WO2008110086A1 - Procédé de protection contre la redondance et système pour anneaux résilients de paquets en mode pont - Google Patents

Procédé de protection contre la redondance et système pour anneaux résilients de paquets en mode pont Download PDF

Info

Publication number
WO2008110086A1
WO2008110086A1 PCT/CN2008/070334 CN2008070334W WO2008110086A1 WO 2008110086 A1 WO2008110086 A1 WO 2008110086A1 CN 2008070334 W CN2008070334 W CN 2008070334W WO 2008110086 A1 WO2008110086 A1 WO 2008110086A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
ring
rpr
bridge device
state
Prior art date
Application number
PCT/CN2008/070334
Other languages
English (en)
French (fr)
Inventor
Suping Zhai
Yan Wang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2008110086A1 publication Critical patent/WO2008110086A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40169Flexible bus arrangements
    • H04L12/40176Flexible bus arrangements involving redundancy
    • H04L12/40195Flexible bus arrangements involving redundancy by using a plurality of nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/427Loop networks with decentralised control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • the present invention relates to the field of network communication technologies, and in particular, to a method and system for bridge mode resilient packet ring redundancy protection. Background technique
  • RPR Resilient Packet Ring
  • a ring network composed of RPR technology is called an RPR ring network and can be simply referred to as an RPR ring.
  • a packet switching device on a ring network is called an RPR device.
  • the RPR ring may also be referred to as an RPR bridge ring or a bridge mode RPR ring.
  • the device on the RPR bridge ring may also be referred to as an RPR bridge device, and the MAC address on the RPR bridge device may also be referred to as an RPR MAC address.
  • RPR bridge device the MAC address on the RPR bridge device may also be referred to as an RPR MAC address.
  • Figure 1 a schematic diagram of the structure of two RPR bridge rings interconnected by four interconnect bridge devices is described.
  • RPR bridge rings there are two RPR bridge rings, which are a first RPR bridge ring and a second RPR bridge ring, respectively.
  • the first RPR bridge ring and the second RPR bridge ring pass through the RPR interconnection bridge device A1, the RPR interconnection bridge device A2, the RPR interconnection bridge device B1 and the RPR mutual.
  • the bridge device B2 is interconnected.
  • the RPR interconnect bridge device is an RPR bridge device that connects two RPR bridge rings.
  • the RPR interconnect bridge device can forward data packets between two RPR bridge rings.
  • the RPR interconnect bridge device B1 located on the second RPR bridge ring is referred to as the RPR direct connect bridge device of the RPR interconnect bridge device A1 with respect to the RPR interconnect bridge device A1.
  • the embodiment of the present invention provides a method for the bridge mode resilient packet ring redundancy protection, where the method includes:
  • the first RPR bridge ring and the second RPR bridge ring are interconnected by four interconnection bridge devices, and the interconnection bridge devices on the same bridge ring form a protection group, and the interconnection bridge devices in the protection group are mainly used.
  • the embodiment of the present invention further provides a system for bridge mode resilient packet ring redundancy protection, where the system includes: a first RPR bridge ring and a second RPR bridge ring are interconnected by four interconnecting bridge devices, and are on the same bridge ring.
  • the two interconnected bridge devices form a protection group, and the interconnected bridge devices in the component protection group are divided into a primary interconnection bridge device and a backup interconnection bridge device, and the initial interconnection bridge device initial state is an active state.
  • the standby interconnecting device is in a standby state, where the primary interconnecting bridge device is responsible for forwarding the cross-ring packet;
  • An interconnection bridge device on the first RPR bridge ring configured to notify a second RPR bridge ring on the first RPR bridge ring when a state switch of the interconnection bridge device on the first RPR bridge ring occurs
  • the directly connected interconnect bridge device switching operating state of the alternate interconnect bridge device in which the state transition occurs
  • a direct-connected interconnect bridge device on the second RPR bridge ring is configured to switch the working state after receiving the notification.
  • the RPR interconnection bridge can quickly perform protection switching, thereby ensuring normal use of the cross-ring service on the RPR bridge ring and achieving fast redundancy protection.
  • FIG. 1 is a schematic diagram of a networking structure in which a first RPR bridge ring and a second RPR bridge ring are interconnected by four interconnection bridge devices.
  • FIG. 2 is a flowchart of a method for bridge mode elastic packet ring redundancy protection according to an embodiment of the present invention. .
  • FIG. 1 For the topology diagram of the embodiment of the present invention, reference may be made to Figure 1, two RPR bridge rings, which are a first RPR bridge ring and a second RPR bridge ring, respectively.
  • Four RPR bridge devices of Al, A2, A3 and A4 are connected to the first RPR bridge ring, and four RPR bridge devices of Bl, B2, B3 and B4 are connected to the second RPR bridge ring, wherein the RPR bridge device Al and RPR bridges are connected.
  • the device A2, the RPR bridge device B1, and the RPR bridge device B2 are RPR interconnection bridge devices, and the RPR interconnection bridge device is an RPR bridge device that connects two RPR bridge rings.
  • the first RPR bridge ring and the second RPR bridge ring are interconnected by the RPR interconnection bridge device Al, the RPR inter-bridge device A2, the RPR interconnection bridge device B1, and the RPR interconnection bridge device B2.
  • the RPR bridge ring On the RPR bridge ring, because the RPR bridge ring carries Layer 2 Ethernet packets, and the packets between the RPR bridge rings are forwarded through the MAC address, the four RPRs connecting the two RPR bridge rings are mutually connected. A loop is created between the bridge devices, that is, a loop is generated between the RPR interconnect bridge devices Al, A2, B1, and B2 as shown in FIG. 1, and a broadcast storm occurs.
  • STP Spanning Tree Protocol
  • Rapid Spaning Tree Protocol performs link reduction, generates a minimum spanning tree without loops, and then forwards the packets on Layer 2 Ethernet according to the minimum spanning tree to prevent two Layer network communication forms a loop, and when a device or link failure occurs on the Layer 2 network, STP or RSTP recalculates the minimum spanning tree and obtains a new forwarding tree to ensure the service after the fault occurs. normal work.
  • STP and RSTP methods can solve the loop problem between the cross-ring nodes, the convergence speed of STP and RSTP is slower due to equipment or link failure, and the fastest can only reach the second level. The level, therefore, causes the recovery time of the service after the RPR bridge ring failure occurs, that is, the defect that the redundancy protection speed is slow.
  • the RPR interconnection bridge device is simply referred to as an interconnection bridge device
  • the RPR direct connection interconnection bridge device is simply referred to as a direct connection interconnection bridge device
  • the RPR bridge device is simply referred to as a bridge device.
  • FIG. 1 For the topology diagram of the embodiment of the present invention, refer to FIG. 1 again.
  • Two interconnected bridge devices on the same bridge ring form a protection group, and one interconnect bridge device serves as a primary interconnect bridge device (for example, the protection group has the highest priority).
  • a primary interconnect bridge device for example, the protection group has the highest priority.
  • Another interconnect bridge device is a spare interconnect bridge device.
  • the two interconnected bridge devices directly connected to the two RPR bridge rings must maintain the same working state, which can be implemented by configuration methods.
  • the direct connection interconnection bridge device on the second RPR bridge ring is notified to switch the working state; the interconnection bridge device on the second RPR bridge ring switches the working state, It is ensured that the state of the directly connected interconnect bridge on the second RPR bridge ring is the same as the current state of the interconnect bridge device on the first RPR bridge ring where the state transition occurs.
