WO2008101745A1 - Mikromechanisches bauelement und verfahren zur herstellung eines mikromechanischen bauelements - Google Patents

Mikromechanisches bauelement und verfahren zur herstellung eines mikromechanischen bauelements Download PDF

Info

Publication number
WO2008101745A1
WO2008101745A1 PCT/EP2008/050146 EP2008050146W WO2008101745A1 WO 2008101745 A1 WO2008101745 A1 WO 2008101745A1 EP 2008050146 W EP2008050146 W EP 2008050146W WO 2008101745 A1 WO2008101745 A1 WO 2008101745A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
micromechanical
component
permeable layer
etching
Prior art date
Application number
PCT/EP2008/050146
Other languages
English (en)
French (fr)
Inventor
Ando Feyh
Marco Lammer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2008101745A1 publication Critical patent/WO2008101745A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00277Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS
    • B81C1/00293Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS maintaining a controlled atmosphere with processes not provided for in B81C1/00285
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0111Bulk micromachining
    • B81C2201/0115Porous silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0136Growing or depositing of a covering layer

Definitions

  • German Patent Application DE 195 37 814 A1 discloses a method for producing a micromechanical component and also a component produced by the method in which the functional structures are arranged between a substrate and a lid. The lid is bonded to the sensor wafer after the functional sensor structure has been freed. The use of a wafer as a lid increases the effort in the production of the micromechanical component and leads to a large overall height.
  • the micromechanical component according to the invention and the method according to the invention for producing a micromechanical component according to the independent claims has the advantage that a thin layer capping is possible with simplified processing sequence for the production of the component and thus the micromechanical device according to the invention can be produced particularly cost.
  • a substantially capping, applied on the substrate, permeable layer, which is closed by a deposition layer it is possible to make the device particularly compact and still in particular the capping of the device with sufficient stability Mistake.
  • a sacrificial layer and / or the micromechanical structure arranged below the permeable layer is advantageously etchable through the permeable layer before the deposition layer is deposited.
  • Closing the permeable layer by a deposition layer the micromechanical device is used for a variety of different, micromechanical, sealed or capped, in particular hermetically sealed components.
  • the permeable layer is resistant to an etching medium for etching a sacrificial layer and / or the micromechanical structure, particularly preferably without a pretreatment.
  • the permeable layer is preferably a thin-layer cap of porous silicon carbide, SiC or of porous aluminum oxide, Al 2 O 3 .
  • the resistance of the permeable layer to the etching medium considerably simplifies the process control. By resisting the permeable layer without pretreatment, there is no need to passivate the permeable layer against an etch attack, such as by oxidation, which would reduce permeability.
  • the permeable layer in the sense of the invention, is permeable to gas.
  • the permeable layer has pores, wherein the pores preferably have diameters between 10 nanometers and 1000 nanometers.
  • the permeable layer is preferably produced by an electrochemical etching process, in particular a porosification of the layer takes place by electrochemical etching by means of suitable electrolytes.
  • the sacrificial layer between the permeable cap and the substrate is preferably electrically conductive, as a result of which the electrochemical etching process is particularly uncomplicated, since the flow of current can easily take place via the substrate.
  • Particularly preferred is the sacrificial layer of silicon germanium (SiGe).
  • a predetermined gas atmosphere in particular a predetermined internal pressure
  • the atmosphere present in the interior of the micromechanical component can be used to optimize the function of the micromechanical component.
  • Romechanischen structure adjusted and maintained over the entire life of the component.
  • the deposition layer is produced in particular by layer deposition, as a result of which the pores can be sealed in a simple manner.
  • the deposition layer is preferably made of silicon carbide, silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silicon germanium or polycrystalline silicon and is also preferably by chemical vapor deposition (CVD), in particular plasma enhanced (PECVD, plasma enhanced chemical vapor deposition).
  • CVD chemical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • a further subject of the present invention is a method for producing a micromechanical component having a substrate, with a micromechanical structure, wherein a capping comprises the following steps:
  • Closing the permeable layer by depositing a deposition layer Closing the permeable layer by depositing a deposition layer.
  • the permeable layer is prepared by first applying a cap layer and subsequently porosifying it.
  • the cap layer consists of p-doped silicon carbide or aluminum.
  • the porosification of the cap layer is then preferably carried out by electrochemical etching.
  • electrochemical etching is preferably carried out in a phosphoric acid-containing electrolyte, so that a permeable layer of porous aluminum oxide is formed.
  • a cap layer of p-doped silicon carbide is preferably electrochemically etched in a hydrofluoric acid-containing electrolyte. This creates a permeable layer of porous silicon carbide.
  • the permeable layer produced in this way is advantageously resistant to etching media used to etch the sacrificial layer so that etching of the sacrificial layer can occur through the permeable layer without affecting the permeable layer.
  • the etching of the sacrificial layer is preferably carried out by gas phase etching, more preferably with chlorotrifluoride (CIF 3 ).
  • CIF 3 chlorotrifluoride
  • a sacrificial layer of silicon germanium can advantageously be removed with high selectivity by a gas-phase etching process.
  • HF hydrogen fluoride
  • Figures 1 and 2 are schematic sectional views of various precursor structures of the micromechanical device according to the invention and Figure 3 shows the device according to the invention, to illustrate the manufacturing method according to the invention.
  • FIGS. 1 and 3 show schematic sectional representations of various precursor structures of a micromechanical component 10 according to the invention
  • FIG. 3 shows a micromechanical component 10 according to the invention for illustrating the production method according to the invention.
  • FIG. 1 schematically shows a sectional view of the first precursor structure.
  • a micromechanical structure 2 is realized, which may be, for example, a micromechanical membrane structure.
  • layers are optionally applied to the substrate 1 and patterned in a known manner.
  • a sacrificial layer 3 is provided above the micromechanical structure 2 in such a way that it completely surrounds the micromechanical structure 2 at least at all those points at which the component 10 should later have a capping.
  • the sacrificial layer 3 overlaps the micromechanical structure 2 and is electrically conductively connected to the p-doped silicon substrate 1.
  • the sacrificial layer 3 is preferably silicon germanium.
  • a cap layer 8 is deposited, which later becomes part of the capping 4 (see FIG. 3).
  • the cap layer 8 is preferably made of aluminum or p-doped silicon carbide.
  • the cap layer 8 is now porosified by electrochemical etching, so that a permeable layer 5 (see FIG. 2) is formed.
  • FIG. 2 illustrates a second precursor structure of the component 10 according to the invention in a sectional view.
  • the permeable layer 5 preferably consists, depending on the starting material of the cap layer 8 (FIG. 1), of porous silicon carbide or of aluminum oxide.
  • a permeable layer 5 of silicon carbide is formed by electrochemically etching the preceding cap layer 8 of silicon carbide in a hydrofluoric acid electrolyte.
  • a permeable layer 5 of alumina is formed by electrochemically etching the preceding cap layer 8 of aluminum in a phosphoric acid-containing electrolyte.
  • a current flow takes place between the cap layer 8 or permeable layer 5 and the substrate 1 for the electrochemical etching. If this can not be produced via the sacrificial layer 3 for reasons of the construction of the component 10, an otherwise substrate contact would be realized.
  • the permeable layer 5 now allows access of gaseous or liquid media to the sacrificial layer 3.
  • the permeable layer 5 is inert to the etching medium for removing the sacrificial layer 3, preferably chlorine trifluoride.
  • the sacrificial layer 3 and optionally the micromechanical structure 2 are exposed in a gas phase etching step.
  • a gas phase etching step with hydrogen fluoride can take place.
  • FIG. 3 shows the component 10 according to the invention.
  • the permeable layer 5 is finally closed with a deposition layer 7.
  • the permeable layer 5 and the deposition layer 7 then together form a capping 4 of the micromechanical device 10.
  • the pore size of the permeable layer 5 of about 10 nanometers to 500 nanometers makes them advantageous Close again by means of layer deposition. This is preferably done by deposition of silicon carbide, silicon dioxide, silicon nitride, silicon germanium or polycrystalline silicon, particularly preferably in the PECVD process at advantageously low temperatures of about 300 0 C to 400 0 C, which does not damage the micromechanical device.
  • the deposition of the deposition layer 7 it is advantageously possible to set a defined process pressure in the component 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)

