WO2008102121A1 - Formation of lipid bilayers - Google Patents

Formation of lipid bilayers Download PDF

Info

Publication number
WO2008102121A1
WO2008102121A1 PCT/GB2008/000563 GB2008000563W WO2008102121A1 WO 2008102121 A1 WO2008102121 A1 WO 2008102121A1 GB 2008000563 W GB2008000563 W GB 2008000563W WO 2008102121 A1 WO2008102121 A1 WO 2008102121A1
Authority
WO
WIPO (PCT)
Prior art keywords
aperture
membrane
lipids
chamber
cell
Prior art date
Application number
PCT/GB2008/000563
Other languages
French (fr)
Inventor
Gurdial Singh Sanghera
Steven Paul White
Terrence Alan Reid
Original Assignee
Oxford Nanopore Technologies Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0703257A external-priority patent/GB2446823A/en
Priority claimed from GB0703256A external-priority patent/GB2447043A/en
Application filed by Oxford Nanopore Technologies Limited filed Critical Oxford Nanopore Technologies Limited
Priority to EP08709449A priority Critical patent/EP2126588A1/en
Priority to AU2008217579A priority patent/AU2008217579A1/en
Priority to US12/527,687 priority patent/US20100196203A1/en
Publication of WO2008102121A1 publication Critical patent/WO2008102121A1/en
Priority to IL200384A priority patent/IL200384A0/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48728Investigating individual cells, e.g. by patch clamp, voltage clamp