  • a method for the redundancy protection of the bridge mode elastic packet ring provided by the embodiment of the present invention is as follows. As shown in FIG. 2, the specific steps of the embodiment of the present invention are as follows:
  • Step 101 A state switching occurs on the alternate interconnection bridge device on the first RPR bridge ring.
  • the interconnect bridge device with the highest priority is the main interconnect bridge device. Under normal circumstances, the interconnect bridge device with the highest priority is the main interconnect bridge device.
  • the other interconnect bridge device on the ring is Alternate Interconnect Bridge device.
  • the trigger conditions for triggering the state switching of the first RPR backup interconnect bridge device may be as follows:
  • the alternate interconnect bridge device in the protection group on the first RPR bridge ring cannot detect the existence of the primary interconnect bridge device on the ring.
  • the two interconnected bridge devices on the first RPR bridge ring form a protection group.
  • the highest priority interconnect bridge device in the protection group is the primary interconnect bridge device, which is in the active state and is responsible for forwarding packets.
  • An interconnect bridge device is a spare interconnect bridge device and is in a standby state.
  • the primary interconnect bridge device in the active state is responsible for forwarding data packets between the two RPR bridge rings; and the standby interconnect bridge device in the standby state only knows that the primary interconnect bridge device exists.
  • the upgrade is the primary state and continues to be responsible for forwarding data packets between the two RPR bridge rings.
  • the primary interconnect bridge device in the active state is responsible for forwarding data packets between the two RPR bridge rings as follows:
  • the interconnect bridge device in the active state is responsible for forwarding all packets according to specific settings, or For forwarding of some data packets with common features, the alternate interconnection bridge device in the standby state is not responsible for forwarding the data packets.
  • the two ports of the interconnection bridge device on the first RPR bridge ring are logical concepts from the second layer of TCP/IP, which are an RPR MAC port and an 802.3 MAC port, respectively.
  • the RPR MAC port is used to connect to the RPR bridge ring
  • the 802.3 MAC port is used to interconnect the two RPR bridge rings.
  • the cause of the primary interconnect bridge device not being aware of the primary interconnect bridge device can be:
  • the broadcast RPR control packet is periodically sent between the primary and secondary interconnect bridge devices, such as a topology packet or a status advertisement packet. If the standby interconnect device in the standby state does not receive the topology packet/state advertisement packet within a certain period of time (such as 10 milliseconds) or within a certain period (for example, 3 cycles), the primary interconnect bridge device is considered to be already No longer alive, unable to sense the primary interconnect bridge device. You can also use the topology maintenance mechanism of RPR to perceive information in the topology database.
  • the topology packet is an existing control packet specified by the RPR protocol.
  • Each of the interconnection bridges in the protection group can receive a topology packet to detect whether a new interconnection bridge device is added or deleted in the protection group. Interconnect bridge device.
  • the status advertisement message may be a new type of RPR control message, which is used to transfer the status of each interconnection bridge device in the protection group.
  • the status advertisement message carries at least the device ID of the device, the device priority, the current status of the device, and the RPR MAC information of the current two ports of the device.
  • the alternate interconnect bridge device in the protection group on the first RPR bridge ring is switched to the earth state, and the earth interconnect bridge device can maintain the same state of the earth. .
  • the standby interconnect bridge device that was originally in the standby state When the alternate interconnect bridge device that was originally in the standby state senses that it is reconnected with the primary interconnect bridge device, the standby interconnect bridge device that was originally in the standby state is restored from the active state to the standby state. The interconnect bridge device is in the primary state.
  • A1 is the primary interconnect bridge device, which is in the active state
  • A2 is the standby interconnect bridge device, which is in the standby state. If the standby interconnect device A2 in the standby state cannot sense the primary interconnect bridge device A1 in the active state, A2 switches to the active state, and at this time, A1 remains in the active state; after the fault is recovered
  • the standby interconnection device A2 that was originally in the active state senses that it is reconnected with the primary interconnection bridge device that was originally in the active state, such as A1, A2 is restored from the primary state to the standby state.
  • A1 is still in the main state.
  • the primary interconnect bridge device in the protection group on the first RPR bridge ring cannot sense the directly connected interconnect bridge device on the second RPR bridge ring.
  • Link state detection is required between two main interconnected bridge devices that are directly connected to each other.
  • the link state detection can pass through the 802.3 MAC ports of the two active interconnect bridge devices. It is implemented by periodically transmitting a specific cross-ring-link state detection message.
  • the cross-ring-link state detection packet is an Ethernet control packet or A data packet can be used to detect an OAM packet (such as an ETH-CC packet) or a newly defined control packet or data packet.
  • OAM packet such as an ETH-CC packet
  • the link-to-link state detection packet sent by the bridge device indicates that the link between the two bridge rings is faulty or the interconnect bridge device that sends the cross-ring-link state detection packet is faulty.
  • the primary interconnect bridge device that crosses the ring-link state detection packet is switched from the active state to the standby state, and notifies another interconnect bridge device on the ring to be faulty.
  • the interconnect bridge that receives the notification is notified. The device switches from the standby state to the active state.
  • the primary interconnect bridge device can send a fault notification message to another interconnect bridge device on the same ring, and then the interconnect bridge device that receives the fault notification message is switched from the standby state to the primary Use status.
  • the fault notification message is an RPR control message, broadcast or unicast. It can be sent once or more to avoid loss.
  • the primary interconnect bridge device is again able to receive the cross-ring-link state detection packet from the second RPR bridge ring, notify the other interconnect bridge device on the ring that the fault has been recovered, and the fault recovery notification is received. If the interconnect bridge device is in the active state, it will return to the standby state.
  • the primary interconnect bridge device may send a fault recovery advertisement message to another interconnect bridge device on the ring, and the interconnect bridge device that receives the fault recovery advertisement message is restored if it is in the active state. To the standby state.
  • the active inter-connect bridge device state switching can also be notified.
  • the status switching completion confirmation message can be implemented by the primary interconnect bridge device.
  • the status switch completion acknowledgement message is an RPR control message, broadcast or unicast. To avoid loss, it can be sent once or more.
  • the primary interconnect bridge device In order to avoid loops during fault recovery, after the primary interconnect bridge device receives the cross-ring-link state detection packet from another bridge ring, it can recover from the active state to the standby state after receiving the cross-ring-link state detection packet from another bridge ring. After the handover completion confirmation message sent by another interconnection bridge device on the ring, it is switched from the standby state to the active state; or the state switching completion confirmation message may not be used after a specific timer expires. Then the standby state is switched to the active state.
