WO2008108452A1 - Regenerative apparatus - Google Patents

Regenerative apparatus Download PDF

Info

Publication number
WO2008108452A1
WO2008108452A1 PCT/JP2008/054102 JP2008054102W WO2008108452A1 WO 2008108452 A1 WO2008108452 A1 WO 2008108452A1 JP 2008054102 W JP2008054102 W JP 2008054102W WO 2008108452 A1 WO2008108452 A1 WO 2008108452A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
amount
cold
storage device
energy
Prior art date
Application number
PCT/JP2008/054102
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Tsubone
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2008800066425A priority Critical patent/CN101622511B/en
Priority to DE112008000569T priority patent/DE112008000569T5/en
Priority to US12/529,049 priority patent/US20100107635A1/en
Publication of WO2008108452A1 publication Critical patent/WO2008108452A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • B60H1/00771Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed the input being a vehicle position or surrounding, e.g. GPS-based position or tunnel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage device that can store hot or cold energy and take out the stored hot or cold energy.
  • a compression heat pump is mounted on a vehicle.
  • the power source of the heat pump is an internal combustion engine or a motor that also serves as a driving power source. Therefore, when a large amount of power is required to travel the vehicle, the power that can be used by the heat pump is limited, and conversely, when the power required for traveling is small, it can be used for a heat pump, etc. So-called surplus power increases. Since such power fluctuations and power required for the heat pump do not always match, it is preferable to store or cool the heat obtained by driving the heat pump when there is surplus power.
  • surplus power generated by the power source can be recovered in the form of heat storage or cold storage, and if the driving force of the heat pump required for cooling or heating is insufficient, Cooling or heating can be performed using the thermal energy stored in the material.
  • the heat released from the condenser in the refrigeration cycle can be recovered, so that energy efficiency can be improved, and thus the fuel consumption of the vehicle can be improved.
  • the amount of heat stored in the heat storage device is increased by recovering the heat generated by the heat pump or the heat released from the condenser in the refrigeration cycle.
  • the amount of heat stored in the heat storage device decreases when the amount of heat stored in the heat storage device is used for heating or cooling.
  • Japanese Patent Laid-Open No. 2 0 2-2 4 7 7 0 6 the power of a hybrid vehicle is between the engine and the front tire, between the front motor and the front tire, between the front motor and the battery.
  • a device is disclosed that is transmitted between the rear motor and the battery and between the rear motor and the rear tire.
  • Japanese Patent Laid-Open No. 2 0 2-2 4 7 7 0 6 the energy flow of the transmitted power is displayed.
  • the amount of stored heat related to the latent heat storage device is displayed. For this reason, the user of the latent heat storage device can recognize the amount of stored heat. However, the amount of heat applied to the latent heat storage device, the amount of heat released from the heat storage device, or the amount of heat exchanged between the heat storage unit and the cold storage unit provided in the latent heat storage device. Cannot be recognized. In other words, the user related to the latent heat storage device cannot recognize the increase or decrease in the amount of stored heat and the amount of heat exchanged between the thermal storage unit and the cold storage unit.
  • the engine, the front motor, the rear motor and the battery drive device, the front tire, and the rear tire drive The amount of energy that moves between parts is displayed.
  • the driver or the like who is driving the vehicle can recognize which driving device is using the power by using the energy flow display.
  • the present invention has been made paying attention to the above-described problems, and an object of the present invention is to provide a heat storage device that can indicate the current state of heat and / or heat and the predicted content.
  • the present invention is directed to a heat storage device that stores hot or cold heat and can take out the stored hot or cold heat.
  • Heat storage amount notification means for detecting the amount of cold heat and notifying the outside
  • heat outflow notification means for detecting the amount of extracted heat or cold heat and notifying the outside
  • supplied and stored externally It has heat inflow notification means for detecting the amount of heat or cold and notifying the outside.
  • the heat storage device includes a thermal storage unit that stores thermal energy and a cold storage unit that stores cold, and heat conversion is performed between the thermal storage unit and the cold storage unit. It has a heat exchange notification means for detecting the amount of heat or cold and notifying the outside.
  • the notification contents to the outside in each of the heat storage amount notification means, the heat outflow notification means, and the heat inflow notification means can be visually recognized as an optical technique. It further comprises an output unit that outputs either an acoustic method or an electrical signal.
  • the present invention in any one of the above-mentioned inventions, further comprises heat output means for taking out the stored hot or cold heat into electric energy, and the heat outflow notification means is an electrician by the heat output means. It includes a means for notifying the outside of the amount of heat converted to energy.
  • the present invention further includes any one of the above-described inventions, further comprising heat input means for converting electric energy to heat or cold and inputting the heat, and the heat input notification means is the electric input energy from the electric energy. It includes a means for notifying the outside of the amount of heat converted into heat energy.
  • the present invention provides heat exchange between the thermal heat storage unit and the cold heat storage unit by adding electric energy to the heat input means, Includes electric energy stored in the power storage device, and has a storage amount notification means for detecting the amount of power stored in the power storage device and notifying the outside.
  • the present invention provides the method according to any one of the above-mentioned inventions, wherein at least one of the heat storage amount notification means, the heat outflow notification means, the heat inflow notification means, and the heat exchange notification means is mounted on a vehicle.
  • the amount of heat or cold generated or consumed in the predicted driving environment of the vehicle, or the amount generated and consumed includes a means for predicting the amount of increase or decrease in heat storage, which is the difference from the cost, and notifying the prediction contents to the outside as notification contents.
  • the power storage amount notification means is mounted on the vehicle, and the storage means notifies the amount of electric energy stored in the power storage device in the predicted traveling environment of the vehicle or the amount of generation and consumption thereof. It includes a means for predicting the amount of increase or decrease in power storage, which is a difference, and notifying the prediction contents to the outside as notification contents.
  • the amount of heat or cold stored in the heat storage device the amount of heat or cold extracted from the heat storage device, and the amount of heat or cold supplied from the outside and stored in the heat storage device. Detected and notified to the outside. Therefore, it is possible to recognize the amount of heat or cold stored in the heat storage device, the amount of heat or cold flowing into the heat storage device, and the amount of heat or cold flowing out of the heat storage device. It becomes.
  • the said heat storage apparatus has a thermal storage part which stores thermal energy, and a cold heat storage part which stores cold, and heat conversion is performed between the said thermal storage part and cold storage part. Then, the amount of heat or heat that is being exchanged is exhausted and announced to the outside. Therefore, in addition to obtaining the same effect as the above invention, it is possible to recognize the amount of heat exchange when the heat and cold stored in the heat storage device are exchanged with each other.
  • the amount of heat or cold stored in the heat storage device is output by either optical, acoustic or electrical signals. Therefore, in addition to obtaining the same effect as the above invention, the amount of heat or cold stored in the heat storage device, the amount of heat or cold flowing into the heat storage device, and the amount of heat discharged from the heat storage device The amount of heat or cold that is present can be recognized visually or audibly.
  • the amount of heat or cold stored in the heat storage device is changed to electric energy, and this electric energy is detected and notified. Therefore, in addition to obtaining the same effect as any of the above inventions, The amount of heat or cold stored in the heat storage device, the amount of heat or cold flowing into the heat storage device, and the amount of heat or cold flowing out of the heat storage device. It becomes possible.
  • the heat input means for converting electric energy to heat or cold and inputting it is provided, and the converted heat quantity is announced. Therefore, in addition to obtaining the same effect as any of the above inventions, it becomes easy to recognize the amount of heat converted from electric energy to heat energy.
  • the present invention by adding electric energy to the heat input means, heat exchange is performed between the thermal heat storage unit and the cold heat storage unit, and the electric energy is stored in a power storage device.
  • the amount of stored electricity stored in the power storage device is detected and notified. Therefore, in addition to obtaining the same effect as any of the above-described inventions, it is possible to recognize the amount of electricity stored and the amount of electricity stored.
  • the predicted value of the amount of generated heat or the increase or decrease in the amount of heat stored in the heat storage device mounted on the vehicle, and the flow into the heat storage device or the flow out of the heat storage device are the amount or amount of heat or cold that is generated or consumed, or the amount or amount that is generated or consumed.
  • the predicted value is announced to the outside. Therefore, in addition to obtaining the same effect as any one of the above inventions, it is possible to recognize the predicted amount of heat or cold generated or consumed and the increase or decrease in the amount generated or consumed.
  • the amount of electric energy stored in the power storage device mounted on the vehicle or the amount of increase / decrease in power storage of this power storage device is predicted, and this predicted value is notified to the outside. Therefore, in addition to obtaining the same effect as the above invention, it is possible to recognize the electric energy stored in the predicted power storage device and the increase / decrease in the electric energy.
  • FIG. 1 schematically shows the distribution of thermal energy and electric energy transmission according to this invention.
  • FIG. 2 is a block diagram schematically showing a display form and a control form according to the present invention.
  • FIG. 3 is a diagram showing a part of a flowchart for explaining the display method shown in FIG.
  • FIG. 4 is a diagram showing a part of a flowchart for explaining the display method shown in FIG.
  • FIG. 5 is a diagram showing another block diagram schematically showing the display method and the control method according to the present invention.
  • Fig. 6 is a diagram schematically showing an indicator that displays the increase or decrease in the amount of thermal energy or the increase or decrease in the amount of electrical energy.
  • FIG. 7 is a flowchart for explaining the display form shown in FIG.
  • FIG. 8 is a diagram showing an example of a map used to predict the increase or decrease in the amount of thermal energy or the increase or decrease in the amount of electric energy.
  • FIG. 9 is a diagram showing an example of a map used to predict the increase or decrease in the amount of thermal energy or the increase or decrease in the amount of electric energy.
  • FIG. 10 is another block diagram schematically showing the display method and control method according to the present invention.
  • Fig. 11 is a diagram schematically showing the switch for selecting each control mode.
  • FIG. 12 is a flowchart for explaining the display form shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing the heat energy flowing into or out of the heat storage devices 1 a and 1 b and the energy flow in or out when heat is converted between the heat storage devices 1 a and 1 b .
  • the heat storage device 1 a corresponds to the cold heat storage unit
  • the heat storage device 1 b corresponds to the heat storage unit.
  • the energy includes energy such as electric energy. In the following examples, the electric energy and the flow of thermal energy are described.
  • a cold storage material (not shown) is provided inside the heat storage device 1a, and cold energy is stored in the cold storage material.
  • a heat storage material (not shown) is provided inside the heat storage device 1b, and warm heat is stored in the heat storage material.
  • the amount of cold stored in the heat storage device 1a or the amount of heat stored in the heat storage device 1b is measured by measuring the temperature of the cold storage material or the heat storage material and flowing into the heat storage devices 1a, 1b. It can be obtained by monitoring the amount of heat released.
  • the temperature can be measured with a temperature sensor such as a thermocouple.
  • the amount of cold storage 2 a that is the amount of stored cold energy and the amount of heat accumulated 2 b that is the amount of stored heat can be obtained by measuring the temperature of the cold storage material or the heat storage material.
  • Cold heat flows into the cold storage material provided in the heat storage device 1a.
  • cold heat generated when operating the refrigeration cycle cold heat generator 3a for cooling an object such as air conditioning flows into the cold storage material.
  • the cold energy generated by the thermoelectric converter that enables mutual conversion between thermal energy and electric energy is introduced into the cold storage material.
  • the thermoelectric converter may be any one that converts electrical energy and heat energy to each other. An example of this will be described below using thermoelectric elements 4 a, 4 b, and 4 c that generate the Seebeck effect and the Peltier effect.
  • thermoelectric element 4a electric energy is generated due to the temperature difference between the outside air and the cold storage heat, or reheat energy is generated by applying a voltage to the electric power provided in the thermoelectric element 4a.
  • the cold generated by applying a voltage to the thermoelectric element 4a flows into the cold storage material provided in the heat storage device 1a.
  • a part of the cold energy stored in the cold storage material flows out to the cold energy utilization unit 5 a that uses the cold energy.
  • thermoelectric element 4b heat is flowing into the heat storage material provided in the heat storage device 1b.
  • a specific example of this heat is the heat generated when operating the refrigeration cycle heat generator 3 b that raises the temperature of an object like air conditioning.
  • the heat generated by the thermoelectric element 4b that enables the electric energy to be converted into heat energy flows into the heat storage material.
  • the thermoelectric element 4 b generates electric energy due to the temperature difference between the outside air and the heat storage, or generates heat energy by applying a voltage to the electrode provided on the thermoelectric element 4 b. I am letting.
  • the heat generated by applying a voltage to the thermoelectric element 4 b flows into the heat storage material provided inside the heat storage device 1 b.
  • the heat generated from the heating member 6 such as an engine or transmission oil is flowed into the heat storage device 1b by the heat transfer medium, and the heat stored in the heat storage material by the heat transfer medium. A part of the water is discharged to the heat utilization part 5b, which uses heat.
  • Cold heat generated when operating the refrigeration cycle heat generator 3b, heat energy generated by the thermoelement 4b, and heat generated from the high temperature member 6 are stored in the heat storage material provided in the heat storage device 1b. Inflow. The amount of heat that is flowing in is detected by the sensor and notified. That is, the amount of heat flowing into the heat storage material provided in the heat storage device 1b can be known from the outside.
  • the amount of cold heat flowing from the refrigeration cycle cold heat generator 3a into the heat storage device 1a is obtained as the cold heat recovery amount 7a.
  • This cold heat recovery amount 7a is obtained by measuring the temperature and flow rate of the cold heat sequentially, and calculating the amount of change in temperature with respect to time and the amount of change in flow rate with respect to time.
  • the cold heat generated when the refrigeration cycle cold heat generator 3a is operated and the cold heat generated by the thermoelectric converter flow into the cold storage material provided in the heat storage device 1a.
  • the amount of cold heat flowing in is detected by the sensor and notified. That is, the amount of heat flowing into the cold storage material provided in the heat storage device 1a can be known from the outside.
  • the amount of heat flowing from the refrigeration cycle heat generator 3 b into the heat storage device 1 b is obtained as the heat recovery amount 7 b.
  • the amount of heat recovered 7b is obtained by measuring the temperature and flow rate of the heat sequentially and calculating. The temperature of cold or hot is measured by a measuring device such as a thermocouple. Then, since the measured amount of heat is announced as the amount of heat recovered 7 b, the heat that the user of the heat storage device 1 b flows from the refrigeration cycle heat generator 3 b to the heat storage material provided in the heat storage device 1 b Know the amount.
  • thermoelectric elements 4 a, 4 b, 4 c generate heat when electric energy is applied to electrodes (not shown).
  • the thermoelectric element 4 a includes electric energy generated by the solar power generator 8, electric energy generated by the other thermoelectric element 4 b, and electric energy stored in the power storage device 9. The sum of these is the energy supply of 1 O a is there.
  • the thermoelectric element 4 b is supplied with electric energy generated by the solar power generator 8, electric energy generated by the other thermoelectric elements 4 a, and electric energy stored in the power storage device 9, The sum of these is the energy supply amount 10 b.
  • the energy supply amounts 10 a and 10 b can be obtained by measuring current values and voltage values. Therefore, the user of the thermoelectric elements 4a and 4b can know the amount of electric energy supplied to the thermoelectric elements 4a and 4b and the amount of electric energy supplied to the 10a and 10b. .
  • the amount of cold heat flowing from the thermoelectric element 4a to the cold storage material provided in the heat storage device 1a is measured by sequentially measuring the physical quantity such as the temperature and flow rate of the flowing cold heat, and the amount of change in cold heat with respect to time is calculated. Calculated as the amount of cold heat recycled 1 2 a.
  • the amount of heat flowing from the thermoelectric element 4 b to the heat storage material provided in the heat storage device 1 b is measured by sequentially measuring physical quantities such as the temperature and flow rate of the flowing heat, and the amount of change in heat with respect to time. Is calculated as heat recycling amount 1 2 b. That is, the amount of heat energy generated by energizing the thermoelectric elements 4a and 4b can be known.
  • the cold energy utilization unit 5a corresponds to a functional unit that requires air-conditioning, intake air cooling, and other warm-up. In car interior cooling and intake air cooling, since cold energy is used to cool the air, the demand for cold energy increases especially in summer.
  • the heat utilization part 5 b corresponds to in-vehicle heating and other functional part warm-up. In car heating, heat is used to heat the air, so the demand for heat increases, especially in winter.
  • the amount of cold heat flowing out from the heat storage device 1 a to the cold energy utilization unit 5 a is calculated by sequentially measuring physical quantities such as the temperature and flow rate of the cold energy, and calculating the amount of change in cold energy over time as the cold energy utilization amount 1 3 a. Is required.
  • the amount of heat that flows from the heat storage device 1 b to the heat utilization unit 5 b is calculated by sequentially measuring physical quantities such as the temperature and flow rate of the heat, and calculating the amount of change in heat over time as the amount of heat utilization 1 3 b. Is required. Each physical quantity can be measured with a thermocouple or the like.
  • the heat is transferred from the heat transfer medium to the heat storage material provided inside the heat storage device 1b.
  • the amount of heat to be obtained is obtained by sequentially measuring physical quantities such as temperature and flow rate of heat, and calculating the amount of change with time as the amount of heat recovered from the member 14. That is, the member thermal energy recovery amount 14 is recognized.
  • the cold and warm stored in the heat storage device 1a.1b can be converted into heat by the thermoelectric elements 4a and 4b serving as the heat input means and the heat output means. That is, the cold energy stored in the heat storage device 1a moves to the thermoelectric element 4a which is the heat output means and is converted into electric energy, and the electric energy is converted into the thermoelectric element 4 which is the heat input means. By adding to b, the Lie part becomes hot. Then, the heat converted from the cold energy of the heat storage device 1a moves to the heat storage device 1b. This heat transfer increases the amount of heat stored in the heat storage device 1b.
  • the amount of heat to move is determined by sequentially measuring physical quantities such as the temperature and flow rate of the heat, This is calculated by calculating the amount of change in the amount as the amount of recycled heat 12 2 c. It is possible to know the amount of heat that is transferred from the cold energy of the heat storage device 1a to the heat storage device 1b.
  • thermoelectric elements 4 a and 4 b serving as heat input means and heat output means. Then, the cold energy converted from the heat of the heat storage device 1b moves to the heat storage device 1a, and the amount of cold stored in the heat storage device 1a increases.
  • the amount of heat to be moved is measured by sequentially measuring physical quantities such as the temperature and flow rate of the heat, and the change in the amount of heat with time The amount is calculated by calculating the amount of heat recycled as 1 2 d. That is, it is possible to know the amount of heat by which the cold energy converted from the heat of the heat storage device 1b moves to the heat storage device 1a.
  • thermoelectric conversion unit such as a thermoelectric element is attached to the heat storage device 1a, 1b, and electric energy is applied to the thermoelectric conversion unit, so that the cold storage device provided in the heat storage device 1a, 1b
  • the amount of cold energy stored in the material or heat storage material and the amount of heat stored can be increased.
  • a power generator that generates electric energy one using wind power or one using sunlight is known.
  • a solar power generator 8 such as a solar cell battery is used as one that uses sunlight.
  • the solar power generator 8 converts sunlight into electric energy, and a part of the electric energy is stored in the power storage device 9. A part of the electric energy generated by the solar power generator 8 is stored in the thermoelectric element 4c.
  • the amount of solar power generation 15 indicating the electric energy generated by the solar power generator 8 can be obtained by sequentially measuring physical quantities such as current and voltage and calculating the change with time. That is, the amount of electric energy generated by the solar power generator 8 can be known.
  • the energy storage energy amount 16 indicating the electric energy supplied from the solar power generator 8 to the power storage device 9 is calculated by calculating the amount of change with time by sequentially measuring physical quantities such as current and voltage. Desired. That is, it is possible to know the amount of electric energy when the electric energy generated by the solar power generator 8 is stored in the power storage device 9.
  • thermoelectric elements 4a and 4b Part of the electric energy generated by the solar power generator 8 is also added to the thermoelectric elements 4a and 4b.
  • the power supply amount display unit 17 a indicating the electric energy that is supplied from the solar power generator 8 to the thermoelectric elements 4 a and 4 b sequentially measures physical quantities such as current and voltage, and measures the amount of time with respect to time. It is obtained by calculating the amount of change. That is, it is possible to know the amount of electric energy when the electric energy generated by the solar power generator 8 is energized to the thermoelectric elements 4a and 4b.
  • thermoelectric elements 4 a and 4 b generate electric power by generating a zeck effect by applying warm or cold heat to the elements.
  • thermoelectric element 4 c generates electricity by generating a Rize-Beck effect due to the temperature difference between the cooling side and the heating side.
  • a part or all of the electric energy generated by the power generation of the thermoelectric elements 4 a and 4 b and the electric energy generated by the power generation of the thermoelectric element 4 c are stored in the power storage device 9.
