WO2008102461A1 - 垂直軸型風車 - Google Patents

垂直軸型風車 Download PDF

Info

Publication number
WO2008102461A1
WO2008102461A1 PCT/JP2007/054755 JP2007054755W WO2008102461A1 WO 2008102461 A1 WO2008102461 A1 WO 2008102461A1 JP 2007054755 W JP2007054755 W JP 2007054755W WO 2008102461 A1 WO2008102461 A1 WO 2008102461A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
opening
vertical axis
open
wind turbine
Prior art date
Application number
PCT/JP2007/054755
Other languages
English (en)
French (fr)
Inventor
Tsuneo Noguchi
Original Assignee
Tsuneo Noguchi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsuneo Noguchi filed Critical Tsuneo Noguchi
Priority to AU2007347567A priority Critical patent/AU2007347567B2/en
Priority to CN2007800516140A priority patent/CN101622448B/zh
Priority to US12/528,036 priority patent/US20100021300A1/en
Priority to EP07715313A priority patent/EP2143940A1/en
Priority to CA2677993A priority patent/CA2677993C/en
Publication of WO2008102461A1 publication Critical patent/WO2008102461A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • F03D7/0252Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking with aerodynamic drag devices on the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/305Flaps, slats or spoilers
    • F05B2240/3052Flaps, slats or spoilers adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/90Braking
    • F05B2260/901Braking using aerodynamic forces, i.e. lift or drag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a vertical axis type wind turbine used for wind power generation and the like, and more particularly, an improved blade so that aerodynamic characteristics can be changed according to the rotational motion of the wind turbine.
  • a horizontal axis type wind turbine (propeller type wind turbine) whose rotation axis is horizontal to the wind direction, and a vertical axis whose rotation axis is perpendicular to the wind direction.
  • An axial wind turbine is known.
  • a horizontal axis type windmill has a feature that it is easy to obtain a rotational force (starting force) that starts rotational motion from a rotating stationary state, and a vertical axis type windmill has a feature that it can rotate regardless of the direction of the wind. Have.
  • the vertical axis type windmills work on the blades, such as Sabonius type and paddle type, which use the anti-power acting on the part (blade) that generates the aerodynamic force of the windmill as the main rotational force of the windmill.
  • lift types such as the Darius type and the gyromill type in which the rotational direction component of the lift is the main rotational force of the windmill.
  • Anti-wind type windmills receive wind in the stationary and rotating state, causing drag on the blades.
  • the rotational force generated by this anti-causal force starts (starts) and continues to rotate. Yes.
  • Such an effect is generally called the Sabonius effect.
  • a lift-type wind turbine receives wind in a rotating state, thereby generating a rotational component of lift in the blade, and continues to rotate by the rotational force of the rotational component of this lift.
  • Such an effect is generally called the gyromill effect.
  • the peripheral speed ratio ratio of blade rotation speed to wind speed
  • a drag type vertical axis wind turbine is mechanically incorporated into a lift type vertical axis wind turbine, thereby enabling startup in a low wind speed range (l to 2 mZ sec).
  • Wind turbines for example, Japanese Patent Application Laid-Open No. 2 0 0 6-4 6 3 0 6) and blades with notches and the like, and wind resistance from the rear and anti-wind
  • a Savonius effect is obtained aerodynamically, enabling start-up in a low wind speed range, and improving power generation efficiency in a low wind speed range (2 to 6 m / sec)
  • Wind turbines that make this possible have been devised (for example, Japanese Patent No.
  • the Savonius effect is proportional to the aerodynamic characteristics of the blade shape where the drag acts and its area (flat area perpendicular to the wind direction). The larger the area, the higher the Sabonius effect, and the starting force and rotational force. Can be increased.
  • a vertical axis type windmill has a problem that the gyromill effect cannot be maximized when rotating in the middle / high wind speed region (6 mZ sec or more).
  • the gyromill effect depends on the aerodynamic characteristics of the blade surface where lift acts and its area (blade area) and rotation speed. In particular, by reducing the resistance acting on the blade, the gyromill effect is enhanced and the rotational force is increased. Can. Therefore, there is a risk that anti-fogging sites (notches, etc.) provided to obtain anti-fogging may reduce the gyromill effect when rotating in the middle and high wind speed range.
  • the present invention has been made in view of the above circumstances, and its purpose is to waste wind power in a wide range of wind speeds by adjusting the resistance generated in the blade according to the rotation state of the blade. It is to provide a vertical axis type wind turbine that can be converted into rotational force without any problems.
  • the above object of the present invention is to provide a vertical axis type wind turbine in which a plurality of blades are provided at equiangular intervals around a vertical rotation axis in a plane orthogonal to the vertical rotation axis.
  • a streamlined airfoil having a lift coefficient, an opening / closing member whose front end is pivotally supported on the back surface of the blade, and whose rear end opens / closes with respect to the blade; and a ratio between the rotational speed and the wind speed of the blade Accordingly, this is achieved by including an opening / closing control means for controlling the opening / closing operation of the opening / closing member.
  • the opening / closing control means opens the opening / closing member when the ratio of the rotation speed of the blade to the wind speed is less than 0.8, and the ratio of the rotation speed of the blade to the wind speed is 0. This is effectively achieved by closing the open / close member when the value exceeds 8-1.
  • the object is that the position where the front end portion of the opening / closing member is pivotally supported is a back surface of 65 to 75% from the front edge of the chord length of the blade, and the opening / closing member is The maximum angle that opens with respect to the blade is 30 to 40 °, which is effectively achieved.
  • the above object is effectively achieved by forming the blade from a light metal such as an aluminum alloy or a titanium alloy or a composite material such as a fiber reinforced plastic.
  • the above object is effectively achieved because the blade shape of the blade is the shape used for the main wing of a light aircraft with asymmetric wings (aircraft with a takeoff weight of 5700 kgf or less). Is done.
  • the opening / closing control means is fixed to an arm member erected from the front end portion of the opening / closing member toward the inside of the blade, the tip end portion of the arm member, and the inner wall of the blade. Generated by the mass of the opening / closing member transmitted through the arm member, and a spring member that connects the spring support member and a stopper member that restricts the movable range of the tip of the arm member. This is effectively achieved by controlling the opening / closing operation of the opening / closing member by the centrifugal force and the elastic force of the spring / actuator.
  • the above object is that if the spring constant of the spring / actuator is greater than 0.8 to 1.0, the centrifugal force generated by the mass of the opening / closing member is reduced. This is achieved effectively by setting it to be larger than the elastic force of Actu Yue.