Abstract

Es wird ein mikromechanisches Bauelement und ein Verfahren zu dessen Herstellung vorgeschlagen, wobei das mikromechanische Bauelement ein Substrat und eine mikromechanische Struktur aufweist, und wobei eine Verkappung vorgesehen ist und die Verkappung eine auf dem Substrat aufgebrachte, permeable Schicht aufweist, welche durch eine Abscheidungsschicht verschlossen ist.

Description

Beschreibung
Titel
Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
Stand der Technik
Die Erfindung geht aus von einem mikromechanischen Bauelement gemäß dem Oberbegriff des Hauptanspruchs.
Ein solches Bauelement ist allgemein bekannt. Beispielsweise ist aus der deutschen Offen- legungsschrift DE 195 37 814 Al ein Verfahren zur Herstellung eines mikromechanischen Bauelements sowie ein nach dem Verfahren hergestelltes Bauelement bekannt, bei dem die funktionellen Strukturen zwischen einem Substrat und einem Deckel angeordnet sind. Der Deckel wird nach der Freistellung der funktionalen Sensorstruktur auf den Sensorwafer ge- bondet. Die Verwendung eines Wafers als Deckel erhöht den Aufwand bei der Herstellung des mikromechanischen Bauelementes und führt zu einer großen Bauhöhe.
Offenbarung der Erfindung
Das erfindungsgemäße mikromechanische Bauelement und das erfindungsgemäße Verfahren zur Herstellung eines mikromechanischen Bauelementes gemäß den nebengeordneten Ansprüchen hat demgegenüber den Vorteil, dass eine Dünnschichtverkappung bei vereinfachter Prozessierungsabfolge zur Herstellung des Bauelementes möglich ist und somit das erfindungsgemäße mikromechanische Bauelement besonders kostengünstig hergestellt werden kann. Insbesondere ist es durch ein Vorsehen einer im wesentlichen die Verkappung bildenden, auf dem Substrat aufgebrachten, permeablen Schicht, welche durch eine Ab- scheidungsschicht verschlossen ist, möglich, das Bauelement besonders kompakt zu gestalten und dennoch insbesondere die Verkappung des Bauelementes mit einer ausreichenden Stabilität zu versehen. Eine unter der permeablen Schicht angeordnete Opferschicht und/oder die mikromechanische Struktur ist vorteilhaft durch die permeable Schicht hindurch ätzbar, bevor die Abscheidungsschicht abgeschieden wird. Durch das erfindungsgemäße Verschließen der permeablen Schicht durch eine Abscheidungsschicht findet das mikromechanische Bauelement Verwendung für eine Vielzahl von unterschiedlichen, mikromechanischen, verschlossenen bzw. verkappten, insbesondere hermetisch abgeschlossenen Bauelementen.
Gemäß der Erfindung ist vorzugsweise vorgesehen, dass die permeable Schicht resistent gegenüber einem Ätzmedium zum Ätzen einer Opferschicht und/oder der mikromechanischen Struktur ist, besonders bevorzugt ohne eine Vorbehandlung. Bevorzugt ist die permeable Schicht eine Dünnschichtkappe aus porösem Siliziumkarbid, SiC oder aus porösem Aluminiumoxid, AI2O3. Die Resistenz der permeablen Schicht gegenüber dem Ätzmedium vereinfacht die Prozessführung erheblich. Dadurch, dass die permeable Schicht ohne Vorbehandlung resistent ist, entfällt die Notwendigkeit, die permeable Schicht gegen einen Ätzangriff zu passivieren, beispielsweise durch Oxidation, was die Durchlässigkeit herabsetzen würde.
