WO2008110341A1 - Verfahren zur kameragestützen erfassung der strahlungsintensität eines gasförmigen chemischen reaktionsproduktes sowie anwendungen des verfahrens und korrespondierende vorrichtung - Google Patents
Verfahren zur kameragestützen erfassung der strahlungsintensität eines gasförmigen chemischen reaktionsproduktes sowie anwendungen des verfahrens und korrespondierende vorrichtung Download PDFInfo
- Publication number
- WO2008110341A1 WO2008110341A1 PCT/EP2008/001923 EP2008001923W WO2008110341A1 WO 2008110341 A1 WO2008110341 A1 WO 2008110341A1 EP 2008001923 W EP2008001923 W EP 2008001923W WO 2008110341 A1 WO2008110341 A1 WO 2008110341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction product
- rgb color
- radiation
- red
- camera
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 98
- 239000007795 chemical reaction product Substances 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000001514 detection method Methods 0.000 title claims abstract description 11
- 238000004616 Pyrometry Methods 0.000 claims abstract description 18
- 238000002485 combustion reaction Methods 0.000 claims description 52
- 230000015572 biosynthetic process Effects 0.000 claims description 23
- 238000012545 processing Methods 0.000 claims description 23
- 230000003287 optical effect Effects 0.000 claims description 14
- 238000000295 emission spectrum Methods 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims description 4
- 238000010304 firing Methods 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000004056 waste incineration Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 238000005245 sintering Methods 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 abstract 1
- 230000003595 spectral effect Effects 0.000 description 11
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000009838 combustion analysis Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- -1 arsenide Chemical compound 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0014—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/08—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
- F23N5/082—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/60—Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
- G01J5/602—Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2229/00—Flame sensors
- F23N2229/04—Flame sensors sensitive to the colour of flames
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention relates to a method for camera-aided detection of the radiation intensity of a particular gaseous chemical reaction product. Furthermore, the invention relates to suitable applications of the method.
- German patent application DE 197 10 206 A1 discloses a method and a device for combustion analysis and flame monitoring in a combustion chamber.
- an image of a flame is taken and a spatial distribution of a parameter characterizing the combustion process is determined from spatially resolved intensities of the image for at least one predeterminable spectral range.
- An optical system of the device comprises a lens for detecting the flame and three downstream beam splitters. The bundle beams detected by the lens are divided by the beam splitters into a total of four spectral ranges and are each fed to a CCD image sensor.
- European Patent Application EP 1 091 175 B1 discloses a method and a corresponding device for determining the excess air in a combustion process by determining the rates of formation of the reaction products CN and CO formed during combustion. Subsequently, the ratio of the determined formation rates is formed as a quantity representing the excess air. At least four special cameras are provided for detecting the radiation intensities. In the case of the currently known methods and devices, the problem arises that the camera systems have to be aligned exactly, that is, as accurately as possible with respect to the pixel, to one another in order to avoid aberrations between the spectrally different evaluation areas. In addition, thermal expansion effects as well as mechanical vibrations acting on the optical system must be taken into account. Accordingly robust and stable, the current optical systems must be formed. The systems are therefore very expensive.
- Another major disadvantage is the necessary temporal synchronization between the cameras in order to enable a clear temporal assignment of the respective brightness signals of the cameras for the different split wavelength ranges.
- the metrological effort is correspondingly high.
- an RGB dyeing machine for detecting the radiation intensity of a reaction product in a red, green and blue wavelength range.
- a band radiation value of the respective reaction product is formed.
- a temperature radiation value is formed by means of pyrometry or ratio pyrometry.
- a temperature radiation value can be formed from the respective red signal or from the respective green signal by means of the pyrometry.
- the temperature radiation value can be formed from the respective red and green signals by means of ratio pyrometry. The latter is more accurate in comparison to the sole measurement of the red signal or of the green signal because of the ratio formation of the red signal and the green signal.
