WO2008102893A1 - Long fiber-reinforced thermoplastic resin composition - Google Patents

Long fiber-reinforced thermoplastic resin composition Download PDF

Info

Publication number
WO2008102893A1
WO2008102893A1 PCT/JP2008/053113 JP2008053113W WO2008102893A1 WO 2008102893 A1 WO2008102893 A1 WO 2008102893A1 JP 2008053113 W JP2008053113 W JP 2008053113W WO 2008102893 A1 WO2008102893 A1 WO 2008102893A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
thermoplastic resin
reinforced thermoplastic
long fiber
fiber reinforced
Prior art date
Application number
PCT/JP2008/053113
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Katayama
Yuichi Ohe
Hideaki Sakamoto
Original Assignee
Daicel Polymer Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Polymer Ltd. filed Critical Daicel Polymer Ltd.
Priority to CN2008800059953A priority Critical patent/CN101622312B/en
Priority to KR1020097015552A priority patent/KR101122736B1/en
Publication of WO2008102893A1 publication Critical patent/WO2008102893A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the present invention relates to a long fiber reinforced thermoplastic resin composition in which an alloy in a specified ratio of a polycarbonate resin (P C) and a styrene resin (S R) is reinforced as a resin.
  • P C polycarbonate resin
  • S R styrene resin
  • Polycarbonate is a thermoplastic resin with a carbonate ester bond in the main chain, and has excellent mechanical properties, heat resistance, and electrical properties, and is a typical engineering plastic. However, it has a decomposition temperature of about 320 ° C. When the number of processing steps by heating increases, decomposition begins and it becomes difficult to maintain its excellent mechanical strength.
  • JP-A 2 0 0 1— 2 9 4 7 4 1 includes a resin composition component composed of a polycarbonate resin and a silicon-containing inorganic filler such as talc, with ethylene (meth) acrylic acid copolymer.
  • JP-A 2 0 0 3-2 7 7 5 9 7 includes a polycarbonate resin reinforced with chopped strands of glass fiber, and a blend of ethylene and ethylene (meth) acrylate ester copolymer. Methods of adding compounds and fluorine-containing polymers have been proposed. However, more robust performance is required. Disclosure of the invention
  • An object of the present invention is to provide a polycarbonate resin composition having a small linear expansion coefficient and excellent in dimensional stability, fluidity and heat resistance.
  • a polycarbonate resin and a polycarbonate resin and a resin composition are formed by a pultrusion method in which a roving fiber bundle is opened and impregnated with a molten resin.
  • a molded product having a remarkable mechanical strength can be obtained by specific blending of styrene resin and the present invention has been completed.
  • the object of the present invention is to calculate the weight ratio of polycarbonate resin (PC) and styrene resin (SR).
  • PC polycarbonate resin
  • SR styrene resin
  • Jinno 31 95 5-30 30 70
  • Long fiber reinforced thermoplastic resin composition comprising 100 to 100 parts by weight of reinforcing fiber 1 1 to 200 parts by weight, and the reinforcing fiber is pelleted.
  • the long fiber reinforced thermoplastic resin composition which is arranged substantially parallel to the length direction, is shaped into a columnar shape, a prismatic shape, or a tape shape, and is cut into any length of 4 to 50 mm. provide.
  • thermoplastic resin composition in which the polycarbonate resin (PC) and styrenic resin (SR) alloy of the present invention is fiber reinforced by a drawing method has excellent fluidity, mechanical strength, heat resistance, impact resistance, and dimensional accuracy.
  • the present invention provides a long fiber reinforced resin composition for excellent molded products, and such pellets are particularly excellent in balance between heat resistance and fluidity.
  • the fiber used in the present invention is not particularly limited.
  • inorganic fibers such as glass, carbon, basalt, silicon carbide, basalt, and boron; metal fibers such as stainless steel; aramid, rayon, Examples thereof include at least one selected from the group consisting of nylon and polyester organic fibers; cellulose fibers and the like.
  • the reinforcing fiber at least one having higher elasticity than the matrix resin is selected, and a fiber having a large function of reinforcing the rigidity of the matrix resin is preferable. Glass, carbon and basalt fibers are particularly preferred. These fibers can be used in combination.
  • the reinforcing fiber has a diameter of 0.1 to 50 / zm, preferably 3 to 30 ⁇ , more preferably 4 to 20 ⁇ depending on the material.
  • the reinforcing fiber contained in the pellet for molding does not become longer than the pellet length, although it depends on the pellet length, the average length is 4 to 5 Omm, preferably 5 to 40 mm, more preferably 6 to 3 Omm.
  • the glass fiber include commercially available products such as E-glass, S-glass, C-glass, AR-glass, T-glass, D-glass and R-glass.
  • glass fibers When manufacturing pellets of fiber reinforced thermoplastic resin, glass fibers can be used in the form of a so-called glass roving in which a bundle of a plurality of filaments is usually wound into a coil. .
  • a glass fiber diameter of 3 to 40 / im is suitable. If it is less than 3 ⁇ , impregnation with resin becomes difficult because the number of glass fibers is relatively increased when the glass content is high, and if it exceeds 40 ⁇ , the surface appearance of the molded product is significantly deteriorated.
  • the optimum glass fiber diameter is 9 to 20 / m.
  • the glass fiber may be surface-treated with a binder (surface treatment agent) containing a force pulling agent.
  • a binder surface treatment agent
  • silane coupling agents such as aminosilane, epoxy silane, amide silane, azido silane, and acrylic silane, titanate coupling agents, and mixtures thereof can be used. Of these, aminosilanes and epoxysilanes are preferred, and epoxysilane coupling agents are particularly preferred.
  • the type of film former used for collecting and bundling a plurality of filaments is not particularly limited, and any suitable one including those conventionally known can be used.
  • the carbon fiber used in the present invention is preferably treated with a sizing agent.
  • the carbon fiber material that has been surface-treated with a sizing agent include polyacrylonitrile (P AN), pitch, and rayon carbon fibers, with PAN being preferred.
  • P AN polyacrylonitrile
  • Carbon fibers are commercially available in the form of rovings in which a large number of single yarns are bundled, and there are no particular restrictions on the thickness, number, and length, but generally the single yarn diameter is 3 to 10 ⁇ , Preferably, 4 to 8 ⁇ , more preferably 5 to 7 m can be used.
  • Carbon fiber is generally used as a composite strengthening material with various matrix resins, and surface activation treatment such as electrolysis treatment and gas phase surface treatment with active gas to improve adhesion to matrix resin. Are preferably introduced with a functional group such as a hydroxyl group, a carboxyl group or an amino group on the surface.
  • the carbon fiber surface-treated with the sizing agent used in the present invention includes Land strength of preferably 35 Okgf / discussions 2 (343 OMP a) above, more preferably rather is 400kgf / mm 2 (392 OMP a ) above, more preferably 450 kgf / mra 2
  • the elastic modulus is 22 tf / ram 2 (21 6000 MP a) or more, preferably 24 / image 2 (235000 MP a) or more, more preferably 28 / ⁇ 2 ( 275000MP a) More than that can be used.
  • an aliphatic compound having a plurality of epoxy groups can be used as the carbon fiber sizing agent according to the present invention.
  • the above aliphatic compounds are acyclic linear saturated hydrocarbons, branched saturated hydrocarbons, acyclic linear unsaturated hydrocarbons, branched unsaturated hydrocarbons, or carbon atoms (CH 3 , CH 2 , CH, C) is a chain structure compound in which oxygen atoms (O), nitrogen atoms (NH, N), sulfur atoms (S0 3 H, SH), and carbon atom groups (CO) are replaced.
  • the largest atom among the total number of carbon atoms and heteroatoms (oxygen atoms, nitrogen atoms, etc.) constituting a chain structure connecting two epoxy groups The chain is called the longest atomic chain, and the total number of atoms constituting the longest atomic chain is called the number of atoms in the longest atomic chain.
  • the number of atoms such as hydrogen bonded to the atoms constituting the longest atomic chain is not included in the total number.
  • the structure of the side chain is not particularly limited, but a structure that does not easily become a crosslinking point is preferable in order to suppress the density of intermolecular crosslinking of the sizing agent compound from becoming too large.
  • the number of epoxy groups is preferably 2 or more in order to effectively bridge the carbon fiber and the matrix resin.
  • the number of epoxy groups is too large, the density of intermolecular crosslinking of the sizing agent compound increases, resulting in a brittle sizing layer, resulting in a decrease in the tensile strength of the composite.
  • 4 or less is more preferable, and 2 is more preferable.
  • the two epoxy groups are at both ends of the longest atomic chain.
  • the molecular weight of the aliphatic compound is preferably 80 or more and 3200 or less, from the viewpoint of preventing deterioration of handleability as a bundling agent due to the resin viscosity being too low or too high. More preferably, it is more preferably 1500 or less, and further preferably 2200 or more and 10:00 or less.
  • the aliphatic compound having a plurality of epoxy groups in the present invention include, for example, diglycidyl ether compounds, ethylene glycol diglycidyl ether and polyethylene glycol diglycidyl ethers, propylene diol diglycidyl ether, and polypropylene diamine.
  • diglycidyl ether compounds include, for example, diglycidyl ether compounds, ethylene glycol diglycidyl ether and polyethylene glycol diglycidyl ethers, propylene diol diglycidyl ether, and polypropylene diamine.
  • Examples include recall diglycidyl ethers, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, and polyalkylene glycol diglycidyl ether.
  • Polyglycidyl ether compounds include glyceryl polyglycidyl ether, diglyceryl polyglycidyl ether, polyglycidyl polyglycidyl ether, sorbitol polyglycidyl ether, arabitol polyglycidyl ether, triglyceryl ether Examples include methylolpropane polyglycidyl ethers, pentaerythritol polyglycidyl ethers, and polyglycidyl ethers of aliphatic polyhydric alcohols.
  • An aliphatic polydaricidyl ether compound having a highly reactive daricidyl group is preferable. More preferred are polyethylene glycol diglycidyl ethers, polypropylene dallicol diglycidyl ethers, alkanediol diglycidyl ethers and the like.
  • the number of atoms of the longest atomic chain is preferably 20 or more. In other words, when the number of atoms is less than 20, the crosslink density in the sizing layer is high, so that a structure with low toughness is likely to be formed, and as a result, composite tensile strength may be difficult to develop.
  • the number of atoms in the longest atomic chain is large, and the sizing layer tends to have a flexible and high toughness structure, so that the composite tensile strength is easily improved, and the tensile strength of brittle resin is particularly high.
  • the number of atoms in the longest atomic chain is 25 or more, more preferably 30 or more.
  • the larger the number of atoms in the longest atomic chain the more flexible the structure will be, but if it is too long it will bend and block the functional group, resulting in a decrease in the adhesion between the carbon fiber and the resin. Therefore, the number of atoms is preferably 200 or less, more preferably 100 or less.
  • the aliphatic compound contains a cycloaliphatic skeleton
  • it can be used as long as the epoxy group is sufficiently away from the cyclic skeleton, specifically, if the number of atoms is 6 or more.
  • an aromatic compound having a plurality of epoxy groups having 6 or more atoms between the epoxy group and the aromatic ring can also be used as a sizing agent.
  • the number of atoms between the epoxy group and the aromatic ring refers to the total number of carbon atoms, heteroatoms (oxygen atoms, nitrogen atoms, etc.), and carbonyl groups constituting the chain structure connecting the epoxy group and the aromatic ring.
  • the linear structure is the same as the chain structure described above.
  • the number of atoms between the epoxy group and the aromatic ring is less than 6 as a sizing agent, a rigid and sterically large compound will be interposed at the interface between the carbon fiber and the matrix resin.
  • the reactivity with the surface functional groups present on the surface cannot be improved, and as a result, improvement in the lateral characteristics of the composite cannot be expected.
  • the skeleton of the aromatic compound having a plurality of epoxy groups having 6 or more atoms between the epoxy group and the aromatic ring may be a condensed polycyclic aromatic compound.
  • Examples of the skeleton of the condensed polycyclic aromatic compound include naphthalene, anthracene, phenanthrene, chrysene, pyrene, naphthacene, triphenylene, 1,2-benzanthracene, and benzopyrene.
  • the epoxy equivalent of the condensed polycyclic aromatic compound having a plurality of epoxy groups is preferably from 150 to 35, more preferably from 200 to 300, from the viewpoint of obtaining a sufficient effect of improving adhesiveness.
  • the molecular weight of the condensed polycyclic aromatic compound having a plurality of epoxy groups is from 400 to 80, from the viewpoint of preventing the handling property as a sizing agent from deteriorating due to a high resin viscosity. Furthermore, 400-600 is preferred.
  • sizing agents include bisphenol type epoxy compounds having a low molecular weight such as Epicoat 828 and Epicoat 834, linear low molecular weight epoxy compounds, polyethylene glycol, polyurethane, polyester emulsifiers, surfactants, etc. These components may be added for the purpose of adjusting viscosity, improving scratch resistance, improving fuzz resistance, improving bundling properties, and improving higher-order processability. Further, there is no problem even if a rubber such as butadiene nitrile rubber or a linear epoxy-modified compound having elastomer properties such as epoxy-terminated butadiene nitrile rubber is added. Carbon fiber surface-treated with such a sizing agent (s) is a commercial product, such as Tre force T 700 SC— 2.4000— 50 C (registered trademark, manufactured by Toray Industries, Inc.), etc. Is mentioned.
  • the basalt fiber used in the present invention is preferably treated with various surface treatment agents in order to improve adhesion with a thermoplastic resin.
  • a silane coupling agent is preferable, and as the silane coupling agent, one of an epoxy group, a vinyl group, an amino group, a methacryl group, an acryl group, and a linear alkyl group is included in the molecule.
  • the silane coupling agent that you have can be used.
  • One silane coupling agent may be used, or two or more silane coupling agents may be used in combination.
  • the silane coupling agents epoxy silanes, amino silanes, and linear alkyl silanes having an epoxy group, an amino group, and a linear alkyl group in the molecule are particularly preferable.
  • the epoxy group of the epoxy silane coupling agent glycidyl group, alicyclic epoxy group, etc.
  • aminosilane-based silane coupling agents include primary amines, secondary amines, or both.
  • Specific examples include Y-9669, A-1 1 60 (name of product).
  • linear alkylsilanes include those having a hexyl group, an octyl group, and a decyl group. Nippon Tunica Co., Ltd.
  • AZ _ 6 1 7 1 manufactured by AZ -6 1 7 7 (named above, trade name), KBM-3 1 0 3 C (trade name) manufactured by Shin-Etsu Silicone Co., Ltd., and the like.
  • epoxy silane is preferred.
  • the long fiber reinforced resin pellet of the present invention is obtained by a pultrusion method in which a fiber is impregnated with a thermoplastic resin while pulling continuous reinforcing fibers.
  • a resin additive may be added to the thermoplastic resin as necessary, and the thermoplastic resin may be supplied in a molten state from the extruder to the crosshead die while pulling the continuous fiber through the crosshead die. It is obtained by impregnating a continuous fiber for reinforcement with a thermoplastic resin, heating the melt-impregnated material, cooling, and cutting it at right angles to the drawing direction, so that the reinforcing fiber has the same length in the longitudinal direction of the pellet. Are arranged in parallel.
  • the resin is impregnated basically while drawing a continuous reinforcing fiber bundle.
  • the resin is fed from an extruder or the like to the cross head while passing the fiber bundle through the cloth head.
  • a method of impregnating resin emulsion, suspension, or impregnation bath containing solution through fiber bundles, spraying resin powder onto fiber bundles or inside powder tanks A method is known in which a resin bundle is passed through a fiber bundle and a resin powder is adhered to the fiber, and then the resin is melted and impregnated.
  • the crosshead method is particularly preferred.
  • the resin impregnation operation in these pultrusion moldings is generally carried out in one stage, but this may be divided into two or more stages, and the impregnation method may be different. .
  • the polycarbonate resin (PC) used in the present invention includes a polyester carbonate resin in addition to the polycarbonate resin.
  • Polycarbonate resins are usually obtained by the reaction of dihydroxy compounds with phosgene (phosgene method), or the reaction of dihydroxy compounds with carbonates such as diphenyl carbonate (ester exchange method).
  • the dihydroxy compound may be an alicyclic compound or the like, but is preferably a bisphenol compound.
  • Bisphenol compounds include bis (4-hydroxyphenyl) methane, 1, 2, 2-bis (4-hydroxyphenyl) propane (bisphenol A) 1_bis (4-hydroxyphenyl), propane, 2, 2 —Bis (4—Horoki Bis such as propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) hexane
  • a preferred polycarbonate resin is an aromatic polycarbonate, and bisphenol type aromatic polycarbonate (bisphenol type aromatic polycarbonate) is particularly preferable.
  • the viscosity average molecular weight of the polycarbonate resin (PC) used in the present invention is from 1300 to 20000, preferably from 14000 to: 19000, more preferably from 15,000 to 18000.
  • the viscosity average molecular weight referred to in the present application is a value measured by the method of Examples described later.
  • styrene resin examples include a resin (or polymer) containing at least an aromatic vinyl monomer (or styrene monomer) as a polymerization component.
  • Aromatic vinyl monomers include, for example, styrene, alkyl-substituted styrene (for example, vinylol toluene, vinylol xylene, p-ethynole styrene, p-isopropino styrene, butynole styrene, p-t-butino styrene.
  • alkyl-substituted styrene for example, vinylol toluene, vinylol xylene, p-ethynole styrene, p-isopropino styrene, butynole styrene, p-t-butino styrene.
