WO2008105435A1 - 蛍光検出システム - Google Patents

蛍光検出システム Download PDF

Info

Publication number
WO2008105435A1
WO2008105435A1 PCT/JP2008/053343 JP2008053343W WO2008105435A1 WO 2008105435 A1 WO2008105435 A1 WO 2008105435A1 JP 2008053343 W JP2008053343 W JP 2008053343W WO 2008105435 A1 WO2008105435 A1 WO 2008105435A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
filter
detection system
fluorescence detection
Prior art date
Application number
PCT/JP2008/053343
Other languages
English (en)
French (fr)
Inventor
Takashi Fukuzawa
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Priority to US12/438,722 priority Critical patent/US8110816B2/en
Publication of WO2008105435A1 publication Critical patent/WO2008105435A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres

Definitions

  • the present invention relates to a fluorescence detection system, and more particularly to a fluorescence detection system provided with an optical multiplexer / demultiplexer.
  • a microchemical system performs mixing, reaction, separation, extraction, detection, etc. of a sample in a fine channel formed on a small glass substrate. Samples used in such a microphone-mouth chemistry system are generally very small, so a highly sensitive detection device is required for detection.
  • an optical device with higher sensitivity is required because the measurement area of fluorescence is small.
  • Laser-induced fluorescence analysis is known as a method for detecting fluorescence with high sensitivity.
  • a fluorescence analysis device including a light source, an optical multiplexer / demultiplexer, a detector, and an optical fiber connecting these is disclosed (for example, Japanese Patent Laid-Open No. Hei. (See 2 0 0 5-3 0 8 30 publication.)
  • LEDs Light emitting diodes
  • the present invention has been made paying attention to the above problems.
  • the object is to provide a fluorescence detection system that can detect the fluorescence with high sensitivity even if the amount of the sample that emits fluorescence is very small. Disclosure of the invention
  • a light source that emits excitation light
  • a probe that is arranged to face the sample, and the sample that is irradiated with the excitation light through the probe are generated.
  • An optical multiplexer / demultiplexer that multiplexes and demultiplexes fluorescence
  • a detector that receives transmitted light that has passed through the optical multiplexer / demultiplexer
  • a waveguide that connects the light source and the detector via the optical multiplexer / demultiplexer.
  • the optical multiplexer / demultiplexer is configured to transmit only light having a wavelength equal to or greater than the first predetermined wavelength and reflect light having a wavelength equal to or smaller than the second predetermined wavelength.
  • a fluorescence detection system comprising a second wavelength selective member configured to transmit light Temu is provided.
  • the waveguide disposed between the first wavelength selective member and the detector, and configured to transmit only light having a wavelength equal to or longer than a fourth predetermined wavelength. It is preferable to provide a third wavelength selective member.
  • the fourth predetermined wavelength is greater than the third predetermined wavelength. It is preferable that it is larger than 1 nm.
  • the third wavelength selective member is disposed adjacent to the detector.
  • the third wavelength selective member is disposed in the optical multiplexer / demultiplexer.
  • the first predetermined wavelength is preferably 1 Onm or more larger than the third predetermined wavelength.
  • the second wavelength selective member is disposed adjacent to the light source.
  • a light source that emits excitation light
  • a probe disposed opposite to the sample, and fluorescence generated from the sample irradiated with the excitation light through the probe
  • An optical multiplexer / demultiplexer that receives reflected light reflected by the optical multiplexer / demultiplexer, and a waveguide that connects the light source and the detector via the optical multiplexer / demultiplexer.
  • the optical multiplexer / demultiplexer is configured to reflect only light having a wavelength equal to or greater than the first predetermined wavelength and transmit light having a wavelength equal to or smaller than the second predetermined wavelength.
  • a second wavelength selective member configured to transmit, and on the waveguide
  • a third wavelength selectivity arranged between the first wavelength selective member and the detector and configured to transmit only light having a wavelength equal to or greater than a fourth predetermined wavelength.
  • a fluorescence detection system comprising a member is provided.
  • the fourth predetermined wavelength is 10 nm or more larger than the third predetermined wavelength.
  • the second wavelength selective member is adjacent to the light source. It is preferable to be arranged as follows.
  • the third wavelength selective member is disposed adjacent to the detector.
  • the third wavelength selective member is disposed in the optical multiplexer / demultiplexer.
  • FIG. 1 is a block diagram schematically showing the configuration of the fluorescence detection system according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a configuration of an optical multiplexer / demultiplexer that is a component of the fluorescence detection system in FIG.
  • FIG. 3 is a cross-sectional view showing a case where the excitation filter or the detection filter in FIG. 1 is disposed in the middle of the optical fiber.
  • FIG. 4 is a cross-sectional view showing a case where the excitation filter in FIG. 1 is disposed adjacent to the light source.
  • FIG. 5 is a cross-sectional view showing a case where the detection filter in FIG. 1 is disposed adjacent to the detector.
  • FIG. 6 is a cross-sectional view showing a case where the detection filter in FIG. 1 is disposed in the optical multiplexer / demultiplexer.
  • FIG. 7 is a block diagram schematically showing the configuration of the fluorescence detection system according to the second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing a configuration of an optical multiplexer / demultiplexer that is a component of the fluorescence detection system in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a light source that emits light
  • a probe disposed opposite to the sample
  • an optical multiplexer / demultiplexer that multiplexes / demultiplexes fluorescence generated from the sample irradiated with excitation light through the probe, and a transmission that passes through the optical multiplexer / demultiplexer
  • the optical multiplexer / demultiplexer is a light having a wavelength equal to or greater than a first predetermined wavelength.
  • a first wavelength-selective member configured to transmit only light and reflect light having a wavelength equal to or less than a second predetermined wavelength, the light source and the first wavelength-selective member on the waveguide.
  • the second wavelength selective member arranged between the members and configured to transmit only light having a wavelength equal to or smaller than the third predetermined wavelength is provided, the background caused by the excitation light is reduced. So that the amount of fluorescent sample is very small It was also found that the fluorescence can be detected with high sensitivity.
  • a light source that emits excitation light; a probe disposed opposite to the sample; an optical multiplexer / demultiplexer that multiplexes and demultiplexes fluorescence generated from the sample irradiated with the excitation light through the probe;
  • the optical multiplexer / demultiplexer includes a first predetermined multiplexer.
  • a first wavelength-selective member configured to reflect only light having a wavelength equal to or greater than the first wavelength and transmit light having a wavelength equal to or smaller than the second predetermined wavelength, and on the waveguide,
  • a second wavelength selective member disposed between the light source and the first wavelength selective member and configured to transmit only light having a wavelength equal to or less than a third predetermined wavelength; and on the waveguide.
  • a third wavelength selective member configured to transmit only light of the wavelength can reduce the background caused by the excitation light, so that a very small amount of fluorescent sample is generated.
  • the fluorescence can be detected with high sensitivity.
  • the present invention has been made based on the above findings.
  • FIG. 1 is a block diagram schematically showing the configuration of the fluorescence detection system according to the present embodiment
  • FIG. 2 schematically shows the configuration of an optical multiplexer / demultiplexer that is a component of the fluorescence detection system in FIG. It is sectional drawing shown.
  • the fluorescence detection system 10 includes an excitation light (a light source 1 1 that emits a main wavelength J, a probe 2 0 that is arranged to face a sample portion 14, an optical multiplexer / demultiplexer 1 2, Detector 1 3, optical fiber 1 5 (waveguide) connecting light source 1 1 and optical multiplexer / demultiplexer 1 2, optical fiber 1 6 connecting probe 2 0 and optical multiplexer / demultiplexer 1 2, detector 1 3 and the optical multiplexer / demultiplexer 1 2, an optical fiber 1 7 (waveguide), an excitation filter 1 8 (second wavelength selective member) disposed on the optical fiber 15, and an optical fiber 1 And a detection filter 19 (third wavelength selective member) disposed on 7.
  • a planar waveguide for example, a lip is provided.
  • a di-type waveguide may be used.
  • the excitation filter 18 is a so-called show that transmits light having a wavelength below a specific cutoff wavelength (for example, 470 nm (third predetermined wavelength)) and shields light having a wavelength larger than the cutoff wavelength.
  • the detection filter 19 shields light having a wavelength smaller than a specific cut-off wavelength (for example, 500 nm (fourth predetermined wavelength)), and light having a wavelength longer than the cut-off wavelength. This is a so-called long pass filter that transmits the light.
  • one end of the probe 20 transmits excitation light transmitted through the optical fiber 16 to the sample unit 14, and the transmitted excitation light is irradiated onto the sample unit 14.
  • Generated fluorescence (major wavelength ⁇ 2 ) and reflected excitation light Is condensed and transmitted to the optical fiber 16.
  • an optical multiplexer / demultiplexer 12 includes a cylindrical rod lens 2 1, 2 3 and a multiplexing / demultiplexing filter 2 2 (first wavelength-selective member) interposed between the rod lenses 2 1, 2 3. ), And the optical fiber 1 5, 1 6, each end of which is protected with a chiral 2 5 a on the surface opposite to the surface adjacent to the multiplexing / demultiplexing filter 2 2 of the rod lens 2 1, respectively.
  • Light that is connected at the input / output ends 15 a and 16 a and the end of the rod lens 2 3 that is opposite to the surface adjacent to the multiplexing / demultiplexing filter 2 2 is protected with a chiral 25 b
  • Fiber 1 7 is connected at input / output end 1 7a.
  • a cover 24 is disposed so as to cover the rod lenses 21 and 23, the multiplexing / demultiplexing filter 2 2 and the cover 25a and 25b integrally.
  • the multiplexing / demultiplexing filter 22 reflects light having a wavelength shorter than a specific cut-off wavelength (for example, 4880 nm (second predetermined wavelength)) and has a specific cut-off wavelength. (For example, 490 nm or more (first predetermined wavelength)) This is a so-called long-pass filter that transmits light having the above wavelength.
  • the multiplexing / demultiplexing filter 22 may be, for example, a pan-pass filter that transmits light having a wavelength between 4990 nm and 60 nm.
  • pumping light having a wavelength smaller than 49 nm is also diffusely reflected in the optical multiplexer / demultiplexer 12, for example, so that the multiplexing / demultiplexing filter 22 can be connected from the input / output terminal 15 a or 16 a.
  • the detoured light is slightly transmitted to the input / output end 17 a, but the detoured excitation light is blocked by the detection filter 19.
  • the optical multiplexer / demultiplexer 12 interposed between the optical fibers 15 and 17 connecting the light source 11 and the detector 13 is a unique coupling.
  • a short-pass filter having a specific cut-off wavelength is provided on the optical fiber 1 5 connected to the light source 1 1 and the optical multiplexer / demultiplexer 1 2.
  • the constituent excitation filters 18 are arranged.
  • a detection filter 19 that constitutes a long-pass filter having an inherent force 1 and an off wavelength on the optical fiber 17 connecting the optical multiplexer / demultiplexer 12 and the detector 13 is provided. Arranged. As a result, 3343
  • the excitation filter 18 may be disposed anywhere on the waveguide between the light source 11 and the multiplexing / demultiplexing filter 22.
  • the lenses 4 1 a and 4 lb are connected in series so as to face both end surfaces orthogonal to the waveguide of the excitation filter 18.
  • An optical fiber 15 is arranged in series on the outside, and the ends of the optical fibers 15 are protected in series by the capillaries 4 2 a and 4 2 b.