  • the object is achieved effectively by the opening / closing member having a weight for adjusting the opening / closing operation at a rear portion of the surface facing the blade.
  • An open / close determining unit that determines whether the open / close member is open or closed according to a ratio between a rotational speed of the blade and a wind speed; and the open / close member according to an open Z close signal output from the open / close determination unit. It is effectively achieved by providing an action to open / close the. Further, the above object is effectively achieved by the fact that the above-mentioned action is one of electric type, hydraulic type, and pneumatic type.
  • the opening / closing member that is pivotally supported on the back surface of the streamline blade type blade having a lift coefficient of 1.0 or more so as to be openable and closable with respect to the blade.
  • the aerodynamic characteristics can be changed by opening and closing the opening / closing member.
  • the resistance generated in the blade can be increased by 8 to 15 times by changing the opening / closing member from the closed state to the open state.
  • the opening / closing member is opened to It is possible to improve the Sabonius effect by increasing the resistance caused by the wind received, while the medium and high wind speed range (the ratio of the blade rotation speed to the wind speed exceeds 0.8 to 1).
  • the rotating state by closing the opening / closing member, the resistance generated in the blade can be reduced, and the gyromill effect can be improved by the rotational direction component of the lift acting on the blade.
  • the vertical axis type wind turbine according to the present invention has the advantages of the anti-vertical type vertical axis wind turbine and the lift type vertical axis type wind turbine, thereby maximizing the Savonius effect and the gyromill effect. Can do.
  • the starting wind speed of the vertical axis type wind turbine (the wind speed necessary for starting from a rotating stationary state) can be made lower than that of the conventional vertical axis type wind turbine, and the low wind speed range (2 to 6 m_sec.
  • the rotational speed in the middle and high wind speed range (6 mZ sec or more) can be further increased. That is, a wide range of wind In the speed range, the efficiency of the windmill (efficiency for converting wind power into rotational force) can be greatly improved, and power generation efficiency can be improved.
  • the front end of the opening / closing member is pivotally supported on the back surface at a position 65 to 75% from the front edge of the blade chord length (longitudinal width of the blade cross section), and the opening / closing member is By making it open 30 to 40 degrees at the maximum, the efficiency of the wind turbine can be greatly improved, especially in the range of wind speeds of 1 to 2 O mZ sec.
  • a spring actuate that connects an arm member standing from the front end of the opening and closing member toward the inside of the blade, and a spring support member fixed to the tip of the arm member and the inner wall of the blade;
  • an opening / closing control means consisting of a stopper member that limits the movable range of the tip of the arm member, the centrifugal force generated by the mass of the opening / closing member transmitted through the arm member and the elasticity of the spring / architecture
  • the opening / closing operation of the opening / closing member can be automatically controlled by the force.
  • the centrifugal force applied to the spring / actuator can be finely adjusted. It is possible to finely adjust the opening / closing operation of the opening / closing member without changing the installed spring / architecture.
  • the open / close control means includes an open / close determining unit that determines whether the open / close member is open or closed according to a ratio between the rotational speed of the blade and the wind speed, and an open / close member according to an open / close signal output from the open / close determining unit. Is an open and closed state.
  • an electric, hydraulic, or pneumatic type in Kuchiyue overnight a blade opening / closing mechanism can be adopted even for a large vertical axis type windmill.
  • FIG. 1 is a top view schematically showing a vertical axis wind turbine according to a first embodiment of the present invention.
  • FIG. 2 is a partially cutaway front view schematically showing a vertical axis type windmill viewed from the direction of arrows I I in FIG.
  • FIG. 3 is a perspective view schematically showing a blade of the vertical axis wind turbine according to the first embodiment.
  • FIG. 4 is a cross-sectional view of an essential part schematically showing the internal structure of the blade of the vertical axis wind turbine according to the first embodiment.
  • FIG. 5 is a cross-sectional view of an essential part schematically showing a state in which the opening / closing member of the blade of FIG. 4 is closed.
  • FIG. 6 is a diagram for explaining the rotation operation in a state where the opening / closing member of the vertical axis type wind turbine according to the first embodiment is opened.
  • FIG. 7 is a diagram for explaining the rotation operation in a state where the opening / closing member of the vertical axis wind turbine according to the first embodiment is closed.
  • FIG. 8 is a structural diagram showing a schematic configuration of a vertical axis wind turbine according to the second embodiment of the present invention.
  • FIG. 1 is a top view schematically showing a vertical axis wind turbine according to the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the vertical axis wind turbine viewed from the direction of arrow II in FIG. In It is a partially broken front view shown.
  • a vertical axis type windmill 1 includes a vertical rotating shaft 2 having a lower end connected to a generator or the like (not shown), and a circle having the same radius in a plane orthogonal to the rotating shaft 2.
  • Four blade-shaped blades 3, 3,... are arranged in parallel to the rotating shaft 2 at equiangular intervals along the circumferential direction (90 ° intervals in this embodiment).
  • Each blade 3 is fixed to an end portion of a support track 4 extending radially from the rotating shaft 2 with a predetermined mounting angle (90 ° in the present embodiment) with respect to the support track. Therefore, the rotation of the blade 3 by the wind force is transmitted to the rotating shaft 2 through the support track 4.
  • the outer skin of the blade 3 is made of a thin plate material made of a light metal such as an aluminum alloy or a titanium alloy, or a composite material such as a fiber reinforced plastic (FRP).
  • the blade 3 has a streamlined shape with a lift coefficient of 1.0 or more (preferably 1.0 to 1.4), and in particular, a light aircraft with an asymmetric wing (takeoff weight 5 7 0 0 0
  • the shape used for the main wing of airplanes of kg ⁇ or less for example, 4-letter airfoil, RAF airfoil, Göttingen airfoil, etc.
  • the surface of the blade 3 having a large bulge is the surface of the blade 3
  • the surface of the airfoil having a small bulge is the back surface of the blade 3.
  • FIG. 3 is a perspective view schematically showing the external appearance of the blade of the vertical axis wind turbine according to the present embodiment
  • FIG. 4 is a cross-sectional view of the main part schematically showing the internal structure of the blade. .
  • a blade support girder 5 having a substantially U-shaped cross section is disposed inside the blade 3, and the blade support girder 5 prevents deformation of the blade 3 during rotation.
  • the blade 3 is fixed to the end portion of the support rack 4 by means of the track support brackets 6 and 6 provided at the base end portion of the blade support beam 5 and the rear front portion of the blade 3.