  • thermoelectric generation amounts 18 8 a. 18 b, 18 c indicating the electric energy transmitted from the thermoelectric elements 4 a, 4 b, 4 C to the power storage device 9 are physical quantities such as current and voltage. Can be obtained by measuring each time and measuring the change of each physical quantity with respect to time. That is, it is possible to know the electric energy when the electric energy generated in the thermoelectric elements 4 a, 4 b, 4 C is stored in the power storage device 9.
  • thermoelectric elements 4 a. 4 b and 4 c generate electrical energy depending on the temperature difference.
  • the amount of electricity in the thermoelectric power generation part 11 1 .1 1 b, 1 1 c which indicates the electric energy generated by the thermoelectric elements 4 a, 4 b, 4 c, sequentially measures physical quantities such as current and voltage. It is obtained by calculating the amount of change of each physical quantity with respect to time.
  • the amount of stored energy which is electrical energy stored in the power storage device 9 is obtained by sequentially measuring physical quantities such as current and voltage in the power storage device 9 and calculating the amount of change of each physical quantity with respect to time. Desired. Further, the amount of electric energy that is supplied from the power storage device 9 to the thermoelectric element 4 c can be obtained as the power supply amount display unit 17 b.
  • the power supply amount is obtained by sequentially measuring physical quantities such as current and voltage between the power storage device 9 and the thermoelectric element 4 c and calculating the amount of change with time. That is, it is possible to know the amount of stored energy stored in the power storage device 9 and the amount of electrical energy flowing from the power storage device 9 into the heat storage devices 1a and 1b.
  • Figure 2 shows the calculation results of thermal energy and electrical engineering energy based on environmental information, thermal energy information, and electrical energy information.
  • a block diagram for controlling the amount of light generated is shown.
  • notification means acoustic means, visual indications, and electrical signals. The following examples describe the display of calculation results by visual indications.
  • Environmental information includes information such as outside air temperature and solar radiation. This information can be obtained by measuring physical quantities such as temperature and solar radiation with a thermocouple, solar radiation meter, etc.
  • thermal energy information includes cold energy, heat recovery, storage, and consumption information. These information measures physical quantities such as temperature and flow rate using thermocouples, mass meter, etc. It is obtained by setting.
  • electrical energy information includes electricity collection, storage, and consumption information, which can be obtained by measuring physical quantities such as voltmeters, ammeters, and other physical quantities.
  • step S 21 environmental information, thermal energy information, and electrical energy information are input to the computing device. Based on the input information, the amount of thermal energy and the amount of electrical energy are calculated.
  • step S 22 the calculated thermal energy amount and electric energy amount are displayed on each display unit. Then, in accordance with the result calculated in step S 21, a control signal is sent from the arithmetic device to the control device in step S 23 to control the heat generating member, the heat using member, the power generating member, and the electricity using member. . Therefore, the calculated amount of heat energy and electric energy can be known.
  • FIGS 3 and 4 show the flowcharts for reading the environmental information, thermal energy information, and electrical energy information, and displaying the thermal energy and electrical energy.
  • step S 31 the measured environmental information, thermal energy information, and electrical energy information are read into the arithmetic device. Based on the information read in step S 3 1, in step S 3 2, the amount of heat energy and the amount of electric energy are calculated in the arithmetic unit.
  • step S 33 it is determined whether or not there is a power generation amount of electric energy generated by the solar power generator 8.
  • the necessity of heat conversion between cold heat and warm heat is determined by measuring the heat storage amount and the cold storage amount in the heat storage device 1a.1b. Specifically, the temperatures of the cold storage material provided in the heat storage device 1a and the heat storage material provided in the heat storage device 1b are measured, and the temperatures of the heat storage material and the cold storage material are measured.
  • the amount of heat stored in the heat storage device 1a and the amount of cold storage stored in the heat storage device 1b are calculated based on the heat storage device 1a, and the amount of cold storage stored in the heat storage device 1b is calculated between the heat storage devices 1a and 1b. It is determined whether or not there is a need for heat conversion between cold heat and heat.
  • thermoelectric element 4a Engineering energy is added to the thermoelectric element 4a, converted into heat energy, and stored in the heat storage device 1a. As a result, the cold and warm heat stored is converted into heat.
  • generation of electric energy caused by temperature differences in thermoelectric elements 4 a, 4 b, 4 c in step S 3 6 (mature power generation)
  • the presence or absence of is determined. Specifically, the amount of power storage energy of power storage device 9 is measured by power measurement, and the surplus amount of power storage in power storage device 9 is determined based on this measured value.
  • the presence or absence of electric power generation (thermoelectric power generation) in step S 3 6 depends on whether the heat storage material provided in the heat storage device 1 a, the heat storage material provided in the heat storage device 1 b, The amount of heat stored in the heat storage device 1a and the amount of cold storage stored in the heat storage device 1b are obtained based on this measured value, and the cold energy between the heat storage devices 1a.1b is obtained. Whether there is a need for heat conversion between heat and heat is determined. Then, when it is determined that there is a need for heat conversion between cold and hot, electric energy that is supplied from the power storage device 9 to the thermoelectric elements 4 a and 4 b is measured.
  • thermoelectric power generation is performed by the thermoelectric elements 4 a and 4 b in step S 37 to generate electric energy.
  • the magnitude of the amount of electrical energy generated by the solar power generator 8 and the amount of electrical energy used is determined in step S 3 8. .
  • step S 39 power is stored in power storage device 9.
  • FIG. 4 shows a flow relating to the generation of electric energy when it is determined in step S 33 that the electric energy generated by the solar power generator 8 is not generated.
  • step S33 if the electric power generated by the solar power generator 8 is not generated, in step S41, there is a surplus in the amount of heat storage and cold storage in the heat storage devices 1a and 1b. Or whether there is a surplus.
  • thermoelectric power is generated by the thermoelectric elements 4a, 4b.4c in step S42, and electric energy is generated.
  • thermoelectric power generation in step S42 it is determined in step S43 whether the hot and cold stored in the heat storage devices 1a and 1b are converted to each other or not. When it is determined that the heat or cold stored in the heat storage device 1 a.1 b is converted into heat, the heat and cold stored in the heat storage devices 1 a and 1 b are converted in step S44. Thermal conversion is done.
  • step S 3 5 after the cold heat and heat stored in the heat storage devices 1 a, 1 b are converted into heat, or in step S 3 7, thermoelectric generation by the thermoelectric elements 4 a, 4 b, 4 c is performed. Or after step S 3 9 is stored in power storage device 9, or after it is determined in step S 3 8 that power storage in power storage device 9 is unnecessary, or step S 4 1, it is determined that there is no surplus heat accumulation amount in the heat storage devices 1 a and 1 b, and in step S 4 3, it is determined that heat conversion by the thermoelectric elements 4 a. 4 b and 4 c is unnecessary.
  • step S 44 the electric energy calculated in step S 3 10 is calculated in step S 44 after any thermal conversion by thermoelectric elements 4 a, 4 b, and 4 c. The amount of each heat energy displayed is displayed on the display, or as an acoustic means. Ri is transmitted, the control flow one is terminated.
  • step S 3 10 the amount of electric energy or the amount of heat energy in each part of the heat storage device is displayed or transmitted. Specifically, the status of Step S3 5, Step S3 7, Step S3 9, Step S42, and Step S44 is announced in real time.
  • the situation at step S 3 5 includes the heat converted by the heat storage devices 1 a and 1 b
  • the amount of cold recycle 1 2 c and the amount of heat recycle 1 2 d indicating the heat and cold are detected and displayed on the indicator.
  • This detection means and notification means including display on the indicator correspond to the heat exchange notification means in the present invention.
  • a heat recycle power supply amount indicating the energization amount from the electricity storage device 9 to the thermoelectric element 4 c and a heat recycle power supply amount indicating the energization amount from the solar power generator 8 to the thermoelectric element 4 c are detected, and Is displayed on the indicator.
  • the notification means including the detection means and the display on the indicator corresponds to any one of the energization notification means.
  • the situation at step S 37 is that the amount of electricity in the thermoelectric generator 11 1 a, 1 1 b, 1 1 c indicating the electric energy generated in the thermoelectric elements 4 a, 4 b, 4 c It is displayed on the indicator as one of the means.
  • the electric energy generated in the thermoelectric elements 4 a, 4 b, 4 c is transmitted to the heat storage devices 1 a, 1 b, and the amount of thermoelectric generation indicating the amount of energy transmitted at that time 18 d, 18 ⁇ is displayed on the indicator as one of the energization notification means.
  • the amount of stored energy stored in the power storage device 9 is displayed on the indicator as one of the means for notifying the stored amount.
  • the electric energy generated by the solar power generator 8 is transmitted to the power storage device 9, and the stored energy amount 16 indicating the transmitted electric energy is an indicator as any one of the storage amount notification means. Is displayed.
  • the electric energy generated by the thermoelectric elements 4 a. 4 b, 4 c is transmitted to the power storage device 9, and the amount of thermoelectric generation corresponding to the transmitted electric energy is 1 8 a, 1 8 b, 1 8 c Is displayed on the indicator as one of the means for notifying the storage amount.
  • step S 4 2 is that the amount of cold recycle showing the heat and cold energy converted by the heat generators 1 a and 1 b when the solar power generator 8 does not generate electricity.
  • 1 2 c and the amount of heat recycling 1 2 d are displayed on the indicator as one of the means of heat exchange notification.
  • it corresponds to the amount of heat recycle power that corresponds to the amount of electric energy that is supplied from the electricity storage device 9 to the thermoelectric element 4 c, and to the amount of electric energy that is supplied from the solar power generator 8 to the thermoelectric element 4 c.
  • the amount of heat recycled power supply is displayed on the indicator as one of the means for notifying the amount of stored electricity.
  • step S44 is that the amount of electricity in the thermoelectric generator corresponding to the amount of electric energy generated in the thermoelectric elements 4a, 4b, 4c is 1 1 a. It is displayed on the indicator as one of the means of the means. In addition, the electric energy generated in the thermoelectric elements 4a, 4b.4c is transmitted to the heat storage device 1a.1b, and the thermoelectric power generation amount corresponding to the transmitted energy amount 1 8a, 18b. , 1 8 c is displayed on the indicator as one of the means for notifying the storage amount.
  • the amount of cold storage 2 a and the amount of heat storage 2 “b” is displayed on the indicator as one of the means for notifying the amount of heat storage, and the heat recovery amount of the member 14, the amount of cold recovery 7 a, and the amount of heat recovery 7 b are either of the heat inflow notification means.
  • it is displayed on the indicator as one of the means, and the cold usage 1 3 a and the heat usage 1 3 b are displayed on the indicator as one of the heat outflow notification means.
  • the electric energy amount by the solar power generator 8 and the energy supply amounts 10 a and 10 b are displayed on the indicator as any one of the storage amount notification means.
  • the display by the indicator may continuously display adjacent display portions, or may continuously display a part of one display portion.
  • a plurality of display units are placed in succession, and are turned on or off sequentially in accordance with a change in the amount of heat energy and a change in the amount of electrical energy.
  • the display accompanying changes in the amount of heat energy and the amount of electrical energy can be changed by changing the length of the bar-shaped indicator in one display, or changing the display to a circle or semicircle, etc.
  • voice announcements include acoustic methods that increase or decrease the voice or change the pitch of the sound as a method of changing the amount of heat energy or the amount of electrical energy.
  • notifications by vibration include those in which the magnitude and period of the vibration change continuously due to changes in the amount of thermal energy and the amount of electrical energy.
  • Fig. 5 shows the optimum for driving (hereinafter referred to as ECO drive) that performs control that improves fuel efficiency based on driving information, environmental information, navigation information, infrastructure information, thermal energy information, and electrical energy information. Each control amount is predicted by calculation, and The block diagram which announces the information of is written.
  • Fig. 5 shows the display on the display panel as an example of the notification.
  • the travel information includes information such as the speed of the drive, such as the vehicle speed, and the shift, etc.
  • the vehicle speed information is measured by a measuring device such as a speedometer, and the shift is measured by installing a sensor around the gear.
  • Environmental information includes information such as outside air temperature and solar radiation, and this information is measured by measuring devices such as thermocouples and solar radiation meters.
  • Navi information includes road slope S, shape, etc., and is detected in correspondence with position information measured by GPS (Global Positioning System).
  • infrastructure information includes information such as traffic jam information, signal information, and legal vehicle speed. These information are obtained by GPS (Global Positioning System).
  • the thermal energy information includes cold / heat recovery-accumulation / consumption information, which can be obtained by measuring physical quantities such as temperature and flow rate with thermocouples and mass meter.
  • Electricity energy information includes electricity recovery-storage ⁇ consumption information, which is obtained by measuring physical quantities such as voltage and current with a voltmeter, ammeter, etc. It is done.
  • step S51 based on the driving information, environmental information, navigation information, infrastructure information, heat energy information, and electric energy information, the predicted value of the thermal energy and the optimal increase / decrease in heat energy in the electric energy and ECO drive are calculated.
  • the predicted increase / decrease in the optimal electrician energy for the ECO drive is calculated.
  • step S52 the predicted value of the optimum increase / decrease in thermal energy and the predicted value of increase / decrease in electric energy in the calculated ECO drive are displayed on the display panel. Further, in accordance with the calculation result, the heat generating member, the heat utilization member, the power generation member, and the electricity utilization member are controlled in step S53.
  • Fig. 6 as an example of these displays, electric energy such as increase / decrease in heat energy such as increase / decrease in heat storage amount, cold storage amount in heat storage device 1a, 1b, or decrease in storage amount in power storage device 9 is shown.
  • An indicator that shows the increase or decrease is indicated.
  • This indicator displays the current heat storage amount or cold storage amount in the heat storage device, or the storage amount in the power storage device, and the increase or decrease in the current heat storage amount in the heat storage device predicted by the ECO drive, or the cold storage amount Increase / decrease or power storage
  • the increase / decrease in the amount of electricity stored in the device is displayed.
  • indicators for heat storage and cold storage may be provided separately, and even if the display location moves with time as shown in FIGS.
  • FIG. The display size may change with time as shown in (c). Furthermore, the amount of energy displayed in this embodiment includes the amount of heat energy and the amount of electric energy, the predicted value of the optimum increase / decrease of thermal energy in the ECO drive, and the predicted value of increase / decrease of the electric energy. .
  • Figure 7 shows the driving information, environmental information, navigation information, infrastructure information, thermal energy information, and electrical energy information, and based on the loaded information, the thermal energy, electrical energy, and optimum thermal energy increase / decrease in the ECO drive
  • the figure shows the flow chart for calculating the predicted value of the electrician's energy and the predicted increase / decrease in the ECO drive and displaying these values.
  • step S71 travel information, environmental information, navigation information, infrastructure information, heat energy information, and electrical energy information are read. Based on the read information, in step S 72, the predicted value of the increase / decrease of the optimum thermal energy and the predicted increase / decrease of the electrical energy in the thermal energy, electric energy and ECO drive are calculated. Then, in step S73, the predicted value for the optimum increase / decrease in heat energy and the predicted value for the increase / decrease in electric energy in the ECO drive are displayed on the indicator.
  • Fig. 8 shows a judgment map that shows the predicted value of the optimal amount of accumulated cold energy based on the outside air temperature and solar radiation. As the outside air temperature is high and the amount of solar radiation increases, it is predicted that the amount of cooling used will increase. Therefore, the judgment map shown in Fig. 8 shows that the outside air temperature is high and the amount of solar radiation. It is judged that more cold energy will be stored in the heat accumulator as the number increases.
  • Fig. 9 shows a judgment map that shows the predicted value of the optimum thermal energy storage based on the outside air temperature and solar radiation. As the outside air temperature is low and the amount of solar radiation decreases, the amount of heating used is expected to increase. Therefore, the judgment map shown in Fig. 9 shows that the outside air temperature is low, or More heat as solar radiation decreases It is determined to store energy in the heat storage device.
  • Fig. 10 predicts the optimum amount of control when performing ECO drive based on travel information, environmental information, navigation information, infrastructure information, thermal energy information, electrical energy information, and control mode selection information.
  • the block diagram that displays the information and controls each control device is shown.
  • the travel information includes information such as the moving speed of the driving device, including the vehicle speed, and shift information.
  • the information on the moving speed of the driving device is a measuring device such as a speedometer, and a sensor is provided around the gear for shifting. Is measured.
  • Environmental information includes information such as outside air temperature and solar radiation, which is measured by measuring devices such as thermocouples and solar radiation meters.
  • navigation information includes road gradients and shapes, and is measured by GPS.
  • infrastructure information includes information such as traffic jam information, signal information, and legal vehicle speed, and such information is acquired by GPS.
  • thermal energy information includes cold / hot energy collection, storage, and consumption information, which is measured by measuring devices such as thermocouples and mass meter.
  • Electric energy information also includes electricity collection / storage-consumption information, which can be obtained by measuring voltage, current, etc.
  • the control mode selection information is control mode information for controlling the fuel consumption of a drive device such as a vehicle, and is obtained from an input signal from a switch or the like.
  • step S 1 0 based on the driving information, environmental information, navigation information, infrastructure information, thermal energy information, electric energy information, and control mode selection information, the amount of heat energy and electric energy and each control mode
  • the predicted increase / decrease in the optimum heat energy and the predicted increase / decrease in electric energy are calculated.
  • the calculated heat energy amount, electric energy amount, the predicted increase / decrease amount of the optimum heat energy in each control mode, and the predicted increase / decrease amount of the electric energy amount are displayed on the display panel in step S 1 0 2. Is displayed. Further, in accordance with the calculation result, the heat generating member, the heat using member, the power generating member, and the power using member are controlled in step S 1 0 3.
  • FIG 11 shows the switches for switching between control selection modes.
  • Each control selection mode includes a power mode, normal mode, and ECO mode that the driver operates by itself, and an auto mode in which the drive unit automatically controls.
  • the par mode is a control mode for driving a drive device such as a vehicle at high speed.
  • the ECO mode is a control mode that places emphasis on the fuel consumption of a drive device such as a vehicle.
  • the normal mode is a mode that takes into account the balance between the speed of the drive unit and fuel consumption.
  • the auto mode is a mode for controlling the speed and fuel consumption of the drive device based on various information such as travel information.
  • Figure 11 (a) shows a switch with buttons arranged in parallel to switch between power mode, normal mode, eco mode, and auto mode. By pressing or pulling one of these switches, power mode, normal mode, ECO mode, or auto mode is selected, and the amount of thermal energy and Electrician energy is predicted.
  • Fig. 11 (b) shows the buttons for switching between power mode, normal mode, eco mode, and auto mode. Pressing one of these switches selects power mode, normal mode, ECO mode, or auto mode. Based on the selected mode, the amount of thermal energy and the amount of electrical energy are is expected.
  • Fig. 11 (c) shows a rotary button switch for switching between power mode, normal mode, ECO mode, and auto mode. By rotating these switches, the power mode, normal mode, ECO mode, or auto mode is selected, and based on the selected mode, the amount of thermal energy and the amount of electrical energy are predicted.
  • the power mode, normal mode, ECO mode, and auto mode are linked with the shift lever. By selecting these switches, power mode, normal mode, ECO mode, or auto mode is selected, and the amount of thermal energy and electrical energy are predicted based on the selected mode. .
  • Figure 12 shows the travel information, environmental information, navigation information, infrastructure information, thermal energy information, electrical energy information, and control mode selection information. Based on the loaded information, the amount of thermal energy and electrical energy The figure shows the flow chart for calculating the predicted increase / decrease in the optimum amount of thermal energy in each control mode and the predicted increase / decrease in the optimum electric energy amount in each control mode, and displaying these values.
  • step S 1 2 traveling information, environmental information, navigation information, infrastructure information, thermal energy information, electrical energy information, and control mode selection information are read.
  • prediction coefficients based on each control mode are set in steps S 1 2 3 to S 1 26. The prediction coefficient is set as 8 in the power mode and 8 in the ECO mode and ⁇ in the auto mode.
  • step S 1 by reflecting the prediction coefficients ⁇ , ⁇ , ⁇ . ⁇ in the optimum amount of cold energy and the optimum amount of heat energy obtained by the map shown in FIGS. 8 and 9. Therefore, it is possible to obtain the predicted value of the increase / decrease in the optimum amount of thermal energy and the predicted value of increase / decrease in the electric energy amount in each control mode.
  • the predicted value of the predicted increase / decrease in the amount of heat energy and the predicted value of increase / decrease in the amount of electric energy are displayed on the indicator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Provided is notifying means for notifying the increase/decrease of a hot calorie or a cold calorie stored in a regenerative apparatus and for predicting and notifying the increase/decrease of the hot calorie or the cold calorie in the future. The regenerative apparatus (1a or 1b) for storing the generated heat and for allowing the extraction of the stored heat comprises regeneration notifying means for detecting and notifying the increase/decrease of the hot calorie or the cold calorie stored in the regenerative apparatus (1a or 1b), heat outflow notifying means for detecting and notifying the increase/decrease of the hot calorie or the cold calorie fed out from the regenerative apparatus (1a or 1b), and heat inflow notifying means for detecting and notifying the increase/decrease of the hot calorie or the cold calorie fed into the regenerative apparatus (1a or 1b).