  • a cover 40 may be provided so as to integrally cover the buildings 4 2 a and 4 2 b (see FIG. 3).
  • the excitation filter 18 When the excitation filter 18 is disposed adjacent to the light source 11 1, the optical fiber 1 facing the condensing lens 5 2 disposed close to the LED chip 50 in the light source 1 1 is used.
  • An excitation filter 18 may be provided at the end of 5 (see Fig. 4). In this case, since the lenses 4 1 a and 4 1 b as shown in FIG. 3 are not necessary, an increase in the number of components can be minimized, and the excitation filter 18 can be easily disposed in the fluorescence detection system 10. it can.
  • the excitation filter 18 may be disposed between the condenser lens 5 2 and the light source 11 1. When not passing through the condenser lens 52, the excitation filter 18 is provided between the LED chip 5 0 and the optical fiber 15. You may arrange in.
  • the LED chip 50 may use a light emitter other than the LED chip.
  • the detection filter 19 may be disposed anywhere on the waveguide between the multiplexing / demultiplexing filter 2 2 and the detector 13.
  • the lenses 4 la and 4 lb are set so as to face the both end surfaces orthogonal to the waveguide of the detection filter 19. Placed in series, and each end on the outside An optical fiber 17 protected by the 4 2 a and 4 2 b is arranged in series, and the detection filter 19, the lenses 4 la and 4 1 b and the 4 2 a and 4 2 b are integrally covered.
  • a cover 40 may be provided (see FIG. 3).
  • the detection filter 19 When the detection filter 19 is arranged adjacent to the detector 13, the lens 6 2 is arranged in series at the end of the optical fiber 17 protected by the shield 61, and the lens 6 2 And a detector filter 19 between the detectors 13 (see Fig. 5). In this case, since the lenses 4 1 a and 4 1 b are not necessary, an increase in the number of components can be suppressed, and the detection filter 19 can be easily disposed in the fluorescence detection system 10. Further, when the light receiving surface of the detector 13 is wide, the detection filter 19 may be disposed between the optical fino 17 and the detector 13 without using the lens 62.
  • the detection filter 19 When the detection filter 19 is disposed in the optical multiplexer / demultiplexer 12, the detection filter 19 may be disposed between the rod lens 2 3 and the optical fiber 17 (see FIG. 6). ) In this case, the detection filter 19 can be easily arranged in the fluorescence detection system 10 without increasing the number of parts.
  • the detection filter 19 may be arranged between the multiplexing / demultiplexing filter 2 2 and the rod lens 2 3.
  • the background caused by the excitation light can be reduced simply by disposing the excitation filter 18 and the fluorescence filter 19 in the fluorescence detection system 10.
  • the detection system 10 is not complicated.
  • This embodiment is basically the same in configuration and operation as the first embodiment described above, and is different only in the configuration of the optical multiplexer / demultiplexer and the connection method of each component. The explanation of the action is omitted, and The different configurations and actions will be explained.
  • FIG. 7 is a block diagram schematically showing the configuration of the fluorescence detection system according to the embodiment of the present invention.
  • FIG. 8 shows the configuration of the optical multiplexer / demultiplexer that is a component of the fluorescence detection system in FIG. It is sectional drawing shown roughly.
  • the fluorescence detection system 80 includes a light source 1 1 that emits excitation light (main wavelength;), a probe 2 0 that is arranged to face the sample unit 14, an optical multiplexer / demultiplexer 8 1, and a detection 1 3, optical fiber 1 5 (waveguide) connecting light source 1 1 and optical multiplexer / demultiplexer 8 1, optical fiber 1 6 connecting probe 2 0 and optical multiplexer / demultiplexer 8 1, and detector 1 3 and the optical multiplexer / demultiplexer 8 1, the optical fiber 1 7 (waveguide), the excitation filter 1 8 (second wavelength selective member) disposed on the optical fiber 15, and the optical fiber 1 7 And a detection filter 19 (third wavelength-selective member).
  • a detection filter 19 third wavelength-selective member
  • an optical multiplexer / demultiplexer 8 1 includes cylindrical rod lenses 8 2, 8 4 and a multiplexing / demultiplexing filter 8 3 (first wavelength selective member) interposed between the rod lenses 8 2, 8 4. ) And the opposite side of the surface adjacent to the multiplexing / demultiplexing filter 8 3 of the rod lens 8 2 is an optical fiber 1 5 that is protected with a chiral 9 1 a. On the opposite side of the rod lens 8 4, which is connected to the multiplexing / demultiplexing filter 8 3, of the rod lens 8 4, optical fibers 1 6 and 1 7, each end of which is protected by the cavity 9 1 b, are provided. The input / output terminals 16a and 17a are connected to each other.
  • a cover 90 is disposed so as to integrally cover the rod lenses 8 2 and 8 4, the multiplexing / demultiplexing filter 8 3, and the covers 9 1 a and 9 1 b.
  • the multiplexing / demultiplexing filter 83 transmits light having a wavelength equal to or shorter than a specific cut-off wavelength (for example, 480 nm (second predetermined wavelength)), and has a wavelength larger than the specific cut-off wavelength.
  • a so-called short-pass filter that reflects light having a wavelength equal to or greater than 490 nm (first predetermined wavelength)).
  • only the light having a wavelength of 470 nm or less out of the excitation light emitted from the light source 11 is transmitted through the excitation filter 18 and transmitted to the input / output terminal 15 a.
  • the excitation light having a wavelength of 47 nm or less transmitted to the input / output terminal 15 a light having a wavelength of 48 nm or less, that is, all of the excitation light transmitted to the input / output terminal 15 a It passes through the multiplexing / demultiplexing filter 83.
  • the transmitted excitation light having a wavelength of 47 nm or less is transmitted to the input / output end 16 a, and the excitation light transmitted to the input / output end 16 a is tested through the optical fiber 16 and the probe 20.
  • Fluorescence (main wavelength; L 2 ) generated by irradiating the sample section 14 with excitation light and reflected excitation light having a wavelength of 470 nm or less are passed through the probe 20 and the optical fiber 16.
  • L 2 Fluorescence
  • the transmitted light only the light having a wavelength of 490 nm or more is reflected by the multiplexing / demultiplexing filter 83, and the light having a wavelength of 4880 nm or less is transmitted through the multiplexing / demultiplexing filter 83.
  • excitation light having a wavelength of 4700 nm or less is also transmitted to the input / output end 16 a via the probe 20 and the optical fiber 16 described above, and then wraps around the input / output end 17 a. Is transmitted to the input / output terminal 1 7 a slightly, or, for example, after being transmitted to the input / output terminal 15 a, bypasses the multiplexing / demultiplexing filter 8 3 and passes through the optical multiplexer / demultiplexer 8 1. In some cases, the light is transmitted to the input / output terminal 17 a as it is. However, the excitation light that has passed around or the bypassed excitation light is blocked by the detection filter 19.
  • the optical multiplexer / demultiplexer 8 1 interposed between the optical fibers 15, 17 connecting the output devices 13 includes a multiplexing / demultiplexing filter 8 3 constituting a short path filter having a specific cut-off wavelength.
  • 1 and an optical multiplexer / demultiplexer 8 1 are connected to an optical fiber 15 that connects the optical filter 15 and an excitation filter 18 constituting a short-pass filter having a specific cutoff wavelength.
  • a detection filter 19 constituting a long-pass filter having a specific cut-off wavelength is arranged.
  • the excitation filter 18 may be disposed anywhere on the waveguide between the light source 11 and the multiplexing / demultiplexing filter 83. For example, it may be disposed in the middle of the optical fiber 15 or may be disposed adjacent to the light source 11.
  • the detection filter 19 may be disposed anywhere on the waveguide between the multiplexing / demultiplexing filter 8 3 and the detector 13. For example, it may be disposed in the middle of the optical fiber 17, may be disposed adjacent to the detector 13, or may be disposed in the optical multiplexer / demultiplexer 81. Les. In any of the embodiments, the background caused by the excitation light can be similarly reduced by using a non-pass filter instead of the long-pass filter or the short-pass filter. Further, a plurality of excitation filters 18 or detection filters 19 may be arranged at a plurality of locations.
  • the material constituting the optical fibers 15 to 17 may be a transparent solid material capable of transmitting light, and includes quartz, glass, bra A stick or the like can be used.
  • a waveguide a planar waveguide, for example, a ridge type waveguide may be used instead of the optical fibers 15 to 17.
  • the waveguide may be configured at least in part by a transparent solid material such as glass having an optical path formed therein.
  • a cavity manufactured by Nippon Electric Glass Co., Ltd.
  • an LED chip 50 with an LED having a central emission wavelength of 4700 nm (NSPB 5 0 0 S manufactured by Nichia Corporation) is used as a condenser lens 5 2.
  • SELFOC registered trademark
  • Micro lens S LW 1 8 (0.4 pitch) (manufactured by Nippon Sheet Glass Co., Ltd.)
  • a short-pass filter having a cut-off wavelength of 490 nm was used as the excitation finoletor 18.
  • S LW 1 8 (0.23 pitch) (manufactured by Nippon Sheet Glass Co., Ltd.) is used as the rod lenses 2 1 and 2 3.
  • Filter 2 2 reflects light with a wavelength of 4 9 O nm or less and 50
  • a long pass filter that transmits light having a wavelength of 0 nm or more was used.
  • the detection filter 19 was not disposed on the optical fiber 17.
  • FITC 1 Sothiocyanate
  • the excitation light is emitted from the light source 11, and the light from the sample part 14 is measured five times at the time of irradiating each concentration of the aqueous solution and at the time of water irradiation, and the signal is sent from the detector 13. Got the value. Furthermore, the average value of the signal values measured five times was calculated and shown in Table 1 below. The signal value is proportional to the amount of light detected by the detector 13.
  • an optical multiplexer / demultiplexer 1 2 ′ shown in FIG. 6 was used.
  • S LW 1 8 (0.23 pitch) is used as the rod lenses 2 1 and 2 3
  • the wavelength of 4 90 nm or less is used as the multiplexing / demultiplexing filter 2 2
  • a long-pass filter that reflects light at a wavelength of 500 nm or more and transmits light having a wavelength of 500 nm or more is used, and a long-pass filter with a cutoff wavelength of 50 O nm is used as the detection filter 19.
  • no detection filter 1 9 was placed on the optical fiber 17.
  • the other configurations were the same as those of the fluorescence detection system 10 of Example 1.
  • the LED chip 5 0 is not connected to the excitation filter 18, but only to the converging lens 5 2. Combined to 5. Also, no excitation filter 18 was placed on the optical fiber 15. Also, no detection filter 19 was placed on the optical fiber 17. Other configurations were the same as those of the fluorescence detection system 10 of Example 1.
  • the signal value was obtained from the detector 13 by measuring the light from the sample part 14 five times during irradiation with the aqueous solution of each concentration and during irradiation with water. Furthermore, the average value of the signal values measured five times was calculated and shown in Table 3 below.
  • the “average difference value” is obtained by subtracting the average value of signal values during water irradiation from the average value of signal values during irradiation with aqueous solutions of various concentrations.
  • the signal value at the time of water irradiation corresponds only to the light intensity (background) of the excitation light from the light source 11, and the signal value at the time of aqueous solution irradiation of each concentration corresponds to the amount of fluorescence from the sample part 14.
  • the “average difference value” corresponds to the amount of fluorescence from the sample portion 14, and when the “average difference value” is negative, it corresponds to the case where the background is increased and fluorescence cannot be detected.
  • Example 2 the concentration at which the average difference value is positive, that is, the concentration at which fluorescence can be detected was compared.
  • the concentration in Example 2 was the lowest (0.01 ⁇ M), and The concentration in Example 1 was low (0.1 ⁇ ), and the concentration in Comparative Example 1 was the highest (1 ⁇ ).
  • the background can be lowered by arranging at least the excitation filter 18 on the waveguide connecting the light source 1 1 and the detector 1 3. It was found that the fluorescence could be detected with high sensitivity even if the concentration of the slag was low (that is, even if the amount of the sample emitting fluorescence was very small).