Die permeable Schicht, im Sinne der Erfindung, ist gasdurchlässig. Insbesondere weist die permeable Schicht Poren auf, wobei die Poren vorzugsweise Durchmesser zwischen 10 Na- nometer und 1000 Nanometer aufweisen. Die permeable Schicht ist bevorzugt durch einen elektrochemischen Ätzprozess hergestellt, insbesondere erfolgt eine Porosifizierung der Schicht durch elektrochemisches Ätzen mittels geeigneten Elektrolyten. Vorzugsweise ist die Opferschicht zwischen der permeablen Kappe und dem Substrat elektrisch leitend, wodurch der elektrochemische Ätzprozess besonders unkompliziert durchführbar ist, da der Strom- fluss ohne weiteres über das Substrat erfolgen kann. Besonders bevorzugt ist die Opferschicht aus Siliziumgermanium (SiGe). Sofern keine elektrisch leitfähige Opferschicht zur Verfügung steht, ist eine beliebige andere elektrische Kontaktierung zwischen der permeablen Schicht und dem Substrat herstellbar. Der Fachmann erkennt, dass für das elektrochemische Ätzen der permeablen Schicht, diese selbst ebenfalls vorzugsweise elektrisch leitfähig ist. Eine poröse Aluminiumoxidschicht als permeable Schicht ist vorzugsweise durch e- lektrochemisches Ätzen in geeignetem Elektrolyten, wie beispielsweise Phosphorsäure, aus einer Aluminiumschicht hergestellt. Eine poröse Siliziumcarbidschicht als permeable Schicht ist vorzugsweise durch elektrochemisches Ätzen in flusssäurehaltigem Elektrolyten aus p- dotiertem Siliziumcarbid hergestellt.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Bauelements ist zwischen der Abscheidungsschicht und dem Substrat eine vorgegebene Gasatmosphäre, insbesondere ein vorgegebener Innendruck vorgesehen. Hierdurch kann die im Inneren des mikromechanischen Bauelementes vorliegende Atmosphäre zur Optimierung der Funktion der mik- romechanischen Struktur eingestellt und über die gesamte Lebensdauer des Bauelementes aufrecht erhalten werden. Die Abscheidungsschicht ist insbesondere durch Schichtdeposition hergestellt, wodurch die Poren auf einfache Weise dicht verschließbar sind. Die Abscheidungsschicht besteht vorzugsweise aus Siliziumkarbid, Siliziumdioxid (SiO2), Siliziumnitrid (Si3N4), Siliziumgermanium oder polykristallines Silizium und ist, ebenfalls bevorzugt durch eine chemische Gasphasenabscheidung (CVD, chemical vapour deposition), insbesondere plasmaunterstützt (PECVD, plasma enhanced chemical vapour deposition). Dadurch ist insbesondere eine Abscheidung bei vorteilhaft niedrigen Temperaturen von etwa 300 0C bis 400 0C möglich, bei welcher das mikromechanische Bauelement nicht beschädigt wird.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines mikromechanischen Bauelements mit einem Substrat, mit einer mikromechanischen Struktur, wobei eine Verkappung folgende Schritte umfasst:
Erzeugen einer permeablen Schicht,
Ätzen einer Opferschicht und
Verschließen der permeablen Schicht durch Abscheiden einer Abscheidungsschicht.
Das erfindungsgemäße Verfahren ermöglicht eine vorteilhafterweise einfache Prozessabfolge zur Herstellung des mikromechanischen Bauelements und die Herstellung eines besonders flachen Bauelements. Ein zweiter Substratwafer zur Verkappung wird vorteilhaft eingespart. Der Fachmann erkennt, dass die mikromechanische Struktur des Substrats in beliebiger, allgemein bekannter Art und Weise erfolgen kann. Über der mikromechanischen Struktur wird eine Opferschicht abgeschieden, vorzugsweise elektrisch leitend und besonders bevorzugt aus Siliziumgermanium. Durch eine elektrisch leitfähige Verbindung zwischen der permeablen Schicht und dem Substrat wird ein elektrochemischer Ätzprozess ermöglicht, bei welchem ein Stromfluss über das Substrat erfolgt. Das Substrat ist daher vorzugsweise aus p-dotiertem Silizium.