  • the primary interconnect bridge device A1 on the first RPR bridge ring does not receive the first directly connected to it within a certain period of time (such as 10 milliseconds) or within a certain period (such as 3 cycles)
  • the primary interconnect bridge device on the second RPR bridge ring such as the cross-ring-link state detection packet sent by B1
  • the primary interconnect bridge device A1 on the first RPR bridge ring is switched from the primary state to the standby state, and Send a fault notification packet to another interconnect bridge device A2 on the ring.
  • the interconnection bridge device A2 of the message is switched from the standby state to the active state.
  • the primary interconnect bridge device A1 on the first RPR bridge ring can again receive the cross-ring-link state detection packet from the second RPR bridge ring, and the primary device on the first RPR bridge ring
  • the interconnection bridge device sends a failure recovery advertisement message to the other interconnection bridge device A2 on the ring, and the interconnection bridge device A2 that receives the failure recovery notification message switches to the standby state if it is in the active state.
  • A2 sends a handover completion acknowledgement message to A1, and A1 switches from the standby state to the active state after receiving the packet.
  • the fault recovery notification packet is an RPR control packet, broadcast or unicast. To avoid loss, it can be sent once or more.
  • the standby interconnect bridge device is switched from the standby state to the active state due to receipt of the fault notification message. Only when it receives the failure recovery notification message can it be restored to the standby state from the primary state.
  • Step 102 After the state transition of the interconnect bridge device on the first RPR bridge ring, in order to ensure that the working states of the directly connected interconnect bridge devices on the two bridge rings are the same, the state transitions on the first RPR bridge ring are mutually The bridge device also needs to notify the direct-connected bridge device on the second RPR bridge ring to switch the working state.
  • the interconnecting bridge device that generates the state switching on the first RPR bridge ring may send the cross-ring-state switching synchronization message, and notify the direct-connected interconnect bridge device on the first RPR bridge ring to switch the working state to ensure two
  • the directly connected interconnect bridge devices on the bridge rings work in the same state.
  • the cross-ring-state switching synchronization packet is an Ethernet control packet or a data packet, and may be an existing operation management OAM packet or a newly defined control packet or data packet.
  • Step 103 The interconnection bridge device switching working state on the second RPR bridge ring is used to ensure the state of the directly connected interconnection bridge on the second RPR bridge ring and the interconnection bridge device on the first RPR bridge ring that is in the state switching state.
  • the current working status is the same.
  • the directly connected interconnection bridge device on the second RPR bridge ring switches the working state, and after switching, the working state of the directly connected interconnection bridge device on the second RPR bridge ring and the first RPR bridge
  • the current working state of the interconnect bridge device on which the state transition occurs on the ring is the same.
  • the interconnect bridge device A2 on the first RPR bridge ring notifies the direct-connected interconnect bridge device B2 on the second RPR bridge ring to switch the working state after being switched from the standby state to the active state. After receiving the notification, if the interconnect bridge device B2 is in the standby state, it will switch its working state to the active state. At this time, the working state of B2 and the state of A2 are the active state.
  • the standby inter-chassis device is switched from the standby state to the active state due to receiving the cross-ring-state switching synchronization message, only if it receives the cross-ring-state switching synchronization message again. Reverted from the active state to the standby state.
  • the devices on the RPR bridge ring are not connected to other sub-networks. In actual applications, devices on the RPR bridge ring can be connected to other sub-networks without affecting Implementation of an embodiment of the invention.
  • the embodiment of the present invention is only described for one protection group. To implement load balancing, in the case of multiple protection groups, two interconnection bridge devices on one ring can be used as primary and backup interconnection bridge devices of different protection groups. Each protection group implements the same principles of the embodiments of the present invention.
  • SDB spatial Aware Sublayer Database
  • the so-called SDB (Spatial Aware Sublayer Database) table is a mapping relationship between the user site (destination MAC address) maintained by the node on the RPR bridge ring and the node (target MAC address) on the RPR bridge ring.
  • all the sites on the local ring may be notified to clear related entries or all entries in the SDB table to update the invalid forwarding path, or may be used in the prior art.
  • the aging mechanism of the MAC address learning table is used to update the invalid forwarding path (update invalid entries).
  • the related entries in the SDB table are related according to the state after the specific switch: When the interconnected bridge device is switched from the standby state to the active state, the related entry is that the target MAC address is another interconnected bridge on the ring.
  • the entry of the MAC address; when the interconnected bridge device in the active state is switched to the standby state, the related entry is the entry in the SDB table whose destination MAC address is the MAC address of the interconnect bridge.
  • the embodiment of the present invention further discloses a system for bridge mode resilient packet ring redundancy protection, including: the first RPR bridge ring and the second RPR bridge ring are interconnected by four interconnection bridge devices, and are on the same bridge ring.
  • the two interconnected bridge devices form a protection group, and the interconnected bridge devices in the protection group are divided into a primary interconnect bridge device and a spare interconnect bridge device, and the primary interconnect bridge device initial state is the primary state, and the standby interconnect is used.
  • the initial state of the bridge device is a standby state, where the primary interconnect bridge device is responsible for forwarding the cross-ring packet;
  • the interconnection bridge device on the first RPR bridge ring is configured to notify the direct connection interconnection bridge device on the second RPR bridge ring to switch the working state when the state of the interconnection bridge device on the first RPR bridge ring is changed;
  • the directly connected interconnection bridge device on the second RPR bridge ring is configured to receive the notification of the switching working state sent by the interconnection bridge device on the first RPR bridge ring, and to switch the working state to ensure the second RPR bridge ring
  • the working state of the directly connected interconnect bridge device is the same as the current working state of the interconnect bridge device on the first RPR bridge ring where the state transition occurs.
  • the protection group is used, so that the RPR interconnection bridge can perform the protection switching quickly after the failure of the interconnected RPR bridge ring, thereby ensuring the normal use of the cross-ring service on the interconnected RPR bridge ring.
  • the embodiment of the present invention can implement millisecond-level state switching to achieve fast redundancy protection.
  • the embodiment of the present invention implements state synchronization between two RPR bridge rings by state detection and state switching advertisement between two RPR bridge rings. Further, the embodiment of the present invention avoids cross-ring forwarding by protecting the group and realizing state synchronization between two RPR bridge rings.