  • Halogen-substituted styrene eg, chlorostyrene, promostyrene, etc.
  • monoalkyl-substituted styrene substituted with an alkyl group at the ⁇ -position eg, ⁇ -methylstyrene, etc.
  • aromatic vinyl monomers can be used alone or in combination of two or more.
  • styrene monomers such as styrene, vinyltoluene and ⁇ -methylstyrene (especially styrene) are usually used.
  • the styrene resin may be a copolymer with a monomer (copolymerizable monomer) copolymerizable with an aromatic vinyl monomer.
  • a monomer copolymerizable monomer
  • copolymerizable monomer includes vinyl cyanide monomers, acrylic monomers, butyl ester monomers, unsaturated polycarboxylic acids or acid anhydrides, imide monomers, and the like.
  • the bull monomer may be a vinyl halide monomer such as bull chloride.
  • vinyl cyanide monomer examples include (meth) acrylonitrile, nitrogenated (meth) acrylonitrile and the like. These vinyl cyanide monomers can be used alone or in combination of two or more. Of these vinyl cyanide monomers, (meth) atarylonitrile such as acrylonitrile is usually used.
  • the weight ratio of the aromatic vinyl monomer to the vinyl cyanide monomer is 90 10 to 60/40, preferably 85Z1 5 to 65Z35, more preferably 85/1 5 to 70 / Preferably 30 copolymers are used.
  • a graft copolymer obtained by polymerizing a monomer component containing an aromatic vinyl monomer and a vinyl cyanide monomer as main components in the presence of a rubbery polymer is preferred.
  • the weight average molecular weight of the styrene resin (in the rubber-containing styrene resin described later, the styrene resin as a matrix resin excluding rubber) is, for example, 1,00 0 to: 1,000,000, preferably 30,000 ⁇ 500,000, more preferably about 50,000-500,000.
  • the styrene resin may be a resin (rubber-containing styrene resin) containing a rubber component from the viewpoint of imparting excellent properties such as impact resistance to the resin composition.
  • a rubber-containing styrene resin is a matrix composed of a styrene resin by mixing (or blending) or copolymerization (grafting polymerization, block polymerization, etc.) of a styrene resin and a rubber component (or rubber-like polymer).
  • a polymer in which a rubbery polymer (rubber component) is dispersed may be used.
  • a rubber-containing styrene-based resin is usually obtained by polymerizing at least an aromatic vinyl monomer in the presence of a rubber-like polymer by a conventional method (bulk polymerization, bulk suspension polymerization, solution polymerization, emulsion polymerization, etc.). And a graft copolymer (rubber-grafted styrene-based polymer).
  • a resin obtained by a block polymerization method can be suitably used as the rubber-containing styrene resin.
  • rubber-like polymers examples include Gen rubber [polybutadiene (low cis type or high cis type polybutadiene), polyisoprene, styrene-butadiene copolymer, styrene-isoprene copolymer, butadiene-acrylonitrile copolymer, isobutylene.
  • the copolymer may be a random or block copolymer, and the block copolymer has a ⁇ type, ABA type, taper type, radial teleblock type structure. Copolymers having These rubbery polymers can be used alone or in combination of two or more.
  • a preferable rubber component is a polymer of conjugated 1,3-gen or a derivative thereof, particularly a gen-based rubber such as polybutadiene (butadiene rubber), isoprene rubber, styrene-butadiene copolymer.
  • a gen-based rubber such as polybutadiene (butadiene rubber), isoprene rubber, styrene-butadiene copolymer.
  • the content of the rubber component is about 0 to 30% by weight, preferably about 5 to 30% by weight, and more preferably about 10 to 30% by weight with respect to the entire styrenic resin. is there.
  • the form of the rubbery polymer dispersed in the matrix composed of the styrene resin is not particularly limited, and may be a salami structure, a core shell structure, an onion structure, or the like.
  • the particle diameter of the rubber-like polymer constituting the dispersed phase is, for example, a weight average particle diameter of 2300 to 300,000 nm, preferably 2400 to 2200 nm, and more preferably 2400. It can be selected from a range of about ⁇ 1500 nm.
  • the graft ratio of the rubbery polymer is about 5 to 1550%, preferably about 10 to about 1550%.
  • the styrenic resin can be obtained by a conventional method (bulk polymerization, bulk suspension polymerization, solution polymerization, emulsion polymerization, etc.).
  • a non-rubber-containing styrene resin can be obtained by a conventional method using aromatic vinyl monomers (and copolymerizable monomers such as cyanide bur monomers and acrylic monomers as required).
  • Bulk polymerization, suspension polymerization, bulk suspension polymerization, solution polymerization, emulsion polymerization, etc. can be obtained by polymerization.
  • the rubber-containing styrenic resin is usually prepared by using at least an aromatic vinyl monomer in the presence of a rubber-like polymer by a conventional method (bulk polymerization, bulk suspension polymerization, suspension polymerization, solution polymerization, emulsion polymerization). Etc.).
  • a conventional method bulk polymerization, bulk suspension polymerization, suspension polymerization, solution polymerization, emulsion polymerization). Etc.
  • impurities derived from other components in the reaction system tend to be mixed in the resin.
  • a styrenic resin obtained by a polymerization method in which impurities such as an organic acid (or a salt thereof) described later are not easily mixed in the resin.
  • the styrene resin obtained by bulk polymerization has a higher content of impurities such as organic acids or salts thereof, as well as sodium, chlorine, and sulfate ions, compared to resins obtained by emulsion polymerization. As a result, it is effective in reducing the content of these impurities in the resin composition.
  • the styrene resin (S R) used in the present invention preferably has a total content of sodium, chlorine, and sulfate of 10 ppm or less.
  • the content ratio of sodium, chlorine and sulfate ions is a value measured by the method of Examples described later.
  • a styrene-based resin is a resin obtained by bulk polymerization, that is, a resin obtained by bulk polymerization of at least an aromatic vinyl monomer [for example, an aromatic vinyl monomer and A copolymer obtained by bulk polymerization of a vinyl cyanide monomer and / or an acrylyl monomer, and obtained by bulk polymerization of at least an aromatic vinyl monomer in the presence of a rubbery polymer. Rubber-containing styrene resin, etc.] It can be used appropriately.
  • Typical styrenic resins include, for example, styrene resins that do not contain a rubber component (rubber-free styrene resins) ⁇ eg, polystyrene (GPPS), aromatic bullet monomers, and vinyl cyanide monomers.
  • rubber-free styrene resins ⁇ eg, polystyrene (GPPS), aromatic bullet monomers, and vinyl cyanide monomers.
  • SMA resin etc. rubber-containing styrene resin
  • HIPS impact-resistant polystyrene
  • methyl methacrylate-modified HIPS transparent HIPS
  • styrene-acrylonitrile-butadiene copolymer ABS resin
  • Methyl methacrylate modified ABS resin transparent ABS resin
  • ⁇ -methylstyrene modified ABS resin imide modified ABS resin
  • styrene-methyl methacrylate-butadiene copolymer MB S resin
  • AXS resin methyl methacrylate Modified A XS resin, etc. ⁇ .
  • the AXS resin refers to a resin obtained by graft-polymerizing talironitrile A and styrene S to rubber component X (acrylic rubber, chlorinated polyethylene, ethylene-propylene rubber, ethylene monoacetate copolymer, etc.). Specific examples include acrylonitrile / acrylic rubber / styrene resin (AAS resin), acrylonitrile / ethylene / propylene rubber / styrene resin (AES resin), and the like. These styrenic resins are particularly preferably resins obtained by bulk polymerization.
  • styrenic resins with high-impact polystyrene, acrylic monomers and / or vinyl cyanide monomers as polymerization components (or copolymerization components)
  • acrylic monomer units and Styrenic resin having a vinyl or cyanide monomer unit as a structural unit for example, co-polymerization of an aromatic vinyl monomer with a vinyl cyanide monomer and Z or acrylic monomer Styrenic resins that do not contain rubber components, such as copolymers (for example, copolymers of styrene monomers such as AS resins and vinyl cyanide monomers), acrylic monomers and / or vinyl cyanide Containing rubber containing rubber as a copolymer component (Rubber graft) Styrenic resin (Rubber component containing allylic monomer and / or cyanurized monomer and styrene monomer) Combined materials (for example, ABS resin, AAS resin, AES resin
  • the styrenic resin (SR) used in the present invention desirably has a melt flow rate of 20 g / 1 Omin or more, preferably 30 gZl Omin or more, more preferably 40 gZl Omin or more.
  • the melt flow rate is a value measured by the method of an example described later.
  • thermoplastic resin other than the polycarbonate resin and the styrene resin may be included.
  • thermoplastic resins include polyester resins (polybutylene terephthalate, polyethylene terephthalate, etc.), polyamide resins (polyamide 5, polyamide 6, polyamide 6 6, polyamide 6).
  • Aromatic polyamide resins such as Polyamide 6T, Polyamide 9, Polyamide MX D Aromatic polyamide resins such as alicyclic polyamide resins, etc.), polyurethane resins, olefin resins (including polyethylene (including low-density polyethylene and high-density polyethylene)), polypropylene, ethylene-propylene copolymer, ethylene Single or copolymer of olefins such as propylene rubber (also elastomers) ), Cyclic polyolefin resin, etc. ⁇ , acrylic resin, vinyl resin (vinyl chloride resin, vinyl acetate resin, ethylene-vinyl oxalate copolymer, polybutyl alcohol, ethylene-vinyl alcohol copolymer) And thermoplastic elastomers (polyester thermoplastic elastomers, etc.). These other thermoplastic resins may be crystalline resins or non-
  • a conventional additive such as a compatibilizer, a plasticizer, a flame retardant aid (for example, polytetrafluoroethylene) is used unless the resin properties are deteriorated.
  • a compatibilizer for example, polytetrafluoroethylene
  • a flame retardant aid for example, polytetrafluoroethylene
  • Any fluorine-containing resin colorants, stabilizers (antioxidants, light stabilizers, heat stabilizers, etc.), lubricants, dispersants, foaming agents, antibacterial agents, and the like.
  • These additives can be used alone or in combination of two or more.
  • the long fiber reinforced thermoplastic resin composition of the present invention exhibits excellent heat resistance. Specifically, generally, the deflection temperature under load (1.8 M Pa) is 130 ° C. or higher.
  • the long fiber reinforced resin pellet of the present invention is the above long fiber reinforced thermoplastic resin composition, wherein the reinforcing fibers are arranged substantially parallel to the length direction of the pellet, and are cylindrical, prismatic, or tape. It is shaped into a shape and cut to any length of 4 to 50 mm.
  • the preferred pellet length is 6 to 25 mm, more preferably 6 to 2 O mm.
  • Examples of a molding method for forming the long fiber reinforced resin pellet of the present invention into a molded product include an injection molding method, an injection compression molding method, an extrusion molding method, a blow molding method, a press molding method, and a foam molding method.
  • the fiber contained in the pellet In molding, it is preferable to maintain the fiber contained in the pellet with the longest possible fiber length. To that end, in general molding methods and molding equipment, the shear generated by the rotation of the screw when plasticizing the material is large, and there is a high probability that the fiber will break. Nare ,. Therefore, it is preferable to use a molding machine with a plasticizing system developed for each company's long fiber reinforced thermoplastic resin. Also, the molding conditions for protecting the fiber length are 10 to 30 ° from the general plasticization temperature when molding in a state in which reinforcing fibers are not added to the matrix resin (non-reinforced). It is desirable to reduce shear due to plasticization, such as setting a higher temperature.
  • the design of the mold and / or die is not particularly limited, but the flow path of the resin is designed to be as wide as possible, and the shape of the resin flow path is examined, and then the pressure is determined. A design with reduced loss is desirable to protect the fiber length.
  • the weight average fiber length of the reinforcing fiber dispersed in the molded body formed from the long fiber reinforced resin pellet is 0.5 mn!
  • a long fiber reinforced resin molded product of ⁇ 5 mm can be achieved.
  • the ratio of the reinforcing fibers contained in the long fiber reinforced resin pellet is usually 11 to 200 parts by weight, preferably 25 to 150 parts by weight, particularly preferably 100 parts by weight of the pellets. 30 to 100 parts by weight.
  • reference numeral 1 is an injection gate
  • 2 is an arrow indicating the injection flow direction
  • 3 is a specimen collection point in the flow direction (MD)
  • 4 is a test in the direction perpendicular to the flow (TD). It means each sampling point.
  • Example 1 is an injection gate
  • 2 is an arrow indicating the injection flow direction
  • 3 is a specimen collection point in the flow direction (MD)
  • 4 is a test in the direction perpendicular to the flow (TD). It means each sampling point.
  • Glass fiber roving Fiber diameter 17 / m, epoxy silane coupling agent treatment
  • Short glass fiber (chopped strand): Fiber diameter 13 ⁇ m, fiber length 3 mm, treated with epoxysilane coupling agent
  • Viscosity average molecular weight (Mv) Using an Ubbelohde viscometer, the viscosity of a methylene chloride solution at 20 ° C was measured. From this, the intrinsic viscosity [77] was obtained and calculated by the following formula.
  • Menoleto flow rate Conforms to I S01 1 33 (220 ° C. 10 kg)
  • Sodium concentration 2 g of sample is precisely weighed in a platinum crucible, carbonized with an electric heater and burner, and then electric furnace (400 ° C 1.5 hours and 500 ° C, 2 hours) ashing was completed.
  • a small amount of ultrapure water and 0.5 ml of nitric acid were added to this ashed product and heated on a sand bath to dissolve the ash. After evaporation to dryness, 0.1 N nitric acid aqueous solution was added to make up to 2 Om 1 to prepare a test solution for atomic absorption analysis.
  • Chlorine concentration Sample 20-3 Omg was precisely weighed and the total chlorine content in the sample was measured by coulometric titration using a chlorine analyzer (TOX-100 manufactured by Mitsubishi Chemical Corporation).
  • Sulfate ion concentration 6 g of sample was purified and filled in a polytetrafluoroethylene (Teflon: registered trademark) container previously washed with ultrapure water, and after adding 15 g of ultrapure water, set to 1 10 ° C It was left in the dryer for 20 hours and extracted with steam. The solution was diluted as appropriate, and the filtrate filtered through a 0.2 ⁇ membrane filter was used as a measurement solution and measured with the following anion analyzer (unit: p pm ( ⁇ g / g)).
  • Test piece 20 X 10 X 3 (mm), Measurement range: 40 ° C to 80 ° C, Unit: X 1 GT 5 (1 / K) (See Fig. 1 for test piece)
  • Fiber length measurement method weight average fiber length: A sample of about 5 g is cut out from the molded product, and ashed at 650 ° C to take out the fiber. The weight average fiber length was determined from the force of some of the extracted fibers (approximately 500).
  • Fluidity Flow length of spiral flow (cross section: thickness 2 mm, width 20 mm) measured at cylinder temperature 280 ° C, mold temperature 1 20 ° C, injection pressure 98MPa, measured value is L / T .
  • Screw Screw for exclusive use of long fibers
  • Molding temperature (cylinder temperature): 280 ° C
  • a glass fiber roving was drawn through a corrugated crosshead in the continuous fiber passage, and a mixture of 60 parts by weight of PC and 40 parts by weight of ABS 1 was connected to the crosshead as a thermoplastic resin. After being fed from the extruder in a molten state (280 ° C) and impregnating the glass fiber, it is taken out as a strand through a shaping die, cooled and then cut, glass fiber content 40% by weight, length 1 lmm The pellet was obtained. Test pieces for measuring the physical properties of the obtained pellets were prepared by injection molding.
  • a glass fiber roving is drawn through a crosshead formed by corrugated continuous fiber passages, and a mixture of 70 parts by weight of PC and 30 parts by weight of ABS 2 is connected to the crosshead as a thermoplastic resin. After being fed from an extruder in a molten state (280 ° C.) and impregnating into glass fiber, it is taken out as a strand through a shaping die, cooled, and cut to have a glass fiber content of 40 weight. / 0 to give Perez bets length 1 1 mm. Test pieces for measuring the physical properties of the obtained pellets were prepared by injection molding.
  • thermoplastic resin 70 parts by weight of PC, 20 parts by weight of ABS 1, and 10 parts by weight of AS 1 are drawn as glass fiber roving through a crosshead formed by corrugated continuous fiber passages. After being fed in a molten state (280 ° C) from an extruder connected to a cloth head and impregnating the glass fiber, the mixture is taken out as a strand through a shaping die and cooled. The pellet was cut to obtain a pellet having a glass fiber content of 30% by weight and a length of 11 mm. Test pieces for measuring the physical properties of the obtained pellets were prepared by injection molding.
  • a glass fiber roving was drawn through a corrugated crosshead in the continuous fiber passage, and a mixture of 70 parts by weight of PC and 30 parts by weight of AS1 was connected to the crosshead as a thermoplastic resin.
  • a mixture of 70 parts by weight of PC and 30 parts by weight of AS1 was connected to the crosshead as a thermoplastic resin.
  • Served from the extruder in the molten state (280 ° C) Feeding and, after impregnating a glass fiber, take-up as a strand through a shaping die, cooled, and cut, the glass fiber content 3 0 wt 0/0, to obtain a pellet of length 1 1 mm.
  • Test pieces for measuring physical properties of the obtained pellets were prepared by injection molding.
  • Example 2 The same operation as in Example 1 was carried out except that a resin containing PC alone was used instead of a mixture of 70 parts by weight of PC and 30 parts by weight of ABS 1 as the thermoplastic resin.
  • Example 2 The same operation as in Example 1 was performed except that the glass fiber content was changed to 5% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Disclosed is a polycarbonate resin composition which is small in anisotropy of linear expansion coefficient, while being excellent in dimensional stability, fluidity and heat resistance. Specifically disclosed is a long fiber-reinforced thermoplastic resin composition obtained by blending 11-200 parts by weight of a reinforcing fiber per 100 parts by weight of a composition composed of a polycarbonate resin (PC) and a styrene resin (SR).

