WO2008101363A2 - Antistatische multifunktionsschicht und verfahren zur verwendung derselben - Google Patents

Antistatische multifunktionsschicht und verfahren zur verwendung derselben Download PDF

Info

Publication number
WO2008101363A2
WO2008101363A2 PCT/CH2008/000076 CH2008000076W WO2008101363A2 WO 2008101363 A2 WO2008101363 A2 WO 2008101363A2 CH 2008000076 W CH2008000076 W CH 2008000076W WO 2008101363 A2 WO2008101363 A2 WO 2008101363A2
Authority
WO
WIPO (PCT)
Prior art keywords
multifunctional layer
polymer
layer according
particle
antistatic
Prior art date
Application number
PCT/CH2008/000076
Other languages
English (en)
French (fr)
Other versions
WO2008101363A3 (de
Inventor
Oliver Marte
Martin Meyer
Original Assignee
Tex-A-Tec Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tex-A-Tec Ag filed Critical Tex-A-Tec Ag
Priority to US12/528,298 priority Critical patent/US20100272987A1/en
Priority to EP08706376A priority patent/EP2129736A2/de
Publication of WO2008101363A2 publication Critical patent/WO2008101363A2/de
Publication of WO2008101363A3 publication Critical patent/WO2008101363A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/001Treatment with visible light, infrared or ultraviolet, X-rays
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/008Treatment with radioactive elements or with neutrons, alpha, beta or gamma rays
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/05Cellulose or derivatives thereof
    • D06M15/09Cellulose ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/568Reaction products of isocyanates with polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/572Reaction products of isocyanates with polyesters or polyesteramides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/63Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing sulfur in the main chain, e.g. polysulfones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof

Definitions

  • the invention relates to an antistatic multifunctional layer for finishing and coating substrates and for introducing the particle composites contained in the multifunctional layer into substrates according to claim 1, and to processes using the antistatic multifunctional layer according to claims 16 to 18.
  • the causes of the static charge of textiles are triboelectric effects. These occur even when touching different materials and to a greater extent at friction of differently sourced materials and surfaces, the separation of the two materials is crucial to attach. If two materials that carry a different potential charge or have a different Elektronenaustrittsengergie own, such as silk and polyethylene rubbed against each other, so are electrons from Polyethyien (substance with the smaller electron exit energy, also called donor) on the silk (substance with the larger Elektronenaustrittsengerie , also called acceptor) transmitted.
  • the tribological series is an electron transport characterizing material listing of strongly positive to strongly negative character (PA Tipler, G. Mosca, Physics (2004), Spektrum Akademischer Verlag, pp.
  • air is the dielectric and in the case of a prepared surface, it is a combination of air and spin finish.
  • spin finish In addition to the io ⁇ ogene groups, there are molecular groups in the spin finish, which are capable of forming dipoles and thus counteract the static charge.
  • the surface-active substances used are therefore all the more antistatic, the more pronounced their polar character and the longer the fatty chain of these products.
  • the most recent antistatic coatings contain various heavy metal oxides whose antistatic principle is essentially based on an increase in the permittivity number (EP 1 245 968 A2, Laminate comprising a needle-like antireflective film comprising the same, WO 2006/068466 A1, Curable composition containing conductive particles, cured product of the curable compostion, and laminate).
  • the object of the invention is to realize an antistatic multi-functional layer which allows the formation of a high antistatic effect, without external charge dissipation and without disturbing the effects of additionally applied functional layers (for example superhydrophobic effects).
  • a further object of the invention is to eliminate any interfering influences of residual chemicals by the multi-functional layer applied to the substrate and interfering with the functional effects.
  • a further object of the invention is to specify methods which are used on a wide variety of substrates using the antistatic multifunctional layer.
  • the solution of the stated tasks consists essentially in the construction of a multi-functional layer of the first kind, which ensures a quasi-continuous discharge of static charges occurring by the running in this layer electrochemical reactions, which lead to a "charge neutralization".
  • substrate means fibers and fiber materials of any kind, textile fabrics, plastic films and plastic coverings.
  • a second approach is the use of new, previously unused in the textile industry polymer formulations. These serve on the one hand the adhesion and / or washing resistance of the multifunctional layer and on the other hand as carrier matrix of the nanoparticles equipped with the different functions antistatic, bactericidal, fungicidal, coloring, adhesion-promoting etc.
  • the nanoparticles contained in this multifunctional layer of the first kind bear bactericidal and fungicidal properties and additionally have the functionality of chemical semiconductors. elements which, in combination with the chemical carrier matrix, which may also possess the property of an electrolyte, serve to neutralize electrostatic charges.
  • An essential feature of the invention is the use of nanoparticles, consisting of noble and base metals. These can be present as metal particles, but also as metallic precipitates on, for example, ceramic nanoparticles, and form so-called half elements with the metal ions adsorbed on the metal surface (CH Hamann, W. Dahlstich, Wiley electrochemistry - VCH Weinheim (1998) pp. 65-68, Pp. 107-1 16).
  • Another feature is the use of non-metallic material particles in combination with a metal salt.
  • a negative static surface charge occurs an electrical breakdown on the nanoparticles with the highest electron affinity (nanoparticles of the noble metal). This leads to the deposition of noble, adsorbed on the metal surface metal ions, which is the previously existing charge neutralized.
  • positive static charges occur, the charge is compensated with the base metal instead of r , and electrons are released and the base metal "dissolves".
  • mention may be made of the negative charging of the multifunctional layer surface wherein the multifunctional layer contains silver-nanoparticles with silver ions adsorbed on their surface. The charge balance takes place between the negatively charged multifunctional layer surface and the silver ions according to the reaction equation (I). The charge balance results in the deposition of the silver ion as metallic silver on the silver particle surface.
  • the metallic or metal-bearing nanoparticles are embedded in a polymer matrix which may be both cationic or anionic and non-ionogenic and may contain additional free amino and / or OH groups.
  • the polymers used are electrically conductive and / or non-conductive polymers which on the one hand are chemically crosslinkable or insoluble in water and on the other hand have water-sorbing properties, so that electrochemical redox reactions are possible.
  • a further feature of the invention is the use of nano-metal particles which both form galvanic half-elements and act as bactericidal and / or fungicidal substances, such as e.g. Silver and copper, tin and antimony.
  • non-metallic particulate materials having particle sizes of 10 nm-10 ⁇ m in combination with metal ions sorbed on the material surface.
  • the multifunctional layer is expected to be negatively charged.
  • the metallic deposition of the metal ion for example carbon / iron ion, takes place on the carbon surface according to reaction equation (III).
  • Another inventive feature relates to the use of organic polyelectrolytes for the preparation of the polymer matrix, which due to their limited water solubility have a high affinity for the fiber material and can be fixed in this way.
  • the residual chemicals adhering to the fiber material are adsorbed by the polymer matrix and thus immobilized.
  • This immobilization of the interfering residual chemicals results in a high adhesion of the polymer matrix to the fiber and / or plastic material.
  • the partial crosslinking of the polymer matrix with, for example, isocyanates or aminoalkylated products leads to complete water insolubility of the polymer layer.
  • this offers the possibility, on the basis of the still free reaction groups, of a multifunctional layer 2 applied to the polymer layer, for example, to achieve superhydrophobicity, chemical and thus adhesion and / or washing. to fix constantly.
  • a further feature of the coating method for forming the multi-functional layer of the first type is the use of a polymer / particle composite to achieve the antistatic function.
  • This may contain other ingredients in addition to the organic polymers and nanoparticles.
  • ingredients are e.g. Crosslinker components or crosslinking catalysts in question to provide by the use of a composite formulation the textile equipment or plastic coater a habitual, simple application technology available.
  • the coating method according to the invention offers the possibility of realizing highly adhesive and / or wash-resistant bactericidal, fungicidal and antistatic effects in a multi-functional layer of the first type. Moreover, it offers the possibility of fixing a further applied multi-functional layer of the second kind, which has completely different properties, with a high chemical resistance to washing.
  • a first essential component of the antistatic multi-functional layer of the first kind is the polymer matrix which contains at least one polymer compound, preferably an anionic or cationic polyelectrolyte, which can be applied to the substrate in a particulate form (particles of 10 nm-10 ⁇ m) or film-forming.
  • Suitable polymer compounds are cellulose and starch derivatives, polyacrylates, polyamides, but also polyurethane and polyester compounds, which in turn are mixed with other polymers or are block polymers of different types.
  • the polymer matrix may also contain UV and / or electron beam curing polymers.
  • electrically conductive polymers such as polyanilines, polypyrroles and polythiophenes and UV-curing polymers such as Desmolux U 100 and Desmolux VP LS 2266 Fa. Bayer.
  • Preferably used polyelectrolytes are cationically dominated compounds having a balanced hydrophilic-lipophilic character.
  • the HLB Hydrophilic Lipophilic Balance
  • a second component of the multifunctional layer of the first type are micro and nano-particle combinations of metals with different standard redox potentials, which can consist of pure metals as well as be fixed on micro- and nanoscale carrier materials.
  • At least one type of particle is used which, when the layer is expected to be positively charged, is metallic and, given a negatively expected charge, may consist of a non-metallic (in combination with a metal salt) and / or metallic conductor.
  • non-metallic particles are different polar carbon forms such as nanotubes and spherical soot pigments.
  • at least two metallic particle types which differ in their standard redox potential are used.
  • metal combinations examples include silver-zinc (Ag-Zn) 1 silver-aluminum (Ag-Al), copper-iron (Cu-Fe), cobalt-manganese (Co-Mn).
  • As micro- and / or nanoscale carrier materials particulate organic and inorganic materials are used such as cellulose, glucan, chitosan, polyethylene, polypropylene, polyoxymethylene, carbon, metal and non-metal oxides are preferably ceramic materials are used such as silicon and titanium dioxide, Alumina and zirconia.
  • micropores and / or nanoparticles consisting of metals or metal-loaded support materials can also carry a coating containing metal salt, the metal ion being of the same type as the metal present in elemental form in the particle.
  • the microparticles and nanoparticles used have a diameter of 0.1-10 ⁇ m, preferably 300-600 nm.
  • the coating matrix enveloping the particles preferably consists of anionically or cationically derivatized polymers, e.g. Cellulosederivaten, polyester, polyurethane, polyvinyl acetate or acrylate or mixtures of said polymers, but preferably from the same, the host matrix-forming polymer.
  • anionically or cationically derivatized polymers e.g. Cellulosederivaten, polyester, polyurethane, polyvinyl acetate or acrylate or mixtures of said polymers, but preferably from the same, the host matrix-forming polymer.
  • a third optional component used are organic and / or inorganic bactericidal and fungicidal components, or compounds.
  • Preferred organic compounds are quat group-carrying compounds having a carbon chain of C 3 -C 20 , preferably C 12 -C 18 .
  • Other compounds used in this regard are aldehyde or hydrogen peroxide releasing compounds.
  • Preferably used inorganic bactericidal and fungicidal agents, or nenten are micro- and nanoscale silver and copper particles, which thus assume a dual function, since they are also able to form galvanic half-elements and act as such according to the invention antistatic. This dual function has been surprisingly and unexpectedly found and offers tremendous functional and economic advantages over conventional coatings, each having only one of the mentioned properties due to the simple multi-functional layer structure.
  • Another surprising and likewise unexpected concomitant of the antistatic concept according to the invention is corrosion inhibition, e.g. of aluminum particles containing multifunctional layer on iron.
  • the functional principle here corresponds to the cathodic corrosion protection.
  • a potential difference of about 1.3 V prevails, which is sufficiently large to achieve the mentioned corrosion inhibition (G. Kortüm, textbook of electrochemistry, Verlag Chemie GmbH, Weinheim (1966), p 571 -572).
  • a fourth optionally used component in the multifunctional layer of the 1st kind are various types of crosslinkers, such as e.g. Isocyanates, aziridines and aminoalkylation products.
  • Susceptible catalysts required for the particular crosslinker system are preferably added first to the impregnation liquors instead of the admixture with the polymer / particle composite.
  • Reaction groups are simultaneously provided with this component for subsequent chemical crosslinking of components of a multi-functional layer of the second kind, which are responsible for the adhesion resistance and / or wash fastness of the multi-functional layer of the second kind, which is approximately a finishing layer on a textile fabric.
  • the crosslinker system can also consist of more than one crosslinker component.
  • Example 1 Antistatic and fungicidal multifunctional layer on technical fabrics (awning fabric) with additional hydrophobing.
  • 10 g nanoscale copper particles with a mean particle size of 0.8 microns are in a Methocellos (hydroxypropylmethylcellulose) consisting of 50% water, 50% isopropanol, 6 g / l of the trimer of S-isocyanatomethyl-S. ⁇ . ⁇ -trimethylcyclo- hexyl isocyanate (IPDI trimer), 0.1 g / l Dibuthylzin ⁇ laurat and 2 g / l of Nitrilotriessig- acid -Keitierkomplexes dispersed.
  • Methocellos hydroxypropylmethylcellulose
  • the resulting polymer / particle composite is applied to a technical polyester fabric with a grammage of 250 g / m 2 .
  • Fleet application is 70% based on the dry weight of the fabric. This is followed by drying and chemical fixation at 130 ° C. for 2 minutes.
  • an impregnating liquor containing 30 g / l of a fluorocarbon resin (Softgard M3 from soft chemicals, Italy) and 5 g / l of a polyisocyanate (Softgard plus from soft chemicals, Italy) is applied to the fabric equipped with the multifunctional layer applied.
  • the chemical fixation is carried out at 150 0 C for three minutes.
  • the antistatic, fungicidal and hydrophobic finish produced by this process shows excellent tack and wash resistance of the equipment. Up to 20 washes with the finished awning fabric can be carried out at 40 ° C. without noticeable effects.
  • Example 2 Antistatic, fungicidal and hydrophilizing film coating.
  • 50 g / l nanoscale copper particles with a mean particle size of 0.8 microns are in a polymer solution of 40% water and 50% isopropanol, 120 g / l Desmophen 1100 (Bayer) and 5 g / l of the trimer S-Isocyanatomethyl-S. ⁇ . ⁇ -Trimethylcyclo- hexylisocyanats (IPDI trimer), 0.1 g / l dibutyltin laurate and 5 g / l of a nitrilotriacetic acid copper complex dispersed.
  • IPDI trimer S-Isocyanatomethyl-S. ⁇ . ⁇ -Trimethylcyclo- hexylisocyanats
  • a polymer / particle composite consisting of aluminum particles having a mean particle size of 0.8 ⁇ m and a nitrilotriacetic acid aluminum complex is produced.
  • the formulation prepared for coating the HD polyethylene film contains in each case 100 g / l of the copper and aluminum particle composite, which are dispersed in an aqueous / alcoholic 50% solution of Desmophens 1100. To the polymer solution are added further ingredients such as 10 g / l IPDI trimer and 0.1 g / l dibuthyltin laurate. The drying and chemical fixation of the layer takes place at 90 ° C. for 1 minute.
  • the polyethylene film thus coated shows excellent antistatic and fungicidal effects (even after prolonged storage in water) as well as a complete wetting effect. availability with water.
  • Example 3 Antistatic polyvinyl chloride film.
  • Preparation of the polymer / particle composite 50 g of aluminum particles) with an average grain size of 0.6 ⁇ m and 2.5 g of an aluminum nitrilotriacetic acid complex and 5 g of Dapral GE 202 (Akzo Chemie), 15 g of tolylene diisocyanate and 927.5 g of Desmophen 800-85 (Bayer) are used in the Kneading unit at 60 - 70 0 C homogenized.
  • Preparation of the film 100 g of the described polymer / particle composite are mixed with 100 g of dioctyl phthalate and homogenized.
  • the polyvinyl chloride film produced in this way exhibits the desired antistatic effect at expected mechanical strength values in comparison with conventionally produced polyvinyl chloride films, but without admixture of the polymer / particle composite.
  • the particle composite thus prepared is dispersed in a binder (Dorafresh Bl 6 g / l) and silver salt (Dorafresh AG 2 g / l) containing solution.
  • the finished polymer / particle composite is applied to a polyester fabric having a grammage of 150 g.
  • the pick-up is 45% based on the dry weight of the fabric.
  • the tissue is dried at 120 ° C.
  • an impregnating liquor containing 30 g / l of a fluorocarbon resin (Softgard M3 from soft chemicals, Italy) and 5 g / l of a polyisocyanate (Softgard plus from soft chemicals, Italy) is treated with the Multi - Applied functional layer applied tissue.
  • the chemical fixation takes place at 160 ° C. for two minutes.
  • the antistatic, bactericidal and hydrophobic finish produced by this process in addition to the high antistatic, hydrophobic and bactericidal effect has a high resistance to washing. After 25 washing cycles at 40 0 C no effect losses are detected.

