WO2008101522A1 - Akkomodative intraokularlinse - Google Patents
Akkomodative intraokularlinse Download PDFInfo
- Publication number
- WO2008101522A1 WO2008101522A1 PCT/EP2007/006802 EP2007006802W WO2008101522A1 WO 2008101522 A1 WO2008101522 A1 WO 2008101522A1 EP 2007006802 W EP2007006802 W EP 2007006802W WO 2008101522 A1 WO2008101522 A1 WO 2008101522A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- lens part
- intraocular
- intraocular lens
- lens according
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1602—Corrective lenses for use in addition to the natural lenses of the eyes or for pseudo-phakic eyes
- A61F2/161—Posterior chamber lenses for use in addition to the natural lenses of the eyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1602—Corrective lenses for use in addition to the natural lenses of the eyes or for pseudo-phakic eyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1624—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
- A61F2/1635—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside for changing shape
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0018—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
Definitions
- the invention relates to an accommodative intraocular lens for phaque, d. H. naturally lenticular eyes according to the preamble of claim 1.
- art lenses are known in the art, which are added to the natural eye lens by implantation.
- the implantation of such an intraocular lens is done as an additional artificial lens to the natural, biological eye lens.
- the artificial lens is intended to compensate for a refractive error and replace a pair of glasses, or make it more compatible, the implantation usually takes place via a corneal incision with foldable or rigid artificial lenses.
- BEST ⁇ TI ⁇ UNO ⁇ KOWt An object of the invention is to provide an improved intraocular artificial lens.
- Another object is to provide an intraocular artificial lens which, when implanted into the eye, significantly reduces both the lack of accommodation by age and compensates for optical refractive errors.
- the invention is based on making an intraocular lens accommodative, in particular pneumatic, so that an artificial lens can be added in addition to the natural eye lens, surgically implanted into the eye, significantly reducing both the lack of accommodation by age and compensating for optical refractive errors, and thereby as long as possible a high visual acuity without applicable aids such as glasses.
- the accommodation capability of the eye which is still present even in old age, is utilized, whereby the effectiveness of the reduced accommodation in old age is increased many times over by the optical and mechanical properties of the artificial lens according to the invention.
- the effect of an improved effect of the residual accommodation existing in old age is achieved by providing a flexible artificial lens with a refractive index close to 1, which is surrounded by optically active media with a larger Refractive indices, for example, from about 1.3 to 1.4, is brought by the accommodative movement or deflection of the natural lens in a concave shape.
- the overall refractive power of the eye is enhanced by forcing a very low refractive index artificial medium, driven by the accommodative motion of the natural lens, into an increasingly concave shape, thus increasing the overall refractive power of the eye, thereby enabling effective near-focus.
- the difference in refractive indices of the individual optical elements determines the magnitude of the total refractive power of an optical system.
- the difference in refractive indices is about 0.07.
- the difference in refractive indices between a flexible liquid or gaseous lens is up to 0.386 depending on the material. Accordingly, an accommodative lens curvature which, at a small refractive index difference of 0.053, causes only a power change of 0.5 diopters, becomes much more efficient at an index difference of 0.386 microns.
- phakic intraocular lens according to the invention will be described or explained in more detail below purely by way of example with reference to a posterior chamber lens.
- Such an intraocular lens as a posterior chamber lens can be implanted between the natural biological lens and the iris.
- the lens-facing side of the artificial lens then consists of a thin layer of the artificial lens carrier material.
- Included in the Artificial lens is a cavity, which can also be filled with gas, liquid, oil or a solid, for the operation of this artificial lens according to the invention ideally with a gas.
- the side facing the rainbow skin consists of a thicker layer of the artificial lens carrier material or of another material.
- possibilities of volume compensation of the void filling are created in order to allow the internal lens to act.
- With a gaseous design of the inner space of the artificial lens atmospheric pressure fluctuations are thereby compensated. With this configuration, the radius of the outer side remains largely stable with accommodation-induced reduction in radius of the inner side of the artificial lens, and the inner lens deforms.
- the inventive artificial lens is composed of three functionally different components or sections, which are preferably formed from biologically inert materials that do not react chemically with each other and are completely diffusion-tight and optically clear for the substances of the artificial lens:
- a hydrophilic surface design of the flexible component can be used to ensure a stable
- the shape of the flexible component is advantageously designed so that the Thickness continuously increases from the center to the periphery.
- An intermediate component with a refractive index lower than that of the surrounding optical media (natural lens, aqueous humor).
- This component directly abuts the flexible component and follows the movements of the flexible component at full deflection.
- media with a low, in particular very low refractive index are required.
- gases and some liquids are preferably met by gases and some liquids. According to the invention, preference is given to using gases or fluid media which are not capable of being diffused by the lens materials used. The requirement for biologically inert gases or liquids can be limited in this area to the effect that even those substances can be used which are not inert but completely harmless.
- all low-boiling substances are suitable, which go over at the physiological temperatures and pressures within the human eye in the gaseous state and which are biologically, but at least for the lens material used chemically inert, whereby diffusion-tightness of the lens material must be ensured.
- these include, for example
- a rigid or relatively inflexible component This component includes the gaseous or liquid component through a fully sealed circular connection with the flexible component in the periphery.
- the peripheral thickening of the flexible component is compensated in the inflexible component by a central thickening. Together with the flexible component, this forms the shape of the gaseous or liquid component.
- the inflexible component is also suitable for taking corrections for defective vision.
- the joining of solid and flexible component creates a gap-shaped space between the two, which contains the optically active zone for accommodation gain by changing the shape of the gaseous or liquid component.
- the gaseous or liquid component which is referred to below as a gas lens
- optically ineffective ie the interfaces of flexible and inflexible component are suitably parallel to each other.
- the natural lens By accommodative movement of the natural lens, its reduced radius of curvature is transmitted to the radius of curvature of the flexible component, and thus the gas lens subsequently becomes concave in nature.
- the change in shape of the gas lens would thereby possibly lead to a pressure increase within the gas lens without compensation mechanisms, whereby the transmission of changes in the radii of curvature of the natural lens would be hindered on the gas lens, since pressure differences would be overcome.
- the excess amount of gas or liquid from the gap in the periphery can be removed through peripheral openings in a corresponding marginal space where it is then ready for repatriation, or by a flexible connection between flexible component and inflexible component is a deflection of the inflexible component in the direction of the iris, whereby a pressure relief is ensured. Due to the very small volumes, these compensatory movements are unproblematic with regard to the spatial conditions that exist within the eye. Since a certain hydrostatic pressure gradient can exist depending on the position, the inflexible component is not displaced equidistant in the direction of the iris at all points during accommodation, as a result of which a slight prismatic effect can occur.
- the periphery of the flexible component can be made double-layered, which can be ensured, for example, by the greater peripheral thickness. Towards the center, both layers merge. The inflexible component is attached to the iris-facing layer. When pressure compensation, the two layers are lifted from each other, or again approximated.
- the double-layeredness of the periphery of the flexible component can be produced relatively easily during manufacture on a lathe-like device by means of a cut whose edges are to be rounded.
