mist does not penetrate the tumble flow and reach the inner wall surface of the cylinder. The tumble flow can be reliably strengthened by adjusting to. Further, ECU 1 B of Example 2 can similarly strengthen the tumble flow by increasing the number of sprays as the air density is lower. Therefore, the internal combustion engine to which the control devices of Embodiments 1 and 2 are applied can always enhance the tumble flow formed in response to the situation change in the cylinder, so that combustion and exhaust can be improved. In addition, it is good also as a control apparatus which adjusts a spray particle diameter and the frequency | count of spraying simultaneously according to the change of an air density combining the case of Example 1 and Example 2. FIG. In this case, the respective adjustment range
(粒径と噴霧回数) を小さくすることができる。 (Particle size and number of sprays) can be reduced.
実施例 3 Example 3
[ 0 0 5 7 ]  [0 0 5 7]
以上で説明した実施例 1、 実施例 2は、 筒内 (燃焼室 5 7内) にタンブル流 (縦の 渦気流) を形成する場合の実施例であった。 筒内にスワール流 (横の渦気流) 形成す ることによつても同様の効果を得ることができる。 以下で説明する実施例 3は、 スヮ 一ル流を形成する場合である。 図 7は、 実施例 3に係る制御装置が適用されている内 燃機関 1 5 0を含む内燃機関システム 2 0 0を模式的に示した図である。 なお、 図 7 においては、 図 1と同じ部位に同じ符号を付して重複する説明を省略する。  Example 1 and Example 2 described above are examples in the case where a tumble flow (vertical vortex flow) is formed in the cylinder (inside the combustion chamber 57). The same effect can be obtained by forming a swirl flow (lateral vortex flow) in the cylinder. Example 3 described below is a case where a scroll flow is formed. FIG. 7 is a diagram schematically showing an internal combustion engine system 200 including an internal combustion engine 150 to which the control device according to the third embodiment is applied. In FIG. 7, the same parts as those in FIG.
[ 0 0 5 8 ]  [0 0 5 8]
内燃機関 1 5 0の場合には吸気ポート 5 2 aに、 燃焼室 5 7内にスワール流 Sを生 成するための吸気制御弁 1 5 8が配設されている。 この吸気制御弁 1 5 8は、 E C U 1 Cの制御のもと吸気ポート 5 2 a内で吸気 A Rを偏流させて燃焼室 5 7内にスヮー ル流 Sを生成させる。 吸気制御弁 1 5 8は板状であって、 吸気ポート 5 2 aの内壁側 部に設定した支軸 1 5 9を中心に回動するように設定されている。上述した実施例 1、 2では弁体が吸気ポート 5 2 a内で下側に寝るように配置され、 斜めに起き上がるよ うな姿勢を形成してタンブル流を形成していた。 本実施例 3では、 弁体が側部から横 斜めに出て吸気ポート 5 2 a内を絞ることでスワール流 Sを形成する。 なお、 スヮー ル流 Sを形成する場合についても、 吸気行程の下死点近傍で燃料 F Eを噴射するよう に設定しておくのが好ましい。 これにより、 噴射した燃料 F Eでスワール流 Sを確実 にアシストして強化できる。 In the case of the internal combustion engine 150, an intake control valve 1558 for generating a swirl flow S in the combustion chamber 57 is provided in the intake port 52a. This intake control valve 1 5 8 generates a spool flow S in the combustion chamber 5 7 by deflecting the intake AR in the intake port 5 2 a under the control of the ECU 1 C. The intake control valve 15 8 is plate-shaped and is set so as to rotate about a support shaft 15 9 set on the inner wall side of the intake port 52a. In Embodiments 1 and 2 described above, the valve body is arranged so as to lie down in the intake port 5 2 a, and forms a tumble flow by forming a posture that rises obliquely. In the third embodiment, the swirl flow S is formed by the valve body coming out obliquely from the side and narrowing the inside of the intake port 52a. It should be noted that when the scale flow S is formed, it is preferable to set the fuel FE to be injected near the bottom dead center of the intake stroke. This ensures swirl flow S with the injected fuel FE. Can assist and strengthen.
[0059]  [0059]
内燃機関システム 200の ECU1 Cは、 実施例 1の ECU 1 Aのように筒内の空 気密度の変化に応じてィンジェクタからの噴霧粒径を制御するようにしてもよいし、 実施例 2の ECU1 Bのように筒内の空気密度の変化に応じて噴霧回数を制御するよ うにしてもよレ、。 内燃機関システム 200は内燃機関 150の変化に対処して燃料噴 射したときにスワール流を確実に強化できる。 よって、 このような制御装置を採用す る内燃機関 150は、 良好な燃焼及び排気ェミツションを実現できる内燃機関として 提供できる。  The ECU 1 C of the internal combustion engine system 200 may control the spray particle diameter from the injector in accordance with the change in the air density in the cylinder, like the ECU 1 A of the first embodiment. As with ECU1B, the number of sprays may be controlled according to changes in the air density in the cylinder. The internal combustion engine system 200 can reliably enhance the swirl flow when fuel is injected in response to changes in the internal combustion engine 150. Therefore, the internal combustion engine 150 that employs such a control device can be provided as an internal combustion engine that can realize good combustion and exhaust emission.
[0060]  [0060]
また、 以上で説明した実施例 1、 実施例 2はタンブル流を形成する場合、 また実施 例 3はスワール流を形成する場合を一例として示すものである。 タンブル流とスヮー ル流とを組合わせて め渦気流を形成する場合にも本発明を同様に適用できる。  In addition, Example 1 and Example 2 described above show a case where a tumble flow is formed, and Example 3 shows a case where a swirl flow is formed as an example. The present invention can be similarly applied to a case where a vortex air flow is formed by combining a tumble flow and a scale flow.
[0061]  [0061]
以上本発明の好ましい実施形態について詳述したが、 本発明は係る特定の実施形態 に限定されるものではなく、 特許請求の範囲に記載された本発明の要旨の範囲内にお いて、 種々の変形 ·変更が可能である。  Although the preferred embodiment of the present invention has been described in detail above, the present invention is not limited to the specific embodiment, and various modifications can be made within the scope of the gist of the present invention described in the claims. Deformation · Change is possible.