Description

说 明 书 一种桥模式弹性分组环冗余保护的方法和系统 技术领域
本发明涉及网络通信技术领域, 尤其涉及一种桥模式弹性分组环冗余保护的方法和系 统。 背景技术
弹性分组环 (RPR, Resilient Packet Ring) 是为了满足基于分组城域网的需求而设计的 新型网络体系结构和技术, 是一种由分组交换设备组成的环形网络。 应用 RPR技术组成的 环形网络称为 RPR环网络, 可以简称为 RPR环, 环形网络上的分组交换设备称为 RPR设 备。 当 RPR设备采用以太网中用到的 48位 MAC (Media Access Control, 介质访问控制) 地址作为地址标识用于唯一标识 RPR设备, 并通过 Ethernet Over RPR的方式承载二层以太 网报文时, 则 RPR环还可称为 RPR桥环或桥模式 RPR环。 RPR桥环上的设备还可以称为 RPR桥设备, RPR桥设备上的 MAC地址又可称为 RPR MAC地址。 如图 1所示, 描述了 两个 RPR桥环通过四个互连桥设备互连的结构示意图。
在图 1中存在两个 RPR桥环, 分别为第一 RPR桥环和第二 RPR桥环。 在每个 RPR桥 环上都存在四个 RPR桥设备, 第一 RPR桥环和第二 RPR桥环通过 RPR互连桥设备 A1、 RPR互连桥设备 A2、 RPR互连桥设备 B1和 RPR互连桥设备 B2互连。 其中, RPR互连桥 设备为连接两个 RPR桥环的 RPR桥设备, RPR互连桥设备可以转发两个 RPR桥环之间的 数据报文。 相对于 RPR互连桥设备 A1而言, 位于第二 RPR桥环上的 RPR互连桥设备 B1 称为 RPR互连桥设备 A1的 RPR直连互连桥设备。 发明内容
为了保证 RPR桥环上的跨环业务正常使用, 达到快速的冗余保护的目的, 本发明实施 例提供了一种桥模式弹性分组环冗余保护的方法, 所述方法包括:
第一 RPR桥环与第二 RPR桥环通过四个互连桥设备互连,处于同一桥环上的互连桥设 备组成保护组, 所述组成保护组中的互连桥设备分为主用互连桥设备和备用互连桥设备, 所述主用互联桥设备初始状态为主用状态, 所述备用互连桥设备初始状态为备用状态, 其 中所述主用互连桥设备负责转发跨环报文;
当第一 RPR桥环上的备用互连桥设备发生状态切换时,通知位于第二 RPR桥环上与所 述第一 RPR桥环上发生状态切换的备用互连桥设备的直连互连桥设备切换工作状态; 所述第二 RPR桥环上的直连互连桥设备切换工作状态。
本发明实施例还提供一种桥模式弹性分组环冗余保护的系统, 所述系统包括: 第一 RPR桥环与第二 RPR桥环通过四个互连桥设备互连, 处于同一桥环上的两个互 连桥设备组成保护组, 所述组成保护组中的互连桥设备分为主用互连桥设备和备用互连桥 设备, 所述主用互联桥设备初始状态为主用状态, 所述备用互连桥设备初始状态为备用状 态, 其中所述主用互连桥设备负责转发跨环报文;
第一 RPR桥环上的互连桥设备, 用于当第一 RPR桥环上的互连桥设备发生状态切换 时,通知位于第二 RPR桥环上的与所述第一 RPR桥环上的发生状态切换的备用互连桥设备 的直连互连桥设备切换工作状态;
第二 RPR桥环上的直连互连桥设备, 用于在接收到所述通知后, 切换工作状态。
本发明实施例通过使用保护组, 使互连 RPR桥环发生故障后, RPR互连桥能够快速进 行保护倒换, 从而保证 RPR桥环上的跨环业务正常使用, 达到快速的冗余保护。 附图说明
图 1是第一 RPR桥环和第二 RPR桥环通过四个互连桥设备互连的组网结构示意图; 图 2是本发明实施例提供的桥模式弹性分组环冗余保护的方法流程图。
具体实施方式
本发明实施例的拓扑图可以参考图 1,两个 RPR桥环,分别为第一 RPR桥环和第二 RPR 桥环。 第一 RPR桥环上连接有 Al、 A2、 A3和 A4四个 RPR桥设备, 第二 RPR桥环上连 接有 Bl、 B2、 B3和 B4四个 RPR桥设备, 其中 RPR桥设备 Al、 RPR桥设备 A2、 RPR桥 设备 B1和 RPR桥设备 B2为 RPR互连桥设备,该 RPR互连桥设备即为连接两个 RPR桥环 的 RPR桥设备。 如此, 第一 RPR桥环和第二 RPR桥环通过 RPR互连桥设备 Al、 RPR互 连桥设备 A2、 RPR互连桥设备 B1和 RPR互连桥设备 B2互连。
在 RPR桥环上, 由于 RPR桥环上承载的是二层以太网报文, 并且 RPR桥环之间的报 文是通过 MAC地址进行转发, 因此在连接两个 RPR桥环的四个 RPR互连桥设备之间就会 产生回路, 即在如图 1所示的 RPR互连桥设备 Al、 A2、 B1和 B2之间产生回路, 出现广 播风暴现象。
为了避免环路的产生以及广播风暴的问题, 通常采用生成树协议 (STP, Spanning Tree
Protocol )、 或者快速生成树协议 (RSTP, Rapid SpaningTree Protocol ) 进行链路裁减, 生成无环路的最小生成树, 然后依据最小生成树来转发在二层以太网上的报文, 以防止二 层网络通信形成环路, 并且在当二层网络上出现设备或者链路故障的时候, STP或者 RSTP 就会重新进行最小生成树的计算, 获得一个新的转发树, 从而确保故障发生后业务的正常 工作。 采用 STP、 RSTP的方法虽然可以解决跨环节点之间出现环路的问题, 但却因为出现 设备或者链路故障的时候, STP、 RSTP的收敛速度较慢, 最快也只能达到秒级的水平, 因 此造成了 RPR桥环故障发生后业务的恢复时间增长, 即存在冗余保护速度慢的缺陷。
为了简化描述, 在下面的描述中将 RPR互连桥设备简称为互连桥设备, 将 RPR直连互 连桥设备简称为直连互连桥设备, 将 RPR桥设备简称为桥设备。
本发明实施例的拓扑图请再次参考图 1, 处于同一桥环上的两个互连桥设备组成保护 组, 一个互连桥设备为主用互连桥设备 (例如, 保护组中优先级最高的), 负责转发跨环报 文, 另一个互连桥设备为备用互连桥设备。 初始情况下, 两个 RPR桥环上直连的两互连桥 设备要保持相同的工作状态, 可通过配置等方法实现。 当第一 RPR桥环上的互连桥设备发 生状态切换时, 通知第二 RPR桥环上的直连互连桥设备切换工作状态; 第二 RPR桥环上的 互连桥设备切换工作状态,保证第二 RPR桥环上的直连互连桥的状态和第一 RPR桥环上的 发生状态切换的互连桥设备的当前状态相同。