- an emission rate for the radiation intensity of the respective reaction product is formed from the difference between the respective band radiation value and the respective associated temperature radiation value.
- the color names refer to the visual perception of humans.
- the chemical reaction products are, for example, gaseous radicals, such as, for example, CO, C 2 , CH, CHOH, CHO, CN, NH, OH or O 2 radicals, which are typically at A high-temperature process of more than 1000 0 C in the combustion of hydrocarbon arise.
- the reaction products may be elemental gases, such as, for example, O 2 , N 2 or noble gases which, for example, are made of materials or substances in a high-temperature process. diffuse or added to the high temperature process.
- the essential idea of the present invention is the use of an RGB color camera instead of a plurality of black and white cameras. Such a camera already has "from home” on the required for determining the radiation intensity of a reaction product different wavelength ranges.
- RGB color pixels on a color sensor chip of an RGB color camera are coordinated with each other from the very outset in terms of location and time, and that they are already virtually perfectly adjusted.
- the mechanical adjustment effort for the optical alignment of the camera systems as well as the technical expenditure for time synchronization of the brightness signals for each wavelength range are eliminated.
- an RGB color pixel is composed of three subpixels or subpixels, with one subpixel each for the color red, green and blue. There may alternatively also be four subpixels per RGB color pixel, in particular one red, two green and one blue subpixel.
- the three subpixels are therefore also at the same resolution location within a color pixel.
- the reading out of the respective RGB sub-pixels of a color sensor such as e.g. in the case of a CCD color sensor (CCD for charge coupled device) or in the case of a MOS color sensor (MOS for metal oxide semiconductor), simultaneously and thus synchronized, either line by line or also imagewise.
- the respective RGB color camera is preceded by an optical cut-off filter with a predefinable pass-wave range for a characteristic spectral line of the respective reaction product.
- an optical cut-off filter with a predefinable pass-wave range for a characteristic spectral line of the respective reaction product.
- a particularly high selectivity is possible with regard to the emission of a chemical reaction product.
- a notch filter has a passband range in the range of about 5 to 20 nm.
- the specific frequency band of one of the spectral lines for CO is in the range from 445 to 455 nm and for the reaction product CN (for cyanide) in the range from 430 to 440 nm (see also FIG. 3).
- Such a notch filter preferably passes more than 90% of the incoming emission. Furthermore, it is preferable to pass only a few percent, in particular only a maximum of 1%, of the incoming emission in the restricted area.
- blocking filters may be preceded by an IR filter, that is to say an infrared filter, in order to absorb a large part of the to filter out incoming heat radiation. Both filters can also be integrated in a single blocking filter.
- a light source is directed to the reaction product to be detected with regard to the radiation intensity in order to optically excite the respective reaction product to emit a characteristic emission spectrum.
- the light source preferably emits a focused light beam, in particular a laser beam.
- the light source transmits light of a wavelength of less than 500 nm, e.g. 250 nm, off. The emitted light thus lies in a wavelength range which extends from blue to violet to ultraviolet.
- the respective reaction product to be detected with regard to the radiation intensity is formed in a high-temperature process and / or is already present there.
- the respective reaction product emits a characteristic emission spectrum lying predominantly in the blue to violet wavelength range.
- the chemical reaction products in particular the radicals and the optically excited gases, emit their emission spectrum in the form of distributed spectral lines as chemiluminescence.
- chemoluminescence is meant an emission of light that is not of thermal origin, in particular, only the frequency bands of spectral lines of a reaction product to be detected are considered and filtered out for the detection of the radiation intensity, for which other existing reaction products may not have characteristic spectral lines exhibit.
- two RGB color cameras are provided for detecting the radiation intensities of the chemical reaction products CN and CO formed in a combustion process in a red, green and blue wavelength range. It is according to the invention from the respective blue signal of the two RGB color cameras a band radiation value of the reaction product CN and a band radiation value of the reaction product CO formed. From the respective red and green signal of the two RGB color cameras, a respective temperature radiation value is formed by means of a ratio pyrometry. It will continue from the respective
- the method according to the invention is advantageously usable for determining at least one formation rate of a respective chemical reaction product in a combustion process in a power plant, a waste incineration plant, an industrial furnace or in a domestic heating plant, in particular for generating thermal energy.