Abstract

Eine antistatische Multifunktionsschicht zur Ausrüstung und Beschichtung von Substraten sowie zur Einbringung der in der Multifunktionsschicht enthaltenen Polymer/Partikelkomposite in Substrate weist eine Polymermatrix auf, die mindestens eine Polymerverbindung und mindestens einen nicht-metallischen und/oder metallisch leitenden Partikeltyp in Kombination mit einem metallischen Elektrolyten enthält. Die Partikelkombination liegt von einer Coatingmatrix umhüllt vor, wodurch eine Multifunktionsschicht gebildet wird. Eine quasi kontinuierliche Abführung der auftretenden statischen Ladung wird durch die in dieser Schicht ablaufenden elektrochemischen Reaktion gewährleistet und führt so zu einer Ladungsneutralisation. Unter Verwendung der antistatischen Multifunktionsschicht werden verschiedene Verfahren beschrieben, so zur Ausrüstung von textilen Flächengebilden, zur Beschichtung von Kunststofffolien und -belägen und zur Einbringung von in der Multifunktionsschicht enthaltenen Polymer/Partikelkomposite in einen Kunststoff.

Description

Antistatische Multifunktionsschicht und Verfahren zur Verwendung derselben
Die Erfindung betrifft eine antistatische Multifunktionsschicht zur Ausrüstung und Beschichtung von Substraten sowie zur Einbringung der in der Multifunktionsschicht enthaltenen Partikelkomposite in Substrate gemäss Patentanspruch 1 , sowie Verfahren dazu unter Verwendung der antistatischen Multifunktionsschicht gemäss den Patentansprüchen 16 bis 18.
Die elektrostatische Aufladung von Kunststoffen und textilen Fasermaterialien insbesondere von Synthesefasern ist ein allgemein bekanntes Problem (Degussa-Hüls, Schriftenreihe Pigmente, Nr. 62, S. 6-18).
Wesentlich verstärkt wird diese Problematik durch die Applikation hydrophob wirkender Präparationen, im Speziellen durch Fluorkarbonharz-Beschichtungen und -Ausrüstungen. Ein wesentlicher Faktor ist auch die relative Luftfeuchtigkeit, da bei verminderter Luftfeuchtigkeit die Dielektrizitätskonstante (Permittivitätszahl) erniedrigt und damit die auftretenden Ladungsstärken erhöht werden. Die Werte bis zur Entladung der auftretenden elektrischen Spannungen können Beträge bis zu einigen tausend Volt annehmen, in deren Folge neben dem sehr unangenehmen Gefühl bei Berührung aufgeladener Schichten auch erhebliche Schäden, beispielsweise an elektronischen Geräten, entstehen können. Ein spezielles Problem stellt die Verarbeitung von Kunststofffolien und hydrophob ausgerüsteten Textilien dar, da diese in Foige ihrer statischen Ladung Staubpartikel aufnehmen und den Oberflächen ein unansehnliches, verkaufsschädigendes Erscheinungsbild vermitteln. Die beschriebene Problematik erfuhr in jüngster Zeit eine nochmalige Steigerung mit der Entwicklung superhydrophober, lotusstrukturierter Oberflächen und verschärften Vorschriften bezüglich des antistatischen Effektes von Schutzanzügen, die z.B. in Reinräumen (Elektronik-, Krankenhaus-, Militärbereich u.a.) getragen werden (G. Lüttgens, Statische Elektrizität, expert verlag (2005), S. 109-139).
Die Ursachen der statischen Aufladung von Textilien sind triboelektrische Effekte. Diese treten bereits bei Berührung unterschiedlicher Materialien und in verstärktem Masse bei Reibung unterschiedlich beschaffener Materialien und Oberflächen auf, wobei der Trennung der beiden Materialien eine entscheidende Bedeutung beizumessen ist. Werden zwei Materialien, die eine unterschiedliche potentielle Ladung tragen bzw. eine unterschiedliche Elektronenaustrittsengergie besitzen, wie beispielsweise Seide und Polyethylen aneinander gerieben, so werden Elektronen vom Polyethyien (Stoff mit der kleineren Elektronenaustrittsenergie, auch Donor genannt) auf die Seide (Stoff mit der grosseren Elektronenaustrittsengerie, auch Akzeptor genannt) übertragen. Die tribologische Reihe ist eine den Elektronentransport charakterisierende Materialauflistung von stark positivem bis stark negativem Charakter (P. A. Tipler, G. Mosca, Physik (2004), Spektrum Akademischer Verlag, S. 642-643). In der zweiten Phase, der Ladungstrennung, werden die beiden Stoffe voneinander entfernt, wodurch es aufgrund der Abstandsvergrösserung zu einer Reduktion der Kapazität kommt. Dies führt zu einer Erhöhung des Potentials um mehrere Grössenordnungen. War die Spannung vor der Trennung der Stoffe in der elektrischen Doppelschicht noch im Millivoltbereich so treten nach der Trennung Spannungen im Kilovoltbereich auf. Bei der statischen Aufladung bleibt die Gesamtladung der beiden Materialien erhalten. Eine quantitative Beziehung zur Beschreibung der meisten Aufladungsprozesse leistet die Coehnsche Regel, die besagt, dass bei der Trennung zweier Körper derjenige mit der höheren Dielektrizitätskonstante (Permittivitätszahl) sich positiv und der andere negativ auflädt. Somit werden sich Metalle und wasserfeuchte Werkstoffe gegenüber elektronisch nicht -leitenden Schichten immer positiv aufladen.
Bekanntlich wurde analog der Entstehung der elektrostatischen Aufladung speziell bei Textilien versucht die Aufladung durch die Herstellung von Fasermischungen mit unterschiedlichen Dielektrizitätskonstanten zu verhindern. Diese Methode versagte einerseits durch die Vielfalt der im täglichen Gebrauch miteinander in Berührung (Reibung) kommenden Materialien mit deren unterschiedlichen Dielektrizitätskonstanten und andererseits an den modischen und/oder bekleidungsphysiologischen Bedingungen, die an die verschiedenen Textilien geknüpft werden.
Eine weitere Möglichkeit, die industriell genutzt wird, ist die Mitverwendung von Metallfäden oder metallisierten Synthesefasermaterialien. Die heute zu diesem Zweck meistens eingesetzten Mitte) sind antistatische Präparationen sowohl auf Kunststoffen ais auch textiien Oberflächen wie z.B. anionische und kationische Weichmacher sowie hydrophile Polyethylenoxidderivate. Ihr Wirkungsprinzip basiert insbesondere auf der Erhöhung der Oberflächenleitfähigkeit und der Erhöhung der Dielektrizitätskonstanten des zwischen beiden Körpern befindlichen Mediums (H. Rath, Lehrbuch der Textilchemie, Springer Verlag Berlin (1972), S. 341 - 343).
Bei nicht präparierten Oberflächen stellt Luft das Dielektrikum dar und im Falle einer präparierten Oberfläche ist es eine Kombination aus Luft und Präparationsmittel. Neben den ioπogenen Gruppen sind es Molekülgruppierungen in den Präparationsmitteln, die zur Ausbildung von Dipolen befähigt sind und so der statischen Aufladung entgegenwirken. Die eingesetzten grenzflächenaktiven Substanzen wirken daher umso stärker antistatisch, je ausgeprägter ihr polarer Charakter und je länger die Fettkette dieser Produkte ist.