Definitions

  • the invention relates to the formation of lipid bilayers.
  • the invention relates to the formation of a lipid bilayer across an aperture.
  • Lipid bilayers are models of cell membranes and serve as excellent platforms for a range of experimental studies.
  • lipid bilayers can be used for in vitro investigation of membrane proteins by single-channel recording.
  • lipid bilayers can be used as biosensors to detect the presence of a range of substances.
  • lipid bilayers can used to detect the presence of membrane pores or channels or can be used in stochastic sensing in which the response of a membrane protein to a molecule or physical stimulus is used to perform sensing of that molecule or stimulus.
  • Lipid bilayers are commonly formed by the method of Montal and Mueller (Proc. Natl. Acad. Sci. USA., 1972; 69: 3561-3566), in which a lipid monolayer is carried on aqueous solution/air interface past either side of an aperture which is perpendicular to that interface.
  • the lipid is normally added to the surface of an aqueous electrolyte solution by first dissolving it in an organic solvent and then allowing a drop of the solvent to evaporate on the surface of the aqueous solution on either side of the aperture. Once the organic solvent has evaporated, the solution/air interfaces on either side of the aperture are physically moved up and down past the aperture until a bilayer is formed.
  • Montal & Mueller The method of Montal & Mueller is popular because it is a cost-effective and relatively straightforward method of forming good quality lipid bilayers that are suitable for protein pore insertion.
  • bilayer formation Other common methods of bilayer formation include tip-dipping, painting bilayers and patch-clamping of liposome bilayers.
  • Tip-dipping bilayer formation entails touching the aperture surface (for example, a pipette tip) onto the surface of a test solution that is carrying a monolayer of lipid. Again, the lipid monolayer is first generated at the solution/air interface by allowing a drop of lipid dissolved in organic solvent to evaporate at the solution surface. The bilayer is then formed by the Langmuir- Schaefer process and requires mechanical automation to move the aperture relative to the solution surface.
  • the aperture surface for example, a pipette tip
  • lipid dissolved in organic solvent is applied directly to the aperture, which is submerged in an aqueous test solution.
  • the lipid solution is spread thinly over the aperture using a paintbrush or an equivalent. Thinning of the solvent results in formation of a lipid bilayer.
  • complete removal of the solvent from the bilayer is difficult and consequently the bilayer formed by this method is less stable and more prone to noise during electrochemical measurement.
  • Patch-clamping is commonly used in the study of biological cell membranes.
  • the cell membrane is clamped to the end of a pipette by suction and a patch of the membrane becomes attached over the aperture.
  • the method has been adapted for producing lipid bilayers by clamping liposomes which then burst to leave a lipid bilayer sealing over the aperture of the pipette.
  • the method requires stable, giant and unilamellar liposomes and the fabrication of small apertures in materials having a glass surface.
  • the present invention provides a method for forming a lipid bilayer across an aperture, comprising:
  • the invention provides a device for forming a lipid bilayer comprising,
  • the inventors have shown that a lipid bilayer will form across an aperture following the deposition of lipids on a surface adjacent to the aperture. They have shown that an aqueous solution can be used to collect the lipids from the surface and form a lipid/solution interface. The lipid bilayer forms across an aperture as the interface passes the aperture.
  • the lipids can be dried.
  • the inventors have also shown that a lipid bilayer will form across an aperture following the rehydration of dried lipids. They have shown that an aqueous solution can be used to rehydrate the lipids and form a lipid/solution interface. The lipid bilayer forms across an aperture as the interface passes the aperture.
  • the invention has several advantages.
  • the invention allows the formation of a lipid bilayer in the absence of large amounts of organic solvent. This means that a lipid bilayer can be formed rapidly because it is not necessary to wait for evaporation of the organic solvent before the lipid bilayer can be formed.
  • the cell in the device of the invention can be made from materials that may be sensitive to organic solvents.
  • organic-based adhesives can be used to construct the cell and screen-printed conductive silver/silver chloride paste can be used to construct electrodes within the cell.
  • the device can be cheaply manufactured in a straightforward manner.
  • the use of organic solvent-sensitive polymers to construct the membrane comprising the aperture facilitates manufacture of the device.
  • lipid bilayers are preferably formed from dried lipid, this allows the lipid to be stably stored in the cell until it is needed to form a lipid bilayer. This also avoids the need for wet storage of lipid in the device prior to use. Dry storage of lipids means that the device has a long shelf life.
  • the invention generally concerns the formation of a lipid bilayer across an aperture.
  • a lipid bilayer is formed from two opposing layers of lipids. The two layers of lipids are arranged such that their hydrophobic tail groups face towards each other to form a hydrophobic interior.
  • the hydrophilic head groups of the lipids face outwards towards the aqueous environment on each side of the bilayer.
  • the bilayer may be present in a number of lipid phases including, but not limited to, the liquid disordered phase (fluid lamellar), liquid ordered phase, solid ordered phase (lamellar gel phase, interdigitated gel phase) and planar bilayer crystals (lamellar sub-gel phase, lamellar crystalline phase).
  • the lipid bilayer can be formed from one or more lipids.
  • the lipid bilayer can also contain additives that affect the properties of the bilayer.
  • the lipid bilayer has one or more membrane proteins inserted therein. Certain lipids, additives and proteins that can be used in accordance with the invention are discussed in more detail below.
  • the lipid bilayer is formed inside a cell.
  • any cell can be used.
  • the cell may be any shape or size.
  • the cell may be a conventional electrophysiology cell or a specially-constructed cell, such as a biosensor chip.
  • the cell comprises an internal chamber.
  • the chamber may be any size and shape.
  • the volume of the chamber is typically 0.1 ⁇ l to 10ml.
  • the chamber is adjacent to a septum.
  • the cell comprises a septum which divides the cavity into two chambers.
  • the two chambers may have equal volumes or different volumes.
  • the septum comprises a membrane.
  • the membrane can be made from any material including, but not limited to, a polymer, glass and a metal.
  • the membrane is preferably made from a material that forms a barrier to the flow of ions from the chamber. Suitable materials include, but are not limited to, polycarbonate (PC), polytetrafluoroethylene (PTFE), polyethylene, polypropylene, nylon and polyethylene naphthalate (PEN), polyvinylchloride (PVC), polyacrylonitrile (PAN), polyether sulphone (PES), polyimide, polystyrene, polyvinylfluoride (PVF), polyethylene telephthalate (PET), aluminized PET, nitrocellulose, polyetheretherketone (PEEK) and fluoroethylkene polymer (FEP).
  • the membrane is preferably made from polycarbonate or PTFE.
  • the membrane is sufficiently thin to facilitate formation of the lipid bilayer across an aperture as described below. Typically the thickness will be in the range of IOnm to lmm.
  • the membrane is preferably 0.1 ⁇ m to 25 ⁇ m thick.
  • the membrane is preferably pre-treated to make the lipids and the aperture more compatible such that the lipid bilayer forms more easily that it would in the absence of pre- treatment.
  • the membrane is preferably pre-treated to increase its affinity to lipids.
  • pre-treatment of the membrane to increase its affinity to lipids allows the lipid bilayer to form more easily. In particular, it allows the formation of a lipid bilayer across the aperture following a single pass of the lipid/solution interface.
  • the removal of the need to move the lipid/solution interface back and forth past the aperture means that the method of the invention is simplified. It also means that there is no need for fluidics control in the device of the invention. Hence, the cost and size of the device of the invention are reduced.
  • the inventors have also shown that pre-treatment of the membrane to increase its affinity to lipids results in the formation of a lipid bilayer with increased stability.
  • the device of the invention can be used in situations where the lipid bilayer is likely to encounter mechanical or other forces. For instance, the device of the invention can be used as a hand-held device.
  • the membrane is typically pre-treated with long chain organic molecules in an organic solvent.
  • Suitable long chain organic molecules include, but are not limited to, n-decane, hexadecane, hexadecance mixed with one or more of the lipids discussed below, iso-eicosane, octadecane, squalene, fluoroinated oils (suitable for use with fluorinated lipids), alkyl-silane (suitable for use with a glass membrane) and alkyl-thiols (suitable for use with a metallic membrane).
  • Suitable solvents include, but are not limited to, pentane, hexane, heptane, octane, decane, iso-ecoisane and toluene.
  • the membrane is typically pre-treated with from 0.1% (v/v) to 50% (v/v), such as 0.3%, 1% or 3% (v/v), hexadecane in pentane.
  • the volume of hexadecane in pentane used is typically from 0.1 ⁇ l to lO ⁇ l.
  • the hexadecane can be mixed with one or more lipids. For instance, the hexadecane can be mixed with any of the lipids discussed below.
  • the hexadecane is preferably mixed with diphantytanoyl-sn-glycero-3-phosphocoline (DPhPC).
  • DPhPC diphantytanoyl-sn-glycero-3-phosphocoline
  • the aperture is treated with 2 ⁇ l of 1% (v/v) hexadecane and 0.6mg/ml lipid, such as DPhPC, in pentane.
  • Table 1 Some specific pretreatments are set out in Table 1 by way of example and without limitation. Table 1:
  • the precise volume of pretreatment substance required depends on the pretreatment both the size of the aperture, the formulation of the pretreatment, and the amount and distribution of the pretreatment when it dries around the aperture. In general increasing the amount of pretreatment (i.e. by volume and/or by concentration) improves the effectiveness, but too much pretreament can block the aperture. As the diameter of the aperture is decreased, the amount of pretreatment required also decreases. The distribution of the pretreatment can also affect effectiveness, this being dependent on the method of deposition, and the compatibility of the membrane surface chemistry.
  • the relationship between the pretreatment and the ease and stability of bilayer formation is therefore complex, depending on a complex cyclic interaction between the aperture dimensions, the membrane surface chemistry, the pretreatment formulation and volume, and the method of deposition.
  • the temperature dependent stability of the pretreated aperture further complicates this relationship.
  • the pretreatment may be optimised by routine trial and error to enable bilayer formation immediately upon first exposure of the dry aperture to the lipid monolayer at the liquid interface.
  • the pretreatment provides a beneficial effect, it is not essential.
  • the septum preferably further comprises a support sheet on at least one side of the membrane.
  • the septum preferably comprises a support sheet on both sides of the membrane.
  • the support sheet may be of any material. Suitable materials include, but are not limited to, Delrin® (polyoxymethylene or acetal homopolymer), Mylar® (biaxially-oriented polyethylene terephthalate (boPET) polyester film), polycarbonate (PC), polyvinylchloride (PVC), polyacrylonitrile (PAN), polyether sulphone (PES), polysulphone, polyimide, polystyrene, polyethylene, polyvinylfluoride (PVF), polyethylene telephthalate (PET), polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK) and fluoroethylkene polymer (FEP).
  • Delrin® polyoxymethylene or acetal homopolymer
  • Mylar® biaxially-oriented polyethylene ter
  • the membrane has an aperture which is capable of supporting a lipid bilayer.
  • the septum typically has one aperture but can have more than one aperture.
  • a lipid bilayer will form across each of the apertures in the membrane. If the membrane is made from a material that forms a barrier to the flow of ions, the aperture allows the movement of ions between from the chamber.
  • the aperture may be any size and shape which is capable of supporting a lipid bilayer.
  • the aperture preferably has a diameter in at least one dimension which is 20 ⁇ m or less. The inventors have shown that this preferred size of aperture results in the formation of a lipid bilayer with increased stability.
  • the method of the invention can form stable lipid bilayers and that the device of the invention can be used in situations where the lipid bilayer is likely to encounter mechanical or other forces. For instance, it can be used as a hand-held device.
  • the preferred size of aperture also allows the lipid bilayer to form more easily. In particular, it allows the formation of a lipid bilayer across the aperture following a single pass of the lipid/solution interface and removes the need to move the lipid/solution interface back and forth past the aperture.
  • the aperture may be created using any method. Suitable methods include, but are not limited to, spark generation and laser drilling.
  • One or more lipids are deposited on an internal surface of the chamber.
  • the lipids can be deposited on one or more of any of the internal surfaces of the chamber. If the cell has two chambers, one or more lipids are deposited on an internal surface of one or both chambers.
  • the lipids can be deposited on one or more of any of the internal surfaces of one or both chambers.
  • the lipids can be deposited on one or both sides of the septum and on the membrane and/or the support sheet.
  • the lipids are deposited in such a manner that the aqueous solution covers the lipids and the apertures as discussed in more detail below.
  • the lipid can be deposited on the septum and/or one or more internal walls of the chamber but are preferably deposited on the septum.
  • the lipids can be deposited on one or both sides of the septum and on the membrane and/or the support sheet.
  • the lipids are deposited in such a manner that the aqueous solution covers the lipids
  • Any method may be used to deposit the lipids on an internal surface of the chamber. Suitable methods include, but are not limited to, evaporation or sublimation of a carrier solvent, spontaneous deposition of liposomes or vesicles from a solution and direct transfer of the dry lipid from another surface.
  • Cells having lipids deposited on an internal surface may be fabricated using methods including, but not limited to, drop coating, various printing techniques, spin-coating, painting, dip coating and aerosol application.
  • the lipids are preferably dried. Even when dried to a solid state, the lipids will typically contain trace amounts of residual solvent. Dried lipids are preferably lipids that comprise less than 50wt% solvent, such as less than 40wt%, less than 30wt%, less than 20wt%, less than 15wt%, less than 10wt% or less than 5wt% solvent.
  • Any lipids that form a lipid bilayer may be deposited.
  • the lipids deposited in the cell are chosen such that a lipid bilayer having the required properties, such surface charge, ability to support membrane proteins, packing density or mechanical properties, is formed.
  • the lipids can comprise one or more different lipids.
  • the lipids can contain up to 100 lipids.
  • the lipids preferably contain 1 to 10 lipids.
  • the lipids may comprise naturally-occurring lipids and/or artificial lipids.
  • the lipids typically comprise a head group, an interfacial moiety and two hydrophobic tail groups which may be the same or different.
  • Suitable head groups include, but are not limited to, neutral head groups, such as diacylglycerides (DG) and ceramides (CM); zwitterionic head groups, such as phosphatidylcholine (PC), phosphatidylethanolamine (PE) and sphingomyelin (SM); negatively charged head groups, such as phosphatidylglycerol (PG); phosphatidylserine (PS), phosphatidylinositol (PI), phosphatic acid (PA) and cardiolipin (CA); and positively charged headgroups, such as trimethylammonium-Propane (TAP).
  • neutral head groups such as diacylglycerides (DG) and ceramides (CM)
  • zwitterionic head groups such as phosphatidylcholine (PC), phosphatidylethanolamine (PE
  • Suitable interfacial moieties include, but are not limited to, naturally-occurring interfacial moieties, such as glycerol-based or ceramide- based moieties.
  • Suitable hydrophobic tail groups include, but are not limited to, saturated hydrocarbon chains, such as lauric acid (n-Dodecanolic acid), myristic acid (n-Tetradecononic acid), palmitic acid (n-Hexadecanoic acid), stearic acid (n-Octadecanoic) and arachidic ( «- Eicosanoic); unsaturated hydrocarbon chains, such as oleic acid (cis-9-Octadecanoic); and branched hydrocarbon chains, such as phytanoyl.
  • the length of the chain and the position and number of the double bonds in the unsaturated hydrocarbon chains can vary.
  • the length of the chains and the position and number of the branches, such as methyl groups, in the branched hydrocarbon chains can vary.
  • the hydrophobic tail groups can be linked to the interfacial moiety as an ether or an ester.
  • the lipids can also be chemically-modified.
  • the head group or the tail group of the lipids may be chemically-modified.
  • Suitable lipids whose head groups have been chemically-modified include, but are not limited to, PEG-modified lipids, such as l,2-Diacyl-sn-Glycero-3- Phosphoethanolamine-N -[Methoxy(Polyethylene glycol)-2000]; functionionalised PEG Lipids, such as l,2-Distearoyl-sn-Glycero-3 Phosphoethanolamine-N-[Biotinyl(Polyethylene Glycol)2000]; and lipids modified for conjugation, such as l,2-Dioleoyl-sn-Glycero-3- Phosphoethanolamine-N-(succinyl) and 1 ,2-Dipalmitoyl-sn-Glycero-3 -Phosphoethanolamine-N- (Biotinyl).
  • Suitable lipids whose tail groups have been chemically-modified include, but are not limited to, polymerisable lipids, such as l,2-bis(10,12-tricosadiynoyl)-sn-Glycero-3- Phosphocholine; fluorinated lipids, such as l-Palmitoyl-2-(16-Fluoropalmitoyl)-sn-Glycero-3- Phosphocholine; deuterated lipids, such as l,2-Dipalmitoyl-D62-sn-Glycero-3-Phosphocholine; and ether linked lipids, such as l,2-Di-O-phytanyl-sn-Glycero-3-Phosphocholine.
  • polymerisable lipids such as l,2-bis(10,12-tricosadiynoyl)-sn-Glycero-3- Phosphocholine
  • the lipids typically comprise one or more additives that will affect the properties of the lipid bilayer.
  • Suitable additives include, but are not limited to, fatty acids, such as palmitic acid, myristic acid and oleic acid; fatty alcohols, such as palmitic alcohol, myristic alcohol and oleic alcohol; sterols, such as cholesterol, ergosterol, lanosterol, sitosterol and stigmasterol; lysophospholipids, such as l-Acyl-2-Hydroxy-sn- Glycero-3-Phosphocholine; and ceramides.
  • the lipid preferably comprises cholesterol and/or ergosterol when membrane proteins are to be inserted into the lipid bilayer.
  • the lipid bilayer is formed by introducing an aqueous solution into the chamber.
  • the aqueous solution covers both the internal surface on which the lipids are deposited and the aperture.
  • the chamber may be completely filled with the aqueous solution or may be partially filled with the aqueous solution, as long as the both the lipids and the aperture are covered with the aqueous solution. If the cell has two chambers, one chamber may be completely filled, while the other is only partially filled.
  • the aqueous solution may cover the lipids and the aperture in any order but preferably covers the lipids before the aperture.
  • the inventors have shown that covering the lipids before the aperture allows the lipid bilayer to form more easily. In particular, it allows the formation of a lipid bilayer across the aperture following a single pass of the lipid/solution interface.
  • the removal of the need to move the lipid/solution interface back and forth past the aperture means that the method of the invention is simplified. It also means that there is no need for fluidics control in the device of the invention, thereby reducing its cost and size.
  • the design of the chamber and the position of the lipids may be chosen to determine the order in which the aqueous solution covers the lipids and aperture. For instance, if the lipids are to be covered first, a chamber is provided in which the lipids are positioned along the flow path between the point at which the aqueous solution is introduced to the chamber and the aperture.
  • aqueous solution that collects the lipids from the internal surface and allows the formation of a lipid bilayer may be used.
  • the aqueous solution is typically a physiologically acceptable solution.
  • the physiologically acceptable solution is typically buffered to a pH of 3 to 9. The pH of the solution will be dependent on the lipids used and the final application of the lipid bilayer.
  • Suitable buffers include, but are not limited, to phosphate buffered saline (PBS), N-2- Hydroxyethylpiperazine-N'-2-Ethanesulfonic Acid (HEPES) buffered saline, Piperazine-l,4-Bis-2- Ethanesulfonic Acid (PIPES) buffered saline, 3-(n-Morpholino)Propanesulfonic Acid (MOPS) buffered saline and Tris(Hydroxymethyl)aminomethane (TRIS) buffered saline.
  • PBS phosphate buffered saline
  • HPES N-2- Hydroxyethylpiperazine-N'-2-Ethanesulfonic Acid
  • PPES Piperazine-l,4-Bis-2- Ethanesulfonic Acid
  • MOPS 3-(n-Morpholino)Propanesulfonic Acid
  • TMS Tris(
  • the introduction of the aqueous solution collects the lipids from the internal surface.
  • the immiscibility of the rehydrated lipids and the aqueous solution allows the formation of an interface between the lipids and the solution.
  • the interface can be any shape and size.
  • the interface typically separates a layer of lipids from the aqueous solution.
  • the layer of lipids preferably forms on the top of the solution.
  • the layer of lipid typically separates the solution from any air in the chamber(s).
  • the lipid bilayer is formed as the interface moves past the aperture.
  • the interface moves past the aperture in such a way that the layer of lipids contacts the membrane material surrounding the aperture and a lipid bilayer is formed.
  • the interface can be at any angle relative to the membrane as it moves past the aperture.
  • the interface is preferably perpendicular to the membrane as it moves past the aperture.
  • the interface may move past the aperture as many times as is necessary to form the lipid bilayer.
  • the interface moves past the aperture at least once.
  • the interface can move past the aperture more than once, such as twice, three times or more.
  • the interface can move past the aperture on one side or on both sides of the membrane.
  • the lipid bilayer may form as the interface moves past the aperture as the chamber fills.
  • the step of moving the interface past the aperture may be performed by the filling of the chamber.
  • the interface back and forth past the aperture it will be necessary to move the interface back and forth past the aperture. For instance, if the aqueous solution covers the aperture before the lipids or covers the aperture and lipids simultaneously, it may be necessary to move the interface back and forth past the aperture.
  • the cell has two chambers and one of the chambers contains a gel.
  • the chamber is typically filled with the gel such that the gel contacts the membrane.
  • the presence of the gel contacting the membrane facilitates the formation of the lipid bilayer by physically supporting the bilayer.
  • the presence of the gel allows the lipid bilayer to form more easily. In particular, it allows the formation of a lipid bilayer across the aperture following a single pass of the lipid/solution interface and removes the need to move the lipid/solution interface back and forth past the aperture. It also means that there is no need for fluidics control in the device of the invention, thereby reducing its cost and size.
  • the presence of the gel also results in the formation of a lipid bilayer with increased stability.
  • the method of the invention can be used to form stable lipid bilayers. It also means that the device of the invention can be used in situations where the lipid bilayer is likely to encounter mechanical or other forces. For instance, it can be used as a hand-held device.
  • the presence of the gap means that a wider variety of materials can be used to make the gel, including ionically non-conductive materials.
  • the gel is preferably a hydrogel.
  • the gel is typically ionically conductive. Suitable ionically conductive gels include, but are not limited to, agarose, polyacrylamide gel, Gellan gel and carbomer gel. However, if there is a gap present between the gel and the aperture, the gel can be ionically non-conductive.
  • the invention preferably also involves inserting membrane proteins into the lipid bilayer once it has been formed.
  • the membrane proteins are deposited within the chamber and spontaneously insert into the lipid bilayer following the introduction of the aqueous solution.
  • the inventors have shown that membrane proteins will spontaneously insert into the lipid bilayer following their removal from an internal surface of the chamber by the aqueous solution. This avoids the need to actively insert the membrane proteins into the lipid bilayer by introducing the proteins into the solution surrounding the bilayer or physically carrying the protein through the solution to the bilayer. Again, this simplifies the method of the invention as well as removes the need for wet storage of the proteins and the need for automation within a device of the invention.
  • the gel described above comprises one or more membrane proteins.
  • the membrane proteins can be deposited on the surface of the gel and/or can be present within the body of gel. Once the lipid bilayer has formed, the membrane proteins move from the gel and spontaneously insert themselves into the lipid bilayer.
  • the gel can comprise one or more different membrane proteins.
  • one or more membrane proteins are deposited on an internal surface of the chamber.
  • the aqueous solution collects the membrane proteins from the surface and allows them to insert into the lipid bilayer.
  • the membrane proteins may be deposited anywhere within the cell such that, once they have been collected from the surface, they can diffuse to and spontaneously insert into the lipid bilayer.
  • the membrane proteins can be deposited on the same or different internal surface as the lipids.
  • the lipids and the membrane proteins may be mixed together.
  • the membrane proteins can be deposited on the septum and/or one or more internal walls of the chamber, but are preferably deposited on the septum. They may be deposited on one or both sides of the septum and on the membrane or the support sheet.
  • the lipids, the aperture and the membrane proteins may be covered by the aqueous solution in any order, although as already discussed the aqueous solution preferably covers the lipids first.
  • the design of the cell and the position of the membrane proteins may be chosen to determine the order in which the aqueous solution covers the lipids, the aperture and the membrane proteins.
  • Any method may be used to deposit the membrane proteins on an internal surface of the cell. Suitable methods include, but are not limited to, drop coating, various printing techniques, spin-coating, painting, dip coating and aerosol application.
  • the membrane proteins are preferably dried. Even when dried to a solid state, the membrane proteins will typically contain trace amounts of residual solvent. Dried membrane proteins are preferably membrane proteins that comprise less than 20wt% solvent, such as less than 15wt% , less than 10wt% or less than 5wt% solvent.
  • the gel comprises one or more membrane proteins and one or more membrane proteins are deposited on an internal surface of one or both chambers.
  • membrane proteins that insert into a lipid bilayer may be deposited.
  • the membrane proteins may be naturally-occurring proteins and/or artificial proteins.
  • Suitable membrane proteins include, but are not limited to, ⁇ -barrel membrane proteins, such as non-constitutive toxins, porins and relatives and autotransporters; membrane channels, such as ion channels and aquaporins; bacterial rhodopsins; G-protein coupled receptors; and antibodies.
  • non-constitutive toxins include hemolysin and leukocidin, such as Staphylococcal leukocidin.
  • porins include maltoporin, OmpG, OmpA and OmpF.
  • autotransporters include the NaIP and Hia transporters.
  • ion channels include the NMDA receptor, the potassium channel from Streptomyces lividans (KcsA), the bacterial mechanosensitive membrane channel of large conductance (MscL), the bacterial mechanosensitive membrane channel of small conductance (MscS) and gramicidin.
  • G-protein coupled receptors include the metabotropic glutamate receptor.
  • the membrane protein can also be the anthrax protective antigen.
  • the membrane proteins preferably comprise ⁇ -hemolysin or a variant thereof.
  • the ⁇ - hemolysin pore is formed of seven identical subunits (heptameric).
  • the polynucleotide sequence that encodes one subunit of ⁇ -hemolysin is shown in SEQ ID NO: 1.
  • the full-length amino acid sequence of one subunit of ⁇ -hemolysin is shown in SEQ ID NO: 2.
  • the first 26 amino acids of SEQ ID NO: 2 correspond to the signal peptide.
  • the amino acid sequence of one mature subunit of ⁇ -hemolysin without the signal peptide is shown in SEQ ID NO: 3.
  • SEQ ID NO: 3 has a methionine residue at position 1 instead of the 26 amino acid signal peptide that is present in SEQ ID NO: 2.
  • a variant is a heptameric pore in which one or more of the seven subunits has an amino acid sequence which varies from that of SEQ ID NO: 2 or 3 and which retains pore activity.
  • 1, 2, 3, 4, 5, 6 or 7 of the subunits in a variant ⁇ -hemolysin may have an amino acid sequence that varies from that of SEQ ID NO: 2 or 3.
  • the seven subunits within a variant pore are typically identical but may be different.
  • the variant may be a naturally-occurring variant which is expressed by an organism, for instance by a Staphylococcus bacterium.
  • Variants also include non-naturally occurring variants produced by recombinant technology. Over the entire length of the amino acid sequence of SEQ ID NO: 2 or 3, a variant will preferably be at least 50% homologous to that sequence based on amino acid identity. More preferably, the subunit polypeptide is at least 80%, at least 90%, at least 95%, at least 98%, at least 99% homologous based on amino acid identity to the amino acid sequence of SEQ ID NO: 2 or 3 over the entire sequence.
  • Amino acid substitutions may be made to the amino acid sequence of SEQ ID NO: 2 or 3, for example a single amino acid substitution may be made or two or more substitutions may be made. Conservative substitutions may be made, for example, according to the Table 3. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other: Table 3:
  • Non-conservative substitutions may also be made at one or more positions within SEQ ID NO: 2 or 3, wherein the substituted residue is replaced with an amino acid of markedly different chemical characteristics and/or physical size.
  • One example of a non-conservative substitution that may be made is the replacement of the lysine at position 34 in SEQ ID NO: 2 and position 9 in SEQ ID NO: 3 with cysteine (i.e. K34C or K9C).
  • Another example of a non-conservative substitution that may be made is the replacement of the asparagine residue at position 43 of SEQ ID NO: 2 or position 18 of SEQ ED NO: 3 with cysteine (i.e. N43C or Nl 7C).
  • cysteine residues in SEQ ED NO: 2 or 3 provides thiol attachment points at the relevant positions. Similar changes could be made at all other positions, and at multiple positions on the same subunit.
  • One or more amino acid residues of the amino acid sequence of SEQ ED NO: 2 or 3 may alternatively or additionally be deleted. Up to 50% of the residues may be deleted, either as a contiguous region or multiple smaller regions distributed throughout the length of the amino acid chain.
  • Variants can include subunits made of fragments of SEQ ID NO: 2 or 3. Such fragments retain their ability to insert into the lipid bilayer. Fragments can be at least 100, such as 150, 200 or 250, amino acids in length. Such fragments may be used to produce chimeric pores. A fragment preferably comprises the ⁇ -barrel domain of SEQ ID NO: 2 or 3.
  • Variants include chimeric proteins comprising fragments or portions of SEQ ID NO: 2 or 3.
  • Chimeric proteins are formed from subunits each comprising fragments or portions of SEQ ID NO: 2 or 3.
  • the ⁇ -barrel part of chimeric proteins are typically formed by the fragments or portions of SEQ ID NO: 2 or 3.
  • One or more amino acid residues may alternatively or additionally be inserted into, or at one or other or both ends of, the amino acid sequence SEQ ID NO: 2 or 3. Insertion of one, two or more additional amino acids to the C terminal end of the peptide sequence is less likely to perturb the structure and/or function of the protein, and these additions could be substantial, but preferably peptide sequences of up to 10, 20, 50, 100 or 500 amino acids or more can be used. Additions at the N terminal end of the monomer could also be substantial, with one, two or more additional residues added, but more preferably 10, 20, 50, 500 or more residues being added. Additional sequences can also be added to the protein in the trans-membrane region, between amino acid residues 119 and 139 of SEQ ID NO: 3.
  • a carrier protein may be fused to an amino acid sequence according to the invention.
  • Standard methods in the art may be used to determine homology.
  • the UWGCG Package provides the BESTFIT program which can be used to calculate homology, for example used on its default settings (Devereux et al (1984) Nucleic Acids Research 12, p387-395).
  • the PILEUP and BLAST algorithms can be used to calculate homology or line up sequences (such as identifying equivalent residues or corresponding sequences (typically on their default settings)), for example as described in Altschul S. F. (1993) J MoI Evol 36:290-300; Altschul, S.F et al (1990) J MoI Biol 215:403-10.
  • Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/).
  • the membrane proteins can be labelled with a revealing label.
  • the revealing label can be any suitable label which allows the proteins to be detected. Suitable labels include, but are not limited to, fluorescent molecules, radioisotopes, e.g. 125 1, 35 S, en ⁇ ymes, antibodies, polynucleotides and linkers such as biotin.
  • the membrane proteins may be isolated from an organism, such as Staphylococcus aureus, or made synthetically or by recombinant means.
  • the protein may be synthesized by in vitro translation transcription.
  • the amino acid sequence of the proteins may be modified to include non-naturally occurring amino acids or to increase the stability of the proteins. When the proteins are produced by synthetic means, such amino acids may be introduced during production.
  • the proteins may also be modified following either synthetic or recombinant production.
  • the proteins may also be produced using D-amino acids.
  • the amino acids will be linked in reverse sequence in the C to N orientation. This is conventional in the art for producing such proteins.
  • side chain modifications are known in the art and may be made to the side chains of the membrane proteins. Such modifications include, for example, modifications of amino acids by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH 4 , amidination with methylacetimidate or acylation with acetic anhydride.
  • Recombinant membrane proteins can be produced using standard methods known in the art. Nucleic acid sequences encoding a protein can be isolated and replicated using standard methods in the art. Nucleic acid sequences encoding a protein can be expressed in a bacterial host cell using standard techniques in the art. The protein can be introduced into a cell by in situ expression of the polypeptide from a recombinant expression vector. The expression vector optionally carries an inducible promoter to control the expression of the polypeptide.
  • the lipid bilayer may be used for a variety of purposes.
  • the lipid bilayer may be used for in vitro investigation of membrane proteins by single-channel recording.
  • the lipid bilayer may be used as a biosensor to detect the presence of a range of substances.
  • the lipid bilayer may be used to detect the presence or absence of membrane pores or channels in a sample. The presence of the pore or channel may be detected as a change in the current flow across the lipid bilayer as the pore or channel inserts into the lipid bilayer.
  • the lipid bilayer preferably contains membrane protein and is used to detect the presence or absence of a molecule or stimulus using stochastic sensing.
  • the lipid bilayer may be used for a range of other purposes, such as studying the properties of molecules known to be present (e.g. DNA sequencing or drug screening), or separating components for a reaction.
  • Fig. 1 is a view of an example of a device of the invention
  • Fig. 2 is a schematic diagram of an electrical circuit that can be used with the device of the invention
  • Fig. 3 is a graph of the current response to a 2OmV 50Hz alternating current (a.c.) waveform in the absence of the high resistance electrical sealing of the aperture by a bilayer;
  • Fig. 4 is a graph of the characteristic square wave capacitive current in response to a 2OmV amplitude triangular waveform at 50Hz indicative of bilayer formation across the aperture;
  • Fig. 5 is a graph of the stepwise increase of 6OpA direct current (d.c.) as ⁇ -hemolysin pores automatically insert into the bilayer formed by the Montal and Mueller method
  • Fig. 6 is a graph of the characteristic interruptions in the current caused by single molecules of ⁇ -cyclodextrin transiently binding to the ⁇ -hemolysin pores;
  • Fig. 7 is a graph of the current response to an applied potential before, during and following spontaneous bilayer formation and pore insertion in accordance with the invention in a standard two-chamber research cell;
  • Fig. 8 shows an expanded view of the current (1 second full scale) during the final minute of recording shown in Fig. 7;
  • Fig. 9 is a graph of the current recorded over the duration of a single test using a specially constructed cell
  • Fig. 10 is a graph of the characteristic square wave indicative of bilayer formation in accordance with the invention in a specially constructed cell
  • Fig. 11 is a graph of the current response to a 2OmV 50Hz a.c. waveform in the absence of the high resistance electrical sealing of the aperture by the bilayer in the specially constructed cell;
  • Fig. 12 is a graph of step increases in the current ⁇ 100pA as ⁇ -hemolysin pores automatically insert into the bilayer in the specially constructed cell;
  • Fig. 13 is a graph of the characteristic interruptions in the current caused by single molecules of ⁇ -cyclodextrin transiently binding to the ⁇ -hemolysin pores in the specially constructed cell;
  • Fig. 14 is a perspective view of a sensor system
  • Fig. 15 is a perspective view of a cell of the sensor system
  • Fig. 16 is a cross-sectional of the cell, taken along line ITl-III in Fig. 2;
  • Fig. 17 is a perspective view of a support sheet of the cell in isolation
  • Fig. 18 is a perspective view of a body of the cell in isolation with a first arrangement for an inlet
  • Fig. 19 is a perspective view of a cover sheet of the cell in isolation with a second arrangement for an inlet
  • Fig. 20 is a cross-sectional view of the cell similar to that of Fig. 3 but showing introduction of a sample
  • Fig. 21 is an expanded, partial cross-sectional view of a cell containing gel with a gap between the gel and an aperture;
  • Fig. 22 is an expanded perspective view of the connector portion of the reader unit
  • Fig. 23 is a perspective view of a rigid metal body connected to the reader unit
  • Fig. 24 is a cross-sectional view of the rigid metal body, taken along line XII-XII in Fig. l i;
  • Fig. 25 is a cross-sectional view of the cell contained in a Faraday cage
  • Figs. 26 to 28 are diagrams of various forms of the electrical circuit in the reader unit.
  • Fig. 29 is a flow chart of the operation of the reader unit; and Fig. 30 is a graph of a bias voltage applied to the reader unit; and
  • Figs. 31 to 35 are graphs of the current signal generated in the cell during operation.
  • the x-axis shows time in ms
  • the top portion of the y-axis shows the current in pA
  • the bottom portion of the y-axis shows potential in mV.
  • the device 130 includes an electrophysiology cell 101 which is of a conventional type and construction for the performance of stochastic sensing using a membrane protein inserted in a lipid bilayer.
  • the electrophysiology cell 101 comprises two chambers body portions 102 having constructions which are mirror images of each other.
  • the chamber body portions 102 may be made from Delrin® (polyoxymethylene or acetal homopolymer).
  • the chamber body portions 102 each define a chamber portion 103 having an opening in the upper surface 104 of the respective chamber body portion 102.
  • the chamber portions 103 each have a volume of a few millilitres, for example 1.5 ml.
  • the chamber portions 103 have no wall on a side surface 105 of the respective chamber body portion 102.
  • To form a chamber body the two chamber body portions 102 are assembled together with their side surfaces 105 facing one another so that the respective chamber portions 103 are aligned and together form a chamber.
  • the chamber body portions 102 may be attached by any suitable means, typically a clamp or an adhesive.
  • the electrophysiology cell 101 further comprises a membrane 106 made of polycarbonate or any other suitable polymer.
  • Each face of the membrane 106 may be pre-treated in a conventional manner, for example with 10% (VTV) hexadecane in pentane.
  • the membrane 106 is positioned between the facing side surfaces 105 of the two chamber body portions 102, for example by adhering both chamber body portions 102 to the membrane 106. Accordingly, the membrane 106 forms a wall which divides the chamber formed by the two chamber portions 103.
  • the membrane 106 has an aperture 107 which is aligned with the chamber portions 103 when the electrophysiology cell is assembled.
  • the membrane 106 is sufficiently thin to facilitate formation of a lipid bilayer, for example being 25 ⁇ m thick.
  • the aperture 107 may in general be of any shape or size which is capable of supporting the lipid bilayer, but preferably has a diameter in one dimension of 20 ⁇ m or less.
  • the cell 101 comprises inlets for introducing an aqueous solution into each chamber portion 103, namely the openings in the upper surface 104 of each chamber body portion 102.
  • the device 130 further comprises lipids 108 deposited in each chamber portion 103 of each one of the chamber body portions 102.
  • the shape of the patch of lipids 108 deposited in each chamber portion 103 may vary.
  • the electrophysiology cell 101 may be used to form a lipid bilayer in accordance with the method of the invention.
  • an aqueous solution may be introduced into both chamber portions 103 simultaneously via openings in the upper surface 104 of each chamber body portion 102.
  • the aqueous solution will cover the lipids 108 deposited in each chamber portion 103 and a lipid/solution interface will form with a layer of lipid resting on top of the solution.
  • the interface will rise within both chamber portions 103 and move past the aperture 107 on both sides of the membrane 106 thereby forming a lipid bilayer across the aperture 107.
  • the lipid 108 is covered by the aqueous solution before the aperture 107 is covered.
  • the electrophysiology cell 101 can further includes respective electrodes (not shown in Fig. 1) provided in each chamber portion 103 of each one of the chamber body portions 102.
  • the electrodes may be Ag/AgCl electrodes.
  • the electrodes may form part of an electrical circuit 120 which is capable of measuring an electrical signal across the lipid bilayer.
  • a suitable electrical circuit 120 is illustrated schematically in Fig. 2 and is of a conventional type for performing stochastic sensing by detecting the current flowing across the lipid bilayer.
  • the electrodes 109 are connected to an amplifier 121 such as a patch-clamp amplifier (eg an Axopatch 200B supplied by Axon Instruments) which amplifies the current signal output from the electrodes 109.
  • an amplifier 121 such as a patch-clamp amplifier (eg an Axopatch 200B supplied by Axon Instruments) which amplifies the current signal output from the electrodes 109.
  • the current signal output by the amplifier 121 is supplied through a low-pass filter 122, such as a Bessel filter (eg with characteristics 80dB/decade with a corner frequency of 2kHz).
  • a Bessel filter eg with characteristics 80dB/decade with a corner frequency of 2kHz.
  • the current signal output by the low-pass filter 122 is supplied to an A/D converter 123, such as a Digitata 1320 A/D converter supplied by Axon Instruments.
  • the A/D converter 123 might typically operate with a sampling frequency of 5kHz.
  • the A/D converter 123 converts the current signal into a digital signal which is then supplied to a computer 124 for analysis.
  • the computer 124 may be a conventional personal computer running an appropriate program to store the current signal and display it on a display device.
  • the invention may be applied to a device which is the cell of the sensor system described in detail below.
  • a bilayer was first formed using the common Montal and Mueller method. Bilayer formation was performed using a standard two-chamber research cell.
  • the research cell is typical of those used in laboratory bilayer tests and comprises two Delrin (acetal homopolymer) blocks, each machined to create an open-sided 700ul chamber with appropriate access portals. The blocks are clamped together on either side of a polymer film which thereby separates the two chambers. The only electrical connection between the two chambers is by ionic conduction of the electrolyte solution through a small aperture created in the polymer film.
  • pre-treatment a chemical surface treatment
  • 2-5 ul of 10% hexadecane dissolved in pentane was applied to either side of a dry aperture having a diameter of approximately 50 ⁇ m.
  • the pentane was allowed to evaporate.
  • both chambers of the research cell were filled with electrolyte solution comprising 1OmM Phosphate Buffered Saline (PBS) solution at pH 7.2, spiked with IM NaCl.
  • PBS Phosphate Buffered Saline
  • a lO ⁇ l drop of l ⁇ -diphytanoyl-sn-glycero-S-phosphocholine lipid dissolved in pentane (10mg/ml) was then carefully applied to the surface of the solution in both chambers of the cell, and left to stand at room temperature for 15 minutes to allow the pentane to evaporate.
  • Bilayers were subsequently formed by sequentially lowering and raising the air/solution interface past either side of the aperture, as described in Montal and Mueller, Proc. Natl. Acad. Sci. USA., 1972; 69: 3561-3566.
  • An electrical potential difference was applied across the membrane between the chambers of the test cell using Ag/ AgCl electrodes, one immersed in each chamber. Control of the applied potential and recording of the subsequent current was carried out using a current amplifier (MultiClamp700B from Axon Instruments with a CV 7B/BL headstage), coupled to a data acquisition system (DigiData 1322A also from Axon Instruments). The headstage and the test cell were housed in a Faraday cage to prevent interference from external electromagnetic noise. The DigiData 1322A is interfaced to a computer using pClamp version 9.2 software, and data acquired at 4 kHz, with a 2 kHz Bessel filter.
  • Formation of a bilayer across the aperture was confirmed by creation of a high resistance sealing of the aperture (>10G ⁇ ), by measurement of the capacitance of the high resistance seal and by the subsequent successful insertion of ⁇ -hemolysin ( ⁇ -HL) pores into the bilayer which resulted in a fixed current flow which is identical for each pore.
  • lipid bilayer was formed in accordance with the invention.
  • the research test cell and apparatus described above was used to investigate the use of lipid dried to the base of the cell chambers and ⁇ -HL dried on the membrane around the aperture.
  • apertures were created by one of two different methods: sparking and laser drilling.
  • Laser-drilled membranes were produced using an Excimer laser at the UK Laser Micromachining Centre, Bangor, Wales.
  • the laser-drilled holes used in these experiments were in the range of 5-30 ⁇ m in diameter with a tapered morphology in cross section. Holes of this size allow a stable lipid bilayer to e formed more easily.
  • Holes of this size allow a stable lipid bilayer to be formed more easily.
  • Part of the aperture construction involved a chemical surface treatment to facilitate the bilayer formation process. This involved application of 2 ⁇ l of 1% hexadecane in pentane to either side of the aperture. This was then allowed to evaporate. Pre-treatment also allows the easy formation of a stable lipid bilayer.
  • test cells were then loaded with 20ul of the lipid solution (10mg/ml of 1,2-diphytanoyl- sn-glycero-3-phosphocholine in pentane) applied to the base of each chamber and stored at room temperature to allow the pentane to evaporate, leaving dry lipid coated on the base of each chamber.
  • the lipid solution (10mg/ml of 1,2-diphytanoyl- sn-glycero-3-phosphocholine in pentane) applied to the base of each chamber and stored at room temperature to allow the pentane to evaporate, leaving dry lipid coated on the base of each chamber.
  • the dry research cells already loaded with lipid and ⁇ -HL, were re-hydrated by injecting a test solution (1OmM Phosphate Buffered Saline solution, 1.0M NaCl, and 0.25mM g-cyclodextrin, at pH 6.9) into the base of each chamber of the cell, raising the lipid/solution interface past the aperture only once on either side sequentially.
  • a test solution (1OmM Phosphate Buffered Saline solution, 1.0M NaCl, and 0.25mM g-cyclodextrin, at pH 6.9
  • the electrical potential difference was applied across the membrane using Ag/ AgCl electrodes, as in the traditional set up, and data recorded at a sampling rate of 250 ⁇ s per point using the equipment described previously.
  • a lipid bilayer can be formed by one pass of the lipid/solution interface past aperture if the solution covers the dried lipid before it covers the aperture, the aperture has a diameter of less than 20 ⁇ m and the membrane has been pre-treated to increase its affinity to lipids. This removes the need to move the interface back and forth past the aperture.