Vorzugsweise wird die permeable Schicht hergestellt, indem zunächst eine Kappenschicht aufgetragen wird und dieselbe nachfolgend porosifiziert wird. Beispielsweise besteht die Kappenschicht aus p-dotiertem Siliziumkarbid oder Aluminium. Das Porosifizieren der Kappenschicht erfolgt dann vorzugsweise durch elektrochemisches Ätzen. Bei einer Kappenschicht aus Aluminium wird vorzugsweise in einem phosphorsäurehaltigen Elektrolyten elektrochemisch geätzt, so dass eine permeable Schicht aus porösem Aluminiumoxid entsteht. Bei einer Kappenschicht aus p-dotiertem Siliziumkarbid wird vorzugsweise in einem flusssäurehaltigen Elektrolyten elektrochemisch geätzt. Es entsteht so eine permeable Schicht aus porösem Siliziumkarbid. Die so hergestellte permeable Schicht ist vorteilhafterweise re- sistent gegen Ätzmedien, welche zum Ätzen der Opferschicht verwendet werden, so dass ein Ätzen der Opferschicht durch die permeable Schicht hindurch erfolgen kann, ohne dass die permeable Schicht dadurch beeinträchtigt wird. Vorzugsweise erfolgt das Ätzen der Opferschicht durch Gasphasenätzen, besonders bevorzugt mit Chlortrifluorid (CIF3). Insbesondere eine Opferschicht aus Siliziumgermanium lässt sich durch einen Gasphasenätzprozess vorteilhaft mit hoher Selektivität entfernen. Ebenfalls bevorzugt ist, bei dem erfindungsgemäßen Verfahren bei dem Ätzen der Opferschicht gleichzeitig die mikromechanischen Struktur freizustellen. Bei Bedarf, insbesondere falls eine Oxid-Opferschicht in der mikromechanischen Struktur vorhanden ist, kann auch ein Gasphasenätzschritt mit Fluorwasserstoff (HF) erfolgen.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Kurze Beschreibung der Zeichnungen
Es zeigen:
Figuren 1 und 2 schematische Schnittdarstellungen von verschiedenen Vorläuferstrukturen des erfindungsgemäßen mikromechanischen Bauelements und Figur 3 das erfindungsgemäße Bauelement, zur Verdeutlichung des erfindungsgemäßen Herstellungsverfahrens.
Ausführungsform(en) der Erfindung
In den Figuren 1 und 3 sind schematische Schnittdarstellungen von verschiedenen Vorläuferstrukturen eines erfindungsgemäßen mikromechanischen Bauelements 10, sowie in der Figur 3 ein erfindungsgemäßen mikromechanischen Bauelements 10 zur Verdeutlichung des erfindungsgemäßen Herstellungsverfahrens dargestellt.
In der Figur 1 ist schematisch eine Schnittdarstellung der ersten Vorläuferstruktur dargestellt. Auf oder in einem Substrat 1 ist eine mikromechanische Struktur 2 realisiert, wobei es sich beispielsweise um eine mikromechanische Membranstruktur handeln kann. Zur Realisierung der mikromechanischen Struktur 2 werden in bekannter Weise gegebenenfalls Schichten auf das Substrat 1 aufgebracht und strukturiert. Über der mikromechanischen Struktur 2 ist eine Opferschicht 3 derart vorgesehen, dass sie die mikromechanische Struktur 2 zumindest an allen denjenigen Stellen vollständig umgibt, an denen das Bauelement 10 später eine Ver- kappung aufweisen soll. Die Opferschicht 3 überlappt die mikromechanische Struktur 2 und ist elektrisch leitfähig mit dem