Neueste antistatische Beschichtungen enthalten verschiedene Schwermetalloxide, deren Antistatikprinzip im Wesentlichen auf der Erhöhung der Permittivitätszahl beruht (EP 1 245 968 A2, Laminate comprising a needle-like antireflectin film comprising the same; WO 2006/068466 A1 , Curable composition containing conductive particles, cured product of the curable compostion, and laminate).
Allen bekannten Lösungsansätzen gemeinsam ist die externe Ladungsabfuhr und im Falle von antistatischen Präparationen die nur sehr beschränkte Wasch- und Haftbeständigkeit solcher Ausrüstungen, bzw. Präparationen und deren begrenzte Einsatzmöglichkeit. Dies deshalb weil sich nach den bestehenden Ausrüstungsprinzipien antistatische und superhydrophobe Effekte innerhalb einer Beschichtung bzw. Ausrüstung ausschliessen. Somit sind die Beschichtungs- und Ausrüstungsfachleute gezwungen, bezüglich der geforderten Effekte einer Ausrüstung oder Beschichtung unattraktive Kompromisse einzugehen, die in vielen Fällen negative wirtschaftliche Folgen (Reklamationen etc.) haben.
Die Verwendung von metallisierten Fäden z.B. in der Gewebeherstellung ist sehr kostenaufwändig und schränkt die Flexibilität des Textilausrüsters ein, da eine solche Lösung die gesamte Infrastrukturkette der Textilherstellung betrifft.
Aufgabe der Erfindung ist es, eine antistatische Multifunktionsschicht zu realisieren, welche die Erzieiung eines hohen antistatischen Effektes zulässt, ohne externe Ladungsableitung und ohne dabei die Effekte zusätzlich aufgebrachter Funktionsschichten zu stören (z.B. superhydrophobe Effekte).
Es ist eine weitere Aufgabe dieser Erfindung gleichzeitig zum antistatischen Effekt eine bakterizide und/oderfungizide Funktion in der Ausrüstung von textilen Flächengebilden zu erzielen, die diese gesamthaft vor dem bakteriellen und fungiziden Befall schützt.
Eine weitere Aufgabe der Erfindung ist es, durch die auf das Substrat applizierte Multifunktionsschicht allfällig vorliegenden und die Funktionseffekte störenden Einflüsse von Restchemikalien zu eliminieren.
Eine weitere Aufgabe der Erfindung ist es schliesslich, Verfahren anzugeben, die unter Verwendung der antistatischen Multifunktionsschicht auf verschiedensten Substraten zur Anwendung gelangen.
Die Lösung der gestellten Aufgaben besteht im Wesentlichen in der Konstruktion einer Multifunktionsschicht 1. Art, die eine quasi kontinuierliche Abführung der auftretenden statischen Ladungen durch die in dieser Schicht ablaufenden elektrochemischen Reaktionen gewährleistet, die zu einer "Ladungsneutralisation" führen. Unter dem Begriff Substrat sind Fasern und Fasermaterialien jeglicher Art, textile Flächengebilde, Kunststofffolien und Kunststoffbeläge zu verstehen.
Ein zweiter Lösungsansatz besteht in der Verwendung von neuen, in der Textilindustrie bisher nicht verwendeten Polymerformulierungen. Diese dienen einerseits der Haft- und/oder Waschbeständigkeit der Multifunktionsschicht und andererseits als Trägermatrix der mit den verschiedenen Funktionen antistatisch, bakterizid, fungizid, farbgebend, haftvermittelnd etc. ausgestatteten Nanopartikel. Die in dieser Multifunktionsschicht 1. Art enthaltenen Nanopartikel tragen bakterizide und fungizide Eigenschaften und besitzen zusätzlich die Funktionsweise von chemischen Halb- elementen, die in Kombination mit der chemischen Trägermatrix, die auch die Eigenschaft eines Elektrolyten besitzen kann, der Neutralisation elektrostatischer Ladungen dienen.
Ein wesentliches Merkmal der Erfindung ist die Verwendung von Nanopartikein, bestehend aus edlen und unedlen Metallen. Diese können als Metallpartikel, aber auch als metallischer Niederschlag auf beispielsweise keramischen Nanopartikein vorliegen und mit den auf der Metalloberfläche adsorbierten Metallionen so genannte Halbelemente ausbilden (CH. Hamann, W. Vielstich, Elektrochemie Wiley - VCH Weinheim (1998) S. 65-68, S. 107-1 16).
Ein weiteres Merkmal ist die Verwendung nichtmetallischer Werkstoffpartikel in Kombination mit einem Metallsalz. Im Falle einer auftretenden negativen statischen Oberflächenladung resultiert ein elektrischer Durchschlag auf die Nanopartikel mit der höchsten Elektronenaffinität (Nanopartikel des edlen Metalls). Dies führt zur Abscheidung der edlen, auf der Metalloberfläche adsorbierten Metallionen, womit die zuvor vorhandene Ladung neutralisiert ist. Beim Auftreten von positiven statischen Ladungen findet-der-L-adungsausgleich mit dem-unedlen Metall-stattrin dessen-Folge- Elektronen abgegeben werden und das unedle Metall "in Lösung" geht. Als Beispiel sei die negative Aufladung der Multifunktionsschicht-Oberfläche erwähnt, wobei die Multifunktionsschicht Silbemanopartikel mit an deren Oberfläche adsorbierten Silberionen enthält. Der Ladungsausgleich findet zwischen der negativ geladenen Multi- funktionsschicht-Oberfläche und den Silberionen gemäss Reaktionsgleichung (I) statt. Der Ladungsausgieich führt zur Abscheidung des Silberions als metallisches Silber an der Silberpartikeloberfläche.
Ag+ + e" ^ Ag (I)
Eine positive Aufladung der Multifunktionsschicht-Oberfläche mit den in der Multifunktionsschicht vorhandenen Aluminiumpartikeln und den adsorbierten AI-Ionen führt zur Auflösung des metallischen Aluminiums gemäss Reaktionsgleichung (II).
Al ^ Al3+ + 3e- (II) Die metallischen oder metalltragenden Nanopartikel sind in eine Polymermatrix eingelagert, die sowohl kationisch oder anionisch als auch nicht-ionogen dominiert sein und zusätzliche freie Amino- und/oder OH-Gruppen enthalten kann. Bei den verwendeten Polymeren handelt es sich um elektrisch leitende und/oder nicht-leitende Polymere die einerseits chemisch vernetzbar oder in Wasser unlöslich sind und andererseits wassersorbierende Eigenschaften haben, so dass elektrochemische Redox-Reaktionen möglich sind.
Ein weiteres Merkmal der Erfindung ist die Verwendung von Nano-Metallpartikeln, die sowohl galvanische Halbelemente ausbilden als auch als bakterizide und/oder fungi- zide Substanzen wirken wie z.B. Silber und Kupfer, Zinn und Antimon.
Erfindungsgemäss können auch nicht-metallische partikuläre Werkstoffe mit TeM- chengrössen von 10 nm - 10 μm in Kombination mit auf der Werkstoffoberfläche sorbierten Metallionen zur Anwendung gelangen.
Dies ist vor allem dann der Fall, wenn aufgrund der in Kontakt tretenden Materialien, die Multifunktionsschicht erwartungsgemäss negativ aufgeladen wird. In diesem Fall tritt die metallische Abscheidung des Metallions, Beispiel Kohlenstoff/Eisenion, an der Kohlenstoffoberfläche gemäss Reaktionsgleichung (III) statt.
Fe2+ + 2e" ^ Fe (III)