  • the outer skin of the rear part of the back surface of the blade 3 is pivotally supported by the rear surface of the blade 3 via a hinge 7 and the rear end part is blurred.
  • Opening / closing member 8 that opens and closes to the door 3.
  • the position where the front end portion of the opening / closing member 8 is pivotally supported is preferably the back surface of 65 to 75% from the front edge of the chord length of the blade 3.
  • an arm member 9 standing from the front end of the opening / closing member 8 toward the inside of the blade 3, and a spring support fixed to the tip of the arm member 9 and the inner wall of the blade
  • An opening / closing control means 1 3 comprising a spring actuator 1 arranged so as to connect the member 10 and a stopper member 12 2 for restricting the movable range of the tip of the arm member 9 is provided. Is provided.
  • the opening / closing control means 13 controls the opening / closing operation of the opening / closing member 8 by the centrifugal force generated by the mass of the opening / closing member 8 transmitted through the arm member 9 and the inertia force of the spring actuator 11.
  • the spring constant of spring 1 1 is that the centrifugal force generated by the mass of the opening / closing member 8 is reduced when the peripheral speed ratio (ratio between the rotational speed of the blade 3 and the wind speed) exceeds 0.8 to 1.0. It is set to be larger than the inertia of 1 1 As a result, when the opening / closing member 8 in the open state exceeds the predetermined peripheral speed ratio, it is closed as shown in FIG. That is, at least in the rotating state where the peripheral speed ratio exceeds 1 ⁇ 0, the blade 3 is in the closed state.
  • the maximum angle in the open state in which the opening / closing member 8 is open with respect to the blade 3 is set according to the position where the stopper member 12 is provided, and the angle is preferably 30 ° to 40 °.
  • a weight 14 is attached to the rear of the surface of the opening / closing member 8 facing the blade 3.
  • This weight 14 is for finely adjusting the centrifugal force applied to the spring actuary 11 and is arranged inside the blade 3 by fine adjustment of the weight 14. Without changing the spring actuator 11, the fine adjustment of the opening / closing operation of the opening / closing member 8, that is, the setting of the peripheral speed ratio at which the opening / closing member 8 is closed can be changed.
  • the rear surface of the rear surface of the blade 3 Although the outer shell itself is the opening / closing member 8, the present invention is not limited to this.
  • the front end portion of another plate-like member is rotatably attached to the back surface of the blade 3, and the rear end portion is A member that can be opened and closed with respect to the blade 3 may be used as the opening and closing member 8.
  • three open / close control means 13 are arranged at equal intervals along the longitudinal direction inside each blade 3.
  • the present invention is not limited to this, and the number and position of the opening / closing control means 13 disposed as required can be changed.
  • FIG. 6 the rotation operation of the vertical axis wind turbine according to this embodiment will be described with reference to FIGS. 6 and 7.
  • FIG. 6 the rotation operation of the vertical axis wind turbine according to this embodiment will be described with reference to FIGS. 6 and 7.
  • FIG. 6 is a diagram for explaining the rotation operation in a state in which the opening / closing member of the vertical axis wind turbine according to the present embodiment is open
  • FIG. 7 is an illustration of the opening / closing member of the vertical axis wind turbine according to the present embodiment. It is a figure explaining rotation operation of a closed state.
  • the open / close member 8 of each blade 3 of the vertical axis wind turbine 1 is shown in FIG. 6 in the spring stationary state as shown in FIG. It is in the open state by the inertial force.
  • the wind received from the rear of the blade 3 rather than the resistance (blade on the upper side of FIG. 6) generated by the wind received from the front of the blade 3
  • the resulting resistance (the lower blade in Fig. 6) is larger.
  • this anti-power difference activates the windmill 1 as a rotational force, and the rotation of the windmill 1 is maintained by the Saponius effect.
  • the opening / closing member 8 that is pivotally supported to be openable / closable with respect to the blade 3 is provided on the back surface of the streamlined blade-type play 3.
  • the aerodynamic characteristics of the blade 3 are suitable for its rotational state.
  • the shape can be changed automatically.
  • the opening / closing member 8 is opened to generate the wind received from the rear of the blade.
  • the Sabotius effect can be improved by increasing the resistance.
  • the opening / closing member 8 By closing the, the resistance generated in the blade 3 can be reduced, and the gyromill effect can be improved by the rotational direction component of the lift acting on the blade 3 [second embodiment]
  • FIG. 8 is a structural diagram showing a schematic configuration of a vertical axis wind turbine according to the second embodiment of the present invention.
  • the vertical axis wind turbine 1A according to the present embodiment is the same as the vertical axis of the first embodiment described above except that the configuration of the open / close control means 1 3A is different from the open / close control means 1 3A of the first embodiment.
  • the configuration of the type wind turbine 1 is the same. Therefore, in this embodiment, the same members as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
  • an opening / closing control unit 13 A for controlling the opening / closing operation of the opening / closing member 8 is received by a rotational speed sensor 15 for detecting the rotational speed of the blade 3 A and a vertical axis wind turbine 1.
  • the peripheral speed ratio (ratio between the rotational speed of the blade 3 A and the wind speed) is calculated based on the detection values of the wind speed sensor 16 that detects the wind speed, and the rotation speed sensor 15 and the wind speed sensor 16. It is determined whether or not the calculated peripheral speed ratio exceeds a predetermined value.
  • the open / close determination unit 17 and the open / close member 8 are closed according to the open Z-close signal output from the open / close determination unit 17. It is equipped with 1 1 A and 1
  • Open / close control means 1 3 The open / close determination unit 17 of A determines whether the open Z closed state is the same as in the first embodiment described above, whether or not the peripheral speed ratio exceeds 0.8 to 1.0.
  • the blade 3 is in the closed state at least in the rotational state where the peripheral speed ratio is 1.0 or more.
  • the opening / closing control means 1 3 A actuate 11 1 A makes the opening / closing member 8 open / closed by linearly moving in response to the opening / closing signal output from the opening / closing determination unit. Yes, it can be driven by electricity, hydraulics or pneumatics.
  • the vertical axis type wind turbine 1 A can obtain the same functions and effects as those of the first embodiment described above.
  • 1 A an electric, hydraulic, or pneumatic one is used. Therefore, the open / close mechanism of blade 3 A can be used for a large vertical axis wind turbine.
  • the vertical axis wind turbine according to the present invention can effectively convert wind power into rotational force in a wide range of wind speeds from a low wind speed range to a high wind speed range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