Description

明細書 長繊維強化熱可塑性樹脂組成物 技術分野  Description Long fiber reinforced thermoplastic resin composition Technical Field
本発明は、 樹脂としてポリカーボネート樹脂 (P C ) とスチレン系樹脂 (S R ) の特定された比率におけるァロイを繊維強化した長繊維強化熱可塑性樹脂 組成物に関する。 背景技術  The present invention relates to a long fiber reinforced thermoplastic resin composition in which an alloy in a specified ratio of a polycarbonate resin (P C) and a styrene resin (S R) is reinforced as a resin. Background art
ポリカーボネートは、 主鎖に炭酸エステル結合を持つ熱可塑性樹脂で、 優れ た機械的性質、 耐熱性、 電気的性質を備えており、 エンジニアリングプラスチ ックの代表的なものである。 し力 し、 約 3 2 0 °Cという分解温度を有し、 加熱 による処理工程が多くなると分解が始まり、 その優れた機械的強度を維持する ことが難しくなる。  Polycarbonate is a thermoplastic resin with a carbonate ester bond in the main chain, and has excellent mechanical properties, heat resistance, and electrical properties, and is a typical engineering plastic. However, it has a decomposition temperature of about 320 ° C. When the number of processing steps by heating increases, decomposition begins and it becomes difficult to maintain its excellent mechanical strength.
JP-A 2 0 0 1— 2 9 4 7 4 1には、 ポリカーボネート樹脂とタルク等の珪 素含有無機充填剤からなる樹脂組成物成分に対して、 エチレン一 (メタ) ァク リル酸共重合体やエチレン一 (メタ) アクリル酸エステル共重合体を配合する こと、 また、 JP- A 2 0 0 3 - 2 7 7 5 9 7にはチョップドス トランド形態の ガラス繊維で強化されたポリカーボネート樹脂にリン化合物、 フッ素含有ポリ マーを添加する方法が提案されている。 しかし、 更に強靭な性能が必要とされ ている。 発明の開示  JP-A 2 0 0 1— 2 9 4 7 4 1 includes a resin composition component composed of a polycarbonate resin and a silicon-containing inorganic filler such as talc, with ethylene (meth) acrylic acid copolymer. JP-A 2 0 0 3-2 7 7 5 9 7 includes a polycarbonate resin reinforced with chopped strands of glass fiber, and a blend of ethylene and ethylene (meth) acrylate ester copolymer. Methods of adding compounds and fluorine-containing polymers have been proposed. However, more robust performance is required. Disclosure of the invention
本発明は、 線膨張係数が小さく寸法安定性及び流動性、 耐熱性に優れたポリ カーボネート樹脂組成物を提供することにある。  An object of the present invention is to provide a polycarbonate resin composition having a small linear expansion coefficient and excellent in dimensional stability, fluidity and heat resistance.
本発明者らは、 上記目的を達成するため鋭意検討した結果、 ロービング状の 繊維束を開繊し溶融樹脂を含浸する引き抜き成形法でポリカーボネート樹脂及 びスチレン系樹脂を特定の配合により飛躍的な機械的強度の成形体が得られる ことを見出し、 本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that a polycarbonate resin and a polycarbonate resin and a resin composition are formed by a pultrusion method in which a roving fiber bundle is opened and impregnated with a molten resin. As a result, it has been found that a molded product having a remarkable mechanical strength can be obtained by specific blending of styrene resin and the present invention has been completed.
従って、 本発明の目的は、 ポリカーボネート樹脂 (PC) とスチレン系樹脂 (SR) が重量比として?じノ31 =95 5〜30 70である組成物 10 0重量部に対して強化繊維 1 1〜200重量部を配合してなる長繊維強化熱可 塑性樹脂組成物、 及び強化繊維がペレツ トの長さ方向に実質的に平行に配列し ており、 円柱状、 角柱状またはテープ状に賦形され、 4〜50mmのいずれか の長さに切断された上記長繊維強化熱可塑性樹脂組成物を提供する。  Therefore, the object of the present invention is to calculate the weight ratio of polycarbonate resin (PC) and styrene resin (SR). Jinno 31 = 95 5-30 30 70 Long fiber reinforced thermoplastic resin composition comprising 100 to 100 parts by weight of reinforcing fiber 1 1 to 200 parts by weight, and the reinforcing fiber is pelleted. The long fiber reinforced thermoplastic resin composition, which is arranged substantially parallel to the length direction, is shaped into a columnar shape, a prismatic shape, or a tape shape, and is cut into any length of 4 to 50 mm. provide.
本発明のポリカーボネート樹脂 (PC) とスチレン系樹脂 (SR) のァロイ を引き抜き成形法により繊維強化された熱可塑性樹脂組成物は、 流動性、 機械 的強度、 耐熱性、 耐衝撃性、 寸法精度に優れた成形品のための長繊維強化樹脂 組成物を提供するものであり、 かかるペレツトは特に耐熱性と流動性のバラン スに優れたものである。 発明の詳細な説明  The thermoplastic resin composition in which the polycarbonate resin (PC) and styrenic resin (SR) alloy of the present invention is fiber reinforced by a drawing method has excellent fluidity, mechanical strength, heat resistance, impact resistance, and dimensional accuracy. The present invention provides a long fiber reinforced resin composition for excellent molded products, and such pellets are particularly excellent in balance between heat resistance and fluidity. Detailed Description of the Invention
本発明に使用される繊維は特に限定されるものではないが、 例えば、 ガラス、 炭素、 玄武岩、 シリコンカーバイ ド、 玄武岩、 ボロン等の無機繊維;ステンレ ス等の金属繊維;ァラミ ド、 レーヨン、 ナイロン、 ポリエステル製の有機繊 維;セルロース繊維等からなる群から選ばれた少なくとも一種が挙げられる。 強化繊維としては、 少なくともマトリックス樹脂よりも高弾性のものを選択 し、 マトリックス樹脂の剛性を強化する働きの大きい繊維が好ましい。 すなわ ちガラス、 炭素及び玄武岩繊維が特に好ましい。 これらの繊維は混合して使用 することも可能である。  The fiber used in the present invention is not particularly limited. For example, inorganic fibers such as glass, carbon, basalt, silicon carbide, basalt, and boron; metal fibers such as stainless steel; aramid, rayon, Examples thereof include at least one selected from the group consisting of nylon and polyester organic fibers; cellulose fibers and the like. As the reinforcing fiber, at least one having higher elasticity than the matrix resin is selected, and a fiber having a large function of reinforcing the rigidity of the matrix resin is preferable. Glass, carbon and basalt fibers are particularly preferred. These fibers can be used in combination.
本発明において、 強化繊維は、 材質にもよるが、 直径が 0. l〜50 /zm、 好ましくは 3〜30 μπι、 さらに好ましくは 4〜20 μπιである。 本発明にお いて、 成形用のペレットに含まれる強化繊維は、 ペレット長さにもよるが、 ぺ レッ ト長よりも長くなることはなく、 平均長さが 4〜5 Omm、 好ましくは 5 〜40mm、 さらに好ましくは 6〜 3 Ommである。 ガラス繊維の種類としては、 E—ガラス、 S—ガラス、 C—ガラス、 A R— ガラス、 T—ガラス、 D—ガラス及び R—ガラス等の市販品が挙げられる。 繊 維強化熱可塑性樹脂のペレッ トを製造する場合には、 ガラス繊維は、 通常、 複 数のフィラメントを集めた束を、 コイル状に巻きとつた、 いわゆるガラスロー ビングの形態をしたものとして利用できる。 ガラス繊維径は、 3〜4 0 /i mの ものが適している。 3 μ πι未満では、 ガラス含有量が多い場合、 相対的にガラ ス繊維数が増すため樹脂の含浸が困難となり、 4 0 μ πιを超えると成形品の表 面外観が著しく悪化する。 最適なガラス繊維径は 9〜 2 0 / mである。 In the present invention, the reinforcing fiber has a diameter of 0.1 to 50 / zm, preferably 3 to 30 μπι, more preferably 4 to 20 μπι depending on the material. In the present invention, the reinforcing fiber contained in the pellet for molding does not become longer than the pellet length, although it depends on the pellet length, the average length is 4 to 5 Omm, preferably 5 to 40 mm, more preferably 6 to 3 Omm. Examples of the glass fiber include commercially available products such as E-glass, S-glass, C-glass, AR-glass, T-glass, D-glass and R-glass. When manufacturing pellets of fiber reinforced thermoplastic resin, glass fibers can be used in the form of a so-called glass roving in which a bundle of a plurality of filaments is usually wound into a coil. . A glass fiber diameter of 3 to 40 / im is suitable. If it is less than 3 μπι, impregnation with resin becomes difficult because the number of glass fibers is relatively increased when the glass content is high, and if it exceeds 40 μπι, the surface appearance of the molded product is significantly deteriorated. The optimum glass fiber diameter is 9 to 20 / m.
ガラス繊維は力ップリング剤を含むバインダー (表面処理剤) で表面処理さ れていてもよレ、。 カップリング剤としてはアミノシラン、 エポキシシラン、 ァ ミ ドシラン、 アジドシラン、 アクリルシランのようなシランカップリング剤、 チタネート系カツプリング剤及びこれらの混合物が利用できる。 これらの内、 アミノシランとエポキシシランが好ましく、 特にエポキシシランカツプリング 剤が好ましレ、。 複数のフィラメントを集めて束にするために使用するフィルム フォーマーの種類も、 特に限定されず、 従来公知のものも含めて適切なものが 使用できる。  The glass fiber may be surface-treated with a binder (surface treatment agent) containing a force pulling agent. As the coupling agent, silane coupling agents such as aminosilane, epoxy silane, amide silane, azido silane, and acrylic silane, titanate coupling agents, and mixtures thereof can be used. Of these, aminosilanes and epoxysilanes are preferred, and epoxysilane coupling agents are particularly preferred. The type of film former used for collecting and bundling a plurality of filaments is not particularly limited, and any suitable one including those conventionally known can be used.
本発明に使用される炭素繊維としては、 サイジング剤で処理されたものが好 ましい。 サイジング剤で表面処理された炭素繊維の素材としては、 ポリアクリ ロニトリノレ (P A N) 系、 ピッチ系、 レーヨン系等の炭素繊維が挙げられ、 好 ましくは P A N系である。 炭素繊維は、 多数の単糸が集束されたロービング状 のものが市販されており、 太さ、 数、 及び長さには特に制限はないが、 一般に 単糸径で 3〜1 0 μ ιη、 好ましくは 4〜8 μ πι、 さらに好ましくは 5〜 7 m のものが利用できる。 炭素繊維は、 一般に、 各種マトリックス樹脂との複合強 化材料として利用され、 マトリ ックス樹脂との接着性を良好にするために、 電 解処理や活性ガスによる気相表面処理などの表面活性化処理により表面にヒ ド 口キシル基、 カルボキシル基、 アミノ基などの官能基が導入されているものが 好ましい。  The carbon fiber used in the present invention is preferably treated with a sizing agent. Examples of the carbon fiber material that has been surface-treated with a sizing agent include polyacrylonitrile (P AN), pitch, and rayon carbon fibers, with PAN being preferred. Carbon fibers are commercially available in the form of rovings in which a large number of single yarns are bundled, and there are no particular restrictions on the thickness, number, and length, but generally the single yarn diameter is 3 to 10 μιη, Preferably, 4 to 8 μπι, more preferably 5 to 7 m can be used. Carbon fiber is generally used as a composite strengthening material with various matrix resins, and surface activation treatment such as electrolysis treatment and gas phase surface treatment with active gas to improve adhesion to matrix resin. Are preferably introduced with a functional group such as a hydroxyl group, a carboxyl group or an amino group on the surface.
本発明で用いられるサイジング剤で表面処理された炭素繊維としては、 スト ランド強度が好ましくは 35 Okgf/議 2 (343 OMP a) 以上、 より好まし くは 400kgf/mm2 (392 OMP a) 以上、 さらに好ましくは 450 kgf/mra2 The carbon fiber surface-treated with the sizing agent used in the present invention includes Land strength of preferably 35 Okgf / discussions 2 (343 OMP a) above, more preferably rather is 400kgf / mm 2 (392 OMP a ) above, more preferably 450 kgf / mra 2
(441 OMP a) 以上であり、 また、 弾性率が 22 tf/ram2 (21 6000 M P a) 以上、 好ましくは 24 /画2 (235000 MP a) 以上、 より好まし くは 28 /匪2 (275000MP a) 以上のものが使用できる。 (441 OMP a) or more, and the elastic modulus is 22 tf / ram 2 (21 6000 MP a) or more, preferably 24 / image 2 (235000 MP a) or more, more preferably 28 / 匪2 ( 275000MP a) More than that can be used.
本発明に係る炭素繊維のサイジング剤として、 複数のエポキシ基を有する脂 肪族化合物を用いることができる。 上記脂肪族化合物とは、 非環式直鎖状飽和 炭化水素、 分岐状飽和炭化水素、 非環式直鎖状不飽和炭化水素、 分岐状不飽和 炭化水素、 または上記炭化水素の炭素原子 (CH3, CH2, CH, C) を酸素 原子 (O) 、 窒素原子 (NH, N) 、 硫黄原子 (S03H、 SH) 、 カルボ二 ル原子団 (CO) に置き換えた鎖状構造の化合物をいう。 また、 本発明では、 複数ェポキシ基を有する脂肪族化合物において、 2個のエポキシ基間を結ぶ鎖 状構造を構成する炭素原子、 複素原子 (酸素原子、 窒素原子等) の総数のうち 最も大きい原子鎖を最長原子鎖といい、 最長原子鎖を構成する原子の総数を最 長原子鎖の原子数という。 なお、 最長原子鎖を構成する原子に結合した水素等 の原子の数は総数に含めない。 側鎖の構造については特に限定するものではな いが、 サイジング剤化合物の分子間架橋の密度が大きくなりすぎないように抑 えるために、 架橋点となりにくい構造が好ましい。 サイジング剤化合物の有す るエポキシ基が 2つ未満であると、 炭素繊維とマトリックス樹脂との橋渡しを 有効に行うことができない。 従ってエポキシ基の数は、 炭素繊維とマトリック ス樹脂との橋渡しを有効に行うために 2個以上であることが好ましい。 一方、 エポキシ基の数が多すぎると、 サイジング剤化合物の分子間架橋の密度が大き くなり、 脆性なサイジング層となって結果としてコンポジットの引張強度が低 下してしまうため、 好ましくは 6個以下、 より好ましくは 4個以下、 さらに好 ましくは 2個が良い。 さらにこの 2個のエポキシ基が最長原子鎖の両末端にあ るのがより好ましい。 すなわち最長原子鎖の両末端にエポキシ基があることに より局所的な架橋密度が高くなることを防ぐので、 コンポジット引張強度にと つて好ましい。 エポキシ基の構造としては反応性の高いダリシジル基が好ましい。 かかる脂 肪族化合物の分子量は、 樹脂粘度が低すぎる、 あるいは高すぎることにより集 束剤としての取り扱い性が悪化するのを防ぐ観点から、 8 0以上 3 2 0 0以下 が好ましく、 1 0 0以上 1 5 0 0以下がより好ましく、 2 0 0以上 1 0 0 0以 下がさらに好ましい。 As the carbon fiber sizing agent according to the present invention, an aliphatic compound having a plurality of epoxy groups can be used. The above aliphatic compounds are acyclic linear saturated hydrocarbons, branched saturated hydrocarbons, acyclic linear unsaturated hydrocarbons, branched unsaturated hydrocarbons, or carbon atoms (CH 3 , CH 2 , CH, C) is a chain structure compound in which oxygen atoms (O), nitrogen atoms (NH, N), sulfur atoms (S0 3 H, SH), and carbon atom groups (CO) are replaced. Say. In the present invention, in an aliphatic compound having a plurality of epoxy groups, the largest atom among the total number of carbon atoms and heteroatoms (oxygen atoms, nitrogen atoms, etc.) constituting a chain structure connecting two epoxy groups The chain is called the longest atomic chain, and the total number of atoms constituting the longest atomic chain is called the number of atoms in the longest atomic chain. The number of atoms such as hydrogen bonded to the atoms constituting the longest atomic chain is not included in the total number. The structure of the side chain is not particularly limited, but a structure that does not easily become a crosslinking point is preferable in order to suppress the density of intermolecular crosslinking of the sizing agent compound from becoming too large. If the sizing agent compound has less than two epoxy groups, it is not possible to effectively bridge the carbon fiber and the matrix resin. Accordingly, the number of epoxy groups is preferably 2 or more in order to effectively bridge the carbon fiber and the matrix resin. On the other hand, if the number of epoxy groups is too large, the density of intermolecular crosslinking of the sizing agent compound increases, resulting in a brittle sizing layer, resulting in a decrease in the tensile strength of the composite. In the following, 4 or less is more preferable, and 2 is more preferable. More preferably, the two epoxy groups are at both ends of the longest atomic chain. That is, the presence of epoxy groups at both ends of the longest atomic chain prevents the local crosslink density from increasing, which is preferable for the composite tensile strength. As the structure of the epoxy group, a highly reactive daricidyl group is preferable. The molecular weight of the aliphatic compound is preferably 80 or more and 3200 or less, from the viewpoint of preventing deterioration of handleability as a bundling agent due to the resin viscosity being too low or too high. More preferably, it is more preferably 1500 or less, and further preferably 2200 or more and 10:00 or less.