- diffusion-resistant materials eg hydrophobic acrylates
- non or extremely slowly diffusing gases such as, for example, large-atom noble gases or molecular compounds.
- the fringes of the artificial lens have reflecting structures, reflection suppressing or reducing measures such as e.g. the blackening of the lens material to be made.
- the material can be treated in a light-tight manner in the area of the compensation chambers in the peripheral region.
- Fig.la-b is the schematic representation of the accommodation of a natural lens
- FIG. 1a-b shows the schematic representation of the accommodation of a natural lens 1, FIG. 1a representing the relaxed, unaccommodated resting state of the lens 1 and FIG. 1b the accommodated state.
- 2a-b the schematic representation of the accommodation of a first embodiment of an accommodative artificial or intraocular lens according to the invention with a one-piece lens body 2 and a cavity 3 incorporated therein for enhancing the refractive effect of the accommodative residual power of the natural lens 1.
- the lens body has a first planar lens portion 2a and a second planar lens portion 2b, wherein the first lens portion 2a is formed for direct or indirect contacting of the natural lens of the human eye and the outwardly oriented second lens portion 2b is opposite.
- FIG. 2a shows the relaxed, unaccommodated resting state of the artificial lens
- FIG. 2b the accommodated state.
- the front and back surfaces of the cavity 3 can also be formed so that they are parallel to each other in Vietnameseakkomod striv state, ie without externally generated deformation, wherein the first lens part 2a in the central region of the least strength and the second lens part 2b in the central region has its greatest strength.
- the artificial lens is largely adapted to the front curvature of the natural lens 1 in order to conform to it in the same direction as possible and to contact it in a planar manner.
- the curvature change of the lens front surface of the natural lens 1 is shown in FIG. 1b, the artificial lens experiences the same changes with its rear surface, ie the first lens part 2a, the artificial lens floating on a thin film of liquid on the natural eye lens.
- the first lens part 2 a may also have a hydrophilic coating for stabilizing a liquid layer between the artificial lens and the natural lens 1.
- the carrier material of the lens body 2 can in this case consist of conventional transparent plastics, as they are customary in ophthalmology (silicone, acrylates, hydrogels, etc.).
- first lens part 2a and second lens part 2b By forming different thicknesses for the first lens part 2a and second lens part 2b can be achieved that the thicker second lens part 2b is deformed to a lesser extent by the residual accommodation of the eye than the comparatively thinner first lens part 2a.
- the peripheral regions of the first and / or second lens part 2a, 2b may be thicker than the corresponding central regions, in particular with a continuous and stepless transition.
- the additional accommodative effect also results from a cavity design of the artificial lens, wherein the cavity 3 is preferably filled with transparent liquid, transparent gas or even a transparent and deformable solid having inert properties and optical purity.
- the effect of the improved effect of the Age existing Restakkommodation is achieved in that the - for example.
- Gas-filled - cavity 3 can be considered as included in the support lens further lens and is brought by the accommodative movement or deflection in a more concave shape.
- the cavity 3 is designed such that, given a change in the radius of the first lens part 2a by accommodative movements of the natural lens 1 in the eye, a comparatively smaller radius change of the second lens part 2b takes place, resulting in a concavity change of the cavity 3.
- the optical material of the inner liquid or gas lens is chosen so that its refractive index is smaller than that of the natural lens and the surrounding aqueous humor. This requirement is met by gases and some liquids.
- the intraocular lens With a corresponding configuration of the intraocular lens, pockets or peripheral compensation volumes 2c arranged in the accommodated state form on the edge for volume compensation of the cavity filling during the deformation of the overall structure.
- the internal pressure can be kept constant, so that a pressure compensation is effected.
- the lens material may be chosen so that a filling gas in the cavity 3 as a gas lens does not diffuse through the lens material.
- Another point to consider in selecting the lens material is the permeability to other gases present in dissolved or blood-deposited form in the human body, such as, in particular, oxygen or nitrogen.
- FIG. 3 shows a second embodiment of the inventive lens with a composite structure in a schematic representation.
- the structure is not made in one piece but has a flexible membrane 4 as the natural lens of the eye contacting component and thus as a first lens part.
- a comparatively inflexible front panel 5 is arranged as a second lens part, wherein the components are fixed by a flexible connection 6.
- This rigid front plate 5, for example, allows the incorporation of optical corrections to compensate for refractive errors of the eye.
- a cavity 3 ' is formed, which may have a gas or air filling.
- the artificial lens may have a reinforcing structure 7, e.g. in the form of a hollow, circumferential segmented ring.
- ballast weights in particular annular weights in the peripheral zones, can be accommodated in a similar manner to compensate for gas-filling-related buoyancy effects. If these ballast weights are linked together by a mechanically stabilizing flexible connection, the entire lens body is stabilized.
- FIG. 4 The influence of a variable gas lens on the refractive power of the biological lens in the interior of the eye is clarified in FIG. 4 on the basis of the results of an exemplary calculation.
- the underlying calculation assumes that a flexible gaseous lens is positioned between the iris and the biological lens. This gaseous lens is enclosed in a flexible membrane and varied in refractive power.
- the change in the refractive power of the gas lens is achieved by using the amplification of the curvature of the biological lens in the accommodation, to bring the gas lens into a concave shape.
- the iris-facing side of the gas lens remains constant. For the lens calculations, a normal-sighted eye was assumed, which does not require any optical correction in the distance.
- the front and rear surfaces of the gas lens are parallel to each other, so that no optical effect in the sense of a collecting or dispersing effect arises (remote accommodation).
- the optical parameters of the flexible and the rigid part of the artificial lens are dimensioned so that no collecting or scattering effect arises in the entirety, ie the function of the artificial lens is based only on the change in shape of the gas lens.
- the flexible and the rigid part of the artificial lens do not have a collecting or scattering effect, these proportions were not taken into account in the lens calculation.
- the thickness of the artificial lens has a certain proportion of the total refraction, however, this effect is many times smaller than the total effect of the artificial lens with change in shape of the gas lens, so that the principle of the artificial lens is not significantly affected thereby. Only the calculation of the effect of the thickness of the artificial lens requires knowledge of the associated refractive indices. This ultimately means that a simplified model without consideration of the artificial lens thickness is used.
- the expected increase in the power change in accommodation is used to support residual accommodation in old age during presbyopia.
- the radius of curvature of the lens front surface is reduced here in increments of 0.5 or 0.25 mm. In each case 8 calculations are carried out with and without gas lens.