Ein weiteres erfindungsgemässes Merkmal betrifft die Verwendung von organischen Polyelektrolyten zur Herstellung der Polymermatrix, die bedingt durch ihre beschränkte Wasserlöslichkeit eine hohe Affinität zum Fasermaterial besitzen und so fixiert werden kann. Die auf dem Fasermaterial haftenden Restchemikalien werden von der Polymermatrix adsorbiert und somit immobilisiert. Durch diese Immobilisierung der störenden Restchemikalien resultiert eine hohe Adhäsion der Polymermatrix zum Faser- und/oder Kunststoffmaterial. Die teilweise Vernetzung der Polymermatrix mit beispielsweise Isocyanaten oder Aminoalkyliemngsprodukten führt zur völligen Wasserunlöslichkeit der Polymerschicht. Diese bietet gleichzeitig die Möglichkeit anhand der noch freien Reaktionsgruppen eine auf die Polymerschicht applizierte Multifunktionsschicht 2. Art z.B. zur Erzielung von Superhydrophobie, chemisch und somit haft- und/oder wasch- beständig zu fixieren.
Ein weiteres Merkmal des Beschichtungsverfahrens zur Ausbildung der Multifunktions- schicht 1. Art ist die Verwendung eines Polymer-/Partikelkomposits zur Erzielung der antistatischen Funktion. Dieses kann zusätzlich zu den organischen Polymeren und Nanopartikeln weitere Ingredienzien enthalten. Als Ingredienzien kommen z.B. Vernetzerkomponenten oder Vemetzungskatalysatoren in Frage, um durch die Verwendung einer Kompositformulierung dem Textilausrüster oder Kunststoffbeschichter eine ihm gewohnte, einfache Applikationstechnik zur Verfügung zu stellen.
Das erfindungsgemässe Beschichtungsverfahren bietet die Möglichkeit, hoch haft- und/oder waschbeständige bakterizide, fungizide und antistatische Effekte in einer Multifunktionsschicht 1. Art zu realisieren. Überdies bietet sie die Möglichkeit, eine weitere darüber aufgebrachte Multifunktionsschicht 2. Art, die völlig andere Eigenschaften trägt, chemisch hoch waschbeständig zu fixieren.
Ausführungsformen der antistatischen Multifunktionsschicht:
Ein erster wesentlicher Bestandteil der antistatischen Multifunktionsschicht 1. Art ist die Polymermatrix, die mindestens eine Polymerverbindung vorzugsweise ein anionischer oder kationischer Polyelektrolyt enthält, welche partikulär (Teilchen von 10 nm - 10 μm) oder filmbildend auf das Substrat applizierbar wird.
Als mögliche Polymerverbindungen bieten sich Cellulose- und Stärkederivate, PoIy- acrylate, Polyamide aber auch Polyurethan- und Polyesterverbindungen an, die ihrerseits mit anderen Polymeren gemischt werden oder Blockpolymere von unterschiedlichem Typus sind. Die Polymermatrix kann auch UV- und/oder Elektronenstrahl härtende Polymere enthalten. Als weitere Möglichkeit ergibt sich der Einsatz elektrisch leitender Polymere wie z.B. Polyaniline, Polypyrrole und Polythiophene sowie UV- härtende Polymere wie Desmolux U 100 und Desmolux VP LS 2266 der Fa. Bayer. Vorzugsweise angewendete Polyelektrolyte sind kationisch dominierte Verbindungen mit einem ausgewogenen hydrophilen-lipophilen Charakter. Der HLB-Wert (Hydrophilic Lipophilic Balance) dieser Verbindungen liegt im Bereich von 5-18, vorzugsweise 8-15. Ein zweiter Bestandteil der Multifunktionsschicht 1. Art sind Mikro und Nano-Partikel- kombinationen aus Metallen mit unterschiedlichen Standard Redoxpotentialen, die sowohl aus reinen Metallen bestehen als auch auf mikro- und nanoskaligen Träger- materialien fixiert sein können. Zur Anwendung gelangt mindestens ein Partikeltyp der bei positiv erwarteter Aufladung der Schicht metallisch ist und bei negativ erwarteter Ladung aus einem nicht metallischen (in Kombination mit einem Metallsalz) und/oder metallischen Leiter bestehen kann. Vorzugsweise eingesetzte nicht-metallische Partikel sind verschieden polare Kohlenstoffformen wie z.B. Nanoröhrchen und sphärische Russpigmente. Vorzugsweise gelangen zur Anwendung jedoch mindestens zwei metallische Partikeltypen, die sich in ihrem Standard-Redoxpotential unterscheiden. Beispiele solcher Metallkombinationen sind Silber-Zink (Ag-Zn)1 Silber-Aluminium (Ag- Al), Kupfer-Eisen (Cu-Fe), Kobalt-Mangan (Co-Mn). Als mikro- und/oder nanoskalige Trägermaterialien werden partikuläre organische und anorganische Materialien eingesetzt wie z.B. Cellulose, Glucan, Chitosan, Polyethylen, Polypropylen, Polyoxy- methylen, Kohlenstoff, Metall- und Nichtmetalloxide vorzugsweise kommen keramische Materialien zum Einsatz wie z.B. Silizium- und Titandioxid, Aluminiumoxid und Zirkoniumoxid. Die aus Metallen oder aus Metall beladenen Trägermaterialien bestehenden Mikro- und/oder Nanopartikei können auch ein Metallsalz enthaltendes Coating tragen, wobei das Metallion gleicher Art ist wie das im Partikel in elementarer Form vorliegende Metall. Die eingesetzten Mikro- und Nanopartikei besitzen einen Durchmesser von 0.1 - 10 μm, bevorzugt 300 -600 nm.
Die die Partikel umhüllende Coatingmatrix besteht vorzugsweise aus anionisch oder kationisch derivatisierten Polymeren wie z.B. Cellulosederivaten, Polyester, Polyurethan, Polyvinylacetat oder -acrylat bzw. Mischungen der genannten Polymere, jedoch vorzugsweise aus demselben, die Hostmatrix bildenden Polymer.
Eine dritte optional eingesetzte Komponente sind organische und/oder anorganische bakterizide und fungizide Komponenten, bzw. Verbindungen. Als organische Verbindungen werden vorzugsweise Quatgruppen tragende Verbindungen mit einer Kohlenstoffkette von C3 -C20, bevorzugt C12 -C18 eingesetzt. Weitere diesbezüglich eingesetzte Verbindungen sind Aldehyd oder Wasserstoffperoxid abspaltende Verbindungen. Bevorzugt eingesetzte anorganische bakterizide und fungizide Mittel, bzw. Kompo- nenten sind mikro- und nanoskalige Silber- und Kupferpartikel, die somit eine Doppelfunktion übernehmen, da sie auch in der Lage sind, galvanische Halbelemente auszubilden und als solche erfindungsgemäss antistatisch wirken. Diese Doppelfunktion wurde überraschend und unerwartet festgestellt und bietet aufgrund des einfachen Multifunktionsschicht-Aufbaus enorme funktionelle und ökonomische Vorteile gegenüber herkömmlicher Beschichtungen, die jeweils nur eine der erwähnten Eigenschaften aufweisen.
Eine weitere überraschende und ebenfalls unerwartete Begleiterscheinung des erfin- dungsgemässen Antistatikkonzepts ist eine Korrosionshemmung z.B. von Aluminiumpartikel enthaltenden Multifunktionsschicht auf Eisen. Das Funktionsprinzip hierbei entspricht dem kathodischen Korrosionsschutz. Im Falle des genannten Beispiels Eisen/Aluminium ist ein Potentialunterschied von ca. 1.3 V vorherrschend, der hinreichend gross ist, um die erwähnte Korrosionshemmung zu erzielen (G. Kortüm, Lehrbuch der Elektrochemie, Verlag Chemie GmbH, Weinheim (1966), S. 571 -572).