  • a model corresponding to the fluorescence detection system 10, 80 is constructed on a computer, and in this model, the presence or absence of the excitation filter 18, the presence or absence of the detection filter 19, and the S node B (The relationship between the amount of fluorescent light reaching Z excitation light and the amount of light reaching the back (pack ground)) was confirmed by executing a simulation.
  • a transmission filter (long path filter or short path filter) designed with about 100 layers as the excitation filter 18, detection filter 19, and multiplexing / demultiplexing filter 2 2 (8 3)
  • the transmission isolation (the maximum amount of light that passes through the light in the reflection region and the amount of light that enters the light in the Z reflection region) is -5 0 dB
  • the reflection isolation (the transmission region)
  • a filter that was designed so that the maximum amount of light reflected by light with a wavelength of Z was _15 dB.
  • an LED with a central emission wavelength of 470 nm was assumed as the LED chip of the light source 11, and FITC was assumed as the sample of the sample part 14.
  • the SZB was calculated to be 8 9700.
  • the S / B is increased by arranging the excitation filter 1 8 and the detection filter 1 9 on the waveguide connecting the light source 1 1 and the detector 1 3. (Approximately 100 times or more) can be achieved, that is, the background can be reduced, and fluorescence can be detected with high sensitivity.
  • a model corresponding to the fluorescence detection system 10 or 30 is constructed on the computer, and in this model, each of the excitation filter 18, the detection filter 19, and the multiplexing / demultiplexing filter 2 2 (8 3) is selected.
  • the relationship between the to-off wavelength and SZB at detector 1 3 is confirmed by performing simulation. I confirmed.
  • a transmission filter long path filter or short path filter
  • an LED with a central emission wavelength of 4700 nm as the LED chip for light source 11 and FITC as the sample for sample section 14.
  • the cut-off wavelength is 4 70 nm, 4 80 nm, 4 90 nm, 5 00 nm, or 5 10 nm as the excitation filter 18
  • a detection filter 19 any of 4 80 nm, 4 90 nm, 5 0 0 nm, 5 1 0 ⁇ m, 5 2 0 ⁇ m, 5 3 O nm is assumed.
  • the multiplexing / demultiplexing filter 2 2 reflects light with a wavelength of 4 80 nm or less and transmits light with a wavelength of 4 90 nm or more. A long pass filter was assumed.
  • S ZB was calculated for each combination of the cut-off wavelength of the excitation filter 18 and the cut-off wavelength of the detection filter 19, and each S / B is summarized in Table 4 below.
  • Table 4 the first column shows the cutoff wavelength (nm) of the excitation filter 18 and the first row shows the cutoff wavelength (nm) of the detection filter 19.
  • a long-pass filter that reflects light having a wavelength of 490 nm or less and transmits light having a wavelength of 500 nm or more is used as the multiplexing / demultiplexing filter 2 2.
  • S / B was calculated for each combination of the cut-off wavelength of the excitation filter 1 8 and the cut-off wavelength of the detection filter 1 9 under the same conditions as in Example 6, and each S ZB was summarized in Table 5 below.
  • Table 5 the first column shows the cutoff wavelength (nm) of the excitation filter 18, and the first row shows the cutoff wavelength (nm) of the detection filter 19.
  • a long-pass filter that reflects light having a wavelength of 500 nm or less as a coupling / demultiplexing filter 22 and transmits light having a wavelength of 51 nm or more.
  • SZB was calculated for each combination of the cutoff wavelength of the excitation filter 18 and the cutoff wavelength of the detection filter 19 under the same conditions as in Example 6. Table 6 below summarizes each SZB.
  • the first column shows the cutoff wavelength (nm) of the excitation filter 18, and the first row shows the cutoff wavelength (nm) of the detection filter 19.
  • the cut-off wavelength is either 470 nm, 480 nm, 490 nm, 500 nm, or 51 nm as the excitation filter 18.
  • a detection filter 1 9 one of 4 80 nm, 4 90 nm, 5 0 0 nm, 5 1 0 ⁇ m, 5 20 nm, and 5 30 nm is assumed.
  • the multi-demultiplexing filter 8 3 transmits light with a wavelength of 4 80 nm or less and reflects light with a wavelength of 4 90 nm or more. Assumed toppass filter.
  • S / B was calculated for each combination of the cut-off wavelength of the excitation filter 18 and the cut-off wavelength of the detection filter 19, and each S Z B was summarized in Table 7 below.
  • Table 7 the first column shows the cutoff wavelength (nm) of the excitation filter 18 and the first row shows the cutoff wavelength (nm) of the detection filter 19.
  • the multiplexing / demultiplexing filter 8 Except that a short-pass filter that transmits light with a wavelength of 4900 nm or less and reflects light with a wavelength of 500 nm or more is assumed as 3, the excitation filter under the same conditions as in Example 9 1 8
  • the S-no-B was calculated for each combination of the cut-off wavelength and the force cutoff wavelength of the detection filter 19 and Table 8 below summarizes each S / B.
  • the first column shows the cut-off wavelength (nm) of the excitation filter 18 and the first row shows the cut-off wavelength (nm) of the detection filter 19.
  • a short-pass filter that transmits light with a wavelength of 500 nm or less and reflects light with a wavelength of 51 nm or more is assumed as the multiplexing / demultiplexing filter 83.
  • the SZB was calculated for each combination of the cut-off wavelength of the excitation filter 18 and the cut-off wavelength of the detection filter 19 under the same conditions as in Table 9. Table 9 below summarizes each S ZB.
  • the first column shows the cutoff wavelength (nm) of the excitation filter 18, and the first row shows the cutoff wavelength (nm) of the detection filter 19. [Table 9]
  • the first column in Tables 4 to 9 shows the cutoff wavelength of the excitation filter 18, and the first row shows the cutoff wavelength of the detection filter 19.
  • the lower limit of the wavelength that passes through the multiplexing / demultiplexing filter 22 is 10 nm or more larger than the cutoff wavelength of the excitation filter 18, and the cutoff wavelength of the detection filter 19 passes through the multiplexing / demultiplexing filter 22.
  • the wavelength is lower than the lower limit of the wavelength, it can be seen that the S / B value is further increased, and the lower limit of the wavelength transmitted through the multiplexing / demultiplexing filter 22 is 10 nm or more than the cutoff wavelength of the excitation filter 18 It was found that the SZB value increased further when the cutoff wavelength of detection filter 19 was 20 nm or more larger than the cutoff wavelength of excitation filter 18.
  • the SZB value increases when the cut-off wavelength of detection filter 19 is 1 O nm or more larger than the cut-off wavelength of excitation filter 18 In other words, the background caused by the excitation light decreases and the fluorescence detection sensitivity increases. I found out.
  • the multiplexing / demultiplexing filter 22 is provided with a long path filter that reflects the excitation light and transmits the fluorescence. It was found that the S / B value increased and the fluorescence detection sensitivity increased. Industrial applicability
  • the optical multiplexer / demultiplexer interposed in the waveguide connecting the light source and the detector transmits only light having a wavelength equal to or greater than the first predetermined wavelength.
  • a second wavelength-selective member that transmits only light having a wavelength equal to or shorter than a third predetermined wavelength between the light source and the first wavelength-selective member on the waveguide transmits only light having a wavelength equal to or greater than the first predetermined wavelength.
  • the excitation light emitted from the light source light having a wavelength larger than the third predetermined wavelength is shielded by the second wavelength selective member, and the first wavelength selective member Of the excitation light reflected by the sample and reflected by the sample to the optical multiplexer / demultiplexer, light having a wavelength smaller than the first predetermined wavelength is shielded by the first wavelength selective member.
  • the background caused by the excitation light can be reduced, so that the fluorescence can be detected with high sensitivity even if the amount of the fluorescent sample is very small.
  • a third wavelength-selective member that transmits only light having a wavelength equal to or greater than the fourth predetermined wavelength is disposed between the first wavelength-selective member and the detector on the waveguide.
  • the fourth predetermined wavelength is 10 rim or more larger than the third predetermined wavelength, it is possible to reliably prevent light of all wavelengths in the excitation light from reaching the detector. The background caused by the excitation light can be further reduced.
  • the third wavelength selective member is arranged adjacent to the detector, no other parts are required for arranging the third wavelength selective member. Therefore, the third wavelength selective member can be easily disposed in the fluorescence detection system.
  • the third wavelength selective member is arranged in the optical multiplexer / demultiplexer, other parts for arranging the third wavelength selective member are not required. Therefore, the third wavelength selective member can be easily disposed in the fluorescence detection system, particularly in the optical multiplexer / demultiplexer.
  • the first predetermined wavelength is 1 O nm or more larger than the third predetermined wavelength, it is possible to reliably prevent light of all wavelengths in the excitation light from reaching the detector. The background due to the excitation light can be further reduced.
  • the second wavelength selective member is arranged so as to be adjacent to the light source, other parts for arranging the second wavelength selective member are not required. Therefore, the second wavelength selection member can be easily arranged in the fluorescence detection system.
  • the optical multiplexer / demultiplexer including the first wavelength selective member is disposed on the waveguide connecting the light source and the detector, and the light source and the first wavelength selective member are disposed in the waveguide.
  • a second wavelength-selective member that transmits only light having a wavelength equal to or shorter than the third predetermined wavelength is disposed between the second waveguide and the waveguide.
  • the third wavelength selective member that transmits only light having a wavelength equal to or longer than the fourth predetermined wavelength is arranged, so that the excitation light emitted from the light source Light having a wavelength greater than the third predetermined wavelength is shielded by the second wavelength selective member, passes through the optical multiplexer / demultiplexer, reaches the sample, and is passed to the optical multiplexer / demultiplexer by the sample.
  • the excitation light reflected to the detector by the first wavelength-selective member and the first wavelength-selective member are bypassed and transmitted through the optical multiplexer / demultiplexer, and the excitation light directed to the detector is directly transmitted.
  • light having a wavelength smaller than the fourth predetermined wavelength is blocked by the third wavelength selective member. That is, light having a wavelength greater than the third predetermined wavelength and light having a wavelength smaller than the fourth predetermined wavelength out of the excitation light from the light source does not reach the detector. Therefore, the background caused by the excitation light can be reduced, and the fluorescence can be detected with high sensitivity even if the amount of the sample that emits the fluorescence is very small.
  • the fourth predetermined wavelength is larger than the third predetermined wavelength by l O nm or more, it is possible to reliably prevent light of all wavelengths in the excitation light from reaching the detector.
  • the pack ground caused by the excitation light can be further reduced.
  • the second wavelength selective member is arranged so as to be adjacent to the light source, other parts for arranging the second wavelength selective member are not required. Therefore, the second wavelength selection member can be easily arranged in the fluorescence detection system.
  • the third wavelength selective member is disposed adjacent to the detector, no other parts are required for arranging the third wavelength selective member. Therefore, the third wavelength selection member can be easily arranged in the fluorescence detection system.
  • the third wavelength selective member is arranged in the optical multiplexer / demultiplexer, the third wavelength selective member No other parts are required to place the wavelength selection member. Therefore, the third wavelength selection member can be easily disposed in the fluorescence detection system, particularly in the optical multiplexer / demultiplexer. .