本发明实施例提供的一种桥模式弹性分组环冗余保护的方法, 如图 2所示, 本发明实 施例的具体步骤如下:
步骤 101 : 第一 RPR桥环上的备用互连桥设备发生状态切换。
以优先级最高的互连桥设备为主用互连桥设备为例, 正常情况下, 优先级最高的互连 桥设备为主用互连桥设备, 本环上的另一互连桥设备为备用互连桥设备。 在一个 RPR桥环 上, 触发第一 RPR备用互连桥设备发生状态切换的触发条件可以有以下几种情况, 下面逐 一详细说明:
第一种情况: 第一 RPR桥环上保护组中备用互连桥设备无法感知到本环上主用互连桥 设备的存在。
第一 RPR桥环上的两个互连桥设备组成保护组, 初始时, 保护组中优先级最高的互连 桥设备为主用互连桥设备, 处于主用状态, 负责转发报文, 另一互连桥设备为备用互连桥 设备, 时处于备用状态。 处于主用状态的主用互连桥设备负责两个 RPR桥环之间数据报文 的转发; 而处于备用状态的备用互连桥设备只是在感知不到主用互连桥设备存在时, 才升 级为主用状态继续负责两个 RPR桥环之间数据报文的转发。 这里, 处于主用状态的主用互 连桥设备负责两个 RPR桥环之间数据报文的转发为: 处于主用状态的互连桥设备根据具体 的设置, 负责全部报文的转发、 或具有共同特征的部分数据报文的转发, 处于备用状态的 备用互连桥设备不负责这部分数据报文的转发。 这里,第一 RPR桥环上的互连桥设备的两个端口,是从 TCP/IP的第二层来看的逻辑概 念, 分别是 RPR MAC端口和 802.3MAC端口。 其中, RPR MAC端口用于连接 RPR桥环, 802.3MAC端口用于两个 RPR桥环之间的互连。
造成备用互连桥设备无法感知到主用互连桥设备的原因可以是: 主用互连桥设备出现 故障, 或者, 主用互连桥设备和备用互连桥设备之间出现链路故障。 具体地, 可以通过主 备互连桥设备间周期性地发送广播 RPR控制报文来实现,如拓扑报文,或者状态通告报文。 处于备用状态的备用互连桥设备在一定时间内(如 10毫秒)或者一定周期内(如 3个周期) 没有收到拓扑报文 /状态通告报文, 则认为主用互连桥设备为已经不再存活, 无法感知主用 互连桥设备。 也可以利用 RPR的拓扑维护机制, 通过拓扑数据库中的信息感知。
其中, 拓扑报文为 RPR协议规定的已有的控制报文, 保护组中的各互连桥设备通过接 收拓扑报文, 可以感知是否在保护组内增加了新的互连桥设备或者删除了互连桥设备。
其中, 状态通告报文可以是一种新的 RPR控制报文, 用于在保护组内传递各互连桥设 备的状态。 该状态通告报文中至少携带本互连桥设备的设备 ID、 设备优先级、 设备当前状 态、 设备当前两个端口的 RPR MAC信息。
(一) 从备用状态切换至主用状态:
当备用互连桥设备无法感知到主用互连桥设备, 第一 RPR桥环上保护组中的备用互连 桥设备切换为土用状态, 土用互连桥设备可以保持土用状态不变。
(二) 从主用状态恢复至备用状态
当原来处于备用状态的备用互连桥设备又感知到它与主用互连桥设备重新连通, 则原 来处于备用状态的备用互连桥设备由主用状态恢复到备用状态, 此时, 主用互连桥设备为 主用状态。
例如: 如图 1所示, 正常情况下, A1为主用互连桥设备, 处于主用状态, A2为备用互 连桥设备, 处于备用状态。如果处于备用状态的备用互连桥设备 A2无法感知到处于主用状 态的的主用互连桥设备 Al, 则 A2切换到主用状态, 此时, A1保持主用状态不变; 故障恢 复后,当原来处于主用状态的备用互连桥设备 A2又感知到它与原来处于主用状态的主用互 连桥设备如 A1重新连通, 则 A2由主用状态恢复到备用状态, 此时, A1仍然是主用状态。
第二种情况:第一 RPR桥环上保护组中主用互连桥设备无法感知到第二 RPR桥环上的 直连互连桥设备。
分别处于两个桥环上, 直接相连的两个主用互连桥设备之间需要进行链路状态检测, 该链路状态检测可以通过在这两个主用互连桥设备的 802.3MAC端口之间周期性地发送一 种特定的跨环-链路状态检测报文来实现。该跨环-链路状态检测报文是以太网控制报文或者 数据报文, 可以采用已有的运营管理 OAM报文 (如 ETH-CC报文), 也可以是新定义的一 种控制报文或者数据报文, 用于检测两个桥环之间的链路故障或者发送该跨环 -链路状态检 测报文的主用互连桥设备故障。
(一) 从备用状态切换至主用状态:
当第一 RPR桥环上的主用互连桥设备在一定时间内 (如 10毫秒)或者一定周期内 (如 3个周期) 没有收到与其直接相连的第二 RPR桥环上的主用互连桥设备发来的跨环-链路状 态检测报文时, 表明两个桥环之间的链路故障或者发送该跨环-链路状态检测报文的互连桥 设备故障, 该没有收到跨环-链路状态检测报文的主用互连桥设备要由主用状态切换为备用 状态, 并通知本环上的另一互连桥设备发生故障, 收到该通知的互连桥设备由备用状态切 换到主用状态。
具体地, 主用互连桥设备可以通过发送一故障通告报文给处于同一环上的另一互连桥 设备, 之后, 收到故障通告报文的互连桥设备要由备用状态切换到主用状态。 故障通告报 文是一种 RPR控制报文, 广播或者单播, 为了避免丢失, 可以发送一次或者一次以上。
(二) 从主用状态恢复至备用状态:
如果主用互连桥设备又重新能够收到来自第二 RPR桥环的跨环-链路状态检测报文, 通知本环上的另一互连桥设备故障已恢复, 收到该故障恢复通告的互连桥设备如果处于主 用状态, 则恢复至备用状态。
具体地, 主用互连桥设备可以通过向本环上的另一互连桥设备发送故障恢复通告报文, 收到该故障恢复通告报文的互连桥设备如果处于主用状态, 则恢复至备用状态。
进一步, 原来处于备用状态的备用互连桥设备恢复至备用状态后, 还可以通知主用互 连桥设备状态切换已完成。 具体地, 可以通过发送状态切换完毕确认报文给主用互连桥设 备实现。 状态切换完毕确认报文是一种 RPR控制报文, 广播或者单播, 为了避免丢失, 可 以发送一次或者一次以上。
为了避免在故障恢复时出现环路 ,主用互连桥设备重新收到来自另一桥环的跨环 -链路 状态检测报文后, 可以在收到已经从主用状态恢复到备用状态的本环上的另一互连桥设备 发来的切换完毕确认报文之后, 再从备用状态切换为主用状态; 也可以不使用状态切换完 毕确认报文而在一特定的定时器期满后再由备用状态切换为主用状态。