- the reaction products are, for example, CO, C 2 , CH, CHOH, CHO, CN or NH radicals which are formed in a combustion space by a hydrocarbon flame.
- the method according to the invention can also be used in a corresponding manner in an internal combustion engine or engine, in particular in a means of transport such as motor vehicle, rail vehicle, ship or aircraft.
- a device corresponding to the method for example, a passage opening can be present in the respective cylinder, through which an optical detection of the combustion fire arising during operation of the internal combustion engine can take place. It can then, depending on the determined formation rates, in particular the CN and CO formation rates, a controlled, optimal combustion can be set.
- the steps of the method according to the invention are carried out on a processor-based processing unit of the engine control, via which the air and fuel supply can be adjusted.
- One or more devices corresponding to the method may be mounted on the respective cylinder in a manner similar to a spark plug, such as screwed on, for example. It can then be executed in a preferably encapsulated
- the processing unit is preferably integrated as part of the device in the engine control.
- a turbine such as e.g. a kerosene or gas turbine, monitored and monitored.
- the device described above is arranged in the region of the turbine combustion chamber.
- the method according to the invention can advantageously be used for determining at least one quantity rate of a respective reaction product in a firing process in a blast furnace for the metal-forming industry, in a diffusion furnace for the semiconductor industry or in a furnace for hardening or sintering metals.
- the substances emerging in the combustion chamber in particular out-diffusion substances, such as, for example, when hardening by nitriding, be detected optically.
- out-diffusion substances such as, for example, when hardening by nitriding
- Quantity rate can then be intervened process and control technology by means of a higher-level process computer.
- the reaction products to be detected in such firing processes are still treated by means of a light source, such as e.g. by means of a UV laser, optically excited.
- the substances to be supplied in a firing process such as dopants in the Semiconductor industry such as indium, gallium, arsenide, phosphorus and the like, are detected in terms of their rate of flow, by means of the simultaneous pyrometric measurement, the thermal radiation can be detected and compensated.
- a controlled, optimal adjustment of a concentration of the respective dopants present in the combustion chamber is advantageously possible.
- the object of the invention is further achieved by a device corresponding to the method according to the invention.
- a device in each case has an RGB color camera for detecting the radiation intensity of a reaction product in a red, green and blue wavelength range. It also has a signal processing and / or data technically associated with the respective RGB color camera processing unit.
- the preferably processor-based processing unit has means for determining a band radiation value of the respective reaction product from a respective blue signal of the RGB color camera. Furthermore, it comprises means for forming a temperature radiation value from the respective red and green signal of the RGB color camera by means of a ratio pyrometry. Finally, it comprises means for forming a respective emission rate for the radiation intensity of the respective reaction product from the difference between the respective band radiation value and the respective associated temperature radiation value.
- the device has a number of beam splitters, which are preceded by at least two RGB color cameras, wherein the number of beam splitters is then reduced by the value 1 compared to the number of RGB color cameras.
- Show it 1 shows a device according to the prior art for determining the excess air in a combustion process
- FIG. 2 shows a schematic representation of a device according to the prior art for combustion analysis in a combustion chamber
- FIG. 4 shows a schematic representation of a device according to the invention with, by way of example, a single RGB color camera
- FIG. 5 shows the construction of a processing unit of the device according to FIG. 4,
- FIG. 6 shows a first embodiment of the device according to the invention with, by way of example, two RGB color cameras
- FIG 7 shows the structure of a processing unit of the device according to FIG 6 and
- FIG 8 shows a second embodiment of the device according to the invention with a light source.
- FIG. 1 shows a device according to the prior art for determining the excess air in a combustion process.