Description

明 細 書 蓄熱装置 技術分野  Technical information
この発明は、 温熱または冷熱を蓄えるとともに蓄えた温熱または冷熱を取り 出すことのできる蓄熱装置に関するものである。 背景技術  The present invention relates to a heat storage device that can store hot or cold energy and take out the stored hot or cold energy. Background art
圧縮式のヒートポンプが車両に搭載されていることは周知のとおリである。 そのヒートポンプの動力源は、 走行用の動力源を兼ねている内燃機関やモータで ある。 そのため、 車両の走行のために大きい動力を必要とする場合には、 ヒート ポンプで使用できる動力が制約され、 また反対に走行のために要求される動力が 小さい場合には、 ヒートポンプなどに使用できるいわゆる余剰動力が大きくな る。 このような動力の変動とヒートポンプに要求される動力とは必ずしも一致し ないので、 余剰動力がある場合には、 ヒートポンプを駆動して得られた熱を蓄熱 もしくは蓄冷しておくことが好ましい。  As is well known, a compression heat pump is mounted on a vehicle. The power source of the heat pump is an internal combustion engine or a motor that also serves as a driving power source. Therefore, when a large amount of power is required to travel the vehicle, the power that can be used by the heat pump is limited, and conversely, when the power required for traveling is small, it can be used for a heat pump, etc. So-called surplus power increases. Since such power fluctuations and power required for the heat pump do not always match, it is preferable to store or cool the heat obtained by driving the heat pump when there is surplus power.
このようにすれば、 動力源で発生する余剰の動力を、 蓄熱もしくは蓄冷の形 で回収することができ、 また冷房や暖房のために要求されるヒートポンプの駆動 力が不足する場合には、 蓄熱材に蓄えた熱エネルギを利用して冷房もしくは暖房 を行うことができる。 また、 このように構成した場合には、 冷凍サイクルにおけ る凝縮器から外部に放出していた熱を回収できるので、 エネルギ効率を向上さ せ、 ひいては車両の燃費を向上させることができる。  In this way, surplus power generated by the power source can be recovered in the form of heat storage or cold storage, and if the driving force of the heat pump required for cooling or heating is insufficient, Cooling or heating can be performed using the thermal energy stored in the material. In addition, when configured in this manner, the heat released from the condenser in the refrigeration cycle can be recovered, so that energy efficiency can be improved, and thus the fuel consumption of the vehicle can be improved.
蓄熱装置の蓄熱量は、 ヒートポンプで得られた熱や冷凍サイクルにおける凝 縮器から外部に放出された熱などを回収することにより増大する。 また、 蓄熱装 置の蓄熱量は、 蓄熱装置に蓄えられた蓄熱量が暖房または冷房に使用されること により減少する。 ここで、 蓄熱量の表示については、 エンジンの冷却水回路等に 設けられている潜熱蓄熱装置に関して蓄熱量を計測して L E D表示する発明が待 開平 7— 3 0 9 1 2 1号公報に記載されている。 また、 特開 2 0 0 2 - 2 4 7 7 0 6号公報には、 ハイプリッ ド車の動力が、 エンジンとフロントタイヤとの間、 フロントモータとフロントタイヤとの間、 フ ロントモータとバッテリとの間、 リアモータとバッテリとの間、 リアモータとリ ァタイヤとの間のそれぞれで伝達される構成の装置が開示されている。 そして、 特開 2 0 0 2— 2 4 7 7 0 6号公報の装置では、 これらの伝達されている動力に ついてのエネルギフローを表示させるようになつている。 The amount of heat stored in the heat storage device is increased by recovering the heat generated by the heat pump or the heat released from the condenser in the refrigeration cycle. In addition, the amount of heat stored in the heat storage device decreases when the amount of heat stored in the heat storage device is used for heating or cooling. Here, regarding the display of the amount of stored heat, an invention that measures the amount of stored heat and displays the LED on a latent heat storage device installed in the engine coolant circuit, etc. is described in Japanese Patent Application No. 7-3 0 9 1 2 1 Has been. In Japanese Patent Laid-Open No. 2 0 2-2 4 7 7 0 6, the power of a hybrid vehicle is between the engine and the front tire, between the front motor and the front tire, between the front motor and the battery. A device is disclosed that is transmitted between the rear motor and the battery and between the rear motor and the rear tire. In the apparatus disclosed in Japanese Patent Laid-Open No. 2 0 2-2 4 7 7 0 6, the energy flow of the transmitted power is displayed.
上述した特開平 7— 3 0 9 1 2 1号公報に記載されている L E D表示には、 潜熱蓄熱装置に関する蓄熱量が表示されている。 そのために、 潜熱蓄熱装置の使 用者は蓄えられている蓄熱量については認識することが可能である。 しかしなが ら、 潜熱蓄熱装置に加えられる熱量、 または熱蓄熱装置から放出される熱量、 ま たは潜熱蓄熱装置に設けられている温熱蓄熱部と冷熱蓄熱部との間で熱交換され る熱量については認識することができない。 換言すれば、 潜熱蓄熱装置に関する 使用者は蓄熱量の増減および温熱蓄熱部と冷熱蓄熱部との間で熱交換される熱量 については認識することができない。  In the LED display described in the above-mentioned Japanese Patent Laid-Open No. 7-3009121, the amount of stored heat related to the latent heat storage device is displayed. For this reason, the user of the latent heat storage device can recognize the amount of stored heat. However, the amount of heat applied to the latent heat storage device, the amount of heat released from the heat storage device, or the amount of heat exchanged between the heat storage unit and the cold storage unit provided in the latent heat storage device. Cannot be recognized. In other words, the user related to the latent heat storage device cannot recognize the increase or decrease in the amount of stored heat and the amount of heat exchanged between the thermal storage unit and the cold storage unit.
また、 上述した特開 2 0 0 2— 2 4 7 7 0 6号公報に記載されているェネル ギフローの表示によれば、 エンジン、 フロントモータ、 リアモータゃバッテリの 駆動装置とフロントタイヤ、 リアタイヤの駆動部との間を移動するエネルギ量が 表示される。 そのために、 このエネルギフローの表示により、 車両を運転してい る運転者等はどの駆動装置の動力を使用して走行をしているか認識することがで さる。  Further, according to the energy flow display described in the above-mentioned Japanese Patent Laid-Open No. 2 0 2-2 4 7 7 6, the engine, the front motor, the rear motor and the battery drive device, the front tire, and the rear tire drive The amount of energy that moves between parts is displayed. For this purpose, the driver or the like who is driving the vehicle can recognize which driving device is using the power by using the energy flow display.
しかしながら、 これはエネルギの入出力の現状を示すに過ぎないので、 需要 を満たし得るエネルギの有無を知ることはできない。 発明の開示  However, this is only an indication of the current state of energy input and output, so it is not possible to know whether there is energy that can meet demand. Disclosure of the invention
この発明は上記の課題に着目してなされたものであり、 温熱量または冷熱量 の現状と予測内容とを示すことのできる蓄熱装置を提供することを目的とするも のである。  The present invention has been made paying attention to the above-described problems, and an object of the present invention is to provide a heat storage device that can indicate the current state of heat and / or heat and the predicted content.
上記目的を達成するためこの発明は、 温熱または冷熱を蓄えるとともに蓄え た温熱または冷熱を取り出し可能な蓄熱装置において、 蓄えられている温熱量ま たは冷熱量を検出して外部に告知する蓄熱量告知手段と、 取り出された温熱量ま たは冷熱量を検出して外部に告知する熱流出告知手段と、 外部から供給されて蓄 えられる温熱量または冷熱量を検出して外部に告知する熱流入告知手段とを有す ることを特徴とするものである。 In order to achieve the above object, the present invention is directed to a heat storage device that stores hot or cold heat and can take out the stored hot or cold heat. Heat storage amount notification means for detecting the amount of cold heat and notifying the outside, heat outflow notification means for detecting the amount of extracted heat or cold heat and notifying the outside, and supplied and stored externally It has heat inflow notification means for detecting the amount of heat or cold and notifying the outside.
また、 この発明は、 上記の発明において、 前記蓄熱装置は温熱を蓄える温熱 蓄熱部と冷熱を蓄える冷熱蓄熱部とを有し、 前記温熱蓄熱部と前記冷熱蓄熱部と の間で熱変換される温熱量または冷熱量を検出して外部に告知する熱交換告知手 段を有することを特徴とするものである。  Moreover, this invention is the above-described invention, wherein the heat storage device includes a thermal storage unit that stores thermal energy and a cold storage unit that stores cold, and heat conversion is performed between the thermal storage unit and the cold storage unit. It has a heat exchange notification means for detecting the amount of heat or cold and notifying the outside.
更に、 この発明は、 上記の発明において、 前記蓄熱量告知手段および前記熱 流出告知手段ならびに前記熱流入告知手段のそれぞれにおける外部への告知内容 を、 視覚で認識できる光学的手法と聴覚で認識できる音響的手法と電気信号との いずれかで出力する出力部を更に備えていることを特徴とするものである。  Further, according to the present invention, in the above-mentioned invention, the notification contents to the outside in each of the heat storage amount notification means, the heat outflow notification means, and the heat inflow notification means can be visually recognized as an optical technique. It further comprises an output unit that outputs either an acoustic method or an electrical signal.
更に、 この発明は、 上記いずれかの発明において、 蓄えられた温熱または冷 熱を電気工ネルギに変化して取り出す熱出力手段を更に備え、 前記熱流出告知手 段は前記熱出力手段で電気工ネルギに変換した熱量を外部に告知する手段を含む ことを特徴とするものである。  Furthermore, the present invention, in any one of the above-mentioned inventions, further comprises heat output means for taking out the stored hot or cold heat into electric energy, and the heat outflow notification means is an electrician by the heat output means. It includes a means for notifying the outside of the amount of heat converted to energy.
更に、 この発明は、 上記いずれかの発明において、 電気工ネルギを温熱また は冷熱に変換して入力する熱入力手段を更に備え、 前記熱入力告知手段は、 前記 熱入力手段で電気工ネルギから熱エネルギに変換した熱量を外部に告知する手段 を含むことを特徴とするものである。  Furthermore, the present invention further includes any one of the above-described inventions, further comprising heat input means for converting electric energy to heat or cold and inputting the heat, and the heat input notification means is the electric input energy from the electric energy. It includes a means for notifying the outside of the amount of heat converted into heat energy.
更に、 この発明は、 上記のいずれかの発明において、 電気工ネルギを前記熱 入力手段に加えることによリ前記温熱蓄熱部と前記冷熱蓄熱部との間で熱交換が なされ、 前記電気工ネルギには蓄電装置に蓄えられている電気工ネルギが含ま れ、 前記蓄電装置に蓄えられている蓄電量を検出して外部に告知する蓄電量告知 手段を有することを特徴とするものである。  Further, according to any one of the above-described inventions, the present invention provides heat exchange between the thermal heat storage unit and the cold heat storage unit by adding electric energy to the heat input means, Includes electric energy stored in the power storage device, and has a storage amount notification means for detecting the amount of power stored in the power storage device and notifying the outside.
更に、 この発明は、 上記いずれかの発明において、 車両に搭載され、 かつ前 記蓄熱量告知手段および前記熱流出告知手段ならびに前記熱流入告知手段および 前記熱交換告知手段の少なくともいずれかの手段は、 前記車両の予測される走行 環境における温熱または冷熱の発生量もしくは消費量あるいはこれら発生量と消 費量との差分である蓄熱増減量とを予測し、 その予測内容を告知内容として外部 に告知する手段を含むことを特徴とするものである。 Further, the present invention provides the method according to any one of the above-mentioned inventions, wherein at least one of the heat storage amount notification means, the heat outflow notification means, the heat inflow notification means, and the heat exchange notification means is mounted on a vehicle. The amount of heat or cold generated or consumed in the predicted driving environment of the vehicle, or the amount generated and consumed It includes a means for predicting the amount of increase or decrease in heat storage, which is the difference from the cost, and notifying the prediction contents to the outside as notification contents.
更に、 この発明は、 上記の発明において、 車両に搭載され、 かつ前記蓄電量 告知手段は前記車両の予測される走行環境における蓄電装置に蓄えられる電気工 ネルギ量あるいはこれら発生量と消費量との差分である蓄電増減量とを予測し、 その予測内容を告知内容として外部に告知する手段を含むことを特徴とするもの である。  Further, according to the present invention, in the above-described invention, the power storage amount notification means is mounted on the vehicle, and the storage means notifies the amount of electric energy stored in the power storage device in the predicted traveling environment of the vehicle or the amount of generation and consumption thereof. It includes a means for predicting the amount of increase or decrease in power storage, which is a difference, and notifying the prediction contents to the outside as notification contents.
この発明によれば、 蓄熱装置に蓄えられている温熱量または冷熱量と、 蓄熱 装置に取り出された温熱量または冷熱量と、 外部から供給されて蓄熱装置に蓄え られる温熱量または冷熱量とが、 検出されて外部に告知される。 そのため、 蓄熱 装置に蓄えられている温.熱量または冷熱量と、 蓄熱装置に流入されている温熱量 または冷熱量と、 蓄熱装置から流出されている温熱量または冷熱量を認知するこ とが可能となる。  According to the present invention, the amount of heat or cold stored in the heat storage device, the amount of heat or cold extracted from the heat storage device, and the amount of heat or cold supplied from the outside and stored in the heat storage device. Detected and notified to the outside. Therefore, it is possible to recognize the amount of heat or cold stored in the heat storage device, the amount of heat or cold flowing into the heat storage device, and the amount of heat or cold flowing out of the heat storage device. It becomes.
また、 この発明によれば、 前記蓄熱装置は温熱を蓄える温熱蓄熱部と冷熱を 蓄える冷熱蓄熱部とを有し、 前記温熱蓄熱部と冷熱蓄熱部との間で熱変換がされ ている。 そして、 熱交換されている温熱量または冷熱量が挨出されて外部に告知 されている。 そのため、 上記の発明と同様の効果を得られる他に、 蓄熱装置に蓄 えられている温熱および冷熱を互いに熱交換する際の熱交換量を認知することが 可能となる。  Moreover, according to this invention, the said heat storage apparatus has a thermal storage part which stores thermal energy, and a cold heat storage part which stores cold, and heat conversion is performed between the said thermal storage part and cold storage part. Then, the amount of heat or heat that is being exchanged is exhausted and announced to the outside. Therefore, in addition to obtaining the same effect as the above invention, it is possible to recognize the amount of heat exchange when the heat and cold stored in the heat storage device are exchanged with each other.
更に この発明によれば、 蓄熱装置に蓄えられている温熱量または冷熱量 と、 蓄熱装置に取り出された温熱量または冷熱量と、 外部から供給されて蓄熱装 置に蓄えられる温熱量または冷熱量とが光学的手法または音響的手法または電気 信号のいずれかにより出力される。 そのため、 上記の発明と同様の効果を得られ る他に、 蓄熱装置に蓄えられている温熱量または冷熱量と、 蓄熱装置に流入され ている温熱量または冷熱量と、 蓄熱装置から流出されている温熱量または冷熱量 を視覚もしくは聴覚によリ認知することができる。  Furthermore, according to the present invention, the amount of heat or cold stored in the heat storage device, the amount of heat or cold extracted from the heat storage device, and the amount of heat or cold supplied from the outside and stored in the heat storage device. Are output by either optical, acoustic or electrical signals. Therefore, in addition to obtaining the same effect as the above invention, the amount of heat or cold stored in the heat storage device, the amount of heat or cold flowing into the heat storage device, and the amount of heat discharged from the heat storage device The amount of heat or cold that is present can be recognized visually or audibly.
更に、 この発明によれば、 蓄熱装置に蓄えられている温熱量または冷熱量が 電気工ネルギに変化され、 この電気工ネルギが検出されて告知されている。 その ため、 上記いずれかの発明と同様の効果を得られる他に、 電気工ネルギを検出す ることによリ蓄熱装置に蓄えられている温熱量または冷熱量と、 蓄熱装置に流入 されている温熱量または冷熱量と、 蓄熱装置から流出されている温熱量または冷 熱量を認知することが可能となる。 Furthermore, according to the present invention, the amount of heat or cold stored in the heat storage device is changed to electric energy, and this electric energy is detected and notified. Therefore, in addition to obtaining the same effect as any of the above inventions, The amount of heat or cold stored in the heat storage device, the amount of heat or cold flowing into the heat storage device, and the amount of heat or cold flowing out of the heat storage device. It becomes possible.
更に、 この発明によれば、 電気工ネルギを温熱または冷熱に変換して入力す る熱入力手段が備えられ、 この変換された熱量が告知されている。 そのため、 上 記いずれかの発明と同様の効果を得られる他に、 電気工ネルギから熱エネルギに 変換された熱量を認知することが容易となる。  Further, according to the present invention, the heat input means for converting electric energy to heat or cold and inputting it is provided, and the converted heat quantity is announced. Therefore, in addition to obtaining the same effect as any of the above inventions, it becomes easy to recognize the amount of heat converted from electric energy to heat energy.
更に、 この発明によれば、 電気工ネルギを前記熱入力手段に加えることによ リ前記温熱蓄熱部と前記冷熱蓄熱部との間で熱交換がなされ、 前記電気工ネルギ には蓄電装置に蓄えられている電気工ネルギが含まれておリ、 前記蓄電装置に蓄 えられている蓄電量が検出されて告知されている。 そのため、 上記いずれかの発 明と同様の効果を得られる他に、 蓄電量および蓄電量を認知することが可能とな る。  Furthermore, according to the present invention, by adding electric energy to the heat input means, heat exchange is performed between the thermal heat storage unit and the cold heat storage unit, and the electric energy is stored in a power storage device. The amount of stored electricity stored in the power storage device is detected and notified. Therefore, in addition to obtaining the same effect as any of the above-described inventions, it is possible to recognize the amount of electricity stored and the amount of electricity stored.
更に、 この発明によれば、 車両に搭載された蓄熱装置に蓄えられている温熱 量の発生量または消費量増減の予測値と、 前記蓄熱装置に流入され、 または前記 蓄熱装置から流出されている温熱量または冷熱量の増減の予測値と、 蓄熱装置内 において互いに熱変換されている温熱量または冷熱量の増減の予測値とが、 温熱 または冷熱の発生量もしくは消費量あるいは発生量もしくは消費量の差分を予測 して、 この予測値が外部に告知されている。 そのため、 上記いずれかの発明と同 様の効果を得られる他に、 予測された温熱または冷熱の発生量または消費量と、 この発生量または消費量の増減とを認知することが可能になる。  Furthermore, according to this invention, the predicted value of the amount of generated heat or the increase or decrease in the amount of heat stored in the heat storage device mounted on the vehicle, and the flow into the heat storage device or the flow out of the heat storage device The predicted value of the increase or decrease in the amount of heat or cold and the predicted value of the increase or decrease in the amount of heat or cold that are mutually converted into heat in the heat storage device are the amount or amount of heat or cold that is generated or consumed, or the amount or amount that is generated or consumed. The predicted value is announced to the outside. Therefore, in addition to obtaining the same effect as any one of the above inventions, it is possible to recognize the predicted amount of heat or cold generated or consumed and the increase or decrease in the amount generated or consumed.