例如: 如图 1所示, 如果第一 RPR桥环上的主用互连桥设备 A1在一定时间内 (如 10 毫秒) 或者一定周期内 (如 3个周期) 没有收到与其直接相连的第二 RPR桥环上的主用互 连桥设备如 B1发来的跨环-链路状态检测报文, 第一 RPR桥环上的主用互连桥设备 A1从 主状态切换为备用状态, 并发送故障通告报文给本环上的另一互连桥设备 A2, 收到故障通 告报文的互连桥设备 A2由备用状态切换到主用状态。 之后, 故障恢复, 第一 RPR桥环上 的主用互连桥设备 A1又重新能够收到来自第二 RPR桥环的跨环-链路状态检测报文, 第一 RPR桥环上的主用互连桥设备向本环上的另一互连桥设备 A2发送故障恢复通告报文,收到 该故障恢复通告报文的互连桥设备 A2如果处于主用状态, 则切换为备用状态。 然后 A2再 向 A1发送切换完毕确认报文, A1收到该报文后由备用状态切换为主用状态。 其中, 故障 恢复通告报文是一种 RPR控制报文, 广播或者单播, 为了避免丢失, 可以发送一次或者一 次以上
需要说明的是, 如果备用互连桥设备是由于收到了故障通告报文而由备用状态转换为 主用状态。 则只有当它收到了故障恢复通告报文, 才能由主用状态恢复为备用状态。
步骤 102: 第一 RPR桥环上的互连桥设备发生状态切换之后, 为了保证两个桥环上的 直连互连桥设备的工作状态相同, 第一 RPR桥环上的发生状态切换的互连桥设备还需要通 知第二 RPR桥环上的直连互连桥设备切换工作状态。
具体地,第一 RPR桥环上的发生状态切换的互连桥设备可以发送跨环-状态切换同步报 文, 通知第一 RPR桥环上的直连互连桥设备切换工作状态, 以保证两个桥环上的直连互连 桥设备工作状态相同。 该跨环 -状态切换同步报文是以太网控制报文或者数据报文, 可以采 用已有的运营管理 OAM报文, 也可以是新定义的一种控制报文或者数据报文。
步骤 103 : 第二 RPR桥环上互连桥设备切换工作状态, 以保证第二 RPR桥环上的直连 互连桥的状态和第一 RPR桥环上的发生状态切换的互连桥设备的当前工作状态相同。
第二 RPR桥环上的直连互连桥设备收到步骤 102中的通知后,切换工作状态,切换后, 第二 RPR桥环上的直连互连桥设备的工作状态和第一 RPR桥环上的发生状态切换的互连桥 设备的当前工作状态相同。
例如: 第一 RPR桥环上的互连桥设备 A2在由备用状态转换为主用状态后, 通知第二 RPR桥环上的直连互连桥设备 B2切换工作状态。 收到该通知后, 互连桥设备 B2如果处于 备用状态也将自己的工作状态切换为主用状态, 此时 B2的工作状态与 A2的状态都为主用 状态。
需要说明的是, 如果备用互连桥设备是由于收到了跨环-状态切换同步报文而由备用状 态转换为主用状态, 则只有当它再次收到了跨环-状态切换同步报文才会由主用状态恢复为 备用状态。 为了简化起鉴,本发明实施例中的附图中 RPR桥环上的设备下都未连接其他的子网络, 实际应用中, RPR桥环上的设备下可以连接其他的子网络, 并不影响本发明实施例的实施。 另外, 本发明实施例中都以图 1中的第一 RPR桥环为基准来介绍的, 即第一 RPR桥环 上的互连桥设备状态切换后, 驱动第二 RPR桥环上互连桥设备切换工作状态, 反之处理流 程基本相同, 不再累述。 且本发明实施例只针对一个保护组描述, 为了实现负载分担, 对 于多保护组的情况, 一个环上的两个互连桥设备可以分别作为不同保护组的主用、 备用互 连桥设备, 每个保护组实现本发明实施例的原理相同。
所谓 SDB ( Spatially Aware Sublayer空间感知子层 Database) 表, 就是 RPR桥环上的 节点维护的用户站点(目的 MAC地址)与 RPR桥环上的节点(目标 MAC地址)之间的映射关 系表。
进一步, 本发明实施例中, 互连桥设备发生状态切换后, 可以通知本环上的所有站点清 除 SDB表中相关表项或者全部表项来更新无效的转发路径, 也可以采用已有技术中 MAC 地址学习表的老化机制来更新无效的转发路径(更新无效表项)。 其中, SDB表中的相关表 项根据具体切换后的状态相关: 当互连桥设备由备用状态切换为主用状态时, 相关表项即 为目标 MAC地址是本环上另一互连桥的 MAC地址的表项; 当处于主用状态的互连桥设备 切换为备用状态时, 相关表项即为 SDB表中目标 MAC地址为该互连桥的 MAC地址的表 项。
同时, 本发明实施例还公开了一种桥模式弹性分组环冗余保护的系统, 包括: 第一 RPR桥环与第二 RPR桥环通过四个互连桥设备互连, 处于同一桥环上的两个互 连桥设备组成保护组, 组成保护组中的互连桥设备分为主用互连桥设备和备用互连桥设备, 主用互联桥设备初始状态为主用状态, 备用互连桥设备初始状态为备用状态, 其中主用互 连桥设备负责转发跨环报文;
第一 RPR桥环上的互连桥设备,用于当第一 RPR桥环上的互连桥设备发生状态切换从 时, 通知第二 RPR桥环上的直连互连桥设备切换工作状态;
第二 RPR桥环上的直连互连桥设备,用于接收到第一 RPR桥环上的互连桥设备发送的 切换工作状态的通知时切换工作状态, 以保证第二 RPR桥环上的直连互连桥设备的工作状 态和第一 RPR桥环上的发生状态切换的互连桥设备的当前工作状态相同。
系统的工作原理与方法基本相同, 不再累述。
本发明实施例通过使用保护组, 使得在互连 RPR桥环发生故障后, RPR互连桥能够快 速进行保护倒换, 从而保证互连 RPR桥环上的跨环业务正常使用。 通过本发明实施例可以 实现毫秒级的状态切换, 达到快速的冗余保护。
进一步, 本发明实施例通过在两个 RPR桥环之间的状态检测及状态切换通告来实现两 个 RPR桥环之间的状态同步。 进一步, 本发明实施例通过保护组及实现两个 RPR桥环之间的状态同步, 避免了跨环 转发。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种桥模式弹性分组环冗余保护的方法, 其特征在于, 所述方法包括:
第一 RPR桥环与第二 RPR桥环通过四个互连桥设备互连, 处于同一桥环上的互连桥设 备组成保护组, 所述组成保护组中的互连桥设备分为主用互连桥设备和备用互连桥设备, 所 述主用互联桥设备初始状态为主用状态, 所述备用互连桥设备初始状态为备用状态, 其中所 述主用互连桥设备负责转发跨环报文;