- one and the same observation point or image section of the combustion flame 2 is imaged in the combustion space 1 of four CCD cameras 31-34.
- the respective cameras 31-34 are preceded by narrow-band filters 41-44 for detecting four different radiation intensities. From two of the detected radiation intensities, which are preferably in band-free wavelength ranges, in a downstream processing unit 6, 6a a temperature radiation (Planck radiation ment) according to the ratio pyrometry.
- the two other radiation intensities are used to determine the band radiation (chemoluminescence) emitted in the formation of CN and CO in the wavelength ranges around 420 nm and 450 nm, respectively.
- FIG 2 shows a schematic representation of a device according to the prior art for combustion analysis in a combustion chamber 1.
- a combustion chamber 1 of a not further shown steam generator system e.g. a fossil-fired steam generator of a power plant or waste incineration plant
- the device there comprises an optical system 10, which records radiation data D characteristic of combustion via an opening 14 in the wall 17 of the combustion chamber 1 in the form of images and forwards them to a processing unit (not further shown).
- ⁇ is a viewing angle to the combustion flame 2 is designated.
- Reference numeral 20 denotes the incident light bundle
- reference numerals 21-26 denote the light bundles divided by the beam splitters 11-14.
- the entire optical system 10 is accommodated in a cooled, encapsulated housing 18.
- FIG. 3 shows exemplary radiation bands of a hydrocarbon flame. It is the respective spectral lines of the radiation Band of CO, C 2 , CH, CHOH, CHO, CN, NH, OH and O 2 radicals are applied as chemical reaction products over the wavelength ⁇ . As FIG. 3 shows, the spectral lines of the radiation bands occurring in this high-temperature process are in the cyan, blue, violet and ultraviolet regions. By contrast, there are hardly any spectral lines in the wavelength range which is decisive for the temperature radiation, that is to say in the green, red and infrared wavelength ranges.
- FIG. 4 shows a schematic representation of a device according to the invention with, for example, a single RGB color camera 8. It is provided for detecting the radiation intensity of a single reaction product in a red, green and blue wavelength range.
- IR, IG, IB designate the associated color signals of the RGB color camera 8, which correspond or are associated with the color-related radiation intensities or the color radiation intensities in the aforementioned wavelength ranges.
- a beam splitter is advantageously not required by the use of the RGB color camera 8 in this case.
- FIG. 5 shows the structure of a processing unit 6 of the device according to FIG. 4.
- R, G, B denote the red, green and blue color sensors of the color camera 8. They each deliver the color signals IR, IG, IB associated with an image of the flame 2.
- the color camera 8 is further preceded by optical notch filter 9, which has a predetermined passband range for a characteristic spectral line of the respective selected reaction product '.
- 19 denotes an optional infrared filter, which blocks out the infrared range not required for the measurement and thus prevents unnecessary heating of the color camera 8.
- the processing unit 6 has a first sub-device 61 as means, which uses the red and green signal IR, IG of the RGB color camera 8 to generate a temperature beam. value TS by means of a ratio pyrometry. Furthermore, the processing unit 6 has means not further shown which form from the blue signal IB of the RGB color camera 8 a corresponding band radiation value BS of the reaction product. In the example of FIG. 5, the blue signal IB corresponds directly to the band radiation value. Furthermore, the processing unit 6 has a second subunit 62 as a means which, from the difference between the band radiation value BS and the associated temperature radiation value TS, forms an emission rate K for the radiation intensity of the respective reaction product.
- the temperature radiation value TS can be determined by sole measurement of the red signal IR or of the green signal IG by means of pyrometry.
- the device shown in FIG 5 is used for camera-aided detection of the radiation intensity, in particular a gaseous chemical reaction product.
- This can typically be formed in a high-temperature process or already be present there.
- the high-temperature process is a combustion process in which the reaction product emits a predominantly blue to violet wavelength range of characteristic emission spectrum.