- the calculation is based on the following relationships
- This term describes the refractive effect of the biological lens in aqueous humor on its anterior surface. If the refractive effect of the biological lens on its front surface is to be determined together with the superior gas lens, the following relationships result from this:
- f focal length (here the fraction of the lens front surface on the total focal length)
- D diopters
- nk W refractive index of the aqueous humor (1, 336)
- ru refractive index of the biological lens (1,386)
- n g i refractive index of the gas lens (1, 0003)
- r g i radius of the gas lens on the front surface towards the iris (10 mm)
- ri radius of the gas lens on the rear surface, or the
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Eine phake Intraokularlinse weist einen Linsenkörper aus optisch transparentem Linsenmaterial mit einem ersten flächigen Linsenteil (4) und einem gegenüberliegenden zweiten flächigen Linsenteil (5) auf, wobei der erste Linsenteil (4) zur Kontaktierung der natürlichen Linse des menschlichen Auges ausgebildet ist. Der erste Linsenteil (4) zeigt dabei eine gegenüber dem zweiten Linsenteil (5) höhere Deformierbarkeit, wobei zwischen dem ersten Linsenteil (4) und dem zweiten Linsenteil (5) ein Hohlraum (3') im Linsenkörper ausgebildet ist.
Description
Akkommodative Intraokularlinse
Die Erfindung betrifft eine akommodative Intraokularlinse für phake, d. h. naturentsprechend linsenhaltige Augen nach dem Oberbegriff des Anspruchs 1.
Zur Korrektur von Refraktionsfehlern des menschlichen Auges sind im Stand der Technik Kunstlinsen bekannt, die zu der natürlichen Augenlinse durch Implantation hinzugefügt werden. In den gängigen Verfahren erfolgt die Einpflanzung einer solchen intraokularen Linse als zusätzliche Kunstlinse zu der natürlichen, biologischen Augenlinse. Die Kunstlinse soll dabei einen Refraktionsfehler ausgleichen und eine Brille ersetzen, bzw. verträglicher machen, wobei die Einpflanzung üblicherweise über einen Hornhautschnitt mit faltbaren oder starren Kunstlinsen erfolgt.
In den Verfahren des Stands der Technik werden üblicherweise zwei Implantationsorte gewählt:
a.) Vor der Iris als so genannte Vorderkammerlinse b.) Zwischen Iris und natürlicher Linse als sogenannte Hinterkammerlinse
Bisherige Linsen, die zur Implantation in Augen mit natürlicher Linse benutzt werden, bestehen aus Silikon,
Hydrogel oder aus starren wie flexiblen Acrylaten. Diese
Materialien sind vielfach bewährt. Bislang konnte damit zwar ein Refraktionsfehler ausgeglichen werden, jedoch findet die im Alter zunehmende Akkommodationsschwäche
(Alterssichtigkeit/Presbyopie) in den phaken Linsen keine
Korrektur, so dass wiederum eine zusätzliche Korrektur, z.
B. durch eine Brille erforderlich wird.
BESTÄTIβUNOβKOWt
Eine Aufgabe der Erfindung besteht darin, eine verbesserte intraokulare Kunstlinse bereitzustellen.
Eine weitere Aufgabe besteht darin, eine intraokulare Kunstlinse zur Verfügung zu stellen, die, in das Auge implantiert, sowohl den Mangel der Akkommodation durch Alter in erheblichem Maße reduziert als auch optische Refraktionsfehler ausgleicht.
Diese Aufgaben werden durch die Gegenstände des Anspruchs 1 oder der abhängigen Ansprüche gelöst bzw. die Lösungen weitergebildet .
Die Erfindung basiert darauf, eine Intraokularlinse akkommodativ, insbesondere pneumatisch, auszubilden, so dass eine zusätzlich zur natürlichen Augenlinse hinzufügbare Kunstlinse entsteht, die in das Auge chirurgisch implantiert, sowohl den Mangel der Akkommodation durch Alter in erheblichem Maße reduziert als auch optische Refraktionsfehler ausgleicht und dadurch möglichst lange eine hohe Sehschärfe ohne anwendbare Hilfsmittel wie Brillen ermöglicht.
Erfindungsgemäß wird dabei die Akkommodationsfähigkeit des Auges, die auch im Alter noch vorhanden ist, genutzt, wobei durch die erfindungsgemässen optischen und mechanischen Eigenschaften der Kunstlinse die Effektivität der im Alter reduzierten Akkommodation um ein Vielfaches erhöht wird. Der Effekt einer verbesserten Wirkung der im Alter vorhandenen Restakkommodation wird dadurch erzielt, dass eine flexible Kunstlinse mit einem Brechungsindex nahe 1, die umgeben ist von optisch wirksamen Medien mit grosserem
Brechungsindices, z.B. von ca. 1,3 bis 1,4, durch die akkommodative Bewegung bzw. Auslenkung der natürlichen Linse in eine konkave Form gebracht wird. Die Gesamtbrechkraft des Auges wird also dadurch erhöht, indem ein künstliches Medium mit sehr geringem Brechungsindex durch die akkommodative Bewegung der natürlichen Linse angetrieben formverändert wird, in eine zunehmend konkave Form getrieben wird und somit die Gesamtbrechkraft des Auges erhöht, womit eine effektive Nahfokussierung ermöglicht wird.
Grundsätzlich bestimmt die Differenz der Brechungsindizes der einzelnen optischen Elemente die Größe der Gesamtbrechkraft eines optischen Systems. Für die natürliche Linse im Kontakt mit dem umgebenden Kammerwasser liegt die Differenz der Brechungsindizes bei ca. 0,07. Die Differenz der Brechungsindizes zwischen einer flexiblen flüssigen bzw. gasförmigen Linse liegt materialabhängig bei bis zu 0,386. Entsprechend wird eine akkommodative Linsenwölbung die bei kleiner Brechungsindexdifferenz von 0,053 nur eine Brechkraftänderung von 0,5 Dioptrien bewirkt, bei einer Indexdifferenz von 0,386 um ein vielfaches effizienter.
Die erfindungsgemässe phake Intraokularlinse wird nachfolgend rein beispielhaft anhand einer Hinterkammerlinse näher beschrieben oder erläutert.
Eine solche Intraokularlinse als Hinterkammerlinse kann zwischen der natürlichen biologischen Linse und die Regenbogenhaut implantiert werden. Die linsenzugewandte Seite der Kunstlinse besteht dann aus einer dünnen Schicht des Kunstlinsenträgermaterials . Eingeschlossen in die
Kunstlinse ist ein Hohlraum, welcher auch mit Gas, Flüssigkeit, Öl oder auch einem Feststoff gefüllt werden kann, für die Funktionsweise dieser erfindungsgemäßen Kunstlinse idealerweise mit einem Gas. Die der Regenbogenhaut zugewandte Seite besteht aus einer dickeren Schicht des Kunstlinsenträgermaterials oder auch aus einem anderen Material. Im peripheren Bereich der Kunstlinse sind Möglichkeiten des Volumenausgleichs der Hohlraumfüllung geschaffen, um die Binnenlinse wirken lassen zu können. Bei gasförmiger Ausgestaltung des Binnenraums der Kunstlinse werden atmosphärische Druckschwankungen hierdurch kompensiert. Durch diese Ausgestaltung bleibt bei akkommodationsbedingter Radienverkleinerung der Innenseite der Kunstlinse der Radius der Außenseite weitgehend stabil und die Binnenlinse verformt sich.