  • Fig. 7 shows the current response (pA, upper portion) and the applied potential (mV, lower portion) recorded over a period of 180 seconds. Over the first 40 seconds of recording the cell is dry and the Faraday cage is open. Solution is injected on either side of the membrane just prior to the first marker on the plot (approximately 45 seconds). After a period of fluctuation as the electrodes are wetted and the Faraday cage is closed, the applied potential is then increased to +10OmV.
  • the current remains at ⁇ 10pA, consistent with the G ⁇ seal of a bilayer, and then rises in a single step to approximately 9OpA, consistent with insertion of an ⁇ -HL pore and confirming that the aperture was blocked with a lipid bilayer (as described above for Fig. 5).
  • the stepwise fluctuation in the current is from binding events with cyclodextrin causing transient partial blockage of the pore, and confirms that the current is due to an ⁇ -HL pore in the bilayer (as described above for Fig. 6). After -70s a second pore inserts into the bilayer.
  • Fig. 8 shows an expanded view of the current (1 second full scale) during the final minute of recording, again illustrating the characteristic step-like profile of the analyte binding events.
  • results presented therefore illustrate that bilayer formation and subsequent pore insertion is possible directly upon re-hydration of the dry test cell with test solution using lipid and ⁇ -HL dried in the test cell.
  • the bilayers can be formed on the first exposure of the aperture to the solution/air interface carrying the lipid and a variety of apertures can be used including different membrane materials and aperture formation methods.
  • the results are not presented here, bilayers have been formed on all the membrane/aperture combinations presented in Table 2 above.
  • a cell having a much smaller scale that the two-chamber research cell used above was constructed.
  • the cell contained two cylindrical chambers having a cross-sectional diameter of 12mm and a length of 2mm. The volume of each chamber was approximately 56 ⁇ l.
  • Two alternative membrane materials were tested: a 6um thick biaxial polycarbonate film, and a 5 ⁇ m thick PTFE film (Goodfellow Cambridge Ltd.)- Apertures were formed in the centre of the membrane by one of two different methods described above, sparking and laser drilling.
  • the laser-drilled holes used in these experiments were lO ⁇ m in diameter with a tapered morphology in cross section.
  • Spark generated apertures in the 5 ⁇ m PTFE film membranes were approximately lO ⁇ m diameter circular holes, whereas for the 6 ⁇ m polycarbonate film the sparked apertures were elliptical with dimensions approximately 20 ⁇ m by 30 ⁇ m. Holes of this size allow a stable lipid bilayer to be easily formed.
  • the apertures then received a chemical pre-treatment to facilitate the bilayer formation process.
  • Pre-treatment also allows the easy formation of a stable lipid bilayer.
  • a l ⁇ l drop of aqueous protein solution (0.017 mg/ml w.t. ⁇ -HL) was applied near to one side of the aperture and dried.
  • each chamber was then coated with 4 ⁇ l of lOmg/ml diphantytanoyl-sn- glycero-3-phosphocholine (DPhPC) dissolved in pentane.
  • DPhPC diphantytanoyl-sn- glycero-3-phosphocholine
  • test solution (1OmM Phosphate Buffered Saline solution, 1.0M NaCl, and 0.25mM g-cyclodextrin, at pH 6.9) into each chamber.
  • Fig. 9 shows a typical current trace recorded over the entire duration of one test.
  • Figs 10, 11, 12 and 13 show expanded areas of Fig. 9.
  • Each Fig. contains two graphs: the upper plot shows the current response to the applied potential, which is shown in the lower plot.
  • a 50Hz triangular a.c. potential waveform of 2OmV amplitude is applied between the electrodes, which are initially dry.
  • a square-wave capacitive current response is recorded with amplitude ⁇ 330pA, as seen in Fig. 10, indicating bilayer formation across the aperture.
  • the a.c. potential waveform is then replaced by a d.c. potential of +10OmV (after arrow 1 in Fig. 9), a constant current of ⁇ 10pA is recorded, confirming that the aperture is sealed with >10 G ⁇ resistance as would be expected with a bilayer.
  • the bilayer is deliberately broken by 'zapping' with a 50ms potential pulse of IV d.c. applied on top of 50Hz triangular a.c. waveform.
  • the potential pulse is sufficient to permanently disrupt the high resistance electrical seal of the aperture, causing the current to go off scale, as seen in Fig. 11 (recorded between arrow 2 and arrow 3 in Fig. 9).
  • a new bilayer is formed using the Montal and Mueller method by lowering and then raising the solution/air interface carrying the lipid monolayer past the aperture.
  • the square wave capacitive current is restored as the new bilayer forms.
  • the potential waveform is then turned off and +10OmV d.c. applied, which results in approximately lOOpA step increases in the current as ⁇ -HL protein pores automatically insert into the bilayer.
  • An expanded view showing the current as the pores insert into the bilayer is presented in Fig. 12 (after arrow 4 in Fig. 9). Again, pores will spontaneously insert into the lipid bilayer if they are deposited in dried form on an interface of the cell. This avoids the need to actively insert the pores into the lipid bilayer.
  • the ⁇ -cyclodextrin in the test solution binds stochastically to the ⁇ -HL pores causing characteristic interruptions in the pore current, seen as approximately 6OpA step drops in the current which last 50-500ms. This is presented in Fig. 13.
  • a sensor system 1 is shown in Fig. 14 and comprises a cell 2 and an electrical reader unit 3 which may be connected together. In use, sensing using a lipid bilayer is formed in the cell 2 and an electrical current signal across the bilayer is monitored and interpreted by the reader unit 3.
  • the sensor system 1 has been designed for use outside of a laboratory setting. Some examples include use in medicine for point of care testing (POCT), use in environmental protection for a field-based test for pollutants, use for counter bioterrorism for the detection of explosives and chemical and biological agents at the "point of terror". Nonetheless, some of features of the sensor system 1 also make it advantageous for laboratory use.
  • the cell 2 has a construction allowing it to be mass-produced at a low cost, allowing it to be a disposable product.
  • the cell 2 is easily connected and replaced in the reader unit 3.
  • the reader unit 3 is sufficiently small to be hand-held and portable.
  • the cell 2 is shown in Figs. 15 and 16 and will now be described in detail.
  • the cell 2 has a layered construction formed from a stack of layers fixed together.
  • the cell 2 comprises a membrane 10 having an aperture 11 across which a lipid bilayer is supported in use. Although only a single aperture 11 is used in many applications, there may be plural apertures 11.
  • the membrane 10 may be made of any material capable of supporting lipid bilayer across the aperture 11. Some examples include but are not limited to: a biaxial polycarbonate, PTFE, polyethylene, polypropylene, nylon, PEN, PVC, PAN, PES, polyimide, polystyrene, PVF, PET, aluminized PET, nitrocellulose, PEEK, or FEP.
  • One factor in the choice of the material of the membrane 10 is the affinity to the lipid which affects the ease of bilayer formation. However the material of the membrane 10 has less significance when a pretreatment is used as described below. The choice of the material of the membrane 10 also affects the ease of formation of the aperture 11.
  • the thickness of the membrane 10 is made sufficiently small to facilitate formation of the lipid bilayer across the aperture, typically being at most 25 ⁇ m, preferably being at most lO ⁇ m thick, for example 5 ⁇ m or 6 ⁇ m.
  • the thickness of the membrane 10 is typically at least 0.1 ⁇ m.
  • the aperture 11 may in general be of any shape or size which it is capable of supporting a lipid bilayer, although it preferably has a restricted size as discussed further below.
  • the thickness of the membrane 10 is also dependent on the size of the aperture 11. As the aperture 11 decreases in size, the membrane 10 also needs to decrease in thickness in order to assist the formation of a lipid bilayer. Typically the thickness of the membrane 10 is no more than the minimum diameter of the aperture 11. Another factor is the electrical resistance of the membrane 10 which changes with the thickness. It is desirable that the resistance of the membrane 10 is sufficiently high relative to the resistance of the ion channel in a membrane protein inserted in the membrane 10 that the current flowing across the membrane 10 does not mask the current through the ion channel.
  • the membrane 10 is supported by two support sheets 12, provided on opposite sides of the membrane 10 and fixed thereto. As described further below, the membrane 10 and the support sheets 12 together form a septum 17.
  • the support sheets 12 each have a window 13 which is aligned with the aperture 11 in the membrane 10 but is of larger size than the aperture 11 in order that the support sheets 12 do not interfere with the formation of a lipid bilayer across the aperture 11.
  • the support sheets 12 have the function of supporting and strengthening the membrane 10 and may be made of any material suitable for achieving this purpose.
  • Suitable materials include, but are not limited to: Delrin® (polyoxymethylene or acetal homopolymer), a polyester, eg Mylar® (biaxially-oriented polyethylene terephthalate (boPET) polyester film), PC, PVC, PAN, PES, polysulphone, polyimide, polystyrene, polyethylene, PVF, PET, PTFE, PEEK, or FEP
  • the support sheets 12 are typically thicker than the membrane 10, having a thickness typically at least 0.1 ⁇ m, preferably at least lO ⁇ m.
  • the support sheets 12 are thinner than the bodies 14 described below, having a thickness typically at most lmm, preferably at most 0.5mm.
  • the cell 1 further comprises two bodies 14 each fixed to one of the support sheets 12.
  • the bodies 14 are each formed from a sheet of material having an aperture 15 extending therethrough.
  • the apertures 15 in the bodies 14 are of larger area, parallel to the membrane 10, than the windows 13 in the support sheets 12 and are aligned therewith.
  • the apertures 15 in the bodies 14 each define a respective chamber 16, the two chambers 16 being separated by the septum 17 formed by the membrane 10 and the support sheets 12 together, and the aperture 11 in the membrane 10 opening into each of the chambers 16.
  • each body 14 is greater than the thickness of the support sheets 12 and is chosen to provide a desired volume for the chambers 16.
  • the bodies 14 may have any thickness, but typically the thickness of each body 14 is in the range from 1 ⁇ m to 3mm.
  • the chambers 16 typically have a volume of 0.1 ⁇ l to 250 ⁇ l.
  • a restricted thickness can be advantageous as described further below.
  • the bodies 14 may be formed of any suitable material, for example silicone rubber.
  • the chambers 16 are closed by means of a respective closure sheet 18 which is fixed to the outer surface of the respective body 14 covering the aperture 15 formed therein.
  • the closure sheet 18 may be formed from any material, but may for convenience be the same material as the support sheets 12.
  • the septum 17 including the membrane 10 is not electrically conductive and is designed to have a high electrical resistance. Consequently, in use, the only significant electrical connection between the two chambers 17 is by ionic conduction of an electrolyte solution in the chambers 17 through the aperture 11 in the membrane 10. Formation of a lipid bilayer across the aperture 11 blocks the aperture 11 creating a high-resistance electrical seal between the chambers 17. Insertion of a membrane protein which is an ion channel, for example a pore, restores the electrical connection between the two chambers 17 but only by ionic conduction through the membrane protein. Subsequently, binding events between an analyte and a membrane protein cause a characteristic interruption of the current flowing between the chambers under an applied electrical potential difference.
  • each of the chambers 16 is provided with an electrode 20 formed as part of a layer 23 of conductive material deposited on the surface of the respective support sheet 12 which is internal to the chamber 16.
  • the electrodes 20 are illustrated in Fig. 17 which shows one of the support sheets 12 as viewed from the side internal to the adjacent chamber 16.
  • Fig. 17 shows one of the support sheets 12 as viewed from the side internal to the adjacent chamber 16.
  • the conductive material of the electrodes 20 may be for example Ag/ AgCl.
  • the support sheets 12 each include a protruding portion 21 which extends beyond the periphery of the body 14.
  • the layer 23 of conductive material which is deposited on the support sheet 12 to form the electrode 20 extends from the chamber 16 across the support sheet 12 to the protruding portion 21. Accordingly each layer 23 of conductive material forms not only an electrode 20 but also a contact 24 which is exposed on a connector portion 22, and a track 25 which electrically connects the contact 24 and the electrode 20.
  • the two protruding portions 21 of the two support sheets 12 together form a connector portion 22 for connecting the cell 2 to the reader unit 3, and the electrical signal received by the electrodes 20 in each chamber 16 is supplied to the reader unit 3 via the contacts 24.
  • a sample solution is introduced into the chamber 16 on one side of the membrane 10.
  • the chamber 16 which receives the sample solution will now be referred to as the test chamber 16-1 and the other chamber will now be referred to as the secondary chamber 16-2, although in many embodiments both chambers 16 will be identical in size and construction.
  • test chamber 16-1 may be provided with an inlet 30 or 32 using either one of the following two alternative arrangements.
  • the inlet 30 is formed in the body 14 as shown in Fig. 18.
  • the inlet 30 is formed in one of the surfaces of the body 14 which may in general be either the inner or outer surface as a channel extending from the periphery of the body 14 to the aperture 15.
  • the sample may be injected through the inlet 13, for example using a pipette or syringe.
  • the test chamber 16-1 is further provided with an exhaust outlet 31 having an identical construction to the inlet 30.
  • the inlet 32 is formed in the closure sheet 18 as illustrated in Fig. 19.
  • the inlet 32 is formed as a hole extending through the closure sheet 18 and aligned with the aperture 15 in the body 14 which defines the test chamber 16-1, as shown in dotted outline in Fig. 19.
  • the test chamber 16-1 is further provided with an exhaust outlet 33 having an identical construction to the inlet 32.
  • Such an inlet 30 or 32 may be provided with a closure, or may be omitted altogether by making a portion of the cell 2 of a material which allows penetration by a syringe for filling the test chamber 16-1.
  • the electrode 20 is arranged in the flow path between the inlet 30 or 32 and the aperture 11.
  • an aqueous solution is introduced into the test chamber 16-1 through the inlet 30 or 32 it contacts the electrode 20 before reaching the aperture 11.
  • the electrode 20 is wetted before the lipid bilayer is formed, the formation of the bilayer being described in more detail below.
  • the electrode 20 is wetted, there can occur a pertubation in the potential across the electrodes 20 between the two chambers 16, derived from the reader unit 3. If this occurs before the lipid bilayer is formed, then this causes no difficulty. However if the aqueous solution was to contact the electrode 20 after reaching the bilayer, such a pertubation in the potential across the electrodes could occur after the lipid bilayer is formed and risk rupturing the lipid bilayer.
  • the secondary chamber 16-2 may, in use contains a buffer solution or a gel.
  • the cell 2 may be supplied to users with the secondary chamber 16-2 already containing the buffer solution or gel. In this case, the secondary chamber 16-2 does not need an inlet 30 or 32 as described above.
  • the cell 2 may be supplied with the secondary chamber 16-2 empty. In this case, the user must introduce a buffer solution or gel into the secondary chamber 16-2. To facilitate this the secondary chamber 16-2 may also be provided with an inlet 30 or 32 as described above.
  • the chambers 16 are closed except for an inlet 30 or 32 if provided.
  • Use of closed chambers 16 has the advantage of reducing evaporation from the contents of the chambers 16. This in turn reduces the cooling of the contents which is important to maintain appropriate temperatures in the case of many membrane proteins which may be inserted in the bilayer.
  • test chamber 16-1 An internal surface of the test chamber 16-1 has a lipid deposited thereon.
  • the sample When the sample is inserted into the test chamber 16-1, the sample rehydrates the lipids and forms a lipid/solution interface between the sample and the air in the test chamber 16-1. This interface is subsequently moved across the aperture 11, either once or repeatedly, in order to form the lipid bilayer across the aperture 11.
  • the lipid may be applied to any internal surface of the test chamber 16-1.
  • the lipid may be deposited on the septum 17 during manufacture after the septum 17 has been constructed by fixing together the membrane 10 and the support sheets 12 but before assembly of the septum 17 into the remainder of the cell 2.
  • the lipid may be deposited on the internal walls of the chamber 16 formed by the aperture 15 in the body 14 or the closure sheet 18, either before or after the body 14 is fixed to the closure sheet 18, but before assembly to the septum 17.
  • the deposition may be achieved by coating the septum 17 with a solution of the lipid dissolved in an organic solvent such as pentane and then subsequently allowing evaporation of the solvent, although other techniques could equally be applied.
  • an organic solvent such as pentane
  • the chambers 16 may be of any size. However, particular advantage is achieved by restricting the depth of the test chamber 16-1 in the direction perpendicular to the septum 17. This depth is controlled by selection of the thickness of the body 14. In particular, the depth is restricted to a level at which the surface tension of a sample solution introduced into the test chamber 16-1 prevents the liquid from flowing across the test chamber 16-1 and instead contains the liquid in part of the test chamber 16-1 across its area parallel to the septum 17. In this state, the liquid interface with the air in the chamber 16 extends across the depth of the chamber 16, perhaps with some meniscus forming depending on the relative pressures of the liquid and the air.
  • FIG. 20 shows a cell 2 in which the liquid sample 40 has been introduced into one side of the test chamber 16-1 through the inlet 30 or 32 (although for simplicity the inlet 30 or 32 is not shown in Fig. 20).
  • Fig. 20 shows a cell 2 in which the liquid sample 40 has been introduced into one side of the test chamber 16-1 through the inlet 30 or 32 (although for simplicity the inlet 30 or 32 is not shown in Fig. 20).
  • surface tension holds the liquid interface 41 with the air in the chamber 16 extending across the depth of the chamber 16 between the septum 17 and the closure sheet 18.
  • the interface 41 is generally perpendicular to the septum 17 and the aperture 11 except for the formation of a meniscus.
  • the interface 41 may be moved in the direction of the arrow A along the chamber parallel to the septum 17 and hence across the aperture 11. Once the liquid sample 40 has rehydrated the dried lipid inside the chamber 16 the liquid interface 41 will support a layer of the lipid. Thus, such movement of the liquid interface 41 across the aperture 11 in the membrane 10 may be used to form a lipid bilayer.
  • a particular advantage of such a restricted depth for the chamber 16 is that the above- described effect of surface tension occurs irrespective of the orientation of the cell 2.
  • the cell 2 is illustrated in Fig. 14 with the aperture 11 extending horizontally, the same effect occurs regardless of the orientation of the cell 2.
  • the above-described process of forming a lipid bilayer across the aperture 11 may be carried out with the cell 2 in any orientation. This reduces the degree of care needed by the user and enhances the ability to use the sensor system outside of a laboratory setting.
  • the cell 2 is easy to manufacture simply by cutting and affixing together the individual layers of the cell 2.
  • the layers of the cell 2 are affixed by adhesive, although in principle some form of mechanical fixing could be used.
  • a template for plural cells 2 is inkjet printed onto the release paper of adhesive- coated polyester A4 sized cards from which six rows of sixteen support sheets 12 are to be formed.
  • the cards were Mylar polyester sheet (DuPont) of thickness 250 ⁇ m with a 467MP self-adhesive coating of thickness 50 ⁇ m on one side.
  • 4mm diameter holes are punched in the cards on the template to provide the windows 13 of each support sheet 12 and any burring of the edges of the punched holes removed using a scalpel blade.
  • the layers 23 of conductive material are then stencil screen-printed onto the cards using a 60/40 composition silver/silver chloride paste (Gwent Electronic Materials Ltd.), and left overnight to dry at room temperature. The registration and electrical resistance of the layers 23 of conductive material is checked and the surface of the cards covered with a sheet of A4 paper, to keep the surface clean in subsequent stages of sensor production.
  • the cards are then cut using a guillotine lengthwise into the six rows of support sheets 12.
  • the membranes 10 are formed from either a 6 ⁇ m thick biaxial polycarbonate film or a 5 ⁇ m thick PTFE film (Goodfellow Cambridge Ltd.).
  • the apertures 11 Prior to use the apertures 11 are formed as discussed below.
  • the membrane 10 around the apertures 11 then receives a chemical pretreatment to facilitate the bilayer formation process.
  • the pretreatment consists of 2 ⁇ l of 1% hexadecane in pentane applied to either side of the aperture by capillary pipette.
  • a l ⁇ l drop of aqueous protein solution (0.017 mg/ml w.t. ⁇ -HL) was applied near to one side of the aperture and dried.
  • the films are cut into strips, cleaned on both sides by rinsing with ethanol, and gently air-dried.
  • a tape-laying jig with a rubber coated veneer roller is used to roll the membrane film strips evenly over the self-adhesive of one half of the card rows. Care is taken to ensure that the film above the punched holes in the card remained flat and free from creases.
  • septums 17 the other half of the card rows are stuck back to back to sandwich the membrane film strips, with the punched holes carefully aligned on either side with the apertures 11. Then the strips are cut using a guillotine into septums 17 for individual cells 2.
  • the body 14 is formed from a 2mm thick solid silicone rubber sheet with self-adhesive coating on both sides. A large such sheet is cut into A4 sized sheets. An array of 12mm diameter circular apertures 15 for respective cells 2 are formed by removal of the material of the sheet, in particular by hollow punching the spacer sheets. Chamber volumes as low as 56 ⁇ l have been produced by punching 6mm diameter holes through the 2mm thick spacer material.
  • the individual chambers 16 are then closed by sticking an A4 sized card of plain 250 ⁇ m thick Mylar polyester sheet (DuPont), which ultimately forms the closure sheets 18, to one side of the silicone rubber sheet.
  • This sheet is then cut using a guillotine lengthwise into rows having the desired width of the body 14. Channels of width lmm, to form the inlet 30 and exhaust gas outlet 31 are then cut in the silicone rubber sheet material (but not through the backing card).
  • each chamber 16 is then coated with a solution of 4 ⁇ l of lOmg/ml DPhPC lipid dissolved in pentane.
  • the rows of lipid-loaded chambers are cut using a guillotine into individual chambers 16 according to the template and then bonded symmetrically to each side of the individual septums 17 to form cells 2.
  • the aperture 11 may be of any size capable of supporting a lipid bilayer.
  • the diameter of an aperture in a conventional laboratory apparatus is typically in the order of 30 ⁇ m to 150 ⁇ m and an aperture 11 of such a size may used in the present cell 2.
  • the apertures 11 which are sparked-generated were produced by a spark generating device which comprises an adjustable high voltage generator that charges a storage capacitor, with feedback control.
  • the storage capacitor is then switched to discharge into a high voltage transformer coil to rapidly produce a large potential difference between the points of two electrodes attached to the transformer output. Dielectric breakdown between the electrode points results in a spark.
  • the energy of the spark is controlled by switching the value of the storage capacitor (33nF- 30OnF), by adjusting the capacitor charging voltage (200nV-500V), and by changing the distance between the output electrode points.
  • the polymer film from which a membrane 10 is subsequently cut is mounted flat on the sparking platform and the two output electrodes of the sparking device are positioned opposite each other, above and below the film.
  • apertures 11 of small diameter the spark energy is minimised by choosing the lowest storage capacitor and lowest charging potential that can create a spark that penetrates through the film, and by controlling the dielectric resistance between the two electrodes. For example, decreasing the thickness of the membrane film enabled the use of lower energy sparks and produced smaller apertures, such that it was possible to create apertures in the range 5 ⁇ m- lO ⁇ m diameter in PTFE film of 5 ⁇ m thickness. Further control of the aperture 11 diameter could easily be introduced through limiting the sparking energy by gating the discharge after detecting the onset of dielectric breakdown.
  • the laser-generated apertures 11 were produce by laser drilling.
  • the morphology of the aperture 11 can been seen to vary with the material of the membrane 10 and method used to form the bilayer.
  • the spark generated apertures 11 were elliptical while the laser drilled apertures 11 were mostly circular.
  • the spark generated apertures 11 generally had a uniform cross-section while the laser drilled apertures 11 generally a cross section which tapered through the thickness of the membrane 10.
  • the regularity of the inside edge of the aperture 11 is also sensitive to the material of the membrane 10, the thickness of the membrane 10, and the method of formation of the aperture 11. This is expected to impact on the stability of bilayer formation at the aperture. However in all cases irrespective of the method of formation of the aperture 11, it is apparent that restricting the diameter of the aperture 11 results in increasing the stability of the bilayers, in fact to a dramatic degree. For example with an aperture 11 of diameter lO ⁇ m the cell 2 can firmly knocked against the table or disconnected from the reader unit 3 and carried by hand without breaking the bilayer. This is of significant advantage in the context of use of the sensor system 1 outside the laboratory setting.
  • the aperture 11 has a restricted diameter, say of 20 ⁇ m or less in at least one dimension.
  • the aperture 11 may have such a restricted diameter in all dimensions, but the advantage of increased stability is achieved provided the aperture 11 is relatively small in one dimension, even if the aperture 11 is longer in another dimension.
  • apertures 11 of small diameter may be formed using cheap off-the-shelf materials and processes adaptable for mass production. Nonetheless, the choice of materials for the membrane 10 and methods capable of generating the apertures 11 is considerably more extensive than those considered above.
  • the secondary chamber 16-2 may contain a gel 50 as shown for example in the cell 2 of Fig. 20.
  • the gel 50 extends across the aperture 11 in the membrane 10.
  • the presence of the gel acts to physically support a lipid bilayer formed across the aperture 11.
  • the gel 50 assists the formation of the lipid bilayer and furthermore provides the lipid bilayer with increased stability.
  • the gel 50 may act as a matrix for controlling the supply of molecules to the lipid bilayer.
  • the gel 50 may fill the secondary chamber 16-2 such that the gel 50 contacts the membrane 10. This case is illustrated in Fig. 20. In this case, the gel 50 may directly support the lipid bilayer formed across the aperture 11. This is preferred in order to improve bilayer formation and stability.
  • the gel 50 may still support the lipid bilayer formed across the aperture 11 by acting through a solution occupying the gap 51 , although this effect will reduce as the size of the gap 51 increases.
  • the presence of the gap 51 means that a wider variety of materials can be used to make the gel 50, including ionically non-conductive materials.
  • the gel 50 may be ionically conductive and indeed this is necessary if the gel 50 directly contacts the lipid bilayer.
  • the gel 50 may be for example a hydrogel.
  • Suitable ionically conductive gels include, but are not limited to, agarose polyacrylimide gel, GellanTM gel or CarbomerTM gel. Particular gels which have been used are 5% agarose doped with NaCl or Signa Gel (Parker Laboratories Inc.). In one case agarose gel 50 was made using 1OmM PBS to which IM NaCl had been added. The gel 50 was melted and then injected in the chamber 16 where it solidified upon cooling.
  • the cell 2 may be provided to the user with the secondary chamber 16-2 already containing the gel 50. This improves the ease of use of the cell 2 because no filling the secondary chamber 16-
  • the reader unit 3 will now be described in detail.
  • the reader unit 3 has a connector portion 60 which is arranged to make a physical connection with the connector portion 24 of the cell 2.
  • the connector portion 60 consists simply of a pair of blocks 61 which are separated by a spacing designed to provide a tight fit for the connector portion 24 of the cell 2.
  • the connector portion 24 of the cell 2 may be plugged into the connector portion 60 in between the blocks 61 by insertion of the cell 2 in the direction of arrow B, thereby providing mating between the connector portions 24 and 60.
  • respective contacts 62 and 63 are provided on each of the facing surfaces of the block 61 or the connector portions 60.
  • the contacts 62 and 63 are simply pieces of metal, typically gold-plated to assist formation of good electrical contact.
  • the contacts 62 and 63 may be sprung.
  • the reader unit 3 includes an electrical circuit 90 described further below which is connected to the contacts 62 and 63. hi this manner, the connection together of the cell 2 in the reader unit 3 allows the electrical signal generated between the chambers 16 to be supplied from the electrodes 20 to the reader unit 3.
  • the first approach uses a rigid metal body 70 as the Faraday cage.
  • the rigid metal body has an internal cavity 71 sufficient to accommodate the cell 2.
  • the rigid metal body 70 is open and connected to the body 73 of the reader unit 3 so that the cavity 71 is aligned with the connection portions 60. In this way, the cell 2 is accommodated inside the cavity 71 when it is connected to the reader unit 3, as shown in Fig. 24.
  • the rigid metal body 70 has an aperture 74 facing the connector portion 60.
  • the aperture 74 is of sufficient size to allow passage of the cell 2 when the cell 2 is connected to the reader unit 3. Therefore, an individual cell 2 may be connected to the reader unit 3 and replaced by another cell 3 by insertion through the aperture 74 without removal of the rigid metal body 70.
  • the presence of the aperture 74 does not prevent the operation of the rigid metal body 70 as a Faraday cage.
  • the aperture 74 may be of sufficiently small size that any electrical interference caused by electro magnetic radiation penetrating the aperture 74 is at a sufficient high frequency that it does not significantly degrade the quality of the electrical signal of interest.
  • the aperture 74 of the rigid metal body 70 may have a maximum dimension (horizontally in Fig. 23) of 50mm or less, preferably 20mm or less.
  • the rigid metal body 70 also has a sample introduction hole 76 which is aligned with the inlet 30 or 32 when the cell 2 is connected to the reader unit 3.
  • the sample introduction hole 76 allows the sample to be introduced into the cell 2 after the cell 2 has been connected to the reader unit 3.
  • the sample introduction hole 76 is smaller than the aperture 74, typically having a maximum dimension of 5mm or less.
  • the sample introduction hole 76 is also of sufficiently small size that any electrical interference caused by electro magnetic radiation penetrating the sample introduction hole 76 is at a sufficient high frequency that it does not significantly degrade the quality of the electrical signal of interest.
  • the second alternative approach is to provide a Faraday cage 75 fixed around the periphery of the cell 2, for example as shown in Fig. 25.
  • the Faraday cage 75 entirely encloses the cell 2, except for the connector portion 24 which protrudes out of the Faraday cage 75.
  • the Faraday cage 75 may be formed by a solid metal body.
  • the Faraday cage 75 may be formed by a metal foil which has the advantage of being easy to manufacture, for example simply by adhering the metal foil to the exterior of the cell 2.
  • the reader unit 3 houses an electrical circuit 90 which will now be described in detail.
  • the primary function of the electrical circuit 90 is to measure the electrical current signal developed across the electrodes 20 to provide a meaningful output to the user. This may be simply an output of the measured signal or may involve further analysis of the signal.
  • the electrical circuit 90 may take various different forms and some possible circuit designs are shown in Figs. 14 to 16. In each design there are some common elements as follows.
  • the two contacts 62 and 63 of the connector portion 60 will be referred to as a reference contact 62 and a working contact 63.
  • the electrodes 62 and 63 are physically the same, in operation the reference contact 62 provides a bias voltage potential relative to the working contact 63, whilst the working contact 63 is at virtual ground potential and supplies the current signal to electrical circuit 90.
  • the reader circuit 90 has a bias circuit 91 connected to the reference contact 62 and arranged to apply a bias voltage which effectively appears across the two contacts 62 and 63 and hence across the electrodes 20 of a cell 2 connected to the reader unit 3.
  • the bias circuit 91 may take different forms as described below.
  • the reader circuit 90 also has an amplifier circuit 92 connected to the working contact 63 for amplifying the electrical current signal the electrodes 20 of the cell 2 and appearing across the two contacts 62 and 63.
  • the amplifier circuit 92 consists of a first amplifier stage 93 and a second amplifier stage 94.
  • the first amplifier stage 93 is connected to the working electrode 63 and arranged to convert the current signal into a voltage signal in a first stage amplifier. It may comprise an electrometer operational amplifier configured as an inverting amplifier with a high impedance feedback resistor, of for example 500M ⁇ , to provides the gain necessary to amplify the current signal which typically has a magnitude of the order of tens to hundreds of picoamps.
  • the second amplifier stage 94 is connected to the output of the first amplifier stage 93 and arranged to amplify and filter the voltage signal voltage.
  • the second amplifier stage 94 provides sufficient gain to raise the signal to a sufficient level for processing in the microcontroller 95 described below. For example with a 500M ⁇ feedback resistance in the first amplifier stage 93, the input voltage to the second amplifier stage 94, given a typical current signal of the order of 10OpA, will be of the order of 5OmV, and in this case the second amplifier stage 94 must provide a gain of 50 to raise the 5OmV signal range to 2.5V. If the signal contains frequencies beyond the bandwidth limit of the first stage then analogue filtering is provided in the second amplifier stage 94 to increase gain at frequencies beyond the first stage bandwidth limitation. The filtering results in a combined first and second stage frequency response with constant gain beyond the first stage limitation.
  • each power rail is connected to bipolar PNP switching transistors for low leakage switching of the analogue circuitry.
  • the signal will be unipolar, but if bipolar current signals are required the gain of the second amplifier stage 94 can be halved and a DC offset applied to the inverting input of the second amplifier stage 94 equal to half reference voltage value of the microcontroller 95.
  • This design is intended for a stand-alone battery-operated reader unit 3 with PC connectivity.
  • the bias circuit 91 and the amplifier circuit 92 are connected to a microcontroller 95.
  • the microcontroller 95 has a power control circuit 96 which supplies power from a battery.
  • the microcontroller 95 incorporates an analog-to-digital converter 97 which receives the output of the amplifier circuit 92 and converts it into a digital signal.
  • the analog-to-digital converter 97 may be of a successive approximation type or of a voltage-to-frequency type, both resulting in a digital word for each conversion.
  • a sampling rate is chosen that is at least twice the bandwidth of the signal at the output of the second amplifier stage 94 to prevent aliasing.
  • analog-to-digital converter 97 is embedded on the same silicon die as the microcontroller 95, but it could alternatively be a separate circuit element.
  • the microcontroller 95 incorporates a microprocessor 98 which runs code to process and analyse the digital signal.
  • the microcontroller 95 has a display 99 which is conveniently an LCD display, and on which the microcontroller causes display of the signal itself or other analysis results such as temporal results of the signal analysis.
  • the microcontroller 95 receives commands from a keypad 100.
  • a keypad 100 Of course other input and output devices could be used in addition to, or instead of, the display 99 and keypad 100, for example LEDs used as indicators or an audio generator 105.
  • the microcontroller 95 also has an interface 101 to provide data communication with another digital device, for example a computer.
  • the interface 101 may be of any type, for example a UART interface. This allows the received signal to be supplied to another device for display, storage and/or further analysis.
  • the microcontroller 95 is connected to the bias circuit 91 as follows.
  • the microcontroller 95 has a PWM generator 102 which generates a PWM (pulse width modulation) voltage waveform, that is a digital signal with fixed frequency but varying duty cycle.
  • the PWM generator 102 is of conventional construction. Generally, an internal timer is set running to generate the PWM signal frequency and a register is loaded with the count at which the PWM output is switched and a comparator detects when the count is reached.
  • the bias circuit 91 includes a low-pass filter 103 connected to low-pass filter the PWM signal output by the PWM generator 102.
  • the duty cycle of the PWM signal varies with time so that the output of the low-pass filter is the desired analog signal, which is the average voltage over one period of the PWM cycle.
  • the PWM generator 102 built in this manner has a resolution equivalent to the smallest duty cycle change possible with the microcontroller 95. Bipolar outputs can be achieved by using a pair of PWM signals each connected to one of a pair of low pass filters 103 and one fed to the positive input and the other the negative input of a summing amplifier, this being shown in Fig. 26.
  • the bias circuit 91 further includes an output amplifier 104 for amplifying the output of the low-pass filter 103.
  • the output amplifier 104 is a summing amplifier arranged to subtract the output of one of the pair of low pass filters 103 from the other.
  • the microcontroller 95 can be chosen with an embedded analogue multiplexer . In this case multiple analogue input circuits are required and the output of each second amplifier stage 94 is sampled by the analog-to-digital converter 97 through the multiplexer.
  • the second design of the electrical circuit 90 is shown in Fig. 27 and will now be described.
  • This design is intended for a reader unit 3 which is a derivative of a standard Personal Digital Assistant (PDA) architecture.
  • the second design is identical to the first design except that the microcontroller 95 interfaces with a PDA device 106 which is a conventional PDA.
  • PDA device 106 may have input/output facilities based on a variety of protocols, such as universal connectors, Secure Digital cards (SD), Compact Flash cards (CF, CF2), MultiMedia cards (MMC), memory stick cards or SIM card.
  • SD Secure Digital cards
  • CF Compact Flash cards
  • MMC MultiMedia cards
  • SIM card SIM card.
  • Such functionality may be used to provide a framework for the reader unit 2 to provide the functions of a large interactive display with key or touch entry and a rechargeable power source.
  • the connector portion 60, the amplifier circuit 92, the bias circuit 91 and the microcontroller 95 are mounted within an electrical assembly shaped to fit in an SD card slot or other card format slot. This allows the reader unit 2 to be formed by an existing PDA device with the assembly fitted in a card slot.
  • the third design of the electrical circuit 90 is shown in Fig. 28 and will now be described.
  • This design is intended for a reader unit 3 which is based on a data acquisition card 107 to be plugged into a computer 108 such as a desktop or laptop.
  • This design is the simplest in terms of hardware development requiring only three amplifier stages and the data acquisition card.
  • the amplifier circuit 92 is arranged as described above, but the bias circuit 91 is simply formed by an inverting amplifier 109 supplied with a signal from a digital-to-analog converter 110 which may be either a dedicated device or a part of the data acquisition card 107 and which provides a voltage output dependent on the code loaded into the data acquisition card 107 from software.
  • the third design of the electrical circuit 90 shown in Fig. 28 may be modified to provide a multi-port reader system connected through a fast transport interface such as the Universal Serial Bus or Ethernet for the purpose of analysing many cells at once.
  • a fast transport interface such as the Universal Serial Bus or Ethernet
  • the data acquisition card 107 is modified to provide the transport interface allowing multiple data streams into the computer.
  • the electrical circuit 90 may provide analysis of the received signal. Such analysis may be performed, for example, by programming one of the microprocessors in the electrical circuit, for example the microprocessor 98 in the microcontroller 95 or the PDA device 106 in the above described designs of the electrical circuit. In particular the analysis may involve interpretation of the electrical signal. As already described, the electrical signal is characteristic of the physical state of the cell 2. Accordingly, the state of the cell 2 can be detected from the electrical signal by the electrical circuit 90.
  • the following states each have a characteristic electrical signal which may be detected by the electrical circuit 90:
  • lipid bilayer being formed across the aperture 11 in the membrane 10 with a membrane protein being inserted therein without an analyte binding to the membrane protein;
  • lipid bilayer being formed across the aperture 11 in the membrane 10 with a membrane protein being inserted therein with an analyte binding to the membrane protein.
  • Such states may be detected based on predetermined thresholds or adaptive thresholds, which may be derived from scientific study of the membrane protein and physical system being used in the cell 2.
  • the electrical circuit 90 then produces an output indicative of the detected state, for example by displaying the detected state on the display 99 or some other audio and/or visual output, or by outputting a signal indicative of the detected state, for example to a computer device connected thereto.
  • the reader unit 2 may also monitor the correct performance of the sensing process to check and ensure that the cell 2 is operating correctly from the moment it is connected to the reader unit 3 until the end of the measurement assay.
  • the reader unit 3 may apply a bias potential and continuously monitor the resultant signal. If the signal falls outside the expected levels showing a proper progress through the states (1) to (5), the reader unit 3 may output a signal reporting an error mode, or alternatively may perform an automated remediation.
  • time duration of the state will be stored for subsequent or continuous statistical analysis. This may provide further information. For example, signals derived from single molecule binding events in or near multiple membrane protein channels will result in a time-varying current based on the number of binding events.
  • the membrane protein includes a tether.
  • Signals derived from either single or multiple binding events to either single or multiple tethers attached to single or multiple membrane protein channels will appear as noisy signals which become less noisy when the tether or tethers are bound to a target analyte.
  • Each tether will have a binding site for the target analyte.
  • These signals will be analysed with an algorithm to detect the reduction in noise and as each event is detected the time duration of the event or the time course of noise reduction will be stored for subsequent or continuous statistical analysis.
  • the electrical circuit 90 performs the process as shown in Fig. 29.
  • the electrical circuit 17 applies a bias voltage as shown in Fig. 30 having a waveform which is a 50Hz triangular AC signal with 2OmV amplitude, superimposed on +10OmV DC potential.
  • step S2 it is detected whether the received signal is representative of a current and impedance within the respective limits for the reader unit 3 in the absence of the cell 2.
  • the contacts 62 and 63 of the reader unit 3 behaves as a capacitor and produce a square wave current response to the applied triangular AC potential, as shown in Fig. 31.
  • the square wave has a 2OpA amplitude centred on OpA.
  • This waveform is characteristic of normal operation of the electrical circuit 90 and so in step S2 it is detected whether this waveform is produced, within a reasonable margin. If not, then in step S3, the electrical circuit 90 outputs a signal indicate indicative of a circuit error. Otherwise in step S4, the user connects a cell 2 to the reader unit 3.
  • the electrical circuit 90 may for example await a user input to indicate this.
  • step S5 there is detected state (1) that the chambers 16 in the cell 2 are dry.
  • the expected signal is the same as that detected in step S2 except that the insertion of the cell 2 causes an increase, for example the order of 25%, in the amplitude of the resultant squarewave, for example to provide an amplitude of 27pA. If state (1) is not detected, then in step S6 and there is output an error signal indicating malfunctioning of the cell 2.
  • step S7 there is output a signal indicating state (1) and in step S 8 the electrical circuit 90 changes the bias potential by removing the DC component, but maintaining the AC voltage of the waveform shown in Fig. 30.
  • step S9 the user introduces the test solution into the cell 2.
  • state (2) is not detected, but in step SlO there is detected state (3) of the lipid bilayer being formed across the aperture 11, as follows.
  • the aperture 11 provides a conductive path between the electrodes 20 and so the cell 2 provides a current response.
  • the current saturates the amplifier, for example as shown in the typical response shown in Fig. 32.
  • the resultant current signal is a squarewave as shown in Fig. 33 typically having an amplitude of around 25OpA centred on OpA.
  • State (3) is detected in step SlO by detecting a current signal showing this capacitive response.
  • the DC resistance is greater than 10G ⁇ .
  • step Sl 1 the detected current is compared to a threshold and then depending on whether the threshold is exceed or not there is output one of two possible error signals in steps S12 and S 13 which indicate the absence of bilayer formation.
  • step S 14 there is output a signal indicating that state (3) has been detected and in step Sl 5 the bias voltage is changed by removing the AC waveform and instead applying a DC waveform.
  • step S 16 there is detected state (4) of a membrane protein being inserted into the lipid bilayer formed across the aperture 11. This is detected by detection of the predictable step increases in the DC current response which occurs on insertion of the membrane protein due to the ionic current flowing through the ion channel. This is shown in Fig. 34 which shows the current increasing by a step of the order of 95pA on insertion of single ⁇ -HL membrane protein. In this example, one such insertion occurs at around 0.1 minutes and a second insertion occurs at around 1.7 minutes. Since the electrical composition of the solution and the bias potential are known, the total current reflects the total number of membrane proteins inserted and this information may be determined and subsequently used to calibrate the assay calculations.
  • step S 17 If state (4) is not detected within a reasonable period then there is output in step S 17 an error signal indicating failure of insertion. Otherwise, in step Sl 8 there is output a signal indicating that state (4) has been detected.
  • step S 19 there is detected state (5) of an analyte binding to the membrane protein.
  • This may be detected as follows.
  • the analyte binds to the membrane protein this temporarily interrupts the ironic current passing through the ion channel causing a characteristic step decrease in the current.
  • Prior knowledge of the analyte binding characteristics eg current deflection and distribution in event duration
  • the electrical circuit 90 to identify the relevant binding events.
  • An example of the current is shown in Fig. 35.
  • the analyte ⁇ -cyclodextrin causes a decrease in the current of the order of 6OpA. Four such binding events are evident in Fig. 35.
  • the electrical circuit 90 detects these characteristic changes as binding events. A signal indicative of this is output in step S20. To detect successive binding events, steps S19 and S 20 are repeated.
  • step S21 the concentration of the analyte ⁇ -cyclodextrin is calculated based on the kinetics of the measured analyte binding.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Endocrinology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Laminated Bodies (AREA)