Eine vierte optional eingesetzte Komponente in der Multifunktionsschicht 1. Art sind verschiedene Vernetzertypen wie z.B. Isocyanate, Aziridine und Aminoalkylierungs- produkte. Anfällige für das jeweilige Vernetzersystem benötigte Katalysatoren werden bevorzugt erst den Imprägnierflotten zugesetzt anstelle der Beimischung zum Polymer/ Partikelkomposit.
Mit dieser Komponente werden gleichzeitig Reaktionsgruppen für eine spätere chemische Vernetzung von Komponenten einer Multifunktionsschicht 2. Art zur Verfügung gestellt, die für die Haftbeständigkeit und/oder Waschechtheit der Multifunktionsschicht 2. Art verantwortlich sind, die etwa eine Ausrüstungsschicht auf einem textilen Flächengebilde ist. Selbstverständlich kann das Vernetzersystem auch aus mehr als nur einer Vernetzerkomponente bestehen.
Beispiel 1 : Antistatische und fungizide Multifunktionsschicht auf technischen Geweben (Markisenstoff) mit zusätzlicher Hydrophobierung.
10 g nanoskalige Kupferpartikel mit einer mittleren Komgrösse von 0.8 μm werden in einer Methocellösung (Hydroxypropylmethylcellulose) bestehend aus 50 % Wasser, 50 % Isopropanol, 6 g/l des Trimeren des S-Isocyanatomethyl-S.δ.δ-Trimethylcyclo- hexylisocyanats (IPDI-Trimer), 0.1 g/l Dibuthylzinπlaurat und 2 g/l eines Nitrilotriessig- säure-Kυpferkomplexes dispergiert.
Das so erstellte Polymer/Partikelkomposit wird auf ein technisches Polyestergewebe mit einem Quadratmetergewicht von 250 g/m2 appliziert. Der Flottenauftrag beträgt 70 % bezogen auf das Gewebe-Trockengewicht. Anschliessend erfolgt die Trocknung und chemische Fixierung bei 130 0C während 2 Minuten.
In einem zweiten Arbeitsschritt wird eine Imprägnierflotte mit 30 g/l eines Fluorkarbonharzes (Softgard M3 der Fa. soft chemicals, Italien) und 5 g/l eines Polyisocyanates (Softgard plus der Fa. soft chemicals, Italien) auf das mit der Multifunktionsschicht ausgerüstete Gewebe appliziert. Die chemische Fixierung erfolgt bei 150 0C während drei Minuten.
Die nach diesem Verfahren hergestellte antistatische, fungizide und hydrophobe Ausrüstung zeigt eine hervorragende Haft- und Waschbeständigkeit der Ausrüstung. Es können bis zu 20 Wäschen mit dem ausgerüsteten Markisenstoff bei 40 0C durchgeführt werden, ohne merkliche Effekteinbussen.
Beispiel 2: Antistatische, fungizide und hydrophilierende Folienbeschichtung.
50 g/l nanoskalige Kupferpartikel mit einer mittleren Komgrösse von 0.8 μm werden in einer Polymerlösung von 40 % Wasser und 50 % Isopropanol, 120 g/l Desmophen 1100 (Firma Bayer) sowie 5 g/l des Trimers S-Isocyanatomethyl-S.δ.δ-Trimethylcyclo- hexylisocyanats (IPDI-Trimer), 0.1 g/l Dibuthylzinnlaurat und 5 g/l eines Nitrilotri- essigsäure-Kupferkomplexes dispergiert. In analoger Weise wird ein Polymer/Partikelkomposit bestehend aus Aluminiumpartikeln mit einer mittleren Komgrösse von 0.8 μm und eines Nitrilotriessigsäure-Aluminiumkomplexes hergestellt. Die zur Beschichtung der HD-Polyethylenfolie hergestellte Formulierung enthält je 100 g/l des Kupfer- und Aluminium-Partikelkomposits, weiche in eine wässrig/alkoholische 50 % ige Lösung des Desmophens 1100 dispergiert werden. Der Polymerlösung werden weitere Ingredienzien beigefügt wie 10 g/l IPDI-Trimer, und 0.1 g/l Dibuthylzinnlaurat. Die Trocknung und chemische Fixierung der Schicht erfolgt bei 90 0C während 1 Minute.
Die so beschichtete Polyethylenfolie zeigt hervorragende antistatische und fungizide Effekte (selbst nach längerer Lagerung in Wasser) sowie eine vollständige Benetz- barkeit mit Wasser.
Beispiel 3: Antistatische Polyvinylchloridfolie.
Herstellung des Polymer/Partikelkomposits: 50 g Aluminiumpartike) mit einer mittleren Korngrösse von 0.6 μm und 2.5 g eines Aluminium-Nitrilotriessigsäurekomplexes sowie 5 g Dapral GE 202 (Akzo Chemie), 15 g Toluylendiisocyanat und 927.5 g Desmophen 800-85 (Bayer) werden im Knetaggregat bei 60 - 70 0C homogenisiert. Herstellung der Folie: 100 g des beschriebenen Polymer/Partikelkomposits werden mit 100 g Dioctylphthalat versetzt und homogenisiert. Anschliessend werden 800 g eines Polyvinylchloridgranulats zugesetzt und in einem Homogenisator intensiv vermengt. Das Partikel-Granulatgemisch wird im Extruder bei 180 0C zu einer Folie mit einer Dicke von 0.2 mm extrυdiert.
Die auf diese Weise hergestellte Polyvinylchloridfolie zeigt die gewünschte antistatische Wirkung bei erwartungsgemässen mechanischen Festigkeitswerten im Vergleich mit herkömmlich hergestellten Poiyvinylchloridfolien, jedoch ohne Zumischung des Polymer/Partikelkomposits.
Beispiel 4: Antistatische, bakterizide und hydrophobe Multifunktionsschicht auf Outdoor Gewebe.
8 g Aluminium Partikel mit einer mittleren Korngrösse von 4 μm werden in 100 ml einer wässrigen/alkoholischen Lösung (20 %/80 %) von Methocel (Hydroxypropylmethyl- cellulose) und eines aminofunktioneilen Polyesterharzes (Desmophen NH 1521 ) dispergiert. Der Methocelanteil beträgt 0.5 Gewichtsprozent und der Anteil des Polyesterharzes 2.5 Gewichtsprozent, beide Anteile bezogen auf die Lösungsmittelmasse.
Als weitere Komponente werden 4 g Desmodur BL 1100 (Bayer MaterialScience, Deutschland) und 0.1 g Dibutyizinnlaurat zugemischt. Anschliessend erfolgt ein Nass-Mahlprozess, um die mittlere Korngrösse von 4 μm auf 0.8 μm zu reduzieren. Während dieser Behandlung bilden sich geringe Mengen Aluminiumhydroxid, welches vorwiegend an der Metalloberfläche adsorbiert. Auf diese Weise sind die Voraus- Setzungen zur Bildung eines galvanischen Halbelementes erfüllt, ohne explizite Zugabe eines Elektrolyten (z.B. AI3+-SaIz), wodurch sich dieses Beispiel von Beispiel 1 unterscheidet. Es handelt sich in diesem Beispiel um eine systemintrinsische Bildung des Halbelementes.
Das so hergestellte Partikelkomposit wird in eine Bindemittel (Dorafresh Bl 6 g/l) und Silbersalz (Dorafresh AG 2 g/l) enthaltenden Lösung dispergiert.
Das fertig gestellte Polymer/Partikelkomposit wird auf ein Polyestergewebe mit einem Quadratmetergewicht von 150 g appliziert. Der Pick-up beträgt 45 % bezogen auf das Gewebe-Trockengewicht. Im Anschluss an die Applikation des Partikel/Polymerkompo- sits erfolgt die Trocknung des Gewebes bei 120 0C.
In einem zweiten Arbeitsschritt wird eine Imprägnierflotte mit 30 g/l eines Fluorkarbonharzes (Softgard M3 der Fa. soft chemicals, Italien) und 5 g/l eines Polyiso- cyanates (Softgard plus der Fa. soft chemicals, Italien) auf das mit der Multi- funktionsschicht ausgerüstete Gewebe appliziert. Die chemische Fixierung erfolgt bei 160 0C während zwei Minuten.
Die nach diesem Verfahren hergestellte antistatische, bakterizide und hydrophobe Ausrüstung besitzt neben dem hohen antistatischen, hydrophoben und bakteriziden Effekt eine hohe Waschbeständigkeit. Nach 25 Waschzyklen bei 40 0C werden keine Effekteinbussen festgestellt.