- FIG. 6 shows a first embodiment of the device according to the invention with, for example, two RGB color cameras 8. They are provided in particular for detecting the radiation intensities of the chemical reaction products CN and CO formed in a combustion process in a red, green and blue wavelength range.
- the device has a beam splitter 11, which divides the incoming light beam 3 into a first and second light bundle 4, 5.
- the two RGB color cameras 8 are aligned so that the image of the combustion flame 2 impinges on approximately the same location of the color sensor R, G, B of the two RGB color cameras 8.
- An exact adjustment as in the prior art is here not necessary, since the high-precision "adjustment" is present per se in the RGB color camera 8.
- FIG. 7 shows the structure of a processing unit 6 of the device according to FIG. 6.
- the processing unit 6 has means for determining in each case one band radiation value BS, BS 'of the reaction products CN and CO from the respective blue signals IB, IB' of the two RGB color cameras 8. It also comprises means 61 for forming a respective temperature radiation value TS, TS 'from the respective red and green signal IR, IG, IR', IG 'of the two RGB color cameras 8 by means of a ratio pyrometry.
- the processing unit 6 shown has means 62 for forming a CN formation rate K (CN) and a CO production rate K (CO) from the respective difference of the band radiation values BS, BS 'and the associated temperature radiation values TS, TS'.
- it comprises means 6b for forming a controlled variable representing the excess air in the combustion process from the ratio K (CN) / K (CO) of the determined formation rates K (CN), K (CO). This controlled variable can be fed to a control process of a higher-level control of the combustion process.
- the light source 50 is a laser.
- a no window such as quartz glass, provided.
- the light introduction and optical detection of the respective reaction product can alternatively be done through a single window.
- a combustion flame 2 is further shown. This is not absolutely necessary for the optical excitation of the reaction products to be detected.
- the combustion chamber 1 shown may also be one that is otherwise visible to the human eye
- the processing unit 6 of the device according to FIG. 8 provides a first and second emission rate K, K 'for possible further processing by a subsequent higher-order control process.
- the respective emission rate K, K ' can be in each case a formation rate of associated actively emitting reaction products in a combustion process or in each case a quantity rate of associated reaction products in a combustion process with optically forced emission.
- combustion chamber 1 combustion chamber, combustion chamber, combustion chamber
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Radiation Pyrometers (AREA)
- Control Of Combustion (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/527,927 US8203714B2 (en) | 2007-03-13 | 2008-03-11 | Method for the camera-assisted detection of the radiation intensity of a gaseous chemical reaction product and uses of said method and corresponding device |
CN2008800078973A CN101641581B (zh) | 2007-03-13 | 2008-03-11 | 用于摄像机支持地检测气态的化学反应产物的辐射强度的方法以及该方法的应用和相应的设备 |
EP08734599.7A EP2132543B1 (de) | 2007-03-13 | 2008-03-11 | Verfahren zur kameragestützen erfassung der strahlungsintensität eines gasförmigen chemischen reaktionsproduktes sowie anwendungen des verfahrens und korrespondierende vorrichtung |