Abstract

A method for forming a lipid bilayer across an aperture, comprises: (a) providing a cell having a chamber adjacent to a septum comprising a membrane having an aperture capable of supporting a lipid bilayer; (b) depositing one or more lipids on an internal surface of the chamber; (c) introducing an aqueous solution into the chamber to cover the aperture and the internal surface and to form an interface between the solution and lipids; and (d) moving the interface past the aperture at least once to form a lipid bilayer across the aperture.

Description

FORMATION OF LIPID BILAYERS
The invention relates to the formation of lipid bilayers. In particular, the invention relates to the formation of a lipid bilayer across an aperture.
Lipid bilayers are models of cell membranes and serve as excellent platforms for a range of experimental studies. For example, lipid bilayers can be used for in vitro investigation of membrane proteins by single-channel recording. Alternatively, lipid bilayers can be used as biosensors to detect the presence of a range of substances. In particular, lipid bilayers can used to detect the presence of membrane pores or channels or can be used in stochastic sensing in which the response of a membrane protein to a molecule or physical stimulus is used to perform sensing of that molecule or stimulus.
Lipid bilayers are commonly formed by the method of Montal and Mueller (Proc. Natl. Acad. Sci. USA., 1972; 69: 3561-3566), in which a lipid monolayer is carried on aqueous solution/air interface past either side of an aperture which is perpendicular to that interface. The lipid is normally added to the surface of an aqueous electrolyte solution by first dissolving it in an organic solvent and then allowing a drop of the solvent to evaporate on the surface of the aqueous solution on either side of the aperture. Once the organic solvent has evaporated, the solution/air interfaces on either side of the aperture are physically moved up and down past the aperture until a bilayer is formed.
The method of Montal & Mueller is popular because it is a cost-effective and relatively straightforward method of forming good quality lipid bilayers that are suitable for protein pore insertion.
Other common methods of bilayer formation include tip-dipping, painting bilayers and patch-clamping of liposome bilayers.
Tip-dipping bilayer formation entails touching the aperture surface (for example, a pipette tip) onto the surface of a test solution that is carrying a monolayer of lipid. Again, the lipid monolayer is first generated at the solution/air interface by allowing a drop of lipid dissolved in organic solvent to evaporate at the solution surface. The bilayer is then formed by the Langmuir- Schaefer process and requires mechanical automation to move the aperture relative to the solution surface.
For painted bilayers, a drop of lipid dissolved in organic solvent is applied directly to the aperture, which is submerged in an aqueous test solution. The lipid solution is spread thinly over the aperture using a paintbrush or an equivalent. Thinning of the solvent results in formation of a lipid bilayer. However, complete removal of the solvent from the bilayer is difficult and consequently the bilayer formed by this method is less stable and more prone to noise during electrochemical measurement.
Patch-clamping is commonly used in the study of biological cell membranes. The cell membrane is clamped to the end of a pipette by suction and a patch of the membrane becomes attached over the aperture. The method has been adapted for producing lipid bilayers by clamping liposomes which then burst to leave a lipid bilayer sealing over the aperture of the pipette. The method requires stable, giant and unilamellar liposomes and the fabrication of small apertures in materials having a glass surface.
These common methods of forming lipid bilayers are complicated and time consuming. For instance, it is normally necessary to wait for the evaporation of an organic solvent in which the lipids are dissolved before a bilayer can be formed. There is therefore a need for simple and rapid methods of forming a lipid bilayer that do not involve the use of organic solvents.
In one aspect, the present invention provides a method for forming a lipid bilayer across an aperture, comprising:
(a) providing a cell having a chamber adjacent to a septum comprising a membrane having an aperture capable of supporting a lipid bilayer;
(b) depositing one or more lipids on an internal surface of the chamber;
(c) introducing an aqueous solution into the chamber to cover the aperture and the internal surface and to form an interface between the solution and lipids; and
(d) moving the interface past the aperture at least once to form a lipid bilayer across the aperture.
In another aspect, the invention provides a device for forming a lipid bilayer comprising,
(a) a cell having a chamber adjacent to a septum comprising a membrane having an aperture capable of supporting a lipid bilayer; and
(b) one or more lipids deposited on an internal surface of the chamber, wherein the cell comprises an inlet for introducing an aqueous solution into the chamber having lipid deposited therein.
The inventors have shown that a lipid bilayer will form across an aperture following the deposition of lipids on a surface adjacent to the aperture. They have shown that an aqueous solution can be used to collect the lipids from the surface and form a lipid/solution interface. The lipid bilayer forms across an aperture as the interface passes the aperture.
Advantageously, the lipids can be dried. The inventors have also shown that a lipid bilayer will form across an aperture following the rehydration of dried lipids. They have shown that an aqueous solution can be used to rehydrate the lipids and form a lipid/solution interface. The lipid bilayer forms across an aperture as the interface passes the aperture.
The invention has several advantages. The invention allows the formation of a lipid bilayer in the absence of large amounts of organic solvent. This means that a lipid bilayer can be formed rapidly because it is not necessary to wait for evaporation of the organic solvent before the lipid bilayer can be formed.
In addition, this means that the cell in the device of the invention can be made from materials that may be sensitive to organic solvents. For instance, organic-based adhesives can be used to construct the cell and screen-printed conductive silver/silver chloride paste can be used to construct electrodes within the cell. This means that the device can be cheaply manufactured in a straightforward manner. In addition, the use of organic solvent-sensitive polymers to construct the membrane comprising the aperture facilitates manufacture of the device.
As lipid bilayers are preferably formed from dried lipid, this allows the lipid to be stably stored in the cell until it is needed to form a lipid bilayer. This also avoids the need for wet storage of lipid in the device prior to use. Dry storage of lipids means that the device has a long shelf life.
The invention generally concerns the formation of a lipid bilayer across an aperture. A lipid bilayer is formed from two opposing layers of lipids. The two layers of lipids are arranged such that their hydrophobic tail groups face towards each other to form a hydrophobic interior. The hydrophilic head groups of the lipids face outwards towards the aqueous environment on each side of the bilayer. The bilayer may be present in a number of lipid phases including, but not limited to, the liquid disordered phase (fluid lamellar), liquid ordered phase, solid ordered phase (lamellar gel phase, interdigitated gel phase) and planar bilayer crystals (lamellar sub-gel phase, lamellar crystalline phase).
The lipid bilayer can be formed from one or more lipids. The lipid bilayer can also contain additives that affect the properties of the bilayer. In many applications, the lipid bilayer has one or more membrane proteins inserted therein. Certain lipids, additives and proteins that can be used in accordance with the invention are discussed in more detail below.
The lipid bilayer is formed inside a cell. In general, any cell can be used. The cell may be any shape or size. The cell may be a conventional electrophysiology cell or a specially-constructed cell, such as a biosensor chip.
The cell comprises an internal chamber. The chamber may be any size and shape. The volume of the chamber is typically 0.1 μl to 10ml. The chamber is adjacent to a septum. In a preferred embodiment, the cell comprises a septum which divides the cavity into two chambers. The two chambers may have equal volumes or different volumes.
The septum comprises a membrane. The membrane can be made from any material including, but not limited to, a polymer, glass and a metal. The membrane is preferably made from a material that forms a barrier to the flow of ions from the chamber. Suitable materials include, but are not limited to, polycarbonate (PC), polytetrafluoroethylene (PTFE), polyethylene, polypropylene, nylon and polyethylene naphthalate (PEN), polyvinylchloride (PVC), polyacrylonitrile (PAN), polyether sulphone (PES), polyimide, polystyrene, polyvinylfluoride (PVF), polyethylene telephthalate (PET), aluminized PET, nitrocellulose, polyetheretherketone (PEEK) and fluoroethylkene polymer (FEP). The membrane is preferably made from polycarbonate or PTFE.
The membrane is sufficiently thin to facilitate formation of the lipid bilayer across an aperture as described below. Typically the thickness will be in the range of IOnm to lmm. The membrane is preferably 0.1 μm to 25μm thick.
The membrane is preferably pre-treated to make the lipids and the aperture more compatible such that the lipid bilayer forms more easily that it would in the absence of pre- treatment. The membrane is preferably pre-treated to increase its affinity to lipids. The inventors have shown that pre-treatment of the membrane to increase its affinity to lipids allows the lipid bilayer to form more easily. In particular, it allows the formation of a lipid bilayer across the aperture following a single pass of the lipid/solution interface. The removal of the need to move the lipid/solution interface back and forth past the aperture means that the method of the invention is simplified. It also means that there is no need for fluidics control in the device of the invention. Hence, the cost and size of the device of the invention are reduced. The inventors have also shown that pre-treatment of the membrane to increase its affinity to lipids results in the formation of a lipid bilayer with increased stability. This means that the method of the invention can be used to form stable lipid bilayers. It also means that the device of the invention can be used in situations where the lipid bilayer is likely to encounter mechanical or other forces. For instance, the device of the invention can be used as a hand-held device.
Any treatment that modifies the surface of the membrane surrounding the aperture to increase its affinity to lipids may be used. The membrane is typically pre-treated with long chain organic molecules in an organic solvent. Suitable long chain organic molecules include, but are not limited to, n-decane, hexadecane, hexadecance mixed with one or more of the lipids discussed below, iso-eicosane, octadecane, squalene, fluoroinated oils (suitable for use with fluorinated lipids), alkyl-silane (suitable for use with a glass membrane) and alkyl-thiols (suitable for use with a metallic membrane). Suitable solvents include, but are not limited to, pentane, hexane, heptane, octane, decane, iso-ecoisane and toluene. The membrane is typically pre-treated with from 0.1% (v/v) to 50% (v/v), such as 0.3%, 1% or 3% (v/v), hexadecane in pentane. The volume of hexadecane in pentane used is typically from 0.1 μl to lOμl. The hexadecane can be mixed with one or more lipids. For instance, the hexadecane can be mixed with any of the lipids discussed below. The hexadecane is preferably mixed with diphantytanoyl-sn-glycero-3-phosphocoline (DPhPC). Preferably, the aperture is treated with 2μl of 1% (v/v) hexadecane and 0.6mg/ml lipid, such as DPhPC, in pentane.
Some specific pretreatments are set out in Table 1 by way of example and without limitation. Table 1:
Figure imgf000006_0001
The precise volume of pretreatment substance required depends on the pretreatment both the size of the aperture, the formulation of the pretreatment, and the amount and distribution of the pretreatment when it dries around the aperture. In general increasing the amount of pretreatment (i.e. by volume and/or by concentration) improves the effectiveness, but too much pretreament can block the aperture. As the diameter of the aperture is decreased, the amount of pretreatment required also decreases. The distribution of the pretreatment can also affect effectiveness, this being dependent on the method of deposition, and the compatibility of the membrane surface chemistry.
The relationship between the pretreatment and the ease and stability of bilayer formation is therefore complex, depending on a complex cyclic interaction between the aperture dimensions, the membrane surface chemistry, the pretreatment formulation and volume, and the method of deposition. The temperature dependent stability of the pretreated aperture further complicates this relationship. However, the pretreatment may be optimised by routine trial and error to enable bilayer formation immediately upon first exposure of the dry aperture to the lipid monolayer at the liquid interface.
Although the pretreatment provides a beneficial effect, it is not essential.
The septum preferably further comprises a support sheet on at least one side of the membrane. The septum preferably comprises a support sheet on both sides of the membrane. The support sheet may be of any material. Suitable materials include, but are not limited to, Delrin® (polyoxymethylene or acetal homopolymer), Mylar® (biaxially-oriented polyethylene terephthalate (boPET) polyester film), polycarbonate (PC), polyvinylchloride (PVC), polyacrylonitrile (PAN), polyether sulphone (PES), polysulphone, polyimide, polystyrene, polyethylene, polyvinylfluoride (PVF), polyethylene telephthalate (PET), polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK) and fluoroethylkene polymer (FEP).
The membrane has an aperture which is capable of supporting a lipid bilayer. The septum typically has one aperture but can have more than one aperture. A lipid bilayer will form across each of the apertures in the membrane. If the membrane is made from a material that forms a barrier to the flow of ions, the aperture allows the movement of ions between from the chamber. The aperture may be any size and shape which is capable of supporting a lipid bilayer. The aperture preferably has a diameter in at least one dimension which is 20μm or less. The inventors have shown that this preferred size of aperture results in the formation of a lipid bilayer with increased stability. This means that the method of the invention can form stable lipid bilayers and that the device of the invention can be used in situations where the lipid bilayer is likely to encounter mechanical or other forces. For instance, it can be used as a hand-held device. The preferred size of aperture also allows the lipid bilayer to form more easily. In particular, it allows the formation of a lipid bilayer across the aperture following a single pass of the lipid/solution interface and removes the need to move the lipid/solution interface back and forth past the aperture.
The aperture may be created using any method. Suitable methods include, but are not limited to, spark generation and laser drilling.
Preferred combinations of membrane and aperture for use in accordance with the invention are shown in the Table 2 which sets out in the first column the thickness and material of the membrane and in the second column the diameter and method of forming the aperture. Table 2
Figure imgf000008_0001
One or more lipids are deposited on an internal surface of the chamber. The lipids can be deposited on one or more of any of the internal surfaces of the chamber. If the cell has two chambers, one or more lipids are deposited on an internal surface of one or both chambers. The lipids can be deposited on one or more of any of the internal surfaces of one or both chambers. The lipids can be deposited on one or both sides of the septum and on the membrane and/or the support sheet. The lipids are deposited in such a manner that the aqueous solution covers the lipids and the apertures as discussed in more detail below. The lipid can be deposited on the septum and/or one or more internal walls of the chamber but are preferably deposited on the septum. The lipids can be deposited on one or both sides of the septum and on the membrane and/or the support sheet. The lipids are deposited in such a manner that the aqueous solution covers the lipids and the apertures as discussed in more detail below.
Any method may be used to deposit the lipids on an internal surface of the chamber. Suitable methods include, but are not limited to, evaporation or sublimation of a carrier solvent, spontaneous deposition of liposomes or vesicles from a solution and direct transfer of the dry lipid from another surface. Cells having lipids deposited on an internal surface may be fabricated using methods including, but not limited to, drop coating, various printing techniques, spin-coating, painting, dip coating and aerosol application.
The lipids are preferably dried. Even when dried to a solid state, the lipids will typically contain trace amounts of residual solvent. Dried lipids are preferably lipids that comprise less than 50wt% solvent, such as less than 40wt%, less than 30wt%, less than 20wt%, less than 15wt%, less than 10wt% or less than 5wt% solvent.
Any lipids that form a lipid bilayer may be deposited. The lipids deposited in the cell are chosen such that a lipid bilayer having the required properties, such surface charge, ability to support membrane proteins, packing density or mechanical properties, is formed. The lipids can comprise one or more different lipids. For instance, the lipids can contain up to 100 lipids. The lipids preferably contain 1 to 10 lipids. The lipids may comprise naturally-occurring lipids and/or artificial lipids.
The lipids typically comprise a head group, an interfacial moiety and two hydrophobic tail groups which may be the same or different. Suitable head groups include, but are not limited to, neutral head groups, such as diacylglycerides (DG) and ceramides (CM); zwitterionic head groups, such as phosphatidylcholine (PC), phosphatidylethanolamine (PE) and sphingomyelin (SM); negatively charged head groups, such as phosphatidylglycerol (PG); phosphatidylserine (PS), phosphatidylinositol (PI), phosphatic acid (PA) and cardiolipin (CA); and positively charged headgroups, such as trimethylammonium-Propane (TAP). Suitable interfacial moieties include, but are not limited to, naturally-occurring interfacial moieties, such as glycerol-based or ceramide- based moieties. Suitable hydrophobic tail groups include, but are not limited to, saturated hydrocarbon chains, such as lauric acid (n-Dodecanolic acid), myristic acid (n-Tetradecononic acid), palmitic acid (n-Hexadecanoic acid), stearic acid (n-Octadecanoic) and arachidic («- Eicosanoic); unsaturated hydrocarbon chains, such as oleic acid (cis-9-Octadecanoic); and branched hydrocarbon chains, such as phytanoyl. The length of the chain and the position and number of the double bonds in the unsaturated hydrocarbon chains can vary. The length of the chains and the position and number of the branches, such as methyl groups, in the branched hydrocarbon chains can vary. The hydrophobic tail groups can be linked to the interfacial moiety as an ether or an ester.
The lipids can also be chemically-modified. The head group or the tail group of the lipids may be chemically-modified. Suitable lipids whose head groups have been chemically-modified include, but are not limited to, PEG-modified lipids, such as l,2-Diacyl-sn-Glycero-3- Phosphoethanolamine-N -[Methoxy(Polyethylene glycol)-2000]; functionionalised PEG Lipids, such as l,2-Distearoyl-sn-Glycero-3 Phosphoethanolamine-N-[Biotinyl(Polyethylene Glycol)2000]; and lipids modified for conjugation, such as l,2-Dioleoyl-sn-Glycero-3- Phosphoethanolamine-N-(succinyl) and 1 ,2-Dipalmitoyl-sn-Glycero-3 -Phosphoethanolamine-N- (Biotinyl). Suitable lipids whose tail groups have been chemically-modified include, but are not limited to, polymerisable lipids, such as l,2-bis(10,12-tricosadiynoyl)-sn-Glycero-3- Phosphocholine; fluorinated lipids, such as l-Palmitoyl-2-(16-Fluoropalmitoyl)-sn-Glycero-3- Phosphocholine; deuterated lipids, such as l,2-Dipalmitoyl-D62-sn-Glycero-3-Phosphocholine; and ether linked lipids, such as l,2-Di-O-phytanyl-sn-Glycero-3-Phosphocholine.
The lipids typically comprise one or more additives that will affect the properties of the lipid bilayer. Suitable additives include, but are not limited to, fatty acids, such as palmitic acid, myristic acid and oleic acid; fatty alcohols, such as palmitic alcohol, myristic alcohol and oleic alcohol; sterols, such as cholesterol, ergosterol, lanosterol, sitosterol and stigmasterol; lysophospholipids, such as l-Acyl-2-Hydroxy-sn- Glycero-3-Phosphocholine; and ceramides. The lipid preferably comprises cholesterol and/or ergosterol when membrane proteins are to be inserted into the lipid bilayer.
The lipid bilayer is formed by introducing an aqueous solution into the chamber. The aqueous solution covers both the internal surface on which the lipids are deposited and the aperture. The chamber may be completely filled with the aqueous solution or may be partially filled with the aqueous solution, as long as the both the lipids and the aperture are covered with the aqueous solution. If the cell has two chambers, one chamber may be completely filled, while the other is only partially filled.
The aqueous solution may cover the lipids and the aperture in any order but preferably covers the lipids before the aperture. The inventors have shown that covering the lipids before the aperture allows the lipid bilayer to form more easily. In particular, it allows the formation of a lipid bilayer across the aperture following a single pass of the lipid/solution interface. The removal of the need to move the lipid/solution interface back and forth past the aperture means that the method of the invention is simplified. It also means that there is no need for fluidics control in the device of the invention, thereby reducing its cost and size.
The design of the chamber and the position of the lipids may be chosen to determine the order in which the aqueous solution covers the lipids and aperture. For instance, if the lipids are to be covered first, a chamber is provided in which the lipids are positioned along the flow path between the point at which the aqueous solution is introduced to the chamber and the aperture.
Any aqueous solution that collects the lipids from the internal surface and allows the formation of a lipid bilayer may be used. The aqueous solution is typically a physiologically acceptable solution. The physiologically acceptable solution is typically buffered to a pH of 3 to 9. The pH of the solution will be dependent on the lipids used and the final application of the lipid bilayer. Suitable buffers include, but are not limited, to phosphate buffered saline (PBS), N-2- Hydroxyethylpiperazine-N'-2-Ethanesulfonic Acid (HEPES) buffered saline, Piperazine-l,4-Bis-2- Ethanesulfonic Acid (PIPES) buffered saline, 3-(n-Morpholino)Propanesulfonic Acid (MOPS) buffered saline and Tris(Hydroxymethyl)aminomethane (TRIS) buffered saline. By way of example, in one implementation, the aqueous solution may be 1OmM PBS containing l.OM sodium chloride (NaCl) and having a pH of 6.9.
The introduction of the aqueous solution collects the lipids from the internal surface. The immiscibility of the rehydrated lipids and the aqueous solution allows the formation of an interface between the lipids and the solution. The interface can be any shape and size. The interface typically separates a layer of lipids from the aqueous solution. The layer of lipids preferably forms on the top of the solution. The layer of lipid typically separates the solution from any air in the chamber(s).
The lipid bilayer is formed as the interface moves past the aperture. The interface moves past the aperture in such a way that the layer of lipids contacts the membrane material surrounding the aperture and a lipid bilayer is formed. The interface can be at any angle relative to the membrane as it moves past the aperture. The interface is preferably perpendicular to the membrane as it moves past the aperture.
The interface may move past the aperture as many times as is necessary to form the lipid bilayer. The interface moves past the aperture at least once. The interface can move past the aperture more than once, such as twice, three times or more. The interface can move past the aperture on one side or on both sides of the membrane.
If the aqueous solution covers the internal surface on which the lipids are deposited before the aperture, the lipid bilayer may form as the interface moves past the aperture as the chamber fills. Hence, if the lipid bilayer can be formed by a single pass of the interface past the aperture, the step of moving the interface past the aperture may be performed by the filling of the chamber.
In other embodiments, it will be necessary to move the interface back and forth past the aperture. For instance, if the aqueous solution covers the aperture before the lipids or covers the aperture and lipids simultaneously, it may be necessary to move the interface back and forth past the aperture.
In a preferred embodiment, the cell has two chambers and one of the chambers contains a gel. The chamber is typically filled with the gel such that the gel contacts the membrane. The presence of the gel contacting the membrane facilitates the formation of the lipid bilayer by physically supporting the bilayer. The presence of the gel allows the lipid bilayer to form more easily. In particular, it allows the formation of a lipid bilayer across the aperture following a single pass of the lipid/solution interface and removes the need to move the lipid/solution interface back and forth past the aperture. It also means that there is no need for fluidics control in the device of the invention, thereby reducing its cost and size. The presence of the gel also results in the formation of a lipid bilayer with increased stability. This means that the method of the invention can be used to form stable lipid bilayers. It also means that the device of the invention can be used in situations where the lipid bilayer is likely to encounter mechanical or other forces. For instance, it can be used as a hand-held device.
In another embodiment, there can remain a gap between the gel and the membrane. The presence of the gap means that a wider variety of materials can be used to make the gel, including ionically non-conductive materials.
The gel is preferably a hydrogel. The gel is typically ionically conductive. Suitable ionically conductive gels include, but are not limited to, agarose, polyacrylamide gel, Gellan gel and carbomer gel. However, if there is a gap present between the gel and the aperture, the gel can be ionically non-conductive.
The invention preferably also involves inserting membrane proteins into the lipid bilayer once it has been formed. The membrane proteins are deposited within the chamber and spontaneously insert into the lipid bilayer following the introduction of the aqueous solution. The inventors have shown that membrane proteins will spontaneously insert into the lipid bilayer following their removal from an internal surface of the chamber by the aqueous solution. This avoids the need to actively insert the membrane proteins into the lipid bilayer by introducing the proteins into the solution surrounding the bilayer or physically carrying the protein through the solution to the bilayer. Again, this simplifies the method of the invention as well as removes the need for wet storage of the proteins and the need for automation within a device of the invention.
In one embodiment, the gel described above comprises one or more membrane proteins. The membrane proteins can be deposited on the surface of the gel and/or can be present within the body of gel. Once the lipid bilayer has formed, the membrane proteins move from the gel and spontaneously insert themselves into the lipid bilayer. The gel can comprise one or more different membrane proteins.
In another embodiment, one or more membrane proteins are deposited on an internal surface of the chamber. The aqueous solution collects the membrane proteins from the surface and allows them to insert into the lipid bilayer. The membrane proteins may be deposited anywhere within the cell such that, once they have been collected from the surface, they can diffuse to and spontaneously insert into the lipid bilayer. The membrane proteins can be deposited on the same or different internal surface as the lipids. The lipids and the membrane proteins may be mixed together. The membrane proteins can be deposited on the septum and/or one or more internal walls of the chamber, but are preferably deposited on the septum. They may be deposited on one or both sides of the septum and on the membrane or the support sheet.
The lipids, the aperture and the membrane proteins may be covered by the aqueous solution in any order, although as already discussed the aqueous solution preferably covers the lipids first. The design of the cell and the position of the membrane proteins may be chosen to determine the order in which the aqueous solution covers the lipids, the aperture and the membrane proteins.
Any method may be used to deposit the membrane proteins on an internal surface of the cell. Suitable methods include, but are not limited to, drop coating, various printing techniques, spin-coating, painting, dip coating and aerosol application.
The membrane proteins are preferably dried. Even when dried to a solid state, the membrane proteins will typically contain trace amounts of residual solvent. Dried membrane proteins are preferably membrane proteins that comprise less than 20wt% solvent, such as less than 15wt% , less than 10wt% or less than 5wt% solvent.
In a further embodiment, the gel comprises one or more membrane proteins and one or more membrane proteins are deposited on an internal surface of one or both chambers.
Any membrane proteins that insert into a lipid bilayer may be deposited. The membrane proteins may be naturally-occurring proteins and/or artificial proteins. Suitable membrane proteins include, but are not limited to, β-barrel membrane proteins, such as non-constitutive toxins, porins and relatives and autotransporters; membrane channels, such as ion channels and aquaporins; bacterial rhodopsins; G-protein coupled receptors; and antibodies. Examples of non-constitutive toxins include hemolysin and leukocidin, such as Staphylococcal leukocidin. Examples of porins include maltoporin, OmpG, OmpA and OmpF. Examples of autotransporters include the NaIP and Hia transporters. Examples of ion channels include the NMDA receptor, the potassium channel from Streptomyces lividans (KcsA), the bacterial mechanosensitive membrane channel of large conductance (MscL), the bacterial mechanosensitive membrane channel of small conductance (MscS) and gramicidin. Examples of G-protein coupled receptors include the metabotropic glutamate receptor. The membrane protein can also be the anthrax protective antigen.
The membrane proteins preferably comprise α-hemolysin or a variant thereof. The α- hemolysin pore is formed of seven identical subunits (heptameric). The polynucleotide sequence that encodes one subunit of α-hemolysin is shown in SEQ ID NO: 1. The full-length amino acid sequence of one subunit of α-hemolysin is shown in SEQ ID NO: 2. The first 26 amino acids of SEQ ID NO: 2 correspond to the signal peptide. The amino acid sequence of one mature subunit of α-hemolysin without the signal peptide is shown in SEQ ID NO: 3. SEQ ID NO: 3 has a methionine residue at position 1 instead of the 26 amino acid signal peptide that is present in SEQ ID NO: 2.
A variant is a heptameric pore in which one or more of the seven subunits has an amino acid sequence which varies from that of SEQ ID NO: 2 or 3 and which retains pore activity. 1, 2, 3, 4, 5, 6 or 7 of the subunits in a variant α-hemolysin may have an amino acid sequence that varies from that of SEQ ID NO: 2 or 3. The seven subunits within a variant pore are typically identical but may be different.
The variant may be a naturally-occurring variant which is expressed by an organism, for instance by a Staphylococcus bacterium. Variants also include non-naturally occurring variants produced by recombinant technology. Over the entire length of the amino acid sequence of SEQ ID NO: 2 or 3, a variant will preferably be at least 50% homologous to that sequence based on amino acid identity. More preferably, the subunit polypeptide is at least 80%, at least 90%, at least 95%, at least 98%, at least 99% homologous based on amino acid identity to the amino acid sequence of SEQ ID NO: 2 or 3 over the entire sequence.
Amino acid substitutions may be made to the amino acid sequence of SEQ ID NO: 2 or 3, for example a single amino acid substitution may be made or two or more substitutions may be made. Conservative substitutions may be made, for example, according to the Table 3. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other: Table 3:
Figure imgf000014_0001
Non-conservative substitutions may also be made at one or more positions within SEQ ID NO: 2 or 3, wherein the substituted residue is replaced with an amino acid of markedly different chemical characteristics and/or physical size. One example of a non-conservative substitution that may be made is the replacement of the lysine at position 34 in SEQ ID NO: 2 and position 9 in SEQ ID NO: 3 with cysteine (i.e. K34C or K9C). Another example of a non-conservative substitution that may be made is the replacement of the asparagine residue at position 43 of SEQ ID NO: 2 or position 18 of SEQ ED NO: 3 with cysteine (i.e. N43C or Nl 7C). The inclusion of these cysteine residues in SEQ ED NO: 2 or 3 provides thiol attachment points at the relevant positions. Similar changes could be made at all other positions, and at multiple positions on the same subunit.
One or more amino acid residues of the amino acid sequence of SEQ ED NO: 2 or 3 may alternatively or additionally be deleted. Up to 50% of the residues may be deleted, either as a contiguous region or multiple smaller regions distributed throughout the length of the amino acid chain.
Variants can include subunits made of fragments of SEQ ID NO: 2 or 3. Such fragments retain their ability to insert into the lipid bilayer. Fragments can be at least 100, such as 150, 200 or 250, amino acids in length. Such fragments may be used to produce chimeric pores. A fragment preferably comprises the β-barrel domain of SEQ ID NO: 2 or 3.
Variants include chimeric proteins comprising fragments or portions of SEQ ID NO: 2 or 3. Chimeric proteins are formed from subunits each comprising fragments or portions of SEQ ID NO: 2 or 3. The β-barrel part of chimeric proteins are typically formed by the fragments or portions of SEQ ID NO: 2 or 3.
One or more amino acid residues may alternatively or additionally be inserted into, or at one or other or both ends of, the amino acid sequence SEQ ID NO: 2 or 3. Insertion of one, two or more additional amino acids to the C terminal end of the peptide sequence is less likely to perturb the structure and/or function of the protein, and these additions could be substantial, but preferably peptide sequences of up to 10, 20, 50, 100 or 500 amino acids or more can be used. Additions at the N terminal end of the monomer could also be substantial, with one, two or more additional residues added, but more preferably 10, 20, 50, 500 or more residues being added. Additional sequences can also be added to the protein in the trans-membrane region, between amino acid residues 119 and 139 of SEQ ID NO: 3. More precisely, additional sequences can be added between residues 127 and 130 of SEQ ID NO: 3, following removal of residues 128 and 129. Additions can be made at the equivalent positions in SEQ ID NO: 2. A carrier protein may be fused to an amino acid sequence according to the invention.
Standard methods in the art may be used to determine homology. For example the UWGCG Package provides the BESTFIT program which can be used to calculate homology, for example used on its default settings (Devereux et al (1984) Nucleic Acids Research 12, p387-395). The PILEUP and BLAST algorithms can be used to calculate homology or line up sequences (such as identifying equivalent residues or corresponding sequences (typically on their default settings)), for example as described in Altschul S. F. (1993) J MoI Evol 36:290-300; Altschul, S.F et al (1990) J MoI Biol 215:403-10. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/).
The membrane proteins can be labelled with a revealing label. The revealing label can be any suitable label which allows the proteins to be detected. Suitable labels include, but are not limited to, fluorescent molecules, radioisotopes, e.g. 1251, 35S, en∑ymes, antibodies, polynucleotides and linkers such as biotin.
The membrane proteins may be isolated from an organism, such as Staphylococcus aureus, or made synthetically or by recombinant means. For example, the protein may be synthesized by in vitro translation transcription. The amino acid sequence of the proteins may be modified to include non-naturally occurring amino acids or to increase the stability of the proteins. When the proteins are produced by synthetic means, such amino acids may be introduced during production. The proteins may also be modified following either synthetic or recombinant production.
The proteins may also be produced using D-amino acids. In such cases the amino acids will be linked in reverse sequence in the C to N orientation. This is conventional in the art for producing such proteins.
A number of side chain modifications are known in the art and may be made to the side chains of the membrane proteins. Such modifications include, for example, modifications of amino acids by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH4, amidination with methylacetimidate or acylation with acetic anhydride.
Recombinant membrane proteins can be produced using standard methods known in the art. Nucleic acid sequences encoding a protein can be isolated and replicated using standard methods in the art. Nucleic acid sequences encoding a protein can be expressed in a bacterial host cell using standard techniques in the art. The protein can be introduced into a cell by in situ expression of the polypeptide from a recombinant expression vector. The expression vector optionally carries an inducible promoter to control the expression of the polypeptide.
The lipid bilayer may be used for a variety of purposes. The lipid bilayer may be used for in vitro investigation of membrane proteins by single-channel recording. The lipid bilayer may be used as a biosensor to detect the presence of a range of substances. The lipid bilayer may be used to detect the presence or absence of membrane pores or channels in a sample. The presence of the pore or channel may be detected as a change in the current flow across the lipid bilayer as the pore or channel inserts into the lipid bilayer. The lipid bilayer preferably contains membrane protein and is used to detect the presence or absence of a molecule or stimulus using stochastic sensing. The lipid bilayer may be used for a range of other purposes, such as studying the properties of molecules known to be present (e.g. DNA sequencing or drug screening), or separating components for a reaction.
To allow further understanding, embodiments of the invention will now be described by way of a non-limiting example with reference to the drawings, in which:
Fig. 1 is a view of an example of a device of the invention;
Fig. 2 is a schematic diagram of an electrical circuit that can be used with the device of the invention;
Fig. 3 is a graph of the current response to a 2OmV 50Hz alternating current (a.c.) waveform in the absence of the high resistance electrical sealing of the aperture by a bilayer;
Fig. 4 is a graph of the characteristic square wave capacitive current in response to a 2OmV amplitude triangular waveform at 50Hz indicative of bilayer formation across the aperture;
Fig. 5 is a graph of the stepwise increase of 6OpA direct current (d.c.) as α-hemolysin pores automatically insert into the bilayer formed by the Montal and Mueller method; Fig. 6 is a graph of the characteristic interruptions in the current caused by single molecules of γ-cyclodextrin transiently binding to the α-hemolysin pores;
Fig. 7 is a graph of the current response to an applied potential before, during and following spontaneous bilayer formation and pore insertion in accordance with the invention in a standard two-chamber research cell;
Fig. 8 shows an expanded view of the current (1 second full scale) during the final minute of recording shown in Fig. 7;
Fig. 9 is a graph of the current recorded over the duration of a single test using a specially constructed cell;
Fig. 10 is a graph of the characteristic square wave indicative of bilayer formation in accordance with the invention in a specially constructed cell;
Fig. 11 is a graph of the current response to a 2OmV 50Hz a.c. waveform in the absence of the high resistance electrical sealing of the aperture by the bilayer in the specially constructed cell;
Fig. 12 is a graph of step increases in the current ~100pA as α-hemolysin pores automatically insert into the bilayer in the specially constructed cell; and
Fig. 13 is a graph of the characteristic interruptions in the current caused by single molecules of γ-cyclodextrin transiently binding to the α-hemolysin pores in the specially constructed cell;
Fig. 14 is a perspective view of a sensor system;
Fig. 15 is a perspective view of a cell of the sensor system;
Fig. 16 is a cross-sectional of the cell, taken along line ITl-III in Fig. 2;
Fig. 17 is a perspective view of a support sheet of the cell in isolation;
Fig. 18 is a perspective view of a body of the cell in isolation with a first arrangement for an inlet;
Fig. 19 is a perspective view of a cover sheet of the cell in isolation with a second arrangement for an inlet;
Fig. 20 is a cross-sectional view of the cell similar to that of Fig. 3 but showing introduction of a sample;
Fig. 21 is an expanded, partial cross-sectional view of a cell containing gel with a gap between the gel and an aperture;
Fig. 22 is an expanded perspective view of the connector portion of the reader unit;
Fig. 23 is a perspective view of a rigid metal body connected to the reader unit;
Fig. 24 is a cross-sectional view of the rigid metal body, taken along line XII-XII in Fig. l i;
Fig. 25 is a cross-sectional view of the cell contained in a Faraday cage;
Figs. 26 to 28 are diagrams of various forms of the electrical circuit in the reader unit; and
Fig. 29 is a flow chart of the operation of the reader unit; and Fig. 30 is a graph of a bias voltage applied to the reader unit; and
Figs. 31 to 35 are graphs of the current signal generated in the cell during operation.
In all of the graphs, the x-axis shows time in ms, the top portion of the y-axis shows the current in pA, and the bottom portion of the y-axis shows potential in mV.
A device 130 in accordance with the invention is illustrated in Fig. 1. The device 130 includes an electrophysiology cell 101 which is of a conventional type and construction for the performance of stochastic sensing using a membrane protein inserted in a lipid bilayer.
The electrophysiology cell 101 comprises two chambers body portions 102 having constructions which are mirror images of each other. The chamber body portions 102 may be made from Delrin® (polyoxymethylene or acetal homopolymer). The chamber body portions 102 each define a chamber portion 103 having an opening in the upper surface 104 of the respective chamber body portion 102. The chamber portions 103 each have a volume of a few millilitres, for example 1.5 ml. The chamber portions 103 have no wall on a side surface 105 of the respective chamber body portion 102. To form a chamber body, the two chamber body portions 102 are assembled together with their side surfaces 105 facing one another so that the respective chamber portions 103 are aligned and together form a chamber. The chamber body portions 102 may be attached by any suitable means, typically a clamp or an adhesive.
The electrophysiology cell 101 further comprises a membrane 106 made of polycarbonate or any other suitable polymer. Each face of the membrane 106 may be pre-treated in a conventional manner, for example with 10% (VTV) hexadecane in pentane. The membrane 106 is positioned between the facing side surfaces 105 of the two chamber body portions 102, for example by adhering both chamber body portions 102 to the membrane 106. Accordingly, the membrane 106 forms a wall which divides the chamber formed by the two chamber portions 103.
The membrane 106 has an aperture 107 which is aligned with the chamber portions 103 when the electrophysiology cell is assembled. The membrane 106 is sufficiently thin to facilitate formation of a lipid bilayer, for example being 25 μm thick. The aperture 107 may in general be of any shape or size which is capable of supporting the lipid bilayer, but preferably has a diameter in one dimension of 20μm or less. The cell 101 comprises inlets for introducing an aqueous solution into each chamber portion 103, namely the openings in the upper surface 104 of each chamber body portion 102.
The device 130 further comprises lipids 108 deposited in each chamber portion 103 of each one of the chamber body portions 102. The shape of the patch of lipids 108 deposited in each chamber portion 103 may vary.
The electrophysiology cell 101 may be used to form a lipid bilayer in accordance with the method of the invention. For example, an aqueous solution may be introduced into both chamber portions 103 simultaneously via openings in the upper surface 104 of each chamber body portion 102. The aqueous solution will cover the lipids 108 deposited in each chamber portion 103 and a lipid/solution interface will form with a layer of lipid resting on top of the solution. As more aqueous solution is introduced, the interface will rise within both chamber portions 103 and move past the aperture 107 on both sides of the membrane 106 thereby forming a lipid bilayer across the aperture 107. In this example, the lipid 108 is covered by the aqueous solution before the aperture 107 is covered.
The electrophysiology cell 101 can further includes respective electrodes (not shown in Fig. 1) provided in each chamber portion 103 of each one of the chamber body portions 102. The electrodes may be Ag/AgCl electrodes. The electrodes may form part of an electrical circuit 120 which is capable of measuring an electrical signal across the lipid bilayer. A suitable electrical circuit 120 is illustrated schematically in Fig. 2 and is of a conventional type for performing stochastic sensing by detecting the current flowing across the lipid bilayer.
The electrodes 109 are connected to an amplifier 121 such as a patch-clamp amplifier (eg an Axopatch 200B supplied by Axon Instruments) which amplifies the current signal output from the electrodes 109.
The current signal output by the amplifier 121 is supplied through a low-pass filter 122, such as a Bessel filter (eg with characteristics 80dB/decade with a corner frequency of 2kHz).
The current signal output by the low-pass filter 122 is supplied to an A/D converter 123, such as a Digitata 1320 A/D converter supplied by Axon Instruments. The A/D converter 123 might typically operate with a sampling frequency of 5kHz. The A/D converter 123 converts the current signal into a digital signal which is then supplied to a computer 124 for analysis. The computer 124 may be a conventional personal computer running an appropriate program to store the current signal and display it on a display device.
As an alternative, the invention may be applied to a device which is the cell of the sensor system described in detail below.
For comparative purposes, a bilayer was first formed using the common Montal and Mueller method. Bilayer formation was performed using a standard two-chamber research cell. The research cell is typical of those used in laboratory bilayer tests and comprises two Delrin (acetal homopolymer) blocks, each machined to create an open-sided 700ul chamber with appropriate access portals. The blocks are clamped together on either side of a polymer film which thereby separates the two chambers. The only electrical connection between the two chambers is by ionic conduction of the electrolyte solution through a small aperture created in the polymer film.
In order to facilitate bilayer formation, it is first necessary to apply a chemical surface treatment (commonly called the "pre-treatment") to either side of the aperture. 2-5 ul of 10% hexadecane dissolved in pentane was applied to either side of a dry aperture having a diameter of approximately 50μm. The pentane was allowed to evaporate.
Once the pre-treatment on the apertures had dried, both chambers of the research cell were filled with electrolyte solution comprising 1OmM Phosphate Buffered Saline (PBS) solution at pH 7.2, spiked with IM NaCl. A lOμl drop of l^-diphytanoyl-sn-glycero-S-phosphocholine lipid dissolved in pentane (10mg/ml) was then carefully applied to the surface of the solution in both chambers of the cell, and left to stand at room temperature for 15 minutes to allow the pentane to evaporate. Bilayers were subsequently formed by sequentially lowering and raising the air/solution interface past either side of the aperture, as described in Montal and Mueller, Proc. Natl. Acad. Sci. USA., 1972; 69: 3561-3566.
An electrical potential difference was applied across the membrane between the chambers of the test cell using Ag/ AgCl electrodes, one immersed in each chamber. Control of the applied potential and recording of the subsequent current was carried out using a current amplifier (MultiClamp700B from Axon Instruments with a CV 7B/BL headstage), coupled to a data acquisition system (DigiData 1322A also from Axon Instruments). The headstage and the test cell were housed in a Faraday cage to prevent interference from external electromagnetic noise. The DigiData 1322A is interfaced to a computer using pClamp version 9.2 software, and data acquired at 4 kHz, with a 2 kHz Bessel filter.
Formation of a bilayer across the aperture was confirmed by creation of a high resistance sealing of the aperture (>10GΩ), by measurement of the capacitance of the high resistance seal and by the subsequent successful insertion of α-hemolysin (α-HL) pores into the bilayer which resulted in a fixed current flow which is identical for each pore.
An electrical potential difference of +10OmV was applied between the two chambers once the electrolyte solution has been added, and a recorded current <10pA is consistent with bilayer formation. Evidence that the bilayer has sealed the aperture was provided by measurement of a predictable capacitive current in response to applying an alternating current (a.c.) potential perturbation. The current response to the applied a.c. waveform when the aperture was not sealed is given in Fig. 3. The squareware current response to a 2OmV amplitude triangular waveform at 50Hz in the presence of a lipid bilayer across the aperture is presented in Fig. 4.
Wild-type α-HL pores were injected into the bulk of the test solution. Confirmation that the high resistance seal across the aperture was caused by a lipid bilayer was provided by the successful insertion of pores in the bilayer. This insertion was seen as a stepwise increase in the direct current (d.c.) across the bilayer and is presented in Fig. 5.
Finally, confirmation that the stepwise increase in current is specifically due to insertion of the wild-type α-HL pores into the bilayer was provided by the addition of α-cyclodextrin, a well- characterised analyte that transiently binds to α-HL pores. A characteristic interruption in the current through the pores of approximately 60% was recorded as single molecules of α-cyclodextrin transiently bound to the pores, with a spread in binding durations in the range -100ms. This is presented in Fig. 6.
In the following Examples, a lipid bilayer was formed in accordance with the invention. The research test cell and apparatus described above was used to investigate the use of lipid dried to the base of the cell chambers and α-HL dried on the membrane around the aperture.
Two different polymer films were used to create the membrane separating the two chambers of the test cells; a 6μm thick biaxial polycarbonate film, and a 5μm thick polytetrafluoroethylene (PTFE) film: both films were sourced from Goodfellow Cambridge Ltd.
For each of these two polymer films, apertures were created by one of two different methods: sparking and laser drilling.
Laser-drilled membranes were produced using an Excimer laser at the UK Laser Micromachining Centre, Bangor, Wales. The laser-drilled holes used in these experiments were in the range of 5-30μm in diameter with a tapered morphology in cross section. Holes of this size allow a stable lipid bilayer to e formed more easily.
Spark-generated holes also in the range of 5-30μm in diameter were produced using a spark- generating device. The four polymer film/aperture combinations that were used are summarised below in Table 4. Table 4:
Figure imgf000021_0001
Holes of this size allow a stable lipid bilayer to be formed more easily.
Part of the aperture construction involved a chemical surface treatment to facilitate the bilayer formation process. This involved application of 2μl of 1% hexadecane in pentane to either side of the aperture. This was then allowed to evaporate. Pre-treatment also allows the easy formation of a stable lipid bilayer.
In addition to the chemical treatment during preparation of the aperture, lμl of 0.17mg/ml wild-type α-HL was subsequently applied to the aperture and allowed to dry at room temperature.
The test cells were then loaded with 20ul of the lipid solution (10mg/ml of 1,2-diphytanoyl- sn-glycero-3-phosphocholine in pentane) applied to the base of each chamber and stored at room temperature to allow the pentane to evaporate, leaving dry lipid coated on the base of each chamber.
The dry research cells, already loaded with lipid and α-HL, were re-hydrated by injecting a test solution (1OmM Phosphate Buffered Saline solution, 1.0M NaCl, and 0.25mM g-cyclodextrin, at pH 6.9) into the base of each chamber of the cell, raising the lipid/solution interface past the aperture only once on either side sequentially.
The electrical potential difference was applied across the membrane using Ag/ AgCl electrodes, as in the traditional set up, and data recorded at a sampling rate of 250μs per point using the equipment described previously.
The first recorded evidence of spontaneous bilayer formation and pore insertion upon rehydration of a test cell, which had been pre-loaded with dried lipid and protein pores, is presented in Fig. 7. Hence, a lipid bilayer can be formed by one pass of the lipid/solution interface past aperture if the solution covers the dried lipid before it covers the aperture, the aperture has a diameter of less than 20μm and the membrane has been pre-treated to increase its affinity to lipids. This removes the need to move the interface back and forth past the aperture.
Further testing was performed to confirm bilayer formation and pore insertion. Hence, pores will spontaneously insert into the lipid bilayer if they are deposited in dried form on an internal surface of the cell. This avoids the need to actively insert the pores into the lipid bilayer. The bilayer formation and pore insertion were consistent with the results for the traditional Montal and Mueller method that are described above and shown in Figs 4, 5 and 6.
The results for the second membrane in Table 2, with a pre-treatment of 2μl of 1% hexadecane in pentane, are shown in Fig. 7. Fig. 7 shows the current response (pA, upper portion) and the applied potential (mV, lower portion) recorded over a period of 180 seconds. Over the first 40 seconds of recording the cell is dry and the Faraday cage is open. Solution is injected on either side of the membrane just prior to the first marker on the plot (approximately 45 seconds). After a period of fluctuation as the electrodes are wetted and the Faraday cage is closed, the applied potential is then increased to +10OmV.
The current remains at <10pA, consistent with the GΩ seal of a bilayer, and then rises in a single step to approximately 9OpA, consistent with insertion of an α-HL pore and confirming that the aperture was blocked with a lipid bilayer (as described above for Fig. 5). The stepwise fluctuation in the current is from binding events with cyclodextrin causing transient partial blockage of the pore, and confirms that the current is due to an α-HL pore in the bilayer (as described above for Fig. 6). After -70s a second pore inserts into the bilayer.
Fig. 8 shows an expanded view of the current (1 second full scale) during the final minute of recording, again illustrating the characteristic step-like profile of the analyte binding events.
The results presented therefore illustrate that bilayer formation and subsequent pore insertion is possible directly upon re-hydration of the dry test cell with test solution using lipid and α-HL dried in the test cell. By this method the bilayers can be formed on the first exposure of the aperture to the solution/air interface carrying the lipid and a variety of apertures can be used including different membrane materials and aperture formation methods. Although the results are not presented here, bilayers have been formed on all the membrane/aperture combinations presented in Table 2 above.