Damit setzt sich die erfindungsgemässe Kunstlinse aus drei funktional unterschiedlichen Komponenten oder Abschnitten zusammen, die vorzugsweise aus biologisch inerten Materialien ausgebildet sind, die chemisch nicht miteinander reagieren und für die Substanzen der Kunstlinse völlig diffusionsdicht, sowie optisch klar sind:
• Eine flexible Komponente, die durch einen Flüssigkeitsfilm getrennt, der natürlichen Linse anliegt, so dass akkommodative Bewegungen der natürlichen Linse von dieser flexiblen Komponente direkt und nach
Möglichkeit in vollem Umfang nachvollzogen werden. Eine hydrophile Oberflächengestaltung der flexiblen Komponente kann zur Gewährleistung einer stabilen
Flüssigkeitsschicht zwischen natürlicher Linse und
Kunstlinse erfolgen. Die Form der flexiblen Komponente wird dabei vorteilhafterweise so gestaltet, dass die
Dicke vom Zentrum zur Peripherie hin kontinuierlich zunimmt.
Eine Zwischenkomponente mit einem Brechungsindex, der unter dem der umgebenden optischen Medien (natürliche Linse, Kammerwasser) liegt. Diese Komponente liegt der flexiblen Komponente direkt an und folgt den Bewegungen der flexiblen Komponente in voller Auslenkung. Für den Zweck der Brechkraftverstärkung bei geringer Restakkommodation sind Medien mit geringem, insbesondere sehr geringem Brechungsindex erforderlich. Diese Bedingungen werden bevorzugt durch Gase und einige Flüssigkeiten erfüllt. Erfindungsgemäss kommen bevorzugt Gase bzw. fluide Medien zum Einsatz, die nicht durch die verwendeten Linsenmaterialien diffusionsfähig sind. Die Forderung nach biologisch inerten Gasen bzw. Flüssigkeiten kann in diesem Bereich dahingehend eingeschränkt werden, dass auch solche Substanzen eingesetzt werden können die zwar nicht inert aber völlig unbedenklich sind. Grundsätzlich sind alle niedrig siedenden Substanzen geeignet, die bei den physiologischen Temperaturen und Drücken innerhalb des menschlichen Auges in den gasförmigen Zustand übergehen und die biologisch, mindestens jedoch für das verwendete Linsenmaterial chemisch inert sind, wobei Diffusionsdichtigkeit des Linsenmaterials gewährleistet sein muss. Hierzu gehören beispielsweise
■ Kohlendioxid,
■ Edelgase, d.h. Argon, Neon, Krypton, Xenon, sowie ■ Schwefelhexafluorid,
■ Octafluorpentan,
■ Perfluorbutan,
■ Perfluorpentan,
■ Octafluorcyclopentan,
■ Perfluorcyclopentan,
■ Perfluotmethylcyclopentan,
■ Perfluorcyclophexan, ■ Hydrofluorether,
■ Perfluorketon oder
■ Perfluorcyclohexan.
Einige dieser Substanzen weisen zwar eine Toxizität auf, sind aber bei ausreichender Dichtigkeit der umschliessenden Materialien, zumindest theoretisch, einsetzbar.
• Eine starre oder vergleichsweise unflexible Komponente. Diese Komponente schließt die gasförmige, bzw. flüssige Komponente durch eine völlig dichte zirkuläre Verbindung mit der flexiblen Komponente in der Peripherie ein. Die periphere Verdickung der flexiblen Komponente wird bei der unflexiblen Komponente durch eine zentrale Verdickung kompensiert. Zusammen mir der flexiblen Komponente bildet diese die Form der gasförmigen bzw. flüssigen Komponente. Die unflexible Komponente ist weiterhin dafür geeignet Korrekturen für Fehlsichtigkeiten aufzunehmen. Durch das Zusammenfügen von fester und flexibler Komponente entsteht ein spaltförmiger Raum zwischen beiden, der die optisch aktive Zone zur Akkommodationsverstärkung durch Formveränderung der gasförmigen bzw. flüssigen Komponente enthält.
Im Zustand der Ferneinstellung des Auges ist die gasförmige bzw. flüssige Komponente, die im folgenden als Gaslinse bezeichnet wird, optisch unwirksam, d.h. die Grenzflächen von flexibler und unflexibler Komponente stehen zweckmäßigerweise parallel zueinander.
Durch eine akkommodative Bewegung der natürlichen Linse überträgt sich deren verringerter Krümmungsradius auf den Krümmungsradius der flexiblen Komponente und somit erhält die Gaslinse in der Folge eine konkave Charakteristik. Die Formveränderung der Gaslinse würde dabei unter Umständen ohne Kompensationsmechanismen zu einer Drucksteigerung innerhalb der Gaslinse führen, wodurch die Übertragung der Änderungen der Krümmungsradien der natürlichen Linse auf die Gaslinse behindert würden, da Druckdifferenzen zu überwinden wären.
Zur Druckkompensation sind zwei grundsätzliche unterschiedliche Mechanismen möglich. Zum Einen kann die überschüssige Gas- oder Flüssigkeitsmenge aus dem Spaltraum in die Peripherie durch periphere Öffnungen in einen entsprechenden ebenfalls randständigen Raum abgeführt werden, wo diese dann bedarfsentsprechend zur Rückführung bereitsteht, oder durch eine flexible Verbindung zwischen flexibler Komponente und unflexibler Komponente wird eine Auslenkung der unflexiblen Komponente in Richtung der Iris ermöglicht, wodurch eine Druckentlastung gewährleistet ist. Aufgrund der sehr geringen Volumina sind diese Ausgleichsbewegungen hinsichtlich der räumlichen Verhältnisse, die innerhalb des Auges bestehen, unproblematisch. Da lageabhängig ein gewisser hydrostatischer Druckgradient bestehen kann, wird die unflexible Komponente bei Akkommodation nicht an allen Punkten gleich weit in Richtung Iris verlagert, wodurch ein leichter prismatischer Effekt entstehen kann. Da dieser Effekt beidseitig und gleichsinnig auftritt, ist eine Wahrnehmung beim binokularen Sehvorgang nicht möglich.
Bei der Ableitung der verdrängten Gas- oder Flüssigkeitsmengen in periphere Membranräume der Kunstlinse ist zwar eine konstante Positionierung der unflexiblen Komponente zur flexiblen Komponente möglich, jedoch sind die Fertigungsschritte zur Herstellung einer solchen Linse erheblich aufwendiger. Da der Druckausgleich durch periphere Öffnungen erfolgt, lässt sich ggf. der Ausgleich extern durch beispielsweise Einsatz von Laserstrahlung manipulieren und somit ggf. das Ausmaß variieren
Um die unflexible Komponente beweglich zu applizieren kann die Peripherie der flexiblen Komponente doppellagig ausgeführt werden, was beispielsweise durch die größere periphere Dicke gewährleistbar ist. Zum Zentrum hin verschmelzen beide Lagen. Die unflexible Komponente wird an der iriszugewandten Lage befestigt. Bei Druckkompensation werden die beiden Lagen voneinander abgehoben, bzw. wieder einander angenähert. Die Doppellagigkeit der Peripherie der flexiblen Komponente lässt sich bei der Herstellung an einem drehbankähnlichen Gerät durch einen Schnitt, dessen Kanten abzurunden sind, vergleichsweise einfach erstellen.