更に、 この発明によれば、 車両に搭載された蓄電装置に蓄えられている電気 エネルギ量もしくはこの蓄電装置の蓄電増減量とが予測され、 この予測値が外部 に告知されている。 そのため、 上記の発明と同様の効果を得られる他に、 予測さ れた蓄電装置に蓄えられている電気工ネルギとこの電気工ネルギの増減とを認知 することが可能になる。 図面の簡単な説明  Furthermore, according to the present invention, the amount of electric energy stored in the power storage device mounted on the vehicle or the amount of increase / decrease in power storage of this power storage device is predicted, and this predicted value is notified to the outside. Therefore, in addition to obtaining the same effect as the above invention, it is possible to recognize the electric energy stored in the predicted power storage device and the increase / decrease in the electric energy. Brief Description of Drawings
図 1は、 この発明に係る熱エネルギの流通と電気工ネルギの伝達とを模式的 に示す図である。 Fig. 1 schematically shows the distribution of thermal energy and electric energy transmission according to this invention. FIG.
図 2は、 この発明に係る表示形態と制御形態を模式的に示すブロック図であ る。  FIG. 2 is a block diagram schematically showing a display form and a control form according to the present invention.
図 3は、 図 2に示されている表示方法を説明するためのフローチヤ一卜の一 部を示す図である。  FIG. 3 is a diagram showing a part of a flowchart for explaining the display method shown in FIG.
図 4は、 図 2に示されている表示方法を説明するためのフローチヤ一卜の一 部を示す図である。  FIG. 4 is a diagram showing a part of a flowchart for explaining the display method shown in FIG.
図 5は、 この発明に係る表示方法と制御方法を模式的に示す他のプロック図 を示す図である。  FIG. 5 is a diagram showing another block diagram schematically showing the display method and the control method according to the present invention.
図 6は、 熱エネルギ量の増減または電気工ネルギ量の増減を表示するインジ ゲータを模式的に示した図である。  Fig. 6 is a diagram schematically showing an indicator that displays the increase or decrease in the amount of thermal energy or the increase or decrease in the amount of electrical energy.
図 7は、 図 5に示されている表示形態を説明するためのフローチャー トであ る。  FIG. 7 is a flowchart for explaining the display form shown in FIG.
図 8は、 熱エネルギ量の増減または電気工ネルギ量の増減を予測するために 用いられるマツプの一例を示す図である。  FIG. 8 is a diagram showing an example of a map used to predict the increase or decrease in the amount of thermal energy or the increase or decrease in the amount of electric energy.
図 9は、 熱エネルギ量の増減または電気工ネルギ量の増減を予測するために 用いられるマップの一例を示す図である。  FIG. 9 is a diagram showing an example of a map used to predict the increase or decrease in the amount of thermal energy or the increase or decrease in the amount of electric energy.
図 1 0は、 この発明に係る表示方法と制御方法を模式的に示す他のブロック 図である。  FIG. 10 is another block diagram schematically showing the display method and control method according to the present invention.
図 1 1は、 各制御モードを選択するためのスィッチを模式的に示した図であ る。  Fig. 11 is a diagram schematically showing the switch for selecting each control mode.
図 1 2は、 図 1 0に示されている表示形態を説明するためのフローチャート である。 発明を実施するための最良の形態  FIG. 12 is a flowchart for explaining the display form shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
つぎにこの発明を具体例に基づいて詳細に説明する。 図 1 は、 蓄熱装置 1 a , 1 bに流入または流出される熱エネルギと、 前記蓄熱装置 1 a , 1 bの間で 熱変換をする際にエネルギの流入または流出を示したブロック図である。 ここ で、 蓄熱装置 1 aは冷熱蓄熱部に該当し、 蓄熱装置 1 bは温熱蓄熱部に該当す る。 エネルギには、 電気工ネルギゃ熱エネルギなどのエネルギが挙げられる。 以 下の実施例では、 電気工ネルギと熱エネルギの流れについて記す。 Next, the present invention will be described in detail based on specific examples. FIG. 1 is a block diagram showing the heat energy flowing into or out of the heat storage devices 1 a and 1 b and the energy flow in or out when heat is converted between the heat storage devices 1 a and 1 b . Here, the heat storage device 1 a corresponds to the cold heat storage unit, and the heat storage device 1 b corresponds to the heat storage unit. The The energy includes energy such as electric energy. In the following examples, the electric energy and the flow of thermal energy are described.
蓄熱装置 1 aの内部に図示しない蓄冷材が設けられ、 この蓄冷材に冷熱が蓄 えられている。 また、 蓄熱装置 1 bの内部に図示しない蓄熱材が設けられ、 この 蓄熱材に温熱が蓄えられている。 蓄熱装置 1 aに蓄えられている蓄冷量または蓄 熱装置 1 bに蓄えられている蓄熱量は、 蓄冷材または蓄熱材の温度を測定するこ と、 および蓄熱装置 1 a , 1 bへの流入、 流出熱量を監視することにより求める ことができる。 温度の測定には熱電対等の温度センサによリ測定することができ る。 冷熱の蓄熱量である冷熱蓄積量 2 aおよび温熱の蓄熱量である熱蓄積量 2 b は、 蓄冷材もしくは蓄熱材の温度を測定することにより求めることができる。  A cold storage material (not shown) is provided inside the heat storage device 1a, and cold energy is stored in the cold storage material. In addition, a heat storage material (not shown) is provided inside the heat storage device 1b, and warm heat is stored in the heat storage material. The amount of cold stored in the heat storage device 1a or the amount of heat stored in the heat storage device 1b is measured by measuring the temperature of the cold storage material or the heat storage material and flowing into the heat storage devices 1a, 1b. It can be obtained by monitoring the amount of heat released. The temperature can be measured with a temperature sensor such as a thermocouple. The amount of cold storage 2 a that is the amount of stored cold energy and the amount of heat accumulated 2 b that is the amount of stored heat can be obtained by measuring the temperature of the cold storage material or the heat storage material.
蓄熱装置 1 aに設けられている蓄冷材には冷熱が流入されている。 この冷熱 の具体例としては、 空調などのように物体を冷却させる冷凍サイクル冷熱生成器 3 aを動作させる際に生じた冷熱が前記蓄冷材に流入される。 また、 熱エネルギ と電気工ネルギの間で相互に変換することを可能とする熱電変換部によリ生じた 冷熱が前記蓄冷材に流入される。 前記熱電変換部は電気工ネルギと熱エネルギと を相互に変換するものであれば良い。 その一例を、 ゼーベック効果およびペルチ ェ効果を生じる熱電素子 4 a , 4 b , 4 cを用いた例で以下に説明をする。  Cold heat flows into the cold storage material provided in the heat storage device 1a. As a specific example of this cold heat, cold heat generated when operating the refrigeration cycle cold heat generator 3a for cooling an object such as air conditioning flows into the cold storage material. In addition, the cold energy generated by the thermoelectric converter that enables mutual conversion between thermal energy and electric energy is introduced into the cold storage material. The thermoelectric converter may be any one that converts electrical energy and heat energy to each other. An example of this will be described below using thermoelectric elements 4 a, 4 b, and 4 c that generate the Seebeck effect and the Peltier effect.
熱電素子 4 aでは、 外気と蓄冷熱との温度差により電気工ネルギが発生 し、 、 または熱電素子 4 aに設けられている電棰に電圧を印加することによリ熱 エネルギが発生する。 熱電素子 4 aに電圧を印加することによリ生じた冷熱は、 蓄熱装置 1 aに設けられている蓄冷材に流入される。 また、 前記蓄冷材に蓄えら れている冷熱の一部が、 冷熱を利用する冷熱利用部 5 aに流出されている。  In the thermoelectric element 4a, electric energy is generated due to the temperature difference between the outside air and the cold storage heat, or reheat energy is generated by applying a voltage to the electric power provided in the thermoelectric element 4a. The cold generated by applying a voltage to the thermoelectric element 4a flows into the cold storage material provided in the heat storage device 1a. In addition, a part of the cold energy stored in the cold storage material flows out to the cold energy utilization unit 5 a that uses the cold energy.
一方、 蓄熱装置 1 bに設けられている蓄熱材には温熱が流入されている。 こ の温熱の具体例は、 空調のように物体の温度を上昇させる冷凍サイクル温熱生成 器 3 bを動作させる際に生じた温熱である。 また、 電気工ネルギを熱エネルギに 変換することを可能とする熱電素子 4 bによリ生じた温熱が前記蓄熱材に流入さ れる。 ここで、 熱電素子 4 bは、 外気と蓄熱との温度差により電気工ネルギを発 生させ、 または熱電素子 4 bに設けられている電極に電圧を印加させることによ リ、 熱エネルギを発生させている。 熱電素子 4 bに電圧を印加させることにより生じた温熱は、 蓄熱装置 1 bの 内部に設けられている蓄熱材に流入されている。 さらに、 エンジンや変速機用ォ ィルなどの髙温部材 6から生じる温熱が熱搬送媒体によリ蓄熱装置 1 bに流入さ れ、 そして、 この熱搬送媒体により蓄熱材に蓄えられている温熱の一部が、 温熱 を利用する熱利用部 5 bに流出されている。 On the other hand, heat is flowing into the heat storage material provided in the heat storage device 1b. A specific example of this heat is the heat generated when operating the refrigeration cycle heat generator 3 b that raises the temperature of an object like air conditioning. Further, the heat generated by the thermoelectric element 4b that enables the electric energy to be converted into heat energy flows into the heat storage material. Here, the thermoelectric element 4 b generates electric energy due to the temperature difference between the outside air and the heat storage, or generates heat energy by applying a voltage to the electrode provided on the thermoelectric element 4 b. I am letting. The heat generated by applying a voltage to the thermoelectric element 4 b flows into the heat storage material provided inside the heat storage device 1 b. Furthermore, the heat generated from the heating member 6 such as an engine or transmission oil is flowed into the heat storage device 1b by the heat transfer medium, and the heat stored in the heat storage material by the heat transfer medium. A part of the water is discharged to the heat utilization part 5b, which uses heat.
前記冷凍サイクル温熱生成器 3 bを動作させる際に生じた冷熱と前記熱電素 子 4 bによリ生じた熱エネルギと高温部材 6から生じる温熱とが蓄熱装置 1 bに 設けられた蓄熱材に流入している。 その流入している温熱量がセンサによリ検出 されて、 告知されている。 すなわち、 蓄熱装置 1 bに設けられた蓄熱材に流入し ている温熱量を外部から知り得る。  Cold heat generated when operating the refrigeration cycle heat generator 3b, heat energy generated by the thermoelement 4b, and heat generated from the high temperature member 6 are stored in the heat storage material provided in the heat storage device 1b. Inflow. The amount of heat that is flowing in is detected by the sensor and notified. That is, the amount of heat flowing into the heat storage material provided in the heat storage device 1b can be known from the outside.
前記冷凍サイクル冷熱生成器 3 aから前記蓄熱装置 1 aの内部へ流入される 冷熱の冷熱量が冷熱回収量 7 aとして求められる。 この冷熱回収量 7 aは冷熱の 温度と流速とを逐次測定して、 温度の時間に対する変化量、 流量の時間に対する 変化量とを計算することにより求められる。 そして、 冷凍サイクル冷熱生成器 3 aを動作させる際に生じた冷熱と熱電変換部により生じた冷熱とが蓄熱装置 1 a に設けられた蓄冷材に流入している。 その流入している冷熱量がセンサにょリ検 出されて、 告知されている。 すなわち、 蓄熱装置 1 aに設けられた蓄冷材に流入 している温熱量を外部から知り得る。  The amount of cold heat flowing from the refrigeration cycle cold heat generator 3a into the heat storage device 1a is obtained as the cold heat recovery amount 7a. This cold heat recovery amount 7a is obtained by measuring the temperature and flow rate of the cold heat sequentially, and calculating the amount of change in temperature with respect to time and the amount of change in flow rate with respect to time. The cold heat generated when the refrigeration cycle cold heat generator 3a is operated and the cold heat generated by the thermoelectric converter flow into the cold storage material provided in the heat storage device 1a. The amount of cold heat flowing in is detected by the sensor and notified. That is, the amount of heat flowing into the cold storage material provided in the heat storage device 1a can be known from the outside.
前記冷凍サイクル温熱生成器 3 bから前記蓄熱装置 1 bの内部へ流入する温 熱量が温熱回収量 7 bとして求められる。 この温熱回収量 7 bは温熱の温度と流 量とを逐次測定して、 計算することにより求められる。 また、 冷熱または温熱の 温度は熱電対等の測定装置によリ測定される。 そして、 測定された温熱量が温熱 回収量 7 bとして告知されるため、 蓄熱装置 1 bの使用者が冷凍サイクル温熱生 成器 3 bから蓄熱装置 1 bに設けられた蓄熱材へ流入する温熱量を知ることがで さる。  The amount of heat flowing from the refrigeration cycle heat generator 3 b into the heat storage device 1 b is obtained as the heat recovery amount 7 b. The amount of heat recovered 7b is obtained by measuring the temperature and flow rate of the heat sequentially and calculating. The temperature of cold or hot is measured by a measuring device such as a thermocouple. Then, since the measured amount of heat is announced as the amount of heat recovered 7 b, the heat that the user of the heat storage device 1 b flows from the refrigeration cycle heat generator 3 b to the heat storage material provided in the heat storage device 1 b Know the amount.
熱電素子 4 a , 4 b , 4 cは図示しない電極に電気工ネルギを印加すること により発熱する。 ここで、 前記熱電素子 4 aには、 太陽光発電器 8により生じた 電気工ネルギと他の熱電素子 4 bによリ生じる電気工ネルギと蓄電装置 9に蓄え られている電気工ネルギとが供給され、 これらの総和がエネルギ供給量 1 O aで ある。 また、 前記熱電素子 4 bには、 太陽光発電器 8により生じた電気工ネルギ と他の熱電素子 4 aにより生じる電気工ネルギと蓄電装置 9に蓄えられている電 気エネルギとが供給され、 こらの総和がエネルギ供給量 1 0 bである。 The thermoelectric elements 4 a, 4 b, 4 c generate heat when electric energy is applied to electrodes (not shown). Here, the thermoelectric element 4 a includes electric energy generated by the solar power generator 8, electric energy generated by the other thermoelectric element 4 b, and electric energy stored in the power storage device 9. The sum of these is the energy supply of 1 O a is there. The thermoelectric element 4 b is supplied with electric energy generated by the solar power generator 8, electric energy generated by the other thermoelectric elements 4 a, and electric energy stored in the power storage device 9, The sum of these is the energy supply amount 10 b.
前記エネルギ供給量 1 0 a , 1 0 bは、 電流値や電圧値を測定することによ リ求めることができる。 そのため、 熱電素子 4 a , 4 bの使用者は、 熱電素子 4 a . 4 bに供給される電気工ネルギ供給量 1 0 a , 1 0 bに供給される電気エネ ルギ量を知ることができる。  The energy supply amounts 10 a and 10 b can be obtained by measuring current values and voltage values. Therefore, the user of the thermoelectric elements 4a and 4b can know the amount of electric energy supplied to the thermoelectric elements 4a and 4b and the amount of electric energy supplied to the 10a and 10b. .
前記熱電素子 4 aから前記蓄熱装置 1 aに設けられている蓄冷材へ流入する 冷熱量は、 流入されている冷熱の温度や流量などの物理量を逐次測定して、 時間 に対する冷熱の変化量を冷熱リサイクル量 1 2 aとして計算することによリ求め られる。 また、 前記熱電素子 4 bから前記蓄熱装置 1 bに設けられている蓄熱材 へ流入する温熱量は、 流入される温熱の温度や流量などの物理量を逐次測定し て、 時間に対する温熱の変化量を熱リサイクル量 1 2 bとして計算することによ リ求められる。 すなわち、 熱電素子 4 a , 4 bに通電させることにより生じる熱 エネルギ量を知ることができる。  The amount of cold heat flowing from the thermoelectric element 4a to the cold storage material provided in the heat storage device 1a is measured by sequentially measuring the physical quantity such as the temperature and flow rate of the flowing cold heat, and the amount of change in cold heat with respect to time is calculated. Calculated as the amount of cold heat recycled 1 2 a. In addition, the amount of heat flowing from the thermoelectric element 4 b to the heat storage material provided in the heat storage device 1 b is measured by sequentially measuring physical quantities such as the temperature and flow rate of the flowing heat, and the amount of change in heat with respect to time. Is calculated as heat recycling amount 1 2 b. That is, the amount of heat energy generated by energizing the thermoelectric elements 4a and 4b can be known.
蓄熱装置 1 a , 1 bの内部に設けられている蓄冷材または蓄熱材からは、 蓄 えられた冷熱または温熱が冷熱利用部 5 aまたは熱利用部 5 bに流出されてい る。 前記冷熱利用部 5 aには、 車内冷房、 吸入空気冷却、 その他の暖機を必要と する機能部が該当する。 車内冷房や吸入空気冷却においては、 空気の冷却に冷熱 が用いられるため、 特に夏季で冷熱の需要が多くなる。 また、 前記熱利用部 5 b には、 車内暖房、 その他機能部暖機が該当する。 車内暖房においては、 空気の暖 房に温熱が用いられるため、 特に冬季で温熱の需要が多くなる。  From the cold storage material or the heat storage material provided inside the heat storage devices 1a, 1b, the stored cold heat or heat flows out to the cold heat utilization unit 5a or the heat utilization unit 5b. The cold energy utilization unit 5a corresponds to a functional unit that requires air-conditioning, intake air cooling, and other warm-up. In car interior cooling and intake air cooling, since cold energy is used to cool the air, the demand for cold energy increases especially in summer. The heat utilization part 5 b corresponds to in-vehicle heating and other functional part warm-up. In car heating, heat is used to heat the air, so the demand for heat increases, especially in winter.
蓄熱装置 1 aから前記冷熱利用部 5 aへ流出する冷熱量は、 冷熱の温度や流 量などの物理量を逐次測定して、 時間に対する冷熱の変化量を冷熱利用量 1 3 a として計算することにより求められる。 また、 蓄熱装置 1 bから前記熱利用部 5 bへと流出する温熱量は、 温熱の温度や流量などの物理量を逐次測定して、 時間 に対する温熱の変化量を熱利用量 1 3 bとして計算することにより求められる。 なお、 上記の各物理量は、 熱電対等により測定できる。  The amount of cold heat flowing out from the heat storage device 1 a to the cold energy utilization unit 5 a is calculated by sequentially measuring physical quantities such as the temperature and flow rate of the cold energy, and calculating the amount of change in cold energy over time as the cold energy utilization amount 1 3 a. Is required. The amount of heat that flows from the heat storage device 1 b to the heat utilization unit 5 b is calculated by sequentially measuring physical quantities such as the temperature and flow rate of the heat, and calculating the amount of change in heat over time as the amount of heat utilization 1 3 b. Is required. Each physical quantity can be measured with a thermocouple or the like.
熱搬送媒体から前記蓄熱装置 1 bの内部に設けられている蓄熱材へ流入され る温熱量は、 温熱の温度や流量などの物理量を逐次測定して、 時間に対する変化 量を部材温熱回収量 1 4として計算することにより求められる。 すなわち、 前記 部材温熱回収量 1 4が認知される。 The heat is transferred from the heat transfer medium to the heat storage material provided inside the heat storage device 1b. The amount of heat to be obtained is obtained by sequentially measuring physical quantities such as temperature and flow rate of heat, and calculating the amount of change with time as the amount of heat recovered from the member 14. That is, the member thermal energy recovery amount 14 is recognized.