A cell having a much smaller scale that the two-chamber research cell used above was constructed. The cell contained two cylindrical chambers having a cross-sectional diameter of 12mm and a length of 2mm. The volume of each chamber was approximately 56μl. Two alternative membrane materials were tested: a 6um thick biaxial polycarbonate film, and a 5μm thick PTFE film (Goodfellow Cambridge Ltd.)- Apertures were formed in the centre of the membrane by one of two different methods described above, sparking and laser drilling. The laser-drilled holes used in these experiments were lOμm in diameter with a tapered morphology in cross section. Spark generated apertures in the 5μm PTFE film membranes were approximately lOμm diameter circular holes, whereas for the 6μm polycarbonate film the sparked apertures were elliptical with dimensions approximately 20μm by 30μm. Holes of this size allow a stable lipid bilayer to be easily formed.
The apertures then received a chemical pre-treatment to facilitate the bilayer formation process. This consisted of 2μl of 1% hexadecane in pentane applied to either side of the aperture by capillary pipette. Pre-treatment also allows the easy formation of a stable lipid bilayer.
Once the pentane solvent had evaporated a lμl drop of aqueous protein solution (0.017 mg/ml w.t. α-HL) was applied near to one side of the aperture and dried.
The interior of each chamber was then coated with 4μl of lOmg/ml diphantytanoyl-sn- glycero-3-phosphocholine (DPhPC) dissolved in pentane.
The lipid re-hydrated by injecting test solution (1OmM Phosphate Buffered Saline solution, 1.0M NaCl, and 0.25mM g-cyclodextrin, at pH 6.9) into each chamber.
Control of the applied potential between the cell Ag/AgCl electrodes and recording of the subsequent current was with the same equipment described above. An electrical potential difference of +10OmV was applied between the two chambers after the test solution had been added, and a measured current <10pA was consistent with bilayer formation. Formation of a bilayer across the aperture was confirmed as discussed above. Hence, a lipid bilayer can be formed by one pass of the lipid/solution interface past the aperture if the solution covers the dried lipid before the aperture, the aperture has a diameter of less than 20μm and the membrane has been pre-treated to increase its affinity to lipids.
Fig. 9 shows a typical current trace recorded over the entire duration of one test. Figs 10, 11, 12 and 13 show expanded areas of Fig. 9. Each Fig. contains two graphs: the upper plot shows the current response to the applied potential, which is shown in the lower plot.
Prior to arrow 1 in Fig. 9, a 50Hz triangular a.c. potential waveform of 2OmV amplitude is applied between the electrodes, which are initially dry. When the test solution is then injected into each chamber of the cell, and the Faraday cage is closed, a square-wave capacitive current response is recorded with amplitude ~330pA, as seen in Fig. 10, indicating bilayer formation across the aperture. When the a.c. potential waveform is then replaced by a d.c. potential of +10OmV (after arrow 1 in Fig. 9), a constant current of <10pA is recorded, confirming that the aperture is sealed with >10 GΩ resistance as would be expected with a bilayer.
In the period immediately prior to arrow 2 in Fig. 9, the bilayer is deliberately broken by 'zapping' with a 50ms potential pulse of IV d.c. applied on top of 50Hz triangular a.c. waveform. The potential pulse is sufficient to permanently disrupt the high resistance electrical seal of the aperture, causing the current to go off scale, as seen in Fig. 11 (recorded between arrow 2 and arrow 3 in Fig. 9).
Beyond arrow 3 in Fig. 9, a new bilayer is formed using the Montal and Mueller method by lowering and then raising the solution/air interface carrying the lipid monolayer past the aperture. The square wave capacitive current is restored as the new bilayer forms. The potential waveform is then turned off and +10OmV d.c. applied, which results in approximately lOOpA step increases in the current as α-HL protein pores automatically insert into the bilayer. An expanded view showing the current as the pores insert into the bilayer is presented in Fig. 12 (after arrow 4 in Fig. 9). Again, pores will spontaneously insert into the lipid bilayer if they are deposited in dried form on an interface of the cell. This avoids the need to actively insert the pores into the lipid bilayer.
The γ-cyclodextrin in the test solution binds stochastically to the α-HL pores causing characteristic interruptions in the pore current, seen as approximately 6OpA step drops in the current which last 50-500ms. This is presented in Fig. 13.
The alternative device mentioned above which is the cell of a sensor system and to which the present invention may alternatively be applied will now be described. The sensor system is also described in a co-pending application being filed simultaneously with this application [J A Kemp & Co Ref: N.99663A; Oxford Nanolabs Ref: ONL IP 002] which is incorporated herein by reference. All the teachings of that application may be applied equally to the present invention.
A sensor system 1 is shown in Fig. 14 and comprises a cell 2 and an electrical reader unit 3 which may be connected together. In use, sensing using a lipid bilayer is formed in the cell 2 and an electrical current signal across the bilayer is monitored and interpreted by the reader unit 3. The sensor system 1 has been designed for use outside of a laboratory setting. Some examples include use in medicine for point of care testing (POCT), use in environmental protection for a field-based test for pollutants, use for counter bioterrorism for the detection of explosives and chemical and biological agents at the "point of terror". Nonetheless, some of features of the sensor system 1 also make it advantageous for laboratory use.
The cell 2 has a construction allowing it to be mass-produced at a low cost, allowing it to be a disposable product. The cell 2 is easily connected and replaced in the reader unit 3. The reader unit 3 is sufficiently small to be hand-held and portable.
The cell 2 is shown in Figs. 15 and 16 and will now be described in detail. The cell 2 has a layered construction formed from a stack of layers fixed together.
The cell 2 comprises a membrane 10 having an aperture 11 across which a lipid bilayer is supported in use. Although only a single aperture 11 is used in many applications, there may be plural apertures 11. The membrane 10 may be made of any material capable of supporting lipid bilayer across the aperture 11. Some examples include but are not limited to: a biaxial polycarbonate, PTFE, polyethylene, polypropylene, nylon, PEN, PVC, PAN, PES, polyimide, polystyrene, PVF, PET, aluminized PET, nitrocellulose, PEEK, or FEP. One factor in the choice of the material of the membrane 10 is the affinity to the lipid which affects the ease of bilayer formation. However the material of the membrane 10 has less significance when a pretreatment is used as described below. The choice of the material of the membrane 10 also affects the ease of formation of the aperture 11.
Similarly, the thickness of the membrane 10 is made sufficiently small to facilitate formation of the lipid bilayer across the aperture, typically being at most 25μm, preferably being at most lOμm thick, for example 5μm or 6μm. The thickness of the membrane 10 is typically at least 0.1 μm. The aperture 11 may in general be of any shape or size which it is capable of supporting a lipid bilayer, although it preferably has a restricted size as discussed further below.
The thickness of the membrane 10 is also dependent on the size of the aperture 11. As the aperture 11 decreases in size, the membrane 10 also needs to decrease in thickness in order to assist the formation of a lipid bilayer. Typically the thickness of the membrane 10 is no more than the minimum diameter of the aperture 11. Another factor is the electrical resistance of the membrane 10 which changes with the thickness. It is desirable that the resistance of the membrane 10 is sufficiently high relative to the resistance of the ion channel in a membrane protein inserted in the membrane 10 that the current flowing across the membrane 10 does not mask the current through the ion channel.
The membrane 10 is supported by two support sheets 12, provided on opposite sides of the membrane 10 and fixed thereto. As described further below, the membrane 10 and the support sheets 12 together form a septum 17. The support sheets 12 each have a window 13 which is aligned with the aperture 11 in the membrane 10 but is of larger size than the aperture 11 in order that the support sheets 12 do not interfere with the formation of a lipid bilayer across the aperture 11. The support sheets 12 have the function of supporting and strengthening the membrane 10 and may be made of any material suitable for achieving this purpose. Suitable materials include, but are not limited to: Delrin® (polyoxymethylene or acetal homopolymer), a polyester, eg Mylar® (biaxially-oriented polyethylene terephthalate (boPET) polyester film), PC, PVC, PAN, PES, polysulphone, polyimide, polystyrene, polyethylene, PVF, PET, PTFE, PEEK, or FEP
The support sheets 12 are typically thicker than the membrane 10, having a thickness typically at least 0.1 μm, preferably at least lOμm. The support sheets 12 are thinner than the bodies 14 described below, having a thickness typically at most lmm, preferably at most 0.5mm.
The cell 1 further comprises two bodies 14 each fixed to one of the support sheets 12. The bodies 14 are each formed from a sheet of material having an aperture 15 extending therethrough. The apertures 15 in the bodies 14 are of larger area, parallel to the membrane 10, than the windows 13 in the support sheets 12 and are aligned therewith. Thus, the apertures 15 in the bodies 14 each define a respective chamber 16, the two chambers 16 being separated by the septum 17 formed by the membrane 10 and the support sheets 12 together, and the aperture 11 in the membrane 10 opening into each of the chambers 16.
The thickness of each body 14 is greater than the thickness of the support sheets 12 and is chosen to provide a desired volume for the chambers 16. In general, the bodies 14 may have any thickness, but typically the thickness of each body 14 is in the range from 1 μm to 3mm. Typically, for use in a disposable portable sensing system, the chambers 16 have a volume of 0.1 μl to 250μl. However, a restricted thickness can be advantageous as described further below. The bodies 14 may be formed of any suitable material, for example silicone rubber.
The chambers 16 are closed by means of a respective closure sheet 18 which is fixed to the outer surface of the respective body 14 covering the aperture 15 formed therein. The closure sheet 18 may be formed from any material, but may for convenience be the same material as the support sheets 12.
The septum 17 including the membrane 10 is not electrically conductive and is designed to have a high electrical resistance. Consequently, in use, the only significant electrical connection between the two chambers 17 is by ionic conduction of an electrolyte solution in the chambers 17 through the aperture 11 in the membrane 10. Formation of a lipid bilayer across the aperture 11 blocks the aperture 11 creating a high-resistance electrical seal between the chambers 17. Insertion of a membrane protein which is an ion channel, for example a pore, restores the electrical connection between the two chambers 17 but only by ionic conduction through the membrane protein. Subsequently, binding events between an analyte and a membrane protein cause a characteristic interruption of the current flowing between the chambers under an applied electrical potential difference.
In order to detect and monitor such electrical signals, each of the chambers 16 is provided with an electrode 20 formed as part of a layer 23 of conductive material deposited on the surface of the respective support sheet 12 which is internal to the chamber 16. In particular, the electrodes 20 are illustrated in Fig. 17 which shows one of the support sheets 12 as viewed from the side internal to the adjacent chamber 16. In Fig. 17, the positions of the aperture 15 in the body 14 and the aperture 11 in the membrane 10 are shown in dotted outline. The conductive material of the electrodes 20 may be for example Ag/ AgCl.
As shown in Fig. 17, the support sheets 12 each include a protruding portion 21 which extends beyond the periphery of the body 14. The layer 23 of conductive material which is deposited on the support sheet 12 to form the electrode 20 extends from the chamber 16 across the support sheet 12 to the protruding portion 21. Accordingly each layer 23 of conductive material forms not only an electrode 20 but also a contact 24 which is exposed on a connector portion 22, and a track 25 which electrically connects the contact 24 and the electrode 20. As described further below, the two protruding portions 21 of the two support sheets 12 together form a connector portion 22 for connecting the cell 2 to the reader unit 3, and the electrical signal received by the electrodes 20 in each chamber 16 is supplied to the reader unit 3 via the contacts 24.
In use, a sample solution is introduced into the chamber 16 on one side of the membrane 10. The chamber 16 which receives the sample solution will now be referred to as the test chamber 16-1 and the other chamber will now be referred to as the secondary chamber 16-2, although in many embodiments both chambers 16 will be identical in size and construction.
To allow introduction of the sample solution, the test chamber 16-1 may be provided with an inlet 30 or 32 using either one of the following two alternative arrangements.
In the first inlet arrangement, the inlet 30 is formed in the body 14 as shown in Fig. 18. In particular, the inlet 30 is formed in one of the surfaces of the body 14 which may in general be either the inner or outer surface as a channel extending from the periphery of the body 14 to the aperture 15. The sample may be injected through the inlet 13, for example using a pipette or syringe. To allow exhaust of air in the chambers 16 displaced by the sample, the test chamber 16-1 is further provided with an exhaust outlet 31 having an identical construction to the inlet 30.
In the second inlet arrangement, the inlet 32 is formed in the closure sheet 18 as illustrated in Fig. 19. In particular, the inlet 32 is formed as a hole extending through the closure sheet 18 and aligned with the aperture 15 in the body 14 which defines the test chamber 16-1, as shown in dotted outline in Fig. 19. To allow exhaust of air in the chambers 16 displaced by the sample, the test chamber 16-1 is further provided with an exhaust outlet 33 having an identical construction to the inlet 32.
Such an inlet 30 or 32 may be provided with a closure, or may be omitted altogether by making a portion of the cell 2 of a material which allows penetration by a syringe for filling the test chamber 16-1.
As a result of the design of the electrode 20 as shown in Fig. 17, the electrode 20 is arranged in the flow path between the inlet 30 or 32 and the aperture 11. In other words, when an aqueous solution is introduced into the test chamber 16-1 through the inlet 30 or 32 it contacts the electrode 20 before reaching the aperture 11. This means that the electrode 20 is wetted before the lipid bilayer is formed, the formation of the bilayer being described in more detail below. When the electrode 20 is wetted, there can occur a pertubation in the potential across the electrodes 20 between the two chambers 16, derived from the reader unit 3. If this occurs before the lipid bilayer is formed, then this causes no difficulty. However if the aqueous solution was to contact the electrode 20 after reaching the bilayer, such a pertubation in the potential across the electrodes could occur after the lipid bilayer is formed and risk rupturing the lipid bilayer.
The secondary chamber 16-2 may, in use contains a buffer solution or a gel. The cell 2 may be supplied to users with the secondary chamber 16-2 already containing the buffer solution or gel. In this case, the secondary chamber 16-2 does not need an inlet 30 or 32 as described above. Alternatively the cell 2 may be supplied with the secondary chamber 16-2 empty. In this case, the user must introduce a buffer solution or gel into the secondary chamber 16-2. To facilitate this the secondary chamber 16-2 may also be provided with an inlet 30 or 32 as described above.
Thus the chambers 16 are closed except for an inlet 30 or 32 if provided. This contrasts with a conventional laboratory apparatus in which chambers on either side of an aperture are formed as recesses in a molded block which are open to the atmosphere. Use of closed chambers 16 has the advantage of reducing evaporation from the contents of the chambers 16. This in turn reduces the cooling of the contents which is important to maintain appropriate temperatures in the case of many membrane proteins which may be inserted in the bilayer.
An internal surface of the test chamber 16-1 has a lipid deposited thereon. When the sample is inserted into the test chamber 16-1, the sample rehydrates the lipids and forms a lipid/solution interface between the sample and the air in the test chamber 16-1. This interface is subsequently moved across the aperture 11, either once or repeatedly, in order to form the lipid bilayer across the aperture 11.
In general, the lipid may be applied to any internal surface of the test chamber 16-1. The lipid may be deposited on the septum 17 during manufacture after the septum 17 has been constructed by fixing together the membrane 10 and the support sheets 12 but before assembly of the septum 17 into the remainder of the cell 2. Alternatively the lipid may be deposited on the internal walls of the chamber 16 formed by the aperture 15 in the body 14 or the closure sheet 18, either before or after the body 14 is fixed to the closure sheet 18, but before assembly to the septum 17.
The deposition may be achieved by coating the septum 17 with a solution of the lipid dissolved in an organic solvent such as pentane and then subsequently allowing evaporation of the solvent, although other techniques could equally be applied.
In general the chambers 16 may be of any size. However, particular advantage is achieved by restricting the depth of the test chamber 16-1 in the direction perpendicular to the septum 17. This depth is controlled by selection of the thickness of the body 14. In particular, the depth is restricted to a level at which the surface tension of a sample solution introduced into the test chamber 16-1 prevents the liquid from flowing across the test chamber 16-1 and instead contains the liquid in part of the test chamber 16-1 across its area parallel to the septum 17. In this state, the liquid interface with the air in the chamber 16 extends across the depth of the chamber 16, perhaps with some meniscus forming depending on the relative pressures of the liquid and the air.
This effect is illustrated in Fig. 20 which shows a cell 2 in which the liquid sample 40 has been introduced into one side of the test chamber 16-1 through the inlet 30 or 32 (although for simplicity the inlet 30 or 32 is not shown in Fig. 20). As can be seen, instead of the liquid sample 40 falling under gravity to the lowest possible level in the chamber 16, surface tension holds the liquid interface 41 with the air in the chamber 16 extending across the depth of the chamber 16 between the septum 17 and the closure sheet 18. Thus, the interface 41 is generally perpendicular to the septum 17 and the aperture 11 except for the formation of a meniscus.
By applying pressure at the inlet 30 or 32 to introduce more liquid or to withdraw the liquid, the interface 41 may be moved in the direction of the arrow A along the chamber parallel to the septum 17 and hence across the aperture 11. Once the liquid sample 40 has rehydrated the dried lipid inside the chamber 16 the liquid interface 41 will support a layer of the lipid. Thus, such movement of the liquid interface 41 across the aperture 11 in the membrane 10 may be used to form a lipid bilayer.
A particular advantage of such a restricted depth for the chamber 16 is that the above- described effect of surface tension occurs irrespective of the orientation of the cell 2. Although the cell 2 is illustrated in Fig. 14 with the aperture 11 extending horizontally, the same effect occurs regardless of the orientation of the cell 2. Thus the above-described process of forming a lipid bilayer across the aperture 11 may be carried out with the cell 2 in any orientation. This reduces the degree of care needed by the user and enhances the ability to use the sensor system outside of a laboratory setting.
The cell 2 is easy to manufacture simply by cutting and affixing together the individual layers of the cell 2. For convenience the layers of the cell 2 are affixed by adhesive, although in principle some form of mechanical fixing could be used. Conveniently due to the use of a layered construction plural cells 2 or parts thereof may conveniently be manufactured together from a large sheet and subsequently cut out. As a result of these points, the cell 2 is capable of mass production at relatively low cost.
By way of example and without limitation, one particular manufacturing method will now be described in detail.
Firstly, a template for plural cells 2 is inkjet printed onto the release paper of adhesive- coated polyester A4 sized cards from which six rows of sixteen support sheets 12 are to be formed. The cards were Mylar polyester sheet (DuPont) of thickness 250μm with a 467MP self-adhesive coating of thickness 50μm on one side. With the release-paper facing upwards, 4mm diameter holes are punched in the cards on the template to provide the windows 13 of each support sheet 12 and any burring of the edges of the punched holes removed using a scalpel blade.
The layers 23 of conductive material are then stencil screen-printed onto the cards using a 60/40 composition silver/silver chloride paste (Gwent Electronic Materials Ltd.), and left overnight to dry at room temperature. The registration and electrical resistance of the layers 23 of conductive material is checked and the surface of the cards covered with a sheet of A4 paper, to keep the surface clean in subsequent stages of sensor production.
With the release paper side facing upwards, the cards are then cut using a guillotine lengthwise into the six rows of support sheets 12. In this example the membranes 10 are formed from either a 6μm thick biaxial polycarbonate film or a 5μm thick PTFE film (Goodfellow Cambridge Ltd.). Prior to use the apertures 11 are formed as discussed below. The membrane 10 around the apertures 11 then receives a chemical pretreatment to facilitate the bilayer formation process. In this case, the pretreatment consists of 2μl of 1% hexadecane in pentane applied to either side of the aperture by capillary pipette.
Once the pentane solvent had evaporated a lμl drop of aqueous protein solution (0.017 mg/ml w.t. α-HL) was applied near to one side of the aperture and dried.
Next the films are cut into strips, cleaned on both sides by rinsing with ethanol, and gently air-dried.
A tape-laying jig with a rubber coated veneer roller is used to roll the membrane film strips evenly over the self-adhesive of one half of the card rows. Care is taken to ensure that the film above the punched holes in the card remained flat and free from creases.
To complete the septums 17, the other half of the card rows are stuck back to back to sandwich the membrane film strips, with the punched holes carefully aligned on either side with the apertures 11. Then the strips are cut using a guillotine into septums 17 for individual cells 2.
In this example the body 14 is formed from a 2mm thick solid silicone rubber sheet with self-adhesive coating on both sides. A large such sheet is cut into A4 sized sheets. An array of 12mm diameter circular apertures 15 for respective cells 2 are formed by removal of the material of the sheet, in particular by hollow punching the spacer sheets. Chamber volumes as low as 56μl have been produced by punching 6mm diameter holes through the 2mm thick spacer material.
The individual chambers 16 are then closed by sticking an A4 sized card of plain 250μm thick Mylar polyester sheet (DuPont), which ultimately forms the closure sheets 18, to one side of the silicone rubber sheet. This sheet is then cut using a guillotine lengthwise into rows having the desired width of the body 14. Channels of width lmm, to form the inlet 30 and exhaust gas outlet 31 are then cut in the silicone rubber sheet material (but not through the backing card).
The interior of each chamber 16 is then coated with a solution of 4μl of lOmg/ml DPhPC lipid dissolved in pentane. The rows of lipid-loaded chambers are cut using a guillotine into individual chambers 16 according to the template and then bonded symmetrically to each side of the individual septums 17 to form cells 2.
The size and formation of the aperture 11 in the membrane 10 will now be considered further.
In general, the aperture 11 may be of any size capable of supporting a lipid bilayer. By way of comparison, the diameter of an aperture in a conventional laboratory apparatus is typically in the order of 30μm to 150μm and an aperture 11 of such a size may used in the present cell 2.
However, it has been appreciated that particular advantage may be achieved by restricting the size of the aperture 11. In particular, this has been found to increase the mechanical stability of the bilayers formed. The increased stability reduces the number of passes of the liquid interface supporting the lipid past the aperture necessary to allow formation of the bilayer. Furthermore, the increased stability increases the robustness of the bilayer and reducing the chances of the bilayer rupturing. This is of particular advantage when the sensor system 1 is used outside a laboratory setting where it may be subject to external forces.
The increased stability achieved by restricting the size of the aperture 11 has been experimentally demonstrated as follows.
A number of actual membranes 10 which have been tested are listed in Table 2 above
The apertures 11 which are sparked-generated were produced by a spark generating device which comprises an adjustable high voltage generator that charges a storage capacitor, with feedback control. The storage capacitor is then switched to discharge into a high voltage transformer coil to rapidly produce a large potential difference between the points of two electrodes attached to the transformer output. Dielectric breakdown between the electrode points results in a spark. The energy of the spark is controlled by switching the value of the storage capacitor (33nF- 30OnF), by adjusting the capacitor charging voltage (200nV-500V), and by changing the distance between the output electrode points.
The polymer film from which a membrane 10 is subsequently cut is mounted flat on the sparking platform and the two output electrodes of the sparking device are positioned opposite each other, above and below the film.
To form apertures 11 of small diameter the spark energy is minimised by choosing the lowest storage capacitor and lowest charging potential that can create a spark that penetrates through the film, and by controlling the dielectric resistance between the two electrodes. For example, decreasing the thickness of the membrane film enabled the use of lower energy sparks and produced smaller apertures, such that it was possible to create apertures in the range 5μm- lOμm diameter in PTFE film of 5μm thickness. Further control of the aperture 11 diameter could easily be introduced through limiting the sparking energy by gating the discharge after detecting the onset of dielectric breakdown.
The laser-generated apertures 11 were produce by laser drilling.
The morphology of the aperture 11 can been seen to vary with the material of the membrane 10 and method used to form the bilayer. For example, with biaxial polycarbonate film, the spark generated apertures 11 were elliptical while the laser drilled apertures 11 were mostly circular. Similarly the spark generated apertures 11 generally had a uniform cross-section while the laser drilled apertures 11 generally a cross section which tapered through the thickness of the membrane 10.
The regularity of the inside edge of the aperture 11 is also sensitive to the material of the membrane 10, the thickness of the membrane 10, and the method of formation of the aperture 11. This is expected to impact on the stability of bilayer formation at the aperture. However in all cases irrespective of the method of formation of the aperture 11, it is apparent that restricting the diameter of the aperture 11 results in increasing the stability of the bilayers, in fact to a dramatic degree. For example with an aperture 11 of diameter lOμm the cell 2 can firmly knocked against the table or disconnected from the reader unit 3 and carried by hand without breaking the bilayer. This is of significant advantage in the context of use of the sensor system 1 outside the laboratory setting.
For these reasons it is preferred that the aperture 11 has a restricted diameter, say of 20μm or less in at least one dimension. The aperture 11 may have such a restricted diameter in all dimensions, but the advantage of increased stability is achieved provided the aperture 11 is relatively small in one dimension, even if the aperture 11 is longer in another dimension.
The work described above demonstrates that apertures 11 of small diameter may be formed using cheap off-the-shelf materials and processes adaptable for mass production. Nonetheless, the choice of materials for the membrane 10 and methods capable of generating the apertures 11 is considerably more extensive than those considered above.
As mentioned above, in one type of cell 2, the secondary chamber 16-2 may contain a gel 50 as shown for example in the cell 2 of Fig. 20. In particular, the gel 50 extends across the aperture 11 in the membrane 10. The presence of the gel acts to physically support a lipid bilayer formed across the aperture 11. As a result, the gel 50 assists the formation of the lipid bilayer and furthermore provides the lipid bilayer with increased stability. Both of these advantages are significant in the context of using the sensor system 1 in a non-laboratory setting, because it makes the sensor system 1 easier to use and also more robust against external forces of the type which may disturb the sensor system 1 in normal use. In addition, the gel 50 may act as a matrix for controlling the supply of molecules to the lipid bilayer.
In order to support the lipid bilayer, the gel 50 may fill the secondary chamber 16-2 such that the gel 50 contacts the membrane 10. This case is illustrated in Fig. 20. In this case, the gel 50 may directly support the lipid bilayer formed across the aperture 11. This is preferred in order to improve bilayer formation and stability.
However, in an alternative illustrated in Fig. 21, there may remain a gap 51 between the gel 50 and the membrane 10. In this case, the gel 50 may still support the lipid bilayer formed across the aperture 11 by acting through a solution occupying the gap 51 , although this effect will reduce as the size of the gap 51 increases. The presence of the gap 51 means that a wider variety of materials can be used to make the gel 50, including ionically non-conductive materials.
The gel 50 may be ionically conductive and indeed this is necessary if the gel 50 directly contacts the lipid bilayer. In this case the gel 50 may be for example a hydrogel. Suitable ionically conductive gels include, but are not limited to, agarose polyacrylimide gel, Gellan™ gel or Carbomer™ gel. Particular gels which have been used are 5% agarose doped with NaCl or Signa Gel (Parker Laboratories Inc.). In one case agarose gel 50 was made using 1OmM PBS to which IM NaCl had been added. The gel 50 was melted and then injected in the chamber 16 where it solidified upon cooling.
It has been discovered that when one chamber 16 of the cell 2 is filled with a gel 50, formation of a lipid bilayer was possible by moving the liquid interface 41 carrying a lipid monolayer past the aperture 11 on only one side of the aperture 11, as opposed to both sides of the aperture 11 as more commonly performed in the Montal & Muller method. Further, bilayers could be formed with or without pretreatment of the membrane 10 by this method. However considerably more attempts were required without the pretreatment. Pretreating only the top side of the membrane 10 was found to be sufficient for reproducible bilayer formation. Being able to apply the pretreatment to only one side of the membrane 10 greatly simplifies the manufacturing process.
The cell 2 may be provided to the user with the secondary chamber 16-2 already containing the gel 50. This improves the ease of use of the cell 2 because no filling the secondary chamber 16-
2 is necessary by the user.
Each of the features described above of (1) restricting the size of the aperture 11, (2) use of a pretreatment and (3) use of a gel 50 assist the formation of a lipid bilayer across the aperture 11 in the membrane 10. In particular, this reduces the number of times in which the interface 41 carrying a lipid monolayer must be moved past the aperture 11 in order to form the bilayer. This improves the ease of use of the cell 2.
In fact, in actual embodiments of the cell 2 employing each of features (1) to (3) there has been demonstrated reliable formation of lipid bilayer on a single pass of the liquid interface 41 pass the aperture 11. This is of significant advantage because it means that the lipid bilayer may be formed across the aperture 11 simply on insertion of the test solution 40 into the cell 2, for example using a pipette or a syringe. This means that the user does not need to repeatedly move the liquid interface 41 back and fourth across the aperture 11 whilst monitoring the formation of the lipid bilayer, and so the required user skill level is greatly reduced. Furthermore, it is not necessary to employ any complicated fluidics control to so move the liquid interface 41.
The reader unit 3 will now be described in detail.
The reader unit 3 has a connector portion 60 which is arranged to make a physical connection with the connector portion 24 of the cell 2. The connector portion 60 of the reader unit
3 is visible in Fig. 14 but is shown in expanded form in Fig. 22. In particular, the connector portion 60 consists simply of a pair of blocks 61 which are separated by a spacing designed to provide a tight fit for the connector portion 24 of the cell 2. Thus, the connector portion 24 of the cell 2 may be plugged into the connector portion 60 in between the blocks 61 by insertion of the cell 2 in the direction of arrow B, thereby providing mating between the connector portions 24 and 60.
In addition, respective contacts 62 and 63 are provided on each of the facing surfaces of the block 61 or the connector portions 60. The contacts 62 and 63 are simply pieces of metal, typically gold-plated to assist formation of good electrical contact. The contacts 62 and 63 may be sprung. When the connector portion 24 of the cell 2 is plugged into the connector portion 60 of the reader unit 3, the contacts 24 of the cell 2 make an electrical connection with the contacts 62 and 63 of the reader unit 3. The reader unit 3 includes an electrical circuit 90 described further below which is connected to the contacts 62 and 63. hi this manner, the connection together of the cell 2 in the reader unit 3 allows the electrical signal generated between the chambers 16 to be supplied from the electrodes 20 to the reader unit 3.
There will now be described some alternatives for providing the cell 2 with a Faraday cage to produce electrical interference from ambient electrical magnetic radiation with the electrical signals generated in the cell 2 when it is connected to the reader unit 3. Two alternative approaches are as follows.
The first approach uses a rigid metal body 70 as the Faraday cage. The rigid metal body has an internal cavity 71 sufficient to accommodate the cell 2. At one end 72, the rigid metal body 70 is open and connected to the body 73 of the reader unit 3 so that the cavity 71 is aligned with the connection portions 60. In this way, the cell 2 is accommodated inside the cavity 71 when it is connected to the reader unit 3, as shown in Fig. 24.
However, rather than entirely enclosing the cell 2, the rigid metal body 70 has an aperture 74 facing the connector portion 60. The aperture 74 is of sufficient size to allow passage of the cell 2 when the cell 2 is connected to the reader unit 3. Therefore, an individual cell 2 may be connected to the reader unit 3 and replaced by another cell 3 by insertion through the aperture 74 without removal of the rigid metal body 70. It has been appreciated that surprisingly the presence of the aperture 74 does not prevent the operation of the rigid metal body 70 as a Faraday cage. In particular, this is because the aperture 74 may be of sufficiently small size that any electrical interference caused by electro magnetic radiation penetrating the aperture 74 is at a sufficient high frequency that it does not significantly degrade the quality of the electrical signal of interest. In particular, the aperture 74 of the rigid metal body 70 may have a maximum dimension (horizontally in Fig. 23) of 50mm or less, preferably 20mm or less.
The rigid metal body 70 also has a sample introduction hole 76 which is aligned with the inlet 30 or 32 when the cell 2 is connected to the reader unit 3. The sample introduction hole 76 allows the sample to be introduced into the cell 2 after the cell 2 has been connected to the reader unit 3. The sample introduction hole 76 is smaller than the aperture 74, typically having a maximum dimension of 5mm or less. Thus the sample introduction hole 76 is also of sufficiently small size that any electrical interference caused by electro magnetic radiation penetrating the sample introduction hole 76 is at a sufficient high frequency that it does not significantly degrade the quality of the electrical signal of interest.
The second alternative approach is to provide a Faraday cage 75 fixed around the periphery of the cell 2, for example as shown in Fig. 25. In this case, the Faraday cage 75 entirely encloses the cell 2, except for the connector portion 24 which protrudes out of the Faraday cage 75. In this case, the Faraday cage 75 may be formed by a solid metal body. Alternatively, the Faraday cage 75 may be formed by a metal foil which has the advantage of being easy to manufacture, for example simply by adhering the metal foil to the exterior of the cell 2.
It is noted that the provision of a Faraday cage attached around the exterior of the cell 2 is equally applicable to other types of electrical sensor cell which are operative to detect an analyte by measurement of an electrical signal developed in the cell.
The reader unit 3 houses an electrical circuit 90 which will now be described in detail. The primary function of the electrical circuit 90 is to measure the electrical current signal developed across the electrodes 20 to provide a meaningful output to the user. This may be simply an output of the measured signal or may involve further analysis of the signal.
The electrical circuit 90 may take various different forms and some possible circuit designs are shown in Figs. 14 to 16. In each design there are some common elements as follows.
The two contacts 62 and 63 of the connector portion 60 will be referred to as a reference contact 62 and a working contact 63. Although the electrodes 62 and 63 are physically the same, in operation the reference contact 62 provides a bias voltage potential relative to the working contact 63, whilst the working contact 63 is at virtual ground potential and supplies the current signal to electrical circuit 90.
A possible alternative which is not illustrated would be for the reference contact 62 to be held at ground and working contact 63 to be offset by the bias voltage.
The reader circuit 90 has a bias circuit 91 connected to the reference contact 62 and arranged to apply a bias voltage which effectively appears across the two contacts 62 and 63 and hence across the electrodes 20 of a cell 2 connected to the reader unit 3. The bias circuit 91 may take different forms as described below.
The reader circuit 90 also has an amplifier circuit 92 connected to the working contact 63 for amplifying the electrical current signal the electrodes 20 of the cell 2 and appearing across the two contacts 62 and 63. In each design of the electrical circuit 90, the amplifier circuit 92 consists of a first amplifier stage 93 and a second amplifier stage 94.
The first amplifier stage 93 is connected to the working electrode 63 and arranged to convert the current signal into a voltage signal in a first stage amplifier. It may comprise an electrometer operational amplifier configured as an inverting amplifier with a high impedance feedback resistor, of for example 500MΩ, to provides the gain necessary to amplify the current signal which typically has a magnitude of the order of tens to hundreds of picoamps.
The second amplifier stage 94 is connected to the output of the first amplifier stage 93 and arranged to amplify and filter the voltage signal voltage. The second amplifier stage 94 provides sufficient gain to raise the signal to a sufficient level for processing in the microcontroller 95 described below. For example with a 500MΩ feedback resistance in the first amplifier stage 93, the input voltage to the second amplifier stage 94, given a typical current signal of the order of 10OpA, will be of the order of 5OmV, and in this case the second amplifier stage 94 must provide a gain of 50 to raise the 5OmV signal range to 2.5V. If the signal contains frequencies beyond the bandwidth limit of the first stage then analogue filtering is provided in the second amplifier stage 94 to increase gain at frequencies beyond the first stage bandwidth limitation. The filtering results in a combined first and second stage frequency response with constant gain beyond the first stage limitation.
To save power, the analogue circuitry in the bias circuit 91 and the amplifier circuit 92 is shutdown when not being used. Each power rail is connected to bipolar PNP switching transistors for low leakage switching of the analogue circuitry.
Typically the signal will be unipolar, but if bipolar current signals are required the gain of the second amplifier stage 94 can be halved and a DC offset applied to the inverting input of the second amplifier stage 94 equal to half reference voltage value of the microcontroller 95.
The first design of the electrical circuit 90 shown in Fig. 26 and will now be described. This design is intended for a stand-alone battery-operated reader unit 3 with PC connectivity. In this case, the bias circuit 91 and the amplifier circuit 92 are connected to a microcontroller 95. The microcontroller 95 has a power control circuit 96 which supplies power from a battery. The microcontroller 95 incorporates an analog-to-digital converter 97 which receives the output of the amplifier circuit 92 and converts it into a digital signal. The analog-to-digital converter 97 may be of a successive approximation type or of a voltage-to-frequency type, both resulting in a digital word for each conversion. A sampling rate is chosen that is at least twice the bandwidth of the signal at the output of the second amplifier stage 94 to prevent aliasing.
In this case the analog-to-digital converter 97 is embedded on the same silicon die as the microcontroller 95, but it could alternatively be a separate circuit element.
The microcontroller 95 incorporates a microprocessor 98 which runs code to process and analyse the digital signal. The microcontroller 95 has a display 99 which is conveniently an LCD display, and on which the microcontroller causes display of the signal itself or other analysis results such as temporal results of the signal analysis.
The microcontroller 95 receives commands from a keypad 100. Of course other input and output devices could be used in addition to, or instead of, the display 99 and keypad 100, for example LEDs used as indicators or an audio generator 105.
The microcontroller 95 also has an interface 101 to provide data communication with another digital device, for example a computer. The interface 101 may be of any type, for example a UART interface. This allows the received signal to be supplied to another device for display, storage and/or further analysis.
The microcontroller 95 is connected to the bias circuit 91 as follows. The microcontroller 95 has a PWM generator 102 which generates a PWM (pulse width modulation) voltage waveform, that is a digital signal with fixed frequency but varying duty cycle. The PWM generator 102 is of conventional construction. Generally, an internal timer is set running to generate the PWM signal frequency and a register is loaded with the count at which the PWM output is switched and a comparator detects when the count is reached.
The bias circuit 91 includes a low-pass filter 103 connected to low-pass filter the PWM signal output by the PWM generator 102. The duty cycle of the PWM signal varies with time so that the output of the low-pass filter is the desired analog signal, which is the average voltage over one period of the PWM cycle. The PWM generator 102 built in this manner has a resolution equivalent to the smallest duty cycle change possible with the microcontroller 95. Bipolar outputs can be achieved by using a pair of PWM signals each connected to one of a pair of low pass filters 103 and one fed to the positive input and the other the negative input of a summing amplifier, this being shown in Fig. 26.
The bias circuit 91 further includes an output amplifier 104 for amplifying the output of the low-pass filter 103. In the case described above that a bipolar output is required, the output amplifier 104 is a summing amplifier arranged to subtract the output of one of the pair of low pass filters 103 from the other.
For systems requiring multiple or arrayed cells 2, the microcontroller 95 can be chosen with an embedded analogue multiplexer . In this case multiple analogue input circuits are required and the output of each second amplifier stage 94 is sampled by the analog-to-digital converter 97 through the multiplexer.
The second design of the electrical circuit 90 is shown in Fig. 27 and will now be described. This design is intended for a reader unit 3 which is a derivative of a standard Personal Digital Assistant (PDA) architecture. The second design is identical to the first design except that the microcontroller 95 interfaces with a PDA device 106 which is a conventional PDA. This allows the reader unit 3 to take advantage of the existing functionality of PDAs. The PDA device 106 may have input/output facilities based on a variety of protocols, such as universal connectors, Secure Digital cards (SD), Compact Flash cards (CF, CF2), MultiMedia cards (MMC), memory stick cards or SIM card. Such functionality may be used to provide a framework for the reader unit 2 to provide the functions of a large interactive display with key or touch entry and a rechargeable power source.
In this case, one option is for the connector portion 60, the amplifier circuit 92, the bias circuit 91 and the microcontroller 95 to be mounted within an electrical assembly shaped to fit in an SD card slot or other card format slot. This allows the reader unit 2 to be formed by an existing PDA device with the assembly fitted in a card slot.
The third design of the electrical circuit 90 is shown in Fig. 28 and will now be described. This design is intended for a reader unit 3 which is based on a data acquisition card 107 to be plugged into a computer 108 such as a desktop or laptop. This design is the simplest in terms of hardware development requiring only three amplifier stages and the data acquisition card. In this case the amplifier circuit 92 is arranged as described above, but the bias circuit 91 is simply formed by an inverting amplifier 109 supplied with a signal from a digital-to-analog converter 110 which may be either a dedicated device or a part of the data acquisition card 107 and which provides a voltage output dependent on the code loaded into the data acquisition card 107 from software.
The third design of the electrical circuit 90 shown in Fig. 28 may be modified to provide a multi-port reader system connected through a fast transport interface such as the Universal Serial Bus or Ethernet for the purpose of analysing many cells at once. In work involving drug-screening or an industrial manufacturing environment there is a need for multiple readers connected to a central computer for research, analysis and quality control. In this case the data acquisition card 107 is modified to provide the transport interface allowing multiple data streams into the computer.
The electrical circuit 90 may provide analysis of the received signal. Such analysis may be performed, for example, by programming one of the microprocessors in the electrical circuit, for example the microprocessor 98 in the microcontroller 95 or the PDA device 106 in the above described designs of the electrical circuit. In particular the analysis may involve interpretation of the electrical signal. As already described, the electrical signal is characteristic of the physical state of the cell 2. Accordingly, the state of the cell 2 can be detected from the electrical signal by the electrical circuit 90.
For example, when the cell 2 is used as described above, the following states each have a characteristic electrical signal which may be detected by the electrical circuit 90:
1) the chambers 16 in the cell 2 being dry;
2) the chambers 16 in the cell 2 containing an aqueous solution without a lipid bilayer being formed across the aperture 11 in the membrane 10;
3) a lipid bilayer being formed across the aperture 11 in the membrane 10 without a membrane protein being inserted therein;
4) a lipid bilayer being formed across the aperture 11 in the membrane 10 with a membrane protein being inserted therein without an analyte binding to the membrane protein; and
5) a lipid bilayer being formed across the aperture 11 in the membrane 10 with a membrane protein being inserted therein with an analyte binding to the membrane protein.
Such states may be detected based on predetermined thresholds or adaptive thresholds, which may be derived from scientific study of the membrane protein and physical system being used in the cell 2. On detection of such a state, the electrical circuit 90 then produces an output indicative of the detected state, for example by displaying the detected state on the display 99 or some other audio and/or visual output, or by outputting a signal indicative of the detected state, for example to a computer device connected thereto.
By detecting the continuous sequence of states (1) to (5) in order, the reader unit 2 may also monitor the correct performance of the sensing process to check and ensure that the cell 2 is operating correctly from the moment it is connected to the reader unit 3 until the end of the measurement assay. The reader unit 3 may apply a bias potential and continuously monitor the resultant signal. If the signal falls outside the expected levels showing a proper progress through the states (1) to (5), the reader unit 3 may output a signal reporting an error mode, or alternatively may perform an automated remediation.
As each state is detected the time duration of the state will be stored for subsequent or continuous statistical analysis. This may provide further information. For example, signals derived from single molecule binding events in or near multiple membrane protein channels will result in a time-varying current based on the number of binding events.
Another example is where the membrane protein includes a tether. Signals derived from either single or multiple binding events to either single or multiple tethers attached to single or multiple membrane protein channels will appear as noisy signals which become less noisy when the tether or tethers are bound to a target analyte. Each tether will have a binding site for the target analyte. These signals will be analysed with an algorithm to detect the reduction in noise and as each event is detected the time duration of the event or the time course of noise reduction will be stored for subsequent or continuous statistical analysis.
There will now be described an actual example of the algorithm used to monitor of the state of the cell 2 in the case using the membrane protein α-HL to sense the presence of the analyte γ-cyclodextrin. The electrical circuit 90 performs the process as shown in Fig. 29.
In an initialisation step Sl performed before connection of the cell 2 to the reader unit 3, the electrical circuit 17 applies a bias voltage as shown in Fig. 30 having a waveform which is a 50Hz triangular AC signal with 2OmV amplitude, superimposed on +10OmV DC potential.
In step S2 it is detected whether the received signal is representative of a current and impedance within the respective limits for the reader unit 3 in the absence of the cell 2. In the absence of the cell 2, the contacts 62 and 63 of the reader unit 3 behaves as a capacitor and produce a square wave current response to the applied triangular AC potential, as shown in Fig. 31. In particular the square wave has a 2OpA amplitude centred on OpA. This waveform is characteristic of normal operation of the electrical circuit 90 and so in step S2 it is detected whether this waveform is produced, within a reasonable margin. If not, then in step S3, the electrical circuit 90 outputs a signal indicate indicative of a circuit error. Otherwise in step S4, the user connects a cell 2 to the reader unit 3. The electrical circuit 90 may for example await a user input to indicate this.
Subsequently in step S5, there is detected state (1) that the chambers 16 in the cell 2 are dry. In this case, the expected signal is the same as that detected in step S2 except that the insertion of the cell 2 causes an increase, for example the order of 25%, in the amplitude of the resultant squarewave, for example to provide an amplitude of 27pA. If state (1) is not detected, then in step S6 and there is output an error signal indicating malfunctioning of the cell 2.
Otherwise, in step S7 there is output a signal indicating state (1) and in step S 8 the electrical circuit 90 changes the bias potential by removing the DC component, but maintaining the AC voltage of the waveform shown in Fig. 30. In step S9, the user introduces the test solution into the cell 2.
In this particular implementation, state (2) is not detected, but in step SlO there is detected state (3) of the lipid bilayer being formed across the aperture 11, as follows. In the absence of a lipid bilayer, the aperture 11 provides a conductive path between the electrodes 20 and so the cell 2 provides a current response. Typically the current saturates the amplifier, for example as shown in the typical response shown in Fig. 32.
In contrast, formation of the lipid bilayer prevents flow of ionic current through the aperture 11 and so the cell 2 provides a capacitive response. As a result, the resultant current signal is a squarewave as shown in Fig. 33 typically having an amplitude of around 25OpA centred on OpA. State (3) is detected in step SlO by detecting a current signal showing this capacitive response. Typically the DC resistance is greater than 10GΩ.
If state (3) is not detected, then in step Sl 1 the detected current is compared to a threshold and then depending on whether the threshold is exceed or not there is output one of two possible error signals in steps S12 and S 13 which indicate the absence of bilayer formation.
However, if state (3) is detected in step SlO, then in step S 14 there is output a signal indicating that state (3) has been detected and in step Sl 5 the bias voltage is changed by removing the AC waveform and instead applying a DC waveform.
In step S 16 there is detected state (4) of a membrane protein being inserted into the lipid bilayer formed across the aperture 11. This is detected by detection of the predictable step increases in the DC current response which occurs on insertion of the membrane protein due to the ionic current flowing through the ion channel. This is shown in Fig. 34 which shows the current increasing by a step of the order of 95pA on insertion of single α-HL membrane protein. In this example, one such insertion occurs at around 0.1 minutes and a second insertion occurs at around 1.7 minutes. Since the electrical composition of the solution and the bias potential are known, the total current reflects the total number of membrane proteins inserted and this information may be determined and subsequently used to calibrate the assay calculations.
If state (4) is not detected within a reasonable period then there is output in step S 17 an error signal indicating failure of insertion. Otherwise, in step Sl 8 there is output a signal indicating that state (4) has been detected.
Thereafter, in step S 19 there is detected state (5) of an analyte binding to the membrane protein. This may be detected as follows. When the analyte binds to the membrane protein this temporarily interrupts the ironic current passing through the ion channel causing a characteristic step decrease in the current. Prior knowledge of the analyte binding characteristics (eg current deflection and distribution in event duration) allows the electrical circuit 90 to identify the relevant binding events. An example of the current is shown in Fig. 35. The analyte γ-cyclodextrin causes a decrease in the current of the order of 6OpA. Four such binding events are evident in Fig. 35. The electrical circuit 90 detects these characteristic changes as binding events. A signal indicative of this is output in step S20. To detect successive binding events, steps S19 and S 20 are repeated.
Finally in step S21 the concentration of the analyte γ-cyclodextrin is calculated based on the kinetics of the measured analyte binding.