垂直回転軸に直交する面内で、該垂直回転軸を中心として等角度間隔に複数のブレードが設けられた垂直軸型風車において、ブレードが、1.0以上の揚力係数を有する流線形の翼型であり、かつ、前端部がブレードの裏面に軸支され、後端部がブレードに対して開閉する開閉部材と、ブレードの回転速度と風速の比に応じて、開閉部材の開閉動作を制御する開閉制御手段とを備えている。

Description

明 細 書 垂直軸型風車 技術分野
本発明は、 風力発電などに使用される垂直軸型風車に関し、 より詳細には 、 風車の回転運動に応じて空気力学特性を変えられるようにブレードを改良し たものである。 背景技術
一般に、 風力発電用の風車には、 回転軸が風の方向に対して水平になって いる水平軸型風車 (プロペラ型風車) と、 回転軸が風の方向に対して垂直にな つている垂直軸型風車とが知られている。 水平軸型風車は、 回転静止状態から 回転運動を開始する回転力 (起動力) を得やすいという特徴を有し、 垂直軸型 風車は、 風の方向に関係なく回転することができるという特徴を有する。
このうち、 垂直軸型風車には、 風車の空気力を発生させる部位 (ブレード ) に働く抗カを風車の主たる回転力とするサボ二ウス型、 パドル型などの抗カ 型と、 ブレードに働く揚力の回転方向成分を風車の主たる回転力とするダリゥ ス型、 ジャイロミル型などの揚力型とが知られている。
抗カ型の風車は、 回転静止状態および回転状態で風を受けることにより、 ブレードに抗力が生じ、 この抗カによる回転力によって回転運動を開始 (起動 ) し、 回転を継続するようになっている。 このような効果は、 一般的にサボ二 ウス効果と呼ばれている。
一方、 揚力型の風車は、 回転状態で風を受けることにより、 ブレードに揚 力の回転方向成分が生じ、 この揚力の回転方向成分による回転力によって回転 を継続するようになっている。 このような効果は、 一般的にジャイロミル効果 と呼ばれている。 ところが、 抗カ型の垂直軸型風車の場合、 周速比 (ブレードの回転速度と 風速の比) が 1となると、 風車をそれ以上に回すモーメントが発生せず、 風速 が上がっても、 それ以上の回転数が得られず、 発電効率が悪いという問題があ つた。
一方、 揚力型の垂直軸型風車の場合、 周速比が 1以上では、 風車の空カ特 性が良くなり、 上述したジャイロミル効果により回転数を増大することができ るが、 周速比が 1以下では、 風車の空力特性が悪くなり、 風車を回すモーメン ト (回転力) が小さくなつてしまい、 特に、 回転静止状態では風を受けてもブ レ一ドに働く揚力の回転方向成分が生じないため、 回転力が得られない、 とい う問題があった。
そこで、 このような問題点を改善するために、 揚力型の垂直軸型風車に抗 力型の垂直軸型風車を機械的に組み込むことにより、 微風速域 (l〜2 mZ s e c ) での起動を可能にした風車 (例えば、 日本国特開 2 0 0 6 - 4 6 3 0 6 号公報) や、 ブレードに切欠き部などを形成し、 後方からの風による抗力と前 方からの抗カとの差を生じる形状にすることにより、 空気力学的にサボ二ウス 効果を得て、 微風速域での起動を可能にし、 低風速域 (2〜6 m/ s e c ) で の発電効率を高めることを可能にした風車などが考案されている (例えば、 日 本国特許第 3 4 5 1 0 8 5号公報)。 サボ二ウス効果は、 抗力が働くプレード形 状の空力特性とその面積 (風向に直角な平面積) に比例し、 この面積が大きく なればサボ二ウス効果が高くなり、 起動力および回転力を増大することができ る。
しかしながら、 このような垂直軸型風車では、 中 ·高風速域 (6 mZ s e c以上) で回転する場合に、 ジャイロミル効果を最大限に引き出すことができ ない、 という問題があった。 ジャイロミル効果は、 揚力が働くブレード面の空 力特性とその面積 (ブレード面積)、 回転速度に依存する。 特に、 ブレードに働 く抗カを減少することによってジャイロミル効果は高くなり、 回転力を増大す ることができる。 したがって、 抗カを得るために設けられた抗カ発生部位 (切 欠き部など) は、 中 ·高風速域で回転する場合のジャイロミル効果を低減させ てしまう虞があった。
このため、 垂直軸型風車には、 サボ二ウス効果をこれまで以上に高めて、 風車が起動する風速をさらに低くし、 低風速域での回転力を増大するとともに 、 中 ·髙風速域ではブレードの抗カを極力低減させてジャイロミル効果を高め ることによって、 使用可能風速範囲を拡大して、 発電効率をより一層向上させ ることが求められていた。 発明の開示
本発明は、 上記事情に鑑みてなされたものであり、 その目的とするところ は、 ブレードの回転状態に応じて、 そのブレードに生じる抗カを調整すること により、 広範囲の風速域で風力を無駄なく回転力に変換できるようにした垂直 軸型風車を提供することにある。
本発明の上記目的は、 垂直回転軸に直交する面内で、 該垂直回転軸を中心 として等角度間隔に複数のブレードが設けられた垂直軸型風車において、 前記 ブレードが、 1 . 0以上の揚力係数を有する流線形の翼型であり、 かつ、 前端 部が前記ブレードの裏面に軸支され、 後端部が前記ブレードに対して開閉する 開閉部材と、 前記ブレードの回転速度と風速の比に応じて、 前記開閉部材の開 閉動作を制御する開閉制御手段とを備えたことにより、 達成される。
また、 上記目的は、 前記開閉制御手段が、 前記ブレードの回転速度と風速 の比が 0 . 8未満の場合には前記開閉部材を開状態にし、 前記ブレードの回転 速度と風速の比が 0 . 8〜1を超えた時点で、 前記開閉部材を閉状態にするこ とにより、 効果的に達成される。
また、 上記目的は、 前記開閉部材の前端部が軸支される位置が、 前記プレ 一ドの翼弦長の前縁から 6 5〜7 5 %の裏面であり、 かつ、 前記開閉部材が前 記ブレードに対して開く最大角が、 3 0〜4 0 ° であることにより、 効果的に 達成される。
また、 上記目的は、 前記ブレードが、 アルミニウム合金、 チタニウム合金 などの軽金属、 あるいは繊維強化プラスチックなどの複合材によって成形され たことにより、 効果的に達成される。
また、 上記目的は、 前記ブレードの翼形が、 非対称翼の軽飛行機 (離陸重 量 5 7 0 0 k g f以下の飛行機) の主翼に使用されている形状であることによ り、 効果的に達成される。
また、 上記目的は、 前記開閉制御手段が、 前記開閉部材の前端部から前記 ブレードの内部方向に立設されたアーム部材と、 該ァ一ム部材の先端部と前記 ブレードの内壁に固設されたスプリング支持部材とを連結するスプリング ·ァ クチユエ一夕と、 前記アーム部材の先端部の可動域を制限するストッパー部材 とを備え、 前記アーム部材を介して伝達される前記開閉部材の質量により生じ る遠心力と前記スプリング ·ァクチユエ一夕の弾性力とによって、 前記開閉部 材の開閉動作を制御することにより、 効果的に達成される。
また、 上記目的は、 前記スプリング ·ァクチユエ一夕のばね定数が、 前記 プレードの回転速度と風速の比が 0 . 8〜 1 . 0を超えると、 前記開閉部材の 質量により生じる遠心力がスプリング ·ァクチユエ一夕の弾性力より大きくな るように設定されたことにより、 効果的に達成される。
また、 上記目的は、 前記開閉部材が、 前記ブレードに対向する面の後部に 開閉動作を調整するための重りを備えていることにより'、 効果的に達成される また、 上記目的は、 前記開閉制御手段が、 前記ブレードの回転速度と風速 の比に応じて前記開閉部材の開ノ閉を判断する開閉判断部と、 該開閉判断部か ら出力された開 Z閉信号に応じて前記開閉部材を開状態/閉状態にするァクチ ユエ一夕とを備えていることにより、 効果的に達成される。 さらに、 上記目的は、 前記ァクチユエ一夕が、 電動式、 油圧式、 空気圧式 のいずれかであることにより、 効果的に達成される。