前記蓄熱装置 1 a . 1 bに蓄えられた冷熱と温熱とは前記熱入力手段および 熱出力手段となる熱電素子 4 a , 4 bを介することによリ互いに熱変換をさせる ことができる。 すなわち、 前記蓄熱装置 1 aに蓄えられた冷熱は、 前記熱出力手 段である熱電素子 4 aに移動して電気工ネルギへ変換され、 その電気工ネルギを 前記熱入力手段である熱電素子 4 bに加えることによリー部が温熱となる。 そし て、 前記蓄熱装置 1 aの冷熱から変換された温熱が前記蓄熱装置 1 bへと移動す る。 この熱移動により、 前記蓄熱装置 1 bに蓄えられている温熱の蓄熱量が増大 する。  The cold and warm stored in the heat storage device 1a.1b can be converted into heat by the thermoelectric elements 4a and 4b serving as the heat input means and the heat output means. That is, the cold energy stored in the heat storage device 1a moves to the thermoelectric element 4a which is the heat output means and is converted into electric energy, and the electric energy is converted into the thermoelectric element 4 which is the heat input means. By adding to b, the Lie part becomes hot. Then, the heat converted from the cold energy of the heat storage device 1a moves to the heat storage device 1b. This heat transfer increases the amount of heat stored in the heat storage device 1b.
ここで、 前記蓄熱装置 1 aの冷熱から変換された温熱が前記蓄熱装置 1 bへ と移動する場合において、 移動する温熱量は、 温熱の温度や流量などの物理量を 逐次測定して時間に対する温熱の変化量を冷熱リサイクル量 1 2 cとして計算す ることにより求められる。 蓄熱装置 1 aの冷熱から変換された温熱が前記蓄熱装 置 1 bへと移動する温熱量を知ることができる。  Here, in the case where the heat converted from the cold energy of the heat storage device 1a moves to the heat storage device 1b, the amount of heat to move is determined by sequentially measuring physical quantities such as the temperature and flow rate of the heat, This is calculated by calculating the amount of change in the amount as the amount of recycled heat 12 2 c. It is possible to know the amount of heat that is transferred from the cold energy of the heat storage device 1a to the heat storage device 1b.
一方で、 熱入力手段および熱出力手段となる熱電素子 4 a . 4 bを介するこ とにより、 前記蓄熱装置 1 bに蓄えられた温熱の一部が冷熱となる。 そして、 前 記蓄熱装置 1 bの温熱から変換された冷熱が前記蓄熱装置 1 aに移動し、 前記蓄 熱装置 1 aに蓄えられている冷熱の蓄冷量が増大する。 ここで、 前記蓄熱装置 1 bの温熱から変換された冷熱が前記蓄熱装置 1 aへ移動する場合において、 移動 する熱量は、 冷熱の温度や流量などの物理量を逐次測定して時間に対する熱量の 変化量を熱リサイクル量 1 2 dとして計算することにより求められる。 すなわ ち、 蓄熱装置 1 bの温熱から変換された冷熱が前記蓄熱装置 1 aへと移動する温 熱量を知ることができる。  On the other hand, a part of the heat stored in the heat storage device 1 b becomes cold through the thermoelectric elements 4 a and 4 b serving as heat input means and heat output means. Then, the cold energy converted from the heat of the heat storage device 1b moves to the heat storage device 1a, and the amount of cold stored in the heat storage device 1a increases. Here, in the case where the cold energy converted from the heat of the heat storage device 1b moves to the heat storage device 1a, the amount of heat to be moved is measured by sequentially measuring physical quantities such as the temperature and flow rate of the heat, and the change in the amount of heat with time The amount is calculated by calculating the amount of heat recycled as 1 2 d. That is, it is possible to know the amount of heat by which the cold energy converted from the heat of the heat storage device 1b moves to the heat storage device 1a.
次に、 熱電素子等の熱電変換部を蓄熱装置 1 a , 1 bに取り付けて、 この熱 電変換部に電気工ネルギを印加することにより、 蓄熱装置 1 a , 1 bに設けられ ている蓄冷材または蓄熱材に蓄えられている冷熱の蓄冷量および温熱の蓄熱量を 増加させることができる。 電気工ネルギを発生させる発電装置としては、 風力を利用するものや太陽光 を利用するものが知られているが、 その中でも太陽光を利用するものとして太暘 電池等による太陽光発電器 8が知られている。 前記太陽光発電器 8は太陽光を電 気エネルギに変換し、 この電気工ネルギの一部は蓄電装置 9に蓄電される。 ま た、 前記太陽光発電器 8によリ生じた電気工ネルギの一部は熱電素子 4 cに蓄え られる。 そのため、 前記蓄熱装置 1 a , 1 bに蓄えられている冷熱または温熱の 温度が変化し、 蓄熱装置 1 aと蓄熱装置 1 bとに蓄積されている熱量が増加す る。 太暘光発電器 8により発電される電気工ネルギを示す太陽光発電器量 1 5 は、 電流や電圧などの物理量を逐次測定して時間に対するその変化を計算するこ とにより求められる。 すなわち、 太陽光発電器 8において発電された電気工ネル ギ量を知ることができる。 Next, a thermoelectric conversion unit such as a thermoelectric element is attached to the heat storage device 1a, 1b, and electric energy is applied to the thermoelectric conversion unit, so that the cold storage device provided in the heat storage device 1a, 1b The amount of cold energy stored in the material or heat storage material and the amount of heat stored can be increased. As a power generator that generates electric energy, one using wind power or one using sunlight is known. Among them, a solar power generator 8 such as a solar cell battery is used as one that uses sunlight. Are known. The solar power generator 8 converts sunlight into electric energy, and a part of the electric energy is stored in the power storage device 9. A part of the electric energy generated by the solar power generator 8 is stored in the thermoelectric element 4c. For this reason, the temperature of the cold or warm heat stored in the heat storage devices 1a and 1b changes, and the amount of heat stored in the heat storage devices 1a and 1b increases. The amount of solar power generation 15 indicating the electric energy generated by the solar power generator 8 can be obtained by sequentially measuring physical quantities such as current and voltage and calculating the change with time. That is, the amount of electric energy generated by the solar power generator 8 can be known.
前記太陽光発電器 8によリ生じた電気工ネルギの一部または全部が蓄電装置 9に蓄えられる。 その際、 太陽光発電器 8から蓄電装置 9へ通電される電気エネ ルギを示す蓄電供給エネルギ量 1 6は電流や電圧などの物理量を逐次測定して時 間に対するその変化量を計算することにより求められる。 すなわち、 太陽光発電 器 8において発電された電気工ネルギが蓄電装置 9に蓄電される際の電気工ネル ギ量を知ることができる。  Part or all of the electric energy generated by the solar power generator 8 is stored in the power storage device 9. At this time, the energy storage energy amount 16 indicating the electric energy supplied from the solar power generator 8 to the power storage device 9 is calculated by calculating the amount of change with time by sequentially measuring physical quantities such as current and voltage. Desired. That is, it is possible to know the amount of electric energy when the electric energy generated by the solar power generator 8 is stored in the power storage device 9.
前記太陽光発電器 8によリ生じた電気工ネルギの一部は前記熱電素子 4 a , 4 bにも加えられる。 その際、 太陽光発電器 8から前記熱電素子 4 a , 4 bへ通 電される電気工ネルギを示す電力供給量表示部 1 7 aは電流や電圧などの物理量 を逐次測定して時間に対するその変化量を計算することによリ求められる。 すな わち、 太陽光発電器 8において発電された電気工ネルギが熱電素子 4 a , 4 bに 通電される際の電気工ネルギ量を知ることができる。  Part of the electric energy generated by the solar power generator 8 is also added to the thermoelectric elements 4a and 4b. At that time, the power supply amount display unit 17 a indicating the electric energy that is supplied from the solar power generator 8 to the thermoelectric elements 4 a and 4 b sequentially measures physical quantities such as current and voltage, and measures the amount of time with respect to time. It is obtained by calculating the amount of change. That is, it is possible to know the amount of electric energy when the electric energy generated by the solar power generator 8 is energized to the thermoelectric elements 4a and 4b.
前記熱電素子 4 a , 4 bは素子に温熱または冷熱を加えることによりゼ一べ ック効果が生じて発電される。 また、 熱電素子 4 cは冷却側と加熱側との間の温 度差によリゼ一ベック効果が生じて発電される。 この熱電素子 4 a , 4 bの発電 によリ生じた電気工ネルギの一部、 または全部と熱電素子 4 cの発電によリ生じ た電気工ネルギとが蓄電装置 9に蓄電される。  The thermoelectric elements 4 a and 4 b generate electric power by generating a zeck effect by applying warm or cold heat to the elements. In addition, the thermoelectric element 4 c generates electricity by generating a Rize-Beck effect due to the temperature difference between the cooling side and the heating side. A part or all of the electric energy generated by the power generation of the thermoelectric elements 4 a and 4 b and the electric energy generated by the power generation of the thermoelectric element 4 c are stored in the power storage device 9.
前記熱電素子 4 a , 4 b , 4 cから前記蓄電装置 9へ通電される電気工ネル ギは、 電圧、 電流などの物理量を測定することにより求めることができる。 より 詳細には、 前記熱電素子 4 a , 4 b , 4 Cから前記蓄電装置 9へ伝達される電気 エネルギを示す熱発電量 1 8 a . 1 8 b , 1 8 cは電流や電圧などの物理量を逐 次測定して、 各物理量の時間に対するその変化量を計算することによリ求められ る。 すなわち、 熱電素子 4 a , 4 b , 4 Cにおいて発電された電気工ネルギが前 記蓄電装置 9に蓄電される際の電気工ネルギを知ることができる。 An electric engineer energized from the thermoelectric elements 4 a, 4 b, 4 c to the power storage device 9 Gi can be obtained by measuring physical quantities such as voltage and current. More specifically, the thermoelectric generation amounts 18 8 a. 18 b, 18 c indicating the electric energy transmitted from the thermoelectric elements 4 a, 4 b, 4 C to the power storage device 9 are physical quantities such as current and voltage. Can be obtained by measuring each time and measuring the change of each physical quantity with respect to time. That is, it is possible to know the electric energy when the electric energy generated in the thermoelectric elements 4 a, 4 b, 4 C is stored in the power storage device 9.
前記熱電素子 4 a . 4 b , 4 cは温度差に応じて電気工ネルギを生じさせ る。 ここで、 熱電素子 4 a , 4 b , 4 cにより発生される電気工ネルギを示す熱 発電部電気量 1 1 a . 1 1 b , 1 1 cは電流や電圧などの物理量を逐次測定し て、 各物理量の時間に対するその変化量を計算することによリ求められる。  The thermoelectric elements 4 a. 4 b and 4 c generate electrical energy depending on the temperature difference. Here, the amount of electricity in the thermoelectric power generation part 11 1 .1 1 b, 1 1 c, which indicates the electric energy generated by the thermoelectric elements 4 a, 4 b, 4 c, sequentially measures physical quantities such as current and voltage. It is obtained by calculating the amount of change of each physical quantity with respect to time.
前記蓄電装置 9に蓄えられている電気工ネルギである蓄電エネルギ量は、 前 記蓄電装置 9における電流や電圧などの物理量を逐次測定して、 各物理量の時間 に対するその変化量を計算することにより求められる。 また、 前記蓄電装置 9か ら前記熱電素子 4 cへ通電される電気工ネルギ量は電力供給量表示部 1 7 bとし て求めることができる。 前記電力供給量は、 前記蓄電装置 9と前記熱電素子 4 c との間における電流や電圧などの物理量を逐次測定して時間に対するその変化量 を計算することにより求められる。 すなわち、 蓄電装置 9に蓄えられている蓄電 エネルギ量と、 この蓄電装置 9から蓄熱装置 1 a, 1 bに流入している電気エネ ルギ量とを知ることができる。  The amount of stored energy, which is electrical energy stored in the power storage device 9, is obtained by sequentially measuring physical quantities such as current and voltage in the power storage device 9 and calculating the amount of change of each physical quantity with respect to time. Desired. Further, the amount of electric energy that is supplied from the power storage device 9 to the thermoelectric element 4 c can be obtained as the power supply amount display unit 17 b. The power supply amount is obtained by sequentially measuring physical quantities such as current and voltage between the power storage device 9 and the thermoelectric element 4 c and calculating the amount of change with time. That is, it is possible to know the amount of stored energy stored in the power storage device 9 and the amount of electrical energy flowing from the power storage device 9 into the heat storage devices 1a and 1b.
図 2には、 環境情報、 熱エネルギ情報、 電気工ネルギ情報に基づいて熱エネ ルギ、 電気工ネルギを演算してその演算結果を告知し、 またこの演算結果を用い て熱リサイクル量と熱 ·光の発電量を制御するブロック図が記されている。 告知 の手段には、 音響的手段によるものと視覚的な表示によるものと電気信号による ものとがあるが、 以下の例では視覚的な表示による演算結果の表示について記 す。  Figure 2 shows the calculation results of thermal energy and electrical engineering energy based on environmental information, thermal energy information, and electrical energy information. A block diagram for controlling the amount of light generated is shown. There are two types of notification means: acoustic means, visual indications, and electrical signals. The following examples describe the display of calculation results by visual indications.
環境情報には、 外気温、 日射量などの情報が挙げられ、 これらの情報は熱電 対、 日射量計等によリ気温や日射量などの物理量を測定することによリ求められ る。 また、 熱エネルギ情報には冷熱 ·温熱の回収 · 蓄積 ·消費情報が挙げられ、 これらの情報は熱電対、 マスフ口メーター等により温度や流量などの物理量を測 定することにより求められる。 さらに、 電気工ネルギ情報には、 電気の回収 ·蓄 積 ·消費情報が挙げられ、 これらの情報は電圧計、 電流計などにょリ電圧、 電流 等などの物理量を測定することにより求められる。 Environmental information includes information such as outside air temperature and solar radiation. This information can be obtained by measuring physical quantities such as temperature and solar radiation with a thermocouple, solar radiation meter, etc. In addition, thermal energy information includes cold energy, heat recovery, storage, and consumption information. These information measures physical quantities such as temperature and flow rate using thermocouples, mass meter, etc. It is obtained by setting. In addition, electrical energy information includes electricity collection, storage, and consumption information, which can be obtained by measuring physical quantities such as voltmeters, ammeters, and other physical quantities.
ステップ S 2 1では、 環境情報、 熱エネルギ情報、 電気工ネルギ情報が演算 装置において入力される。 そして、 入力された各情報に基づいて、 熱エネルギ 量、 電気工ネルギ量が演算される。 次に、 ステップ S 2 2において、 演算された 熱エネルギ量と、 電気工ネルギ量とが各表示部に表示される。 そして、 ステップ S 2 1において演算された結果に伴い、 ステップ S 2 3において演算装置から制 御装置へ制御信号が送られて、 発熱部材、 熱利用部材、 発電部材、 電気利用部材 が制御される。 したがって、 演算された熱エネルギ量と電気工ネルギ量とを知る ことができる。  In step S 21, environmental information, thermal energy information, and electrical energy information are input to the computing device. Based on the input information, the amount of thermal energy and the amount of electrical energy are calculated. Next, in step S 22, the calculated thermal energy amount and electric energy amount are displayed on each display unit. Then, in accordance with the result calculated in step S 21, a control signal is sent from the arithmetic device to the control device in step S 23 to control the heat generating member, the heat using member, the power generating member, and the electricity using member. . Therefore, the calculated amount of heat energy and electric energy can be known.
図 3、 図 4には、 環境情報、 熱エネルギ情報、 電気工ネルギ情報を読み込 み、 熱エネルギ量、 電気工ネルギ量を表示させるまでのフローチャートが示され ている。 ステップ S 3 1では、 測定された前記環境情報、 前記熱エネルギ情報、 前記電気工ネルギ情報が演算装置に読み込まれている。 そして、 ステップ S 3 1 で読み込まれた情報に基づいて、 ステップ S 3 2で熱エネルギ量と電気工ネルギ 量とが演算装置において算出される。 次に、 ステップ S 3 3において、 太陽光発 電器 8によリ生じる電気工ネルギの発電量の有無が判断される。  Figures 3 and 4 show the flowcharts for reading the environmental information, thermal energy information, and electrical energy information, and displaying the thermal energy and electrical energy. In step S 31, the measured environmental information, thermal energy information, and electrical energy information are read into the arithmetic device. Based on the information read in step S 3 1, in step S 3 2, the amount of heat energy and the amount of electric energy are calculated in the arithmetic unit. Next, in step S 33, it is determined whether or not there is a power generation amount of electric energy generated by the solar power generator 8.
太暘光発電器 8により電気工ネルギが生じていると判断された塌合には、 次 のステップ S 3 4において蓄熱装置 1 a , 1 b間における冷熱と温熱との熱変換 の必要性の有無が判断される。 冷熱と温熱との熱変換の必要性は、 前記蓄熱装置 1 a . 1 bにおける蓄熱量および蓄冷量を測定することにより判断される。 具体 的には、 蓄熱装置 1 aの内部に設けられている蓄冷材と、 蓄熱装置 1 bの内部に 設けら ている蓄熱材との温度が測定され、 前記蓄熱材と前記蓄冷材との温度に 基づいて蓄熱装置 1 aに蓄えられている蓄熱量と蓄熱装置 1 bに蓄えられている 蓄冷量とが求められ、 この蓄熱量と蓄冷量に基づいて蓄熱装置 1 a, 1 b間にお ける冷熱と温熱との熱変換の必要性の有無が判断される。  When it is determined that electric energy is generated by the solar power generator 8, in the next step S 3 4, whether or not there is a necessity for heat conversion between the heat storage devices 1 a and 1 b between the heat storage devices 1 a and 1 b Is judged. The necessity of heat conversion between cold heat and warm heat is determined by measuring the heat storage amount and the cold storage amount in the heat storage device 1a.1b. Specifically, the temperatures of the cold storage material provided in the heat storage device 1a and the heat storage material provided in the heat storage device 1b are measured, and the temperatures of the heat storage material and the cold storage material are measured. The amount of heat stored in the heat storage device 1a and the amount of cold storage stored in the heat storage device 1b are calculated based on the heat storage device 1a, and the amount of cold storage stored in the heat storage device 1b is calculated between the heat storage devices 1a and 1b. It is determined whether or not there is a need for heat conversion between cold heat and heat.