Im Fall der Ausführung der Kunstlinse mit Gas ist insbesondere das Diffusionsverhalten zu berücksichtigen. Hier können entsprechend diffusionsdichte Materialien (z.B. hydrophobe Acrylate) verwendet werden sowie ergänzend oder alternativ die bereits erwähnten nicht oder nur extrem langsam diffundierenden Gase, wie z.B. grossatomige Edelgase oder molekulare Verbindungen. Gase die unter physiologischen Bedingungen entstehen und in die Linse hinein diffundieren können, müssen schon bei der Herstellung der Linse in solchen Konzentrationen eingebracht werden, dass sie am Implantationsort im
Diffusionsgleichgewicht mit den dort vorkommenden Gasen stehen.
Da die Randzonen der Kunstlinse reflektierende Strukturen aufweisen, können reflektionsunterdrückende oder -mindernde Maßnahmen, wie z.B. die Schwärzung des Linsenmaterials zu vorgenommen werden. Zur Vermeidung störender Lichtreflexe kann im Bereich der Ausgleichsräume im peripheren Bereich das Material lichtdicht behandelt werden.
Die erfindungsgemässe Kunstlinse wird nachfolgend anhand von in der Zeichnung schematisch dargestellten Ausführungsbeispielen rein beispielhaft näher beschrieben. Im einzelnen zeigen
Fig.la-b die schematische Darstellung der Akkommodation einer natürlichen Linse;
Fig.2a-b die schematische Darstellung der Akkommodation einer ersten Ausführungsform der erfindungsgemässen Linse;
Fig.3 die schematische Darstellung einer zweiten
Ausführungsform der erfindungsgemässen Linse und
Fig.4 den Einfluß einer variablen Gaslinse auf die Brechkraft der biologischen Linse im Augeninneren .
Fig.la-b zeigt die schematische Darstellung der Akkommodation einer natürlichen Linse 1, wobei Fig. Ia den entspannten, nicht akkommodierten Ruhezustand der Linse 1 und Fig. Ib den akkommodierten Zustand darstellen.
In den Fig.2a-b erfolgt die schematische Darstellung der Akkommodation einer ersten Ausführungsform einer erfindungsgemäßen akkommodativen Kunst- oder Intraokularlinse mit einem einstückigen Linsenkörper 2 und einem darin eingearbeiteten Hohlraum 3 zur Verstärkung der refraktiven Wirkung des akkommodativen Restvermögens der natürlichen Linse 1. Der Linsenkörper 2 weist ein erstes flächiges Linsenteil 2a und ein zweites flächiges Linsenteil 2b auf, wobei das erste Linsenteil 2a zur direkten oder indirekten Kontaktierung der natürlichen Linse des menschlichen Auges ausgebildet ist und dem nach außen orientierten zweite Linsenteil 2b gegenüberliegt. Fig.2a zeigt den entspannten, nicht akkomodierten Ruhezustand der Kunstlinse und Fig.2b den akkomodierten Zustand. Die Vorder- und Rückfläche des Hohlraums 3 können dabei auch so ausgebildet werden, dass sie im nichtakkomodierten Zustand, d.h. ohne extern erzeugte Deformation, parallel zueinander stehen, wobei das erste Linsenteil 2a im zentralen Bereich die geringste Stärke und das zweite Linsenteil 2b im zentralen Bereich seine größte Stärke aufweist.
Hierfür ist es notwendig, dass die Kunstlinse weitgehend der vorderseitigen Krümmung der natürlichen Linse 1 angepasst wird, um sich dieser möglichst gleichsinnig anzuschmiegen und flächig zu kontaktieren. Kommt es zu der in Fig. Ib dargestellten Krümmungsveränderung der Linsenvorderfläche der natürlichen Linse 1, so erfährt die Kunstlinse mit ihrer Rückfläche, d.h. dem ersten Linsenteil 2a, dieselben Veränderungen, wobei die Kunstlinse auf einem dünnen Flüssigkeitsfilm auf der natürlichen Augenlinse schwimmt. Durch entsprechende Ausgestaltung, z.B. mittels
einer Beschichtung mit einem Material mit erhöhtem Brechungsindex, erfährt die Kunstlinsenvorderflache, d.h. d.h. das zweite Linsenteil 2b, eine stärkere Brechkraft und die Brechkrafterhöhung der natürlichen Linse 1 wird verstärkt. Dies hat zur Folge, dass die restliche erhaltene Akkommodationsfähigkeit so gesteigert wird, dass eine mittlerweile verlorene oder gefährdete Lesefähigkeit wiedererlangt werden kann. Das erste Linsenteil 2a kann auch eine hydrophile Beschichtung zur Stabilisierung einer Flüssigkeitsschicht zwischen Kunstlinse und natürlicher Linse 1 aufweisen.
Das Trägermaterial des Linsenkörpers 2 kann hierbei aus üblichen durchsichtigen Kunststoffen bestehen, wie sie bisher in der operativen Augenheilkunde gebräuchlich sind (Silikon, Acrylate, Hydrogel etc.) Durch Ausbildung von unterschiedlichen Materialstärken für erstes Linsenteil 2a und zweites Linsenteil 2b kann erreicht werden, daß sich der dickere zweite Linsenteil 2b durch die Restakkommodation des Auges in geringerem Masse deformiert als der vergleichsweise dünner gehaltene erste Linsenteil 2a. Dabei können zur Erzielung einer hohen mechanischen Stabilität die peripheren Bereiche von erstem und/oder zweitem Linsenteil 2a, 2b dicker ausgebildet sein als die entsprechenden zentralen Bereiche, insbesondere mit einem kontinuierlichen und stufenlosen Übergang.
Der zusätzliche akkommodative Effekt resultiert zudem aus einer Hohlraumgestaltung der Kunstlinse, wobei der Hohlraum 3 vorzugsweise mit transparenter Flüssigkeit, transparentem Gas oder auch einem transparenten und deformierbaren Feststoff mit inerten Eigenschaften und optischer Reinheit gefüllt ist. Der Effekt der verbesserten Wirkung der im
Alter vorhandenen Restakkommodation wird dadurch erzielt, dass der - bspw. gasgefüllte - Hohlraum 3 als in die Trägerlinse eingeschlossene weitere Linse gelten kann und durch die akkommodative Bewegung bzw. Auslenkung in eine konkavere Form gebracht wird. Der Hohlraum 3 wird dabei so ausgebildet ist, dass bei einer Radiusveränderung des ersten Linsenteils 2a durch akkommodative Bewegungen der natürlichen Linse 1 im Auge eine demgegenüber vergleichsweise geringere Radiusveränderung des zweiten Linsenteils 2b erfolgt, so daß eine Konkavitätsveränderung des Hohlraums 3 resultiert.