以上のように、 本発明に係る垂直軸型風車によると、 1 . 0以上の揚力係 数を有する流線形翼型のブレードの裏面に、 該ブレードに対して開閉可能に軸 支される開閉部材を設け、 該開閉部材を開閉することによって空気力学的特性 を変えられるようにした。 これにより、 開閉部材を閉状態から開状態にするこ とによって、 ブレードに生じる抗カを 8〜1 5倍にすることができる。 この結 果、 回転静止状態を含む低風速域 (ブレードの回転速度と風速の比が 0 . 8〜 1を超えていない回転状態) では、 開閉部材を開状態にすることで、 ブレード の後方から受ける風により生じる抗カを増大して、 サボ二ウス効果の向上を図 ることができ、 一方、 中 ·高風速域 (ブレードの回転速度と風速の比が 0 . 8 〜1を超えている回転状態) では、 開閉部材を閉状態にすることで、 ブレード に生じる抗カを低減して、 ブレードに働く揚力の回転方向成分によるジャイロ ミル効果の向上を図ることができる。 すなわち、 本発明に係る垂直軸型風車は 、 抗カ型の垂直軸型風車と揚力型の垂直軸型風車の長所を併せ持つことにより 、 サボ二ウス効果とジャイロミル効果とを最大限に引き出すことができる。
例えば、 本発明に係る垂直軸型風車と特許文献 1に開示される風車と比較 すると、 同一条件下において、 開閉部材を開状態にすることにより、 サボニゥ ス効果を 2〜 3倍に向上することができ、 より低い風速でも静止回転状態の風 車を起動することが可能である。 また、 開閉部材を閉状態にすることにより、 ブレードの空力特性 (特に抗カ係数) を 1 0〜2 0 %低減することができ、 ジ ャイロミル効果を大きいく向上することができる。 よって、 垂直軸型風車の起 動風速 (回転静止状態から起動するのに必要な風速) を従来の垂直軸型風車よ りもさらに低くすることができるとともに、 低風速域 (2〜6 m_ s e c ) に おける回転力を大幅に増大することができ、 かつ、 中 ·高風速域 (6 mZ s e c以上) での回転数をさらに増大させることができる。 すなわち、 広範囲の風 速域において、 風車の効率 (風力を回転力に変換する効率) を大幅に向上させ 、 発電効率などの向上を図ることができる。
また、 ブレードの翼弦長 (ブレードの断面の長手方向幅) の前縁から 6 5 〜7 5 %の位置の裏面に開閉部材の前端部を軸支するとともに、 開閉部材をブ レードに対して最大で 3 0〜4 0 ° 開くようにしたことにより、 特に風速 1〜 2 O mZ s e cの範囲における風車の効率を大幅に向上させることがことがで きる。
また、 開閉部材の前端部からブレードの内部方向に立設されたアーム部材 と、 該アーム部材の先端部とブレードの内壁に固設されたスプリング支持部材 とを連結するスプリング ·ァクチユエ一夕と、 アーム部材の先端部の可動域を 制限するストッパー部材とからなる開閉制御手段を設けたことにより、 アーム 部材を介して伝達される開閉部材の質量により生じる遠心力とスプリング ·ァ クチユエ一夕の弾性力とによって、 開閉部材の開閉動作を自動的に制御するこ とができる。 特に、 スプリング ·ァクチユエ一夕のばね定数を、 周速比 (ブレ ードの回転速度と風速の比) が 0 . 8〜1 . 0を超えると、 開閉部材の質量に より生じる遠心力がスプリング ·ァクチユエ一夕の弾性力より大きくなるよう に設定することにより、 風力を回転状態に応じて無駄なく回転力に変換するこ とができる。
また、 開閉部材のブレードに対向する面の後部に重りを取り付け、 該重り を微調整することによって、 スプリング ·ァクチユエ一夕に付与される遠心力 を微調整することができるので、 ブレードの内部に配設されたスプリング ·ァ クチユエ一夕を変更することなく、 開閉部材の開閉動作を微調整することがで さる。
さらに、 開閉制御手段を、 ブレードの回転速度と風速の比に応じて開閉部 材の開ノ閉を判断する開閉判断部と、 該開閉判断部から出力された開ノ閉信号 に応じて開閉部材を開状態ノ閉状態にするァクチユエ一夕とから構成し、 該ァ クチユエ一夕に電動式、 油圧式、 あるいは空気圧式のものを用いることにより 、 大型の垂直軸型風車にも、 ブレードの開閉機構を採用することができる。 図面の簡単な説明
第 1図は、 本発明の第 1実施形態に係る垂直軸型風車を概略的に示す上面 図である。
第 2図は、 第 1図中の I I矢印方向から見た垂直軸型風車を概略的に示す一 部破断正面図である。
第 3図は、 第 1実施形態に係る垂直軸型風車のブレードを概略的に示す斜 視図である。
第 4図は、 第 1実施形態に係る垂直軸型風車のブレードの内部構造を概略 的に示す要部断面図である。
第 5図は、 第 4図のブレードの開閉部材が閉じた状態を概略的に示す要部 断面図である。
第 6図は、 第 1実施形態に係る垂直軸型風車の開閉部材が開いた状態の回 転動作を説明する図である。
第 7図は、 第 1実施形態に係る垂直軸型風車の開閉部材が閉じた状態の回 転動作を説明する図である。
第 8図は、 本発明の第 2実施形態に係る垂直軸型風車の概略構成を示す機 構図である。 発明を実施するための最良の形態
以下、 図面を参照にしながら本発明の実施形態について説明する。
[第 1実施形態]
第 1図は、 本発明の第 1実施形態に係る垂直軸型風車を概略的に示す上面 図であり、 第 2図は、 第 1図中の I I矢印方向から見た垂直軸型風車を概略的に 示す一部破断正面図である。
本実施形態に係る垂直軸型風車 1は、 下端部が発電機等 (図示せず) に連 結された垂直な回転軸 2を備え、 該回転軸 2に直交する面内で同一半径の円周 方向に沿って等角度間隔 (本実施形態では 9 0 ° 間隔) で 4枚の翼型のブレー ド 3 , 3 · · ·が回転軸 2に平行に配されている。 各ブレード 3は、 回転軸 2 から放射状に延びる支持ストラック 4の端部に、 該支持ストラックに対して所 定の取付角 (本実施形態では 9 0 ° ) で固定されている。 よって、 風力による ブレード 3の回転は、 支持ストラック 4を介して回転軸 2に伝達される。
ブレード 3の外皮は、 アルミニウム合金やチタニウム合金などの軽金属、 あるいは繊維強化プラスチック (F R P ) などの複合材などの材質からなる薄 板状の素材から形成され いる。 また、 ブレード 3の翼形は、 1 . 0以上 (好 ましくは 1 . 0〜 1 . 4 ) の揚力係数を有する流線形であり、 特に、 非対称翼 の軽飛行機 (離陸重量 5 7 0 0 k g ί以下の飛行機) の主翼に使用されている 形状 (例えば 4字系翼型、 R A F翼型、 ゲッチンゲン翼型など) が好ましい。 なお、 本実施形態では、 翼型の膨らみが大きい面 (外周側の面) をブレード 3 の表面とし、 翼型の膨らみが小さい面 (内周側の面) をブレード 3の裏面とす る。
第 3図は、 本実施形態に係る垂直軸型風車のブレードの外観を概略的に示 す斜視図であり、 第 4図は、 そのブレードの内部構造を概略的に示す要部断面 図である。
ブレード 3の内部には、 第 4図に示すように、 断面略コ字状のブレード支 持桁 5が配設され、 該ブレード支持桁 5によって、 回転時におけるブレード 3 の変形などを防止している。 ブレード 3は、 ブレード支持桁 5の基端部とブレ —ド 3の裏面前方部とに設けられたストラック支持金具 6 , 6により、 支持ス 卜ラック 4の端部に固定される。 このブレード 3の裏面後方部の外皮は、 前端 部がブレード 3の裏面にヒンジ 7を介して軸支されるとともに、 後端部がブレ —ド 3に対して開閉する開閉部材 8になっている。 この開閉部材 8の前端部が 軸支される位置は、 ブレード 3の翼弦長の前縁から 6 5〜7 5 %の裏面である ことが望ましい。