当第一 RPR桥环上的备用互连桥设备发生状态切换时, 通知位于第二 RPR桥环上与所 述第一 RPR桥环上发生状态切换的备用互连桥设备的直连互连桥设备切换工作状态;
所述第二 RPR桥环上的直连互连桥设备切换工作状态。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第一 RPR桥环上的互连桥设备发生 状态切换的触发条件包括:
所述第一 RPR桥环上保护组中备用互连桥设备无法感知到本环上的主用互连桥设备;或 者,
所述第一 RPR桥环上保护组中主用互连桥设备无法感知到所述第二 RPR桥环上的直连 互连桥设备。
3、 根据权利要求 2所述的方法, 其特征在于, 所述第一 RPR桥环上保护组中备用互连 桥设备无法感知到本环上的主用互连桥设备的步骤具体包括:
所述第一 RPR桥环上的备用互连桥设备和本环上的主用互连桥设备之间周期性发送 RPR控制报文,当所述第一 RPR桥环上的备用互连桥设备在预设时间内未收到来自所述本环 上的主用互连桥设备的 RPR控制报文时, 所述第一 RPR桥环上的备用互连桥设备无法感知 到本环上的主用互连桥设备。
4、 根据权利要求 3所述的方法, 其特征在于, 所述 RPR控制报文包括: 拓扑报文或者 状态通告报文。
5、根据权利要求 4所述的方法, 其特征在于, 所述状态通告报文承载本互连桥设备的设 备 ID、 设备优先级、 设备当前状态和设备当前两个端口的 RPR MAC信息。
6、 根据权利要求 3所述的方法, 其特征在于, 当所述第一 RPR桥环上的互连桥设备发 生状态切换的步骤之后, 所述方法还包括:
当所述第一 RPR桥环上保护组中备用互连桥设备重新感知到本环上的主用互连桥设备 时, 所述第一 RPR桥环上的备用互连桥设备恢复至备用状态。
7、 根据权利要求 2所述的方法, 其特征在于, 所述第一 RPR桥环上保护组中主用互连 桥设备无法感知到所述第二 RPR桥环上的直连互连桥设备的步骤具体包括:
所述第一 RPR桥环上的主用互连桥设备与第二 RPR桥环上的直连互连桥设备之间周期 性发送跨环-链路故障检测报文, 当第一 RPR桥环上的主用互连桥设备在预设时间内未收到 来自所述第二 RPR桥环上的直连互连桥设备的跨环-链路故障检测报文时, 所述第一 RPR桥 环上的主用互连桥设备无法感知到第二 RPR桥环上的直连互连桥设备, 所述第一 RPR桥环 上的主用互连桥设备发送故障通知给本环上的备用互连桥设备。
8、 根据权利要求 7所述的方法, 其特征在于, 当所述第一 RPR桥环上的备用互连桥设 备发生状态切换的步骤之后, 所述方法还包括:
当所述第一 RPR桥环上的主用互连桥设备重新收到来自所述第二 RPR桥环的跨环 -链路 状态检测报文时,所述第一 RPR桥环上的主用互连桥设备通知本环上的所述备用互连桥设备 故障已恢复, 所述第一 RPR桥环上的备用互连桥设备收到所述通知, 恢复至备用状态。
9、 根据权利要求 1所述的方法, 其特征在于, 所述第一 RPR桥环上发生状态切换的互 连桥设备通知位于第二 RPR桥环上的与所述第一 RPR桥环上的发生状态切换的备用互连桥 设备的直连互连桥设备切换工作状态的步骤具体为:
所述第一 RPR桥环上发生状态切换的互连桥设备发送跨环-状态切换同步报文给位于所 述第二 RPR桥环上的直连互连桥设备, 所述跨环-状态切换同步报文为以太网控制报文或者 数据报文。
10、 根据权利要求 9所述的方法, 其特征在于, 所述第二 RPR桥环上的直连互连桥设备 切换工作状态的步骤之后, 所述方法还包括:
所述第二 RPR桥环上的直连互连桥设备再次收到来自第一 RPR桥环的状态切换通知时, 所述第二 RPR桥环上的直连互连桥设备切换回原状态, 即如果所述第二 RPR桥环上的直连 互连桥设备在切换前处于主用状态, 则在收到来自第一 RPR桥环的状态切换通知时, 所述第 二 RPR桥环上的直连互连桥设备切换回主用状态, 如果所述第二 RPR桥环上的直连互连桥 设备在切换前处于备用状态, 则在收到来自第一 RPR桥环的状态切换通知时, 所述第二 RPR 桥环上的直连互连桥设备切换回备用状态。
11、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括:
互连桥设备发生状态切换后, 通知本环上的所有互连桥设备清除空间感知子层表中相关 表项或者全部表项, 或者, 采用 MAC地址学习表老化机制来更新无效表项。
12、 根据权利要求 1所述的方法, 其特征在于, 所述第一 RPR桥环与第二 RPR桥环通 过四个互连桥设备互连具体为: 第一 RPR桥环与第二 RPR桥环通过四个互连桥设备的 802.3MAC端口互连。
13、 一种桥模式弹性分组环冗余保护的系统, 其特征在于, 所述系统包括:
第一 RPR桥环与第二 RPR桥环通过四个互连桥设备互连, 处于同一桥环上的两个互连 桥设备组成保护组,所述组成保护组中的互连桥设备分为主用互连桥设备和备用互连桥设备, 所述主用互联桥设备初始状态为主用状态, 所述备用互连桥设备初始状态为备用状态, 其中 所述主用互连桥设备负责转发跨环报文;
第一 RPR桥环上的互连桥设备,用于当第一 RPR桥环上的互连桥设备发生状态切换时, 通知位于第二 RPR桥环上的与所述第一 RPR桥环上的发生状态切换的备用互连桥设备的直 连互连桥设备切换工作状态;
第二 RPR桥环上的直连互连桥设备, 用于在接收到所述通知后, 切换工作状态。
PCT/CN2008/070334 2007-03-09 2008-02-20 Procédé de protection contre la redondance et système pour anneaux résilients de paquets en mode pont WO2008110086A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA200710073472XA CN101262400A (zh) 2007-03-09 2007-03-09 一种桥模式弹性分组环冗余保护的方法和系统
CN200710073472.X 2007-03-09