Um hierdurch eine Zunahme der Gesamtbrechkraft des Auges zu erreichen, wird das optische Material der inneren Flüssigkeits- oder Gaslinse so zu so gewählt, dass dessen Brechungsindex kleiner ist als der der natürlichen Linse und des umgebenden Kammerwassers. Diese Forderung wird von Gasen und einigen Flüssigkeiten erfüllt.
Bei entsprechender Ausgestaltung der Intraokularlinse bilden sich im akkommodierten Zustand am Rand angeordneten Taschen oder periphere Kompensationsvolumina 2c zum Volumenausgleich der Hohlraumfüllung bei der Verformung der Gesamtstruktur. Hierdurch kann der Innendruck konstant gehalten werden, so daß eine Druckkompensation bewirkt wird. Das Linsenmaterial kann so gewählt werden, daß ein Füllgas im Hohlraum 3 als Gaslinse nicht durch das Linsenmaterial diffundiert. Ein weiterer bei der Auswahl des Linsenmaterials zu berücksichtigender Punkt ist die Durchlässigkeit für andere Gase, die in gelöster oder an Blutbestandteilen angelagerter Form im menschlichen Körper vorkommen, wie insbesondere Sauerstoff oder Stickstoff. Hier ist es vorteilhaft, ein für diese Gase durchlässiges
Linsenmaterial zur Druck-/Volumenkompensationen durch Ein- und Ausdiffusion zu wählen.
Fig.3 zeigt eine zweite Ausführungsform der erfindungsgemässen Linse mit zusammengesetztem Aufbau in schematischer Darstellung. In diesem Fall ist die Struktur nicht einstückig ausgeführt sondern weist eine flexible Membran 4 als die natürliche Linse des Auges kontaktierende Komponente und damit als erster Linsenteil auf. Ihr gegenüber ist eine vergleichsweise unflexible Frontplatte 5 als zweiter Linsenteil angeordnet, wobei die Komponenten durch eine flexible Verbindung 6 fixiert werden. Diese starre Frontplatte 5 erlaubt beispielsweise auch die Einarbeitung von optischen Korrekturen zur Kompensation von Brechungsfehlern des Auges.
Im Inneren der Linse ist wiederum eine Hohlraum 3' ausgebildet, der eine Gas- oder Luftfüllung aufweisen kann. Zur Erhöhung der mechanischen Stabilität kann die Kunstlinse eine Verstärkungsstruktur 7 aufweisen, z.B. in Form eines hohlen, umlaufenden segmentierten Rings. In der Peripherie können in ähnlicher Weise auch Ballastgewichte, insbesondere ringförmige Gewichte in den Randzonen, zur Kompensation von gasfüllungsbedingten Auftriebseffekten untergebracht werden. Werden diese Ballastgewichte durch eine mechanisch stabilisierende flexible Verbindung untereinander verkettet, so erfolgt eine Stabilisierung des gesamten Linsenkörpers.
Der Einfluß einer variablen Gaslinse auf die Brechkraft der biologischen Linse im Augeninneren wird in Fig.4 anhand der Ergebnisse einer beispielhaften Berechnung verdeutlicht.
Die zugrundeliegende Kalkulation geht davon aus, dass eine flexible gasförmige Linse zwischen Iris und biologischer Linse positioniert wird. Diese gasförmige Linse wird in einer flexiblen Membran eingeschlossen und in ihrer Brechkraft variiert. Die Veränderung der Brechkraft der Gaslinse wird dadurch erreicht, dass die Verstärkung der Krümmung der biologischen Linse bei der Akkommodation genutzt wird, die Gaslinse in eine konkave Form zu bringen. Die der Iris zugewandten Seite der Gaslinse bleibt hierbei konstant. Für die Linsenberechnungen wurde ein normalsichtiges Auge angenommen, welches in der Ferne keinerlei optische Korrektur benötigt. Entsprechend liegen die Vorder- und Rückfläche der Gaslinse parallel zueinander, sodass keine optische Wirkung im Sinne einer Sammel- oder Zerstreuungswirkung entsteht (Fernakkommodation) . Ebenso sind die optischen Parameter des flexiblen und des starren Teils der Kunstlinse so dimensioniert, dass kein Sammel- oder Zerstreuungseffekt in der Gesamtheit entsteht, d.h. die Funktion der Kunstlinse beruht nur auf der Formveränderung der Gaslinse.
Da also der flexible und der starre Teil der Kunstlinse keinen Sammel- oder Zerstreuungseffekt haben, wurden diese Anteile in der Linsenberechnung nicht berücksichtigt. Zwar hat die Dicke der Kunstlinse einen gewissen Anteil auf die Gesamtbrechung, jedoch ist diese Wirkung um ein vielfaches kleiner als die Gesamtwirkung der Kunstlinse bei Formveränderung der Gaslinse, sodass das Prinzip der Kunstlinse hierdurch nicht entscheidend tangiert wird. Lediglich zur Berechnung der Wirkung der Dicke der Kunstlinse ist die Kenntnis der dazugehörigen Brechungsindizes erforderlich. Dies bedeutet letztlich, daß
ein vereinfachtes Modell ohne Berücksichtigung der Kunstlinsendicke verwendet wird.
Zu den Materialien ist grundsätzlich festzustellen, daß in erster Linie in der Augenchirurgie übliche flexible und ggf. unflexible Substanzen eingesetzt werden können, wie z.B. Acrylate oder Siliconverbindungen. Für den unflexiblen
Teil der Kunstlinse gilt, dass dieser lediglich funktionell unflexibel sein muss, d. h. es kann durchaus ein flexibles Material verwendet werden, solange es die Bedingung der
Formstabilität bei akkomodierender Formänderung der
Gaslinse erfüllt.
Die zu erwartende Verstärkung der Brechkraftänderung bei Akkommodation wird genutzt, um die Restakkommodation im Alter bei Presbyopie zu unterstützen. Gegenübergestellt wird die Wirkung der Restakkommodation ohne und mit Gaslinse in Dioptrien, wobei hierbei zunächst die Brechkraft an der vorderen Linsenfläche ohne Gaslinse, d.h. unter physiologischen Bedingungen, ausgehend vom Zustand der Fernakkommodation (r = 10 mm) berechnet wird. Der Krümmungsradius der Linsenvorderfläche wird hierbei in Abstufungen von 0,5 bzw. 0,25 mm verringert. Es werden jeweils 8 Berechnungen ohne und mit Gaslinse durchgeführt.
Der Berechnung liegen hierbei folgende Beziehungen zugrunde
D=* (2) f
was nach Einsetzen
ergibt. Dieser Ausdruck beschreibt die brechende Wirkung der biologischen Linse im Kammerwasser an ihrer Vorderfläche. Soll die brechende Wirkung der biologischen Linse an ihrer Vorderfläche gemeinsam mit der vorgesetzten Gaslinse ermittelt werden, ergeben sich hieraus folgende Beziehungen:
Hierbei werden folgende Bezeichnungen verwendet
f = Brennweite (hier der Anteil der Linsenvorderfläche an der Gesamtbrennweite) D = Dioptrien nkW = Brechungsindex des Kammerwassers (1, 336) ru = Brechungsindex der biologischen Linse (1,386) ngi = Brechungsindex der Gaslinse (1, 0003) rgi = Radius der Gaslinse an der Vorderfläche zur Iris hin(10 mm) ri = Radius der Gaslinse an der Hinterfläche, bzw. der
Radius der biologischen Linse an der
Vorderfläche (maximal 10 mm)
Die resultierenden Ergebnisse sind in Fig.4 in tabellarischer Form dargestellt und verdeutlichen, daß eine
erfindungsgemäße gas- oder flüssigkeitsgefüllte Linse eine effektive Akkommodationshilfe darstellt.