Abstract

蛍光を発する試料が微量であっても、該蛍光を高感度で検出することができる蛍光検出システムを提供する。蛍光検出システム10は、励起光を出射する光源11と、試料部14に対向して配されたプローブ20と、光合分波器12と、検出器13と、光源11と光合分波器12を接続する光ファイバ15と、プローブ20と光合分波器12を接続する光ファイバ16と、検出器13と光合分波器12を接続する光ファイバ17と、光ファイバ15上に配置されたショートパスフィルタとしての励起フィルタ18と、光ファイバ17上に配置されたロングパスフィルタとしての検出フィルタ19とを備え、光合分波器12はロングパスフィルタとしての合分波フィルタ22を有する。

Description

明 細 書
蛍光検出システム 技術分野
本発明は、 蛍光検出システムに関し、 特に光合分波器を備えた蛍光検 出システムに関する。 背景技術
化学反応を微小空間で行うシステムの一-例と してマイク口化学システ ムがある。 マイクロ化学システムは、 小さなガラス基板等に形成した微 細な流路の中で試料の混合、 反応、 分離、 抽出、 検出等を行うものであ る。 このよ うなマイク口化学システムに用いる試料は一般的に微量であ るため、 検出を行うにあたって高感度の検出装置が必要となる。
検出装置と して光学装置を用いて、 特に、 蛍光を測定する場合には、 蛍光の被測定領域が小さいため、 よ り高感度の光学装置が必要となる。 蛍光を高感度に検出する方法として、 レーザ誘起蛍光分析が知られてい る。 また、 このレーザ誘起蛍光分析を用いた光学装置と して、 光源、 光 合分波器、 検出器、 及びこれらを接続する光ファイバを備えた蛍光分析 装置が開示されている (例えば、 特開平 2 0 0 5— 3 0 8 3 0号公報参 照。 ) 。
ところで、 蛍光を発生させるために用いられる励起光の波長は測定対 象である試料によって異なるため、 いつでもレーザ発振器を光源として 使用できるとは限らず、 レーザが発振できない波長を出力可能な光源と して、 発光ダイオード (以下、 単に 「L E D」 という) が一般的に用い られている。
しかしながら、 従来の蛍光分析装置においては、 試料に照射される光 源からの励起光が検出器に漏れ込むことにより、 蛍光検出時のパックグ ラウンドが上昇するため、 蛍光の検出感度が低下するという問題がある。 一方、 マイクロ化学システムの進歩に伴い、 用いる試料は更に微量と なっているため上述した問題はより顕著となるおそれがある。
この発明は、 以上のような問題点に着目 してなされたものである。 そ の目的とするところは、 蛍光を発する試料が微量であっても、 該蛍光を 高感度で検出するこ とができる蛍光検出システムを、 提供するこ とにあ る。 発明の開示
上記目的を達成するために、 本発明によれば、 励起光を出射する光源 と、 試料に対向して配されたプローブと、 前記プローブを介して前記励 起光が照射された前記試料から発生する蛍光を合分波する光合分波器と、 前記光合分波器を透過した透過光を受光する検出器と、 前記光源及び前 記検出器を前記光合分波器を介してつなぐ導波路を備えた蛍光検出シス テムにおいて、 前記光合分波器は、 第 1の所定の波長以上の波長の光の みを透過し且つ第 2の所定の波長以下の波長の光を反射するように構成 された第 1の波長選択性部材を備え、 前記導波路上であって、 前記光源 及び前記第 1の波長選択性部材の間に配され、 且つ第 3の所定の波長以 下の波長の光のみを透過するよ うに構成された第 2の波長選択性部材を 備える蛍光検出システムが提供される。
本発明において、 前記導波路上であって、 前記第 1の波長選択性部材 及び前記検出器の間に配され、 且つ第 4の所定の波長以上の波長の光の みを透過するよ うに構成された第 3 の波長選択性部材を備えることが好 ましい。
本発明において、 前記第 4の所定の波長は、 前記第 3の所定の波長よ り 1 O n m以上大きいことが好ましい。
本発明において、 前記第 3 の波長選択性部材は、 前記検出器と隣接す るように配されることが好ましい。
本発明において、 前記第 3 の波長選択性部材は、 前記光合分波器内に 配されることが好ましい。
本発明において、 前記第 1の所定の波長は、 前記第 3の所定の波長よ り 1 O n m以上大きいことが好ましい。
本発明において、 前記第 2 の波長選択性部材は、 前記光源と隣接する ように配されることが好ましい。
上記目的を達成するために、 本発明において、 励起光を出射する光源 と、 試料に対向して配されたプローブと、 前記プローブを介して前記励 起光が照射された前記試料から発生する蛍光を合分波する光合分波器と、 前記光合分波器が反射した反射光を受光する検出器と、 前記光源及び前 記検出器を前記光合分波器を介してつなぐ導波路とを備えた蛍光検出シ ステムにおいて、 前記光合分波器は、 第 1の所定の波長以上の波長の光 のみを反射し且つ第 2の所定の波長以下の波長の光を透過するように構 成された第 1 の波長選択性部材を備え、 前記導波路上であって、 前記光 源及び前記第 1の波長選択性部材の間に配され、 且つ第 3の所定の波長 以下の波長の光のみを透過するように構成された第 2の波長選択性部材 と、 前記導波路上であって、 前記第 1 の波長選択性部材及ぴ前記検出器 の間に配され、 且つ第 4の所定の波長以上の波長の光のみを透過するよ うに構成された第 3の波長選択性部材とを備える蛍光検出システムが提 供される。
本発明において、 前記第 4の所定の波長は、 前記第 3の所定の波長よ り 1 0 n m以上大きいことが好ましい。
' 本発明において、 前記第 2 の波長選択性部材は、 前記光源と隣接する ように配されることが好ましい。
本発明において、 前記第 3 の波長選択性部材は、 前記検出器と隣接す るように配されることが好ましい。
本発明において、 前記第 3 の波長選択性部材は、 前記光合分波器内に 配されることが好ましい。 図面の簡単な説明
図 1 は、 本発明の第 1の実施の形態に係る蛍光検出システムの構成を 概略的に示すブロック図である。
図 2は、 図 1 における蛍光検出システムの構成要素である光合分波器 の構成を概略的に示す断面図である。
図 3は、 図 1 における励起フィルタ又は検出フィルタを光ファイバの 途中に配設する場合を示す断面図である。
図 4は、 図 1における励起フィルタを光源と隣接するように配設する 場合を示す断面図である。
図 5は、 図 1における検出フィルタを検出器と隣接するよ うに配設す る場合を示す断面図である。
図 6は、 図 1 における検出フィルタを光合分波器内に配設する場合を 示す断面図である。
図 7は、 本発明の第 2の実施の形態に係る蛍光検出システムの構成を 概略的に示すブロック図である。
図 8は、 図 7における蛍光検出システムの構成要素である光合分波器 の構成を概略的に示す断面図である。 発明を実施するための最良の形態
本発明者は、 上記目的を達成すべく鋭意研究を行った結果、 励起光を 出射する光源と、 試料に対向して配されたプローブと、 プローブを介し て励起光が照射された試料から発生する蛍光を合分波する光合分波器と、 光合分波器を透過した透過光を受光する検出器と、 光源及び検出器を光 合分波器を介してつなぐ導波路を備えた蛍光検出システムにおいて、 光 合分波器は、 第 1の所定の波長以上の波長の光のみを透過し且つ第 2の 所定の波長以下の波長の光を反射するよ うに構成された第 1の波長選択 性部材を備え、 上記導波路上であって、 光源及び第 1の波長選択性部材 の間に配され、 且つ第 3の所定の波長以下の波長の光のみを透過するよ うに構成された第 2の波長選択性部材を備えると、 励起光を原因とする バックグラウンドを低下させることができ、 もって、 蛍光を発する試料 が微量であっても、 該蛍光を高感度で検出することができることを見出 した。
また、 励起光を出射する光源と、 試料に対向して配されたプローブと、 プローブを介して励起光が照射された試料から発生する蛍光を合分波す る光合分波器と、 光合分波器が反射した反射光を受光する検出器と、 光 源及び検出器を光合分波器を介してつなぐ導波路とを備えた蛍光検出シ ステムにおいて、 光合分波器は、 第 1の所定の波長以上の波長の光のみ を反射し且つ第 2の所定の波長以下の波長の光を透過するよ うに構成さ れた第 1の波長選択性部材を備え、 上記導波路上であって、 光源及び第 1の波長選択性部材の間に配され、 且つ第 3の所定の波長以下の波長の 光のみを透過するよ うに構成された第 2の波長選択性部材と、 上記導波 路上であって、 第 1の波長選択性部材及ぴ検出器の間に配され、 且つ第 4の所定の波長以上の波長の光のみを透過するように構成された第 3の 波長選択性部材とを備えると、 励起光を原因とするバックグラウンドを 低下させることができ、 もって、 蛍光を発する試料が微量であっても、 該蛍光を高感度で検出することができることを見出した。 本発明は上記知見に基づいてなされたものである。
以下、 本発明の第 1の実施の形態について、 図面を参照しながら説明 する。 '
まず、 本実施の形態に係る蛍光検出システムについて説明する。
図 1は、 本実施の形態に係る蛍光検出システムの構成を概略的に示す ブロック図であり、 図 2は、 図 1における蛍光検出システムの構成要素 である光合分波器の構成を概略的に示す断面図である。
図 1において、 蛍光検出システム 1 0は、 励起光 (主波長え J を出射 する光源 1 1 と、 試料部 1 4に対向して配されたプローブ 2 0 と、 光合 分波器 1 2 と、 検出器 1 3 と、 光源 1 1 と光合分波器 1 2を接続する光 ファイバ 1 5 (導波路) と、 プローブ 2 0 と光合分波器 1 2を接続する 光ファイバ 1 6 と、 検出器 1 3 と光合分波器 1 2を接続する光ファイバ 1 7 (導波路) と、 光ファイバ 1 5上に配置された励起フ ィルタ 1 8 (第 2の波長選択性部材) と、 光ファイバ 1 7上に配置された検出ブイ ルタ 1 9 (第 3の波長選択性部材) とを備える。 また、 導波路と して、 光ファイバ 1 5〜 1 7の代わりに、 平面導波路、 例えばリ ッジ型導波路 を用いてもよい。
励起フィルタ 1 8は固有のカツ トオフ波長 (例えば 4 7 0 n m (第 3 の所定の波長) ) 以下の波長の光を透過し、 且つ該カッ トオフ波長よ り 大きい波長の光を遮光するいわゆるショー トパスフィルタであり、 検出 フィルタ 1 9は固有のカッ トオフ波長 (例えば 5 0 0 n m (第 4の所定 の波長) ) よ り小さい波長の光を遮光し、 且つ該カッ トオフ波長以上の 波長の光を透過するいわゆるロングパスフィルタである。
また、 プローブ 2 0の一端は、 光ファイバ 1 6を介して伝達される励 起光を試料部 1 4に伝達し、 且つ、 該伝達された励起光が試料部 1 4に 照射されることにより発生する蛍光 (主波長 λ 2 ) 及ぴ反射される励起光 を集光して、 光ファイバ 1 6に伝達する。
図 2において、 光合分波器 1 2は、 円柱状のロッ ドレンズ 2 1 , 2 3 と、 ロッ ドレンズ 2 1 , 2 3 の間に介在する合分波フィルタ 2 2 (第 1 の波長選択性部材) とを備え、 ロッ ドレンズ 2 1 の合分波フィルタ 2 2 と隣接する面と反対の面には、 それぞれの端部がキヤビラリ 2 5 aで保 護された光ファイバ 1 5 , 1 6がそれぞれ入出力端 1 5 a , 1 6 aにお いて接続され、 ロッ ドレンズ 2 3 の合分波フィルタ 2 2 と隣接する面と 反対の面には、 端部がキヤビラリ 2 5 bで保護された光ファイバ 1 7が 入出力端 1 7 aにおいて接続されている。 また、 ロッ ドレンズ 2 1, 2 3、 合分波フィルタ 2 2、 及ぴキヤビラリ 2 5 a, 2 5 bを一体的に覆 う ようにカバー 2 4が配設されている。 合分波フィルタ 2 2は、 固有の カ ツ トオフ波長よ り小さい波長 (例えば 4 8 0 n m (第 2の所定の波 長) ) 以下の波長の光を反射し、 且つ該固有のカッ トオフ波長 (例えば 4 9 0 n m以上 (第 1の所定の波長) ) 以上の波長の光を透過する、 い わゆるロングパスフィルタである。 なお、 合分波フィルタ 2 2は、 例え ば、 4 9 0 n ni〜 6 0 0 n mの間の波長の光を透過するパン ドパスフィ ルタでも よい。