本発明における複数エポキシ基を有する脂肪族化合物の具体例としては、 例 えば、 ジグリシジルエーテル化合物では、 エチレングリコールジグリシジルェ 一テル及びポリエチレングリコールジグリシジルエーテル類、 プロピレンダリ コールジグリシジルエーテル及びポリプロピレンダリコールジグリシジルエー テル類、 1, 4一ブタンジオールジグリシジルエーテル、 ネオペンチルグリコ ールジグリシジルエーテル、 ポリテトラメチレングリコールジグリシジルエー テル、 ポリアルキレングリコールジグリシジルエーテル類等が挙げられる。 ま た、 ポリグリシジルエーテル化合物では、 グリセ口一ルポリグリシジルエーテ ル、 ジグリセ口一ルポリグリシジルエーテル、 ポリグリセ口一ルポリグリシジ ルエーテル類、 ソルビト一ルポリグリシジルエーテル類、 ァラビト一ルポリグ リシジルエーテル類、 トリメチロールプロパンポリグリシジルエーテル類、 ぺ ンタエリスリ トールポリグリシジルエーテル類、 脂肪族多価アルコールのポリ グリシジルエーテル類等が挙げられる。  Specific examples of the aliphatic compound having a plurality of epoxy groups in the present invention include, for example, diglycidyl ether compounds, ethylene glycol diglycidyl ether and polyethylene glycol diglycidyl ethers, propylene diol diglycidyl ether, and polypropylene diamine. Examples include recall diglycidyl ethers, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, and polyalkylene glycol diglycidyl ether. Polyglycidyl ether compounds include glyceryl polyglycidyl ether, diglyceryl polyglycidyl ether, polyglycidyl polyglycidyl ether, sorbitol polyglycidyl ether, arabitol polyglycidyl ether, triglyceryl ether Examples include methylolpropane polyglycidyl ethers, pentaerythritol polyglycidyl ethers, and polyglycidyl ethers of aliphatic polyhydric alcohols.
好ましくは、 反応性の高いダリシジル基を有する脂肪族のポリダリシジルェ 一テル化合物である。 更に好ましくは、 ポリエチレングリコールジグリシジル エーテル類、 ポリプロピレンダリコールジグリシジルエーテル類、 アルカンジ オールジグリシジルエーテル類等が好ましい。 複数のエポキシ基を有する脂肪 族化合物において、 最長原子鎖の原子数が 2 0以上であることが好ましい。 す なわち該原子数が 2 0未満ではサイジング層内の架橋密度が高くなるために靭 性の低い構造になりやすく、 結果としてコンポジット引張強度が発現しにくい 場合がある。 それに対して最長原子鎖の原子数が大きレ、とサイジング層が柔軟 で靭性の高い構造になりやすいので結果としてコンポジット引張強度が向上し やすく、 特に脆い樹脂での引張強度が高いという特長を有するので、 より好ま しくは最長原子鎖の原子数で 2 5以上、 さらに好ましくは 3 0以上がよい。 た だし最長原子鎖の原子数は大きいほど柔軟な構造になるが、 長すぎると折れ曲 がって官能基を封鎖してしまい、 結果として炭素繊維と樹脂との接着力が低下 してしまう場合があるので好ましくは、 原子数で 2 0 0以下、 より好ましくは 1 0 0以下がよい。 脂肪族化合物に環状脂肪族骨格を含む場合には、 エポキシ 基が環状骨格から十分離れていれば、 具体的は、 原子数で 6以上あれば用いる ことができる。 本発明においては、 エポキシ基と芳香環の間の原子数が 6以上 であるエポキシ基を複数有する芳香族化合物もサイジング剤として用いること ができる。 エポキシ基と芳香環の間の原子数とは、 エポキシ基と芳香環の間を 結ぶ鎖状構造を構成する炭素原子、 複素原子 (酸素原子、 窒素原子等) 、 カル ボニル原子団の総数をいう。 この場合の直鎖状構造としては前記した鎖状構造 と同様のものである。 An aliphatic polydaricidyl ether compound having a highly reactive daricidyl group is preferable. More preferred are polyethylene glycol diglycidyl ethers, polypropylene dallicol diglycidyl ethers, alkanediol diglycidyl ethers and the like. In the aliphatic compound having a plurality of epoxy groups, the number of atoms of the longest atomic chain is preferably 20 or more. In other words, when the number of atoms is less than 20, the crosslink density in the sizing layer is high, so that a structure with low toughness is likely to be formed, and as a result, composite tensile strength may be difficult to develop. On the other hand, the number of atoms in the longest atomic chain is large, and the sizing layer tends to have a flexible and high toughness structure, so that the composite tensile strength is easily improved, and the tensile strength of brittle resin is particularly high. So more preferred Alternatively, the number of atoms in the longest atomic chain is 25 or more, more preferably 30 or more. However, the larger the number of atoms in the longest atomic chain, the more flexible the structure will be, but if it is too long it will bend and block the functional group, resulting in a decrease in the adhesion between the carbon fiber and the resin. Therefore, the number of atoms is preferably 200 or less, more preferably 100 or less. In the case where the aliphatic compound contains a cycloaliphatic skeleton, it can be used as long as the epoxy group is sufficiently away from the cyclic skeleton, specifically, if the number of atoms is 6 or more. In the present invention, an aromatic compound having a plurality of epoxy groups having 6 or more atoms between the epoxy group and the aromatic ring can also be used as a sizing agent. The number of atoms between the epoxy group and the aromatic ring refers to the total number of carbon atoms, heteroatoms (oxygen atoms, nitrogen atoms, etc.), and carbonyl groups constituting the chain structure connecting the epoxy group and the aromatic ring. . In this case, the linear structure is the same as the chain structure described above.
サイジング剤としてエポキシ基と芳香環との間の原子数が 6に満たないと、 炭素繊維とマトリックス樹脂との界面に剛直で立体的に大きな化合物を介在さ せることになるため、 炭素繊維の最表面に存在する表面官能基との反応性が向 上せず、 その結果コンポジットの横方向特性の向上が望めない。  If the number of atoms between the epoxy group and the aromatic ring is less than 6 as a sizing agent, a rigid and sterically large compound will be interposed at the interface between the carbon fiber and the matrix resin. The reactivity with the surface functional groups present on the surface cannot be improved, and as a result, improvement in the lateral characteristics of the composite cannot be expected.
アルキリデン基で繋がれた二つのフェノール環、 即ちビスフエノール A部ま たは F部は、 マトリックス樹脂との相溶性を向上させる効果と耐毛羽性を向上 させる効果がある。 エポキシ基と芳香環の間の原子数が 6以上である複数ェポ キシ基を有する芳香族化合物の骨格が縮合多環芳香族化合物であってもよい。 縮合多環芳香族化合物の骨格としては、 例えばナフタレン、 アントラセン、 フ ェナントレン、 クリセン、 ピレン、 ナフタセン、 トリフエ二レン、 1 , 2—ベ ンズアントラセン、 ベンゾピレン等が挙げられる。 好ましくは、 骨格の小さい ナフタレン、 アントラセン、 フエナントレン、 ピレンである。 複数エポキシ基 を有する縮合多環芳香族化合物のエポキシ当量は、 接着性の向上効果を十分な ものとする観点から、 1 5 0〜3 5 0、 さらには 2 0 0〜3 0 0が好ましい。 複数エポキシ基を有する縮合多環芳香族化合物の分子量は、 樹脂粘度が高くな つて集束剤としての取り扱い性が悪化するのを防ぐ観点から、 4 0 0〜8 0 0、 さらには 400〜600が好ましレ、。 Two phenol rings connected by an alkylidene group, that is, bisphenol A part or F part, have the effect of improving the compatibility with the matrix resin and the effect of improving the fluff resistance. The skeleton of the aromatic compound having a plurality of epoxy groups having 6 or more atoms between the epoxy group and the aromatic ring may be a condensed polycyclic aromatic compound. Examples of the skeleton of the condensed polycyclic aromatic compound include naphthalene, anthracene, phenanthrene, chrysene, pyrene, naphthacene, triphenylene, 1,2-benzanthracene, and benzopyrene. Naphthalene, anthracene, phenanthrene, and pyrene having a small skeleton are preferable. The epoxy equivalent of the condensed polycyclic aromatic compound having a plurality of epoxy groups is preferably from 150 to 35, more preferably from 200 to 300, from the viewpoint of obtaining a sufficient effect of improving adhesiveness. The molecular weight of the condensed polycyclic aromatic compound having a plurality of epoxy groups is from 400 to 80, from the viewpoint of preventing the handling property as a sizing agent from deteriorating due to a high resin viscosity. Furthermore, 400-600 is preferred.
本発明において、 サイジング剤にはェピコート 828、 ェピコート 834と いった分子量の小さいビスフエノール型エポキシ化合物、 直鎖状低分子量ェポ キシ化合物、 ポリエチレングリコール、 ポリウレタン、 ポリエステル乳化剤あ るいは界面活性剤など他の成分を粘度調整、 耐擦過性向上、 耐毛羽性向上、 集 束性向上、 高次加工性向上等の目的で加えてもよい。 さらに、 ブタジエンニト リルゴム等のゴム、 あるいはエポキシ末端ブタジエン二トリルゴムのようなェ ラストマ一性のある直鎖状エポキシ変性化合物等を添加しても問題はない。 こ のようなサイジング剤 (s) で表面処理された炭素繊維としては、 市販品とし て、 トレ力 T 700 S C— 2.4000— 50 Cなどのトレ力 (登録商標、 東レ (株) 社製) などが挙げられる。  In the present invention, sizing agents include bisphenol type epoxy compounds having a low molecular weight such as Epicoat 828 and Epicoat 834, linear low molecular weight epoxy compounds, polyethylene glycol, polyurethane, polyester emulsifiers, surfactants, etc. These components may be added for the purpose of adjusting viscosity, improving scratch resistance, improving fuzz resistance, improving bundling properties, and improving higher-order processability. Further, there is no problem even if a rubber such as butadiene nitrile rubber or a linear epoxy-modified compound having elastomer properties such as epoxy-terminated butadiene nitrile rubber is added. Carbon fiber surface-treated with such a sizing agent (s) is a commercial product, such as Tre force T 700 SC— 2.4000— 50 C (registered trademark, manufactured by Toray Industries, Inc.), etc. Is mentioned.
また、 本発明で使用する玄武岩繊維は、 熱可塑性樹脂との接着性改良のため に各種表面処理剤により処理したものが好ましい。  Moreover, the basalt fiber used in the present invention is preferably treated with various surface treatment agents in order to improve adhesion with a thermoplastic resin.
表面処理剤としてはシランカツプリング剤が好ましく、 シランカツプリング 剤としては、 分子中にエポキシ基、 ビニル基、 アミノ基、 メタクリル基、 ァク リル基、 及び直鎖アルキル基のいずれか 1つを有するシランカツプリング剤な どが使用できる。 シランカップリング剤は 1種でも良く、 2種以上を混合して 用いることもできる。 シランカップリング剤の中でも、 特に、 分子中にェポキ シ基、 アミノ基、 直鎖アルキル基を有するエポキシシラン系、 アミノシラン系、 直鎖アルキルシラン系が好適である。 エポキシシラン系シランカツプリング剤 のエポキシ基としては、 グリシジル基、 脂環式エポキシ基等が好適であり、 力 かるシランカップリング剤としては、 日本ュニカー (株) 製 A— 1 86、 A- 187、 AZ— 6137、 AZ— 6165 (以上、 商品名) 等が具体的に挙げ られる。 アミノシラン系シランカップリング剤としては、 1級ァミン、 2級ァ ミン或いはその双方を有するものが挙げられ、 日本ュニカー (株) 製 A— 1 1 00、 A— 1 1 10、 A— 1 120、 Y— 9669、 A— 1 1 60 (以上、 商 品名) 等が具体的に挙げられる。 また、 直鎖アルキルシラン系としては、 へキ シル基、 ォクチル基、 デシル基を有するものが挙げられ、 日本ュニカー (株) 製 A Z _ 6 1 7 1、 A Z - 6 1 7 7 (以上、 商品名) 、 信越シリコーン (株) 製 K B M— 3 1 0 3 C (商品名) 等が具体的に挙げられる。 中でもエポキシシ ラン系が好ましい。 As the surface treatment agent, a silane coupling agent is preferable, and as the silane coupling agent, one of an epoxy group, a vinyl group, an amino group, a methacryl group, an acryl group, and a linear alkyl group is included in the molecule. The silane coupling agent that you have can be used. One silane coupling agent may be used, or two or more silane coupling agents may be used in combination. Among the silane coupling agents, epoxy silanes, amino silanes, and linear alkyl silanes having an epoxy group, an amino group, and a linear alkyl group in the molecule are particularly preferable. As the epoxy group of the epoxy silane coupling agent, glycidyl group, alicyclic epoxy group, etc. are suitable, and as a powerful silane coupling agent, Nippon Tunica A-1186, A-187 AZ-6137, AZ-6165 (trade name) and the like. Examples of aminosilane-based silane coupling agents include primary amines, secondary amines, or both. A— 1 1 00, A— 1 1 10, A— 1 120, manufactured by Nippon Tunica Co., Ltd. Specific examples include Y-9669, A-1 1 60 (name of product). Examples of linear alkylsilanes include those having a hexyl group, an octyl group, and a decyl group. Nippon Tunica Co., Ltd. Specific examples include AZ _ 6 1 7 1 manufactured by AZ -6 1 7 7 (named above, trade name), KBM-3 1 0 3 C (trade name) manufactured by Shin-Etsu Silicone Co., Ltd., and the like. Of these, epoxy silane is preferred.
本発明の長繊維強化樹脂ペレツトは、 強化用連続繊維を引きながら熱可塑性 樹脂を繊維に含浸させる引き抜き成形法により得られる。 例えば、 上記熱可塑 性樹脂に必要に応じて樹脂添加剤を加えて、 連続繊維をクロスへッドダイを通 して引きながら、 熱可塑性樹脂を押出機から溶融状態でクロスへッドダイに供 給して強化用連続繊維に、 熱可塑性樹脂を含浸させ、 溶融含浸物を加熱し、 冷 却後、 引き抜き方向と直角に切断して得られるので、 該ペレッ トの長さ方向に 強化繊維が同一長さで平行配列している。 引き抜き成形は、 基本的には連続し た強化用繊維束を引きながら樹脂を含浸するものであり、 上記クロスへッドの 中を繊維束を通しながら押出機等からクロスへッドに樹脂を供給し含浸する方 法の他に、 樹脂のェマルジヨン、 サスペンジョンあるいは溶液を入れた含浸浴 の中を繊維束を通し含浸する方法、 樹脂の粉末を繊維束に吹きつけるか粉末を 入れた槽の中を繊維束を通し繊維に樹脂粉末を付着させたのち樹脂を溶融し含 浸する方法等が知られており、 本発明ではいずれも利用できる。 特に好ましい のはクロスヘッド方法である。 また、 これらの引き抜き成形における樹脂の含 浸操作は 1段で行うのが一般的であるが、 これを 2段以上に分けてもよく、 さ らに含浸方法を異にして行ってもかまわない。  The long fiber reinforced resin pellet of the present invention is obtained by a pultrusion method in which a fiber is impregnated with a thermoplastic resin while pulling continuous reinforcing fibers. For example, a resin additive may be added to the thermoplastic resin as necessary, and the thermoplastic resin may be supplied in a molten state from the extruder to the crosshead die while pulling the continuous fiber through the crosshead die. It is obtained by impregnating a continuous fiber for reinforcement with a thermoplastic resin, heating the melt-impregnated material, cooling, and cutting it at right angles to the drawing direction, so that the reinforcing fiber has the same length in the longitudinal direction of the pellet. Are arranged in parallel. In pultrusion, the resin is impregnated basically while drawing a continuous reinforcing fiber bundle. The resin is fed from an extruder or the like to the cross head while passing the fiber bundle through the cloth head. In addition to the method of supplying and impregnating, a method of impregnating resin emulsion, suspension, or impregnation bath containing solution through fiber bundles, spraying resin powder onto fiber bundles or inside powder tanks A method is known in which a resin bundle is passed through a fiber bundle and a resin powder is adhered to the fiber, and then the resin is melted and impregnated. Particularly preferred is the crosshead method. In addition, the resin impregnation operation in these pultrusion moldings is generally carried out in one stage, but this may be divided into two or more stages, and the impregnation method may be different. .
本発明に使用されるポリカーボネート樹脂 (P C ) には、 ポリカーボネート 樹脂の他に、 ポリエステルカーボネート系樹脂も含まれる。 ポリカーボネート 系樹脂は、 通常、 ジヒ ドロキシ化合物とホスゲンとの反応 (ホスゲン法) 、 ジ ヒ ドロキシ化合物とジフエニルカーボネートなどの炭酸エステルとの反応 (ェ ステル交換法) により得られる。 ジヒ ドロキシ化合物は、 脂環族化合物などで あってもよいが、 好ましくはビスフエノール化合物である。  The polycarbonate resin (PC) used in the present invention includes a polyester carbonate resin in addition to the polycarbonate resin. Polycarbonate resins are usually obtained by the reaction of dihydroxy compounds with phosgene (phosgene method), or the reaction of dihydroxy compounds with carbonates such as diphenyl carbonate (ester exchange method). The dihydroxy compound may be an alicyclic compound or the like, but is preferably a bisphenol compound.