Claims
1. Phake Intraokularlinse, insbesondere zur Presbyopiekorrektur, mit einem Linsenkörper (2) aus optisch transparentem Linsenmaterial, vorzugsweise aus Silikon oder Acrylat, mit einem ersten flächigen Linsenteil (2a, 4) und einem gegenüberliegenden zweiten flächigen Linsenteil (2b, 5), wobei der erste Linsenteil (2a, 4) zur Kontaktierung der natürlichen Linse des menschlichen Auges ausgebildet ist, dadurch gekennzeichnet:, dass der erste Linsenteil (2a, 4) eine gegenüber dem zweiten Linsenteil (2b, 5) höhere Deformierbarkeit aufweist und zwischen dem ersten Linsenteil (2a, 4) und dem zweiten Linsenteil (2b, 5) ein Hohlraum (3,3') im Linsenkörper (2) ausgebildet ist.
2. Intraokularlinse nach Anspruch 1, dadurch gekennzeichnet:, dass der Hohlraum (3,3') so ausgebildet ist, dass bei einer Krümmungsradiusveränderung des ersten Linsenteils (2a, 4) durch akkommodative Bewegungen der natürlichen Linse (1) im Auge eine demgegenüber vergleichsweise geringere oder keine Krümmungsradiusveränderung des zweiten Linsenteils (2b, 5) erfolgt, so daß eine Veränderung der Konkavität des Hohlraums (3,3') resultiert .
3. Intraokularlinse nach Anspruch 1 oder 2, dadurch gekennzeichnet:, dass der Hohlraum (3,3') mit
- einer Flüssigkeit,
- einem Gas oder - einem deformierbaren Feststoff als optisch transparentem Medium gefüllt ist, wobei das Medium einen gegenüber dem ersten und/oder zweiten Linsenteil (2a, 2b, 4, 5) geringeren Brechungsindex aufweist.
4. Intraokularlinse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zur Kompensation von Brechungsfehlern des Auges Korrekturen in den zweiten Linsenteil (2b, 5) eingearbeitet sind.
5. Intraokularlinse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet:, daß
Vorder- und Rückfläche des Hohlraums (3,3') im nichtakkomodierten Zustand parallel zueinander stehen, wobei der erste Linsenteil (2a, 4) im zentralen Bereich die geringste Stärke und der zweite Linsenteil (2b, 5) im zentralen Bereich seine größte Stärke aufweist.
6. Intraokularlinse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Linsenkörper (2) einstückig und mit einer ersten Linsenfläche als erstem Linsenteil (2a) und einer zweiten Linsenfläche als zweitem Linsenteil (2b) ausgebildet ist.
7. Intraokularlinse nach einem der vorangehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Linse einen zusammengesetzten Aufbau mit einer flexiblen Membran als erstem Linsenteil (4) und einer funktionell unflexible Frontplatte als zweitem Linsenteil (5) aufweist.
8. Intraokularlinse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Linse Kompensationsvolumina (2c) zur Druckkompensation aufweist, insbesondere in der Peripherie des Hohlraums (3,3').
9. Intraokularlinse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß periphere Bereiche von erstem und/oder zweitem Linsenteil (2a, 2b, 4, 5) dicker ausgebildet sind als die entsprechenden zentralen Bereiche, insbesondere mit einem kontinuierlichen und stufenlosen Übergang.
10. Intraokularlinse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der erste Linsenteil (4) in der Peripherie zirkulär doppellagig als hohler, umlaufender Ring ausgebildet ist.
11. Intraokularlinse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die peripheren Bereiche des Linsenkörpers (2) reflexmindernd und/oder lichtundurchlässig ausgebildet sind, insbesondere durch Schwärzung.
12. Intraokularlinse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der erste Linsenteil (2a, 4) eine hydrophile Beschichtung zur Stabilisierung einer Flüssigkeitsschicht zwischen Kunstlinse und natürlicher Linse aufweist.
13. Intraokularlinse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Hohlraum (3,3') als Gaslinse mit einem nicht durch das Linsenmaterial diffundierenden Füllgas ausgebildet ist.
14. Intraokularlinse nach Anspruch 13, dadurch gekennzeichnet, daß das Füllgas wenigstens eines der folgenden Gase ist ■ Kohlendioxid,
■ Edelgase, d.h. Argon, Neon, Krypton, Xenon, sowie
■ Schwefelhexafluorid,
■ Octafluorpentan,
■ Perfluorbutan, ■ Perfluorpentan,
■ Octafluorcyclopentan,
■ Perfluorcyclopentan,
■ Perfluotmethylcyclopentan,
■ Perfluorcyclophexan, ■ Hydrofluorether, ■ Perfluorketon oder
■ Perfluorcyclohexan.
15. Intraokularlinse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Linsenmaterial zur Druck-/Volumenkompensationen durch Ein- und Ausdiffusion für atmosphärische Gase, die in gelöster oder an Blutbestandteilen angelagerter Form im menschlichen Körper vorkommen, wie insbesondere Sauerstoff oder Stickstoff, durchlässig ist.
16. Intraokularlinse nach einem der vorangehenden Ansprüche, gekennzeichnet durch
Ballastgewichte, insbesondere ringförmige Gewichte, in den Randzonen zur Kompensation von gasfüllungsbedingten Auftriebseffekten.