図 1及ぴ図 2において、 光源 1 1から出射された励起光のうち 4 7 0 n m以下の波長の光のみが励起フィルタ 1 8を透過して入出力端 1 5 a に伝達される。 入出力端 1 5 a に伝達された 4 7 0 n m以下の波長の励 起光のうち 4 8 O n m以下の波長の光、 つまり、 入出力端 1 5 aに伝達 された励起光すべてが合分波フィルタ 2 2により反射される。 該反射さ れた 4 7 0 n m以下の波長の励起光は入出力端 1 6 aに伝達され、 該伝 達された励起光は光ファイバ 1 6及びプローブ 2 0を介して試料部 1 4 に照射される。 試料部 1 4に励起光が照射されることにより発生した蛍 光及ぴ反射された 4 7 O n m以下の波長の励起光は、 プローブ 2 0及び 3343
8 光ファイバ 1 6を介して入出力端 1 6 aに伝達される。 該伝達された光 のうち、 4 9 O n m以上の波長の光のみが合分波フィルタ 2 2を透過す るため、 該試料部 1 4によって反射された励起光、 すなわち、 4 7 0 η m以下の波長である励起光はほぼすベて遮光され、 蛍光のうち波長 4 9 0 n m以上の波長の光のみが合分波フィルタ 2 2を透過して、 入出力端 1 7 a を経由して光ファイ ノく 1 7に伝達される。 さらに、 光ファイバ 1 7に伝達された蛍光のうち、 5 0 0 n m以上の波長の光のみが検出ブイ ルタ 1 9を透過して検出器 1 3に到達する。 また、 4 9 O n mより小さ い波長の励起光も、 例えば、 光合分波器 1 2内で乱反射されることによ つて入出力端 1 5 a又は 1 6 aから合分波フィルタ 2 2を迂回して入出 力端 1 7 aにわずかに伝達されてしまうが、 該迂回した励起光は、 検出 フィルタ 1 9により遮光される。
本実施の形態に係る蛍光検出システム 1 0によれば、 光源 1 1及ぴ検 出器 1 3をつなぐ光フアイバ 1 5 , 1 7の間に介在する光合分波器 1 2 は、 固有のカッ トオフ波長を有するロングパスフィルタを構成する合分 波フィルタ 2 2を備え、 光源 1 1及ぴ光合分波器 1 2をつなぐ光ファィ ノく 1 5上に固有のカツ トオフ波長を有するショートパスフィルタを構成 する励起フィルタ 1 8が配される。 これによ り、 光源 1 1から出射され た励起光のうち、 励起フィルタ 1 8のカツ トオフ波長よ り大きい波長の 光及ぴ合分波フィルタ 2 2のカツ トオフ波長よ り小さい波長の光は検出 器 1 3に到達しないため、 励起光を原因とするバックグランドを低下さ せることができ、 もって、 蛍光を発する試料部 1 4の試料が微量であつ ても、 該蛍光を高感度で検出することができる。
また、 蛍光検出システム 1 0では、 光合分波器 1 2及び検出器 1 3を つなぐ光ファイ ノく 1 7上に固有の力ッ 1、オフ波長を有するロングパスフ ィルタを構成する検出ブイルタ 1 9が配される。 これにより、 合分波フ 3343
9
ィルタ 2 2を迂回した励起光のうち、 検出フィルタ 1 9のカツ トオフ波 長よ り小さい波長の光は検出器 1 3に到達しないため、 励起光を原因と するパックグランドをより低下させることができる。
また、 本実施の形態において、 励起フィルタ 1 8は、 光源 1 1 と合分 波フィルタ 2 2の間の導波路上であればどこに配設してもよい。 例えば、 光ファイバ 1 5の途中に励起フィルタ 1 8を配設する場合には、 励起フ ィルタ 1 8の導波路と直交する両端面それぞれと対向するよ うにレンズ 4 1 a , 4 l bを直列に配置し、 さらにその外側にそれぞれ端部をキヤ ビラ リ 4 2 a , 4 2 bで保護した光ファイバ 1 5を直列に配置し、 励起 フィルタ 1 8、 レンズ 4 1 a , 4 1 b及ぴキヤ ビラ リ 4 2 a , 4 2 bを 一体的に覆うように、 カバー 4 0を配設すればよい (図 3参照。 ) 。
また、 励起フィルタ 1 8を光源 1 1 と隣接するよ うに配設する場合に は、 光源 1 1内の L EDチップ 5 0に近接して配置される集光レンズ 5 2 と対向する光ファイバ 1 5の端部に励起フィルタ 1 8を配設すればよ い (図 4参照。 ) 。 この場合、 図 3のよ うなレンズ 4 1 a , 4 1 bは必 要ないため、 部品数の増加を最小限に抑え、 簡便に励起フィルタ 1 8を 蛍光検出システム 1 0に配設することができる。 励起フィルタ 1 8は、 集光レンズ 5 2 と光源 1 1 の間に配設してもよく、 集光レンズ 5 2を介 さない場合には、 L E Dチップ 5 0 と光ファイノく 1 5の間に配設しても よい。 なお、 L E Dチップ 5 0は、 L E Dチップ以外の発光体を用いて もよい。
また、 本実施の形態において、 検出フィルタ 1 9は、 合分波フィルタ 2 2 と検出器 1 3の間の導波路上であればどこに配設してもよい。 例え ば、 光ファイバ 1 7の途中に検出フィルタ 1 9を配設する場合には、 検 出フィ ルタ 1 9の導波路と直交する両端面それぞれと対向するようにレ ンズ 4 l a , 4 l bを直列に配置し、 さらにその外側に端部をそれぞれ キヤビラリ 4 2 a , 4 2 bで保護した光ファイバ 1 7を直列に配置し、 検出フィルタ 1 9、 レンズ 4 l a , 4 1 b及びキヤ ビラ リ 4 2 a , 4 2 bを一体的に覆う よ うに、 カバー 4 0を配設すればよい (図 3参照。 ) 。 また、 検出フィルタ 1 9を検出器 1 3 と隣接するように配設する場合 には、 キヤビラリ 6 1で保護された光ファイバ 1 7の端部にレンズ 6 2 を直列に配置し、 レンズ 6 2 と検出器 1 3の間に検出フィルタ 1 9を配 置すればよい (図 5参照。 ) 。 この場合、 レンズ 4 1 a, 4 1 bは必要 ないため、 部品数の増加を抑え、 簡便に検出フィルタ 1 9を蛍光検出シ ステム 1 0に配設することができる。 さらに、 検出器 1 3の受光面が広 い場合には、 レンズ 6 2を用いずに、 光ファイノ 1 7 と検出器 1 3 の間 に検出フィルタ 1 9を配設してもよい。
また、 検出フィルタ 1 9を光合分波器 1 2内に配設する場合には、 検 出フィルタ 1 9をロッ ドレンズ 2 3 と光ファイバ 1 7 との間に配設すれ ばよい (図 6参照。 ) 。 この場合、 部品数を増加させることなく、 簡便 に検出フィルタ 1 9を蛍光検出システム 1 0に配設することができる。 なお、 検出フィルタ 1 9を合分波フィルタ 2 2 とロッ ドレンズ 2 3 と の 間に配設してもよい。
また、 本発明の実施の形態では、 蛍光検出システム 1 0に励起フィル タ 1 8及び蛍光フィルタ 1 9を配置するだけで、 励起光を原因とするバ ックグラウンドを低下させることができるので、 該蛍光検出システム 1 0を複雑にすることがない。
次に、 本発明の第 2の実施の形態に係る蛍光検出システムについて説 明する。
本実施の形態は、 その構成、 作用が上述した第 1の実施の形態と基本 的に同じであり、 光合分波器の構成及び各構成要素の接続方法が異なる のみであるので、 重複した構成、 作用については説明を省略し、 以下に 異なる構成、 作用についての説明を行う。
図 7は、 本発明の実施の形態に係る蛍光検出システムの構成を概略的 に示すブロック図であり、 図 8は、 図 7における蛍光検出システムの構 成要素である光合分波器の構成を概略的に示す断面図である。
図 7において、 蛍光検出システム 8 0は、 励起光 (主波長; を出射 する光源 1 1 と、 試料部 1 4に対向して配されたプローブ 2 0 と、 光合 分波器 8 1 と、 検出器 1 3 と、 光源 1 1 と光合分波器 8 1を接続する光 ファイバ 1 5 (導波路) と、 プローブ 2 0 と光合分波器 8 1 を接続する 光ファイバ 1 6 と、 検出器 1 3 と光合分波器 8 1を接続する光ファイバ 1 7 (導波路) と、 光ファイバ 1 5上に配置された励起フィルタ 1 8 (第 2の波長選択性部材) と、 光ファイバ 1 7上に配置された検出ブイ ルタ 1 9 (第 3の波長選択性部材) とを備える。
図 8において、 光合分波器 8 1は、 円柱状のロッ ドレンズ 8 2 , 8 4 と、 ロッ ドレンズ 8 2, 8 4の間に介在する合分波フィルタ 8 3 (第 1 の波長選択性部材) とを備え、 ロ ッ ドレンズ 8 2の合分波フィルタ 8 3 と隣接する面と反対の面には、 端部がキヤビラリ 9 1 aで保護された光 ファイノく 1 5が入出力端 1 5 a において接続され、 ロ ッ ドレンズ 8 4 の 合分波フィルタ 8 3 と隣接する面と反対の面には、 それぞれの端部がキ ャビラリ 9 1 bで保護された光ファイバ 1 6 , 1 7がそれぞれ入出力端 1 6 a , 1 7 a において接続されている。 また、 ロ ッ ドレンズ 8 2 , 8 4、 合分波フィルタ 8 3、 及ぴキヤビラリ 9 1 a , 9 1 bを一体的に覆 うよ うにカバー 9 0が配設されている。 合分波フィルタ 8 3は、 固有の カッ トオフ波長 (例えば、 4 8 0 n m (第 2の所定の波長) ) 以下の波 長の光を透過し、 且つ該固有のカッ トオフ波長よ り大きい波長 (例えば、 4 9 0 n m (第 1の所定の波長) 以上の波長の光を反射する、 いわゆる ショー トパスフィルタである。 図 7及ぴ図 8において、 光源 1 1から出射された励起光のうち 4 7 0 n m以下の波長の光のみが励起フィルタ 1 8を透過して、 入出力端 1 5 aに伝達される。 入出力端 1 5 aに伝達された 4 7 0 n m以下の波長の 励起光のうち 4 8 O n m以下の波長の光、 つま り、 入出力端 1 5 aに伝 達された励起光すべてが合分波フィルタ 8 3を透過する。 該透過した 4 7 O n m以下の波長の励起光は入出力端 1 6 aに伝達され、 入出力端 1 6 aに伝達された励起光は光ファイバ 1 6及ぴプローブ 2 0を介して試 料部 1 4に照射される。 該試料部 1 4に励起光が照射されることにより 発生した蛍光 (主波長; L 2 ) 及び反射された 4 7 0 n m以下の波長の励起 光は、 プローブ 2 0及ぴ光ファイバ 1 6を介して入出力端 1 6 aに伝達 される。 該伝達された光のうち、 4 9 0 n m以上の波長の光のみが合分 波フィルタ 8 3により反射され、 4 8 0 n m以下の波長の光は合分波フ ィルタ 8 3を透過するため、 該試料部 1 4によって反射された励起光、 すなわち、 4 7 0 n m以下の波長である励起光はほぼすぺて合分波フィ ルタ 8 3を透過し、 蛍光のうち波長 4 9 O n m以上の波長の光のみが合 分波フィルタ 8 3によって反射され、 入出力端 1 7 a を経由して光ファ ィバ 1 7に伝達され、 さらに、 5 0 0 n m以上の波長の蛍光のみが検出 フィルタ 1 9を透過して検出器 1 3に到達する。
また、 4 7 0 n m以下の波長の励起光も、 例えば、 上述したプローブ 2 0及び光ファイバ 1 6を介して入出力端 1 6 a に伝達された後、 入出 力端 1 7 aに回り込むことによってわずかに入出力端 1 7 aに伝達され てしまう場合、 または、 例えば、 入出力端 1 5 aに伝達された後、 合分 波フィルタ 8 3を迂回して光合分波器 8 1 を透過し、 そのまま入出力端 1 7 aに伝達されてしまう場合があるが、 該回り込んだ励起光、 または 該迂回した励起光は検出フィルタ 1 9により遮光される。
本実施の形態に係る蛍光検出システム 8 0によれば、 光源 1 1及ぴ検 出器 1 3をつなぐ光ファイバ 1 5 , 1 7の間に介在する光合分波器 8 1 は、 固有のカツ トオフ波長を有するショー トパスフィルタを構成する合 分波フィルタ 8 3を備え、 光源 1 1及び光合分波器 8 1をつなぐ光ファ ィパ 1 5上には、 固有のカッ トオフ波長を有するショートパスフィルタ を構成する励起フィルタ 1 8が配され、 さらに光合分波器 8 1及ぴ検出 器 1 3をつなぐ光ファイバ 1 7上には、 固有のカツ トオフ波長を有する ロングパスフィルタを構成する検出フィルタ 1 9が配される。 これによ り、 光源 1 1から'出射された励起光のうち、 励起フィルタ 1 8のカッ ト オフ波長より大きい波長の光及ぴ検出フィルタ 1 9のカツ トオフ波長よ り小さい波長の光は検出器 1 3に到達しないため、 励起光を原因とする パックグランドを低下させることができ、 もって、 蛍光を発する試料部 1 4の試料が微量であっても、 該蛍光を高感度で検出することができる。 また、 本実施の形態において、 励起フィルタ 1 8は、 光源 1 1 と合分 波フィルタ 8 3の間の導波路上であればどこに配設してもよい。 例えば、 光ファイバ 1 5 の途中に配設してもよく、 光源 1 1 と隣接するよ うに配 設してもよい。