ビスフエノール化合物としては、 ビス (4—ヒ ドロキシフエニル) メタン、 1、 2, 2—ビス (4ーヒ ドロキシフエニル) プロパン (ビスフエノール A) 1 _ビス (4—ヒ ドロキシフエ二ノレ) プロパン、 2, 2—ビス (4—ヒ ドロキ シ一 3—メチルフエニル) プロパン、 2, 2—ビス (4ーヒ ドロキシフエ二 ル) ブタン、 2, 2—ビス (4ーヒ ドロキシフエニル) へキサンなどのビスBisphenol compounds include bis (4-hydroxyphenyl) methane, 1, 2, 2-bis (4-hydroxyphenyl) propane (bisphenol A) 1_bis (4-hydroxyphenyl), propane, 2, 2 —Bis (4—Horoki Bis such as propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) hexane
(ヒ ドロキシァリール) C卜 8 アルカン ; 1 , 1—ビス (4—ヒ ドロキシフエ ニル) シクロへキサンなどのビス (ヒ ドロキシァリール) C4- 12シクロアルカ ン; 4, A' ージヒ ドロキシジフエニルエーテル; 4, 4' —ジヒ ドロキシジ フエ二 ス^/ホン ; 4, 4' —ジヒ ドロキシジフェニ^/スノレフィ ドなどが挙げ られる。 これらのビスフエノール化合物は、 一種又は二種以上組み合わせて使 用してもよい。 (Hydroxyl reel) C 卜 8 Alkane; 1, 1-bis (4-Hydroxyphenyl) Bis (hydroxyl reel) such as cyclohexane C4-12 cycloalkane; 4, A'-hydroxydiphenyl ether; 4, 4 '— Dihydroxy diphenyl ^ / Hong; 4, 4' — Dihydroxy dipheny ^ / snored. These bisphenol compounds may be used alone or in combination of two or more.
好ましいポリカーボネート系樹脂は、 芳香族ポリカーボネートであり、 特に ビスフヱノール型芳香族ポリカーボネート (ビスフエノール Α型芳香族ポリ力 ーボネート) が好ましい。  A preferred polycarbonate resin is an aromatic polycarbonate, and bisphenol type aromatic polycarbonate (bisphenol type aromatic polycarbonate) is particularly preferable.
本発明で用いるポリカーボネート樹脂 (PC) の粘度平均分子量は、 1 30 00〜 20000、 好ましくは 14000〜: 1 9000、 より好ましくは 1 5 000〜1 8000である。 尚、 本願で言う粘度平均分子量とは、 後記する実 施例の方法により測定した値である。  The viscosity average molecular weight of the polycarbonate resin (PC) used in the present invention is from 1300 to 20000, preferably from 14000 to: 19000, more preferably from 15,000 to 18000. In addition, the viscosity average molecular weight referred to in the present application is a value measured by the method of Examples described later.
スチレン系樹脂 (SR) としては、 少なくとも芳香族ビニル系単量体 (又は スチレン系単量体) を重合成分とする樹脂 (又は重合体) が挙げられる。  Examples of the styrene resin (SR) include a resin (or polymer) containing at least an aromatic vinyl monomer (or styrene monomer) as a polymerization component.
芳香族ビニル系単量体としては、 例えば、 スチレン、 アルキル置換スチレン (例えば、 ビニノレトルエン、 ビニノレキシレン、 p—ェチノレスチレン、 p—イソ プロピノレスチレン、 ブチノレスチレン、 p— t—ブチノレスチレンなど) 、 ハロゲ ン置換スチレン (例えば、 クロロスチレン、 プロモスチレンなど) 、 α位にァ ルキル基が置換したひ一アルキル置換スチレン (例えば、 α—メチルスチレン. など) などが挙げられる。 これらの芳香族ビニル系単量体は、 単独で又は二種 以上組み合わせて使用できる。 これらの芳香族ビュル単量体のうち、 通常、 ス チレン、 ビニルトルエン、 α—メチルスチレン (特にスチレン) などのスチレ ン系単量体が使用される。  Aromatic vinyl monomers include, for example, styrene, alkyl-substituted styrene (for example, vinylol toluene, vinylol xylene, p-ethynole styrene, p-isopropino styrene, butynole styrene, p-t-butino styrene. ), Halogen-substituted styrene (eg, chlorostyrene, promostyrene, etc.), monoalkyl-substituted styrene substituted with an alkyl group at the α-position (eg, α-methylstyrene, etc.), and the like. These aromatic vinyl monomers can be used alone or in combination of two or more. Of these aromatic butyl monomers, styrene monomers such as styrene, vinyltoluene and α-methylstyrene (especially styrene) are usually used.
スチレン系樹脂は、 芳香族ビニル系単量体と共重合可能な単量体 (共重合性 単量体) との共重合体であってもよい。 共重合性単量体 (ビニル系単量体) に は、 シアン化ビニル系単量体、 アクリル系単量体、 ビュルエステル系単量体、 不飽和多価カルボン酸又はその酸無水物、 イミ ド系単量体などが含まれる。 そ の他、 ビュル系単量体は、 塩化ビュルなどのハロゲン化ビニル系単量体であつ てもよい。 The styrene resin may be a copolymer with a monomer (copolymerizable monomer) copolymerizable with an aromatic vinyl monomer. To copolymerizable monomer (vinyl monomer) Includes vinyl cyanide monomers, acrylic monomers, butyl ester monomers, unsaturated polycarboxylic acids or acid anhydrides, imide monomers, and the like. In addition, the bull monomer may be a vinyl halide monomer such as bull chloride.
シアン化ビニル系単量体としては、 例えば、 (メタ) アクリロニトリル、 ノヽ ロゲン化 (メタ) アクリロニトリルなどが挙げられる。 これらのシアン化ビニ ル系単量体は、 単独で又は二種以上組み合わせて使用できる。 これらのシアン 化ビニル系単量体のうち、 通常、 アクリロニトリルなどの (メタ) アタリロニ トリルが使用される。  Examples of the vinyl cyanide monomer include (meth) acrylonitrile, nitrogenated (meth) acrylonitrile and the like. These vinyl cyanide monomers can be used alone or in combination of two or more. Of these vinyl cyanide monomers, (meth) atarylonitrile such as acrylonitrile is usually used.
本発明では、 芳香族ビニル系単量体とシアン化ビニル系単量体との重量比率 が 90 10〜 60/40、 好ましくは 85Z1 5〜65Z35、 より好まし くは 85/1 5〜70/30の共重合体を用いるのが好ましい。  In the present invention, the weight ratio of the aromatic vinyl monomer to the vinyl cyanide monomer is 90 10 to 60/40, preferably 85Z1 5 to 65Z35, more preferably 85/1 5 to 70 / Preferably 30 copolymers are used.
特に、 ゴム質重合体存在下に芳香族ビニル系単量体とシアン化ビニル系単量 体とを主成分として含む単量体成分を重合してなるグラフト共重合体は好まし いものである。  In particular, a graft copolymer obtained by polymerizing a monomer component containing an aromatic vinyl monomer and a vinyl cyanide monomer as main components in the presence of a rubbery polymer is preferred.
スチレン系樹脂 (後述のゴム含有スチレン系樹脂では、 ゴムを除くマトリツ クス樹脂としてのスチレン系樹脂) の重量平均分子量は、 例えば、 10, 00 0〜: 1, 000, 000、 好ましくは 30, 000〜 500, 000、 さらに 好ましくは 50, 000〜500, 000程度であってもよレヽ。  The weight average molecular weight of the styrene resin (in the rubber-containing styrene resin described later, the styrene resin as a matrix resin excluding rubber) is, for example, 1,00 0 to: 1,000,000, preferably 30,000 ~ 500,000, more preferably about 50,000-500,000.
また、 スチレン系樹脂は、 樹脂組成物に耐衝撃性などの優れた特性を付与す るという観点から、 ゴム成分を含む榭脂 (ゴム含有スチレン系樹脂) であって もよい。 ゴム含有スチレン系樹脂は、 スチレン系樹脂とゴム成分 (又はゴム状 重合体) との混合 (又はブレンド) 、 共重合 (グラフト重合、 ブロック重合な ど) などにより、 スチレン系樹脂で構成されたマトリックス中にゴム状重合体 (ゴム成分) が粒子状に分散した重合体であってもよい。 ゴム含有スチレン系 樹脂は、 通常、 ゴム状重合体の存在下、 少なくとも芳香族ビニル単量体を、 慣 用の方法 (塊状重合、 塊状懸濁重合、 溶液重合、 乳化重合など) で重合するこ とにより得られるグラフト共重合体 (ゴムグラフトスチレン系重合体) である。 なお、 後述するように、 本発明では、 ゴム含有スチレン系樹脂として、 塊状重 合法で得られた樹脂を好適に用レ、ることができる。 The styrene resin may be a resin (rubber-containing styrene resin) containing a rubber component from the viewpoint of imparting excellent properties such as impact resistance to the resin composition. A rubber-containing styrene resin is a matrix composed of a styrene resin by mixing (or blending) or copolymerization (grafting polymerization, block polymerization, etc.) of a styrene resin and a rubber component (or rubber-like polymer). A polymer in which a rubbery polymer (rubber component) is dispersed may be used. A rubber-containing styrene-based resin is usually obtained by polymerizing at least an aromatic vinyl monomer in the presence of a rubber-like polymer by a conventional method (bulk polymerization, bulk suspension polymerization, solution polymerization, emulsion polymerization, etc.). And a graft copolymer (rubber-grafted styrene-based polymer). As will be described later, in the present invention, as the rubber-containing styrene resin, a resin obtained by a block polymerization method can be suitably used.
ゴム状重合体としては、 例えば、 ジェン系ゴム [ポリブタジエン (低シス型 又は高シス型ポリブタジエン) 、 ポリイソプレン、 スチレン一ブタジエン共重 合体、 スチレン一イソプレン共重合体、 ブタジエン一アクリロニトリル共重合 体、 イソブチレン一イソプレン共重合体、 スチレン一イソブチレン一ブタジェ ン系共重合ゴムなど] 、 エチレン一醉酸ビュル共重合体、 アクリルゴム (ポリ ァクリル酸 c 2_8アルキルエステルを主成分とする共重合エラストマ一など) 、 エチレン一 α—ォレフィン系共重合体 [エチレン一プロピレンゴム (E P R) など] 、 エチレン一 α—ォレフィン一ポリェン共重合体 [エチレン一プロピレ ンージェンゴム (E P DM) など] 、 ウレタンゴム、 シリコーンゴム、 プチル ゴム、 水添ジェン系ゴム (水素化スチレン一ブタジエン共重合体、 水素化ブタ ジェン系重合体など) などが挙げられる。 なお、 これらのゴム状重合体におい て、 共重合体はランダム又はブロック共重合体であってもよく、 ブロック共重 合体には、 Α Β型、 A B A型、 テーパー型、 ラジアルテレブロック型の構造を 有する共重合体等が含まれる。 これらのゴム状重合体は、 単独で又は二種以上 組み合わせて使用できる。 Examples of rubber-like polymers include Gen rubber [polybutadiene (low cis type or high cis type polybutadiene), polyisoprene, styrene-butadiene copolymer, styrene-isoprene copolymer, butadiene-acrylonitrile copolymer, isobutylene. one isoprene copolymer, styrene one isobutylene one Butaje down copolymer rubber, ethylene one醉酸Bulle copolymer, acrylic rubber (poly Akuriru acid c 2 _ 8 alkyl esters principal component and copolymerizing elastomeric one such ), Ethylene-α-olefin-based copolymers (ethylene-propylene rubber (EPR), etc.), ethylene-α-olefin-polyene copolymers (ethylene-propylene rubber (EP DM), etc.), urethane rubber, silicone rubber, Ptyl rubber, hydrogenated gen rubber (hydrogenation Styrene one butadiene copolymer, and hydrogenated butadiene polymer) and the like. In these rubber-like polymers, the copolymer may be a random or block copolymer, and the block copolymer has a Α type, ABA type, taper type, radial teleblock type structure. Copolymers having These rubbery polymers can be used alone or in combination of two or more.
好ましいゴム成分は、 共役 1, 3—ジェン又はその誘導体の重合体、 特にポ リブタジエン (ブタジエンゴム) 、 イソプレンゴム、 スチレン一ブタジエン共 重合体などのジェン系ゴムである。  A preferable rubber component is a polymer of conjugated 1,3-gen or a derivative thereof, particularly a gen-based rubber such as polybutadiene (butadiene rubber), isoprene rubber, styrene-butadiene copolymer.
ゴム含有スチレン系樹脂において、 ゴム成分の含有量は、 スチレン系樹脂全 体に対して 0〜3 0重量%、 好ましくは 5〜3 0重量%、 さらに好ましくは 1 0〜3 0重量%程度である。  In the rubber-containing styrenic resin, the content of the rubber component is about 0 to 30% by weight, preferably about 5 to 30% by weight, and more preferably about 10 to 30% by weight with respect to the entire styrenic resin. is there.
スチレン系樹脂で構成されたマトリ ックス中に分散するゴム状重合体の形態 は、 特に限定されず、 サラミ構造、 コア シェル構造、 オニオン構造などであ つてもよレヽ。  The form of the rubbery polymer dispersed in the matrix composed of the styrene resin is not particularly limited, and may be a salami structure, a core shell structure, an onion structure, or the like.
分散相を構成するゴム状重合体の粒子径は、 例えば、 重量平均粒子径 2 3 0 〜3 0 0 0 n m、 好ましくは 2 4 0〜 2 0 0 0 n m、 さらに好ましくは 2 4 0 〜1 5 0 0 n m程度の範囲から選択できる。 また、 ゴム状重合体のグラフト率 は、 5〜 1 5 0 %、 好ましくは 1 0〜: 1 5 0 %程度である。 The particle diameter of the rubber-like polymer constituting the dispersed phase is, for example, a weight average particle diameter of 2300 to 300,000 nm, preferably 2400 to 2200 nm, and more preferably 2400. It can be selected from a range of about ˜1500 nm. The graft ratio of the rubbery polymer is about 5 to 1550%, preferably about 10 to about 1550%.
なお、 スチレン系樹脂は、 慣用の方法 (塊状重合、 塊状懸濁重合、 溶液重合、 乳化重合など) を用いて得られる。 例えば、 ゴム非含有スチレン系樹脂は、 芳 香族ビニル系単量体 (および必要に応じてシアン化ビュル系単量体、 アクリル 系単量体などの共重合性単量体) を慣用の方法 (塊状重合、 懸濁重合、 塊状懸 濁重合、 溶液重合、 乳化重合など) で重合することにより得ることができる。 また、 ゴム含有スチレン系樹脂は、 通常、 ゴム状重合体の存在下、 少なくとも 芳香族ビニル単量体を、 慣用の方法 (塊状重合、 塊状懸濁重合、 懸濁重合、 溶 液重合、 乳化重合など) で重合することにより得られる。 し力 し、 溶液重合、 乳化重合などの方法では、 反応系中の他の成分に由来する不純物が樹脂中に混 在しやすい。  The styrenic resin can be obtained by a conventional method (bulk polymerization, bulk suspension polymerization, solution polymerization, emulsion polymerization, etc.). For example, a non-rubber-containing styrene resin can be obtained by a conventional method using aromatic vinyl monomers (and copolymerizable monomers such as cyanide bur monomers and acrylic monomers as required). (Bulk polymerization, suspension polymerization, bulk suspension polymerization, solution polymerization, emulsion polymerization, etc.) can be obtained by polymerization. In addition, the rubber-containing styrenic resin is usually prepared by using at least an aromatic vinyl monomer in the presence of a rubber-like polymer by a conventional method (bulk polymerization, bulk suspension polymerization, suspension polymerization, solution polymerization, emulsion polymerization). Etc.). However, in methods such as solution polymerization and emulsion polymerization, impurities derived from other components in the reaction system tend to be mixed in the resin.
そこで、 本発明では、 後述の有機酸 (又はその塩) などの不純物が榭脂中に 混在しにくい重合方法 (懸濁重合、 塊状重合、 塊状懸濁重合など) により得ら れたスチレン系樹脂を好適に用いることができる。 特に、 塊状重合で得られた スチレン系樹脂は、 乳化重合などで得られた樹脂に比べて、 有機酸又はその塩、 さらにはナトリゥム、 塩素および硫酸イオンなどの不純物の含有量を高いレべ ルで低減しやすく、 結果として、 樹脂組成物中のこれらの不純物の含有量を低 減させるのに有効である。  Therefore, in the present invention, a styrenic resin obtained by a polymerization method (suspension polymerization, bulk polymerization, bulk suspension polymerization, etc.) in which impurities such as an organic acid (or a salt thereof) described later are not easily mixed in the resin. Can be suitably used. In particular, the styrene resin obtained by bulk polymerization has a higher content of impurities such as organic acids or salts thereof, as well as sodium, chlorine, and sulfate ions, compared to resins obtained by emulsion polymerization. As a result, it is effective in reducing the content of these impurities in the resin composition.
本発明に使用するスチレン系樹脂 (S R) は、 ナトリウム、 塩素及び硫酸ィ オンの含有割合が合計で 1 0 p p m以下であることが好ましい。 尚、 ナトリウ ム、 塩素及び硫酸イオンの含有割合は、 後記する実施例の方法により測定した 値である。  The styrene resin (S R) used in the present invention preferably has a total content of sodium, chlorine, and sulfate of 10 ppm or less. The content ratio of sodium, chlorine and sulfate ions is a value measured by the method of Examples described later.
このため、 スチレン系樹脂は、 塊状重合法で得られた樹脂、 すなわち、 少な くとも芳香族ビニル系単量体を塊状重合することにより得られた樹脂 [例えば、 芳香族ビニル系単量体とシァン化ビニル系単量体及び 又はァクリル系単量体 とを塊状重合して得られた共重合体、 ゴム状重合体の存在下で少なくとも芳香 族ビニル系単量体を塊状重合して得られたゴム含有スチレン系樹脂など] を好 適に用いることができる。 For this reason, a styrene-based resin is a resin obtained by bulk polymerization, that is, a resin obtained by bulk polymerization of at least an aromatic vinyl monomer [for example, an aromatic vinyl monomer and A copolymer obtained by bulk polymerization of a vinyl cyanide monomer and / or an acrylyl monomer, and obtained by bulk polymerization of at least an aromatic vinyl monomer in the presence of a rubbery polymer. Rubber-containing styrene resin, etc.] It can be used appropriately.