また、 ブレード 3の内部には、 この開閉部材 8の前端部からブレード 3の 内部方向に立設されたアーム部材 9と、 該アーム部材 9の先端部とブレードの 内壁に固設されたスプリング支持部材 1 0とを連結するように配されたスプリ ング ·ァクチユエ一夕丄 1と、 ァ一ム部材 9の先端部の可動域を制限するスト ッパー部材 1 2とからなる開閉制御手段 1 3が備えられている。 この開閉制御 手段 1 3は、 アーム部材 9を介して伝達される開閉部材 8の質量により生じる 遠心力とスプリング ·ァクチユエ一タ 1 1の弹性カとによって、 開閉部材 8の 開閉動作を制御する。 スプリング ·ァクチユエ一夕 1 1のばね定数は、 周速比 (ブレード 3の回転速度と風速の比) が 0 . 8〜1 . 0を超えると、 開閉部材 8の質量により生じる遠心力がスプリング ·ァクチユエ一夕 1 1の弹性力より 大きくなるように設定されている。 これにより、 開状態だった開閉部材 8は、 上記所定の周速比を超えると、 第 5図に示すように閉状態になる。 すなわち、 少なくとも周速比が 1 · 0を超えている回転状態では、 ブレード 3は閉状態に なっている。 なお、 開閉部材 8がブレード 3に対して開いている開状態時の最 大角は、 ストッパー部材 1 2を設ける位置によって設定され、 その角度は 3 0 〜4 0 ° であることが望ましい。
また、 開閉部材 8のブレード 3に対向する面の後部には、 重り 1 4が取り 付けられている。 この重り 1 4は、 スプリング ·ァクチユエ一夕 1 1に付与さ れる遠心力を微調整するためのものであり、 この重り 1 4の微調整により、 ブ レ一ド 3の内部に配設されたスプリング ·ァクチユエ一タ 1 1を変更すること なく、 開閉部材 8の開閉動作の微調整、 すなわち、 開閉部材 8が開状態から閉 状態になる周速比の設定を変更することができる。
なお、 本実施形態に係る垂直軸型風車 1では、 ブレード 3の裏面後方部の 外皮自体を開閉部材 8としたが、 本発明はこれに限定されるものではなく、 例 えば、 別の板状部材の前端部をブレード 3の裏面に回動自在に取り付けて、 後 端部がブレード 3に対して開閉するようにしたものを開閉部材 8として用いて もよい。
また、 各ブレード 3の内部には、 第 2図に示すように、 長手方向に沿って 等間隔に 3つの開閉制御手段 1 3 (アーム部材 9 ) が配設されているが、 本発 明はこれに限定されるものではなく、 必要に応じて配設される開閉制御手段 1 3の数および位置を変更することができる。
次に、 本実施形態に係る垂直軸型風車の回転動作について、 第 6図および 第 7図を参照にしながら説明する。
第 6図は、 本実施形態に係る垂直軸型風車の開閉部材が開いた状態の回転 動作を説明する図であり、 第 7図は、 本実施形態に係る垂直軸型風車の開閉部 材が閉じた状態の回転動作を説明する図である。
本実施形態に係る垂直軸型風車 1の各ブレード 3の開閉部材 8は、 周速比 が低い回転静止状態や低速回転状態においては、 第 6図に示すように、 スプリ ング ·ァクチユエ一夕 8の弹性力によって開状態になっている。 この開閉部材 8が開状態であるブレード 3に風が当たった場合、 ブレード 3の前方から受け る風により生じる抗カ (第 6図上側のブレード) よりも、 ブレード 3の後方か ら受ける風により生じる抗カ (第 6図下側のブレード) の方が大きい。 回転静 止状態や低速回転状態では、 この抗カ差が回転力として風車 1を起動させ、 サ ポニウス効果によって風車 1の回転を維持するようになっている。
一方、 周速比が 0 . 8〜1 . 0 (好ましくは 1 . 0 ) を超えてブレ一ド 3 が中 '高速回転状態になると、 第 7図に示すように、 開閉部材 8に働く遠心力 がスプリング ·ァクチユエ一夕 8の弾性力より大きくなり、 各ブレード 3の開 閉部材 8が閉状態になる。 回転中のブレード 3には、 回転速度と風の合成風力 が働き、 プレード 3には揚力が発生する。 この揚力の回転方向成分がブレード 3の前進力となり、 ジャイロミル効果によって風車 1の回転を維持するように なっている。
要するに、 本実施形態に係る垂直軸型風車 1では、 第 6図に示すような抗 力型のブレード 3の場合、 周速比が 1を超えると、 風車 1をそれ以上に回すモ 一メントが発生せず、 風速が上がってもそれ以上の回転数を得ることができな いので、 周速比が 0 . 8〜1 . 0を超えた時点で開閉部材 8を閉状態にして、 揚力型のブレード 3に変更するようになっている。
以上のように、 本実施形態に係る垂直軸型風車 1では、 流線形翼型のプレ ード 3の裏面に、 該ブレード 3に対して開閉可能に軸支される開閉部材 8を設 け、 該開閉部材 8の開閉状態を、 スプリング ·ァクチユエ一夕 1 1の弹性力と 開閉部材 8に働く遠心力とによつて制御することにより、 ブレード 3の空気力 学的特性をその回転状態に適した形状に自動的に変えられるようにした。 これ により、 回転静止状態を含む低風速域 (周速比が 0 . 8〜1を超えていない回 転状態) では、 開閉部材 8を開状態にすることで、 ブレードの後方から受ける 風により生じる抗カを増大して、 サボ二ウス効果の向上を図ることができ、 一 方、 中 ·高風速域 (周速比が 0 . 8〜1を超えている回転状態) では、 開閉部 材 8を閉状態にすることで、 ブレード 3に生じる抗カを低減して、 ブレード 3 に働く揚力の回転方向成分によるジャイロミル効果の向上を図ることができる [第 2実施形態]
第 8図は、 本発明の第 2実施形態に係る垂直軸型風車の概略構成を示す機 構図である。 なお、 本実施形態に係る垂直軸型風車 1 Aは、 開閉制御手段 1 3 Aの構成が第 1実施形態の開閉制御手段 1 3 Aとは異なる以外は、 上述した第 1実施形態の垂直軸型風車 1の構成と同一である。 よって、 本実施形態におい て、 上述した第 1実施形態と同一の部材には同一の符号を付して、 その説明を 省略する。 同図において、 開閉部材 8の開閉動作を制御する開閉制御部 1 3 Aは、 ブ レ一ド 3 Aの回転速度を検出する回転速度センサ 1 5と、 垂直軸型風車 1が受 けている風の速度を検出する風速センサ 1 6と、 回転速度センサ 1 5および風 速センサ 1 6の検出値に基づいて周速比 (ブレード 3 Aの回転速度と風速との 比) を算出し、 その算出された周速比が所定値を超えているか否かを判断する 開閉判断部 1 7と、 該開閉判断部 1 7から出力された開 Z閉信号に応じて開閉 部材 8を開状態ノ閉状態にするァクチユエ一夕 1 1 Aとを備えている。
開閉制御手段 1 3 Aの開閉判断部 1 7が開 Z閉状態を判断する基準は、 上 述した第 1実施形態と同様、 周速比が 0 . 8〜1 . 0を超えているか否かであ り、 少なくとも周速比が 1 . 0以上の回転状態では、 ブレード 3は閉状態にな つている。
また、 開閉制御手段 1 3 Aのァクチユエ一夕 1 1 Aは、 開閉判断部から出 力された開ノ閉信号に応じて直線運動することにより、 開閉部材 8を開ノ閉状 態にするものであり、 その駆動には電気、 油圧、 または空気圧が用いられる。
以上のような構成により、 本実施形態に係る垂直軸型風車 1 Aは、 上述し た第 1実施形態と同様の作用効果が得られることはもとより、 開閉制御部 1 3 Aのァクチユエ一夕 1 1 Aとして、 電気式、 油圧式、 あるいは空気圧のものが 用いられているので、 大型の垂直軸型風車にも、 ブレード 3 Aの開閉機構を採 用することができる。
以上、 本発明の実施形態について具体的に説明してきたが、 本発明はこれ に限定されるものではなく、 その趣旨を逸脱しない範囲で適宜変更可能である
産業上の利用可能性
本発明に係る垂直軸型風車は、 低風速域から高風速域まで広範囲の風速域 において、 風力を効果的に回転力に変換することができ、 特に、 風速 1〜2 0
m/ s e cの範囲における風車の効率を大幅に向上させることがことができる という効果を有するので、 例えば、 風力発電用の風車として有用である。