AU2008226060A AU2008226060B2 (en) | 2007-03-13 | 2008-03-11 | Method for the camera-assisted detection of the radiation intensity of a gaseous chemical reaction product and uses of said method and corresponding device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007012553 | 2007-03-13 | ||
DE102007012553.6 | 2007-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008110341A1 true WO2008110341A1 (de) | 2008-09-18 |
Family
ID=39595718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/001923 WO2008110341A1 (de) | 2007-03-13 | 2008-03-11 | Verfahren zur kameragestützen erfassung der strahlungsintensität eines gasförmigen chemischen reaktionsproduktes sowie anwendungen des verfahrens und korrespondierende vorrichtung |
Country Status (6)
Country | Link |
---|---|
US (1) | US8203714B2 (de) |
EP (1) | EP2132543B1 (de) |
CN (1) | CN101641581B (de) |
AU (1) | AU2008226060B2 (de) |
RU (1) | RU2466364C2 (de) |
WO (1) | WO2008110341A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010125016A2 (de) * | 2009-04-27 | 2010-11-04 | Siemens Aktiengesellschaft | Intelligenter flammenwächter |
WO2012168068A3 (de) * | 2011-06-10 | 2013-07-04 | Webasto Ag | Fahrzeugheizgerät und verfahren zum betreiben eines fahrzeugheizgerätes |
WO2014075654A1 (de) * | 2012-11-14 | 2014-05-22 | Haug, Michael | Vorrichtung und verfahren zur messung eines ausbrandgrades von partikeln in einer feuerungsanlage |
EP2180311B1 (de) * | 2008-10-23 | 2018-10-03 | General Electric Company | Optischer Sensor und Verfahren für die dreidimensionale Verbrennungsanalyse und Verbrennungskontrollsystem |
DE102017211311A1 (de) * | 2017-07-04 | 2019-01-10 | Heraeus Deutschland GmbH & Co. KG | Prozesssteuerung mit Farbsensor |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2495682B1 (de) * | 2009-10-30 | 2018-07-25 | Fujitsu Frontech Limited | Optisches beleuchtungssystem und bildprojektionsvorrichtung |
EP2530442A1 (de) * | 2011-05-30 | 2012-12-05 | Axis AB | Verfahren und Vorrichtung für thermographische Messungen |
US9255526B2 (en) * | 2012-08-23 | 2016-02-09 | Siemens Energy, Inc. | System and method for on line monitoring within a gas turbine combustor section |
US20140157785A1 (en) * | 2012-12-06 | 2014-06-12 | General Electric Company | Fuel supply system for gas turbine |
RU2530440C1 (ru) * | 2013-04-15 | 2014-10-10 | Научно-производственное акционерное общество закрытого типа (НПАО) "ЗОЯ" | Способ оценки качества обогащения попутного нефтяного газа и устройство для его осуществления |
BR112016002720B1 (pt) | 2013-08-09 | 2021-11-23 | Thermal Imaging Radar, LLC | Sistema local e método para analisar e classificar quadros de imagem individuais de dados de imagem panorâmica |
US10088426B2 (en) | 2014-05-06 | 2018-10-02 | United Technologies Corporation | Chemiluminescence imaging system and method of monitoring a combustor flame of a turbine engine |
WO2016160794A1 (en) * | 2015-03-31 | 2016-10-06 | Thermal Imaging Radar, LLC | Setting different background model sensitivities by user defined regions and background filters |
DE102017104769B4 (de) * | 2017-03-07 | 2019-12-05 | Webasto SE | Brenner mit verbesserter Blende |
JP6989291B2 (ja) * | 2017-05-29 | 2022-01-05 | ホーチキ株式会社 | 火炎検出装置 |
US10574886B2 (en) | 2017-11-02 | 2020-02-25 | Thermal Imaging Radar, LLC | Generating panoramic video for video management systems |
US11601605B2 (en) | 2019-11-22 | 2023-03-07 | Thermal Imaging Radar, LLC | Thermal imaging camera device |
CN112082659A (zh) * | 2020-09-23 | 2020-12-15 | 菲兹克光电(长春)有限公司 | 一种基于彩色相机的高温温度场分布测试装置和方法 |
CN116543845A (zh) * | 2023-04-10 | 2023-08-04 | 中国科学院力学研究所 | 一种化学反应流场的可视化解析方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0469258A1 (de) | 1990-06-01 | 1992-02-05 | ANSALDO S.p.A. | Vorrichtung zur dreidimensionalen Darstellung der Temperatur einer Flamme |