Claims

1. A method for forming a lipid bilayer across an aperture, comprising:
(a) providing a cell having a chamber adjacent to a septum comprising a membrane having an aperture capable of supporting a lipid bilayer;
(b) depositing one or more lipids on an internal surface of the chamber;
(c) introducing an aqueous solution into the chamber to cover the aperture and the internal surface and to form an interface between the solution and lipids; and
(d) moving the interface past the aperture at least once to form a lipid bilayer across the aperture.
2. A method according to claim 1 , wherein the lipids are dried.
3. A method according to claim 2, wherein the dried lipids comprises less than 50wt% solvent.
4. A method according to any one of the preceding claims, wherein the aqueous solution covers the internal surface before it covers the aperture.
5. A method according to any one of the preceding claims, wherein the internal surface on which the lipids are deposited is on the septum.
6. A method according to any one of the preceding claims, wherein the aperture has a diameter in at least one dimension which is 20μm or less.
7. A method according to any one of the preceding claims, further comprising pre- treating the membrane to increase its affinity to lipids.
8. A method according to claim 7, comprising pre-treating the membrane with hexadecane.
9. A method according to any one of the preceding claims, wherein the cell has two chambers.
10. A method according to claim 9, wherein the method comprises depositing the lipids on an internal surface of both chambers.
11. A method according to claim 9 or 10, wherein the aqueous solution is introduced into one chamber in step (c) and the other chamber comprises a gel.
12. A method according to claim 11 , wherein the gel is a hydrogel.
13. A method according to claim 11 or 12, wherein the gel comprises one or more membrane proteins.
14. A method according to any one of the preceding claims, wherein step (b) further comprises depositing one or more membrane proteins on the same or different internal surface, step (c) further comprises introducing the aqueous solution into the chamber to cover the membrane proteins and the method further comprises allowing the membrane proteins to insert into the lipid bilayer.
15. A method according to claim 14, wherein the internal surface on which the one or more membrane proteins are deposited is on the septum.
16. A method according to claim 14 or 15, wherein the membrane proteins are dried.
17. A method according to claim 16, wherein the membrane proteins comprise less than 20wt% solvent.
18. A method according to any one of claims 13 to 17, wherein the one or more membrane proteins comprise α-hemolysin or a variant thereof.
19. A method according to any one of the preceding claims, wherein the septum further comprises a support sheet on at least one side of the membrane.
20. A method according to any one of the preceding claims, wherein the membrane is made from polycarbonate (PC), polytetrafluoroethylene (PTFE), polyethylene, polypropylene, nylon and polyethylene naphthalate (PEN), polyvinylchloride (PVC), polyacrylonitrile (PAN), polyether sulphone (PES), polyimide, polystyrene, polyvinylfluoride (PVF), polyethylene telephthalate (PET), aluminized PET, nitrocellulose, polyetheretherketone (PEEK) or fluoroethylkene polymer (FEP).
21. A method according to any one of the preceding claims, wherein the lipids comprise diphantytanoyl-sn-glycero^-phosphocholine.
22. A device for forming a lipid bilayer comprising:
(a) a cell having a chamber adjacent to a septum comprising a membrane having an aperture capable of supporting a lipid bilayer; and
(b) one or more lipids deposited on an internal surface of the chamber, wherein the cell comprises an inlet for introducing an aqueous solution into the chamber having lipid deposited therein.
23. A method according to claim 22, wherein the lipids are dried.
24. A method according to claim 23, wherein the dried lipids comprises less than 50wt% solvent.
25. A device according to any one of claims 22 to 24, wherein the inlet, internal surface and aperture are arranged in such a manner that the aqueous solution covers the internal surface before it covers the aperture.
26. A device according to any one of claims 22 to 25, wherein the internal surface on which the lipids are deposited is on the septum.
27. A device according to any one claims 22 to 26, wherein the aperture has a diameter in at least one dimension which is 20μm or less.
28. A device according to any one of claims 22 to 27, wherein the membrane has a pre- treatment to increase its affinity to lipids.
29. A device according to claim 28, wherein the membrane has a hexadecane pre- treatment.
30. A device according to any one of claims 22 to 29, wherein the cell has two chambers.
31. A device according to claim 30, wherein the inlet opens into one chamber and the other chamber comprises a gel.
32. A device according to claim 31 , wherein the gel is a hydrogel.
33. A device according to claim 31 or 32, wherein the gel comprises one or more membrane proteins.
34. A device according to any one of claims 22 to 33, further comprising one or more membrane proteins deposited on the same or different internal surface.
35. A device according to claim 34, wherein the internal surface on which the one or more membrane proteins are deposited is on the septum.
36. A device according to claim 34 or 35, wherein the membrane proteins are dried.
37. A device according to claim 36, wherein the dried membrane proteins comprise less than 20wt% solvent.
38. A device according to any one of claims 33 to 37, wherein the one or more membrane proteins comprise α-hemolysin or a variant thereof.
39. A device according to any one of claims 22 to 38, wherein the septum further comprises a support sheet material on at least one side of the membrane.
40. A device according to any one of claims 22 to 39, wherein the membrane is made from polycarbonate (PC), polytetrafluoroethylene (PTFE), polyethylene, polypropylene, nylon and polyethylene naphthalate (PEN), polyvinylchloride (PVC), polyacrylonitrile (PAN), polyether sulphone (PES), polyimide, polystyrene, polyvinylfiuoride (PVF), polyethylene telephthalate (PET), aluminized PET, nitrocellulose, polyetheretherketone (PEEK) or fluoroethylkene polymer (FEP).
41. A device according to any one of claims 22 to 40, wherein the lipids comprise diphantytanoyl-sn-glycero-3-phosphocholine.
PCT/GB2008/000563 2007-02-20 2008-02-18 Formation of lipid bilayers WO2008102121A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08709449A EP2126588A1 (en) 2007-02-20 2008-02-18 Formation of lipid bilayers
AU2008217579A AU2008217579A1 (en) 2007-02-20 2008-02-18 Formation of lipid bilayers
US12/527,687 US20100196203A1 (en) 2007-02-20 2008-02-18 Formation of Lipid Bilayers
IL200384A IL200384A0 (en) 2007-02-20 2009-08-13 Formation of lipid bilayers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0703257.6 2007-02-20
GB0703256.8 2007-02-20
GB0703257A GB2446823A (en) 2007-02-20 2007-02-20 Formulation of lipid bilayers
GB0703256A GB2447043A (en) 2007-02-20 2007-02-20 Lipid bilayer sensor system

Publications (1)

Publication Number Publication Date
WO2008102121A1 true WO2008102121A1 (en) 2008-08-28

Family

ID=39385567

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/GB2008/000563 WO2008102121A1 (en) 2007-02-20 2008-02-18 Formation of lipid bilayers
PCT/GB2008/000562 WO2008102120A1 (en) 2007-02-20 2008-02-18 Lipid bilayer sensor system

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/GB2008/000562 WO2008102120A1 (en) 2007-02-20 2008-02-18 Lipid bilayer sensor system

Country Status (8)

Country Link
US (4) US20110121840A1 (en)
EP (2) EP2126588A1 (en)
AU (2) AU2008217579A1 (en)
DK (1) DK2122344T3 (en)
IL (2) IL200384A0 (en)
NZ (1) NZ579083A (en)
WO (2) WO2008102121A1 (en)
ZA (1) ZA200905673B (en)

Cited By (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067559A1 (en) 2009-12-01 2011-06-09 Oxford Nanopore Technologies Limited Biochemical analysis instrument
WO2012033524A2 (en) 2010-09-07 2012-03-15 The Regents Of The University Of California Control of dna movement in a nanopore at one nucleotide precision by a processive enzyme
WO2012042226A2 (en) 2010-10-01 2012-04-05 Oxford Nanopore Technologies Limited Biochemical analysis apparatus and rotary valve
WO2012095660A2 (en) 2011-01-12 2012-07-19 Isis Innovation Limited Method using fluorinated amphiphiles
WO2012164270A1 (en) 2011-05-27 2012-12-06 Oxford Nanopore Technologies Limited Coupling method
WO2013014451A1 (en) 2011-07-25 2013-01-31 Oxford Nanopore Technologies Limited Hairpin loop method for double strand polynucleotide sequencing using transmembrane pores
WO2013057495A2 (en) 2011-10-21 2013-04-25 Oxford Nanopore Technologies Limited Enzyme method
WO2013098561A1 (en) 2011-12-29 2013-07-04 Oxford Nanopore Technologies Limited Method for characterising a polynucelotide by using a xpd helicase
WO2013098562A2 (en) 2011-12-29 2013-07-04 Oxford Nanopore Technologies Limited Enzyme method
WO2013121201A1 (en) 2012-02-15 2013-08-22 Oxford Nanopore Technologies Limited Aptamer method
WO2013121224A1 (en) 2012-02-16 2013-08-22 Oxford Nanopore Technologies Limited Analysis of measurements of a polymer
WO2013153359A1 (en) 2012-04-10 2013-10-17 Oxford Nanopore Technologies Limited Mutant lysenin pores
CN103402612A (en) * 2010-12-17 2013-11-20 水通道蛋白有限公司 A liquid membrane suitable for water extraction
WO2014013260A1 (en) 2012-07-19 2014-01-23 Oxford Nanopore Technologies Limited Modified helicases
WO2014013262A1 (en) 2012-07-19 2014-01-23 Oxford Nanopore Technologies Limited Enzyme construct
WO2014013259A1 (en) 2012-07-19 2014-01-23 Oxford Nanopore Technologies Limited Ssb method
US8652779B2 (en) 2010-04-09 2014-02-18 Pacific Biosciences Of California, Inc. Nanopore sequencing using charge blockade labels
AU2010261557B2 (en) * 2009-06-19 2014-04-17 Aquaporin A/S Biomimetic membranes and uses thereof
WO2014072703A1 (en) 2012-11-06 2014-05-15 Oxford Nanopore Technologies Limited Quadruplex method
US8785211B2 (en) 2005-11-15 2014-07-22 Isis Innovation Limited Methods using pores
US8822160B2 (en) 2007-10-05 2014-09-02 Isis Innovation Limited Molecular adaptors
WO2014135838A1 (en) 2013-03-08 2014-09-12 Oxford Nanopore Technologies Limited Enzyme stalling method
US8986928B2 (en) 2009-04-10 2015-03-24 Pacific Biosciences Of California, Inc. Nanopore sequencing devices and methods
WO2015055981A2 (en) 2013-10-18 2015-04-23 Oxford Nanopore Technologies Limited Modified enzymes
WO2015056028A1 (en) 2013-10-18 2015-04-23 Oxford Nanopore Technologies Limited Method of characterizing a target ribonucleic acid (rna) comprising forming a complementary polynucleotide which moves through a transmembrane pore
US9017937B1 (en) 2009-04-10 2015-04-28 Pacific Biosciences Of California, Inc. Nanopore sequencing using ratiometric impedance
EP2886663A1 (en) 2013-12-19 2015-06-24 Centre National de la Recherche Scientifique (CNRS) Nanopore sequencing using replicative polymerases and helicases
WO2015110813A1 (en) 2014-01-22 2015-07-30 Oxford Nanopore Technologies Limited Method for attaching one or more polynucleotide binding proteins to a target polynucleotide
WO2015150787A1 (en) 2014-04-04 2015-10-08 Oxford Nanopore Technologies Limited Method of target molecule characterisation using a molecular pore
WO2016009180A1 (en) 2014-07-14 2016-01-21 Isis Innovation Limited Measurement of analytes with membrane channel molecules, and bilayer arrays
WO2016055777A2 (en) 2014-10-07 2016-04-14 Oxford Nanopore Technologies Limited Modified enzymes
WO2016055778A1 (en) 2014-10-07 2016-04-14 Oxford Nanopore Technologies Limited Mutant pores
WO2016059375A1 (en) 2014-10-17 2016-04-21 Oxford Nanopore Technologies Limited Methods for delivering an analyte to transmembrane pores
US9347929B2 (en) 2011-03-01 2016-05-24 The Regents Of The University Of Michigan Controlling translocation through nanopores with fluid wall
WO2016120217A1 (en) 2015-01-26 2016-08-04 Cellectis Anti-hsp70 specific chimeric antigen receptors (cars) for cancer immunotherapy
WO2016132124A1 (en) 2015-02-19 2016-08-25 Oxford Nanopore Technologies Limited Method
WO2016132123A1 (en) 2015-02-19 2016-08-25 Oxford Nanopore Technologies Limited Hetero-pores
US9447152B2 (en) 2008-07-07 2016-09-20 Oxford Nanopore Technologies Limited Base-detecting pore
US9551023B2 (en) 2012-09-14 2017-01-24 Oxford Nanopore Technologies Ltd. Sample preparation method
US9562887B2 (en) 2008-11-14 2017-02-07 Oxford University Innovation Limited Methods of enhancing translocation of charged analytes through transmembrane protein pores
WO2017098322A1 (en) 2015-12-08 2017-06-15 Katholieke Universiteit Leuven Ku Leuven Research & Development Modified nanopores, compositions comprising the same, and uses thereof
US9732381B2 (en) 2009-03-25 2017-08-15 Oxford University Innovation Limited Method for sequencing a heteropolymeric target nucleic acid sequence
US9751915B2 (en) 2011-02-11 2017-09-05 Oxford Nanopore Technologies Ltd. Mutant pores
WO2017149316A1 (en) 2016-03-02 2017-09-08 Oxford Nanopore Technologies Limited Mutant pore
WO2017174990A1 (en) 2016-04-06 2017-10-12 Oxford Nanopore Technologies Limited Mutant pore
US9797013B2 (en) 2007-04-04 2017-10-24 The Regents Of The University Of California Compositions, devices, systems, and methods for using a nanopore
WO2017203269A1 (en) 2016-05-25 2017-11-30 Oxford Nanopore Technologies Limited Method of nanopore sequencing of concatenaded nucleic acids
US9885078B2 (en) 2008-07-07 2018-02-06 Oxford Nanopore Technologies Limited Enzyme-pore constructs
US9927398B2 (en) 2007-12-19 2018-03-27 Oxford Nanopore Technologies Ltd. Formation of layers of amphiphilic molecules
WO2018060740A1 (en) 2016-09-29 2018-04-05 Oxford Nanopore Technologies Limited Method for nucleic acid detection by guiding through a nanopore
WO2018100370A1 (en) 2016-12-01 2018-06-07 Oxford Nanopore Technologies Limited Methods and systems for characterizing analytes using nanopores
US10006905B2 (en) 2013-03-25 2018-06-26 Katholieke Universiteit Leuven Nanopore biosensors for detection of proteins and nucleic acids
WO2018146491A1 (en) 2017-02-10 2018-08-16 Oxford Nanopore Technologies Limited Modified nanopores, compositions comprising the same, and uses thereof
WO2018203071A1 (en) 2017-05-04 2018-11-08 Oxford Nanopore Technologies Limited Method of determining the presence or absence of a target analyte comprising using a reporter polynucleotide and a transmembrane pore
US10131943B2 (en) 2012-12-19 2018-11-20 Oxford Nanopore Technologies Ltd. Analysis of a polynucleotide via a nanopore system
WO2018211241A1 (en) 2017-05-04 2018-11-22 Oxford Nanopore Technologies Limited Transmembrane pore consisting of two csgg pores
GB201818216D0 (en) 2018-11-08 2018-12-26 Oxford Nanopore Tech Ltd Pore
US10167503B2 (en) 2014-05-02 2019-01-01 Oxford Nanopore Technologies Ltd. Mutant pores
US10215768B2 (en) 2007-02-20 2019-02-26 Oxford Nanopore Technologies Ltd. Lipid bilayer sensor system
US10337060B2 (en) 2014-04-04 2019-07-02 Oxford Nanopore Technologies Ltd. Method for characterising a double stranded nucleic acid using a nano-pore and anchor molecules at both ends of said nucleic acid
US10338056B2 (en) 2012-02-13 2019-07-02 Oxford Nanopore Technologies Ltd. Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
GB201907246D0 (en) 2019-05-22 2019-07-03 Oxford Nanopore Tech Ltd Method
GB201907244D0 (en) 2019-05-22 2019-07-03 Oxford Nanopore Tech Ltd Method
US10343350B2 (en) 2010-02-08 2019-07-09 Genia Technologies, Inc. Systems and methods for forming a nanopore in a lipid bilayer
US10392658B2 (en) 2014-01-22 2019-08-27 Oxford Nanopore Technologies Ltd. Method for controlling the movement of a polynucleotide through a transmembrane pore
US10400014B2 (en) 2014-09-01 2019-09-03 Oxford Nanopore Technologies Ltd. Mutant CsgG pores
GB201913997D0 (en) 2019-09-27 2019-11-13 Oxford Nanopore Tech Ltd Method
US10501767B2 (en) 2013-08-16 2019-12-10 Oxford Nanopore Technologies Ltd. Polynucleotide modification methods
WO2019234432A1 (en) 2018-06-06 2019-12-12 Oxford Nanopore Technologies Limited Method
GB201917060D0 (en) 2019-11-22 2020-01-08 Oxford Nanopore Tech Ltd Method
WO2020016573A1 (en) 2018-07-16 2020-01-23 Oxford University Innovation Limited Molecular hopper
US10549274B2 (en) 2014-10-17 2020-02-04 Oxford Nanopore Technologies Ltd. Electrical device with detachable components
WO2020025909A1 (en) 2018-07-30 2020-02-06 Oxford University Innovation Limited Assemblies
US10570440B2 (en) 2014-10-14 2020-02-25 Oxford Nanopore Technologies Ltd. Method for modifying a template double stranded polynucleotide using a MuA transposase
WO2020095052A1 (en) 2018-11-08 2020-05-14 Oxford Nanopore Technologies Limited Pore
US10656117B2 (en) 2013-02-25 2020-05-19 The Regents Of The University Of Michigan Nanopore-based determination of protein charge, sharp, volume, rotational diffusion coefficient, and dipole moment
GB202004944D0 (en) 2020-04-03 2020-05-20 King S College London Method
US10669578B2 (en) 2014-02-21 2020-06-02 Oxford Nanopore Technologies Ltd. Sample preparation method
US10689697B2 (en) 2014-10-16 2020-06-23 Oxford Nanopore Technologies Ltd. Analysis of a polymer
WO2020128517A1 (en) 2018-12-21 2020-06-25 Oxford Nanopore Technologies Limited Method of encoding data on a polynucleotide strand
US10712254B2 (en) 2013-09-23 2020-07-14 Oxford University Innovation Limited Method of analyzing post-translational modifications
WO2020183172A1 (en) 2019-03-12 2020-09-17 Oxford Nanopore Technologies Inc. Nanopore sensing device and methods of operation and of forming it
WO2020188235A1 (en) 2019-03-19 2020-09-24 Oxford Nanopore Technologies Limited Current measurement apparatus, molecular entity sensing apparatus, method of measuring a current, method of sensing a molecular entity
WO2020208357A1 (en) 2019-04-09 2020-10-15 Oxford Nanopore Technologies Limited Pore
US10814298B2 (en) 2012-10-26 2020-10-27 Oxford Nanopore Technologies Ltd. Formation of array of membranes and apparatus therefor
WO2020239066A1 (en) 2019-05-29 2020-12-03 Nanjing University Detection of analytes by nanopore without using electrodes
WO2021078971A2 (en) 2019-10-25 2021-04-29 Oxford Nanopore Technologies Limited Improved nanopore sensing device, components and method of manufacture
US11021747B2 (en) 2014-10-17 2021-06-01 Oxford Nanopore Technologies Ltd. Method for nanopore RNA characterisation
WO2021111139A1 (en) 2019-12-04 2021-06-10 Oxford Nanopore Technologies Limited Method
WO2021111125A1 (en) 2019-12-02 2021-06-10 Oxford Nanopore Technologies Limited Method of characterising a target polypeptide using a nanopore
GB202107192D0 (en) 2021-05-19 2021-06-30 Oxford Nanopore Tech Ltd Method
GB202107354D0 (en) 2021-05-24 2021-07-07 Oxford Nanopore Tech Ltd Method
US11169138B2 (en) 2015-04-14 2021-11-09 Katholieke Universiteit Leuven Nanopores with internal protein adaptors
WO2021255414A1 (en) 2020-06-17 2021-12-23 Oxford Nanopore Technologies Limited Nanopore support structure and manufacture thereof
WO2021255476A2 (en) 2020-06-18 2021-12-23 Oxford Nanopore Technologies Limited Method
WO2021255475A1 (en) 2020-06-18 2021-12-23 Oxford Nanopore Technologies Limited A method of selectively characterising a polynucleotide using a detector
WO2021255477A1 (en) 2020-06-18 2021-12-23 Oxford Nanopore Technologies Limited Method of repeatedly moving a double-stranded polynucleotide through a nanopore
WO2022013551A1 (en) 2020-07-17 2022-01-20 Oxford Nanopore Technologies Limited Nanopore sensing device
WO2022074397A1 (en) 2020-10-08 2022-04-14 Oxford Nanopore Technologies Limited Modification of a nanopore forming protein oligomer
GB202204919D0 (en) 2022-04-04 2022-05-18 Oxford Nanopore Tech Plc Method
US11352664B2 (en) 2009-01-30 2022-06-07 Oxford Nanopore Technologies Plc Adaptors for nucleic acid constructs in transmembrane sequencing
EP4063521A1 (en) 2016-05-25 2022-09-28 Oxford Nanopore Technologies PLC Method of nanopore sequencing
WO2022243692A1 (en) 2021-05-19 2022-11-24 Oxford Nanopore Technologies Plc Methods for complement strand sequencing
US11572387B2 (en) 2017-06-30 2023-02-07 Vib Vzw Protein pores
WO2023026056A1 (en) 2021-08-26 2023-03-02 Oxford Nanopore Technologies Plc Nanopore
US11596940B2 (en) 2016-07-06 2023-03-07 Oxford Nanopore Technologies Plc Microfluidic device
US11649480B2 (en) 2016-05-25 2023-05-16 Oxford Nanopore Technologies Plc Method for modifying a template double stranded polynucleotide
WO2023118891A1 (en) 2021-12-23 2023-06-29 Oxford Nanopore Technologies Plc Method of characterising polypeptides using a nanopore
WO2023118892A1 (en) 2021-12-23 2023-06-29 Oxford Nanopore Technologies Plc Method
WO2023118404A1 (en) 2021-12-23 2023-06-29 Oxford Nanopore Technologies Plc Pore
GB202307486D0 (en) 2023-05-18 2023-07-05 Oxford Nanopore Tech Plc Method
US11725205B2 (en) 2018-05-14 2023-08-15 Oxford Nanopore Technologies Plc Methods and polynucleotides for amplifying a target polynucleotide
WO2023198911A2 (en) 2022-04-14 2023-10-19 Oxford Nanopore Technologies Plc Novel modified protein pores and enzymes
WO2023222657A1 (en) 2022-05-17 2023-11-23 Oxford Nanopore Technologies Plc Method and adaptors
WO2024033422A1 (en) 2022-08-09 2024-02-15 Oxford Nanopore Technologies Plc Novel pore monomers and pores
WO2024033447A1 (en) 2022-08-09 2024-02-15 Oxford Nanopore Technologies Plc De novo pores
WO2024033421A2 (en) 2022-08-09 2024-02-15 Oxford Nanopore Technologies Plc Novel pore monomers and pores
WO2024033443A1 (en) 2022-08-09 2024-02-15 Oxford Nanopore Technologies Plc Novel pore monomers and pores
WO2024089270A2 (en) 2022-10-28 2024-05-02 Oxford Nanopore Technologies Plc Pore monomers and pores
WO2024094986A1 (en) 2022-10-31 2024-05-10 Oxford Nanopore Technologies Plc Method
WO2024100270A1 (en) 2022-11-11 2024-05-16 Oxford Nanopore Technologies Plc Novel pore monomers and pores
GB202407228D0 (en) 2024-05-21 2024-07-03 Oxford Nanopore Tech Plc Method
WO2024165853A1 (en) 2023-02-07 2024-08-15 Oxford University Innovation Limited Method of characterising a peptide, polypeptide or protein using a nanopore
WO2024200280A1 (en) 2023-03-24 2024-10-03 Oxford Nanopore Technologies Plc Method and kits
US12121894B2 (en) 2017-11-29 2024-10-22 Oxford Nanopore Technologies Plc Microfluidic device