Claims

O 2008/102461 請 求 の 範 囲 垂直回転軸に直交する面内で、 該垂直回転軸を中心として等角度間隔に 複数のブレードが設けられた垂直軸型風車であって、
前記プレードは、 1 . 0以上の揚力係数を有する流線形の翼型であり、' かつ、
前端部が前記ブレードの裏面に軸支され、 後端部が前記ブレードに対し て開閉する開閉部材と、
前記ブレードの回転速度と風速の比に応じて、 前記開閉部材の開閉動作 を制御する開閉制御手段と
を備えていることをことを特徴とする垂直軸型風車。 前記開閉制御手段は、 前記ブレードの回転速度と風速の比が 0 . 8未満 の場合には前記開閉部材を開状態にし、 前記ブレードの回転速度と風速の 比が 0 . 8 ~ 1を超えた時点で、 前記開閉部材を閉状態にする請求の範囲 第 1項に記載の垂直軸型風車。 前記開閉部材の前端部が軸支される位置は、 前記ブレードの翼弦長の前 緣から 6 5〜 7 5 %の裏面であり、 かつ、
前記開閉部材が前記ブレードに対して開く最大角は、 3 0〜4 0 ° であ る請求の範囲第 1項または第 2項に記載の垂直軸型風車。 前記ブレードは、 アルミニウム合金、 チタニウム合金などの軽金属、 あ るいは繊維強化プラスチックなどの複合材によって成形された請求の範囲 第 1項 1ないし第 3項のいずれかに記載の垂直軸型風車。 前記ブレードの翼形は、 非対称翼の軽飛行機 (離陸重量 5 7 0 0 k g f 以下の飛行機) の主翼に使用されている形状である請求の範囲第 1項ない し第 4項のいずれかに記載の垂直軸型風車。 前記開閉制御手段は、 前記開閉部材の前端部から前記ブレードの内部方 向に立設されたアーム部材と、 該アーム部材の先端部と前記ブレードの内 壁に固設されたスプリング支持部材とを連結するスプリング ·ァクチユエ —夕と、 前記アーム部材の先端部の可動域を制限するストッパー部材とを 備え、
前記アーム部材を介して伝達される前記開閉部材の質量により生じる遠 心力と前記スプリング,ァクチユエ一夕の弾性力とによって、 前記開閉部 材の開閉動作を制御する請求の範囲第 1項ないし第 5項のいずれかに記載 の垂直軸型風車。 前記スプリング ·ァクチユエ一夕のばね定数は、 前記ブレードの回転速 度と風速の比が 0 . 8〜1 . 0を超えると、 前記開閉部材の質量により生 じる遠心力がスプリング ·ァクチユエ一夕の弹性力より大きくなるように 設定された請求の範囲第 6項に記載の垂直軸型風車。 前記開閉部材は、 前記ブレードに対向する面の後部に開閉動作を微調整 するための重りを備えている請求の範囲第 6項または第 7項に記載の垂直 軸型風車。 前記開閉制御手段は、 前記ブレードの回転速度と風速の比に応じて前記 開閉部材の開 Z閉を判断する開閉判断部と、 該開閉判断部から出力された 開/閉信号に応じて前記開閉部材を開状態 閉状態にするァクチユエ一夕 とを備えている請求の範囲第 1項ないし第 5項のいずれかに記載の垂直軸 型風車。 . 前記ァクチユエ一夕は、 電動式、 油圧式、 空気圧式のいずれかである 請求の範囲第 9項に記載の垂直軸型風車。
PCT/JP2007/054755 2007-02-20 2007-03-06 垂直軸型風車 WO2008102461A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2007347567A AU2007347567B2 (en) 2007-02-20 2007-03-06 Vertical shaft windmill
CN2007800516140A CN101622448B (zh) 2007-02-20 2007-03-06 垂直轴型风车
US12/528,036 US20100021300A1 (en) 2007-02-20 2007-03-06 Vertical axis windmill
EP07715313A EP2143940A1 (en) 2007-02-20 2007-03-06 Vertical shaft windmill
CA2677993A CA2677993C (en) 2007-02-20 2007-03-06 Vertical axis windmill

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-039861 2007-02-20
JP2007039861A JP3996945B1 (ja) 2007-02-20 2007-02-20 垂直軸型風車

Publications (1)

Publication Number Publication Date
WO2008102461A1 true WO2008102461A1 (ja) 2008-08-28

Family

ID=38683387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054755 WO2008102461A1 (ja) 2007-02-20 2007-03-06 垂直軸型風車

Country Status (8)

Country Link
US (1) US20100021300A1 (ja)
EP (1) EP2143940A1 (ja)
JP (1) JP3996945B1 (ja)
KR (2) KR20100121694A (ja)
CN (1) CN101622448B (ja)
AU (1) AU2007347567B2 (ja)
CA (1) CA2677993C (ja)
WO (1) WO2008102461A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010102459A1 (zh) * 2009-03-10 2010-09-16 Liu Shaozhong 一种活叶调速型风力发电机组
KR101070646B1 (ko) 2009-05-29 2011-10-07 이달은 풍력발전기용 튜브형 날개구조