EP0616200A1 (de) * | 1993-03-17 | 1994-09-21 | Hitachi, Ltd. | Kamera, System zum Analysieren eines Spektrums und Einrichtung zur Auswertung einer Verbrennung unter Verwendung dieser |
DE19710206A1 (de) | 1997-03-12 | 1998-09-17 | Siemens Ag | Verfahren und Vorrichtung zur Verbrennungsanalyse sowie Flammenüberwachung in einem Verbrennungsraum |
EP1091175A2 (de) * | 1999-10-07 | 2001-04-11 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur Bestimmung sowie zur Regelung des Luftüberschusses bei einem Verbrennungsprozess |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004065000A1 (en) * | 2003-01-21 | 2004-08-05 | Illumina Inc. | Chemical reaction monitor |
RU2238529C1 (ru) * | 2003-04-24 | 2004-10-20 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) | Способ бесконтактного измерения температуры поверхности нагретых тел |
US20070177650A1 (en) * | 2006-01-31 | 2007-08-02 | Diamond Power International, Inc. | Two-color flame imaging pyrometer |
-
2008
- 2008-03-11 AU AU2008226060A patent/AU2008226060B2/en not_active Ceased
- 2008-03-11 US US12/527,927 patent/US8203714B2/en not_active Expired - Fee Related
- 2008-03-11 CN CN2008800078973A patent/CN101641581B/zh not_active Expired - Fee Related
- 2008-03-11 EP EP08734599.7A patent/EP2132543B1/de not_active Not-in-force
- 2008-03-11 WO PCT/EP2008/001923 patent/WO2008110341A1/de active Application Filing
- 2008-03-11 RU RU2009137786/28A patent/RU2466364C2/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0469258A1 (de) | 1990-06-01 | 1992-02-05 | ANSALDO S.p.A. | Vorrichtung zur dreidimensionalen Darstellung der Temperatur einer Flamme |
EP0616200A1 (de) * | 1993-03-17 | 1994-09-21 | Hitachi, Ltd. | Kamera, System zum Analysieren eines Spektrums und Einrichtung zur Auswertung einer Verbrennung unter Verwendung dieser |
DE19710206A1 (de) | 1997-03-12 | 1998-09-17 | Siemens Ag | Verfahren und Vorrichtung zur Verbrennungsanalyse sowie Flammenüberwachung in einem Verbrennungsraum |
EP1091175A2 (de) * | 1999-10-07 | 2001-04-11 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur Bestimmung sowie zur Regelung des Luftüberschusses bei einem Verbrennungsprozess |
EP1091175B1 (de) | 1999-10-07 | 2006-11-02 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur Bestimmung sowie zur Regelung des Luftüberschusses bei einem Verbrennungsprozess |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2180311B1 (de) * | 2008-10-23 | 2018-10-03 | General Electric Company | Optischer Sensor und Verfahren für die dreidimensionale Verbrennungsanalyse und Verbrennungskontrollsystem |
WO2010125016A2 (de) * | 2009-04-27 | 2010-11-04 | Siemens Aktiengesellschaft | Intelligenter flammenwächter |
WO2010125016A3 (de) * | 2009-04-27 | 2012-08-30 | Siemens Aktiengesellschaft | Intelligenter flammenwächter |
WO2012168068A3 (de) * | 2011-06-10 | 2013-07-04 | Webasto Ag | Fahrzeugheizgerät und verfahren zum betreiben eines fahrzeugheizgerätes |
WO2014075654A1 (de) * | 2012-11-14 | 2014-05-22 | Haug, Michael | Vorrichtung und verfahren zur messung eines ausbrandgrades von partikeln in einer feuerungsanlage |
DE102017211311A1 (de) * | 2017-07-04 | 2019-01-10 | Heraeus Deutschland GmbH & Co. KG | Prozesssteuerung mit Farbsensor |
Also Published As
Publication number | Publication date |
---|---|
US20100020310A1 (en) | 2010-01-28 |
CN101641581A (zh) | 2010-02-03 |
AU2008226060B2 (en) | 2011-04-21 |
EP2132543B1 (de) | 2018-12-26 |
US8203714B2 (en) | 2012-06-19 |
CN101641581B (zh) | 2012-11-07 |
RU2466364C2 (ru) | 2012-11-10 |