その結果、 熱変換の必要性があると判断された場合は、 次のステップ S 3 5 で蓄熱装置 1 a側に余剰熱があリ蓄熱装置 1 b側の蓄熱量が不足する場合、 蓄熱 装置 1 aから熱電素子 4 aに熱が送られ電気工ネルギに変えられ、 その電気エネ ルギが前記熱電素子 4 bに加えられ熱エネルギに変換され、 蓄熱装置 1 bに蓄え られる。 一方、 蓄熱装置 1 b側に余剰熱があリ蓄熱装置 1 a側の蓄冷熱量が不足 する場合、 蓄熱装置 1 bから熱電素子 4 bに熱が送られ電気工ネルギに変えら れ、 その電気工ネルギが前記熱電素子 4 aに加えられ熱エネルギに変換され、 蓄 熱装置 1 aへ蓄えられる。 これにより蓄えられている冷熱と温熱とが熱変換され る。 また、 ステップ S 3 4における熱変換の有無に関わらず、 ステップ S 3 6に おいて熱電素子 4 a , 4 b , 4 cに温度差を生じさせることにより生じる電気工 ネルギの発生 (熟発電) の有無が判断される。 具体的には、 蓄電装置 9の蓄電工 ネルギ量が電力測定によリ測定され、 この測定値に基づいて蓄電装置 9における 蓄電量の余剰量が判断される。 As a result, if it is determined that heat conversion is necessary, if there is excess heat on the heat storage device 1a side in the next step S3 5 and the heat storage amount on the heat storage device 1b side is insufficient, Heat is sent from the device 1a to the thermoelectric element 4a to be converted into electric energy, and the electric energy is added to the thermoelectric element 4b to be converted into heat energy and stored in the heat storage device 1b. On the other hand, if there is surplus heat on the heat storage device 1b side and the amount of cold storage heat on the heat storage device 1a side is insufficient, heat is sent from the heat storage device 1b to the thermoelectric element 4b and converted to electric energy. Engineering energy is added to the thermoelectric element 4a, converted into heat energy, and stored in the heat storage device 1a. As a result, the cold and warm heat stored is converted into heat. In addition, regardless of the presence or absence of heat conversion in step S 3 4, generation of electric energy caused by temperature differences in thermoelectric elements 4 a, 4 b, 4 c in step S 3 6 (mature power generation) The presence or absence of is determined. Specifically, the amount of power storage energy of power storage device 9 is measured by power measurement, and the surplus amount of power storage in power storage device 9 is determined based on this measured value.
また、 ステップ S 3 6における電気工ネルギの発生 (熱発電) の有無は、 蓄 熱装置 1 aの内部に設けられている蓄冷材と、 蓄熱装置 1 bの内部に設けられて いる蓄熱材との温度が測定され、 この測定値に基づいて蓄熱装置 1 aに蓄えられ ている蓄熱量と蓄熱装置 1 bに蓄えられている蓄冷量とが求められ、 蓄熱装置 1 a . 1 b間における冷熱と温熱との熱変換の必要性の有無が判断される。 そし て、 冷熱と温熱との熱変換の必要性があると判断された際には、 前記蓄電装置 9 から熱電素子 4 a , 4 bに通電される電気工ネルギとが測定される。  In addition, the presence or absence of electric power generation (thermoelectric power generation) in step S 3 6 depends on whether the heat storage material provided in the heat storage device 1 a, the heat storage material provided in the heat storage device 1 b, The amount of heat stored in the heat storage device 1a and the amount of cold storage stored in the heat storage device 1b are obtained based on this measured value, and the cold energy between the heat storage devices 1a.1b is obtained. Whether there is a need for heat conversion between heat and heat is determined. Then, when it is determined that there is a need for heat conversion between cold and hot, electric energy that is supplied from the power storage device 9 to the thermoelectric elements 4 a and 4 b is measured.
そして、 熱電素子 4 a , 4 bに通電される電気工ネルギと蓄電装置 9におけ る蓄電量の余剰量とを挨討し、 ステップ S 3 6において、 熱発電が必要であると 判断された場合にはステップ S 3 7において熱電素子 4 a , 4 bによる熱発電が なされ、 電気工ネルギが生成される。 また、 ステップ S 3 6における熱発電の有 無に関わらず、 ステップ S 3 8において、 太陽光発電器 8により生成される電気 エネルギ量と使用される電気工ネルギ量との大きさが判断される。 その結果、 太 陽光発電器 8によリ生成される電気工ネルギ量が電気工ネルギの使用量よリも多 い場合は、 電気工ネルギが余剰されていることになるため、 電気工ネルギはステ ップ S 3 9において蓄電装置 9に蓄電される。 また、 太暘光発電器 8により生成 される電気工ネルギ量が電気工ネルギの使用量よリも少ない場合は、 電気工ネル ギは蓄電されない。 図 4には、 ステップ S 3 3において、 太陽光発電器 8により生じる電気エネ ルギが生成されていないと判断された場合における、 電気工ネルギの生成に関す るフローが記載されている。 ステップ S 3 3において、 太陽光発電器 8により生 じる電気工ネルギが生成されていない場合は、 ステップ S 4 1において、 蓄熱装 置 1 a , 1 bにおける蓄熱量、 蓄冷量に余剰があるか、 余剰の有無が判断され る。 蓄熱量または蓄冷量に余剰があると判断されたときは、 ステップ S 4 2にお いて熱電素子 4 a , 4 b . 4 cによる熱発電がなされ、 電気工ネルギが生成され る。 Then, the electric energy supplied to the thermoelectric elements 4a and 4b and the surplus amount of power stored in the power storage device 9 were examined, and it was determined in step S36 that thermoelectric power generation was necessary. In this case, thermoelectric power generation is performed by the thermoelectric elements 4 a and 4 b in step S 37 to generate electric energy. In addition, regardless of the presence or absence of thermal power generation in step S 3 6, the magnitude of the amount of electrical energy generated by the solar power generator 8 and the amount of electrical energy used is determined in step S 3 8. . As a result, if the amount of electric energy generated by the solar power generator 8 is more than the amount of electric energy used, the electric energy is surplus. In step S 39, power is stored in power storage device 9. In addition, when the amount of electric energy generated by the solar power generator 8 is less than the amount of electric energy used, the electric energy is not stored. FIG. 4 shows a flow relating to the generation of electric energy when it is determined in step S 33 that the electric energy generated by the solar power generator 8 is not generated. In step S33, if the electric power generated by the solar power generator 8 is not generated, in step S41, there is a surplus in the amount of heat storage and cold storage in the heat storage devices 1a and 1b. Or whether there is a surplus. When it is determined that there is a surplus in the amount of stored heat or the amount of stored cold, thermoelectric power is generated by the thermoelectric elements 4a, 4b.4c in step S42, and electric energy is generated.
ステップ S 4 2において熱発電がされた後、 ステップ S 4 3において蓄熱装 置 1 a , 1 bに蓄えられた温熱、 または冷熱について互いに変換させるか、 その 有無が判断される。 この蓄熱装置 1 a . 1 bに蓄えられた温熱、 または冷熱を互 いに熱変換させると判断した際は、 ステップ S 44において蓄熱装置 1 a , 1 b に蓄えられている温熱と冷熱との熱変換がなされる。  After thermoelectric power generation in step S42, it is determined in step S43 whether the hot and cold stored in the heat storage devices 1a and 1b are converted to each other or not. When it is determined that the heat or cold stored in the heat storage device 1 a.1 b is converted into heat, the heat and cold stored in the heat storage devices 1 a and 1 b are converted in step S44. Thermal conversion is done.
ステップ S 3 5において、 蓄熱装置 1 a , 1 bに蓄えられている冷熱と温熱 とが熱変換された後、 またはステップ S 3 7において、 熱電素子 4 a , 4 b , 4 cによる熱発電がなされた後、 またはステップ S 3 9において、 蓄電装置 9に蓄 電された後、 またはステップ S 3 8において蓄電装置 9への蓄電が不要との判断 がなされた後、 またはス亍ップ S 4 1において、 蓄熱装置 1 a , 1 bにおける余 剰熱蓄積量がないと判断された後、 そして、 ステップ S 4 3において、 熱電素子 4 a . 4 b、 4 cによる熱変換が不要との判断がなされた後、 ステップ S 44に おいて熱電素子 4 a , 4 b , 4 cによる熱変換がなされた後のいずれにおいても ステップ S 3 1 0において演算された各電気工ネルギ量と、 演算された各熱エネ ルギ量とが表示部に表示され、 あるいは音響的手段により伝達されて、 制御フロ 一が終了される。  In step S 3 5, after the cold heat and heat stored in the heat storage devices 1 a, 1 b are converted into heat, or in step S 3 7, thermoelectric generation by the thermoelectric elements 4 a, 4 b, 4 c is performed. Or after step S 3 9 is stored in power storage device 9, or after it is determined in step S 3 8 that power storage in power storage device 9 is unnecessary, or step S 4 1, it is determined that there is no surplus heat accumulation amount in the heat storage devices 1 a and 1 b, and in step S 4 3, it is determined that heat conversion by the thermoelectric elements 4 a. 4 b and 4 c is unnecessary. In step S 44, the electric energy calculated in step S 3 10 is calculated in step S 44 after any thermal conversion by thermoelectric elements 4 a, 4 b, and 4 c. The amount of each heat energy displayed is displayed on the display, or as an acoustic means. Ri is transmitted, the control flow one is terminated.
ステップ S 3 1 0においては、 蓄熱装置の各部における電気工ネルギ量また は熱エネルギ量が表示、 あるいは伝達される。 具体的には、 ステップ S 3 5、 ス テツプ S 3 7、 ステップ S 3 9、 ステップ S 42、 ステップ S 44の各状況がリ アルタイムで告知されている。  In step S 3 10, the amount of electric energy or the amount of heat energy in each part of the heat storage device is displayed or transmitted. Specifically, the status of Step S3 5, Step S3 7, Step S3 9, Step S42, and Step S44 is announced in real time.
ステップ S 3 5の状況としては、 蓄熱装置 1 a , 1 bで変換されている温熱 と冷熱とを示す冷熱リサイクル量 1 2 cおよび熱リサイクル量 1 2 dが検出され て、 インジゲータに表示されている。 この検出手段およびインジゲータへの表示 を含む告知手段が、 この発明における熱交換告知手段に該当する。 また、 蓄電装 置 9から熱電素子 4 cへの通電量を示す熱リサイクル電力供給量と太陽光発電器 8から熱電素子 4 cへの通電量を示す熱リサイクル電力供給量とが検出されて、 ィンジゲータに表示されている。 この検出手段およびインジゲータへの表示を含 む告知手段が通電告知手段のいずれか一つの手段に該当する。 The situation at step S 3 5 includes the heat converted by the heat storage devices 1 a and 1 b The amount of cold recycle 1 2 c and the amount of heat recycle 1 2 d indicating the heat and cold are detected and displayed on the indicator. This detection means and notification means including display on the indicator correspond to the heat exchange notification means in the present invention. In addition, a heat recycle power supply amount indicating the energization amount from the electricity storage device 9 to the thermoelectric element 4 c and a heat recycle power supply amount indicating the energization amount from the solar power generator 8 to the thermoelectric element 4 c are detected, and Is displayed on the indicator. The notification means including the detection means and the display on the indicator corresponds to any one of the energization notification means.
ステップ S 3 7の状況としては、 熱電素子 4 a , 4 b , 4 cで生じている電 気エネルギを示す熱発電部電気量 1 1 a , 1 1 b , 1 1 cが通電告知手段のいず れか一つの手段としてインジゲータに表示されている。 また、 熱電素子 4 a , 4 b , 4 cで生じている電気工ネルギが蓄熱装置 1 a , 1 bに伝達され、 その際伝 達されるエネルギ量を示す熱発電量 1 8 d , 1 8 Θが通電告知手段のいずれか一 つの手段としてインジゲータに表示されている。  The situation at step S 37 is that the amount of electricity in the thermoelectric generator 11 1 a, 1 1 b, 1 1 c indicating the electric energy generated in the thermoelectric elements 4 a, 4 b, 4 c It is displayed on the indicator as one of the means. In addition, the electric energy generated in the thermoelectric elements 4 a, 4 b, 4 c is transmitted to the heat storage devices 1 a, 1 b, and the amount of thermoelectric generation indicating the amount of energy transmitted at that time 18 d, 18 Θ is displayed on the indicator as one of the energization notification means.
ステップ S 3 9の状況としては、 蓄電装置 9に蓄えられている蓄電エネルギ 量が蓄電量吿知手段のいずれか一つの手段としてインジゲータに表示されてい る。 また、 太陽光発電器 8により生じた電気工ネルギが蓄電装置 9に伝達され、 この伝達された電気工ネルギ量を示す蓄電供給エネルギ量 1 6が蓄電量告知手段 のいずれか一つの手段としてインジゲータに表示されている。 さらに、 熱電素子 4 a . 4 b , 4 cにより生じる電気工ネルギが蓄電装置 9に伝達され、 この伝達 された電気工ネルギ量に該当する熱発電量 1 8 a , 1 8 b , 1 8 cが蓄電量告知 手段のいずれか一つの手段としてインジゲ一タに表示されている。  As the situation at step S 39, the amount of stored energy stored in the power storage device 9 is displayed on the indicator as one of the means for notifying the stored amount. In addition, the electric energy generated by the solar power generator 8 is transmitted to the power storage device 9, and the stored energy amount 16 indicating the transmitted electric energy is an indicator as any one of the storage amount notification means. Is displayed. Furthermore, the electric energy generated by the thermoelectric elements 4 a. 4 b, 4 c is transmitted to the power storage device 9, and the amount of thermoelectric generation corresponding to the transmitted electric energy is 1 8 a, 1 8 b, 1 8 c Is displayed on the indicator as one of the means for notifying the storage amount.
ステップ S 4 2の状況としては、 太陽光発電器 8によリ電気工ネルギが生成 されていない場合において、 養熱装置 1 a , 1 bで変換されている温熱と冷熱と を示す冷熱リサイクル量 1 2 cおよび熱リサイクル量 1 2 dが熱交換告知手段の いずれか一つの手段としてインジゲータに表示されている。 また、 蓄電装置 9か ら熱電素子 4 cへ通電される電気工ネルギ量に該当する熱リサイクル電力供給量 と、 太陽光発電器 8から熱電素子 4 cへ通電される電気工ネルギ量に該当する熱 リサイクル電力供給量とが、 蓄電量告知手段のいずれか一つの手段としてインジ ゲータに表示されている。 ステップ S 4 4の状況としては、 熱電素子 4 a , 4 b , 4 cで生じている電 気エネルギ量に該当する熱発電部電気量 1 1 a . 1 1 b , 1 1 cが蓄電量告知手 段のいずれか一つの手段としてインジケータに表示されている。 また、 熱電素子 4 a , 4 b . 4 cで生じている電気工ネルギが蓄熱装置 1 a . 1 bに伝達され、 この伝達されたエネルギ量に該当する熱発電量 1 8 a , 1 8 b , 1 8 cが蓄電量 告知手段のいずれか一つの手段としてインジゲータに表示されている。 The situation in step S 4 2 is that the amount of cold recycle showing the heat and cold energy converted by the heat generators 1 a and 1 b when the solar power generator 8 does not generate electricity. 1 2 c and the amount of heat recycling 1 2 d are displayed on the indicator as one of the means of heat exchange notification. In addition, it corresponds to the amount of heat recycle power that corresponds to the amount of electric energy that is supplied from the electricity storage device 9 to the thermoelectric element 4 c, and to the amount of electric energy that is supplied from the solar power generator 8 to the thermoelectric element 4 c. The amount of heat recycled power supply is displayed on the indicator as one of the means for notifying the amount of stored electricity. The status of step S44 is that the amount of electricity in the thermoelectric generator corresponding to the amount of electric energy generated in the thermoelectric elements 4a, 4b, 4c is 1 1 a. It is displayed on the indicator as one of the means of the means. In addition, the electric energy generated in the thermoelectric elements 4a, 4b.4c is transmitted to the heat storage device 1a.1b, and the thermoelectric power generation amount corresponding to the transmitted energy amount 1 8a, 18b. , 1 8 c is displayed on the indicator as one of the means for notifying the storage amount.
測定されている熱エネルギ量と電気工ネルギ量には、 フローチャートの 「Y E S」 . 「N O j に関わらず、 告知されるものがある。 具体的には、 冷熱蓄積量 2 aと熱蓄積量 2 bとは蓄熱量告知手段のいずれか一つの手段としてインジゲー タに表示されている。 また、 部材温熱回収量 1 4と冷熱回収量 7 aと温熱回収量 7 bとは熱流入告知手段のいずれか一つの手段として、 インジゲータに表示され ている。 さらに、 冷熱利用量 1 3 aと熱利用量 1 3 bとは熱流出告知手段のいず れか一つの手段としてインジゲータに表示されている。 また、 太陽光発電器 8に よる電気工ネルギ量と前記エネルギ供給量 1 0 a , 1 0 bとは、 蓄電量告知手段 のいずれか一つの手段としてィンジゲ一タに表示されている。  Some of the measured heat energy and electrical energy are reported regardless of “YES” or “NO j” in the flowchart. Specifically, the amount of cold storage 2 a and the amount of heat storage 2 “b” is displayed on the indicator as one of the means for notifying the amount of heat storage, and the heat recovery amount of the member 14, the amount of cold recovery 7 a, and the amount of heat recovery 7 b are either of the heat inflow notification means. In addition, it is displayed on the indicator as one of the means, and the cold usage 1 3 a and the heat usage 1 3 b are displayed on the indicator as one of the heat outflow notification means. Further, the electric energy amount by the solar power generator 8 and the energy supply amounts 10 a and 10 b are displayed on the indicator as any one of the storage amount notification means.
ここで、 インジゲ一タによる表示は、 隣接する表示部を連続的に表示し、 あ るいは一つの表示部の一部を連続的に表示するものであってもよい。 よリ詳細に は、 複数の表示部が連続して S置されて、 熱エネルギ量の変化、 電気工ネルギ量 の変化に伴い順に点灯させ、 あるいは順に消灯させるものがあげられる。 また、 熱エネルギ量の変化、 電気工ネルギ量の変化に伴う表示は、 一つの表示部におい て棒状のィンジケータの長さを変化させ、 または円や半円等に表示を変化させ、 あるいは色を変化させるものが挙げられる。 また、 音声による告知は、 熱ェネル ギ量の変化、 電気工ネルギ量の変化に伴い音響的手法として音声を増減させ、 あ るいは音の高低を変化させるものが挙げられる。 そして、 振動による告知は、 熱 エネルギ量の変化、 電気工ネルギ量の変化により振動の大きさ、 周期を連続的に 変化するものが挙げられる。  Here, the display by the indicator may continuously display adjacent display portions, or may continuously display a part of one display portion. In more detail, there are those in which a plurality of display units are placed in succession, and are turned on or off sequentially in accordance with a change in the amount of heat energy and a change in the amount of electrical energy. In addition, the display accompanying changes in the amount of heat energy and the amount of electrical energy can be changed by changing the length of the bar-shaped indicator in one display, or changing the display to a circle or semicircle, etc. Something that changes. In addition, voice announcements include acoustic methods that increase or decrease the voice or change the pitch of the sound as a method of changing the amount of heat energy or the amount of electrical energy. In addition, notifications by vibration include those in which the magnitude and period of the vibration change continuously due to changes in the amount of thermal energy and the amount of electrical energy.
図 5には、 走行情報、 環境情報、 ナビ情報、 インフラ情報、 熱エネルギ情 報、 電気工ネルギ情報に基づいて燃費を向上させる制御を行う走行 (以下、 E C O ドライブという) をする時に、 最適となる各制御量を演算により予想して、 そ の情報を告知するブロック図が記されている。 そして、 図 5では告知の一例とし て表示パネルへの表示について記載されている。 Fig. 5 shows the optimum for driving (hereinafter referred to as ECO drive) that performs control that improves fuel efficiency based on driving information, environmental information, navigation information, infrastructure information, thermal energy information, and electrical energy information. Each control amount is predicted by calculation, and The block diagram which announces the information of is written. Fig. 5 shows the display on the display panel as an example of the notification.