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042683B1 (ko) 2008-10-31 2011-06-20 윤미현 풍력 발전장치
KR101187780B1 (ko) * 2009-09-17 2012-10-04 주식회사 이잰 날개 형상 가변이 가능한 수직축 풍력발전기
EP2348216B1 (en) * 2010-01-26 2014-10-15 Georg Kunz Turbine for wind and water power plants
KR101218256B1 (ko) * 2010-09-30 2013-01-03 정기한 수직축 터빈 및 이를 구비하는 양방향 적층식 수직축 터빈
US8899921B2 (en) * 2010-10-08 2014-12-02 Earl McCune Wind turbine having flow-aligned blades
DK177250B1 (en) * 2010-12-21 2012-08-13 Envision Energy Denmark Aps A Wind Turbine Blade
KR101238675B1 (ko) * 2011-01-18 2013-03-04 주식회사 이잰 자동 피치 조절 가능한 수직축 방식 풍력발전기용 블레이드
MA33873B1 (fr) * 2011-06-24 2013-01-02 Univ Hassan Ii Ain Chock Eolienne à axe vertical, convertible, autorégulée, combinant une savonius et une darrieus, à pale escamotable
MA33874B1 (fr) * 2011-06-24 2013-01-02 Univ Hassan Ii Ain Chock Eolienne à axe vertical, convertible, autorégulée, combinant une savonius et une darrieus, à pale composée.
CN103032267A (zh) * 2011-09-30 2013-04-10 新高能源科技股份有限公司 垂直轴风车用叶片旋转离心力控制叶片转速的方法及装置
KR101325266B1 (ko) * 2011-10-26 2013-11-04 서형우 수직형 풍차의 블레이드
KR101249438B1 (ko) * 2012-03-21 2013-04-15 주식회사 이잰 수직축 풍력발전기
CN103375339A (zh) * 2012-04-13 2013-10-30 黄石华科新能源科技有限公司 带启动辅翼的垂直轴风力发电机
CN102650262B (zh) * 2012-04-24 2017-02-08 李�杰 风叶失速可控制的垂直轴风力发电机
KR101390279B1 (ko) * 2012-05-24 2014-04-29 삼성중공업 주식회사 풍력 발전기용 블레이드
CN102748232B (zh) * 2012-07-19 2015-05-20 江苏元中直流微电网有限公司 阻升力型复合式中型磁悬浮风力发电机
US9506453B2 (en) * 2013-03-15 2016-11-29 Frontier Wind, Llc Actuation of distributed load management devices on aerodynamic blades
JP5469267B1 (ja) * 2013-03-21 2014-04-16 純二 嶋田 垂直軸風車
US20160076514A1 (en) * 2013-05-03 2016-03-17 Uraban Green Energy, INC. Turbine Blade
CN103670918B (zh) * 2013-11-29 2016-07-27 米建军 一种风机叶片及风轮
CN103603766B (zh) * 2013-11-30 2017-01-25 米建军 一种叶片和攻角可变风轮
JP5731048B1 (ja) * 2014-04-04 2015-06-10 豊 根本 垂直軸型風力発電機用風車の羽根並びにストラット
KR101700157B1 (ko) 2015-07-30 2017-01-26 주식회사 삼영이엔지 수직축형 풍차
CN105781872A (zh) * 2016-05-04 2016-07-20 珠海鑫王达科技有限公司 一种空气动力马达及电动汽车
US10502182B2 (en) * 2016-08-08 2019-12-10 Moa'z Mahmoud Yusuf Elayyan Wind turbine
CN107842462A (zh) * 2017-11-04 2018-03-27 大连理工大学 一种风机临界转速的控制装置
DE102017127786A1 (de) * 2017-11-24 2019-05-29 Kastel Maschinenbau Gmbh Vertikalwindkraftanlage
KR102186684B1 (ko) * 2019-08-02 2020-12-04 박준규 수직축 풍력 터빈
AU2020424983B2 (en) * 2020-01-25 2023-05-25 Rakesh Aggarwal A drag cum lift based wind turbine system having adjustable blades
CN114658601A (zh) * 2022-03-22 2022-06-24 蓝色粮仓海洋工程设备(深圳)有限责任公司 一种垂直轴风力发电扇叶及垂直轴风力发电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417442A (en) * 1977-07-07 1979-02-08 Univ Tokai Vertical shaft type air force turbine
JPS5692757U (ja) * 1979-12-18 1981-07-23
JPS58187587A (ja) * 1982-04-28 1983-11-01 Shin Meiwa Ind Co Ltd 補助風車付き高速垂直軸風車
JPS5986367U (ja) * 1982-12-02 1984-06-11 三菱電機株式会社 風車発電装置
JP3451085B1 (ja) * 2002-09-20 2003-09-29 常夫 野口 風力発電用の風車
JP2006022798A (ja) * 2004-07-08 2006-01-26 Yukio Hirata 整流式風車
JP2006046306A (ja) 2004-08-02 2006-02-16 Akihisa Matsuzono 風力発電用の風車及び発電機駆動方式
JP2006258083A (ja) * 2005-03-14 2006-09-28 Socio Recur:Kk 直線翼垂直軸風車の起動性改善および強風対策

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082479A (en) * 1975-09-25 1978-04-04 Canadian Patents And Development Limited Overspeed spoilers for vertical axis wind turbine
DE2829716A1 (de) * 1977-07-07 1979-01-25 Univ Gakko Hojin Tokai Windkraftmaschine mit vertikaler achse
EP0181363A1 (en) * 1984-04-26 1986-05-21 SIR HENRY LAWSON-TANCRED, SONS & COMPANY LTD. Wind turbine blades
US6068446A (en) * 1997-11-20 2000-05-30 Midwest Research Institute Airfoils for wind turbine
EP1338793A3 (en) * 2002-02-22 2010-09-01 Mitsubishi Heavy Industries, Ltd. Serrated wind turbine blade trailing edge
JPWO2005095793A1 (ja) * 2004-03-31 2008-07-31 株式会社アイ・ピー・ビー 垂直軸風車並びに風車用ブレード

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417442A (en) * 1977-07-07 1979-02-08 Univ Tokai Vertical shaft type air force turbine
JPS5692757U (ja) * 1979-12-18 1981-07-23
JPS58187587A (ja) * 1982-04-28 1983-11-01 Shin Meiwa Ind Co Ltd 補助風車付き高速垂直軸風車
JPS5986367U (ja) * 1982-12-02 1984-06-11 三菱電機株式会社 風車発電装置
JP3451085B1 (ja) * 2002-09-20 2003-09-29 常夫 野口 風力発電用の風車
JP2006022798A (ja) * 2004-07-08 2006-01-26 Yukio Hirata 整流式風車
JP2006046306A (ja) 2004-08-02 2006-02-16 Akihisa Matsuzono 風力発電用の風車及び発電機駆動方式
JP2006258083A (ja) * 2005-03-14 2006-09-28 Socio Recur:Kk 直線翼垂直軸風車の起動性改善および強風対策

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010102459A1 (zh) * 2009-03-10 2010-09-16 Liu Shaozhong 一种活叶调速型风力发电机组
KR101070646B1 (ko) 2009-05-29 2011-10-07 이달은 풍력발전기용 튜브형 날개구조

Also Published As

Publication number Publication date
CN101622448B (zh) 2012-08-22
EP2143940A1 (en) 2010-01-13
CN101622448A (zh) 2010-01-06
CA2677993A1 (en) 2008-08-28
JP2008202508A (ja) 2008-09-04
KR20100121694A (ko) 2010-11-18
KR20090101513A (ko) 2009-09-28
AU2007347567B2 (en) 2011-06-30
US20100021300A1 (en) 2010-01-28
AU2007347567A1 (en) 2008-08-28
JP3996945B1 (ja) 2007-10-24
CA2677993C (en) 2012-04-10

Similar Documents

Publication Publication Date Title
WO2008102461A1 (ja) 垂直軸型風車
JP3451085B1 (ja) 風力発電用の風車
EP0610905B1 (en) Wind powered turbine
US7424988B2 (en) Use of aerodynamic forces to assist in the control and positioning of aircraft control surfaces and variable geometry systems
US9464623B2 (en) Method and device for power generation
WO2005095793A1 (ja) 垂直軸風車並びに風車用ブレード
EP2764238B1 (en) Wind turbine having flow-aligned blades
US20110006526A1 (en) Pitch control arrangement for wind turbine
JP2008115781A (ja) 開閉式補助ブレード付きh−ダリウス型風車
JP5110550B1 (ja) 小型発電機用プロペラ風車
WO2000026535A1 (fr) Mecanisme moteur a vent a axe vertical et pales oscillantes
CN101634277A (zh) 垂直轴风力机叶片偏摆角度控制方法和机构
EP1390615B1 (en) Wind turbine having secondary rotors
JP2002242816A (ja) 風力発電装置
KR20110046155A (ko) 수직형 풍차
JPH0617745A (ja) ブレードを横長に形成した垂直軸セイルウィング風車
JP3885151B2 (ja) 風力発電用風車
JP4533991B1 (ja) 小型プロペラ風車
RU2724359C1 (ru) Лопастная система ветроэлектростанции
Pawsey et al. Evaluation of a variable-pitch vertical axis wind turbine
EP2404057B1 (en) Vertical axis wind turbine
JP2024080149A (ja) 風力発電装置
AU1019702A (en) Wind motor
JP2004183544A (ja) 翼端推進装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780051614.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07715313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2677993

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12528036

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007347567

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020097018281

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007715313

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007347567

Country of ref document: AU

Date of ref document: 20070306

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020107022447

Country of ref document: KR