p-dotierten Siliziumsubstrat 1 verbunden. Als Opferschicht 3 wird vorzugsweise Siliziumgermanium eingesetzt. Auf der Opferschicht 3 wird eine Kappenschicht 8 abgeschieden, welche später Teil der Verkappung 4 wird (siehe Figur 3). Die Kappenschicht 8 besteht vorzugsweise aus Aluminium oder p-dotiertem Siliziumkarbid. Die vorzugsweise zwischen 100 Nanometer und 10 Mikrometer starke Kappenschicht 8 der dargestellten Vorläuferstruktur ist bisher weder permeabel noch porös. Es besteht eine elektrisch leitfähige Verbindung von dem Substrat 1 über die Opferschicht 3 zu der Kappenschicht 8. Durch elektrochemisches Ätzen wird nunmehr die Kappenschicht 8 porosifiziert, so dass eine permeable Schicht 5 (siehe Figur 2) entsteht.
In Figur 2 ist eine zweite Vorläuferstruktur des erfindungsgemäßen Bauelements 10 in Schnittdarstellung abgebildet. Die permeable Schicht 5 besteht vorzugsweise, je nach dem Ausgangsmaterial der Kappenschicht 8 (Figur 1), aus porösem Siliziumkarbid oder aus Aluminiumoxid. Eine permeable Schicht 5 aus Siliziumkarbid entsteht durch elektrochemisches Ätzen der vorhergehenden Kappenschicht 8 aus Siliziumkarbid in einem flusssäurehaltigen Elektrolyten. Eine permeable Schicht 5 aus Aluminiumoxid entsteht durch elektrochemisches Ätzen der vorhergehenden Kappenschicht 8 aus Aluminium in einem phosphorsäurehaltigen Elektrolyten. Der Fachmann versteht, dass für das elektrochemische Ätzen ein Stromfluss zwischen der Kappenschicht 8 bzw. permeablen Schicht 5 und dem Substrat 1 erfolgt. Sollte dieser aus Gründen des Aufbaus des Bauelements 10 nicht über die Opferschicht 3 herstellbar sein, so wäre ein anderweitiger Substratkontakt zu realisieren.
Nach dem elektrochemischen Ätzen gestattet nunmehr die permeable Schicht 5 den Zugang von gasförmigen oder flüssigen Medien zu der Opferschicht 3. Die permeable Schicht 5 ist dabei inert gegenüber dem Ätzmedium zum Entfernen der Opferschicht 3, vorzugsweise Chlortrifluorid. Die Opferschicht 3, sowie gegebenenfalls die mikromechanische Struktur 2 werden in einem Gasphasenätzschritt freigestellt. Hierdurch wird die mikromechanische Struktur 2 freigelegt und damit prinzipiell funktionsfähig, wie in Figur 3 dargestellt. Gegebenenfalls kann die zur Freistellung der mikromechanischen Struktur ein Gasphasenätzschritt mit Fluorwasserstoff erfolgen.
In Figur 3 ist das erfindungsgemäße Bauelement 10 dargestellt. Nach dem Entfernen der Opferschicht 3 (Figur 2) und gegebenenfalls dem Freistellen der mikromechanischen Struktur 2 wird abschließend die permeable Schicht 5 mit einer Abscheidungsschicht 7 verschlossen. Die permeable Schicht 5 und die Abscheidungsschicht 7 bilden sodann gemeinsam eine Verkappung 4 des mikromechanischen Bauelements 10. Durch die Porengröße der permeablen Schicht 5 von etwa 10 Nanometer bis 500 Nanometer lässt sich diese vorteilhaft mittels Schichtdeposition wieder verschließen. Dies erfolgt vorzugsweise durch Abscheidung von Siliziumkarbid, Siliziumdioxid, Siliziumnitrid, Siliziumgermanium oder polykristallinem Silizium, besonders bevorzugt im PECVD Prozess bei vorteilhaft niedrigen Temperaturen von etwa 300 0C bis 400 0C, welche das mikromechanische Bauelement nicht beschädigen. Bei der Deposition der Abscheidungsschicht 7 lässt sich vorteilhaft ein definierter Prozessdruck in dem Bauteil 10 einstellen.