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4394916B2 (en) * 2003-09-19 2010-01-06 独立行政法人科学技術振興機構 Artificial lipid bilayer membrane formation apparatus, artificial lipid bilayer membrane formation method, and use thereof
WO2007146158A1 (en) 2006-06-07 2007-12-21 The Trustees Of Columbia University In The City Of New York Dna sequencing by nanopore using modified nucleotides
ATE530497T1 (en) * 2008-03-31 2011-11-15 Sony Deutschland Gmbh METHOD FOR PRODUCING A MEMBRANE WITH A CONICAL PORE
AU2010240670B2 (en) * 2009-04-20 2015-08-20 Oxford Nanopore Technologies Limited Lipid bilayer sensor array
WO2010141742A1 (en) * 2009-06-03 2010-12-09 Sensortech Corporation Contact sensors and methods for making same
US9678055B2 (en) 2010-02-08 2017-06-13 Genia Technologies, Inc. Methods for forming a nanopore in a lipid bilayer
US8324914B2 (en) 2010-02-08 2012-12-04 Genia Technologies, Inc. Systems and methods for characterizing a molecule
EP2534284B1 (en) * 2010-02-08 2021-03-17 Genia Technologies, Inc. Systems and methods for manipulating a molecule in a nanopore
EP3933402A1 (en) 2010-02-23 2022-01-05 University of Washington Method of making unsupported artificial mycolic acid membranes
US8810236B2 (en) * 2010-03-09 2014-08-19 Nokia Corporation Apparatus and associated methods
WO2011127306A1 (en) * 2010-04-07 2011-10-13 Sensortech Corporation Contact sensors, force/pressure sensors, and methods for making same
DE102010022929B4 (en) * 2010-06-07 2013-07-18 Albert-Ludwigs-Universität Freiburg Method for producing a bilipid layer and microstructure and measuring arrangement
ES2641871T3 (en) 2010-12-17 2017-11-14 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using modified nucleotides and nanopore detection
GB2500360B (en) 2010-12-22 2019-10-23 Genia Tech Inc Nanopore-based single DNA molecule characterization, identification and isolation using speed bumps
US9581563B2 (en) 2011-01-24 2017-02-28 Genia Technologies, Inc. System for communicating information from an array of sensors
US9110478B2 (en) 2011-01-27 2015-08-18 Genia Technologies, Inc. Temperature regulation of measurement arrays
EP2697394A4 (en) 2011-04-12 2015-01-14 Electronic Biosciences Inc Site specific chemically modified nanopore devices
WO2012178093A1 (en) 2011-06-24 2012-12-27 Electronic Biosciences Inc. High contrast signal to noise ratio device components
EP2758545B1 (en) 2011-09-23 2017-07-26 Oxford Nanopore Technologies Limited Analysis of a polymer comprising polymer units
US9150598B2 (en) * 2011-10-05 2015-10-06 The Regents Of The University Of California Masking apertures enabling automation and solution exchange in sessile bilayers
WO2013123450A1 (en) 2012-02-16 2013-08-22 Genia Technologies, Inc Methods for creating bilayers for use with nanopore sensors
US8986629B2 (en) 2012-02-27 2015-03-24 Genia Technologies, Inc. Sensor circuit for controlling, detecting, and measuring a molecular complex
EP2834636A1 (en) * 2012-04-02 2015-02-11 Lux Bio Group, Inc. Apparatus and method for molecular separation, purification, and sensing
CA2869753A1 (en) 2012-04-09 2013-10-17 Jingyue Ju Method of preparation of nanopore and uses thereof
CN104350162A (en) 2012-06-15 2015-02-11 吉尼亚科技公司 Chip set-up and high-accuracy nucleic acid sequencing
WO2013192178A1 (en) * 2012-06-18 2013-12-27 Electronic Biosciences Inc. Cell-free assay device and methods of use
US9605309B2 (en) 2012-11-09 2017-03-28 Genia Technologies, Inc. Nucleic acid sequencing using tags
US10047129B2 (en) * 2012-12-20 2018-08-14 Electronic Biosciences, Inc. Modified alpha hemolysin polypeptides and methods of use
GB201300465D0 (en) 2013-01-11 2013-02-27 Aquaporin As A hollow fiber module having tfc-aquaporin modified membranes
US9759711B2 (en) 2013-02-05 2017-09-12 Genia Technologies, Inc. Nanopore arrays
DK177696B1 (en) 2013-02-25 2014-03-17 Aquaporin As Systems for water extraction
CN105102627B (en) 2013-03-15 2018-10-19 纽约哥伦比亚大学理事会 Method for detecting a variety of predetermined compounds in sample
WO2014144883A1 (en) 2013-03-15 2014-09-18 The Trustees Of Columbia University In The City Of New York Raman cluster tagged molecules for biological imaging
EP3825415B1 (en) 2013-05-24 2024-08-28 Illumina Cambridge Limited Pyrophosphorolytic sequencing using nanopores
US9551697B2 (en) 2013-10-17 2017-01-24 Genia Technologies, Inc. Non-faradaic, capacitively coupled measurement in a nanopore cell array
EP3640349A3 (en) 2013-10-23 2020-07-29 Roche Sequencing Solutions, Inc. High speed molecular sensing with nanopores
US9322062B2 (en) 2013-10-23 2016-04-26 Genia Technologies, Inc. Process for biosensor well formation
LT3074534T (en) 2013-11-26 2019-08-26 Illumina, Inc. Methods for polynucleotide sequencing
WO2015148402A1 (en) 2014-03-24 2015-10-01 The Trustees Of Columbia Univeristy In The City Of New York Chemical methods for producing tagged nucleotides
US10576456B2 (en) * 2014-06-30 2020-03-03 Arizona Board Of Regents On Behalf Of The University Of Arizona Systems and methods of preparing stabilized lipid assemblies
US9488600B2 (en) 2014-07-28 2016-11-08 Wisconsin Alumni Research Foundation Radio-frequency nanopore sensor
US10519499B2 (en) 2014-07-31 2019-12-31 Illumina, Inc. Hybrid nanopore sensors
JP6400483B2 (en) * 2015-01-06 2018-10-03 国立大学法人神戸大学 Nano gap structure type substrate
WO2016160131A1 (en) 2015-02-10 2016-10-06 Multerra Bio, Inc. Apparatuses and methods for detecting molecules and binding energy
GB201508003D0 (en) 2015-05-11 2015-06-24 Oxford Nanopore Tech Ltd Apparatus and methods for measuring an electrical current
GB201508669D0 (en) 2015-05-20 2015-07-01 Oxford Nanopore Tech Ltd Methods and apparatus for forming apertures in a solid state membrane using dielectric breakdown
US10760983B2 (en) 2015-09-15 2020-09-01 Sencorables Llc Floor contact sensor system and methods for using same
MX2018009617A (en) 2016-02-08 2019-05-02 Aquaporin As Self-assembled nanostructures and separation membranes comprising aquaporin water channels and methods of making and using them.
US10465240B2 (en) * 2016-03-30 2019-11-05 Roche Sequencing Solutions, Inc. Electrical enhancement of bilayer formation
US9816988B1 (en) 2016-08-10 2017-11-14 Multerra Bio, Inc. Apparatuses and methods for detecting molecules and binding energy
US10444179B2 (en) 2016-08-10 2019-10-15 Multerra Bio, Inc. Apparatuses and methods for detecting molecules and binding energy
JP2020502478A (en) 2016-10-05 2020-01-23 アボット・ラボラトリーズAbbott Laboratories Device and method for sample analysis
GB201617886D0 (en) 2016-10-21 2016-12-07 Oxford Nanopore Technologies Limited Method
GB201619930D0 (en) 2016-11-24 2017-01-11 Oxford Nanopore Tech Apparatus and methods for controlling insertion of a membrane channel into a membrane
GB201808556D0 (en) 2018-05-24 2018-07-11 Oxford Nanopore Tech Ltd Method
GB201808554D0 (en) 2018-05-24 2018-07-11 Oxford Nanopore Tech Ltd Method
EP3650558A1 (en) 2018-11-07 2020-05-13 Siemens Healthcare GmbH Liquid sample workflow for nanopore sequencing
ES2927412T3 (en) 2018-11-08 2022-11-04 Siemens Healthcare Gmbh Direct sequencing of RNA nanopores with the aid of a hairpin polynucleotide
USD910198S1 (en) * 2018-11-21 2021-02-09 Oxford Nanopore Technologies Ltd. Analysis device for biological samples
USD910199S1 (en) * 2018-11-21 2021-02-09 Oxford Nanopore Technologies Ltd. Analysis device for biological samples
EP3902468A4 (en) * 2018-12-28 2022-12-14 Dexcom, Inc. Analyte sensor with impedance determination
EP3931833A4 (en) 2019-02-28 2022-11-30 Pacific Biosciences Of California, Inc. Improved alignment using homopolymer-collapsed sequencing reads
JP2022536464A (en) * 2019-05-28 2022-08-17 国立大学法人 東京大学 Analysis apparatus and analysis method using pore device
US11926819B2 (en) 2019-05-28 2024-03-12 The Regents Of The University Of California Methods of adding polymers to ribonucleic acids
EP4371998A1 (en) 2021-08-18 2024-05-22 Qitan Technology Ltd., Chengdu Mutant of porin monomer, protein pore and application thereof
EP4371997A1 (en) 2021-08-18 2024-05-22 Qitan Technology Ltd., Chengdu Mutant of pore protein monomer, protein pore, and use thereof
GB202114183D0 (en) 2021-10-04 2021-11-17 Oxford Nanopore Tech Ltd Method
CN116297721A (en) * 2021-12-21 2023-06-23 成都齐碳科技有限公司 Film forming method, system comprising film and application
GB202202716D0 (en) 2022-02-28 2022-04-13 Oxford Nanopore Tech Plc Apparatus and methods for controlling insertion of a membrane channel into a membrane
WO2024064900A1 (en) 2022-09-22 2024-03-28 Pacific Biosciences Of California, Inc. Systems and methods for tandem repeat mapping
EP4362028A1 (en) 2022-10-31 2024-05-01 Ecole Polytechnique Federale De Lausanne (Epfl) Mutant aerolysin and uses thereof
JP2024142072A (en) * 2023-03-29 2024-10-10 株式会社朝日ラバー Sensor Device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056922A (en) * 1996-05-30 2000-05-02 Sanyo Electric Co., Ltd Bilayer membrane device
WO2000028312A1 (en) * 1998-11-06 2000-05-18 The Regents Of The University Of California A miniature support for thin films containing single channels or nanopores and methods for using same
EP1669746A1 (en) * 2003-09-19 2006-06-14 Japan Science and Technology Agency Electric current measuring instrument having artificial lipid double-membrane
EP1677102A1 (en) * 2003-09-19 2006-07-05 Japan Science and Technology Agency Artificial lipid double-membrane forming device and artificial lipid double-membrane forming method, and method of utilizing the same
WO2006100484A2 (en) * 2005-03-23 2006-09-28 Isis Innovation Limited Deliver of molecules to a li id bila
EP1712909A1 (en) * 2004-01-21 2006-10-18 Japan Science and Technology Agency Method of forming planar lipid double membrane for membrane protein analysis and apparatus therefor

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799743A (en) * 1971-11-22 1974-03-26 Alexander James Stable lysis responsive lipid bilayer
JPS5274882A (en) 1975-12-18 1977-06-23 Fujitsu Ltd Superhigh density liquid contact connector
US4154795A (en) 1976-07-23 1979-05-15 Dynatech Holdings Limited Microtest plates
GB8720470D0 (en) * 1987-08-29 1987-10-07 Emi Plc Thorn Sensor arrangements
DE68926118T2 (en) 1988-08-18 1996-08-22 Australian Membrane And Biotechnology Research Institute Ltd. Commonwealth Scientific And Industrial Research Organization, North Ryde, Neusuedwales IMPROVEMENTS IN SENSITIVITY AND SELECTIVITY OF ION CHANNEL MEMBRANE BIO SENSORS
GB8924338D0 (en) 1989-10-28 1989-12-13 Atomic Energy Authority Uk Electrodes
JPH0414773A (en) 1990-05-07 1992-01-20 Fujitsu Ltd Electric connecting member and device
JPH04127066A (en) 1990-09-18 1992-04-28 Fujitsu Ltd Method and apparatus for connecting signal terminal
JPH04215052A (en) 1990-10-23 1992-08-05 Yokogawa Electric Corp Lipid film type chemical material sensor
EP0532215B1 (en) 1991-09-10 1997-04-16 Fujitsu Limited Electrical connecting method
US5605662A (en) 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
CA2157503A1 (en) * 1993-03-05 1994-09-15 John M. Riviello Pulsed electrochemical detection using polymer electroactive electrodes
WO1994025862A1 (en) 1993-05-04 1994-11-10 Washington State University Research Foundation Biosensor substrate for mounting bilayer lipid membrane containing a receptor
JPH07307172A (en) 1994-03-15 1995-11-21 Fujitsu Ltd Electrically connecting conductor, electrically connecting apparatus, and electric circuit apparatus
US6095148A (en) 1995-11-03 2000-08-01 Children's Medical Center Corporation Neuronal stimulation using electrically conducting polymers
US6503452B1 (en) * 1996-11-29 2003-01-07 The Board Of Trustees Of The Leland Stanford Junior University Biosensor arrays and methods
US7169272B2 (en) 1997-04-30 2007-01-30 Board Of Trustees Of The University Of Arkansas Microfabricated recessed disk microelectrodes: characterization in static and convective solutions
US7144486B1 (en) 1997-04-30 2006-12-05 Board Of Trustees Of The University Of Arkansas Multilayer microcavity devices and methods
GB9712386D0 (en) * 1997-06-14 1997-08-13 Univ Coventry Biosensor
US7244349B2 (en) * 1997-12-17 2007-07-17 Molecular Devices Corporation Multiaperture sample positioning and analysis system
AU2536299A (en) * 1998-02-17 1999-08-30 University Of Wales College Of Medicine Method and apparatus for introducing substances into the cell plasma membrane and/or cytosol
EP1125120A1 (en) 1998-10-27 2001-08-22 President And Fellows of Harvard College Biological ion channels in nanofabricated detectors
AU5646800A (en) * 1999-03-02 2000-09-21 Helix Biopharma Corporation Card-based biosensor device
US6916488B1 (en) 1999-11-05 2005-07-12 Biocure, Inc. Amphiphilic polymeric vesicles
AU2001234996A1 (en) 2000-02-11 2001-08-20 Yale University Planar patch clamp electrodes
JP4949589B2 (en) * 2000-05-03 2012-06-13 ガウ,ジェン−ジェイアール Biological identification system with integrated sensor chip
WO2002024862A2 (en) 2000-09-19 2002-03-28 Cytion S.A. Sample positioning and analysis system
AU2001293676B2 (en) 2000-10-02 2006-07-27 Sophion Bioscience A/S System for electrophysiological measurements
GB0026276D0 (en) 2000-10-27 2000-12-13 Univ Ulster Method for chlorine plasma modification of silver electrodes
CN1310379C (en) 2001-01-16 2007-04-11 郑慧光 Method for improving conductive performance of easily detachable connector for electric line
US6913697B2 (en) 2001-02-14 2005-07-05 Science & Technology Corporation @ Unm Nanostructured separation and analysis devices for biological membranes
WO2002082046A2 (en) 2001-04-06 2002-10-17 The Regents Of The University Of California Silicon-wafer based devices and methods for analyzing biological material
WO2002088672A1 (en) 2001-04-26 2002-11-07 Varian, Inc. Hollow fiber membrane sample preparation devices
US7077939B1 (en) * 2001-06-18 2006-07-18 The Texas A&M University System Method and apparatus for nanoparticle transport and detection
US6863833B1 (en) * 2001-06-29 2005-03-08 The Board Of Trustees Of The Leland Stanford Junior University Microfabricated apertures for supporting bilayer lipid membranes
WO2003052420A2 (en) 2001-10-03 2003-06-26 Purdue Research Foundatio Device and bioanalytical method utilizing asymmetric biofunction alized membrane
US20050230272A1 (en) 2001-10-03 2005-10-20 Lee Gil U Porous biosensing device
US6783645B2 (en) * 2001-12-18 2004-08-31 Dionex Corporation Disposable working electrode for an electrochemical cell
FR2844052B1 (en) 2002-08-28 2005-07-01 Commissariat Energie Atomique DEVICE FOR MEASURING THE ELECTRIC ACTIVITY OF BIOLOGICAL ELEMENTS AND ITS APPLICATIONS
JP2004158330A (en) 2002-11-07 2004-06-03 Toshiba Corp Test socket of semiconductor device
CN1232813C (en) 2003-03-13 2005-12-21 东南大学 Method for preparing probe tip of nano tube
WO2004092331A2 (en) 2003-04-08 2004-10-28 Li-Cor, Inc. Composition and method for nucleic acid sequencing
US7347921B2 (en) 2003-07-17 2008-03-25 Agilent Technologies, Inc. Apparatus and method for threading a biopolymer through a nanopore
JP3769622B2 (en) 2003-09-22 2006-04-26 国立大学法人 東京大学 Artificial lipid membrane formation method and lipid planar membrane formation apparatus therefor
WO2005040783A1 (en) 2003-10-22 2005-05-06 Ambri Limited Novel sensor configuration
JP4897681B2 (en) 2004-07-23 2012-03-14 エレクトロニック・バイオサイエンシーズ・エルエルシー Method and apparatus for detecting a time-varying current through an ion channel
KR100698961B1 (en) 2005-02-04 2007-03-26 주식회사 아이센스 Electrochemical Biosensor
WO2006104639A2 (en) 2005-03-29 2006-10-05 Stanford University Device comprising array of micro-or nano-reservoirs
US20060228402A1 (en) 2005-04-08 2006-10-12 Charite-Universitatsmedizin Berlin Techniques for forming a lipid bilayer membrane
EP1869226A4 (en) 2005-04-15 2009-03-18 Genencor Int Viral nucleoprotein detection using an ion channel switch biosensor
JP4953044B2 (en) 2005-05-09 2012-06-13 財団法人生産技術研究奨励会 Method and apparatus for forming lipid bilayer membrane
US20070238184A1 (en) 2005-06-16 2007-10-11 The Regents Of The University Of California Amyloid beta protein channel structure and uses thereof in identifying potential drug molecules for neurodegenerative diseases
JP5114702B2 (en) 2005-07-29 2013-01-09 国立大学法人 東京大学 Method and apparatus for forming bilayer film by contact with amphiphilic monolayer
US8005526B2 (en) 2005-08-31 2011-08-23 The Regents Of The University Of Michigan Biologically integrated electrode devices
US8986781B2 (en) 2005-10-27 2015-03-24 Corning Incorporated Immobilized multi-layer artificial membrane for permeability measurements (PAMPA)
JP5161581B2 (en) 2005-10-28 2013-03-13 株式会社クラレ Cell culture container and cell culture method
JP2009156572A (en) 2006-04-06 2009-07-16 National Institutes Of Natural Sciences Ion channel protein biosensor
US20070298511A1 (en) 2006-04-27 2007-12-27 The Texas A&M University System Nanopore sensor system
CA2652319A1 (en) 2006-05-17 2007-11-22 Eppendorf Array Technologies S.A. Identification and quantification of a plurality of biological (micro)organisms or their components
GB0614835D0 (en) 2006-07-26 2006-09-06 Isis Innovation Formation of bilayers of amphipathic molecules
WO2008054611A2 (en) 2006-10-04 2008-05-08 President And Fellows Of Harvard College Engineered conductive polymer films to mediate biochemical interactions
JP2008194573A (en) 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Lipid double film forming method
GB2446823A (en) 2007-02-20 2008-08-27 Oxford Nanolabs Ltd Formulation of lipid bilayers
US20110121840A1 (en) 2007-02-20 2011-05-26 Gurdial Singh Sanghera Lipid Bilayer Sensor System
US20080254995A1 (en) 2007-02-27 2008-10-16 Drexel University Nanopore arrays and sequencing devices and methods thereof
CA2684801C (en) 2007-04-04 2017-10-10 The Regents Of The University Of California Compositions, devices, systems, and methods for using a nanopore
KR20100020524A (en) 2007-06-18 2010-02-22 가부시키가이샤 구라레 Cell culture container and cell culture method
CN100523799C (en) 2007-06-27 2009-08-05 浙江大学 Polyelectrolyte / intrinsic conducting polymer composite humidity sensor and its production method
GB0716264D0 (en) 2007-08-21 2007-09-26 Isis Innovation Bilayers
EP2195648B1 (en) 2007-09-12 2019-05-08 President and Fellows of Harvard College High-resolution molecular graphene sensor comprising an aperture in the graphene layer
JP5441142B2 (en) 2007-11-26 2014-03-12 国立大学法人 東京大学 Microfluidic planar lipid bilayer array and analytical method using the planar lipid bilayer membrane
US8124191B2 (en) 2007-11-30 2012-02-28 Electronic Bio Sciences, Llc Method and apparatus for single side bilayer formation
GB0724736D0 (en) 2007-12-19 2008-01-30 Oxford Nanolabs Ltd Formation of layers of amphiphilic molecules
JP2010186677A (en) 2009-02-13 2010-08-26 Ritsumeikan Conductive structure, actuator, variable resistor, turning member, turning connector, electric motor, controller, rotation information detecting device, stroke detection device, and method of manufacturing conductive terminal
WO2010117470A2 (en) 2009-04-10 2010-10-14 Pacific Biosciences Of California, Inc. Nanopore sequencing devices and methods
AU2010240670B2 (en) 2009-04-20 2015-08-20 Oxford Nanopore Technologies Limited Lipid bilayer sensor array
GB0909923D0 (en) 2009-06-09 2009-07-22 Oxford Gene Tech Ip Ltd Picowell capture devices for analysing single cells or other particles
US9127313B2 (en) 2009-12-01 2015-09-08 Oxford Nanopore Technologies Limited Biochemical analysis instrument
US20120010085A1 (en) 2010-01-19 2012-01-12 Rava Richard P Methods for determining fraction of fetal nucleic acids in maternal samples
US20110287414A1 (en) 2010-02-08 2011-11-24 Genia Technologies, Inc. Systems and methods for identifying a portion of a molecule
US8324914B2 (en) 2010-02-08 2012-12-04 Genia Technologies, Inc. Systems and methods for characterizing a molecule
KR20110100963A (en) 2010-03-05 2011-09-15 삼성전자주식회사 Microfluidic device and method for deterimining sequences of target nucleic acids using the same
SG184204A1 (en) 2010-03-23 2012-10-30 Kuraray Co Culture method for causing differentiation of pluripotent mammalian cells
DE102010022929B4 (en) 2010-06-07 2013-07-18 Albert-Ludwigs-Universität Freiburg Method for producing a bilipid layer and microstructure and measuring arrangement
KR20140090633A (en) 2011-10-21 2014-07-17 옥스포드 나노포어 테크놀로지즈 리미티드 Method of characterizing a target polynucleotide using a pore and a hel308 helicase
AU2012360244B2 (en) 2011-12-29 2018-08-23 Oxford Nanopore Technologies Limited Enzyme method
US9617591B2 (en) 2011-12-29 2017-04-11 Oxford Nanopore Technologies Ltd. Method for characterising a polynucleotide by using a XPD helicase
GB201202519D0 (en) 2012-02-13 2012-03-28 Oxford Nanopore Tech Ltd Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
JP6271505B2 (en) 2012-04-10 2018-01-31 オックスフォード ナノポール テクノロジーズ リミテッド Mutant lysenin pore
WO2014013260A1 (en) 2012-07-19 2014-01-23 Oxford Nanopore Technologies Limited Modified helicases
AU2013291765C1 (en) 2012-07-19 2019-08-08 Oxford Nanopore Technologies Limited Enzyme construct
JP6375301B2 (en) 2012-10-26 2018-08-15 オックスフォード ナノポール テクノロジーズ リミテッド Droplet interface
GB201313121D0 (en) 2013-07-23 2013-09-04 Oxford Nanopore Tech Ltd Array of volumes of polar medium
ES2906554T3 (en) 2013-03-14 2022-04-19 Arkema Inc Methods for crosslinking polymeric compositions in the presence of atmospheric oxygen
CN203466320U (en) 2013-09-20 2014-03-05 番禺得意精密电子工业有限公司 Electric connector
JP6677640B2 (en) 2013-10-18 2020-04-08 オックスフォード ナノポール テクノロジーズ リミテッド Modification enzyme
GB201418512D0 (en) 2014-10-17 2014-12-03 Oxford Nanopore Tech Ltd Electrical device with detachable components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056922A (en) * 1996-05-30 2000-05-02 Sanyo Electric Co., Ltd Bilayer membrane device
WO2000028312A1 (en) * 1998-11-06 2000-05-18 The Regents Of The University Of California A miniature support for thin films containing single channels or nanopores and methods for using same
EP1669746A1 (en) * 2003-09-19 2006-06-14 Japan Science and Technology Agency Electric current measuring instrument having artificial lipid double-membrane
EP1677102A1 (en) * 2003-09-19 2006-07-05 Japan Science and Technology Agency Artificial lipid double-membrane forming device and artificial lipid double-membrane forming method, and method of utilizing the same
EP1712909A1 (en) * 2004-01-21 2006-10-18 Japan Science and Technology Agency Method of forming planar lipid double membrane for membrane protein analysis and apparatus therefor
WO2006100484A2 (en) * 2005-03-23 2006-09-28 Isis Innovation Limited Deliver of molecules to a li id bila

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAURER JOSHUA A ET AL: "Reconstitution of ion channels in agarose-supported silicon orifices.", BIOSENSORS & BIOELECTRONICS, vol. 22, no. 11, 13 November 2006 (2006-11-13), pages 2577 - 2584, XP022006457 *
SUZUKI H ET AL: "Planar lipid bilayer reconstitution with a miccro-fluidic system", LAB ON A CHIP, vol. 14, 1 January 2004 (2004-01-01), pages 502 - 505, XP008085264 *
SUZUKI HIROAKI ET AL: "Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip.", LANGMUIR, vol. 22, no. 4, 14 January 2006 (2006-01-14), pages 1937 - 1942, XP002481436 *