代表的なスチレン系樹脂としては、 例えば、 ゴム成分を含有しないスチレン 系樹脂 (ゴム非含有スチレン系樹脂) {例えば、 ポリスチレン (GPPS) 、 芳香族ビュル系単量体とシアン化ビニル系単量体及び 又はァクリル系単量体 との共重合体 [例えば、 スチレン一アクリロニトリル共重合体 (AS樹脂) 、 スチレンーメタクリル酸メチル共重合体 (MS樹脂) 、 アクリロニトリルース チレンーメタクリル酸メチル共重合体など] 、 芳香族ビュル系単量体と無水不 飽和カルボン酸との共重合体 [例えば、 スチレン一無水マレイン酸共重合体  Typical styrenic resins include, for example, styrene resins that do not contain a rubber component (rubber-free styrene resins) {eg, polystyrene (GPPS), aromatic bullet monomers, and vinyl cyanide monomers. And / or a copolymer with an acryl-based monomer [for example, styrene-acrylonitrile copolymer (AS resin), styrene-methyl methacrylate copolymer (MS resin), acrylonitrile-styrene-methyl methacrylate copolymer Etc.] Copolymers of aromatic bule monomers and unsaturated carboxylic anhydrides [for example, styrene monomaleic anhydride copolymers
(SMA樹脂) など] など } 、 ゴム含有スチレン系樹脂 {例えば、 耐衝撃性ポ リスチレン (H I P S) 、 メタクリル酸メチル変性 H I P S (透明 H I P S) 、 スチレン一アクリロニトリル一ブタジエン共重合体 (AB S樹脂) 、 メタクリ ル酸メチル変性 A B S樹脂 (透明 ABS樹脂) 、 α—メチルスチレン変性 A B S樹脂、 イミ ド変性 AB S樹脂、 スチレン一メタクリル酸メチル一ブタジエン 共重合体 (MB S樹脂) 、 AXS樹脂、 メタクリル酸メチル変性 A XS樹脂な ど } が挙げられる。 なお、 前記 AXS樹脂とは、 ゴム成分 X (アクリルゴム、 塩素化ポリエチレン、 エチレン一プロピレンゴム、 エチレン一酢酸ビエル共重 合体など) にアタリロニトリル Aとスチレン Sとがグラフト重合した樹脂を指 し、 具体的には、 アクリロニトリル一アクリルゴム一スチレン樹脂 (AAS樹 脂) 、 アクリロニトリル一エチレン 'プロピレンゴム一スチレン樹脂 (AES 樹脂) などが挙げられる。 これらのスチレン系樹脂は、 特に塊状重合法で得ら れた樹脂であるのが好ましい。  (SMA resin etc.), etc.], rubber-containing styrene resin (for example, impact-resistant polystyrene (HIPS), methyl methacrylate-modified HIPS (transparent HIPS), styrene-acrylonitrile-butadiene copolymer (ABS resin), Methyl methacrylate modified ABS resin (transparent ABS resin), α-methylstyrene modified ABS resin, imide modified ABS resin, styrene-methyl methacrylate-butadiene copolymer (MB S resin), AXS resin, methyl methacrylate Modified A XS resin, etc.}. The AXS resin refers to a resin obtained by graft-polymerizing talironitrile A and styrene S to rubber component X (acrylic rubber, chlorinated polyethylene, ethylene-propylene rubber, ethylene monoacetate copolymer, etc.). Specific examples include acrylonitrile / acrylic rubber / styrene resin (AAS resin), acrylonitrile / ethylene / propylene rubber / styrene resin (AES resin), and the like. These styrenic resins are particularly preferably resins obtained by bulk polymerization.
これらのスチレン系樹脂のうち、 耐衝撃性ポリスチレン、 アクリル系単量体 及び 又はシアン化ビニル系単量体を重合成分 (又は共重合成分) とするスチ レン系樹脂 [アクリル系単量体単位及びノ又はシアン化ビニル系単量体単位を 構成単位とするスチレン系樹脂、 例えば、 芳香族ビニル系単量体とシアン化ビ 二ル系単量体及び Z又はアクリル系単量体との共重合体 (例えば、 AS樹脂な どのスチレン系単量体とシァン化ビニル系単量体との共重合体) などのゴム成 分を含有しないスチレン系樹脂、 アクリル系単量体及び/又はシアン化ビニル 系単量体を共重合成分とするゴム含有 (ゴムグラフト) スチレン系樹脂 (ゴム 成分にアタリル系単量体及び 又はシァン化ビュル系単量体とスチレン系単量 体とがグラフト重合した共重合体 (例えば、 AB S樹脂、 AAS樹脂、 AES 樹脂、 MB S樹脂、 メタクリル酸変性 ABS樹脂など) など) などが好ましレ、。 これらのスチレン系樹脂は、 単独で又は二種以上組み合わせて使用できる。 本発明で使用するスチレン系樹脂 (SR) は、 メルトフローレートが 20 g /1 Om i n以上、 好ましくは 30 gZl Om i n以上、 より好ましくは 40 gZl Om i n以上のものが望ましい。 尚、 メルトフローレートは、 後記する 実施例の方法により測定した値である。 Among these styrenic resins, styrene resins with high-impact polystyrene, acrylic monomers and / or vinyl cyanide monomers as polymerization components (or copolymerization components) [acrylic monomer units and Styrenic resin having a vinyl or cyanide monomer unit as a structural unit, for example, co-polymerization of an aromatic vinyl monomer with a vinyl cyanide monomer and Z or acrylic monomer Styrenic resins that do not contain rubber components, such as copolymers (for example, copolymers of styrene monomers such as AS resins and vinyl cyanide monomers), acrylic monomers and / or vinyl cyanide Containing rubber containing rubber as a copolymer component (Rubber graft) Styrenic resin (Rubber component containing allylic monomer and / or cyanurized monomer and styrene monomer) Combined materials (for example, ABS resin, AAS resin, AES resin, MB S resin, methacrylic acid-modified ABS resin, etc.) are preferred. These styrenic resins can be used alone or in combination of two or more. The styrenic resin (SR) used in the present invention desirably has a melt flow rate of 20 g / 1 Omin or more, preferably 30 gZl Omin or more, more preferably 40 gZl Omin or more. The melt flow rate is a value measured by the method of an example described later.
本発明において、 ポリカーボネート樹脂及びスチレン系樹脂以外の他の熱可 塑性樹脂を含んでいてもよい。 このような他の熱可塑性樹脂としては、 例えば、 ポリエステル系樹脂 (ポリブチレンテレフタレート、 ポリエチレンテレフタレ ートなど) 、 ポリアミ ド系樹脂 (ポリアミ ド 5、 ポリアミ ド 6、 ポリアミ ド 6 6、 ポリアミ ド 6 10、 ポリアミ ド 1 1、 ポリアミ ド 1 2、 ポリアミ ド 6 12、 ポリアミ ド 6 66、 ポリアミ ド 6 Z 1 1などの脂肪族ポリアミ ド系樹脂;ポ リアミ ド 6T、 ポリアミ ド 9Τ、 ポリアミ ド MX Dなどの芳香族ポリアミ ド系 樹脂;脂環族ポリアミ ド系樹脂など) 、 ポリウレタン系樹脂、 ォレフィン系榭 脂 {ポリエチレン (低密度ポリエチレン、 高密度ポリエチレンなども含む) 、 ポリプロピレン、 エチレン一プロピレンコポリマー、 エチレン一プロピレンゴ ムなどのォレフィンの単独又は共重合体 (エラストマ一も含む) 、 環状ォレフ イン系樹脂など } 、 アクリル系樹脂、 ビニル系樹脂 (塩化ビニル系樹脂、 酢酸 ビニル系樹脂、 エチレン—醉酸ビニル共重合体、 ポリビュルアルコール、 ェチ レン一ビニルアルコール共重合体など) 、 熱可塑性エラス トマ一 (ポリエステ ル系熱可塑性エラストマ一など) などが挙げられる。 これらの他の熱可塑性樹 脂は、 結晶性樹脂であってもよく、 非結晶性樹脂であってもよい。 これらの他 の熱可塑性樹脂は、 単独で又は 2種以上組み合わせてもよい。  In the present invention, a thermoplastic resin other than the polycarbonate resin and the styrene resin may be included. Examples of such other thermoplastic resins include polyester resins (polybutylene terephthalate, polyethylene terephthalate, etc.), polyamide resins (polyamide 5, polyamide 6, polyamide 6 6, polyamide 6). 10, Polyamide 1 1, Polyamide 1 2, Polyamide 6 12, Polyamide 6 66, Polyamide 6 Z 11 Aliphatic polyamide resins such as Polyamide 6T, Polyamide 9, Polyamide MX D Aromatic polyamide resins such as alicyclic polyamide resins, etc.), polyurethane resins, olefin resins (including polyethylene (including low-density polyethylene and high-density polyethylene)), polypropylene, ethylene-propylene copolymer, ethylene Single or copolymer of olefins such as propylene rubber (also elastomers) ), Cyclic polyolefin resin, etc.}, acrylic resin, vinyl resin (vinyl chloride resin, vinyl acetate resin, ethylene-vinyl oxalate copolymer, polybutyl alcohol, ethylene-vinyl alcohol copolymer) And thermoplastic elastomers (polyester thermoplastic elastomers, etc.). These other thermoplastic resins may be crystalline resins or non-crystalline resins. These other thermoplastic resins may be used alone or in combination of two or more.
本発明の樹脂組成物には、 樹脂特性を低下させない限り、 慣用の添加剤、 例 えば、 相溶化剤、 可塑剤、 難燃助剤 (例えば、 ポリテトラフルォロエチレンな どのフッ素含有樹脂など) 、 着色剤、 安定剤 (酸化防止剤、 光安定剤、 熱安定 剤など) 、 滑剤、 分散剤、 発泡剤、 抗菌剤などが含まれていてもよい。 これら の添加剤は、 単独で又は二種以上組み合わせて使用できる。 In the resin composition of the present invention, a conventional additive such as a compatibilizer, a plasticizer, a flame retardant aid (for example, polytetrafluoroethylene) is used unless the resin properties are deteriorated. Any fluorine-containing resin), colorants, stabilizers (antioxidants, light stabilizers, heat stabilizers, etc.), lubricants, dispersants, foaming agents, antibacterial agents, and the like. These additives can be used alone or in combination of two or more.
本発明の長繊維強化熱可塑性樹脂組成物は優れた耐熱性を示し、 具体的には 一般に荷重たわみ温度 (1 . 8 M P a ) が 1 3 0 °C以上を示す。  The long fiber reinforced thermoplastic resin composition of the present invention exhibits excellent heat resistance. Specifically, generally, the deflection temperature under load (1.8 M Pa) is 130 ° C. or higher.
本発明の長繊維強化樹脂ペレツトは、 上記長繊維強化熱可塑性樹脂組成物に おいて、 強化繊維がペレッ トの長さ方向に実質的に平行に配列しており、 円柱 状、 角柱状またはテープ状に賦形され、 4〜 5 0 mmのいずれかの長さに切断 されたものである。 好ましいペレッ ト長は 6〜2 5 mmであり、 より好ましく は 6〜2 O mmである。  The long fiber reinforced resin pellet of the present invention is the above long fiber reinforced thermoplastic resin composition, wherein the reinforcing fibers are arranged substantially parallel to the length direction of the pellet, and are cylindrical, prismatic, or tape. It is shaped into a shape and cut to any length of 4 to 50 mm. The preferred pellet length is 6 to 25 mm, more preferably 6 to 2 O mm.
本発明の長繊維強化樹脂ペレツトを成形品とするための成形方法としては、 射出成形法, 射出圧縮成形法, 押出成形法, ブロー成形法, プレス成形法, 発 泡成形法などが挙げられる。  Examples of a molding method for forming the long fiber reinforced resin pellet of the present invention into a molded product include an injection molding method, an injection compression molding method, an extrusion molding method, a blow molding method, a press molding method, and a foam molding method.
また、 成形においてはペレツトに含まれる繊維を出来る限り長い繊維長で維 持することが好ましい。 そのためには、 一般的な成形方法及び成形装置では、 材料を可塑化する際にスクリュの回転によって生じる剪断が大きく、 繊維を折 損させてしまう確率が大きいため、 使用可能ではあるが、 あまり好ましくなレ、。 従って成形機メ一力一各社の長繊維強化熱可塑性樹脂用に開発した可塑化シス テムを持つ成形機を用いる事が好ましレ、。 また、 繊維長を保護する成形条件と しては、 マトリックス樹脂に対して強化繊維を添加していない (非強化の) 状 態で成形する際の一般的可塑化温度より 1 0〜3 0 °C高めの温度設定とするな ど、 可塑化による剪断を低減する事が望ましい。 更に金型及び 又はダイの設 計においては、 特に限定されるものではないが、 樹脂の流路はその断面を出来 得る限り広く設計し、 また樹脂流路の形状についても検討した上で、 圧力損失 の低減された設計を施す事が繊維長を保護する上で望ましい。  In molding, it is preferable to maintain the fiber contained in the pellet with the longest possible fiber length. To that end, in general molding methods and molding equipment, the shear generated by the rotation of the screw when plasticizing the material is large, and there is a high probability that the fiber will break. Nare ,. Therefore, it is preferable to use a molding machine with a plasticizing system developed for each company's long fiber reinforced thermoplastic resin. Also, the molding conditions for protecting the fiber length are 10 to 30 ° from the general plasticization temperature when molding in a state in which reinforcing fibers are not added to the matrix resin (non-reinforced). It is desirable to reduce shear due to plasticization, such as setting a higher temperature. Furthermore, the design of the mold and / or die is not particularly limited, but the flow path of the resin is designed to be as wide as possible, and the shape of the resin flow path is examined, and then the pressure is determined. A design with reduced loss is desirable to protect the fiber length.
このように成形時においては繊維長を長くするよう条件をとることで、 長繊 維強化樹脂ペレツトから成形される成形体中に分散される強化繊維の重量平均 繊維長が 0 . 5 mn!〜 5 mmである長繊維強化樹脂成形体を達成できる。 強化 繊維に含浸するポリカーボネート樹脂 (PC) とスチレン系樹脂 (SR) の比 率は、 通常は重量比として PC/S R= 95Z5〜3◦ 70であり、 好まし くは PCZSR=90Zl 0〜50Z50であり、 特に好ましくは P C, S R = 80Z20〜60Z40である。 PCZSRの比が 95ノ 5より大きくなる と、 つまりポリカーボネート樹脂が過剰となると流動性悪くなり、 成形加工性 低下に繋がる。 また、 PC/SRの比が 30Z70より小さくなると、 つまり P Cが少くなると、 耐熱性が低下すると共に P C特有の強度が発揮できない。 長繊維強化樹脂ペレツトに含まれる強化繊維の比率は、 通常はペレツト 100 重量部に対して強化繊維が 1 1〜200重量部であり、 好ましくは 25〜1 5 0重量部であり、 特に好ましくは 30〜 100重量部である。 強化繊維が 1 1 重量部未満では成形品の機械的強度が低下し、 強化繊維が 200重量部を超え ると引き抜き法において樹脂の含浸が充分に出来なくなりペレッ トの繊維の毛 羽立ちが多くなり製造困難となる。 図面の簡単な説明 In this way, by taking the condition that the fiber length is increased at the time of molding, the weight average fiber length of the reinforcing fiber dispersed in the molded body formed from the long fiber reinforced resin pellet is 0.5 mn! A long fiber reinforced resin molded product of ˜5 mm can be achieved. Strengthen The ratio of the polycarbonate resin (PC) and styrene resin (SR) impregnated into the fiber is usually PC / SR = 95Z5 to 3◦70 in weight ratio, preferably PCZSR = 90Zl 0 to 50Z50 Particularly preferably, PC, SR = 80Z20 to 60Z40. If the PCZSR ratio is greater than 95 5, that is, if the polycarbonate resin is excessive, the fluidity will deteriorate, leading to a decrease in moldability. In addition, if the PC / SR ratio is smaller than 30Z70, that is, if the PC is small, the heat resistance is lowered and the strength peculiar to PC cannot be exhibited. The ratio of the reinforcing fibers contained in the long fiber reinforced resin pellet is usually 11 to 200 parts by weight, preferably 25 to 150 parts by weight, particularly preferably 100 parts by weight of the pellets. 30 to 100 parts by weight. If the reinforcing fiber is less than 11 parts by weight, the mechanical strength of the molded product decreases, and if the reinforcing fiber exceeds 200 parts by weight, the resin cannot be sufficiently impregnated by the drawing method, and the pellets have a lot of fluff. It becomes difficult to manufacture. Brief Description of Drawings
図 1は、 線膨張係数測定用の 15 Omm角平板 (厚み = 3 mm, ゲート幅 = 1 5 Omm) を示し、 そのほぼ中央部を流動方向 (MD) と流動直角方向 (T D) に試験片を切り出している。 尚、 図中の符号 1は、 射出ゲートを、 2は、 射出流動方向を示す矢印を、 3は、 流動方向 (MD) の試験片採取箇所を、 4 は、 流動直角方向 (TD) の試験片採取箇所をそれぞれ意味する。 実施例  Fig. 1 shows a 15 Omm square plate (thickness = 3 mm, gate width = 15 Omm) for measuring the linear expansion coefficient, with its test piece in the flow direction (MD) and flow right angle direction (TD) at the center. Is cut out. In the figure, reference numeral 1 is an injection gate, 2 is an arrow indicating the injection flow direction, 3 is a specimen collection point in the flow direction (MD), and 4 is a test in the direction perpendicular to the flow (TD). It means each sampling point. Example
以下に、 実施例に基づいて本発明をより詳細に説明するが、 本発明はこれら の実施例により琅定されるものではない。 また、 以下に実施例、 比較例で使用 した材料及び物性測定方法並びに射出成形装置を示した。  Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to these examples. In addition, materials and physical property measuring methods and injection molding apparatuses used in Examples and Comparative Examples are shown below.
[使用材料]  [Materials used]
P C :粘度平均分子量 (Mv) = 1 7800  P C: Viscosity average molecular weight (Mv) = 1 7800
ABS 1 : AB S樹脂、 塊状重合法により得られたポリマー、 ゴム種:ポリブ タジェン、 ゴム含有量 20%、 マトリックスを構成するモノマー成分の共重合 比:スチレン アクリロニトリル =82 18 (重量比) 、 ゴム重量平均粒径 1000 nm、 メノレトフローレー ト 54 g/10min ABS 1: ABS resin, polymer obtained by bulk polymerization method, rubber type: polyb Tagen, rubber content 20%, copolymerization ratio of monomer components constituting the matrix: Styrene acrylonitrile = 82 18 (weight ratio), rubber weight average particle size 1000 nm, menoleto flow rate 54 g / 10min