Claims

Patentansprüche
1. Mikromechanisches Bauelement (10) mit einem Substrat (1), mit einer mikromechanischen Struktur (2), wobei eine Verkappung (4) vorgesehen ist, dadurch gekennzeichnet, dass die Verkappung (4) eine auf dem Substrat (1) aufgebrachte, permeable Schicht (5) aufweist, welche durch eine Abscheidungsschicht (7) verschlossen ist.
2. Bauelement (10) nach Anspruch 1, dadurch gekennzeichnet, dass die permeable Schicht (5) resistent gegenüber einem Ätzmedium zum Ätzen einer Opferschicht (3) und/oder der mikromechanischen Struktur (2) ist, insbesondere ohne eine Vorbehandlung.
3. Bauelement (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die permeable Schicht (5) eine Dünnschichtkappe aus porösem Siliziumkarbid, SiC oder aus porösem Aluminiumoxid, AI2O3 ist.
4. Bauelement (10) nach Anspruch 1, dadurch gekennzeichnet, dass die permeable Schicht (5) Poren aufweist, wobei die Poren vorzugsweise Durchmesser zwischen 10 Nanometer und 500 Nanometer aufweisen.
5. Bauelement (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die permeable Schicht (5) durch einen elektrochemischen Ätzprozess hergestellt ist.
6. Bauelement (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen der Abscheidungsschicht (7) und dem Substrat (1) eine vorgegebene Gasatmosphäre, insbesondere ein vorgegebener Innendruck, vorgesehen ist.
7. Verfahren zur Herstellung eines mikromechanischen Bauelements (10) mit einem Substrat (1), mit einer mikromechanischen Struktur (2), dadurch gekennzeichnet, dass eine Verkappung (4) durch folgende Schritte hergestellt wird:
- Erzeugen einer permeablen Schicht (5),
- Ätzen einer Opferschicht (3) und - Verschließen der permeablen Schicht (5) durch Abscheiden einer Abscheidungs- schicht (7).
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Erzeugung der permeablen Schicht (5) durch Auftragen einer Kappenschicht (8) und nachfolgendes Po- rosifizieren der Kappenschicht (8) erfolgt, wobei das Porosifizieren vorzugsweise durch elektrochemisches Ätzen erfolgt.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Opferschicht (3) elektrisch leitfähig abgeschieden wird.
10. Verfahren nach Anspruch 7 bis 9, dadurch gekennzeichnet, dass bei dem Ätzen der Opferschicht (3) auch eine Freistellung der mikromechanischen Struktur (2) erfolgt.
PCT/EP2008/050146 2007-02-21 2008-01-08 Mikromechanisches bauelement und verfahren zur herstellung eines mikromechanischen bauelements WO2008101745A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007008380.9 2007-02-21
DE102007008380.9A DE102007008380B4 (de) 2007-02-21 2007-02-21 Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements

Publications (1)

Publication Number Publication Date
WO2008101745A1 true WO2008101745A1 (de) 2008-08-28

Family

ID=39472033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050146 WO2008101745A1 (de) 2007-02-21 2008-01-08 Mikromechanisches bauelement und verfahren zur herstellung eines mikromechanischen bauelements

Country Status (2)