Claims

Patentansprüche
1. Antistatische Multifunktionsschicht zur Ausrüstung und Beschichtung von Substraten sowie zur Einbringung in Substrate, dadurch gekennzeichnet, dass sie eine Polymermatrix aufweist, die mindestens eine Polymerverbindung enthält, dass sie mindestens einen nicht-metallischen und/oder metallisch leitenden Partikeltyp in Kombination mit einem metallischen Elektrolyten enthält, dass die Partikelkombination von einer Coatingmatrix umhüllt vorliegt, und dass dadurch eine Multifunktionsschicht
1. Art gebildet wird, die eine quasi kontinuierliche Abführung der auftretenden statischen Ladung durch die in dieser Schicht ablaufenden elektrochemischen Reaktion gewährleistet und so zu einer Ladungsneutraiisation führt.
2. Multifunktionsschicht nach Anspruch 1 , dadurch gekennzeichnet, dass die Partikelkombination Metalle mit unterschiedlichen Standard-Redoxpotentialen aufweist, wobei die Metalle mit den an der Metalloberfläche sorbierten Metallionen galvanische Halbelemente bilden.
3. Multifunktionsschicht nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Partikelkombination aus Mikro- und/oder Nano-Partikeln mit Durchmessern von 0.1 - 10 μm, bevorzugt 300 - 600 nm besteht.
4. Multifunktionsschicht nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass die Polymermatrix als Polymerverbindungen Cellulose- und Stärkederivate, PoIy- acrylate, Polyamide, Polyurethan- und Polyesterverbindungen und deren Gemische enthält.
5. Multifunktionsschicht nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Polymermatrix elektrisch leitende Polymere wie Polyaniline, Polypyrrole und Polythiophene enthält.
6. Multifunktionsschicht nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Polymermatrix UV- und/oder Eiektronenstrahl härtende Polymere enthält.
7. Multifunktionsschicht nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass die Polymermatrix mit Vernetzungsreagenzien oder durch UV-Härtung physikalisch und/oder chemisch auf dem Substrat fixierbar sind.
8. Multifunktionsschicht nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, dass die Polymermatrix aus filmbildenden Polymerverbindungen mit Teilchengrössen von 10 nm bis 10 μm besteht.
9. Multifunktionsschicht nach einem der Ansprüche 1 - 8, dadurch gekennzeichnet, dass die Polymermatrix einen anionischen oder kationischen Polyelektrolyt enthält.
10. Multifunktionsschicht nach einem der Ansprüche 1 - 9, dadurch gekennzeichnet, dass die Coatingmatrix aus anionisch oder kationisch derivatisierten Polymeren wie Cellulosederivaten, Polyester, Polyurethan, Polyvinylacetat oder -acrylat oder Mischungen davon besteht.
11. Multifunktionsschicht nach einem der Ansprüche 1 - 10, dadurch gekennzeichnet, dass sie bakterizide und/oder fungizide Komponenten aufweist.
12. Multifunktionsschicht nach Anspruch 11 , dadurch gekennzeichnet, dass die bakteriziden und/oder fungiziden Komponenten organische Verbindungen, insbesondere quatemäre Verbindungen, Aldehyd und Peroxid abspaltende Verbindungen sind.
13. Multifunktionsschicht nach Anspruch 11 , dadurch gekennzeichnet, dass die bakteriziden und fungiziden Komponenten anorganische, insbesondere Metallpartikel, keramische Partikel mit Metallschichten aus Kupfer und Silber und deren Salze sind.
14. Multifunktionsschicht nach einem der Ansprüche 1 - 13, dadurch gekennzeichnet, dass sie mindestens eine vernetzende Komponente aufweist.
15. Multifunktionsschicht nach Anspruch 14, dadurch gekennzeichnet, dass die vernetzende Komponente Isocyanate, Aziridine und Aminoalkylierungsprodukte sind.
16. Verfahren zur Ausrüstung von textilen Flächengebilden unter Verwendung der antistatischen Multifunktionsschicht 1. Art nach einem der Ansprüche 1 - 15, dadurch gekennzeichnet, dass das Polymer/Partikelkomposit in eine, ein filmbildendes Polymer enthaltende Lösung oder eine Suspension eingerührt wird und als Ausrüstungsflotte auf das Textilgut appliziert wird.
17. Verfahren zur Beschichtung von Kunststofffolien und -belägen unter Verwendung der antistatischen Multifunktionsschicht 1 . Art nach einem der Ansprüche 1 - 15, dadurch gekennzeichnet, dass das Polymer/Partikelkomposit in eine Beschichtungs- masse eingebracht wird und diese auf die Kunststofffolien und -beläge durch Beschichten, Schäumen oder Rakeln aufgebracht wird.
18. Verfahren zur Einbringung der in der- Multifunktionsschicht enthaltenen Partikel- komposite in einen Kunststoff unter Verwendung der antistatischen Multifunktionsschicht 1 . Art nach einem der Ansprüche 1 - 15, dadurch gekennzeichnet, dass das Polymer/Partikelkomposit in das Kunststoffgranulat eingebracht und mit diesem extrudiert wird.
PCT/CH2008/000076 2007-02-23 2008-02-21 Antistatische multifunktionsschicht und verfahren zur verwendung derselben WO2008101363A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/528,298 US20100272987A1 (en) 2007-02-23 2008-02-21 Anti-static multi-functional layer and method for use of the same
EP08706376A EP2129736A2 (de) 2007-02-23 2008-02-21 Antistatische multifunktionsschicht und verfahren zur verwendung derselben