EP2132543A1 (de) | 2009-12-16 |
RU2009137786A (ru) | 2011-04-20 |
AU2008226060A1 (en) | 2008-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2132543B1 (de) | Verfahren zur kameragestützen erfassung der strahlungsintensität eines gasförmigen chemischen reaktionsproduktes sowie anwendungen des verfahrens und korrespondierende vorrichtung | |
WO1998040673A1 (de) | Verfahren und vorrichtung zur verbrennungsanalyse sowie flammenüberwachung in einem verbrennungsraum | |
DE19847832C1 (de) | Verfahren zum Überwachen eines optischen Systems mit einer unmittelbar an einem Verbrennungsraum angeordneten Frontlinse und Überwachungsmodul | |
DE69413277T2 (de) | Verbrennungsauswertungsvorrichtung zum Auswerten eines Verbrennungszustandes von Flammen | |
DE102010060750B4 (de) | Detektion von Verunreinigungen in Brennersystemen | |
DE19911737A1 (de) | Brennkraftmaschine mit Fremdzündung | |
DE102010017286A1 (de) | Optische Abfragesensoren zum Regeln/Steuern einer Verbrennung | |
EP3663648A1 (de) | Verfahren und vorrichtung zur regelung des mischungsverhältnisses von verbrennungsluft und brenngas bei einem verbrennungsprozess | |
EP1364164B1 (de) | Messvorrichtung, insbesondere zur flammenbeobachtung während eines verbrennungsprozesses | |
EP3271694A1 (de) | Lichtemissionsmessgerät und verfahren zur messung von lichtemission | |
DE3515209A1 (de) | Verfahren und vorrichtung zur ueberwachung eines verbrennungszustands | |
DE3823494C2 (de) | Verfahren und Vorrichtung zur Feuerungsdiagnose und dessen Ergebnisse verwendende Feuerungsregelung | |
DE4025808A1 (de) | Verfahren zur ueberwachung von reaktoren zur partialoxidation | |
DE102016213428A1 (de) | Leuchtvorrichtung und Verfahren zum Erzeugen einer Lichtverteilung in einer Umgebung mittels einer Lichtquelle und eines Konverterelements | |
DE10323193A1 (de) | Einrichtung und Verfahren zur multispektralen Abtastung einer Farbbildvorlage | |
DE19845512A1 (de) | Vorrichtung zur Erfassung von Vorgängen im Brennraum einer in Betrieb befindlichen Verbrennungskraftmaschine | |
DE19723234C2 (de) | Filter zur Herausfilterung von Spektralbereichen und optisches System zur Verbrennungsanalyse | |
DE102009009260B4 (de) | Verfahren und Vorrichtung zur Untersuchung der Gemischbildung und/oder Verbrennung in einem Zylinder einer Brennkraftmaschine | |
DE102015202253A1 (de) | Laserlichtmodul für einen Kraftfahrzeugscheinwerfer | |
DE102009005906B4 (de) | Brennkammerbaugruppe für ein Fahrzeugheizgerät und Verfahren zum Betreiben eines Fahrzeugheizgerätes | |
DE102008060778A1 (de) | Betriebsgerät und Verfahren zum Betreiben mindestens einer Hg-Niederdruckentladungslampe | |
WO2012168068A2 (de) | Fahrzeugheizgerät und verfahren zum betreiben eines fahrzeugheizgerätes | |
DE102006043700A1 (de) | Abtastung von Brennraumsignalen | |
EP4269874A1 (de) | Brennkammer mit einem sensorsystem sowie verfahren zur regelung eines brenners einer brennkammer | |
DE102022133333A1 (de) | Vorrichtung und Verfahren zum Erfassen einer Intensität einer Emission eines Plasmas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880007897.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08734599 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008734599 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12527927 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008226060 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5360/CHENP/2009 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008226060 Country of ref document: AU Date of ref document: 20080311 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009137786 Country of ref document: RU |