ABS 2 : ABS樹脂、 塊状重合法により得られたポリマー、 ゴム種:ポリブ タジェン、 ゴム含有量 20重量0 /0、 マトリ ックスを構成するモノマー成分の共 重合比 : スチレンノアクリロ二トリル = 77 23 (重量比) 、 ゴム重量平均 粒径 1 300 nm、 メルトフローレート 40 g/10min ABS 2: ABS resin, polymer obtained by bulk polymerization, the rubber species: polybutylene Tajen, rubber content 20 wt 0/0, the copolymerization ratio of the monomer components constituting the Matrigel box: styrene Noah methacrylonitrile Nitrile = 77 23 (Weight ratio), rubber weight average particle size 1 300 nm, melt flow rate 40 g / 10min
AS 1 : AS樹脂、 マトリックスを構成するモノマー成分の共重合比:スチレ ン アクリロニトリル = 73/27 (重量比) 、 溶液粘度 s p Z c (4mg m 1濃度のクロ口ホルム溶液、 25°C) : 0. 85、 メノレトフローレート 2 8g/10min  AS 1: AS resin, Copolymerization ratio of monomer components constituting the matrix: styrene acrylonitrile = 73/27 (weight ratio), solution viscosity sp Z c (4 mg m 1 concentration of black mouth form solution, 25 ° C): 0.85, Menore flow rate 2 8g / 10min
ガラス繊維ロービング:繊維径 1 7 / m、 エポキシシランカツプリング剤処理Glass fiber roving: Fiber diameter 17 / m, epoxy silane coupling agent treatment
P P
Strike
ガラス短繊維 (チョップドストランド) :繊維径 1 3 μ m、 繊維長 3 mm、 ェ ポキシシランカツプリング剤処理品 Short glass fiber (chopped strand): Fiber diameter 13 μm, fiber length 3 mm, treated with epoxysilane coupling agent
[物性測定]  [Physical property measurement]
粘度平均分子量 (Mv) : ウベローデ型粘度計を用いて、 20°Cにおける塩化 メチレン溶液の粘度を測定し、 これより極限粘度 [ 77 ] を求め、 次式にて算出 した。 Viscosity average molecular weight (Mv): Using an Ubbelohde viscometer, the viscosity of a methylene chloride solution at 20 ° C was measured. From this, the intrinsic viscosity [77] was obtained and calculated by the following formula.
[ ] = 1. 23 X 10 - 5Mv 0. 83  [] = 1. 23 X 10-5Mv 0. 83
メノレトフローレート : I S01 1 33 (220 °C . 10 k g) に準拠 ナトリゥム濃度:試料 2 gを白金るつぼ中に精秤し、 電熱器及びバーナーで炭 化した後、 電気炉 (400°C、 1. 5時間及び 500°C、 2時間) にて灰化を 完了した。 この灰化物に少量の超純水及び硝酸 0. 5m lを加えて、 砂浴上で 加熱し灰分を溶解した。 蒸発乾固後、 0. 1 N硝酸水溶液を加えながら 2 Om 1にメスアップし、 原子吸光分析用検液とした。 原子吸光分析器 (島津製作所 (株) 製八 ー680) を用いて、 この検液中の全ナトリウム量を測定した (単位: p pm (μ g/g) ) 。 尚、 試料を充填しないるつぼを用いたブラン ク試験を行い、 このブランク値を差し引いて試料中の全ナトリゥム量とした。 また、 検量線標準液は、 市販の原子吸光分析用標準液を 0. 1 N硝酸水溶液で 適宜稀釈し、 ナトリウム濃度 0、 0. 02、 0. 05、 0. 1、 0. 5、 1. 0 μ g/m 1に調整したものを使用した。 Menoleto flow rate: Conforms to I S01 1 33 (220 ° C. 10 kg) Sodium concentration: 2 g of sample is precisely weighed in a platinum crucible, carbonized with an electric heater and burner, and then electric furnace (400 ° C 1.5 hours and 500 ° C, 2 hours) ashing was completed. A small amount of ultrapure water and 0.5 ml of nitric acid were added to this ashed product and heated on a sand bath to dissolve the ash. After evaporation to dryness, 0.1 N nitric acid aqueous solution was added to make up to 2 Om 1 to prepare a test solution for atomic absorption analysis. Using an atomic absorption analyzer (manufactured by Shimadzu Corporation, 8-680), the total amount of sodium in this test solution was measured (unit: p pm (μg / g)). Note that a blank using a crucible without filling the sample. The blank test was subtracted to obtain the total amount of sodium in the sample. For the calibration curve standard solution, dilute commercially available standard solution for atomic absorption analysis with 0.1 N nitric acid aqueous solution as appropriate, and sodium concentration 0, 0.02, 0.05, 0.1, 0.5, 1. The one adjusted to 0 μg / m 1 was used.
塩素濃度:試料 20〜3 Omgを精秤し、 塩素分析装置 (三菱化学 (株) 製 T OX- 100) を用いて、 電量滴定法によって試料中の全塩素量を測定したChlorine concentration: Sample 20-3 Omg was precisely weighed and the total chlorine content in the sample was measured by coulometric titration using a chlorine analyzer (TOX-100 manufactured by Mitsubishi Chemical Corporation).
(単位: p p m μ g / g) ) 。 (Unit: p p m μg / g)).
硫酸イオン濃度:試料 6 gを精抨し、 予め超純水で洗浄したポリテトラフルォ 口エチレン (テフロン :登録商標) 製容器に充填し、 超純水 15 gを加えた後、 1 10°Cに設定した乾燥機に 20時間静置して蒸気で抽出した。 この液を適宜 稀釈し、 0. 2 μπιメンブレンフィルターで濾過した濾液を測定液として、 以 下の陰イオン分析装置で測定した (単位: p pm (μ g/g) ) 。 Sulfate ion concentration: 6 g of sample was purified and filled in a polytetrafluoroethylene (Teflon: registered trademark) container previously washed with ultrapure water, and after adding 15 g of ultrapure water, set to 1 10 ° C It was left in the dryer for 20 hours and extracted with steam. The solution was diluted as appropriate, and the filtrate filtered through a 0.2 μπι membrane filter was used as a measurement solution and measured with the following anion analyzer (unit: p pm (μg / g)).
使用機器: D I ONEX DX-320  Equipment used: D I ONEX DX-320
プレカラム : AG— 1 5  Precolumn: AG— 1 5
カラム : AS— 1 5  Column: AS— 1 5
溶離液: 5〜 7 OmMの KOHグラジェント  Eluent: 5-7 OmM KOH gradient
流速: 0. 5m l /分  Flow rate: 0.5ml / min
検出器:電気伝導検出器  Detector: Electric conduction detector
カラム温度: 30°C  Column temperature: 30 ° C
注入量: 200 μ 1  Injection volume: 200 μ 1
引張試験: I SO 527— 1に準拠 Tensile test: according to I SO 527-1
荷重たわみ温度: I S O 75— 1 (1. 8 OMP a : フラットワイズ) に準拠 シャルピー衝撃試験: I S01 79 l eA (エッジワイズ) に準拠 Deflection temperature under load: Conforms to I S O 75—1 (1.8 OMP a: flatwise) Charpy impact test: Conforms to I S01 79 l eA (edgewise)
線膨張係数: 1 50角平板 (厚み =3, ゲート幅 =150) のほぼ中央部を流動方向 (MD) と流動直角方向 (TD) に試験片を切り出し試験片長手方向での線膨 張係数を測定した。 Linear expansion coefficient: 1 Approximate central part of a 50 square plate (thickness = 3, gate width = 150) was cut in the flow direction (MD) and flow right angle direction (TD), and the linear expansion coefficient in the longitudinal direction of the test piece Was measured.
試験片: 20 X 1 0 X 3 (mm)、 測定範囲: 40°C〜80°C、 単位: X 1 GT5 ( 1 /K) (試験片については図 1を参照) 繊維長測定方法 (重量平均繊維長) :成形品から約 5 gの試料を切出し、 65 0°Cで灰化して繊維を取り出す。 取り出した繊維の一部 (約 500本) 力 ら重 量平均繊維長を求めた。 Test piece: 20 X 10 X 3 (mm), Measurement range: 40 ° C to 80 ° C, Unit: X 1 GT 5 (1 / K) (See Fig. 1 for test piece) Fiber length measurement method (weight average fiber length): A sample of about 5 g is cut out from the molded product, and ashed at 650 ° C to take out the fiber. The weight average fiber length was determined from the force of some of the extracted fibers (approximately 500).
流動性;スパイラルフロー (断面形状:厚み 2 mm, 幅 20mm) の流動長を シリンダー温度 280°C、 金型温度 1 20°C、 射出圧力 98 MP aで測定した 測定値は L/Tとした。 Fluidity: Flow length of spiral flow (cross section: thickness 2 mm, width 20 mm) measured at cylinder temperature 280 ° C, mold temperature 1 20 ° C, injection pressure 98MPa, measured value is L / T .
[射出成形]  [injection molding]
装置: (株) 日本製銅所製、 J一 150EII Equipment: JC 150EII, manufactured by Nippon Copper Works
スクリュー :長繊維専用スクリユー Screw: Screw for exclusive use of long fibers
成形温度 (シリンダー温度) : 280°C Molding temperature (cylinder temperature): 280 ° C
金型温度; 100 °C Mold temperature: 100 ° C
成形品: I SO多目的試験片、 150角平板成形品 Molded product: I SO multipurpose test piece, 150 square flat plate molded product
実施例 1 Example 1
連続繊維の通路を波状に加工したクロスへッドを通して、 ガラス繊維ロービ ングを引きながら、 熱可塑性樹脂として PCが 70重量部と ABS 1が 30重 量部の混合物をクロスヘッドに接続された押出機から溶融状態 (280°C) で 供給して、 ガラス繊維に含浸させた後、 賦形ダイを通してストランドとして引 取り、 冷却後、 裁断し、 ガラス繊維含有量 40重量0 /0、 長さ 1 1mmのペレツ トを得た。 得られたペレツトを射出成形によりそれぞれの物性測定のためのテ ストピースを作成した。 Extruded with a mixture of 70 parts by weight of PC and 30 parts by weight of ABS 1 connected to the crosshead as a thermoplastic resin while pulling glass fiber roving through a crosshead that has been processed into a corrugated continuous fiber passage. supplied in a molten state (280 ° C) from the machine, was impregnated into a glass fiber, taking as a strand through a shaping die, cooled, and cut, the glass fiber content 40 wt 0/0, length 1 A 1 mm pellet was obtained. Test pieces for measuring the physical properties of the obtained pellets were prepared by injection molding.
実施例 2 Example 2
連続繊維の通路を波状に加工したクロスへッドを通して、 ガラス繊維ロービ ングを引きながら、 熱可塑性樹脂として PCが 60重量部と AB S 1が 40重 量部の混合物をクロスヘッドに接続された押出機から溶融状態 (280°C) で 供給して、 ガラス繊維に含浸させた後、 賦形ダイを通してストランドとして引 取り、 冷却後、 裁断し、 ガラス繊維含有量 40重量%、 長さ 1 lmmのペレツ トを得た。 得られたペレツトを射出成形によりそれぞれの物性測定のためのテ ス トピースを作成した。 実施例 3 A glass fiber roving was drawn through a corrugated crosshead in the continuous fiber passage, and a mixture of 60 parts by weight of PC and 40 parts by weight of ABS 1 was connected to the crosshead as a thermoplastic resin. After being fed from the extruder in a molten state (280 ° C) and impregnating the glass fiber, it is taken out as a strand through a shaping die, cooled and then cut, glass fiber content 40% by weight, length 1 lmm The pellet was obtained. Test pieces for measuring the physical properties of the obtained pellets were prepared by injection molding. Example 3
連続繊維の通路を波状に加工したクロスへッドを通して、 ガラス繊維ロービ ングを引きながら、 熱可塑性樹脂として P Cが 7 0重量部と A B S 2が 3 0重 量部の混合物をクロスヘッドに接続された押出機から溶融状態 (2 8 0 °C) で 供給して、 ガラス繊維に含浸させた後、 賦形ダイを通してストランドとして引 取り、 冷却後、 裁断し、 ガラス繊維含有量 4 0重量。 /0、 長さ 1 1 mmのペレツ トを得た。 得られたペレツトを射出成形によりそれぞれの物性測定のためのテ ストピースを作成した。 A glass fiber roving is drawn through a crosshead formed by corrugated continuous fiber passages, and a mixture of 70 parts by weight of PC and 30 parts by weight of ABS 2 is connected to the crosshead as a thermoplastic resin. After being fed from an extruder in a molten state (280 ° C.) and impregnating into glass fiber, it is taken out as a strand through a shaping die, cooled, and cut to have a glass fiber content of 40 weight. / 0 to give Perez bets length 1 1 mm. Test pieces for measuring the physical properties of the obtained pellets were prepared by injection molding.
実施例 4 Example 4
連続繊維の通路を波状に加工したクロスへッドを通して、 ガラス繊維ロービ ングを引きながら、 熱可塑性樹脂として P Cが 7 0重量部と A B S 1力 S 3 0重 量部の混合物をクロスヘッドに接続された押出機から溶融状態 (2 8 0 °C) で 供給して、 ガラス繊維に含浸させた後、 賦形ダイを通してストランドとして引 取り、 冷却後、 裁断し、 ガラス繊維含有量 3 0重量%、 長さ 1 1 mmのペレツ トを得た。 得られたペレツトを射出成形によりそれぞれの物性測定のためのテ ストピースを作成した。  Connect the mixture of 70 parts by weight of PC and 70 parts by weight of ABS as a thermoplastic resin to the crosshead while drawing the glass fiber roving through the crosshead with the corrugated continuous fiber passage. Supplied in a molten state (280 ° C) from the extruded extruder, impregnated into glass fiber, taken out as a strand through a shaping die, cooled, cut, and glass fiber content 30% by weight A pellet with a length of 11 mm was obtained. Test pieces for measuring the physical properties of the obtained pellets were prepared by injection molding.
実施例 5 Example 5
連続繊維の通路を波状に加工したクロスへッドを通して、 ガラス繊維ロービ ングを引きながら、 熱可塑性樹脂として P Cが 7 0重量部と A B S 1が 2 0重 量部と A S 1が 1 0重量部の混合物をクロスへッドに接続された押出機から溶 融状態 ( 2 8 0 °C) で供給して、 ガラス繊維に含浸させた後、 賦形ダイを通し てストランドとして引取り、 冷却後、 裁断し、 ガラス繊維含有量 3 0重量%、 長さ 1 1 mmのペレツトを得た。 得られたペレツトを射出成形によりそれぞれ の物性測定のためのテストピースを作成した。  As a thermoplastic resin, 70 parts by weight of PC, 20 parts by weight of ABS 1, and 10 parts by weight of AS 1 are drawn as glass fiber roving through a crosshead formed by corrugated continuous fiber passages. After being fed in a molten state (280 ° C) from an extruder connected to a cloth head and impregnating the glass fiber, the mixture is taken out as a strand through a shaping die and cooled. The pellet was cut to obtain a pellet having a glass fiber content of 30% by weight and a length of 11 mm. Test pieces for measuring the physical properties of the obtained pellets were prepared by injection molding.
実施例 6 Example 6
連続繊維の通路を波状に加工したクロスへッドを通して、 ガラス繊維ロービ ングを引きながら、 熱可塑性樹脂として P Cが 7 0重量部と A S 1が 3 0重量 部の混合物をクロスヘッドに接続された押出機から溶融状態 (2 8 0 °C) で供 給して、 ガラス繊維に含浸させた後、 賦形ダイを通してストランドとして引取 り、 冷却後、 裁断し、 ガラス繊維含有量 3 0重量0 /0、 長さ 1 1 mmのペレッ ト を得た。 得られたペレツトを射出成形によりそれぞれの物性測定のためのテス トピースを作成した。 A glass fiber roving was drawn through a corrugated crosshead in the continuous fiber passage, and a mixture of 70 parts by weight of PC and 30 parts by weight of AS1 was connected to the crosshead as a thermoplastic resin. Served from the extruder in the molten state (280 ° C) Feeding and, after impregnating a glass fiber, take-up as a strand through a shaping die, cooled, and cut, the glass fiber content 3 0 wt 0/0, to obtain a pellet of length 1 1 mm. Test pieces for measuring physical properties of the obtained pellets were prepared by injection molding.
比較例 1 Comparative Example 1
クロスへッドでの繊維への樹脂含浸方法は実施せずに、 熱可塑性樹脂として P Cが 7 0重量部と A B S 1が 3 0重量部の混合物 7 0重量部とガラス短繊維 (チョップドス トランド) 3 0重量部をタンブラ一プレンダ一にて混合後、 押 出機で溶融混練してペレツト状の樹脂組成物を得た。 得られたペレツトを射出 成形により実施例と同じテストピースを作成した。  Without the method of impregnating the fibers with the cloth in the crosshead, a mixture of 70 parts by weight of PC and 30 parts by weight of ABS 1 as thermoplastic resin 70 parts by weight and short glass fibers (chopped strands) After mixing 30 parts by weight with a tumbler and a renderer, the mixture was melt kneaded with an extruder to obtain a pellet-like resin composition. The same test piece as in the example was prepared by injection molding of the obtained pellets.
比較例 2 Comparative Example 2
熱可塑性樹脂として P Cが 7 0重量部と A B S 1が 3 0重量部の混合物を使 用する代わりに P C単独の樹脂を使用した以外は実施例 1と同様な操作を実施 した。  The same operation as in Example 1 was carried out except that a resin containing PC alone was used instead of a mixture of 70 parts by weight of PC and 30 parts by weight of ABS 1 as the thermoplastic resin.
比較例 3 Comparative Example 3
ガラス繊維含有量を 5重量%にした以外は実施例 1と同様な操作を実施した。 The same operation as in Example 1 was performed except that the glass fiber content was changed to 5% by weight.
Figure imgf000023_0001
Figure imgf000023_0001