Cited By (262)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785211B2 (en) 2005-11-15 2014-07-22 Isis Innovation Limited Methods using pores
US10215768B2 (en) 2007-02-20 2019-02-26 Oxford Nanopore Technologies Ltd. Lipid bilayer sensor system
US10202645B2 (en) 2007-04-04 2019-02-12 The Regents Of The University Of California Compositions, devices, systems, and methods for using a nanopore
US9797013B2 (en) 2007-04-04 2017-10-24 The Regents Of The University Of California Compositions, devices, systems, and methods for using a nanopore
US10059988B2 (en) 2007-04-04 2018-08-28 The Regents Of The University Of California Methods for using a nanopore
US11970738B2 (en) 2007-04-04 2024-04-30 The Regents Of The University Of California Compositions, devices, systems, and methods for using a nanopore
US12054775B2 (en) 2007-04-04 2024-08-06 The Regents Of The University Of California Compositions, devices, systems, and methods for using a nanopore
US10081835B2 (en) 2007-04-04 2018-09-25 The Regents Of The University Of California Nucleotide sequencing using an array of independently addressable nanopores
US10196688B2 (en) 2007-04-04 2019-02-05 The Regents Of The University Of California Compositions, devices, systems, and methods for using a nanopore
US10208342B2 (en) 2007-04-04 2019-02-19 The Regents Of The University Of California Compositions, devices, systems, and methods for using a nanopore
US10344327B2 (en) 2007-04-04 2019-07-09 The Regents Of The University Of California Compositions, devices, systems, and methods for using a nanopore
US8822160B2 (en) 2007-10-05 2014-09-02 Isis Innovation Limited Molecular adaptors
US10416117B2 (en) 2007-12-19 2019-09-17 Oxford Nanopore Technologies Ltd. Formation of layers of amphiphilic molecules
US9927398B2 (en) 2007-12-19 2018-03-27 Oxford Nanopore Technologies Ltd. Formation of layers of amphiphilic molecules
US11898984B2 (en) 2007-12-19 2024-02-13 Oxford Nanopore Technologies Plc Nanopore arrays for sequencing nucleic acids
US11859247B2 (en) 2008-07-07 2024-01-02 Oxford Nanopore Technologies Plc Enzyme-pore constructs
US10077471B2 (en) 2008-07-07 2018-09-18 Oxford Nanopore Technologies Ltd. Enzyme-pore constructs
US9885078B2 (en) 2008-07-07 2018-02-06 Oxford Nanopore Technologies Limited Enzyme-pore constructs
US9447152B2 (en) 2008-07-07 2016-09-20 Oxford Nanopore Technologies Limited Base-detecting pore
US11078530B2 (en) 2008-07-07 2021-08-03 Oxford Nanopore Technologies Ltd. Enzyme-pore constructs
US9562887B2 (en) 2008-11-14 2017-02-07 Oxford University Innovation Limited Methods of enhancing translocation of charged analytes through transmembrane protein pores
US11352664B2 (en) 2009-01-30 2022-06-07 Oxford Nanopore Technologies Plc Adaptors for nucleic acid constructs in transmembrane sequencing
US11459606B2 (en) 2009-01-30 2022-10-04 Oxford Nanopore Technologies Plc Adaptors for nucleic acid constructs in transmembrane sequencing
US10669581B2 (en) 2009-03-25 2020-06-02 Oxford University Innovation Limited Method for sequencing a heteropolymeric target nucleic acid sequence
US9732381B2 (en) 2009-03-25 2017-08-15 Oxford University Innovation Limited Method for sequencing a heteropolymeric target nucleic acid sequence
US9017937B1 (en) 2009-04-10 2015-04-28 Pacific Biosciences Of California, Inc. Nanopore sequencing using ratiometric impedance
US10481144B2 (en) 2009-04-10 2019-11-19 Pacific Biosciences Of California, Inc. Nanopore sequencing using n-mers
US9678056B2 (en) 2009-04-10 2017-06-13 Pacific Biosciense of California, Inc. Control of enzyme translocation in nanopore sequencing
US10473639B1 (en) 2009-04-10 2019-11-12 Pacific Biosciences Of California, Inc. Control of enzyme translocation in nanopore sequencing
US8993234B2 (en) 2009-04-10 2015-03-31 Pacific Biosciences Of California, Inc. Nanopore sequencing using charge blockade labels
US9121064B2 (en) 2009-04-10 2015-09-01 Pacific Biosciences Of California, Inc. Nanopore sequencing using n-mers
US8986932B2 (en) 2009-04-10 2015-03-24 Pacific Biosciences Of California, Inc. Nanopore sequencing using charge blockade labels
US8986928B2 (en) 2009-04-10 2015-03-24 Pacific Biosciences Of California, Inc. Nanopore sequencing devices and methods
US9546400B2 (en) 2009-04-10 2017-01-17 Pacific Biosciences Of California, Inc. Nanopore sequencing using n-mers
US9772323B2 (en) 2009-04-10 2017-09-26 Pacific Biosciences Of California, Inc. Nanopore sequencing using N-mers
US11067562B2 (en) 2009-04-10 2021-07-20 Pacific Biosciences Of California, Inc. Method of sequencing multiple copies of a sequence in a circular template
AU2010261557B2 (en) * 2009-06-19 2014-04-17 Aquaporin A/S Biomimetic membranes and uses thereof
WO2011067559A1 (en) 2009-12-01 2011-06-09 Oxford Nanopore Technologies Limited Biochemical analysis instrument
US11027502B2 (en) 2010-02-08 2021-06-08 Roche Sequencing Solutions, Inc. Systems and methods for forming a nanopore in a lipid bilayer
US10456993B2 (en) 2010-02-08 2019-10-29 Roche Sequencing Solutions, Inc. Systems and methods for forming a nanopore in a lipid bilayer
US10343350B2 (en) 2010-02-08 2019-07-09 Genia Technologies, Inc. Systems and methods for forming a nanopore in a lipid bilayer
US10926486B2 (en) 2010-02-08 2021-02-23 Roche Sequencing Solutions, Inc. Systems and methods for forming a nanopore in a lipid bilayer
US8652779B2 (en) 2010-04-09 2014-02-18 Pacific Biosciences Of California, Inc. Nanopore sequencing using charge blockade labels
USRE47067E1 (en) 2010-04-09 2018-10-02 Pacific Biosciences Of California, Inc. Nanopore sequencing using ratiometric impedance
WO2012033524A2 (en) 2010-09-07 2012-03-15 The Regents Of The University Of California Control of dna movement in a nanopore at one nucleotide precision by a processive enzyme
WO2012042226A2 (en) 2010-10-01 2012-04-05 Oxford Nanopore Technologies Limited Biochemical analysis apparatus and rotary valve
CN103402612A (en) * 2010-12-17 2013-11-20 水通道蛋白有限公司 A liquid membrane suitable for water extraction
WO2012095660A2 (en) 2011-01-12 2012-07-19 Isis Innovation Limited Method using fluorinated amphiphiles
US9751915B2 (en) 2011-02-11 2017-09-05 Oxford Nanopore Technologies Ltd. Mutant pores
US10254271B2 (en) 2011-03-01 2019-04-09 The Regents Of The University Of Michigan Controlling translocation through nanopores with fluid walls
US10670578B2 (en) 2011-03-01 2020-06-02 The Regents Of The University Of Michigan Controlling translocation through nanopores with fluid walls
US9347929B2 (en) 2011-03-01 2016-05-24 The Regents Of The University Of Michigan Controlling translocation through nanopores with fluid wall
US11959135B2 (en) 2011-05-27 2024-04-16 Oxford Nanopore Technologies Plc Coupling method
US11946102B2 (en) 2011-05-27 2024-04-02 Oxford Nanopore Technologies Plc Coupling method
US10246741B2 (en) 2011-05-27 2019-04-02 Oxford Nanopore Technologies Ltd. Coupling method
EP4273092A2 (en) 2011-05-27 2023-11-08 Oxford Nanopore Technologies plc Method and apparatus for determining the presence, absence or characteristics of an analyte
WO2012164270A1 (en) 2011-05-27 2012-12-06 Oxford Nanopore Technologies Limited Coupling method
EP3848706A1 (en) 2011-05-27 2021-07-14 Oxford Nanopore Technologies Limited Coupling method
US11136623B2 (en) 2011-05-27 2021-10-05 Oxford Nanopore Technologies Limited Coupling method
US11041194B2 (en) 2011-05-27 2021-06-22 Oxford Nanopore Technologies Ltd. Coupling method
EP3633370A1 (en) 2011-05-27 2020-04-08 Oxford Nanopore Technologies Limited Coupling method
US11168363B2 (en) 2011-07-25 2021-11-09 Oxford Nanopore Technologies Ltd. Hairpin loop method for double strand polynucleotide sequencing using transmembrane pores
US10597713B2 (en) 2011-07-25 2020-03-24 Oxford Nanopore Technologies Ltd. Hairpin loop method for double strand polynucleotide sequencing using transmembrane pores
US11261487B2 (en) 2011-07-25 2022-03-01 Oxford Nanopore Technologies Plc Hairpin loop method for double strand polynucleotide sequencing using transmembrane pores
US9957560B2 (en) 2011-07-25 2018-05-01 Oxford Nanopore Technologies Ltd. Hairpin loop method for double strand polynucleotide sequencing using transmembrane pores
US10851409B2 (en) 2011-07-25 2020-12-01 Oxford Nanopore Technologies Ltd. Hairpin loop method for double strand polynucleotide sequencing using transmembrane pores
WO2013014451A1 (en) 2011-07-25 2013-01-31 Oxford Nanopore Technologies Limited Hairpin loop method for double strand polynucleotide sequencing using transmembrane pores
EP2987870A1 (en) 2011-10-21 2016-02-24 Oxford Nanopore Technologies Limited Method of characterizing a target polynucleotide using a transmembrane pore and molecular motor
WO2013057495A2 (en) 2011-10-21 2013-04-25 Oxford Nanopore Technologies Limited Enzyme method
US11634763B2 (en) 2011-10-21 2023-04-25 Oxford Nanopore Technologies Plc Enzyme method
US10724087B2 (en) 2011-10-21 2020-07-28 Oxford Nanopore Technologies Ltd. Enzyme method
US9758823B2 (en) 2011-10-21 2017-09-12 Oxford Nanopore Technologies Limited Enzyme method
WO2013098562A2 (en) 2011-12-29 2013-07-04 Oxford Nanopore Technologies Limited Enzyme method
US10385382B2 (en) 2011-12-29 2019-08-20 Oxford Nanopore Technologies Ltd. Enzyme method
US9617591B2 (en) 2011-12-29 2017-04-11 Oxford Nanopore Technologies Ltd. Method for characterising a polynucleotide by using a XPD helicase
WO2013098561A1 (en) 2011-12-29 2013-07-04 Oxford Nanopore Technologies Limited Method for characterising a polynucelotide by using a xpd helicase
US11913936B2 (en) 2012-02-13 2024-02-27 Oxford Nanopore Technologies Plc Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
US10338056B2 (en) 2012-02-13 2019-07-02 Oxford Nanopore Technologies Ltd. Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
US11561216B2 (en) 2012-02-13 2023-01-24 Oxford Nanopore Technologies Plc Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
US10739341B2 (en) 2012-02-15 2020-08-11 Oxford Nanopore Technologies Limited Aptamer method
US11685922B2 (en) 2012-02-15 2023-06-27 Oxford Nanopore Technologies Plc Aptamer method
WO2013121201A1 (en) 2012-02-15 2013-08-22 Oxford Nanopore Technologies Limited Aptamer method
US11959906B2 (en) 2012-02-16 2024-04-16 Oxford Nanopore Technologies Plc Analysis of measurements of a polymer
WO2013121224A1 (en) 2012-02-16 2013-08-22 Oxford Nanopore Technologies Limited Analysis of measurements of a polymer
EP3736339A1 (en) 2012-02-16 2020-11-11 Oxford Nanopore Technologies Limited Analysis of measurements of a polymer
EP3192804A1 (en) 2012-04-10 2017-07-19 Oxford Nanopore Technologies Limited Mutant lysenin pores
WO2013153359A1 (en) 2012-04-10 2013-10-17 Oxford Nanopore Technologies Limited Mutant lysenin pores
US10882889B2 (en) 2012-04-10 2021-01-05 Oxford Nanopore Technologies Ltd. Mutant lysenin pores
US11845780B2 (en) 2012-04-10 2023-12-19 Oxford Nanopore Technologies Plc Mutant lysenin pores
US9777049B2 (en) 2012-04-10 2017-10-03 Oxford Nanopore Technologies Ltd. Mutant lysenin pores
EP3741847A1 (en) 2012-07-19 2020-11-25 Oxford Nanopore Technologies Limited Modified helicases
WO2014013262A1 (en) 2012-07-19 2014-01-23 Oxford Nanopore Technologies Limited Enzyme construct
WO2014013260A1 (en) 2012-07-19 2014-01-23 Oxford Nanopore Technologies Limited Modified helicases
US11525126B2 (en) 2012-07-19 2022-12-13 Oxford Nanopore Technologies Plc Modified helicases
WO2014013259A1 (en) 2012-07-19 2014-01-23 Oxford Nanopore Technologies Limited Ssb method
US9797009B2 (en) 2012-07-19 2017-10-24 Oxford Nanopore Technologies Limited Enzyme construct
US10808231B2 (en) 2012-07-19 2020-10-20 Oxford Nanopore Technologies Limited Modified helicases
US9551023B2 (en) 2012-09-14 2017-01-24 Oxford Nanopore Technologies Ltd. Sample preparation method
US10814298B2 (en) 2012-10-26 2020-10-27 Oxford Nanopore Technologies Ltd. Formation of array of membranes and apparatus therefor
US9995728B2 (en) 2012-11-06 2018-06-12 Oxford Nanopore Technologies Ltd. Quadruplex method
WO2014072703A1 (en) 2012-11-06 2014-05-15 Oxford Nanopore Technologies Limited Quadruplex method
US11085077B2 (en) 2012-12-19 2021-08-10 Oxford Nanopore Technologies Ltd. Analysis of a polynucleotide via a nanopore system
US10131943B2 (en) 2012-12-19 2018-11-20 Oxford Nanopore Technologies Ltd. Analysis of a polynucleotide via a nanopore system
US10656117B2 (en) 2013-02-25 2020-05-19 The Regents Of The University Of Michigan Nanopore-based determination of protein charge, sharp, volume, rotational diffusion coefficient, and dipole moment
US10221450B2 (en) 2013-03-08 2019-03-05 Oxford Nanopore Technologies Ltd. Enzyme stalling method
WO2014135838A1 (en) 2013-03-08 2014-09-12 Oxford Nanopore Technologies Limited Enzyme stalling method
US11560589B2 (en) 2013-03-08 2023-01-24 Oxford Nanopore Technologies Plc Enzyme stalling method
US10802015B2 (en) 2013-03-25 2020-10-13 Katholieke Universiteit Leuven Nanopore biosensors for detection of proteins and nucleic acids
US10976311B2 (en) 2013-03-25 2021-04-13 Katholieke Universiteit Leuven Nanopore biosensors for detection of proteins and nucleic acids
US11761956B2 (en) 2013-03-25 2023-09-19 Katholieke Universiteit Leuven Nanopore biosensors for detection of proteins and nucleic acids
US10006905B2 (en) 2013-03-25 2018-06-26 Katholieke Universiteit Leuven Nanopore biosensors for detection of proteins and nucleic acids
US10514378B2 (en) 2013-03-25 2019-12-24 Katholieke Universiteit Leuven Nanopore biosensors for detection of proteins and nucleic acids
US11186857B2 (en) 2013-08-16 2021-11-30 Oxford Nanopore Technologies Plc Polynucleotide modification methods
US10501767B2 (en) 2013-08-16 2019-12-10 Oxford Nanopore Technologies Ltd. Polynucleotide modification methods
US11592382B2 (en) 2013-09-23 2023-02-28 Oxford University Innovation Limited Method of analyzing post-translational modifications
US10712254B2 (en) 2013-09-23 2020-07-14 Oxford University Innovation Limited Method of analyzing post-translational modifications
US11111532B2 (en) 2013-10-18 2021-09-07 Oxford Nanopore Technologies Ltd. Method of characterizing a target ribonucleic acid (RNA) comprising forming a complementary polynucleotide which moves through a transmembrane pore
WO2015056028A1 (en) 2013-10-18 2015-04-23 Oxford Nanopore Technologies Limited Method of characterizing a target ribonucleic acid (rna) comprising forming a complementary polynucleotide which moves through a transmembrane pore
EP4006168A1 (en) 2013-10-18 2022-06-01 Oxford Nanopore Technologies PLC Method of characterizing a target ribonucleic acid (rna) comprising forming a complementary polynucleotide which moves through a transmembrane pore
US11525125B2 (en) 2013-10-18 2022-12-13 Oxford Nanopore Technologies Plc Modified helicases
WO2015055981A2 (en) 2013-10-18 2015-04-23 Oxford Nanopore Technologies Limited Modified enzymes
EP3575410A2 (en) 2013-10-18 2019-12-04 Oxford Nanopore Technologies Limited Modified enzymes
US10724018B2 (en) 2013-10-18 2020-07-28 Oxford Nanopore Technologies Ltd. Modified helicases
EP2886663A1 (en) 2013-12-19 2015-06-24 Centre National de la Recherche Scientifique (CNRS) Nanopore sequencing using replicative polymerases and helicases
US11725235B2 (en) 2014-01-22 2023-08-15 Oxford Nanopore Technologies Plc Method for attaching one or more polynucleotide binding proteins to a target polynucleotide
WO2015110813A1 (en) 2014-01-22 2015-07-30 Oxford Nanopore Technologies Limited Method for attaching one or more polynucleotide binding proteins to a target polynucleotide
US10392658B2 (en) 2014-01-22 2019-08-27 Oxford Nanopore Technologies Ltd. Method for controlling the movement of a polynucleotide through a transmembrane pore
US10669578B2 (en) 2014-02-21 2020-06-02 Oxford Nanopore Technologies Ltd. Sample preparation method
US11542551B2 (en) 2014-02-21 2023-01-03 Oxford Nanopore Technologies Plc Sample preparation method
US11236385B2 (en) 2014-04-04 2022-02-01 Oxford Nanopore Technologies Ltd. Method for characterising a double stranded nucleic acid using a nano-pore and anchor molecules at both ends of said nucleic acid
US11649490B2 (en) 2014-04-04 2023-05-16 Oxford Nanopore Technologies Plc Method of target molecule characterisation using a molecular pore
US10337060B2 (en) 2014-04-04 2019-07-02 Oxford Nanopore Technologies Ltd. Method for characterising a double stranded nucleic acid using a nano-pore and anchor molecules at both ends of said nucleic acid
WO2015150787A1 (en) 2014-04-04 2015-10-08 Oxford Nanopore Technologies Limited Method of target molecule characterisation using a molecular pore
US10774378B2 (en) 2014-04-04 2020-09-15 Oxford Nanopore Technologies Ltd. Method of target molecule characterisation using a molecular pore
US10844432B2 (en) 2014-05-02 2020-11-24 Oxford Nanopore Technologies, Ltd. Method of improving the movement of a target polynucleotide with respect to a transmembrane pore
US11739377B2 (en) 2014-05-02 2023-08-29 Oxford Nanopore Technologies Plc Method of improving the movement of a target polynucleotide with respect to a transmembrane pore
US10443097B2 (en) 2014-05-02 2019-10-15 Oxford Nanopore Technologies Ltd. Method of improving the movement of a target polynucleotide with respect to a transmembrane pore
US10167503B2 (en) 2014-05-02 2019-01-01 Oxford Nanopore Technologies Ltd. Mutant pores
EP3831956A1 (en) 2014-07-14 2021-06-09 Oxford University Innovation Limited Measurement of analytes with membrane channel molecules, and bilayer arrays
WO2016009180A1 (en) 2014-07-14 2016-01-21 Isis Innovation Limited Measurement of analytes with membrane channel molecules, and bilayer arrays
US10400014B2 (en) 2014-09-01 2019-09-03 Oxford Nanopore Technologies Ltd. Mutant CsgG pores
US11034734B2 (en) 2014-09-01 2021-06-15 Oxford Nanopore Technologies Ltd. Mutant pores
EP4053150A1 (en) 2014-09-01 2022-09-07 Vib Vzw Mutant csgg pores
WO2016055777A2 (en) 2014-10-07 2016-04-14 Oxford Nanopore Technologies Limited Modified enzymes
US11180741B2 (en) 2014-10-07 2021-11-23 Oxford Nanopore Technologies Ltd. Modified enzymes
US11965183B2 (en) 2014-10-07 2024-04-23 Oxford Nanopore Technologies Plc Modified enzymes
WO2016055778A1 (en) 2014-10-07 2016-04-14 Oxford Nanopore Technologies Limited Mutant pores
US10266885B2 (en) 2014-10-07 2019-04-23 Oxford Nanopore Technologies Ltd. Mutant pores
EP4108679A1 (en) 2014-10-07 2022-12-28 Oxford Nanopore Technologies plc Modified enzymes
US10570440B2 (en) 2014-10-14 2020-02-25 Oxford Nanopore Technologies Ltd. Method for modifying a template double stranded polynucleotide using a MuA transposase
US11390904B2 (en) 2014-10-14 2022-07-19 Oxford Nanopore Technologies Plc Nanopore-based method and double stranded nucleic acid construct therefor
US11401549B2 (en) 2014-10-16 2022-08-02 Oxford Nanopore Technologies Plc Analysis of a polymer
US10689697B2 (en) 2014-10-16 2020-06-23 Oxford Nanopore Technologies Ltd. Analysis of a polymer
US10549274B2 (en) 2014-10-17 2020-02-04 Oxford Nanopore Technologies Ltd. Electrical device with detachable components
US10760114B2 (en) 2014-10-17 2020-09-01 Oxford Nanopore Technologies Ltd. Methods for delivering an analyte to transmembrane pores
US11613771B2 (en) 2014-10-17 2023-03-28 Oxford Nanopore Technologies Plc Methods for delivering an analyte to transmembrane pores
US11021747B2 (en) 2014-10-17 2021-06-01 Oxford Nanopore Technologies Ltd. Method for nanopore RNA characterisation
WO2016059375A1 (en) 2014-10-17 2016-04-21 Oxford Nanopore Technologies Limited Methods for delivering an analyte to transmembrane pores
WO2016120217A1 (en) 2015-01-26 2016-08-04 Cellectis Anti-hsp70 specific chimeric antigen receptors (cars) for cancer immunotherapy
US10472673B2 (en) 2015-02-19 2019-11-12 Oxford Nanopore Technologies Ltd. Hetero-pores
EP4019535A1 (en) 2015-02-19 2022-06-29 Oxford Nanopore Technologies plc Hetero-pores
US11307192B2 (en) 2015-02-19 2022-04-19 Oxford Nanopore Technologies Plc Method for producing a hetero-oligomeric pore comprising two different monomers in a specific stiochiometric ratio
WO2016132123A1 (en) 2015-02-19 2016-08-25 Oxford Nanopore Technologies Limited Hetero-pores
WO2016132124A1 (en) 2015-02-19 2016-08-25 Oxford Nanopore Technologies Limited Method
US11169138B2 (en) 2015-04-14 2021-11-09 Katholieke Universiteit Leuven Nanopores with internal protein adaptors
US10976300B2 (en) 2015-12-08 2021-04-13 Katholieke Universiteit Leuven Modified nanopores, compositions comprising the same, and uses thereof
WO2017098322A1 (en) 2015-12-08 2017-06-15 Katholieke Universiteit Leuven Ku Leuven Research & Development Modified nanopores, compositions comprising the same, and uses thereof
EP4015531A2 (en) 2016-03-02 2022-06-22 Oxford Nanopore Technologies PLC Mutant pore
EP4019543A1 (en) 2016-03-02 2022-06-29 Oxford Nanopore Technologies plc Mutant pore
US12018326B2 (en) 2016-03-02 2024-06-25 Oxford Nanopore Technologies Plc Mutant pore
US11685949B2 (en) 2016-03-02 2023-06-27 Oxford Nanopore Technologies Plc Mutant pore
US10975428B2 (en) 2016-03-02 2021-04-13 Oxford Nanopore Technologies Ltd. Mutant pore
US11186868B2 (en) 2016-03-02 2021-11-30 Oxford Nanopore Technologies Plc Mutant pore
US11597970B2 (en) 2016-03-02 2023-03-07 Oxford Nanopore Technologies Plc Mutant pores
US10995372B2 (en) 2016-03-02 2021-05-04 Oxford Nanopore Technologies Ltd. Mutant pores
WO2017149316A1 (en) 2016-03-02 2017-09-08 Oxford Nanopore Technologies Limited Mutant pore
WO2017149318A1 (en) 2016-03-02 2017-09-08 Oxford Nanopore Technologies Limited Mutant pores
WO2017149317A1 (en) 2016-03-02 2017-09-08 Oxford Nanopore Technologies Limited Mutant pore
EP4019542A1 (en) 2016-03-02 2022-06-29 Oxford Nanopore Technologies plc Mutant pores
EP4122949A1 (en) 2016-04-06 2023-01-25 Oxford Nanopore Technologies plc Mutant pore
WO2017174990A1 (en) 2016-04-06 2017-10-12 Oxford Nanopore Technologies Limited Mutant pore
EP4397970A2 (en) 2016-04-06 2024-07-10 Oxford Nanopore Technologies PLC Mutant pore
US11939359B2 (en) 2016-04-06 2024-03-26 Oxford Nanopore Technologies Plc Mutant pore
US11104709B2 (en) 2016-04-06 2021-08-31 Oxford Nanopore Technologies Ltd. Mutant pore
EP4063521A1 (en) 2016-05-25 2022-09-28 Oxford Nanopore Technologies PLC Method of nanopore sequencing
WO2017203269A1 (en) 2016-05-25 2017-11-30 Oxford Nanopore Technologies Limited Method of nanopore sequencing of concatenaded nucleic acids
US11649480B2 (en) 2016-05-25 2023-05-16 Oxford Nanopore Technologies Plc Method for modifying a template double stranded polynucleotide
US11098355B2 (en) 2016-05-25 2021-08-24 Oxford Nanopore Technologies Ltd. Method of nanopore sequencing of concatenated nucleic acids
US11596940B2 (en) 2016-07-06 2023-03-07 Oxford Nanopore Technologies Plc Microfluidic device
US11085078B2 (en) 2016-09-29 2021-08-10 Oxford Nanopore Technologies Limited Method for nucleic acid detection by guiding through a nanopore
WO2018060740A1 (en) 2016-09-29 2018-04-05 Oxford Nanopore Technologies Limited Method for nucleic acid detection by guiding through a nanopore
US11739379B2 (en) 2016-09-29 2023-08-29 Oxford Nanopore Technologies Plc Method for nucleic acid detection by guiding through a nanopore
WO2018100370A1 (en) 2016-12-01 2018-06-07 Oxford Nanopore Technologies Limited Methods and systems for characterizing analytes using nanopores
EP4269617A2 (en) 2016-12-01 2023-11-01 Oxford Nanopore Technologies plc Methods and systems for characterizing analytes using nanopores
US11466317B2 (en) 2016-12-01 2022-10-11 Oxford Nanopore Technologies Plc Methods and systems for characterizing analytes using nanopores
WO2018146491A1 (en) 2017-02-10 2018-08-16 Oxford Nanopore Technologies Limited Modified nanopores, compositions comprising the same, and uses thereof
US11840556B2 (en) 2017-02-10 2023-12-12 Oxford Nanopore Technologies Plc Modified nanopores, compositions comprising the same, and uses thereof
WO2018211241A1 (en) 2017-05-04 2018-11-22 Oxford Nanopore Technologies Limited Transmembrane pore consisting of two csgg pores
EP3892627A1 (en) 2017-05-04 2021-10-13 Oxford Nanopore Technologies Limited Transmembrane pore consisting of two csgg pores
WO2018203071A1 (en) 2017-05-04 2018-11-08 Oxford Nanopore Technologies Limited Method of determining the presence or absence of a target analyte comprising using a reporter polynucleotide and a transmembrane pore
US11789014B2 (en) 2017-05-04 2023-10-17 Oxford Nanopore Technologies Plc Method of determining the presence or absence of a target analyte comprising using a reporter polynucleotide and a transmembrane pore
US12024541B2 (en) 2017-05-04 2024-07-02 Oxford Nanopore Technologies Plc Transmembrane pore consisting of two CsgG pores
US11945840B2 (en) 2017-06-30 2024-04-02 Vib Vzw Protein pores
US11572387B2 (en) 2017-06-30 2023-02-07 Vib Vzw Protein pores
US12084477B2 (en) 2017-06-30 2024-09-10 Vib Vzw Protein pores
US12121894B2 (en) 2017-11-29 2024-10-22 Oxford Nanopore Technologies Plc Microfluidic device
US11725205B2 (en) 2018-05-14 2023-08-15 Oxford Nanopore Technologies Plc Methods and polynucleotides for amplifying a target polynucleotide
US11920193B2 (en) 2018-06-06 2024-03-05 Oxford Nanopore Technologies Plc Method of characterizing a polynucleotide
WO2019234432A1 (en) 2018-06-06 2019-12-12 Oxford Nanopore Technologies Limited Method
WO2020016573A1 (en) 2018-07-16 2020-01-23 Oxford University Innovation Limited Molecular hopper
WO2020025909A1 (en) 2018-07-30 2020-02-06 Oxford University Innovation Limited Assemblies
GB201818216D0 (en) 2018-11-08 2018-12-26 Oxford Nanopore Tech Ltd Pore
WO2020095052A1 (en) 2018-11-08 2020-05-14 Oxford Nanopore Technologies Limited Pore
WO2020128517A1 (en) 2018-12-21 2020-06-25 Oxford Nanopore Technologies Limited Method of encoding data on a polynucleotide strand
US11789006B2 (en) 2019-03-12 2023-10-17 Oxford Nanopore Technologies Plc Nanopore sensing device, components and method of operation
WO2020183172A1 (en) 2019-03-12 2020-09-17 Oxford Nanopore Technologies Inc. Nanopore sensing device and methods of operation and of forming it
WO2020188235A1 (en) 2019-03-19 2020-09-24 Oxford Nanopore Technologies Limited Current measurement apparatus, molecular entity sensing apparatus, method of measuring a current, method of sensing a molecular entity
US11994486B2 (en) 2019-03-19 2024-05-28 Oxford Nanopore Technologies Plc Current measurement apparatus, molecular entity sensing apparatus, method of measuring a current, method of sensing a molecular entity
WO2020208357A1 (en) 2019-04-09 2020-10-15 Oxford Nanopore Technologies Limited Pore
WO2020234612A1 (en) 2019-05-22 2020-11-26 Oxford Nanopore Technologies Limited Method
GB201907246D0 (en) 2019-05-22 2019-07-03 Oxford Nanopore Tech Ltd Method
GB201907244D0 (en) 2019-05-22 2019-07-03 Oxford Nanopore Tech Ltd Method
WO2020239066A1 (en) 2019-05-29 2020-12-03 Nanjing University Detection of analytes by nanopore without using electrodes
WO2021058975A1 (en) 2019-09-27 2021-04-01 Oxford Nanopore Technologies Limited Methods and systems for preparing a nucleic acid construct for single molecule characterisation
GB201913997D0 (en) 2019-09-27 2019-11-13 Oxford Nanopore Tech Ltd Method
WO2021078971A2 (en) 2019-10-25 2021-04-29 Oxford Nanopore Technologies Limited Improved nanopore sensing device, components and method of manufacture
WO2021099801A1 (en) 2019-11-22 2021-05-27 Oxford Nanopore Technologies Limited Method for double strand sequencing
GB201917060D0 (en) 2019-11-22 2020-01-08 Oxford Nanopore Tech Ltd Method
EP4270008A2 (en) 2019-12-02 2023-11-01 Oxford Nanopore Technologies PLC Method of characterising a target polypeptide using a nanopore
WO2021111125A1 (en) 2019-12-02 2021-06-10 Oxford Nanopore Technologies Limited Method of characterising a target polypeptide using a nanopore
WO2021111139A1 (en) 2019-12-04 2021-06-10 Oxford Nanopore Technologies Limited Method
GB202004944D0 (en) 2020-04-03 2020-05-20 King S College London Method
WO2021198695A1 (en) 2020-04-03 2021-10-07 King's College London Method of detecting an analyte in a medium comprising a light scattering constituent
WO2021255414A1 (en) 2020-06-17 2021-12-23 Oxford Nanopore Technologies Limited Nanopore support structure and manufacture thereof
WO2021255476A2 (en) 2020-06-18 2021-12-23 Oxford Nanopore Technologies Limited Method
WO2021255475A1 (en) 2020-06-18 2021-12-23 Oxford Nanopore Technologies Limited A method of selectively characterising a polynucleotide using a detector
WO2021255477A1 (en) 2020-06-18 2021-12-23 Oxford Nanopore Technologies Limited Method of repeatedly moving a double-stranded polynucleotide through a nanopore
WO2022013551A1 (en) 2020-07-17 2022-01-20 Oxford Nanopore Technologies Limited Nanopore sensing device
WO2022074397A1 (en) 2020-10-08 2022-04-14 Oxford Nanopore Technologies Limited Modification of a nanopore forming protein oligomer
GB202107192D0 (en) 2021-05-19 2021-06-30 Oxford Nanopore Tech Ltd Method
WO2022243691A1 (en) 2021-05-19 2022-11-24 Oxford Nanopore Technologies Plc Multiplex methods of detecting molecules using nanopores
WO2022243692A1 (en) 2021-05-19 2022-11-24 Oxford Nanopore Technologies Plc Methods for complement strand sequencing
GB202107354D0 (en) 2021-05-24 2021-07-07 Oxford Nanopore Tech Ltd Method
WO2023026056A1 (en) 2021-08-26 2023-03-02 Oxford Nanopore Technologies Plc Nanopore
WO2023118892A1 (en) 2021-12-23 2023-06-29 Oxford Nanopore Technologies Plc Method
WO2023118404A1 (en) 2021-12-23 2023-06-29 Oxford Nanopore Technologies Plc Pore
WO2023118891A1 (en) 2021-12-23 2023-06-29 Oxford Nanopore Technologies Plc Method of characterising polypeptides using a nanopore
WO2023194713A1 (en) 2022-04-04 2023-10-12 Oxford Nanopore Technologies Plc Method
GB202204919D0 (en) 2022-04-04 2022-05-18 Oxford Nanopore Tech Plc Method
WO2023198911A2 (en) 2022-04-14 2023-10-19 Oxford Nanopore Technologies Plc Novel modified protein pores and enzymes
WO2023222657A1 (en) 2022-05-17 2023-11-23 Oxford Nanopore Technologies Plc Method and adaptors
WO2024033443A1 (en) 2022-08-09 2024-02-15 Oxford Nanopore Technologies Plc Novel pore monomers and pores
WO2024033422A1 (en) 2022-08-09 2024-02-15 Oxford Nanopore Technologies Plc Novel pore monomers and pores
WO2024033447A1 (en) 2022-08-09 2024-02-15 Oxford Nanopore Technologies Plc De novo pores
WO2024033421A2 (en) 2022-08-09 2024-02-15 Oxford Nanopore Technologies Plc Novel pore monomers and pores
WO2024089270A2 (en) 2022-10-28 2024-05-02 Oxford Nanopore Technologies Plc Pore monomers and pores
WO2024094986A1 (en) 2022-10-31 2024-05-10 Oxford Nanopore Technologies Plc Method
WO2024100270A1 (en) 2022-11-11 2024-05-16 Oxford Nanopore Technologies Plc Novel pore monomers and pores
WO2024165853A1 (en) 2023-02-07 2024-08-15 Oxford University Innovation Limited Method of characterising a peptide, polypeptide or protein using a nanopore
WO2024200280A1 (en) 2023-03-24 2024-10-03 Oxford Nanopore Technologies Plc Method and kits
GB202307486D0 (en) 2023-05-18 2023-07-05 Oxford Nanopore Tech Plc Method
GB202407228D0 (en) 2024-05-21 2024-07-03 Oxford Nanopore Tech Plc Method

Also Published As

Publication number Publication date
WO2008102120A1 (en) 2008-08-28
US20100196203A1 (en) 2010-08-05
DK2122344T3 (en) 2019-07-15
US20110121840A1 (en) 2011-05-26
AU2008217578A1 (en) 2008-08-28
EP2126588A1 (en) 2009-12-02
EP2122344B8 (en) 2019-08-21
EP2122344A1 (en) 2009-11-25
IL200476A0 (en) 2010-04-29
US20150268256A1 (en) 2015-09-24
NZ579083A (en) 2012-07-27
US20190242913A1 (en) 2019-08-08
EP2122344B1 (en) 2019-05-08
US10215768B2 (en) 2019-02-26
AU2008217579A1 (en) 2008-08-28
IL200384A0 (en) 2010-04-29
ZA200905673B (en) 2011-10-26

Similar Documents

Publication Publication Date Title
US20100196203A1 (en) Formation of Lipid Bilayers
US11898984B2 (en) Nanopore arrays for sequencing nucleic acids
US7777505B2 (en) Nanopore platforms for ion channel recordings and single molecule detection and analysis
Baaken et al. Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents
US20100025263A1 (en) Nanopore particle analyzer, method of preparation and use thereof
Shoji et al. Spatially resolved chemical detection with a nanoneedle-probe-supported biological nanopore
GB2446823A (en) Formulation of lipid bilayers
Hromada et al. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip
Shoji et al. Recessed Ag/AgCl microelectrode-supported lipid bilayer for nanopore sensing
GB2447043A (en) Lipid bilayer sensor system
Wittenberg et al. Electrochemistry at the cell membrane/solution interface
Liu Ex-vivo biomimetic interfaces for screening engineered nanomaterials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08709449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008217579

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200384

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 579167

Country of ref document: NZ

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008217579

Country of ref document: AU

Date of ref document: 20080218

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2008709449

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008709449

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12527687

Country of ref document: US