Claims

請求の範囲 The scope of the claims
[ 1 ] 燃料が噴射される筒内の空気密度を確認する空気密度確認手段と、 燃料噴射時の前記空気密度に基づいて、 前記燃料の噴霧粒径及び噴霧回数の少なく とも一方を制御する燃料噴霧制御手段とを備える、 ことを特徴とする筒内噴射式火花 点火内燃機関の制御装置。  [1] An air density confirmation means for confirming an air density in a cylinder into which fuel is injected, and a fuel that controls at least one of the spray particle size and the number of sprays based on the air density at the time of fuel injection An in-cylinder injection spark ignition internal combustion engine control device comprising: a spray control means.
[ 2 ] 前記燃料噴霧制御手段は、 噴射された燃料が前記渦気流を突き抜けないよ うに、 前記噴霧粒径及び噴霧回数の少なくとも一方を制御する、 ことを特徴とする請 求項 1に記載の筒内噴射式火花点火内燃機関の制御装置。  [2] The fuel spray control means controls at least one of the spray particle size and the number of sprays so that the injected fuel does not penetrate the vortex airflow. In-cylinder injection spark ignition internal combustion engine control device.
[ 3 ] 前記空気密度確認手段は、 前記筒内に吸気を供給する吸気通路の吸気圧及 び吸気温度に基づいて、 前記空気密度を推定する、 ことを特徴とする請求項 1に記載 の筒内噴射式火花点火内燃機関の制御装置。  [3] The cylinder according to claim 1, wherein the air density confirmation unit estimates the air density based on an intake pressure and an intake temperature of an intake passage that supplies intake air into the cylinder. A control device for an internal injection spark ignition internal combustion engine.
[ 4 ] 前記燃料噴霧制御手段は、 前記空気密度に比例して前記噴霧粒径を変更す る、 ことを特徴とする請求項 1に記載の筒内噴射式火花点火内燃機関の制御装置。  4. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 1, wherein the fuel spray control means changes the spray particle size in proportion to the air density.
[ 5 ] 前記燃料噴霧制御手段は、 前記空気密度が低いほど前記噴霧回数を増加さ せる、 ことを特徴とする請求項 1に記載の筒内噴射式火花点火内燃機関の制御装置。  5. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 1, wherein the fuel spray control means increases the number of sprays as the air density is lower.
[ 6 ] 前記渦気流がタンブル流であって、  [6] The vortex flow is a tumble flow,
前記燃料噴霧制御手段は、 吸気下死点近傍で燃料を噴射させることにより前記タン ブル流をアシストして強化する、 ことを特徴とする請求項 1から 5のいずれかに記載 の筒内噴射式火花点火内燃機関の制御装置。  The in-cylinder injection type according to claim 1, wherein the fuel spray control means assists and strengthens the tumble flow by injecting fuel in the vicinity of an intake bottom dead center. Control device for spark ignition internal combustion engine.
[ 7 ] 前記渦気流がスワール流であって、  [7] The vortex flow is a swirl flow,
前記燃料噴霧制御手段は、 吸気下死点近傍で燃料を噴射させることにより前記スヮ 一ル流をアシストして強化する、 ことを特徴とする請求項 1から 5のいずれかに記載 の筒内噴射式火花点火内燃機関の制御装置。  The in-cylinder according to any one of claims 1 to 5, wherein the fuel spray control means assists and strengthens the scroll flow by injecting fuel near an intake bottom dead center. A control device for an injection spark ignition internal combustion engine.
PCT/JP2008/053338 2007-03-06 2008-02-20 Control device for in-cylinder injection type spark ignition internal combustion engine WO2008111392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007056206A JP2008215266A (en) 2007-03-06 2007-03-06 Control device for cylinder injection type spark ignition internal combustion engine
JP2007-056206 2007-03-06