Claims

請求の範囲 The scope of the claims
1. ポリカーボネート樹脂 (PC) とスチレン系樹脂 (SR) からなる組成 物 100重量部に対して強化繊維 1 1〜200重量部を配合してなる長繊維強 化熱可塑性樹脂組成物。 1. A long fiber reinforced thermoplastic resin composition comprising 11 to 200 parts by weight of reinforcing fibers per 100 parts by weight of a composition comprising a polycarbonate resin (PC) and a styrene resin (SR).
2. ポリカーボネート樹脂 (PC) とスチレン系樹脂 (SR) が重量比とし て PCZSR=95 5〜30Z70である組成物 1 00重量部に対して強化 繊維 1 1〜200重量部を配合してなる請求項 1記載の長繊維強化熱可塑性樹 脂組成物。  2. Claim in which polycarbonate resin (PC) and styrenic resin (SR) are blended with 1 to 200 parts by weight of reinforcing fiber per 100 parts by weight of composition with PCZSR = 95 5 to 30Z70 as weight ratio Item 10. A long fiber reinforced thermoplastic resin composition according to Item 1.
3. スチレン系樹脂 (SR) 1 芳香族ビュル系単量体とシアン化ビニル系 単量体との共重合体である請求項 1〜 2の何れか 1項記載の長繊維強化熱可塑 性樹脂組成物。  3. Styrene resin (SR) 1 Long fiber reinforced thermoplastic resin according to any one of claims 1 to 2, which is a copolymer of an aromatic bur monomer and a vinyl cyanide monomer. Composition.
4. スチレン系樹脂 (SR) 、 ゴム質重合体存在下に芳香族ビニル系単量 体とシアン化ビニル系単量体とを主成分として含む単量体成分を重合してなる グラフト共重合体である請求項 1〜 2の何れか 1項記載の長繊維強化熱可塑性 樹脂組成物。  4. Styrenic resin (SR), graft copolymer obtained by polymerizing monomer component containing aromatic vinyl monomer and vinyl cyanide monomer as main components in the presence of rubber polymer The long fiber reinforced thermoplastic resin composition according to any one of claims 1 and 2.
5. ゴム質重合体の割合がスチレン系樹脂 (SR) に対して 1〜30重量0 /0 であり、 芳香族ビュル系単量体とシアン化ビニル系単量体との重量比率が 90 10〜60Ζ40である請求項 1〜 2及び 4の何れか 1項記載の長繊維強化 熱可塑性樹脂組成物。 5. proportion of rubbery polymer is from 1 to 30 weight 0/0 for styrenic resin (SR), the weight ratio of the aromatic Bulle based monomer and vinyl cyanide-based monomer is 90 10 The long fiber reinforced thermoplastic resin composition according to any one of claims 1 to 2 and 4, wherein the composition is -60 to 40.
6. スチレン系樹脂 (SR) が塊状重合で得られたスチレン系樹脂である請 求項 1〜 5の何れか 1項記載の長繊維強化熱可塑性樹脂組成物。  6. The long fiber reinforced thermoplastic resin composition according to any one of claims 1 to 5, wherein the styrene resin (SR) is a styrene resin obtained by bulk polymerization.
7. スチレン系樹脂 (SR) ヽ ナトリウム、 塩素及び硫酸イオンの含有割 合が合計で 10 p pm以下のスチレン系樹脂である請求項 1〜6の何れか 1項 記載の長繊維強化熱可塑性樹脂組成物。  7. Styrenic resin (SR) 長 Long fiber reinforced thermoplastic resin according to any one of claims 1 to 6, which is a styrene resin having a total content of sodium, chlorine and sulfate ions of 10 ppm or less. Composition.
8. スチレン系樹脂 (SR) 力 メルトフローレートが 20 gZl 0m i n以 上のものである請求項 1〜 7の何れか 1項記載の長繊維強化熱可塑性樹脂組成 物。 8. Styrenic resin (SR) force The long fiber reinforced thermoplastic resin composition according to any one of claims 1 to 7, wherein the melt flow rate is 20 gZl 0 min or more.
9. ポリカーボネート樹脂 (PC) の粘度平均分子量が 1 3000〜200 00である請求項 1〜 8の何れか 1項記載の長繊維強化熱可塑性樹脂組成物。 9. The long fiber reinforced thermoplastic resin composition according to any one of claims 1 to 8, wherein the polycarbonate resin (PC) has a viscosity average molecular weight of 13000 to 200000.
10. 荷重たわみ温度 (1. 8 MP a) が 130°C以上である請求項 1〜9 の何れか 1項記載の長繊維強化熱可塑性樹脂組成物。  10. The long fiber reinforced thermoplastic resin composition according to any one of claims 1 to 9, wherein a deflection temperature under load (1.8 MPa) is 130 ° C or higher.
1 1. 強化繊維が、 ガラス、 炭素、 シリコンカーバイ ト、 玄武岩、 ボロン製 の無機繊維;ステンレス製の金属繊維;ァラミ ド、 レーヨン、 ナイロン、 ポリ ナフタレート、 ポリエステル製の有機繊維;セルロース繊維からなる群から選 ばれた少なくとも一種の繊維を含むことを特徴とする請求項 1〜10の何れか 1項記載の長繊維強化熱可塑性榭脂組成物。  1 1. Reinforcing fiber consists of glass, carbon, silicon carbide, basalt, boron inorganic fiber; stainless steel metal fiber; aramid, rayon, nylon, polynaphthalate, polyester organic fiber; cellulose fiber The long fiber reinforced thermoplastic resin composition according to any one of claims 1 to 10, comprising at least one fiber selected from the group.
1 2. 強化繊維が、 エポキシ系バインダーで表面処理されたものである請求 項 1〜 1 1の何れか 1項記載の長繊維強化熱可塑性樹脂組成物。  1 2. The long fiber reinforced thermoplastic resin composition according to any one of claims 1-11, wherein the reinforcing fiber is surface-treated with an epoxy binder.
13. 強化繊維がペレッ トの長さ方向に実質的に平行に配列しており、 円柱 状、 角柱状またはテープ状に賦形され、 4〜 5 Ommのいずれかの長さに切断 された請求項 1〜; 12の何れか 1項記載の長繊維強化熱可塑性樹脂組成物。  13. Claims in which the reinforcing fibers are arranged substantially parallel to the longitudinal direction of the pellet, are shaped like a cylinder, prism, or tape and cut to a length of 4-5 Omm Item 11. A long fiber reinforced thermoplastic resin composition according to any one of Items 1 to 12;
PCT/JP2008/053113 2007-02-23 2008-02-18 Long fiber-reinforced thermoplastic resin composition WO2008102893A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008800059953A CN101622312B (en) 2007-02-23 2008-02-18 Filament-reinforced thermoplastic resin composition
KR1020097015552A KR101122736B1 (en) 2007-02-23 2008-02-18 Long fiber-reinforced thermoplastic resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007043051A JP5226227B2 (en) 2007-02-23 2007-02-23 Long fiber reinforced thermoplastic resin composition
JP2007-043051 2007-02-23

Publications (1)

Publication Number Publication Date
WO2008102893A1 true WO2008102893A1 (en) 2008-08-28

Family

ID=39710163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053113 WO2008102893A1 (en) 2007-02-23 2008-02-18 Long fiber-reinforced thermoplastic resin composition

Country Status (4)

Country Link
JP (1) JP5226227B2 (en)
KR (1) KR101122736B1 (en)
CN (1) CN101622312B (en)
WO (1) WO2008102893A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202013A (en) * 2007-02-23 2008-09-04 Daicel Polymer Ltd Automotive exterior resin part
CN102617986A (en) * 2012-04-05 2012-08-01 天津大学 Method for preparing stainless steel fiber resin matrix composite conductive plastics
WO2016171060A1 (en) * 2015-04-21 2016-10-27 三菱瓦斯化学株式会社 Fiber-reinforced thermoplastic resin composition
WO2020202712A1 (en) * 2019-04-05 2020-10-08 テクノUmg株式会社 Thermoplastic resin composition

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105801A (en) * 2009-11-13 2011-06-02 Olympus Corp Thermoplastic resin composition and molded product
JP5441661B2 (en) * 2009-12-16 2014-03-12 ダイセルポリマー株式会社 Resin composition
FR2956664B1 (en) * 2010-02-19 2013-04-26 L Aveyron Composite Atel NEW COMPOSITE MATERIALS, PROCESSES FOR THEIR MANUFACTURE AND USES THEREOF
CN102181140B (en) * 2011-03-24 2012-07-04 北京化工大学 Carbon fiber silk waste reinforced polycarbonate composite material and preparation method of the carbon fiber silk waste reinforced polycarbonate composite material
CN102836592B (en) * 2011-06-21 2015-02-18 江苏正大森源集团有限公司 Carbon fiber and basalt composite filtering material
JP5938299B2 (en) 2011-10-05 2016-06-22 ダイセルポリマー株式会社 Fiber reinforced resin composition
JP5959183B2 (en) * 2011-11-21 2016-08-02 ダイセルポリマー株式会社 Resin composition
CN102555223A (en) * 2011-12-15 2012-07-11 福安市东风橡胶制品有限公司 Fluorinated silicone rubber extrusion hose using carbon fibers as enhancement layer and manufacturing process for fluorinated silicone rubber extrusion hose
JP5995345B2 (en) * 2011-12-22 2016-09-21 東レ・デュポン株式会社 FIBER REINFORCEMENT, FIBER REINFORCED MOLDED ARTICLE, AND METHOD FOR PRODUCING FIBER REINFORCEMENT
JP6303523B2 (en) * 2013-01-25 2018-04-04 東レ株式会社 Molding materials and molded products
JP5744077B2 (en) * 2013-01-29 2015-07-01 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition and molded article
CN103289348A (en) * 2013-06-25 2013-09-11 苏州新区佳合塑胶有限公司 Silicon carbide fibre enhanced PC/PEI (Polycarbonate/Polyetherimide) composite material
JP6171745B2 (en) * 2013-09-04 2017-08-02 東レ株式会社 Polycarbonate resin molding material and molded article thereof
JP5766864B2 (en) * 2013-10-24 2015-08-19 三菱エンジニアリングプラスチックス株式会社 Resin composition, resin molded product, and method for producing resin molded product
JP6379602B2 (en) * 2014-04-04 2018-08-29 三菱ケミカル株式会社 Reinforcing agent for polycarbonate resin, polycarbonate resin composition and molded product
JP6453575B2 (en) 2014-06-18 2019-01-16 ダイセルポリマー株式会社 Fiber reinforced resin composition
JP2016008278A (en) * 2014-06-25 2016-01-18 三菱レイヨン株式会社 Polycarbonate resin composition and molded article
KR102138698B1 (en) * 2018-10-31 2020-07-29 주식회사 삼양사 Polycarbonate resin composition for fabric looking exterior material with good dimensional stability and flame retardancy and molded article produced therefrom
KR102199984B1 (en) * 2018-11-13 2021-01-11 주식회사 삼양사 Polycarbonate resin composition having excellent surface properties and molded article produced therefrom
CN114014560B (en) * 2021-10-22 2023-02-03 巨石集团有限公司 Glass fiber impregnating compound and application thereof
CN116063835A (en) * 2022-11-26 2023-05-05 天达塑胶制品(惠州)有限公司 Waterproof plastic material and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570677A (en) * 1991-09-13 1993-03-23 Idemitsu Petrochem Co Ltd Electrically conductive resin composition
JPH0693165A (en) * 1992-09-11 1994-04-05 Monsant Kasei Kk Thermoplastic resin composition for glass-fiber-reinforced thin-wall molding
JPH0711100A (en) * 1993-06-28 1995-01-13 Mitsui Toatsu Chem Inc Flame-retardant glass fiber-reinforced resin composition
JPH0820694A (en) * 1994-07-07 1996-01-23 Kanegafuchi Chem Ind Co Ltd Reinforced flame retardant thermoplastic resin composition
JP2002179900A (en) * 2000-12-13 2002-06-26 Daicel Chem Ind Ltd Thermoplastic resin composition for shielding electromagnetic wave and electromagnetic wave shielding article
JP2003516456A (en) * 1999-12-09 2003-05-13 ビーエーエスエフ アクチェンゲゼルシャフト Filler-containing thermoplastic molding materials based on polycarbonate and styrene copolymers
JP2004035812A (en) * 2002-07-05 2004-02-05 Techno Polymer Co Ltd Thermoplastic resin composition and molding
JP2004203929A (en) * 2002-12-24 2004-07-22 Teijin Chem Ltd Thermoplastic resin composition
WO2006014283A1 (en) * 2004-07-02 2006-02-09 General Electric Company Thermoplastic polycarbonate compositions, methods of manufacture, and method of use thereof
JP2007114264A (en) * 2005-10-18 2007-05-10 Teijin Chem Ltd Lens barrel comprising glass fiber reinforced flame-retardant resin composition
JP2007186571A (en) * 2006-01-12 2007-07-26 Teijin Chem Ltd Glass fiber-reinforced aromatic polycarbonate resin composition
JP2008106136A (en) * 2006-10-25 2008-05-08 Sumitomo Dow Ltd Conductive polycarbonate resin composition excellent in warp resistance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180468A (en) * 1997-09-03 1999-03-26 Asahi Chem Ind Co Ltd Resin molding material containing conductive filler
JPH1180465A (en) * 1997-09-17 1999-03-26 Asahi Chem Ind Co Ltd Resin molding material containing conductive filler
JP2002088259A (en) * 2000-09-18 2002-03-27 Toray Ind Inc Molding material, its manufacturing method and its molded article
CN1252180C (en) * 2002-10-16 2006-04-19 中国石油化工股份有限公司 Plastic alloy containing polycarbonate thermoplastic elastomer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570677A (en) * 1991-09-13 1993-03-23 Idemitsu Petrochem Co Ltd Electrically conductive resin composition
JPH0693165A (en) * 1992-09-11 1994-04-05 Monsant Kasei Kk Thermoplastic resin composition for glass-fiber-reinforced thin-wall molding
JPH0711100A (en) * 1993-06-28 1995-01-13 Mitsui Toatsu Chem Inc Flame-retardant glass fiber-reinforced resin composition
JPH0820694A (en) * 1994-07-07 1996-01-23 Kanegafuchi Chem Ind Co Ltd Reinforced flame retardant thermoplastic resin composition
JP2003516456A (en) * 1999-12-09 2003-05-13 ビーエーエスエフ アクチェンゲゼルシャフト Filler-containing thermoplastic molding materials based on polycarbonate and styrene copolymers
JP2002179900A (en) * 2000-12-13 2002-06-26 Daicel Chem Ind Ltd Thermoplastic resin composition for shielding electromagnetic wave and electromagnetic wave shielding article
JP2004035812A (en) * 2002-07-05 2004-02-05 Techno Polymer Co Ltd Thermoplastic resin composition and molding
JP2004203929A (en) * 2002-12-24 2004-07-22 Teijin Chem Ltd Thermoplastic resin composition
WO2006014283A1 (en) * 2004-07-02 2006-02-09 General Electric Company Thermoplastic polycarbonate compositions, methods of manufacture, and method of use thereof
JP2007114264A (en) * 2005-10-18 2007-05-10 Teijin Chem Ltd Lens barrel comprising glass fiber reinforced flame-retardant resin composition
JP2007186571A (en) * 2006-01-12 2007-07-26 Teijin Chem Ltd Glass fiber-reinforced aromatic polycarbonate resin composition
JP2008106136A (en) * 2006-10-25 2008-05-08 Sumitomo Dow Ltd Conductive polycarbonate resin composition excellent in warp resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202013A (en) * 2007-02-23 2008-09-04 Daicel Polymer Ltd Automotive exterior resin part
CN102617986A (en) * 2012-04-05 2012-08-01 天津大学 Method for preparing stainless steel fiber resin matrix composite conductive plastics
WO2016171060A1 (en) * 2015-04-21 2016-10-27 三菱瓦斯化学株式会社 Fiber-reinforced thermoplastic resin composition
WO2020202712A1 (en) * 2019-04-05 2020-10-08 テクノUmg株式会社 Thermoplastic resin composition
JP2020169307A (en) * 2019-04-05 2020-10-15 テクノUmg株式会社 Thermoplastic resin composition

Also Published As

Publication number Publication date
KR20090094467A (en) 2009-09-07
CN101622312B (en) 2012-07-25
CN101622312A (en) 2010-01-06
KR101122736B1 (en) 2012-03-23
JP5226227B2 (en) 2013-07-03
JP2008202012A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
WO2008102893A1 (en) Long fiber-reinforced thermoplastic resin composition
Ou et al. Reinforcing effects of Kevlar fiber on the mechanical properties of wood-flour/high-density-polyethylene composites
JP5021066B2 (en) Method for producing heat-treated carbon long fiber reinforced resin pellets
TWI383403B (en) Electrically conducting polymeric compositions, methods of manufacture thereof and articles comprising the same
KR20170039197A (en) Fibre-reinforced thermoplastic resin moulding material, and fibre-reinforced thermoplastic resin moulded article
JPH02173047A (en) Fiber-reinforced thermoplastic resin composition
JP5434693B2 (en) Molding material
JP5434692B2 (en) Fiber-reinforced propylene resin composition
JP4354776B2 (en) Carbon long fiber reinforced resin pellet, method for producing the same, and molded product
WO2008056646A1 (en) Organic fiber-reinforced composite resin composition and organic fiber-reinforced composite resin molding
JP6968204B2 (en) Thermoplastic Composites, Methods for Making Thermoplastic Composites, and Injection Molded Products
WO2008114459A1 (en) Long-carbon-fiber-reinforced resin molding and process for producing the same
JP4648052B2 (en) Heat treated carbon long fiber reinforced resin pellets
JP2007284631A (en) Thermoplastic resin pellet reinforced with basalt filament
JP2007112041A (en) Carbon filament reinforced resin molded article and its manufacturing method
EP3875533A1 (en) Long fiber-reinforced propylene-based resin composition and long fiber-reinforced molded body
JP2008202013A (en) Automotive exterior resin part
JP2009132772A (en) Composition for automobile interior part
JP2008008404A (en) Fiber-reinforced thermoplastic resin gear
JP6901055B1 (en) Glass direct roving and long glass fiber reinforced thermoplastic resin pellets
JP2001131418A (en) Thermoplastic resin composition, molding material, pellet for injection molding and molded product
JP2003105620A (en) Shell of industrial safety helmet and method for producing the same
JP5238938B2 (en) Long fiber reinforced composite resin composition and molded product
JP2007191540A (en) Thermoplastic resin composition and its manufacturing method
JP2023040741A (en) Structural part composed of thermoplastic resin composition comprising reinforced fiber

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880005995.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711877

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097015552

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08711877

Country of ref document: EP

Kind code of ref document: A1