Country Link
DE (1) DE102007008380B4 (de)
WO (1) WO2008101745A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042432A1 (de) * 2008-09-29 2010-04-01 Robert Bosch Gmbh Verfahren zur Herstellung eines Halbleiterbauelements
FR2994332B1 (fr) * 2012-07-31 2015-05-15 Commissariat Energie Atomique Procede d'encapsulation d'un dispositif microelectronique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040245586A1 (en) * 2003-06-04 2004-12-09 Aaron Partridge Microelectromechanical systems having trench isolated contacts, and methods for fabricating same
WO2006081636A1 (en) * 2005-02-04 2006-08-10 Interuniversitair Microelektronica Centrum (Imec) Method for encapsulating a device in a microcavity
WO2008046682A1 (de) * 2006-10-19 2008-04-24 Robert Bosch Gmbh Verfahren zur herstellung eines mikromechanischen bauelementes mit einer dünnschicht-verkappung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19537814B4 (de) * 1995-10-11 2009-11-19 Robert Bosch Gmbh Sensor und Verfahren zur Herstellung eines Sensors
DE19961578A1 (de) * 1999-12-21 2001-06-28 Bosch Gmbh Robert Sensor mit zumindest einer mikromechanischen Struktur und Verfahren zur Herstellung
US7527721B2 (en) * 2003-05-07 2009-05-05 Microfabrica Inc. Electrochemical fabrication method for producing multi-layer three-dimensional structures on a porous dielectric
WO2005078458A1 (en) * 2004-02-05 2005-08-25 Analog Devices, Inc. Capped sensor
DE102005015730A1 (de) * 2005-04-06 2006-10-12 Robert Bosch Gmbh Mikromechanisches Bauelement und ein Verfahren zur Herstellung eines derartigen Bauelementes
US20060273065A1 (en) * 2005-06-02 2006-12-07 The Regents Of The University Of California Method for forming free standing microstructures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040245586A1 (en) * 2003-06-04 2004-12-09 Aaron Partridge Microelectromechanical systems having trench isolated contacts, and methods for fabricating same
WO2006081636A1 (en) * 2005-02-04 2006-08-10 Interuniversitair Microelektronica Centrum (Imec) Method for encapsulating a device in a microcavity
WO2008046682A1 (de) * 2006-10-19 2008-04-24 Robert Bosch Gmbh Verfahren zur herstellung eines mikromechanischen bauelementes mit einer dünnschicht-verkappung

Also Published As

Publication number Publication date
DE102007008380A1 (de) 2008-08-28
DE102007008380B4 (de) 2017-05-11

Similar Documents

Publication Publication Date Title
EP1846319B1 (de) Mikromechanisches bauelement und entsprechendes herstellungsverfahren
US10287697B2 (en) Nano-structure and method of making the same
DE102012210472A1 (de) Verfahren zum Herstellen eines Bauelements mit einer elektrischen Durchkontaktierung
WO2001046066A2 (de) Sensor mit zumindest einer mikromechanischen struktur und verfahren zur herstellung
WO2005118463A1 (de) Mikromechanisches bauelement mit mehreren kammern und herstellungsverfahren
DE10006035A1 (de) Verfahren zur Herstellung eines mikromechanischen Bauelements sowie ein nach dem Verfahren hergestelltes Bauelement
DE102010008044A1 (de) MEMS-Mikrofon und Verfahren zur Herstellung
DE102012201304A1 (de) Mikromechanische Feststoffelektrolyt-Sensorvorrichtung und entsprechendes Herstellungsverfahren
EP1274648A1 (de) Mikromechanisches bauelement und entsprechendes herstellungsverfahren
US9359195B2 (en) Method of forming a nano-structure
DE102013209266A1 (de) Bauelement mit einem Hohlraum
DE102012213313B4 (de) Mikromechanische Struktur
DE102007008380B4 (de) Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
WO2002051742A2 (de) Mikromechanisches bauelement und entsprechendes herstellungsverfahren
DE102009027898B4 (de) Herstellungsverfahren für ein mikromechanisches Bauelement
WO2007074017A1 (de) Mikromechanisches bauelement mit kappe
DE19940512A1 (de) Verfahren zur Verkappung eines Bauelementes mit einer Kavernenstruktur und Verfahren zur Herstellung der Kavernenstruktur
EP1716070B1 (de) Mikromechanischer sensor
DE102017213636A1 (de) Verfahren zur Herstellung von dünnen MEMS Chips auf SOI Substrat und mikromechanisches Bauelement
DE102010001021B4 (de) Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
DE102009046081B4 (de) Eutektische Bondung von Dünnchips auf einem Trägersubstrat
US10927472B2 (en) Method of forming a micro-structure
DE19964638B3 (de) Verfahren zur Herstellung eines Sensors mit zumindest einer mikromechanischen Struktur
WO2023041250A1 (de) Mikromechanisches bauelement
WO2000022657A1 (de) Verfahren zur mikrostrukturierung von gläsern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08701313

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08701313

Country of ref document: EP

Kind code of ref document: A1