走行情報には、 車速などの駆動装置の移動速度や、 シフトなどの情報が挙げ られ、 車速の情報は速度計などの測定装置で、 シフトはギアの周辺にセンサを設 けることにより測定される。 環境情報には、 外気温、 日射量などの情報が挙げら れ、 これらの情報は熱電対、 日射量計等の測定装置により測定される。 また、 ナ ビ情報には、 道路の勾 S、 形状などが挙げられ、 G P S (グローバル ·ポジショ ニング - システム) などにより測定された位置情報に対応させて検出される。 さ らに、 インフラ情報には、 渋滞情報、 信号情報、 法定車速などの情報が挙げら れ、 これらの情報は G P S (グローバル ·ポジショニング · システム) などによ リ取得される。 そしてまた、 熱エネルギ情報には冷熱 ·温熱の回収 -蓄積 ·消費 情報が挙げられ、 これらの情報は熱電対、 マスフ口メーター等により温度や流量 などの物理量を測定することにより求められる。 そして、 電気工ネルギ情報に は、 電気の回収 -蓄積■消費情報が挙げられ、 これらの情報は電圧計、 電流計な どによリ電圧、 電流等などの物理量を測定することによリ求められる。  The travel information includes information such as the speed of the drive, such as the vehicle speed, and the shift, etc. The vehicle speed information is measured by a measuring device such as a speedometer, and the shift is measured by installing a sensor around the gear. . Environmental information includes information such as outside air temperature and solar radiation, and this information is measured by measuring devices such as thermocouples and solar radiation meters. Navi information includes road slope S, shape, etc., and is detected in correspondence with position information measured by GPS (Global Positioning System). In addition, infrastructure information includes information such as traffic jam information, signal information, and legal vehicle speed. These information are obtained by GPS (Global Positioning System). The thermal energy information includes cold / heat recovery-accumulation / consumption information, which can be obtained by measuring physical quantities such as temperature and flow rate with thermocouples and mass meter. Electricity energy information includes electricity recovery-storage ■ consumption information, which is obtained by measuring physical quantities such as voltage and current with a voltmeter, ammeter, etc. It is done.
ステップ S 5 1では、 走行情報、 環境情報、 ナビ情報、 インフラ情報、 熱ェ ネルギ情報、 電気工ネルギ情報に基づいて、 熱エネルギおよび電気工ネルギと E C O ドライブにおける最適な熱エネルギ増減の予測値と E C Oドライブにおける 最適な電気工ネルギの増減の予測値が演算される。 そして、 演算された E C Oド ライブにおける最適な熱エネルギ増減の予測値、 電気工ネルギの増減の予測値が ステップ S 5 2において表示パネルに表示される。 また、 演算結果に伴い、 発熱 部材、 熱利用部材、 発電部材、 電気利用部材がステップ S 5 3において制御され る。  In step S51, based on the driving information, environmental information, navigation information, infrastructure information, heat energy information, and electric energy information, the predicted value of the thermal energy and the optimal increase / decrease in heat energy in the electric energy and ECO drive are calculated. The predicted increase / decrease in the optimal electrician energy for the ECO drive is calculated. Then, in step S52, the predicted value of the optimum increase / decrease in thermal energy and the predicted value of increase / decrease in electric energy in the calculated ECO drive are displayed on the display panel. Further, in accordance with the calculation result, the heat generating member, the heat utilization member, the power generation member, and the electricity utilization member are controlled in step S53.
図 6には、 これらの表示の一例として、 蓄熱装置 1 a , 1 bにおける蓄熱 量、 蓄冷量の増減などの熱エネルギの増減、 あるいは蓄電装置 9における蓄電量 の增滅などの電気工ネルギの増減を表示したインジ一ゲータが記されている。 こ のインジゲータには、 蓄熱装置における現在の蓄熱量または蓄冷量、 あるいは蓄 電装置における蓄電量が表示されており、 また E C Oドライブにおいて予測され る蓄熱装置における現在の蓄熱量の増減、 または蓄冷量の増減、 あるいは蓄電装 置における蓄電量の増減が表示されている。 このとき、 蓄熱と蓄冷とのインジゲ ータは別々に設けられていても良く、 図 6 ( a ) , 図 6 ( b ) のように表示箇所 が時間と共に移動する形態であっても、 図 6 ( c ) のように表示の大きさが時間 と共に変化する形態であっても良い。 さらに、 この実施例において表示されるェ ネルギ量には、 熱エネルギ量および電気工ネルギ量と、 E C O ドライブにおける 最適な熱エネルギの増減の予測値および電気工ネルギの増減の予測値があげられ る。 In Fig. 6, as an example of these displays, electric energy such as increase / decrease in heat energy such as increase / decrease in heat storage amount, cold storage amount in heat storage device 1a, 1b, or decrease in storage amount in power storage device 9 is shown. An indicator that shows the increase or decrease is indicated. This indicator displays the current heat storage amount or cold storage amount in the heat storage device, or the storage amount in the power storage device, and the increase or decrease in the current heat storage amount in the heat storage device predicted by the ECO drive, or the cold storage amount Increase / decrease or power storage The increase / decrease in the amount of electricity stored in the device is displayed. At this time, indicators for heat storage and cold storage may be provided separately, and even if the display location moves with time as shown in FIGS. 6 (a) and 6 (b), FIG. The display size may change with time as shown in (c). Furthermore, the amount of energy displayed in this embodiment includes the amount of heat energy and the amount of electric energy, the predicted value of the optimum increase / decrease of thermal energy in the ECO drive, and the predicted value of increase / decrease of the electric energy. .
図 7には、 走行情報、 環境情報、 ナビ情報、 インフラ情報、 熱エネルギ情 報、 電気工ネルギ情報を読み込み、 読み込んだ情報に基づいて熱エネルギと電気 エネルギと E C O ドライブにおける最適な熱エネルギの増減の予測値と E C Oド ライブにおける最適な電気工ネルギの増減の予測値を求め、 これらの値を表示さ せるまでのフローチャートが示されている。  Figure 7 shows the driving information, environmental information, navigation information, infrastructure information, thermal energy information, and electrical energy information, and based on the loaded information, the thermal energy, electrical energy, and optimum thermal energy increase / decrease in the ECO drive The figure shows the flow chart for calculating the predicted value of the electrician's energy and the predicted increase / decrease in the ECO drive and displaying these values.
ステツプ S 7 1では、 走行情報、 環境情報、 ナビ情報、 インフラ情報、 熱ェ ネルギ情報、 電気工ネルギ情報が読み込まれている。 そして読み込まれた情報に 基づいて、 ステップ S 7 2で、 熱エネルギと電気工ネルギと E C Oドライブにお ける最適な熱エネルギの増減の予測値と電気工ネルギの増減の予測値が演算され る。 そして、 ステップ S 7 3において、 E C Oドライブにおける最適な熱ェネル ギの増減の予測値と電気工ネルギの増減の予測値がインジゲータに表示される。  In step S71, travel information, environmental information, navigation information, infrastructure information, heat energy information, and electrical energy information are read. Based on the read information, in step S 72, the predicted value of the increase / decrease of the optimum thermal energy and the predicted increase / decrease of the electrical energy in the thermal energy, electric energy and ECO drive are calculated. Then, in step S73, the predicted value for the optimum increase / decrease in heat energy and the predicted value for the increase / decrease in electric energy in the ECO drive are displayed on the indicator.
ステップ S 7 2において予測される E C O ドライブ時の最適な熱エネルギの 増減の予測値、 電気工ネルギの増減の予測値は実験によリ求められた判定マップ により求められる。 図 8には、 外気温と日射量に基づく冷熱エネルギ最適蓄積量 の予測値を示す判定マップが記されている。 外気温が高くなリ、 また日射量が多 くなると、 冷房の使用量が多くなることが予測されるため、 図 8に記されている 判定マップでは、 外気温が高くなリ、 また日射量が多くなるにつれてより多くの 冷熱エネルギを蓄熱装置に蓄えるように判断されている。  The predicted value of the optimum increase / decrease in thermal energy and the predicted increase / decrease in electrical energy during the ECO drive predicted in step S72 are obtained from the judgment map obtained through experiments. Fig. 8 shows a judgment map that shows the predicted value of the optimal amount of accumulated cold energy based on the outside air temperature and solar radiation. As the outside air temperature is high and the amount of solar radiation increases, it is predicted that the amount of cooling used will increase. Therefore, the judgment map shown in Fig. 8 shows that the outside air temperature is high and the amount of solar radiation. It is judged that more cold energy will be stored in the heat accumulator as the number increases.
また、 図 9には、 外気温と日射量に基づく熱エネルギ最適蓄積量の予測値を 示す判定マップが記されている。 外気温が低くなリ、 また日射量が少なくなる と、 暖房の使用量が多くなることが予測されるため、 図 9に記されている判定マ ップでは、 外気温が低くなリ、 または日射量が少なくなるにつれてより多くの熱 エネルギを蓄熱装置に蓄えるように判断されている。 In addition, Fig. 9 shows a judgment map that shows the predicted value of the optimum thermal energy storage based on the outside air temperature and solar radiation. As the outside air temperature is low and the amount of solar radiation decreases, the amount of heating used is expected to increase. Therefore, the judgment map shown in Fig. 9 shows that the outside air temperature is low, or More heat as solar radiation decreases It is determined to store energy in the heat storage device.
図 1 0は、 走行情報、 環境情報、 ナビ情報、 インフラ情報、 熱エネルギ情 報、 電気工ネルギ情報、 制御モード選択情報に基づいて E C O ドライブをする時 に、 最適となる各制御量を予想してその情報を表示し、 各制御装置を制御するブ ロック図が記されている。 走行情報には、 車速を含む駆動装置の移動速度や、 シ フ トなどの情報が挙げられ、 駆動装置の移動速度の情報は速度計などの測定装置 で、 シフトはギアの周辺にセンサを設けることによリ測定される。  Fig. 10 predicts the optimum amount of control when performing ECO drive based on travel information, environmental information, navigation information, infrastructure information, thermal energy information, electrical energy information, and control mode selection information. The block diagram that displays the information and controls each control device is shown. The travel information includes information such as the moving speed of the driving device, including the vehicle speed, and shift information. The information on the moving speed of the driving device is a measuring device such as a speedometer, and a sensor is provided around the gear for shifting. Is measured.
環境情報には、 外気温、 日射量などの情報が挙げられ、 これらの情報は熱電 対、 日射量計等の測定装置により測定される。 また、 ナビ情報には、 道路の勾 配、 形状などが挙げられ、 G P Sなどにより測定される。 さらに、 インフラ情報 には、 渋滞情報、 信号情報、 法定車速などの情報が挙げられ、 これらの情報は G P Sなどにより取得される。 さらにまた、 熱エネルギ情報には冷熱 ·温熱の回収 ■蓄積 '消費情報が挙げられ、 これらの情報は熱電対、 マスフ口メーター等の測 定装置により測定される。 そしてまた、 電気工ネルギ情報には、 電気の回収 ·蓄 積 -消費情報が挙げられ、 これらの情報は電圧、 電流等を測定することによリ求 められる。 そして、 制御モード選択情報には、 車両などの駆動装置の燃費を制御 する制御モード情報であり、 スィッチ等からの入力信号により求められる。  Environmental information includes information such as outside air temperature and solar radiation, which is measured by measuring devices such as thermocouples and solar radiation meters. In addition, navigation information includes road gradients and shapes, and is measured by GPS. In addition, infrastructure information includes information such as traffic jam information, signal information, and legal vehicle speed, and such information is acquired by GPS. Furthermore, thermal energy information includes cold / hot energy collection, storage, and consumption information, which is measured by measuring devices such as thermocouples and mass meter. Electric energy information also includes electricity collection / storage-consumption information, which can be obtained by measuring voltage, current, etc. The control mode selection information is control mode information for controlling the fuel consumption of a drive device such as a vehicle, and is obtained from an input signal from a switch or the like.
ステップ S 1 0 1 において、 走行情報、 環境情報、 ナビ情報、 インフラ情 報、 熱エネルギ情報、 電気工ネルギ情報、 制御モード選択情報に基づいて、 熱ェ ネルギ量および電気工ネルギ量と各制御モードにおける最適な熱エネルギの増減 の予測値、 電気工ネルギの増減の予測値が演算される。 そして、 演算された熱ェ ネルギ量と電気工ネルギ量と各制御モードにおける最適な熱エネルギ量の増減の 予測値と電気工ネルギ量の増減の予測値が、 ステップ S 1 0 2において表示パネ ルに表示される。 また、 演算結果に伴い、 発熱部材、 熱利用部材、 発電部材、 電 気利用部材がステップ S 1 0 3において制御される。  In step S 1 0 1, based on the driving information, environmental information, navigation information, infrastructure information, thermal energy information, electric energy information, and control mode selection information, the amount of heat energy and electric energy and each control mode The predicted increase / decrease in the optimum heat energy and the predicted increase / decrease in electric energy are calculated. The calculated heat energy amount, electric energy amount, the predicted increase / decrease amount of the optimum heat energy in each control mode, and the predicted increase / decrease amount of the electric energy amount are displayed on the display panel in step S 1 0 2. Is displayed. Further, in accordance with the calculation result, the heat generating member, the heat using member, the power generating member, and the power using member are controlled in step S 1 0 3.
図 1 1 には、 各制御選択モードを切り替える場合のスィッチが記されてい る。 各制御選択モードには、 ドライバーが自ら操作するパワーモード、 通常モー ド、 E C Oモードと、 駆動装置が自動的に制御を行うオートモードがある。 パヮ 一モードは車両等の駆動装置を高速で走らせるための制御モードである。 また、 E C Oモードは、 車両等の駆動装置の燃費を重視した制御モードである。 さら に、 通常モードは、 駆動装置の速度と燃費とのバランスを考慮したモー ドであ る。 そして、 オートモードは駆動装置の速度と燃費とを走行情報等の各種情報に 基づいて制御するモードである。 Figure 11 shows the switches for switching between control selection modes. Each control selection mode includes a power mode, normal mode, and ECO mode that the driver operates by itself, and an auto mode in which the drive unit automatically controls. The par mode is a control mode for driving a drive device such as a vehicle at high speed. Also, The ECO mode is a control mode that places emphasis on the fuel consumption of a drive device such as a vehicle. Furthermore, the normal mode is a mode that takes into account the balance between the speed of the drive unit and fuel consumption. The auto mode is a mode for controlling the speed and fuel consumption of the drive device based on various information such as travel information.
図 1 1 ( a ) には、 パワーモード、 通常モード、 E C Oモード、 オー トモー ドを切り替えるためにボタンが並列に並んでいるスィッチが記載されている。 こ れらのスィッチのいずれか一つを押し、 あるいは引く ことにより、 パワーモ一 ド、 通常モード、 E COモード、 オートモードのいずれかが選択され、 選択され たモードに基づいて、 熱エネルギ量および電気工ネルギ量が予測される。  Figure 11 (a) shows a switch with buttons arranged in parallel to switch between power mode, normal mode, eco mode, and auto mode. By pressing or pulling one of these switches, power mode, normal mode, ECO mode, or auto mode is selected, and the amount of thermal energy and Electrician energy is predicted.
図 1 1 ( b) には、 パワーモード、 通常モード、 E C Oモード、 オー トモー ドを切り替えるためのボタンが記載されている。 これらのスィツチのいずれか一 つを押すことによリ、 パワーモード、 通常モード、 E COモード、 オートモード のいずれかが選択され、 選択されたモードに基づいて、 熱エネルギ量および電気 エネルギ量が予測される。  Fig. 11 (b) shows the buttons for switching between power mode, normal mode, eco mode, and auto mode. Pressing one of these switches selects power mode, normal mode, ECO mode, or auto mode. Based on the selected mode, the amount of thermal energy and the amount of electrical energy are is expected.
図 1 1 ( c ) には、 パワーモード、 通常モード、 E COモード、 オー トモー ドを切リ替えるための回転式ボタンスィツチが記載されている。 これらのスイツ チを回転させることにより、 パワーモード、 通常モード、 E COモード、 オート モードのいずれかが選択され、 選択されたモードに基づいて、 熱エネルギ量およ び電気工ネルギ量が予測される。  Fig. 11 (c) shows a rotary button switch for switching between power mode, normal mode, ECO mode, and auto mode. By rotating these switches, the power mode, normal mode, ECO mode, or auto mode is selected, and based on the selected mode, the amount of thermal energy and the amount of electrical energy are predicted. The
図 1 1 ( d ) には、 パワーモード、 通常モード、 E C Oモード、 オー トモー ドについてシフトレバ一と連動している形式が記載されている。 これらのスイツ チを選択することにより、 パワーモード、 通常モード、 E COモード、 オートモ ードのいずれかが選択され、 選択されたモードに基づいて、 熱エネルギ量および 電気工ネルギ量が予測される。  In Fig. 11 (d), the power mode, normal mode, ECO mode, and auto mode are linked with the shift lever. By selecting these switches, power mode, normal mode, ECO mode, or auto mode is selected, and the amount of thermal energy and electrical energy are predicted based on the selected mode. .
図 1 2には、 走行情報、 環境情報、 ナビ情報、 インフラ情報、 熱エネルギ情 報、 電気工ネルギ情報、 制御モード選択情報を読み込み、 読み込んだ情報に基づ いて熱エネルギ量と電気工ネルギ量と各制御モードにおける最適な熱エネルギ量 の増減の予測値と各制御モードにおける最適な電気工ネルギ量の増減の予測値を 求め、 これらの値を表示させるまでのフローチヤ一卜が示されている。 ステップ S 1 2 1では、 走行情報、 環境情報、 ナビ情報、 インフラ情報、 熱 エネルギ情報、 電気工ネルギ情報、 制御モード選択情報が読み込まれている。 そ して読み込まれた制御モード選択情報に基づいて、 ステップ S 1 2 3からステツ プ S 1 2 6において各制御モードに基づく予測係数が設定される。 予測係数は、 パワーモードの時はひ、 通常モードの時は) 8 、 E C Oモードの時は 、 ォ一トモ 一ドの時は δとして設定される。 そして、 ステップ S 1 2 7において、 図 8 , 図 9に示されているマツプで求められた冷熱エネルギ最適蓄積量および熱エネルギ 最適蓄積量に予測係数ひ、 β、 Υ . δを反映させることにより、 各制御モードに おける最適な熱エネルギ量の増減の予測値と電気工ネルギ量の増減の予測値を求 めることができる。 そして、 予測された熱エネルギ量の増減の予測値と電気エネ ルギ量の増減の予測値がインジゲータに表示される。 Figure 12 shows the travel information, environmental information, navigation information, infrastructure information, thermal energy information, electrical energy information, and control mode selection information. Based on the loaded information, the amount of thermal energy and electrical energy The figure shows the flow chart for calculating the predicted increase / decrease in the optimum amount of thermal energy in each control mode and the predicted increase / decrease in the optimum electric energy amount in each control mode, and displaying these values. . In step S 1 2 1, traveling information, environmental information, navigation information, infrastructure information, thermal energy information, electrical energy information, and control mode selection information are read. Based on the read control mode selection information, prediction coefficients based on each control mode are set in steps S 1 2 3 to S 1 26. The prediction coefficient is set as 8 in the power mode and 8 in the ECO mode and δ in the auto mode. Then, in step S 1 27, by reflecting the prediction coefficients β, β, Υ. Δ in the optimum amount of cold energy and the optimum amount of heat energy obtained by the map shown in FIGS. 8 and 9. Therefore, it is possible to obtain the predicted value of the increase / decrease in the optimum amount of thermal energy and the predicted value of increase / decrease in the electric energy amount in each control mode. The predicted value of the predicted increase / decrease in the amount of heat energy and the predicted value of increase / decrease in the amount of electric energy are displayed on the indicator.