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH3122007 2007-02-23
CH312/07 2007-02-23
CH723/07 2007-05-03
CH7232007 2007-05-03

Publications (2)

Publication Number Publication Date
WO2008101363A2 true WO2008101363A2 (de) 2008-08-28
WO2008101363A3 WO2008101363A3 (de) 2008-10-09

Family

ID=39512632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2008/000076 WO2008101363A2 (de) 2007-02-23 2008-02-21 Antistatische multifunktionsschicht und verfahren zur verwendung derselben

Country Status (3)

Country Link
US (1) US20100272987A1 (de)
EP (1) EP2129736A2 (de)
WO (1) WO2008101363A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103317198A (zh) * 2013-05-27 2013-09-25 长春理工大学 金属材料表面超疏水微纳结构的一步制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741158B2 (en) 2010-10-08 2014-06-03 Ut-Battelle, Llc Superhydrophobic transparent glass (STG) thin film articles
US11292919B2 (en) 2010-10-08 2022-04-05 Ut-Battelle, Llc Anti-fingerprint coatings
US9771656B2 (en) 2012-08-28 2017-09-26 Ut-Battelle, Llc Superhydrophobic films and methods for making superhydrophobic films
US20150239773A1 (en) 2014-02-21 2015-08-27 Ut-Battelle, Llc Transparent omniphobic thin film articles
CN106567254A (zh) * 2016-11-03 2017-04-19 东莞市联洲知识产权运营管理有限公司 一种聚酯纤维用抗静电剂及其制备方法
US20230295392A1 (en) * 2022-03-15 2023-09-21 Taghleef Industries Inc. Triboelectric mitigator coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004889A (en) * 1998-04-28 1999-12-21 Kabushiki Kaisya Nippankenkyusyo Composition for antistatic finish
WO2005007733A1 (en) * 2003-07-23 2005-01-27 Dsm Ip Assets B.V. Radiaton-curable resin composition, cured film of the composition, and laminate
WO2007004818A1 (en) * 2005-06-30 2007-01-11 Kwang Suck Suh Anti-reflective film having high surface hardness and antistatic property and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867315A (en) * 1973-02-12 1975-02-18 Dow Chemical Co Resinous compositions having high electroconductivity containing Cu and metal salts
US5840214A (en) * 1996-07-26 1998-11-24 Monsanto Company Method of increasing polyaniline conductivity with ionic surfactants
US5837971A (en) * 1997-01-21 1998-11-17 Lee; Myoung Jun Electric blanket having reduced electromagnetic field

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004889A (en) * 1998-04-28 1999-12-21 Kabushiki Kaisya Nippankenkyusyo Composition for antistatic finish
WO2005007733A1 (en) * 2003-07-23 2005-01-27 Dsm Ip Assets B.V. Radiaton-curable resin composition, cured film of the composition, and laminate
WO2007004818A1 (en) * 2005-06-30 2007-01-11 Kwang Suck Suh Anti-reflective film having high surface hardness and antistatic property and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103317198A (zh) * 2013-05-27 2013-09-25 长春理工大学 金属材料表面超疏水微纳结构的一步制备方法

Also Published As

Publication number Publication date
WO2008101363A3 (de) 2008-10-09
US20100272987A1 (en) 2010-10-28
EP2129736A2 (de) 2009-12-09

Similar Documents

Publication Publication Date Title
EP2129736A2 (de) Antistatische multifunktionsschicht und verfahren zur verwendung derselben
EP1284278B1 (de) Wässrige Beschichtungszusammensetzung für die Herstellung elektrisch leitfähiger Beschichtungen auf Textilien
EP2457944B1 (de) Polymermischung
EP0825219B1 (de) Kratzfeste leitfähige Beschichtungen
EP2444545B1 (de) Wasser, Öl und Schmutz abweisende Ausrüstungen auf Fasern und textilen Flächengebilden
EP1509083A1 (de) Antimikrobielle polymere beschichtungszusammensetzung
EP1964966B1 (de) Antimikrobielles textiles Glasfasermaterial
WO2011009549A1 (de) Verfahren zur herstellung von dehnbaren elektroden
EP2185660A1 (de) Druckfähige und leitfähige paste und verfahren zum beschichten eines materials mit der paste
DE102004003784B4 (de) Dispersion intrinsisch leitfähigen Polyanilins und deren Verwendung
DE60031240T2 (de) Retroreflektierende tinten
EP3289024B1 (de) Elektrisch leitfähige materialzusammensetzung
WO2008077372A2 (de) Partikelmodifizierte nano- und mesofasern
EP1082373B1 (de) Stoffsystem
DE3400852A1 (de) Haftfester elastomerlack
EP1413365A2 (de) Folie mit antistatischer Beschichtung
EP1654739B1 (de) Herstellung elektrisch leitfähiger, flexibler flächengebilde
DE4203208A1 (de) Beschichtungsmittel fuer kunststoffolien
EP2129476A1 (de) Mehrfach beschichtetes metallsubstrat und verfahren zu seiner herstellung
EP2213706A1 (de) Additiv zur Verbesserung der Lösemittelbeständigkeit und anderer Eigenschaften von wasserbasierten Bindemittelsystemen
WO2001045121A1 (de) Verfahren zur vernetzung von kohle- bzw. kohlenstoffmaterialien, wie industrieruss und aktivkohle sowie anwendung für die herstellung von elektrochemischen doppelschichtkondensatorelektroden
DE19830176A1 (de) Temporärer Schutz von Kunststoffgegenständen gegen elektrostatische Aufladung
WO2015172989A1 (de) Verwendung eines beschichtungsmittels zur beschichtung der rückseitenfolie eines photovoltaikmoduls und photovoltaikmodul
DE102021211954A1 (de) Polyurethanfilm oder Mehrschichtverbund mit mindestens einer Schicht aus dem Polyurethanfilm
WO2021175976A1 (de) Elektrisch leitfähige paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08706376

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12528298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008706376

Country of ref document: EP