Publications (1)

Publication Number Publication Date
WO2008110086A1 true WO2008110086A1 (fr) 2008-09-18

Family

ID=39759007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070334 WO2008110086A1 (fr) 2007-03-09 2008-02-20 Procédé de protection contre la redondance et système pour anneaux résilients de paquets en mode pont

Country Status (2)

Country Link
CN (1) CN101262400A (zh)
WO (1) WO2008110086A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582848A (zh) * 2009-06-18 2009-11-18 中兴通讯股份有限公司 一种弹性分组环跨环保护方法和系统
CN102104471A (zh) * 2009-12-21 2011-06-22 中兴通讯股份有限公司 一种冗余备份系统中基于条件的主备切换方法及装置
CN101848128B (zh) * 2010-04-08 2012-11-14 深圳市金宏威技术股份有限公司 在多个环形拓扑间实现稳定通信的方法、系统及拓扑结构
CA2861984C (en) * 2011-12-29 2019-04-16 Telefonaktiebolaget L M Ericsson (Publ) Technique for handling a status change in an interconnect node

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349099A2 (en) * 1988-06-27 1990-01-03 Digital Equipment Corporation Transparent load sharing for parallel networks
EP1328090A1 (en) * 2002-01-09 2003-07-16 Alcatel Topology discovery method, a related system and related node
CN1941730A (zh) * 2005-09-26 2007-04-04 华为技术有限公司 实现rpr桥冗余保护的方法
CN101136838A (zh) * 2006-08-29 2008-03-05 华为技术有限公司 一种桥模式弹性分组环跨环桥设备冗余保护的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349099A2 (en) * 1988-06-27 1990-01-03 Digital Equipment Corporation Transparent load sharing for parallel networks
EP1328090A1 (en) * 2002-01-09 2003-07-16 Alcatel Topology discovery method, a related system and related node
CN1941730A (zh) * 2005-09-26 2007-04-04 华为技术有限公司 实现rpr桥冗余保护的方法
CN101136838A (zh) * 2006-08-29 2008-03-05 华为技术有限公司 一种桥模式弹性分组环跨环桥设备冗余保护的方法

Also Published As

Publication number Publication date
CN101262400A (zh) 2008-09-10

Similar Documents

Publication Publication Date Title
WO2007115493A1 (fr) Procédé, dispositif et système pour réaliser la commutation dans le réseau à double anneau de réseau vpls
RU2423008C2 (ru) СПОСОБ И СИСТЕМА АВТОМАТИЧЕСКОЙ ЗАЩИТЫ СЕТИ Ethernet
EP2352253B1 (en) Method and apparatus for protecting link aggregation group of ethernet ring
ES2306337T3 (es) Procedimiento y sistema para implementar el protocolo de redundancia de encaminador virtual sobre un anillo de paquete resiliente.
WO2007062559A1 (fr) Procede et passerelle de restitution de service au moment de la permutation entre passerelles pilote et asservie
WO2012028029A1 (zh) 一种切换方法及系统
WO2012000234A1 (zh) 链路间快速切换的方法、装置和系统
JP2009524332A (ja) リング・ネットワークのvpls障害保護
WO2011157151A2 (zh) 实现容灾备份的方法、设备及系统
JP2009105690A (ja) レイヤ2冗長プロトコル相互接続装置
WO2012109941A1 (zh) 一种trill网络的冗余备份方法及系统
JP2005130049A (ja) ノード
WO2009039697A1 (en) Ethernet ring network systerm, transmission node of ethernet ring network and initialization method thereof
WO2008046358A1 (fr) Procédé et dispositif destinés à réaliser une pénétration d'un statut de liaison de réseau point à multipoint
JP2002330152A (ja) 障害時/増設時におけるスパニングツリー制御装置及び方法
JP2013519268A (ja) データ転送方法、データ転送装置及びデータ転送システム
CN101039172B (zh) 以太环网系统及其保护方法和备用主节点
WO2010031295A1 (zh) 一种以太网故障恢复的控制方法
WO2012171378A1 (zh) 解决vpls接入l3故障切换导致断流的方法及路由器
WO2013113228A1 (zh) 网络设备冗余备份的方法、路由设备及系统
WO2010031210A1 (zh) 一种跨环转发协议帧的方法及以太网多环中的共享节点
WO2012162946A1 (zh) 一种报文处理方法及系统
JP2003258822A (ja) パケットリングネットワーク及びそれに用いるパケットリングネットワーク間の接続方法
WO2014029282A1 (zh) 跨域保护互通方法及系统
KR20080082830A (ko) 스패닝 트리 프로토콜을 이용하는 네트워크에서 스위칭장치의 플러싱 처리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08706707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08706707

Country of ref document: EP

Kind code of ref document: A1