Claims

請 求 の 範 囲 The scope of the claims
1 . 温熱または冷熱を蓄えるとともに蓄えた温熱または冷熱を取り出し可能な 蓄熱装置において、 1. In a heat storage device that can store hot or cold heat and take out the stored hot or cold heat,
蓄えられている温熱量または冷熱量を検出して外部に告知する蓄熱量告知手段 と、 取り出された温熱量または冷熱量を検出して外部に告知する熱流出告知手段 と、 外部から供給されて蓄えられる温熱量または冷熱量を検出して外部に告知す る熱流入告知手段とを有することを特徴とする蓄熱装置。  A heat storage amount notification means for detecting the amount of stored heat or cold and notifying the outside, a heat outflow notification means for detecting the amount of extracted heat or cold and notifying the outside, and a heat outflow notification means supplied from the outside A heat storage device comprising heat inflow notification means for detecting the amount of heat or cold stored and notifying the outside.
2 . 前記蓄熱装置は温熱を蓄える温熱蓄熱部と冷熱を蓄える冷熱蓄熱部とを有 し、 前記温熱蓄熱部と前記冷熱蓄熱部との間で熱変換される温熱量または冷熱量 を検出して外部に告知する熱交換告知手段を有することを特徴とする請求項 1に 記載の蓄熱装置。 2. The heat storage device has a heat storage unit that stores heat and a cold storage unit that stores cold, and detects the amount of heat or the amount of heat that is converted between the heat storage unit and the cold storage unit. The heat storage device according to claim 1, further comprising a heat exchange notification means for notifying outside.
3 . 前記蓄熱量告知手段および前記熱流出告知手段ならびに前記熱流入告知手 段のそれぞれにおける外部への告知内容を、 視覚で認識できる光学的手法と聴覚 で認識できる音響的手法と電気信号とのいずれかで出力する出力部を更に備えて いることを特徴とする請求項 1または 2に記載の蓄熱装置。 3. The contents of the external notification in each of the heat storage amount notification means, the heat outflow notification means, and the heat inflow notification means are determined by an optical method that can be recognized visually, an acoustic method that can be recognized visually, and an electrical signal. The heat storage device according to claim 1, further comprising an output unit that outputs either of them.
4 . 蓄えられた温熱または冷熱を電気工ネルギに変化して取リ出す熱出力手段 を更に備え、 前記熱流出告知手段は前記熱出力手段で電気工ネルギに変換した熱 量を外部に告知する手段を含むことを特徴とする請求項 1ないし 3のいずれかに 記載の蓄熱装置。 4. It further comprises a heat output means for taking out the stored hot or cold heat by converting it into electric energy, and the heat outflow notification means notifies the outside of the amount of heat converted into electric energy by the heat output means. The heat storage device according to any one of claims 1 to 3, further comprising means.
5 . 電気工ネルギを温熱または冷熱に変換して入力する熱入力手段を更に備 え、 前記熱入力告知手段は、 前記熱入力手段で電気工ネルギから熱エネルギに変 換した熱量を外部に告知する手段を含むことを特徴とする請求項 1ないし 4のい ずれかに記載の蓄熱装置。 5. It further comprises heat input means for converting electric energy to heat or cold and inputting the heat, and the heat input notification means notifies the outside of the amount of heat converted from electric energy to heat energy by the heat input means. The heat storage device according to any one of claims 1 to 4, further comprising means for performing the operation.
6 . 電気工ネルギを前記熱入力手段に加えることによリ前記温熱蓄熱部と前記 冷熱蓄熱部との間で熱交換がなされ、 前記電気工ネルギには蓄電装置に蓄えられ ている電気工ネルギが含まれ、 前記蓄電装置に蓄えられている蓄電量を検出して 外部に告知する蓄電量告知手段を有することを特徴とする請求項 1ないし 5のい ずれかに記載の蓄熱装置。 6. Electricity energy is added to the heat input means to exchange heat between the thermal heat storage unit and the cold heat storage unit, and the electric energy stored in the power storage device is stored in the electric energy storage unit. 6. The heat storage device according to claim 1, further comprising a storage amount notification unit that detects a storage amount stored in the storage device and notifies the outside of the storage amount.
7 . 車両に搭載され、 かつ前記蓄熱量告知手段および前記熱流出告知手段なら びに前記熱流入告知手段および前記熱交換告知手段の少なくともいずれかの手段 は、 前記車両の予測される走行環境における温熱または冷熱の発生量もしくは消 費量あるいはこれら発生量と消費量との差分である蓄熱增減量とを予測し、 その 予測内容を告知内容として外部に告知する手段を含むことを特徴とする請求項 1 ないし 6のいずれかに記載の蓄熱装置。 7. At least one of the heat storage amount notification means, the heat outflow notification means, the heat inflow notification means, and the heat exchange notification means, which is mounted on the vehicle, is a temperature in the predicted driving environment of the vehicle. Or a means for predicting the amount of generated or consumed cold or the amount of increase or decrease in heat storage, which is the difference between the generated amount and the consumed amount, and notifying the prediction content to the outside as a notification content. The heat storage device according to any one of 1 to 6.
8 . 車両に搭載され、 かつ前記蓄電量告知手段は前記車両の予測される走行環 境における蓄電装置に蓄えられる電気工ネルギ量あるいはこれら発生量と消費量 との差分である蓄電増減量とを予測し、 その予測内容を告知内容として外部に告 知する手段を含むことを特徴とする請求項 6または 7に記載の蓄熱装置。 8. The power storage amount notification means mounted on the vehicle calculates the amount of electric energy stored in the power storage device in the predicted driving environment of the vehicle or the power storage increase / decrease amount that is the difference between the generated amount and the consumption amount. The heat storage device according to claim 6 or 7, further comprising means for predicting and notifying the prediction contents to the outside as notification contents.
PCT/JP2008/054102 2007-03-02 2008-02-28 Regenerative apparatus WO2008108452A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008800066425A CN101622511B (en) 2007-03-02 2008-02-28 Heat storage apparatus
DE112008000569T DE112008000569T5 (en) 2007-03-02 2008-02-28 Thermal storage device
US12/529,049 US20100107635A1 (en) 2007-03-02 2008-02-28 Thermal storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007053398A JP4650438B2 (en) 2007-03-02 2007-03-02 Heat storage device
JP2007-053398 2007-03-02

Publications (1)

Publication Number Publication Date
WO2008108452A1 true WO2008108452A1 (en) 2008-09-12

Family

ID=39738318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054102 WO2008108452A1 (en) 2007-03-02 2008-02-28 Regenerative apparatus

Country Status (5)

Country Link
US (1) US20100107635A1 (en)
JP (1) JP4650438B2 (en)
CN (1) CN101622511B (en)
DE (1) DE112008000569T5 (en)
WO (1) WO2008108452A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163050B2 (en) * 2007-10-19 2013-03-13 トヨタ自動車株式会社 Charge amount control device
US20100005730A1 (en) * 2008-07-11 2010-01-14 Kuo Liang Weng Building energy storage and conversion apparatus
ITRM20110658A1 (en) * 2011-12-11 2012-03-11 Silvano Mattioli ELECTRICITY ACCUMULATION SYSTEM THROUGH WARM AND COLD STORAGE TANKS AND EFFICIENT ENERGY GENERATION FROM LOW ENTALPIA SOURCES
DE102013202512B4 (en) * 2013-02-15 2016-07-21 Continental Automotive Gmbh Method for controlling the recuperation power of a recuperative drive and device therefor
DE102013017464A1 (en) * 2013-10-22 2015-04-23 Hochschule RheinMain Temperature regulation system with latent heat storage
US11468209B2 (en) 2017-02-22 2022-10-11 Middle Chart, LLC Method and apparatus for display of digital content associated with a location in a wireless communications area
US11625510B2 (en) 2017-02-22 2023-04-11 Middle Chart, LLC Method and apparatus for presentation of digital content
US11481527B2 (en) 2017-02-22 2022-10-25 Middle Chart, LLC Apparatus for displaying information about an item of equipment in a direction of interest
US10824774B2 (en) 2019-01-17 2020-11-03 Middle Chart, LLC Methods and apparatus for healthcare facility optimization
US10740502B2 (en) 2017-02-22 2020-08-11 Middle Chart, LLC Method and apparatus for position based query with augmented reality headgear
US11900021B2 (en) 2017-02-22 2024-02-13 Middle Chart, LLC Provision of digital content via a wearable eye covering
US10831945B2 (en) 2017-02-22 2020-11-10 Middle Chart, LLC Apparatus for operation of connected infrastructure
US11900023B2 (en) 2017-02-22 2024-02-13 Middle Chart, LLC Agent supportable device for pointing towards an item of interest
US10740503B1 (en) 2019-01-17 2020-08-11 Middle Chart, LLC Spatial self-verifying array of nodes
US10902160B2 (en) * 2017-02-22 2021-01-26 Middle Chart, LLC Cold storage environmental control and product tracking
US11475177B2 (en) 2017-02-22 2022-10-18 Middle Chart, LLC Method and apparatus for improved position and orientation based information display
US10620084B2 (en) 2017-02-22 2020-04-14 Middle Chart, LLC System for hierarchical actions based upon monitored building conditions
US10872179B2 (en) 2017-02-22 2020-12-22 Middle Chart, LLC Method and apparatus for automated site augmentation
US10628617B1 (en) 2017-02-22 2020-04-21 Middle Chart, LLC Method and apparatus for wireless determination of position and orientation of a smart device
US11436389B2 (en) 2017-02-22 2022-09-06 Middle Chart, LLC Artificial intelligence based exchange of geospatial related digital content
US10733334B2 (en) 2017-02-22 2020-08-04 Middle Chart, LLC Building vital conditions monitoring
US10949579B2 (en) 2017-02-22 2021-03-16 Middle Chart, LLC Method and apparatus for enhanced position and orientation determination
JP6626484B2 (en) * 2017-09-28 2019-12-25 株式会社Subaru Vehicle heating system
DE102017124030A1 (en) 2017-10-16 2019-04-18 BME Dr. Golbs & Partner GmbH Energy storage system
CN108397902A (en) * 2018-02-27 2018-08-14 芜湖鸣人热能设备有限公司 Water heater with heat exchanger
CN108944352A (en) * 2018-08-13 2018-12-07 珠海格力电器股份有限公司 Automobile-used heating system and control method
CN111089364B (en) * 2018-10-24 2022-01-21 青岛海尔空调器有限总公司 Movable air conditioner and control method thereof
FR3087708B1 (en) * 2018-10-31 2021-01-22 Hutchinson VEHICLE THERMAL MANAGEMENT INSTALLATION
US11640486B2 (en) 2021-03-01 2023-05-02 Middle Chart, LLC Architectural drawing based exchange of geospatial related digital content

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143280U (en) * 1984-03-02 1985-09-21 株式会社日立製作所 Heat storage amount display device
JPH03140728A (en) * 1989-10-24 1991-06-14 Miura Co Ltd Heat storage type cold water manufacture device
JPH0735400A (en) * 1993-07-21 1995-02-07 Hitachi Ltd Controller for heat storage type cooling/heating apparatus
JPH07309121A (en) * 1994-05-19 1995-11-28 Fuji Heavy Ind Ltd Latent heat accumulating device
JP2002036903A (en) * 2000-07-24 2002-02-06 Toyota Motor Corp Control device for vehicle energy accumulation device
JP2003240616A (en) * 2002-02-20 2003-08-27 Toko Electric Corp Flow measuring system
JP2006347506A (en) * 2005-06-20 2006-12-28 Toyota Motor Corp Energy control device for heating and cooling

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958101A (en) * 1973-03-08 1976-05-18 Saskatchewan Power Corporation Space heating using off-peak electric heat storage
US4926331A (en) * 1986-02-25 1990-05-15 Navistar International Transportation Corp. Truck operation monitoring system
US6467337B2 (en) * 1998-05-29 2002-10-22 Mitsubishi Denki Kabushiki Kaisha Device for calculating cruising range and method therefor
JP3893882B2 (en) 2001-02-19 2007-03-14 トヨタ自動車株式会社 Hybrid vehicle operation status display device
CN2729595Y (en) * 2004-04-09 2005-09-28 广东科龙电器股份有限公司 Controlling system with cooling storage device
JP4396515B2 (en) * 2004-12-22 2010-01-13 トヨタ自動車株式会社 Power supply
GB0600766D0 (en) * 2006-01-16 2006-02-22 Bookham Technology Plc Temperature control system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143280U (en) * 1984-03-02 1985-09-21 株式会社日立製作所 Heat storage amount display device
JPH03140728A (en) * 1989-10-24 1991-06-14 Miura Co Ltd Heat storage type cold water manufacture device
JPH0735400A (en) * 1993-07-21 1995-02-07 Hitachi Ltd Controller for heat storage type cooling/heating apparatus
JPH07309121A (en) * 1994-05-19 1995-11-28 Fuji Heavy Ind Ltd Latent heat accumulating device
JP2002036903A (en) * 2000-07-24 2002-02-06 Toyota Motor Corp Control device for vehicle energy accumulation device
JP2003240616A (en) * 2002-02-20 2003-08-27 Toko Electric Corp Flow measuring system
JP2006347506A (en) * 2005-06-20 2006-12-28 Toyota Motor Corp Energy control device for heating and cooling

Also Published As

Publication number Publication date
US20100107635A1 (en) 2010-05-06
CN101622511B (en) 2011-04-06
CN101622511A (en) 2010-01-06
JP2008215708A (en) 2008-09-18
DE112008000569T5 (en) 2010-01-07
JP4650438B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
WO2008108452A1 (en) Regenerative apparatus
CN102463902B (en) Systems and methods for determining the target thermal conditioning value to control a rechargeable energy storage system
CN104670219B (en) Operating method for combination drive
JP4631761B2 (en) Battery life prediction device and battery life warning device for powertrain
CN103253103B (en) Utilize the controller of vehicle of the outside air temperature estimated
CN102622794B (en) Electricity continual mileage counter
JP4797640B2 (en) Secondary battery life estimation device
JP5045685B2 (en) Route guidance device, route guidance method and computer program
CN102589566B (en) Information display system
CN105698806B (en) Predict the method and apparatus at least partly continual mileage of electrically driven vehicles
JP4946713B2 (en) Parking position determination device, parking position determination method, and computer program
US20140200793A1 (en) System and method for determining and displaying a fuel-equivalent distance-per-energy consumption rate
CN104512272B (en) For the efficiency meter of plug-in electric vehicle
JP2009044887A (en) Vehicle
CN101415578A (en) Hybrid vehicle battery information display device
US20160036077A1 (en) Apparatus and Method for Managing Fuel Cell Vehicle System
CN105291881B (en) Energy expenditure rate in distance domain
JP6100595B2 (en) Crude range calculation device
CN103713262A (en) System and method for calculating distance to empty of green vehicle
WO2017119150A1 (en) Vehicle air-conditioning system
CN106553550A (en) The remaining mileage evaluation method of electric automobile, system and electric automobile
KR20140095780A (en) Apparatus and method for estimating a drivable distance of an electronic vehecle
CN104816634B (en) Method and apparatus for showing motor vehicle parameter
KR20110017220A (en) System for guiding fuel economy driving and method thereof
CN106061816B (en) Method and apparatus for predicting the variation of the operating range due to caused by the vehicle functions for switching on or off vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880006642.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721521

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120080005699

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112008000569

Country of ref document: DE

Date of ref document: 20100107

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 12529049

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08721521

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607