17. Intraokularlinse nach Anspruch 16, dadurch gekennzeichnet, daß die Ballastgewichte durch eine mechanisch stabilisierende Fixierung untereinander verbunden sind.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/528,423 US20100161050A1 (en) | 2007-02-25 | 2007-08-01 | Accommodative intraocular lens |
AT07786490T ATE533439T1 (de) | 2007-02-25 | 2007-08-01 | Akkomodative intraokularlinse |
EP07786490A EP2124821B1 (de) | 2007-02-25 | 2007-08-01 | Akkomodative intraokularlinse |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007009502.5 | 2007-02-25 | ||
DE102007009502 | 2007-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008101522A1 true WO2008101522A1 (de) | 2008-08-28 |
Family
ID=38535957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/006802 WO2008101522A1 (de) | 2007-02-25 | 2007-08-01 | Akkomodative intraokularlinse |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100161050A1 (de) |
EP (1) | EP2124821B1 (de) |
AT (1) | ATE533439T1 (de) |
WO (1) | WO2008101522A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2535019A1 (de) | 2011-06-15 | 2012-12-19 | Ulfert Detmers | Akkommodative intraokulare Phake Kunstlinse mit hochbrechendem Medium |
DE202019104086U1 (de) | 2019-07-24 | 2019-08-19 | Valentin Videa | Akkommodative Intraokularlinse |
EP3843663A4 (de) * | 2018-08-30 | 2022-06-01 | Ocumetics Technology Corp. | Hybride akkommodative intraokularlinse und verfahren zur verwendung davon |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10049275B2 (en) | 2012-05-25 | 2018-08-14 | Paragon Crt Company Llc | Multicomponent optical device for visual and audible translation and recognition |
US8911078B2 (en) | 2012-05-25 | 2014-12-16 | Crt Technology, Inc. | Multicomponent optical device having a space |
US10712588B2 (en) | 2012-05-25 | 2020-07-14 | Paragon Crt Company Llc | Contact lens having a space |
US9241787B2 (en) * | 2013-02-13 | 2016-01-26 | Sifi Medtech Srl | Intraocular lens with a proofed surface |
US9310628B2 (en) * | 2013-08-27 | 2016-04-12 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens including ultra-thin optical parts |
US11938018B2 (en) | 2014-09-22 | 2024-03-26 | Onpoint Vision, Inc. | Intraocular pseudophakic contact lens (IOPCL) for treating age-related macular degeneration (AMD) or other eye disorders |
US10299910B2 (en) | 2014-09-22 | 2019-05-28 | Kevin J. Cady | Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method |
US10945832B2 (en) | 2014-09-22 | 2021-03-16 | Onpoint Vision, Inc. | Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method |
US11109957B2 (en) | 2014-09-22 | 2021-09-07 | Onpoint Vision, Inc. | Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0356050A1 (de) * | 1988-08-15 | 1990-02-28 | Storz Instrument Company | Akkommodierende intraokulare Linse |
FR2666735A1 (fr) * | 1990-09-13 | 1992-03-20 | Klw | Implant intra-oculaire a cavite interne. |
US20040082995A1 (en) * | 2002-10-25 | 2004-04-29 | Randall Woods | Telescopic intraocular lens implant for treating age-related macular degeneration |
EP1475055A1 (de) * | 2003-05-07 | 2004-11-10 | Visioncare Ophthalmic Technologies, Inc. | Teleskopintraocularlinse |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6406739B1 (en) * | 2000-01-12 | 2002-06-18 | Alcon Universal Ltd. | Coating compositions and methods for reducing edge glare in implantable ophthalmic lenses |
GR20000100291A (el) * | 2000-08-24 | 2002-05-24 | Σ. Χαριλαος Γκινης | Συμπιεστο εμφυτευμα για την αυξηση της οφθαλμικης ελαστικοτητας αι την προληψη των συσχετιζομενων με την ηλικια εκφυλιστικων παθησεων του οφθαλμου |
US7217288B2 (en) * | 2002-12-12 | 2007-05-15 | Powervision, Inc. | Accommodating intraocular lens having peripherally actuated deflectable surface and method |
-
2007
- 2007-08-01 AT AT07786490T patent/ATE533439T1/de active
- 2007-08-01 WO PCT/EP2007/006802 patent/WO2008101522A1/de active Application Filing
- 2007-08-01 US US12/528,423 patent/US20100161050A1/en not_active Abandoned
- 2007-08-01 EP EP07786490A patent/EP2124821B1/de not_active Not-in-force
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0356050A1 (de) * | 1988-08-15 | 1990-02-28 | Storz Instrument Company | Akkommodierende intraokulare Linse |
FR2666735A1 (fr) * | 1990-09-13 | 1992-03-20 | Klw | Implant intra-oculaire a cavite interne. |
US20040082995A1 (en) * | 2002-10-25 | 2004-04-29 | Randall Woods | Telescopic intraocular lens implant for treating age-related macular degeneration |
EP1475055A1 (de) * | 2003-05-07 | 2004-11-10 | Visioncare Ophthalmic Technologies, Inc. | Teleskopintraocularlinse |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2535019A1 (de) | 2011-06-15 | 2012-12-19 | Ulfert Detmers | Akkommodative intraokulare Phake Kunstlinse mit hochbrechendem Medium |
EP3843663A4 (de) * | 2018-08-30 | 2022-06-01 | Ocumetics Technology Corp. | Hybride akkommodative intraokularlinse und verfahren zur verwendung davon |
US11529231B2 (en) | 2018-08-30 | 2022-12-20 | Ocumetics Technology Corp. | Hybrid accommodating intra-ocular lens and method of use thereof |
DE202019104086U1 (de) | 2019-07-24 | 2019-08-19 | Valentin Videa | Akkommodative Intraokularlinse |
Also Published As
Publication number | Publication date |
---|---|
ATE533439T1 (de) | 2011-12-15 |
EP2124821A1 (de) | 2009-12-02 |
US20100161050A1 (en) | 2010-06-24 |
EP2124821B1 (de) | 2011-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2124821B1 (de) | Akkomodative intraokularlinse | |
DE68902614T2 (de) | Akkommodierende intraokulare linse. | |
DE69809697T3 (de) | Intraokulare linse | |
DE60124420T2 (de) | Befestigungskomponenten für anpassungsfähige Intraokularlinsen | |
DE69325518T2 (de) | Intraoculares linsensystem | |
DE60307521T2 (de) | Akkommodative intraokularlinse | |
DE3486263T2 (de) | Intraokulares Linsenimplantat. | |
EP1726272B1 (de) | Intraokularlinse | |
DE69228755T2 (de) | Korneale einlagelinse, die kleiner als die optische zone ist | |
DE69934917T2 (de) | Linsenumwandlungssystem für teledioptische oder beugungsoptische konfiguration | |
DE68904925T2 (de) | Intraokulares optisches system. | |
DE68912196T2 (de) | Augenlinse. | |
DE69127734T2 (de) | Multifokale diffraktive Linse zur Korrektur von Sehfehlern | |
DE60031630T2 (de) | Mit einem offenen raum versehenes, elliptisches, akkomodatives intraokularlinsensystem | |
DE69708623T2 (de) | Einteiliges verformbares intraokularlinsenimplantat | |
DE60001961T2 (de) | Intraokularlinse mit akkomodationseigenschaften | |
DE69326622T2 (de) | Überlappender ring für die einstellung der hornhautkrümmung | |
DE60022772T2 (de) | Augenhornhautimplantat | |
DE3249160T1 (de) | Intraokuläre Linse für Patienten mit zentraler Netzhautdegeneration | |
DE112009001492T5 (de) | Akkommodierende intraokulare Linse | |
DE69326024T2 (de) | Intrastromaler, kornealer ring zur astigmatismuskorrektur | |
DE69926496T2 (de) | Intraokularlinse, welche die bestimmung ihrer axialen verschiebung nach der implantierung erlaubt | |
DE102012016892A1 (de) | Intraokularlinse, insbesondere Ziliarintraokularlinse | |
EP3829488B1 (de) | Akkomodative intraokularlinse | |
DE202014011195U1 (de) | Intraokulares Implantat mit kleiner Apertur (Nadelloch) zur Erhöhung der Schärfentiefe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07786490 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007786490 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12528423 Country of ref document: US |