さらに、 本実施の形態において、 検出フィルタ 1 9は、 合分波フィル タ 8 3 と検出器 1 3の間の導波路上であればどこに配設してもよい。 例 えば、 光フアイバ 1 7の途中に配設してもよく、 検出器 1 3 と隣接する ように配設してもよく、 さらには、 光合分波器 8 1内に配設してもよレ、。 また、 いずれの実施の形態においても、 ロングパスフィルタ又はショ ―トパスフィルタのかわりにノ ンドパスフィルタを用いても、 同様に、 励起光を原因とするバックグラウン ドを低下させることができる。 さら に、 励起フィルタ 1 8又は検出フィルタ 1 9 は、 複数の箇所に複数枚配 置してもよい。 なお、 光ファイバ 1 5〜 1 7を構成する素材は、 光を伝 達できる透明固体物質であればよく、 該素材には、 石英、 ガラス、 ブラ スチック等を用いることができる。 また、 導波路と して、 光ファイバ 1 5〜 1 7の代わりに、 平面導波路、 例えばリ ッジ型導波路を用いてもよ レ、。 さらに、 導波路は内部に光路を形成したガラス等の透明固体物質に よって少なく とも一部を構成してもよい。
次に、 本発明の実施例を具体的に説明する。
最初に、 実物の蛍光検出システムを用いて行った測定について説明す る。
(実施例 1 )
蛍光検出システム 1 0において、 各光ファイバ 1 5 ~ 1 7の端部にキ ャビラ リ (日本電気硝子株式会社製) を固定した。 また、 図 4の構造に おいて、 L E Dチップ 5 0 と して中心発光波長 4 7 0 n mの L E D (日 亜化学工業株式会社製 N S P B 5 0 0 S ) を用い、 集光レンズ 5 2 と して S E L F O C (登録商標) マイ ク ロ レンズ S LW 1 8 ( 0. 4 ピッ チ) (日本板硝子株式会社製) を用い、 L E Dチップ 5 0を集光レンズ 5 2及び励起フィルタ 1 8を介して光ファイバ 1 5 ( S I 2 0 0 / 2 5 0 N A = 0. 2 2 ) に結合した。 なお、 励起フィノレタ 1 8 と してカツ トオフ波長が 4 9 0 n mであるショートパスフィルタを用いた。
また、 図 2に示す光合分波器 1 2において、 ロッ ドレンズ 2 1, 2 3 と して S LW 1 8 ( 0. 2 3 ピッチ) (日本板硝子株式会社製) を用レ、、 合分波フィルタ 2 2 と して 4 9 O n m以下の波長の光を反射し且つ 5 0
0 n m以上の波長の光を透過するロングパスフィルタを用いた。 なお、 光ファイバ 1 7上には検出フィルタ 1 9を配置しなかった。
また、 検出器 1 3 と して浜松ホ トニクス株式会社製の C 5 4 6 0 — 0 1を用い、 プローブ 2 0 と して S LW 1 8 ( 0 . 4 ピッチ) を用い、 試 料部 1 4 の試料と して水及ぴ蛍光色素 F 1 u o r e s c e i n e - 4 -
1 s o t h i o c y a n a t e (以下 「 F I T C」 とレ、う。 ) をそれぞ れ 0. 0 1 / M、 0. 1 μ Μ、 1 μ Μ、 Ι Ο μ Μの濃度となるように調 製した水溶液を用いた。
そして、 蛍光検出システム 1 0において、 光源 1 1から励起光を出射 させ、 各濃度の水溶液照射時、 及び水照射時における試料部 1 4からの 光を 5回測定して検出器 1 3から信号値を得た。 さらに、 5回測定され た信号値の平均値を算出し、 下記表 1に示した。 なお、 該信号値は検出 器 1 3が検出した光の光量に比例する。
【表 1】
Figure imgf000017_0001
(実施例 2)
蛍光検出システム 1 0において、 実施例 1 とは異なり、 図 6に示す光 合分波器 1 2 ' を用いた。 この光合分波器 1 2 ' では、 ロッ ドレンズ 2 1, 2 3 と して S LW 1 8 ( 0. 2 3 ピッチ) を用い、 合分波ブイルタ 2 2 と して 4 9 0 n m以下の波長の光を反射し且つ 5 0 0 n m以上の波 長の光を透過するロングパスフィルタを用い、 検出フィルタ 1 9 と して カ ツ トオフ波長が 5 0 O nmであるロ ングパスフィルタをキヤビラ リ 7 1 bの端部に接着した。 また、 光ファイバ 1 7上には検出フィルタ 1 9 を配置しなかった。 なお、 その他の構成は実施例 1の蛍光検出システム 1 0 と同じにした。
そして、 実施例 1 と同様に、 各濃度の水溶液照射時、 及び水照射時に おける試料部 1 4からの光を 5回測定して検出器 1 3から信号値を得た。 さらに、 5回測定された信号値の平均値を算出し、 下記表 2に示した。 【表 2】
Figure imgf000018_0001
(比較例 1 )
蛍光検出システム 1 0において、 実施例 1 とは異なり、 図 4の構造に おいて、 L E Dチップ 5 0 を、 励起フィルタ 1 8を介さず、 集光レンズ 5 2のみを介して光ファイ ノく 1 5に結合した。 また、 光ファイバ 1 5上 にも励起フィルタ 1 8を配置しなかった。 また、 光ファイバ 1 7上には 検出フィルタ 1 9を配置しなかった。 なお、 その他の構成は実施例 1の 蛍光検出システム 1 0 と同じにした。
そして、 実施例 1 と同様に、 各濃度の水溶液照射時、 及び水照射時に おける試料部 1 4からの光を 5回測定して検出器 1 3から信号値を得た。 さらに、 5回測定された信号値の平均値を算出し、 下記表 3に示した。
【表 3】 平均値 平均差分値 標準偏差
水 621.59 一 0.06
0.01 }I M 621.57 -0.02 0.10
0.1 jU M 621.56 -0.03 0.10
1 M 630.59 9.01 0.28
10 / M 670.42 48.84 0.10 表 1乃至表 3において、 「平均差分値」 は各濃度の水溶液照射時にお ける信号値の平均値から水照射時における信号値の平均値を引いたもの である。 ここで、 水照射時における信号値は光源 1 1からの励起光の光 量 (バックグラウンド) のみに該当し、 各濃度の水溶液照射時における 信号値は試料部 1 4からの蛍光の光量及ぴバックグラウンドの合計値に 該当する。 したがって、 「平均差分値」 は試料部 1 4からの蛍光の光量 に該当し、 「平均差分値」 が負の場合は、 バックグ.ラウンドが上昇して 蛍光を検出できない場合に相当する。
表 1乃至表 3において、 水照射時における信号値、 すなわちバックグ ラウン ドを比較したところ、 光源 1 1及び検出器 1 3をつなぐ導波路上 に励起フィルタ 1 8及び検出フィルタ 1 9が配置された場合 (実施例 2 ) が最も小さく、 次いで上記導波路上に励起フィルタ 1 8のみが配置 された場合 (実施例 1 ) が小さく、 上記導波路上に励起フィルタ 1 8及 び検出フィルタ 1 9のいずれも配置しなかった場合 (比較例 1 ) が最も 大きかった。
また、 表 1乃至表 3において平均差分値が正となる濃度、 すなわち、 蛍光が検出可能となる濃度を比較したところ、 実施例 2における濃度が 最も低く ( 0 . 0 1 μ M ) 、 次いで実施例 1における濃度が低く ( 0 . 1 μ Μ) , 比較例 1の濃度が最も高かった ( 1 Μ ) 。
以上よ り、 蛍光検出システム 1 0において、 光源 1 1及ぴ検出器 1 3 をつなぐ導波路上に少なく とも励起フィルタ 1 8を配置することによつ てバックグラウンドを低下させることができ、 F I T Cの濃度が低くて も (すなわち、 蛍光を発する試料が微量であっても) 、 蛍光を高感度で 検出できることが分かった。
次ぎに、 蛍光検出システムのモデルを用いて実行したシミ ュ レーショ ンについて説明する。 まず、 蛍光検出システム 1 0 , 8 0に相当するモデルをコンピュータ 上に構築し、 該モデルにおいて、 励起フィルタ 1 8の有無、 検出フィル タ 1 9の有無、 及び検出器 1 3における Sノ B (蛍光到達光量 Z励起光 到達光量 (パックグラウンド) ) との関係を、 シミ ュ レーショ ンを実行 することによって確認した。 このときの励起フィルタ 1 8、 検出フィル タ 1 9、 合分波フィルタ 2 2 ( 8 3 ) と して、 約 1 0 0層で設計した透 過フィルタ (ロ ングパスフィルタ又はショ ー トパスフィルタ) の設計傾 きに透過アイ ソ レーショ ン (反射域の波長の光が透過する最大光量 Z反 射域の波長の光が入射する光量) がー 5 0 d Bで、 反射アイソレーショ ン (透過域の波長の光が反射する最大光量 Z透過域の波長の光が入射す る光量) が _ 1 5 d Bとなるよ うに設計したフィルタを想定した。 また、 光源 1 1の L E Dチップと して中心発光波長 4 7 0 n mの L E Dを想定 し、 試料部 1 4の試料として F I T Cを想定した。
(実施例 3 )
蛍光検出システム 1 0に相当するモデル (検出フィルタ 1 9有り 、 励 起フィルタ 1 8有り) において、 SZBを算出したところ、 算出された SZBは 8 9 7 0 0であった。
(実施例 4 )
蛍光検出システム 1 0から検出フィルタ 1 9のみを省いた蛍光検出シ ステムに相当するモデル (励起フィルタ 1 8有り) において、 実施例 3 と同様に SZBを算出したところ、 算出された S ZBは 1 0 1 0であつ た。
(比較例 2 )
蛍光検出システム 1 0から励起フィルタ 1 8のみを省いた蛍光検出シ ステムに相当するモデル (検出フィルタ 1 9有り ) において、 実施例 3 と同様に S/Bを算出したところ、 算出された S /Bは 1 0 7であった。 (比較例 3 )
蛍光検出システム 1 0から励起フィルタ 1 8及び検出フィルタ 1 9を 省いた蛍光検出システムに相当するモデルにおいて、 実施例 3 と同様に S/Bを算出したところ、 算出された SZBは 4 1であった。
実施例 3, 4及び比較例 2 , 3における S Z Bを比較した結果、 光源 1 1及び検出器 1 3をつなぐ導波路上に少なく とも励起フィルタ 1 8を 配置することによって SZBを高めることができること、 すなわち、 バ ックグラウンドを低下させることができ、 蛍光を高感度で検出できるこ とが分かった。
(実施例 5 )
蛍光検出システム 8 0に相当するモデル (検出フィルタ 1 9有り、 励 起フィルタ 1 8有り) において、 S ZBを算出したところ、 算出された S/Bは 1 7 5 0 0であった。
(比較例 4 )
蛍光検出システム 8 0から励起フィルタ 1 8及ぴ検出フィルタ 1 9を 省いた蛍光検出システムに相当するモデルにおいて、 実施例 5 と同様に
S/Bを算出したところ、 算出された SZBは 1 7であった。
実施例 5及び比較例 4における S Z Bを比較した結果、 光源 1 1及ぴ 検出器 1 3をつなぐ導波路上に励起フィルタ 1 8及ぴ検出フィルタ 1 9 を配置することによって S/Bを高めること (およそ 1 0 0 0倍以上) ができること、 すなわち、 バックグラウンドを低下させることができ、 蛍光を高感度で検出できることが分かった。
さらに、 蛍光検出システム 1 0, 3 0に相当するモデルをコンビユー タ上に構築し、 該モデルにおいて、 励起フィルタ 1 8、 検出フィルタ 1 9、 合分波フィルタ 2 2 ( 8 3 ) の各カ ッ トオフ波長と、 検出器 1 3に おける SZBとの関係を、 シミュレーショ ンを実行することによって確 認した。 このと きも、 励起フィルタ 1 8、 検出フィルタ 1 9、 合分波フ ィルタ 2 2 ( 8 3 ) と して、 約 1 0 0層で設計した透過フィルタ (ロ ン グパスフィルタ又はショ ー トパスフィルタ) の設計傾きに透過アイ ソ レ ーシヨ ンが一 5 0 d Bで、 反射アイ ソ レーショ ンがー 1 5 d B となるよ う に設計したフィルタを想定した。 また、 光源 1 1 の L E Dチップと し て中心発光波長 4 7 0 n mの L E Dを想定し、 試料部 1 4の試料と して F I T Cを想定した。
(実施例 6 ) ·