Publications (1)

Publication Number Publication Date
WO2008111392A1 true WO2008111392A1 (en) 2008-09-18

Family

ID=39759334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053338 WO2008111392A1 (en) 2007-03-06 2008-02-20 Control device for in-cylinder injection type spark ignition internal combustion engine

Country Status (2)

Country Link
JP (1) JP2008215266A (en)
WO (1) WO2008111392A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010057726A1 (en) * 2008-11-21 2010-05-27 Robert Bosch Gmbh Gas feeding module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179143A (en) * 1987-01-19 1988-07-23 Mazda Motor Corp Fuel injection device for engine
JP2001289097A (en) * 2000-04-10 2001-10-19 Mitsubishi Motors Corp Fuel injection control device for cylinder fuel injection engine
JP2002130025A (en) * 2000-10-26 2002-05-09 Nissan Motor Co Ltd Controller for direct-injection type spark ignition engine
JP2003201939A (en) * 2002-01-07 2003-07-18 Toyota Motor Corp Internal combustion engine
JP2005248857A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Combustion control device for internal combustion engine
JP2006329158A (en) * 2005-05-30 2006-12-07 Toyota Motor Corp Controller for spark ignition type cylinder injection type internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103110A (en) * 1993-09-30 1995-04-18 Hitachi Ltd Engine control system
JP3269282B2 (en) * 1994-10-06 2002-03-25 日産自動車株式会社 Direct injection spark ignition type internal combustion engine
JP3275713B2 (en) * 1995-10-19 2002-04-22 トヨタ自動車株式会社 Lean burn engine fuel injection system
JPH09125964A (en) * 1995-11-07 1997-05-13 Kubota Corp In-cylinder-injection spark-ignition type engine
JP2003286879A (en) * 2002-03-27 2003-10-10 Mazda Motor Corp Combustion control device for diesel engine
JP2006274981A (en) * 2005-03-30 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Control device for diesel engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179143A (en) * 1987-01-19 1988-07-23 Mazda Motor Corp Fuel injection device for engine
JP2001289097A (en) * 2000-04-10 2001-10-19 Mitsubishi Motors Corp Fuel injection control device for cylinder fuel injection engine
JP2002130025A (en) * 2000-10-26 2002-05-09 Nissan Motor Co Ltd Controller for direct-injection type spark ignition engine
JP2003201939A (en) * 2002-01-07 2003-07-18 Toyota Motor Corp Internal combustion engine
JP2005248857A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Combustion control device for internal combustion engine
JP2006329158A (en) * 2005-05-30 2006-12-07 Toyota Motor Corp Controller for spark ignition type cylinder injection type internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010057726A1 (en) * 2008-11-21 2010-05-27 Robert Bosch Gmbh Gas feeding module

Also Published As

Publication number Publication date
JP2008215266A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4379479B2 (en) In-cylinder injection engine control method, control device for implementing the control method, and control circuit device used in the control device
US7543560B2 (en) Cylinder direct gasoline injection type internal combustion engine, control equipment thereof, and injector
JP5833138B2 (en) Method of operating an injection device for an internal combustion engine
JP2002161790A (en) Combustion control device for direct injection/spark ignition type internal combustion engine
CN107575329A (en) The control device of internal combustion engine
JP5273310B2 (en) Control device for internal combustion engine
US20130116912A1 (en) Fuel injector control adaptation method
JP6960370B2 (en) Internal combustion engine fuel injection control device
WO2008111392A1 (en) Control device for in-cylinder injection type spark ignition internal combustion engine
US20170145943A1 (en) Fuel injection control apparatus for internal combustion engine
JP4984976B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP4883068B2 (en) Fuel injection control device
EP1316697A1 (en) Cylinder injection type spark ignition engine
JP2009002176A (en) Control device for cylinder injection type internal combustion engine
CN108397300A (en) Engine system and the method for controlling engine system
JP2008255833A (en) Cylinder-injection type spark ignition internal combustion engine
JP2007291887A (en) Cylinder direct injection gasoline engine
JP6605968B2 (en) Internal combustion engine control device
JP4720799B2 (en) In-cylinder direct injection internal combustion engine
WO2008102910A1 (en) Fuel injection control device for in-cylinder injection internal combustion engine
JP4930274B2 (en) Control device for internal combustion engine
JP4240084B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP4407442B2 (en) Fuel pressure control device for in-cylinder injection engine
JP3840348B2 (en) Control device for multi-cylinder internal combustion engine
JP4702217B2 (en) In-cylinder injection spark ignition internal combustion engine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08720887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08720887

Country of ref document: EP

Kind code of ref document: A1