蛍光検出システム 1 0 に相当するモデルにおいて、 励起フィルタ 1 8 と して 4 7 0 n m、 4 8 0 n m、 4 9 0 n m、 5 0 0 n m, 5 1 0 n m のいずれかをカ ツ トオフ波長とするショー トパスフィルタを想定し、 検 出フイノレタ 1 9 と して 4 8 0 n m、 4 9 0 n m、 5 0 0 n m、 5 1 0 η m、 5 2 0 η m、 5 3 O n mのいずれかをカ ッ トオフ波長とするロング パスフィルタを想定し、 合分波フィルタ 2 2 と して 4 8 0 n m以下の波 長の光を反射し且つ 4 9 0 n m以上の波長の光を透過するロ ングパスフ ィルタを想定した。 そして、 励起フィルタ 1 8 のカ ッ トオフ波長及ぴ検 出フィルタ 1 9のカ ツ トオフ波長の各組合せについて S ZBを算出し、 各 S /B を下記表 4 にまと めた。 表 4において、 第一列は励起フィルタ 1 8 のカ ッ トオフ波長 ( n m) を、 第一行は検出フィルタ 1 9 のカ ッ ト オフ波長 ( n m) を示している。
【表 4】
Figure imgf000022_0001
(実施例 7)
蛍光検出システム 1 0に相当するモデルにおいて、 合分波フィルタ 2 2 と して 4 9 0 n m以下の波長の光を反射し且つ 5 0 0 nm以上の波長 の光を透過するロ ングパスフィルタを想定した以外は、 実施例 6 と同じ 条件で励起フィルタ 1 8のカツ トオフ波長及び検出フィルタ 1 9のカツ トオフ波長の各組合せについて S/Bを算出し、 各 S ZBを下記表 5に まとめた。 表 5において、 第一列は励起フィルタ 1 8のカッ トオフ波長 ( n m) を、 第一行は検出フィルタ 1 9のカ ッ トオフ波長 ( n m) を示 している。
【表 5】
Figure imgf000023_0001
(実施例 8 )
蛍光検出システム 1 0に相当するモデルにおいて、 合分波フ ィルタ 2 2 と して 5 0 0 n m以下の波長の光を反射し且つ 5 1 0 nm以上の波長 の光を透過するロ ングパスフィルタを想定し、 導波路と して、 光フアイ ノく 1 5〜 1 7の代わりにコア径 2 0 0 u niの リ ッジ型導波路 (NA= 0. 2 2 ) を想定した以外は、 実施例 6 と同じ条件で励起フィルタ 1 8の力 ッ トオフ波長及び検出フィルタ 1 9のカツ トオフ波長の各組合せについ て SZBを算出し、 各 SZBを下記表 6にまとめた。 表 6において、 第 一列は励起フィルタ 1 8のカッ トオフ波長 (n m) を、 第一行は検出フ ィルタ 1 9のカッ トオフ波長 (nm) を示している。
【表 6】
Figure imgf000024_0001
(実施例 9 )
蛍光検出システム 8 0 に相当するモデルにおいて、 励起フィルタ 1 8 と して 4 7 0 n m、 4 8 0 n m、 4 9 0 n m、 5 0 0 n m、 5 1 0 n m のいずれかをカ ッ トオフ波長とするショー トパスフィルタを想定し、 検 出フィルタ 1 9 と して 4 8 0 n m、 4 9 0 n m、 5 0 0 n m、 5 1 0 η m、 5 2 0 n m、 5 3 0 n mのいずれかをカッ トオフ波長とするロ ング パスフィルタを想定し、 合分波フィルタ 8 3 と して 4 8 0 n m以下の波 長の光を透過し且つ 4 9 0 n m以上の波長の光を反射するショー トパス フィルタを想定した。 そして、 励起フィルタ 1 8のカ ツ トオフ波長及び 検出フィルタ 1 9 のカツ トオフ波長の各組合せについて S / Bを算出し、 各 S Z Bを下記表 7 にまとめた。 表 7において、 第一列は励起フィルタ 1 8のカ ッ トオフ波長 ( n m) を、 第一行は検出フィルタ 1 9 のカ ッ ト オフ波長 ( n m) を示している。
【表 7】
Figure imgf000024_0002
(実施例 1 0 )
蛍光検出システム 8 0 に相当するモデルにおいて、 合分波フィルタ 8 3 と して 4 9 0 n m以下の波長の光を透過し且つ 5 0 0 nm以上の波長 の光を反射するショートパスフィルタを想定した以外は、 実施例 9 と同 じ条件で励起フィルタ 1 8のカツ トオフ波長及ぴ検出フィルタ 1 9の力 ッ トオフ波長の各組合せについて Sノ Bを算出し、 各 S/Bを下記表 8 にまとめた。 表 8において、 第一列は励起フィルタ 1 8のカツ トオフ波 長 (n m) を、 第一行は検出フィルタ 1 9のカッ トオフ波長 (n m) を 示している。
【表 8】
Figure imgf000025_0001
(実施例 1 1 )
蛍光検出システム 8 0に相当するモデルにおいて、 合分波フィルタ 8 3 と して 5 0 0 nm以下の波長の光を透過し且つ 5 1 0 nm以上の波長 の光を反射するショー トパスフィルタを想定し、 導波路と して、 光ファ ィバ 1 5〜 1 7の代わりにコア径 2 0 0 u mのリ ッジ型導波路 (NA = 0. 2 2 ) を想定した以外は、 実施例 9 と同じ条件で励起フィルタ 1 8 のカツ トオフ波長及び検出フィルタ 1 9のカツ トオフ波長の各組合せに ついて SZBを算出し、 各 S ZBを下記表 9にまとめた。 表 9において、 第一列は励起フィルタ 1 8のカッ トオフ波長 (n m) を、 第一行は検出 フイノレタ 1 9のカッ トオフ波長 (nm) を示している。 【表 9】
Figure imgf000026_0001
なお、 表 4乃至表 9における第 1列は励起フィルタ 1 8のカツ トオフ 波長を示し、 第 1行は検出フィルタ 1 9のカツ トオフ波長を示す。
実施例 6乃至実施例 8における各 Sノ Bを確認した結果、 合分波フィ ルタ 2 2を透過する波長の下限が励起フィルタ 1 8のカツ トオフ波長よ り 1 0 n m以上大きい場合、 或いは、 検出フィルタ 1 9 のカ ツ トオフ波 長が励起フィルタ 1 8のカ ツ トオフ波長より 1 0 n m以上大きい場合に S Z B値が増大すること、 すなわち、 励起光を原因とするバックグラウ ンドが低下して蛍光の検出感度が上昇することが分かった。
また、 合分波フィルタ 2 2を透過する波長の下限が励起フィルタ 1 8 のカツ トオフ波長より 1 0 n m以上大きく、 かつ検出フィルタ 1 9の力 ッ トオフ波長が合分波フィルタ 2 2を透過する波長の下限より大きい場 合は、 S / B値がより増大することが分かり、 さらに、 合分波フィルタ 2 2を透過する波長の下限が励起フィルタ 1 8のカツ トオフ波長よ り 1 0 n m以上大きく、 かつ検出フィルタ 1 9 のカ ツ トオフ波長が励起フィ ルタ 1 8のカツ トオフ波長よ り 2 0 n m以上大きい場合は、 S Z B値は さらに増大することが分かった。
また、 実施例 9乃至実施例 1 1 における各 S Z Bを確認した結果、 検 出フィルタ 1 9 のカツ トオフ波長が励起フィルタ 1 8 のカ ツ トオフ波長 よ り 1 O n m以上大きい場合に S Z B値が増大すること、 すなわち、 励 起光を原因とするバックグラウン ドが低下して蛍光の検出感度が上昇す ることが分かった。
さらに、 実施例 6乃至実施例 8、 及ぴ実施例 9乃至実施例 1 1の結果 よ り、 合分波フィルタ 2 2には、 励起光を反射し、 蛍光を透過するロ ン グパスフィルタを用いたほうが、 S / B値が増大し、 蛍光の検出感度が 高くなることが分かった。 産業上の利用可能性
本発明によれば、 光源及び検出器をつなぐ導波路 (例えば、 光フアイ パゃ平面導波路) に介在する光合分波器は第 1の所定の波長以上の波長 の光のみを透過する第 1の波長選択性部材を備え、 上記導波路上におい て光源及ぴ第 1 の波長選択性部材の間には第 3の所定の波長以下の波長 の光のみを透過する第 2の波長選択性部材が配されるので、 光源から出 射された励起光のうち第 3の所定の波長よ り大きい波長の光は第 2の波 長選択性部材によつて遮光され、 第 1の波長選択性部材によつて試料へ 反射され且つ該試料によってさらに光合分波器へ反射された励起光のう ち第 1の所定の波長より小さい波長の光は第 1の波長選択性部材によつ て遮光される。 すなわち、 光源からの励起光のうち第 3の所定の波長よ り大きい波長の光及び第 1の所定の波長よ り小さい波長の光は検出器に 到達しない。 したがって、 励起光を原因とするバックグラウン ドを低下 させることができ、 もって、 蛍光を発する試料が微量であっても、 該蛍 光を高感度で検出することができる。
また、 上記導波路上において第 1の波長選択性部材及ぴ検出器の間に は第 4の所定の波長以上の波長の光のみを透過する第 3の波長選択性部 材が配されるので、 第 1 の波長選択性部材を透過したわずかな第 3 の所 定の波長よ り大きい波長の励起光及び第 1の所定の波長より小さいの波 長の励起光のう ち、 第 4の所定の波長よ り小さい波長の光は検出器に到 達しない。 したがって、 励起光を原因とするバックグラウンドをさらに 低下させることができる
また、 第 4の所定の波長は、 第 3の所定の波長より 1 0 ri m以上大き いので、 励起光におけるすべての波長の光が検出器に到達するのを確実 に防ぐことができ、 もって、 励起光を原因どするバックグラウンドをよ り低下させることができる。
また、 第 3 の波長選択性部材は、 検出器と隣接するように配されるの で、 第 3の波長選択性部材を配置するための他の部品を必要と しない。 したがって、 第 3の波長選択性部材を蛍光検出システムに簡便に配設す ることができる。
また、 第 3の波長選択性部材は、 光合分波器内に配されるので、 第 3 の波長選択性部材を配置するための他の部品を必要と しない。 したがつ て、 第 3の波長選択性部材を蛍光検出システムに、 特に光合分波器内に 簡便に配設することができる。
また、 第 1の所定の波長は、 第 3の所定の波長よ り 1 O n m以上大き いので、 励起光におけるすべての波長の光が検出器に到達するのを確実 に防ぐことができ、 もって、 励起光を原因とするパックグラウンドをよ り低下させることができる。
また、 第 2 の波長選択性部材は、 光源と隣接するよ うに配されるので、 第 2の波長選択部材を配置するための他の部品を必要と しない。 したが つて、 第 2の波長選択部材を蛍光検出システムに簡便に配設することが できる。
本発明によれば、 光源及び検出器をつなぐ導波路上には第 1 の波長選 択性部材を備えた光合分波器が配され、 上記導波路において光源及び第 1の波長選択性部材の間には第 3の所定の波長以下の波長の光のみを透 過する第 2の波長選択性部材が配され、 さらに、 上記導波路上において 第 1の波長選択性部材及び検出器の間には第 4の所定の波長以上の波長 の光のみを透過する第 3の波長選択性部材が配されるので、 光源から出 射された励起光のうち第 3の所定の波長より大きい波長の光は第 2の波 長選択性部材によつて遮光され、 光合分波器を透過して試料に到達し且 っ該試料によって光合分波器に反射された後さらに第 1 の波長選択性部 材によって検出器へ反射された励起光及び第 1 の波長選択性部材を迂回 して光合分波器を透過し、 そのまま検出器へ向かう励起光のうち第 4の 所定の波長より小さい波長の光は第 3の波長選択性部材によって遮光さ れる。 すなわち、 光源からの励起光のうち第 3の所定の波長より大きい 波長の光及ぴ第 4の所定の波長よ り小さい波長の光は検出器に到達しな レ、。 したがって、 励起光を原因.とするバックグラウンドを低下させるこ とができ、 もって、 蛍光を発する試料が微量であっても該蛍光を高感度 で検出することができる。
また、 第 4の所定の波長は、 第 3の所定の波長よ り l O n m以上大き いので、 励起光におけるすべての波長の光が検出器に到達するのを確実 に防ぐことができ、 もって、 励起光を原因とするパックグラウン ドをよ り低下させることができる。
また、 第 2の波長選択性部材は、 光源と隣接するよ うに配されるので、 第 2の波長選択部材を配置するための他の部品を必要と しない。 したが つて、 第 2の波長選択部材を蛍光検出システムに簡便に配設することが できる。
また、 第 3の波長選択性部材は、 検出器と隣接するよ うに配されるの で、 第 3の波長選択部材を配置するための他の部品を必要と しない。 し たがって、 第 3の波長選択部材を蛍光検出システムに簡便に配設するこ とができる。
また、 第 3 の波長選択性部材は、 光合分波器内に配されるので、 第 3 の波長選択部材を配置するための他の部品を必要と しない。 したがって、 第 3の波長選択部材を蛍光検出システムに、 特に光合分波器内に簡便に 配設することができる。 .

Claims

請 求 の 範 囲
1 . 励起光を出射する光源と、 試料に対向して配されたプローブと 、 前記プローブを介して前記励起光が照射された前記試料から発生する 蛍光を合分波する光合分波器と、 前記光合分波器を透過した透過光を受 光する検出器と、 前記光源及び前記検出器を前記光合分波器を介してつ なぐ導波路を備えた蛍光検出システムにおいて、
前記光合分波器は、 第 1の所定の波長以上の波長の光のみを透過し且 つ第 2の所定の波長以下の波長の光を反射するように構成された第 1の 波長選択性部材を備え、
前記導波路上であって、 前記光源及び前記第 1の波長選択性部材の間 に配され、 且つ第 3の所定の波長以下の波長の光のみを透過するように 構成された第 2の波長選択性部材を備えることを特徴とする蛍光検出シ ステム。
2 . 前記導波路上であって、 前記第 1 の波長選択性部材及ぴ前記検 出器の間に配され、 且つ第 4の所定の波長以上の波長の光のみを透過す るように構成された'第 3 の波長選択性部材を備えることを特徵とする請 求の範囲第 1項記載の蛍光検出システム。
3 . 前記第 4の所定の波長は、 前記第 3の所定の波長より 1 0 n m 以上大きいこ とを特徴とする請求の範囲第 2項記載の蛍光検出システム。
4 . 前記第 3の波長選択性部材は、 前記検出器と隣接するよ うに配 されることを特徴とする請求の範囲第 2又は 3項記載の蛍光検出システ ム。
5 . 前記第 3の波長選択性部材は、 前記光合分波器内に配されるこ とを特徴とする請求の範囲第 2又は 3項記載の蛍光検出システム。
6 . 前記第 1の所定の波長は、 前記第 3の所定の波長よ り 1 O n m 以上大きいことを特徴とする請求の範囲第 1乃至 5項のいずれか 1項に 記載の蛍光検出システム。
7 . 前記第 2の波長選択性部材は、 前記光源と隣接するように配さ れることを特徴とする請求の範囲第 1乃至 6項のいずれか 1項に記載の 蛍光検出システム。
8 . 励起光を出射する光源と、 試料に対向して配されたプローブと、 前記プローブを介して前記励起光が照射された前記試料から発生する蛍 光を合分波する光合分波器と、 前記光合分波器が反射した反射光を受光 する検出器と、 前記光源及び前記検出器を前記光合分波器を介してつな ぐ導波路とを備えた蛍光検出システムにおいて、
前記光合分波器は、 第 1の所定の波長以上の波長の光のみを反射し且 つ第 2の所定の波長以下の波長の光を透過するように構成された第 1の 波長選択性部材を備え、
前記導波路上であって、 前記光源及ぴ前記第 1の波長選択性部材の間 に配され、 且つ第 3の所定の波長以下の波長の光のみを透過するように 構成された第 2の波長選択性部材と、
前記導波路上であって、 前記第 1の波長選択性部材及び前記検出器の 間に配され、 且つ第 4の所定の波長以上の波長の光のみを透過するよう に構成された第 3の波長選択性部材とを備えることを特徴とする蛍光検 出システム。
9 . 前記第 4の所定の波長は、 前記第 3の所定の波長より 1 0 n m 以上大きいことを特徴とする請求の範囲第 8項記載の蛍光検出システム
1 0 . 前記第 2の波長選択性部材は、 前記光源と隣接するように配 されることを特徴とする請求の範囲第 8又は 9項記載の蛍光検出システ ム。
1 1. 前記第 3の波長選択性部材は、 前記検出器と隣接するように 配されることを特徴とする請求の範囲第 8乃至 1 0のいずれか 1項に記 載の蛍光検出システム。
1 2. 前記第 3の波長選択性部材は、 前記光合分波器内に配される ことを特徴とする請求の範囲第 8乃至 1 0のいずれか 1項に記載の蛍光 検出システム。
PCT/JP2008/053343 2007-02-28 2008-02-20 蛍光検出システム WO2008105435A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/438,722 US8110816B2 (en) 2007-02-28 2008-02-20 Fluorescence detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-049272 2007-02-28
JP2007049272 2007-02-28

Publications (1)

Publication Number Publication Date
WO2008105435A1 true WO2008105435A1 (ja) 2008-09-04

Family

ID=39721260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053343 WO2008105435A1 (ja) 2007-02-28 2008-02-20 蛍光検出システム

Country Status (2)

Country Link
US (1) US8110816B2 (ja)
WO (1) WO2008105435A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841082A (zh) * 2012-09-10 2012-12-26 重庆大学 双信号肺癌呼出气体检测系统
JP2020506369A (ja) * 2016-12-15 2020-02-27 ジェモロジカル インスティテュート オブ アメリカ インコーポレイテッド(ジーアイエー) 宝石用原石のスクリーニング装置および方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5528966B2 (ja) * 2010-09-24 2014-06-25 日本板硝子株式会社 紫外線硬化樹脂の状態推定装置、状態推定方法およびプログラム
CN102818798B (zh) * 2012-09-10 2014-05-07 重庆大学 一种用于肺癌呼出气体检测的荧光检测装置
CN103901009B (zh) * 2014-04-22 2016-11-23 许昌学院 一种光纤扫描式的激光诱导荧光检测系统
CN105092543A (zh) * 2014-05-12 2015-11-25 绍兴安尼特微电子科技有限公司 一种便携式荧光定量pcr检测仪
US9518923B1 (en) 2015-12-07 2016-12-13 International Business Machines Corporation System and methods for fluorescence detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030830A (ja) * 2003-07-09 2005-02-03 Nippon Sheet Glass Co Ltd 蛍光分析用光合分波器、蛍光分析用光学モジュール、蛍光分析装置、蛍光・光熱変換分光分析装置、及び蛍光分析用チップ
JP2006234794A (ja) * 2005-01-27 2006-09-07 Nippon Sheet Glass Co Ltd 信号検出方法、熱レンズ分光分析システム、蛍光検出システム、信号検出装置、信号検出システム、信号検出プログラム、及び記憶媒体
JP2006317282A (ja) * 2005-05-12 2006-11-24 Nippon Sheet Glass Co Ltd マイクロ化学システム用チップ部材、及び該チップ部材を用いたマイクロ化学システム
JP2007041510A (ja) * 2005-06-28 2007-02-15 Olympus Corp 観察装置、及びそれを備えた観察システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142155A (en) * 1991-03-11 1992-08-25 Hewlett-Packard Company Catheter tip fluorescence-quenching fiber optic pressure sensor
JP3283065B2 (ja) 1992-07-11 2002-05-20 イビデン株式会社 癌の免疫検査法とそれに使用される検査用内視鏡
US5674698A (en) 1992-09-14 1997-10-07 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
ES2123063T3 (es) 1992-09-14 1999-01-01 Stanford Res Inst Int Marcadores convertidores al alza para ensayos biologicos y otros mediante tecnicas de excitacion laser.
US5418371A (en) 1993-02-01 1995-05-23 Aslund; Nils R. D. Apparatus for quantitative imaging of multiple fluorophores using dual detectors
US5294799A (en) 1993-02-01 1994-03-15 Aslund Nils R D Apparatus for quantitative imaging of multiple fluorophores
US6577391B1 (en) 1999-03-25 2003-06-10 Spectrx, Inc. Apparatus and method for determining tissue characteristics
US6507401B1 (en) * 1999-12-02 2003-01-14 Aps Technology, Inc. Apparatus and method for analyzing fluids
AU2004214420A1 (en) 2003-02-19 2004-09-02 Sicel Technologies Inc. In vivo fluorescence sensors, systems, and related methods operating in conjunction with fluorescent analytes
WO2005103778A1 (en) 2004-04-27 2005-11-03 Koninklijke Philips Electronics N. V. Optical fiber for spectroscopic analysis system
CA2575118C (en) 2004-07-27 2012-01-03 Boris Tartakovsky Multi-wavelength fluorometric system for on-line monitoring of bioprocesses
WO2006080556A1 (ja) 2005-01-27 2006-08-03 Nippon Sheet Glass Company, Limited 検出方法、当該検出方法を用いたマイクロ化学システム、信号検出方法、熱レンズ分光分析システム、蛍光検出システム、信号検出装置、信号検出システム、信号検出プログラム、及び記憶媒体
US7602555B2 (en) 2005-03-24 2009-10-13 Olympus Corporation Observation or measurement means and observation or measurement system provided with the same, feeble light image pickup optical system and microscope apparatus provided with the same, microscope system provided with the microscope apparatus, and observation apparatus and observation system provided with the same
US20070098594A1 (en) 2005-11-03 2007-05-03 Roche Molecular Systems, Inc. Analytical multi-spectral optical detection system
WO2008066054A1 (fr) 2006-11-28 2008-06-05 Nippon Sheet Glass Company, Limited Système de détection et sa sonde

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030830A (ja) * 2003-07-09 2005-02-03 Nippon Sheet Glass Co Ltd 蛍光分析用光合分波器、蛍光分析用光学モジュール、蛍光分析装置、蛍光・光熱変換分光分析装置、及び蛍光分析用チップ
JP2006234794A (ja) * 2005-01-27 2006-09-07 Nippon Sheet Glass Co Ltd 信号検出方法、熱レンズ分光分析システム、蛍光検出システム、信号検出装置、信号検出システム、信号検出プログラム、及び記憶媒体
JP2006317282A (ja) * 2005-05-12 2006-11-24 Nippon Sheet Glass Co Ltd マイクロ化学システム用チップ部材、及び該チップ部材を用いたマイクロ化学システム
JP2007041510A (ja) * 2005-06-28 2007-02-15 Olympus Corp 観察装置、及びそれを備えた観察システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841082A (zh) * 2012-09-10 2012-12-26 重庆大学 双信号肺癌呼出气体检测系统
CN102841082B (zh) * 2012-09-10 2014-08-20 重庆大学 双信号肺癌呼出气体检测系统
JP2020506369A (ja) * 2016-12-15 2020-02-27 ジェモロジカル インスティテュート オブ アメリカ インコーポレイテッド(ジーアイエー) 宝石用原石のスクリーニング装置および方法
JP2023022172A (ja) * 2016-12-15 2023-02-14 ジェモロジカル インスティテュート オブ アメリカ インコーポレイテッド(ジーアイエー) 宝石用原石のスクリーニング方法
JP7446397B2 (ja) 2016-12-15 2024-03-08 ジェモロジカル インスティテュート オブ アメリカ インコーポレイテッド(ジーアイエー) 宝石用原石のスクリーニング方法

Also Published As

Publication number Publication date
US20100243915A1 (en) 2010-09-30
US8110816B2 (en) 2012-02-07

Similar Documents

Publication Publication Date Title
WO2008105435A1 (ja) 蛍光検出システム
US6097485A (en) Microchip optical transport technology for use in a personal flow cytometer
US7304734B2 (en) Fluorescence analysis optical multiplexer/demultiplexer, fluorescence analysis optical module, fluorescence analyzer, fluorescence/photothermal conversion spectroscopic analyzer, and fluorescence analysis chip
US20170238854A1 (en) Wearable sweat sensor for health event detection
US20180038798A1 (en) Portable raman device
CN107850537B (zh) 辐射载体及其在光学传感器中的使用
KR101224330B1 (ko) 에버네센트 카테터 시스템
JP5297887B2 (ja) 蛍光分析用光分波検出器及び蛍光検出システム
EP2634562A1 (en) Fluorescence sensor
JPS6398548A (ja) 物質濃度を測定するためのセンサ素子
WO2017073143A1 (ja) 微粒子検出装置
CN101666747A (zh) 阵列光纤倏逝波生物传感器系统
WO2008066054A1 (fr) Système de détection et sa sonde
JP4923066B2 (ja) 免疫測定装置、免疫測定装置に用いられる光ファイバ及び免疫測定を行う方法
JP4480130B2 (ja) 光学分析装置
JP2010043983A (ja) 光学測定装置
JP2012093165A (ja) 微小物質検出センサおよびそれを有する微小物質検出装置
JP2018518669A (ja) 光学導管の光送達を伴う光学分析システム
KR101117242B1 (ko) 형광을 이용한 생화학 물질 검출 장치
CN220305150U (zh) 一种光学检测装置
US9429519B2 (en) Fluorescent light detection device
JPH1123469A (ja) 蛍光免疫測定装置
JP6166049B2 (ja) 光検出装置および光検出方法
CN110088598B (zh) 用于采集由介质中的粒子发射的荧光的设备
WO2022168374A1 (ja) 照射光学系、照射装置、及び、光学測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08720892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12438722

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08720892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP