WO2008100238A1 - Device for producing iron or steel from iron oxide materials - Google Patents
Device for producing iron or steel from iron oxide materials Download PDFInfo
- Publication number
- WO2008100238A1 WO2008100238A1 PCT/UA2007/000017 UA2007000017W WO2008100238A1 WO 2008100238 A1 WO2008100238 A1 WO 2008100238A1 UA 2007000017 W UA2007000017 W UA 2007000017W WO 2008100238 A1 WO2008100238 A1 WO 2008100238A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- furnace
- heater
- channel
- reactor
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0006—Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/12—Making spongy iron or liquid steel, by direct processes in electric furnaces
- C21B13/125—By using plasma
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B19/00—Combinations of furnaces of kinds not covered by a single preceding main group
- F27B19/02—Combinations of furnaces of kinds not covered by a single preceding main group combined in one structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D13/00—Apparatus for preheating charges; Arrangements for preheating charges
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/004—Systems for reclaiming waste heat
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2100/00—Exhaust gas
- C21C2100/06—Energy from waste gas used in other processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/143—Reduction of greenhouse gas [GHG] emissions of methane [CH4]
Definitions
- a device for producing iron or steel from iron oxide materials The invention relates to the field of metallurgy, and in particular to installations for producing iron or steel by direct reduction.
- a device for producing iron and / or its alloys from iron oxide materials comprising a melting furnace equipped with means for supplying carbon-containing fuel and oxygen-containing gas directly into the liquid phase and into the space above it for afterburning the gas resulting from melting, an outlet with a discharge pipe exhaust gas, means for introducing iron oxide material into the afterburned exhaust gas for partial reduction of the material and gas cooling, installed and therein means for separating partially reduced material from gas and means for supplying partially reduced material to the smelter, according to the invention, the exhaust gas pipe is installed vertically and connected to means for loading iron oxide material in its lower part and to means for separation located in the upper part channel.
- the device provides means for accelerating the flow of exhaust gas, located in front of the device for introducing iron oxide material (Chinan Patent N ° 2077595, CL 21B 13/14, application. 20.12.1989, publ. 20.04.1997).
- the closest in technical essence and the achieved result is a device for the production of iron-carbon alloy, containing a reactor for preliminary reduction of iron oxide material and a reactor connected to it for producing iron-carbon alloy, including an input unit for pre-reduced material, nodes for the release of iron-carbon alloy and slag, means for injection of oxygen into the melt and removal of gaseous reaction products according to the invention, a reactor for producing elezouglerodistogo alloy made closed to restrict the intake of atmospheric gases therein and removing gaseous reaction products and is provided with additional means of blowing oxygen into the space above the molten bath, the device is equipped with a pre-reduced carbide-containing material heater connected to the reactor for producing an iron-carbon alloy by means for removing gaseous reaction products (Russian Patent M> 2060281, CL 21B 13/14, application 03.10.91, publ. Bulletin _Nal4, 1996).
- the basis of the invention is the task of improving the device for producing iron or steel from iron oxide materials by modifying the design of the melting furnace, reactor and heater, which will ensure both a high yield of the product and high energy efficiency with low capital costs.
- the melting furnace and the recovery reactor are combined with a lined casing and separated by a masonry wall, in the upper part of which there is a horizontal channel for removal from the furnace of gaseous reaction products into the arched part of the recovery reactor, in the lower part of which there is a gas outlet channel connected by a gas line to the mixing chamber, which is connected through gas ducts to the internal cavity of the source material heater, made in the form of a sealed casing with an internal lining and vertical chambers placed in it , the side walls of which form an opening for the passage of gas with the upper cover of the heater, while gas is installed at the exit of the flues in the opening of the heater s torch and the bottom of each chamber, with one side located discharging node material
- the melting furnace is equipped with indirect plasmatrons, two of which are located in the lid parallel to the longitudinal axis of the furnace, and in the lower part of the furnace plasmatrons are located on opposite walls symmetrically at an angle to the hearth, while nozzles for supplying oxygen or an oxygen-containing gas are located in the side walls of the furnace in the plane of the plasmatron installation.
- pipes are connected to the pipelines for supplying steam, air and methane, and the mixing chamber is additionally equipped with pipelines for supplying air and methane, while in the channel for the removal of gaseous reaction products from the furnace and in the gas pipeline gas analyzers are installed in the mixing chamber, and the exhaust gas channels from each chamber of the source material heater are equipped with gates, and the vertical chambers of the source material heater are separated Lena between themselves by a partition.
- the reducing atmosphere in the furnace was created with the help of plasma torches located in the lower part of the side walls of the furnace and oxygen-containing gas transported through nozzles, where the charge is preheated iron-containing pellets and coal loaded into the furnace through a wall-mounted input unit. Gases transported to the metal layer and formed during melting, lead to an intense rise of the molten metal and create an upward movement of spray, droplets and jets of molten metal and slag. To prevent the molten material and solid particles from sticking to the lid and walls of the furnace, two plasma torches are installed vertically in the furnace lid, during operation of which significant quantities of the transferred molten material and solid particles are removed, and additional mixing occurs in the metal and slag layer.
- Hot carbon dioxide is formed at the outlet of the reduction reactor, the heat of which is used to preheat the source material in the preheater before it is fed to the reduction reactor.
- the device is equipped with gas analyzers installed in the channel for removing gaseous reaction products from the furnace and in the gas line in front of the mixing chamber, while pipelines for supplying steam, air and methane are additionally installed in the horizontal channel, and thermocouples in the arched part of the recovery reactor , and the mixing chamber is equipped with pipelines for supplying air and methane.
- the exhaust gas channels of each chamber are equipped with gates, and burners are installed in the upper part of the heater at the outlet of the gas ducts.
- a device for producing iron or steel from iron oxide materials includes a melting furnace 1 and a reduction reactor 2, united by a lined casing and separated by a masonry wall 3, in the upper part of which a horizontal channel 4 is made for the removal of gaseous reaction products from the melting furnace 1 to the arched part 5 recovery reactor 2.
- the device is additionally equipped with a heater 6 of the source material containing a lined casing.
- the melting furnace 1 is equipped with indirect plasmatrons.
- the plasma torches 7 and 8 are located vertically in the cover 9 of the furnace, and the input unit 10 of the source material is shifted to the side wall of the furnace.
- plasmatrons 11 and 12 are mounted symmetrically at an angle to the hearth, and nozzles 13 and 14 for supplying oxygen or an oxygen-containing gas are located in the plane of installation of the plasmatrons.
- the heater 6 of the source material is made of vertical chambers 15, separated by, for example, a metal sheet 16.
- the side walls of the heater and the metal sheet 16 form an opening 18 with a top cover 17 for gas passage.
- a gas outlet channel 20 is located, while the grate 19 is mounted with the possibility of tilt towards the outlet 21 of the metallization products.
- the gas outlet channel 20 of the recovery reactor 2 through the gas pipe 22, the mixing chamber 23 and the gas duct 24 is connected to the internal cavity of the heater 6, directly with the opening 18.
- the mixing chamber 23 is additionally provided with pipelines 25 and 26 for supplying air and methane.
- gas burners 27 are installed in the opening 18 of the heater 6.
- At the bottom of each chamber 15 of the heater 6 there is an unloading unit 28 and an exhaust gas channel 29, which is connected through the afterburner 30 to the flue gas outlet 31.
- the device is equipped with gas analyzers 32 installed in the horizontal channel 4 and in the gas pipe 22 in front of the mixing chamber 23. In the horizontal channel 4, there are also pipes 33, 34 and 35 connected by pipelines for supplying steam, air and methane.
- the channel 29 of each chamber of the heater 6 is equipped with a gate 36.
- Thermocouples 37 are placed in the arched part 5 of the recovery reactor.
- the device operates as follows. Before starting work, the melting furnace 1 and the reduction reactor 2 are heated to a temperature of 800-1000 C. When the set temperature is reached, the coal is first fed into the furnace through separate inlet chutes of the input unit 10, which is coated under the furnace, and then mixed material is loaded: carbon-containing material (coal ) and iron-containing material (pellets) with a ratio in the range of 0.2-0.4 s / or without additional accompanying substances.
- the material in the shaft of the furnace is formed at an angle of repose, with an opening angle in the direction of the horizontal channel 4 for the removal of the gaseous reaction products from the smelting furnace.
- a predetermined volume of the starting material is supplied to the reduction reactor 2 with the formation of a cavity in the arched part, limited by the level of the material.
- the remainder of the carbon-containing material acts as a protective layer that serves as a substrate for molten iron and prevents liquid iron / slag from entering the hearth refractory.
- a certain amount of carbon-containing material is oxidized by combustion products when oxygen-containing gas is supplied through nozzles 13 and 14 to form carbon monoxide, which is a reducing agent.
- Plasmatrons 7 and 8 creates a partial barrier to the transported molten material and solid particles, this helps to maintain the temperature inside the furnace, causes active mixing in the metal layer and the slag layer, and as a result, a moderately uniform temperature is established.
- the device is designed taking into account the levels of the metal layer, the slag layer and taking into account bursts, drops and jets of molten metal and slag that are thrown into the upper space of the furnace. As the charge is lowered in the furnace, it is periodically recharged, and the metal and slag are partially released.
- the gas analyzer 32 determines the composition of the exhaust gas, and the temperature of the gas entering the arched part 5 of the reactor, determined by thermocouples 37.
- the operating temperature in the reduction reactor is limited by preventing the starting material from sticking together; the upper temperature limit is 800-850 0 C. Therefore, a decrease in the temperature of the gas supplied to the reduction reactor by cooling is unavoidable.
- the correction of the composition and temperature of the gas is carried out by supplying to the channel 4 separate pipelines 33, 34, 35 of steam, air and methane. As a result of decomposition of CH 4 - steam, an intensive decrease in the temperature of the gas leaving the smelting furnace occurs, and its reduction ability improves.
- the chambers 15 of the heater are filled with source material through individual bins.
- the gas leaving the recovery reactor through the gas outlet channel 20, located under the grate 19, is transported to the source material heater 6 through the mixing chamber 23, which is additionally supplied with air and methane to create a high-temperature coolant when the burners burn 27 gases entering through the duct 24 into the opening 18.
- the composition of the outgoing gas reduction reactor is controlled by a gas analyzer 32.
- the level of the source material in the chamber 15 of the heater and the gas feed rate through the gas duct 24 is chosen so that under steady-state process conditions the gas penetrates the free space of the opening 18 and generates a temperature of about 750-800 0 C.
- the temperature of the source material is controlled by the sliders 36 installed in the channel 29 of the exhaust gas of each chamber.
- the exhaust gas through the channels 29 of each chamber is sent to the flue gas outlet 31 through the afterburner 30.
- the heated source material is discharged through the discharge unit 28 located at the bottom of each chamber.
- the pressure at the gas supply and gas exhaust nodes of the device is set depending on the aerodynamic resistance of the charge layer.
- This installation design makes it possible to transfer a significant amount of heat of the reducing gas generated in the melting furnace to the direct reduction process, and thus allows it to be used most efficiently.
- This embodiment of the device allows before melting to intensively heat the charge in the heater by creating a high-temperature coolant during the combustion of gases from the recovery reactor.
- the design of the kiln eliminates the potentially serious problem of solid sediment and keeps the walls and lid of the kiln clean.
- the device provides increased productivity while reducing the height and volume of the furnace, its operational introduction into mode, ensuring compact production, high economic efficiency and high environmental safety.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Furnace Details (AREA)
- Manufacture Of Iron (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
The invention relates to metallurgy, in particular to devices for producing iron or steel by a direct reduction process and comprises a melting furnace (1) and a reduction reactor (2) which are combined by means of a lined jacket and separated by a masonry wall (3), in the top part of which a channel (4) for evacuating waste gas from the furnace (1) to the roof part (5) of the reactor (2) is situated. The furnace (1) is provided with indirect plasmotrons, two of which (7, 8) are located in the lid (9) of the furnace, and plasmotrons (11, 12) are located in the side wall thereof. The gas-evacuating channel (20) of the reactor (2) is connected, by means of a gas pipeline (22), to a batch preheater (6) which consists of two chambers (15) separated by a partition (16).
Description
Устройство для получения железа или стали из железоокисных материалов Изобретение относится к области металлургии, конкретно к установкам для получения железа или стали посредством прямого восстановления. A device for producing iron or steel from iron oxide materials The invention relates to the field of metallurgy, and in particular to installations for producing iron or steel by direct reduction.
Известно устройство для получения железа и/или его сплавов из железоокисных материалов, содержащее плавильную печь, оборудованную средствами для подачи углеродсодержащего топлива и кислородсодержащего газа непосредственно в жидкую фазу и в пространство над ней для дожигания газа, образующегося в результате плавления, выпускное отверстие с трубопроводом отвода отходящего газа, средство для ввода железоокисного материала в подвергнутый дожиганию отходящий газ для частичного восстановления материала и охлаждения газа, установленное за ним средство для сепарации частично восстановленного материала от газа и средство для подачи частично восстановленного материала в плавильную печь, согласно изобретению, трубопровод отходящего газа установлен вертикально и соединен со средствами загрузки железоокисного материала в нижней его части и со средством для сепарации, расположенном в верхней части канала. В устройстве предусмотрено средство для ускорения потока отходящего газа, расположенное перед устройством для ввода железоокисного материала (Патент России N°2077595, кл. С 21 В 13/14, заявл. 20.12.1989, опубл. 20.04.1997).A device for producing iron and / or its alloys from iron oxide materials is known, comprising a melting furnace equipped with means for supplying carbon-containing fuel and oxygen-containing gas directly into the liquid phase and into the space above it for afterburning the gas resulting from melting, an outlet with a discharge pipe exhaust gas, means for introducing iron oxide material into the afterburned exhaust gas for partial reduction of the material and gas cooling, installed and therein means for separating partially reduced material from gas and means for supplying partially reduced material to the smelter, according to the invention, the exhaust gas pipe is installed vertically and connected to means for loading iron oxide material in its lower part and to means for separation located in the upper part channel. The device provides means for accelerating the flow of exhaust gas, located in front of the device for introducing iron oxide material (Russian Patent N ° 2077595, CL 21B 13/14, application. 20.12.1989, publ. 20.04.1997).
Однако конструкция устройства сложная, операции осуществляются на большом количестве каналов и дальнейшая интенсификация процесса плавки материала и снижение капитальных и эксплуатационных затрат становятся затруднительными.However, the design of the device is complex, operations are carried out on a large number of channels, and further intensification of the material smelting process and reduction of capital and operating costs become difficult.
Наиболее близким по технической сущности и достигаемому результату (прототип) принято устройство для производства железоуглеродистого сплава, содержащее реактор для предварительного восстановления железоокисного материала и соединенный с ним реактор для получения железоуглеродистого сплава, включающий узел ввода предварительно восстановленного материала, узлы выпуска железоуглеродистого сплава и шлака, средства для вдувания кислорода в расплав и отвода газообразных продуктов реакции, согласно изобретению, реактор для получения железоуглеродистого сплава выполнен закрытым с возможностью ограничения впуска в него атмосферных газов и отвода газообразных продуктов реакции и снабжен дополнительными средствами вдувания кислорода в пространство
над ванной расплава, при этом устройство снабжено подогревателем предварительно восстановленного карбидосодержащего материала, соединенным с реактором для получения железоуглеродистого сплава средствами для отвода газообразных продуктов реакции (Патент России M>2060281, кл. С 21 В 13/14, заявл. 03.10.91, опубл. бюл. _Nal4, 1996).The closest in technical essence and the achieved result (prototype) is a device for the production of iron-carbon alloy, containing a reactor for preliminary reduction of iron oxide material and a reactor connected to it for producing iron-carbon alloy, including an input unit for pre-reduced material, nodes for the release of iron-carbon alloy and slag, means for injection of oxygen into the melt and removal of gaseous reaction products according to the invention, a reactor for producing elezouglerodistogo alloy made closed to restrict the intake of atmospheric gases therein and removing gaseous reaction products and is provided with additional means of blowing oxygen into the space above the molten bath, the device is equipped with a pre-reduced carbide-containing material heater connected to the reactor for producing an iron-carbon alloy by means for removing gaseous reaction products (Russian Patent M> 2060281, CL 21B 13/14, application 03.10.91, publ. Bulletin _Nal4, 1996).
В предложенном конструктивном исполнении устройства для производства железоуглеродистого сплава отсутствуют приборы контроля температуры и состава восстановительного газа, не решен вопрос каким образом подвергать обработке жидкие и твердые частицы, например, капли железа, в потоке отходящих газов без нежелательных спеканий и отложений на стенках и крышке реактора.In the proposed design of the device for the production of iron-carbon alloy, there are no devices for monitoring the temperature and composition of the reducing gas, the question of how to treat liquid and solid particles, for example, iron droplets in the exhaust gas stream without undesired sintering and deposits on the walls and the reactor lid, has not been resolved.
В основу изобретения поставлена задача усовершенствования устройства для получения железа или стали из железоокисных материалов путем модификации конструкции плавильной печи, реактора и подогревателя, что позволит обеспечить как высокий выход продукта, так и высокий энергетический КПД с низкими капитальными затратами.The basis of the invention is the task of improving the device for producing iron or steel from iron oxide materials by modifying the design of the melting furnace, reactor and heater, which will ensure both a high yield of the product and high energy efficiency with low capital costs.
Поставленная задача решается тем, что в устройстве для получения железа или стали из железоокисных материалов, содержащем плавильную печь и соединенный с ней реактор восстановления, подогреватель исходного материала, узлы ввода и выпуска материала и продуктов плавки, средства ввода кислородсодержащего газа и отвода газообразных продуктов реакции, согласно изобретению, плавильная печь и реактор восстановления объединены футерованным кожухом и разделены стенкой кладки, в верхней части которой выполнен горизонтальный канал для отвода из печи газообразных продуктов реакции в сводовую часть реактора восстановления, в нижней части которого расположен газоотводной канал, соединенный газопроводом с камерой смешения, которая через газоходы связана с внутренней полостью подогревателя исходного материала, выполненного в виде герметичного кожуха с внутренней футеровкой и размещенными в нем вертикальными камерами, боковые стенки которых образуют с верхней крышкой подогревателя проем для прохода газа, при этом на выходе из газоходов в проеме подогревателя установлены газовые горелки, а в нижней части каждой камеры, с одной стороны расположен узел выгрузки материала, а с другой - канал отходящего газа, который газовой магистралью связан с камерой дожигания и газоотводом дымовых газов. Плавильная печь снабжена плазмотронами косвенного действия, два из которых расположены в крышке, параллельно продольной оси печи, а в нижней части печи плазмотроны расположены на противоположных стенках симметрично под углом к поду, при этом
в боковых стенках печи в плоскости установки плазмотронов расположены форсунки для подачи кислорода или кислородсодержащего газа. В горизонтальном канале для отвода из печи газообразных продуктов реакции установлены патрубки, соединенные с трубопроводами для подачи пара, воздуха и метана, а камера смешения дополнительно снабжена трубопроводами для подачи воздуха и метана, при этом в канале отвода из печи газообразных продуктов реакции и в газопроводе перед камерой смешения установлены газоанализаторы, а каналы отходящего газа с каждой камеры подогревателя исходного материала снабжены шиберами, причем вертикальные камеры подогревателя исходного материала разделены между собой перегородкой.The problem is solved in that in a device for producing iron or steel from iron oxide materials containing a melting furnace and a reduction reactor connected to it, a source material heater, input and output nodes of material and melting products, means for introducing oxygen-containing gas and removal of gaseous reaction products, according to the invention, the melting furnace and the recovery reactor are combined with a lined casing and separated by a masonry wall, in the upper part of which there is a horizontal channel for removal from the furnace of gaseous reaction products into the arched part of the recovery reactor, in the lower part of which there is a gas outlet channel connected by a gas line to the mixing chamber, which is connected through gas ducts to the internal cavity of the source material heater, made in the form of a sealed casing with an internal lining and vertical chambers placed in it , the side walls of which form an opening for the passage of gas with the upper cover of the heater, while gas is installed at the exit of the flues in the opening of the heater s torch and the bottom of each chamber, with one side located discharging node material, and the other - the flue gas channel, the gas manifold which is connected with an afterburner and flue gas venting. The melting furnace is equipped with indirect plasmatrons, two of which are located in the lid parallel to the longitudinal axis of the furnace, and in the lower part of the furnace plasmatrons are located on opposite walls symmetrically at an angle to the hearth, while nozzles for supplying oxygen or an oxygen-containing gas are located in the side walls of the furnace in the plane of the plasmatron installation. In the horizontal channel for the removal of gaseous reaction products from the furnace, pipes are connected to the pipelines for supplying steam, air and methane, and the mixing chamber is additionally equipped with pipelines for supplying air and methane, while in the channel for the removal of gaseous reaction products from the furnace and in the gas pipeline gas analyzers are installed in the mixing chamber, and the exhaust gas channels from each chamber of the source material heater are equipped with gates, and the vertical chambers of the source material heater are separated Lena between themselves by a partition.
Восстановительная атмосфера в печи создана с помощью плазмотронов, расположенных в нижней части боковых стенок печи, и кислородсодержащего газа, транспортируемого через форсунки, где шихта представляет собой предварительно нагретые железосодержащие окатыши и уголь, загружаемые в печь через пристеночно расположенный узел ввода. Газы, транспортируемые в слой металла и образованные при плавлении, приводят к интенсивному подъему расплавленного металла и создают движение вверх брызг, капель и струй расплавленного металла и шлака. Для предотвращения налипания расплавленного материала и твердых частиц на крышку и стенки печи, в крышке печи вертикально установлены два плазмотрона, при работе которых удаляются существенные количества переносимого расплавленного материала и твердых частиц, и происходит дополнительное перемешивание в слое металла и шлака.The reducing atmosphere in the furnace was created with the help of plasma torches located in the lower part of the side walls of the furnace and oxygen-containing gas transported through nozzles, where the charge is preheated iron-containing pellets and coal loaded into the furnace through a wall-mounted input unit. Gases transported to the metal layer and formed during melting, lead to an intense rise of the molten metal and create an upward movement of spray, droplets and jets of molten metal and slag. To prevent the molten material and solid particles from sticking to the lid and walls of the furnace, two plasma torches are installed vertically in the furnace lid, during operation of which significant quantities of the transferred molten material and solid particles are removed, and additional mixing occurs in the metal and slag layer.
На выходе из реактора восстановления образуется горячий углекислый газ, тепло которого используется для предварительного нагрева в подогревателе исходного материала перед его подачей в реактор восстановления.Hot carbon dioxide is formed at the outlet of the reduction reactor, the heat of which is used to preheat the source material in the preheater before it is fed to the reduction reactor.
Чтобы обеспечить простое управление технологическим процессом, устройство оснащено газоанализаторами, установленными в канале отвода из печи газообразных продуктов реакции и в газопроводе перед камерой смешения, при этом в горизонтальном канале дополнительно установлены трубопроводы для подачи пара, воздуха и метана, в сводовой части реактора восстановления - термопары, а камера смешения снабжена трубопроводами для подачи воздуха и метана. С целью регулирования температуры газа в подогревателе исходного материала, каналы отходящего газа каждой камеры снабжены шиберами, а в верхней части подогревателя на выходе из газоходов установлены горелки. Сущность изобретения поясняется чертежами, где
на фиг. 1 представлен общий вид установки для получения железа или стали из железоокисных материалов; на фиг. 2 - подогреватель исходного материала, вид сбоку; на фиг. 3 - реактор восстановления, вид сбоку. Устройство для получения железа или стали из железоокисных материалов включает плавильную печь 1 и реактор восстановления 2, объединенные футерованным кожухом и разделены между собой стенкой 3 кладки, в верхней части которой выполнен горизонтальный канал 4 для отвода из плавильной печи 1 газообразных продуктов реакции в сводовую часть 5 реактора восстановления 2. Устройство дополнительно снабжено подогревателем 6 исходного материала, содержащим футерованный кожух. Плавильная печь 1 снабжена плазмотронами косвенного действия. Плазмотроны 7 и 8 расположены вертикально в крышке 9 печи, а узел ввода 10 исходного материала смещен к боковой стенке печи. В нижней части печи, на противоположных стенках, симметрично установлены плазмотроны 11 и 12 под углом к поду, а в плоскости установки плазмотронов расположены форсунки 13 и 14 для подачи кислорода или кислородсодержащего газа. Подогреватель 6 исходного материала выполнен из вертикальных камер 15, разделенных между собой, например металлическим листом 16. Боковые стенки подогревателя и металлический лист 16 образуют с верхней крышкой 17 проем 18 для прохода газа. В нижней части реактора восстановления 2, под колосником 19 расположен газоотводный канал 20, при этом колосник 19 установлен с возможностью наклона в сторону узла выпуска 21 продуктов металлизации. Газоотводной канал 20 реактора восстановления 2 через газопровод 22, камеру смешения 23 и газоход 24 связан с внутренней полостью подогревателя 6, непосредственно с проемом 18. Камера смешения 23 дополнительно снабжена трубопроводами 25 и 26 для подачи воздуха и метана. На выходе газохода 24 в проеме 18 подогревателя 6 установлены газовые горелки 27. В нижней части каждой камеры 15 подогревателя 6 расположен узел выгрузки 28 и канал 29 отходящего газа, который через камеру дожигания 30 связан с газоотводом 31 дымовых газов. Устройство снабжено газоанализаторами 32, установленными в горизонтальном канале 4 и в газопроводе 22 перед камерой смешения 23. В горизонтальном канале 4 также расположены патрубки 33, 34 и 35, соединенные трубопроводами для подачи пара, воздуха и метана. Канал 29 каждой камеры подогревателя 6 снабжен шибером 36. В сводовой части 5 реактора восстановления размещены термопары 37. Устройство работает следующим образом.
Перед началом работы плавильную печь 1 и реактор восстановления 2 разогревают до температуры 800-1000 С. При достижении заданной температуры в печь через отдельные входные течки узла ввода 10 подают вначале уголь, которым покрывают под печи, а затем загружают смешанный материал: углеродсодержащий материал (уголь) и железосодержащий материал (окатыши) с соотношением в пределах 0,2-0,4 с/или без дополнительно сопровождающих веществ. Так как узел ввода 10 материала расположен у стенки печи, материал в шахте печи формируется под углом естественного откоса, с углом раскрытия в сторону горизонтального канала 4 для отвода из плавильной печи газообразных продуктов реакции. Параллельно с загрузкой плавильной печи 1, заданный объем исходного материала (окатыши) подают в реактор восстановления 2 с образованием полости в сводовой части, ограниченной уровнем материала. Производят запуск плазмотронов 11 и 12 в плавильной печи. После выхода плазмотронов на рабочий режим, включают верхние плазмотроны 7 и 8. Часть загружаемого на под печи углеродсодержащего материала действует, как источник твердого углерода для восстановления. Остаток углеродсодержащего материала действует, как защитный слой, который служит подложкой для расплавленного железа и предотвращает проникновение жидкого железа/шлака в огнеупор пода. Кроме того, некоторое количество углеродсодержащего материала окисляется продуктами горения при подаче через форсунки 13 и 14 кислородсодержащего газа с образованием монооксида углерода, который представляет собой восстановитель.To ensure simple control of the process, the device is equipped with gas analyzers installed in the channel for removing gaseous reaction products from the furnace and in the gas line in front of the mixing chamber, while pipelines for supplying steam, air and methane are additionally installed in the horizontal channel, and thermocouples in the arched part of the recovery reactor , and the mixing chamber is equipped with pipelines for supplying air and methane. In order to control the temperature of the gas in the source material heater, the exhaust gas channels of each chamber are equipped with gates, and burners are installed in the upper part of the heater at the outlet of the gas ducts. The invention is illustrated by drawings, where in FIG. 1 shows a general view of an apparatus for producing iron or steel from iron oxide materials; in FIG. 2 - source material heater, side view; in FIG. 3 - recovery reactor, side view. A device for producing iron or steel from iron oxide materials includes a melting furnace 1 and a reduction reactor 2, united by a lined casing and separated by a masonry wall 3, in the upper part of which a horizontal channel 4 is made for the removal of gaseous reaction products from the melting furnace 1 to the arched part 5 recovery reactor 2. The device is additionally equipped with a heater 6 of the source material containing a lined casing. The melting furnace 1 is equipped with indirect plasmatrons. The plasma torches 7 and 8 are located vertically in the cover 9 of the furnace, and the input unit 10 of the source material is shifted to the side wall of the furnace. In the lower part of the furnace, on opposite walls, plasmatrons 11 and 12 are mounted symmetrically at an angle to the hearth, and nozzles 13 and 14 for supplying oxygen or an oxygen-containing gas are located in the plane of installation of the plasmatrons. The heater 6 of the source material is made of vertical chambers 15, separated by, for example, a metal sheet 16. The side walls of the heater and the metal sheet 16 form an opening 18 with a top cover 17 for gas passage. In the lower part of the recovery reactor 2, under the grate 19, a gas outlet channel 20 is located, while the grate 19 is mounted with the possibility of tilt towards the outlet 21 of the metallization products. The gas outlet channel 20 of the recovery reactor 2 through the gas pipe 22, the mixing chamber 23 and the gas duct 24 is connected to the internal cavity of the heater 6, directly with the opening 18. The mixing chamber 23 is additionally provided with pipelines 25 and 26 for supplying air and methane. At the outlet of the gas duct 24, gas burners 27 are installed in the opening 18 of the heater 6. At the bottom of each chamber 15 of the heater 6 there is an unloading unit 28 and an exhaust gas channel 29, which is connected through the afterburner 30 to the flue gas outlet 31. The device is equipped with gas analyzers 32 installed in the horizontal channel 4 and in the gas pipe 22 in front of the mixing chamber 23. In the horizontal channel 4, there are also pipes 33, 34 and 35 connected by pipelines for supplying steam, air and methane. The channel 29 of each chamber of the heater 6 is equipped with a gate 36. Thermocouples 37 are placed in the arched part 5 of the recovery reactor. The device operates as follows. Before starting work, the melting furnace 1 and the reduction reactor 2 are heated to a temperature of 800-1000 C. When the set temperature is reached, the coal is first fed into the furnace through separate inlet chutes of the input unit 10, which is coated under the furnace, and then mixed material is loaded: carbon-containing material (coal ) and iron-containing material (pellets) with a ratio in the range of 0.2-0.4 s / or without additional accompanying substances. Since the input node 10 of the material is located near the wall of the furnace, the material in the shaft of the furnace is formed at an angle of repose, with an opening angle in the direction of the horizontal channel 4 for the removal of the gaseous reaction products from the smelting furnace. In parallel with the loading of the melting furnace 1, a predetermined volume of the starting material (pellets) is supplied to the reduction reactor 2 with the formation of a cavity in the arched part, limited by the level of the material. Start plasmatrons 11 and 12 in the melting furnace. After the plasmatrons have entered the operating mode, the upper plasmatrons 7 and 8 are turned on. A part of the carbon-containing material loaded onto the under furnace acts as a source of solid carbon for reduction. The remainder of the carbon-containing material acts as a protective layer that serves as a substrate for molten iron and prevents liquid iron / slag from entering the hearth refractory. In addition, a certain amount of carbon-containing material is oxidized by combustion products when oxygen-containing gas is supplied through nozzles 13 and 14 to form carbon monoxide, which is a reducing agent.
Газы в процессе реакции плавки приводят к интенсивному подъему твердого углерода и шлака из слоя металла, что создает движение вверх брызг, капель и струй в пространство над ванной расплава. Работа плазмотронов 7 и 8 создает частичный барьер переносимому расплавленному материалу и твердым частицам, это способствует поддержанию температуры внутри печи, вызывает активное перемешивание в слое металла и слое шлака и в результате устанавливается умеренно однородная температура.Gases during the melting reaction lead to an intense rise of solid carbon and slag from the metal layer, which creates an upward movement of sprays, drops and jets into the space above the molten bath. The operation of plasmatrons 7 and 8 creates a partial barrier to the transported molten material and solid particles, this helps to maintain the temperature inside the furnace, causes active mixing in the metal layer and the slag layer, and as a result, a moderately uniform temperature is established.
Устройство сконструировано с учетом уровней слоя металла, слоя шлака и с учетом всплесков, капель и струй расплавленного металла и шлака, которые выбрасываются в верхнее пространство печи. По мере опускания шихты в печи, производят периодическую ее дозагрузку, а металл и шлак частично выпускают.The device is designed taking into account the levels of the metal layer, the slag layer and taking into account bursts, drops and jets of molten metal and slag that are thrown into the upper space of the furnace. As the charge is lowered in the furnace, it is periodically recharged, and the metal and slag are partially released.
Газ выходит из плавильной печи через горизонтальный канал 4 и попадает в сводовую часть 5 реактора восстановления 2. Газоанализатором 32 определяют состав отходящего газа, а температуру газа, поступающего в сводовую часть 5 реактора,
определяют термопарами 37. Рабочая температура в реакторе восстановления ограничена предотвращением слипания исходного материала, верхний предел температуры составляет 800-850 0C. Поэтому снижение температуры газа, подаваемого в реактор восстановления, путем охлаждения является неизбежным. Коррекцию состава и температуры газа осуществляют путем подачи в канал 4 отдельными трубопроводами 33, 34, 35 пара, воздуха и метана. В результате разложения CH4 - пара происходит интенсивное снижение температуры газа, отходящего из плавильной печи, и улучшается его восстановительная способность.Gas leaves the smelting furnace through a horizontal channel 4 and enters the arched part 5 of the reduction reactor 2. The gas analyzer 32 determines the composition of the exhaust gas, and the temperature of the gas entering the arched part 5 of the reactor, determined by thermocouples 37. The operating temperature in the reduction reactor is limited by preventing the starting material from sticking together; the upper temperature limit is 800-850 0 C. Therefore, a decrease in the temperature of the gas supplied to the reduction reactor by cooling is unavoidable. The correction of the composition and temperature of the gas is carried out by supplying to the channel 4 separate pipelines 33, 34, 35 of steam, air and methane. As a result of decomposition of CH 4 - steam, an intensive decrease in the temperature of the gas leaving the smelting furnace occurs, and its reduction ability improves.
Камеры 15 подогревателя заполняют исходным материалом через индивидуальные бункера.The chambers 15 of the heater are filled with source material through individual bins.
Отходящий из реактора восстановления газ через газоотводной канал 20, расположенный под колосником 19, транспортируется в подогреватель 6 исходного материала через камеру смешения 23, в которую дополнительно подают воздух и метан для создания высокотемпературного теплоносителя при сжигании горелками 27 поступающих через газоход 24 в проем 18 газов. Состав отходящего из реактора восстановления газа контролируют газоанализатором 32.The gas leaving the recovery reactor through the gas outlet channel 20, located under the grate 19, is transported to the source material heater 6 through the mixing chamber 23, which is additionally supplied with air and methane to create a high-temperature coolant when the burners burn 27 gases entering through the duct 24 into the opening 18. The composition of the outgoing gas reduction reactor is controlled by a gas analyzer 32.
Уровень исходного материала в камере 15 подогревателя и скорость подачи газа через газоход 24 выбирают так, чтобы при установившихся условиях процесса газ проникал через свободное пространство проема 18 и генерировал в нем температуру порядка 750-800 0C. Температуру нагрева исходного материала регулируют шиберами 36, установленными в канале 29 отходящего газа каждой камеры. Отходящий газ через каналы 29 каждой камеры направляют в газоотвод 31 дымовых газов через камеру дожигания 30. Выпуск подогретого исходного материала производят через узел выгрузки 28, расположенный в нижней части каждой камеры. Давление на газоподводящих и газоотводящих узлах устройства устанавливается в зависимости от аэродинамического сопротивления слоя шихты.The level of the source material in the chamber 15 of the heater and the gas feed rate through the gas duct 24 is chosen so that under steady-state process conditions the gas penetrates the free space of the opening 18 and generates a temperature of about 750-800 0 C. The temperature of the source material is controlled by the sliders 36 installed in the channel 29 of the exhaust gas of each chamber. The exhaust gas through the channels 29 of each chamber is sent to the flue gas outlet 31 through the afterburner 30. The heated source material is discharged through the discharge unit 28 located at the bottom of each chamber. The pressure at the gas supply and gas exhaust nodes of the device is set depending on the aerodynamic resistance of the charge layer.
Данная конструкция установки дает возможность передачи существенного количества тепла восстановительного газа, вырабатываемого в плавильной печи, в процесс прямого восстановления, и таким образом позволяет использовать его наиболее эффективно.This installation design makes it possible to transfer a significant amount of heat of the reducing gas generated in the melting furnace to the direct reduction process, and thus allows it to be used most efficiently.
Такое выполнение устройства позволяет перед плавлением интенсивно нагревать шихту в подогревателе за счет создания высокотемпературного теплоносителя при сжигании газов, поступающих из реактора восстановления. Конструкция печи устраняет потенциально серьезную проблему твердых наносов, позволяет сохранять чистыми стенки и крышку печи.
Устройство обеспечивает повышение производительности при уменьшении высоты и объема печи, оперативное введение ее в режим, обеспечивая компактность производства, высокую экономическую эффективность и высокую экологическую безопасность.
This embodiment of the device allows before melting to intensively heat the charge in the heater by creating a high-temperature coolant during the combustion of gases from the recovery reactor. The design of the kiln eliminates the potentially serious problem of solid sediment and keeps the walls and lid of the kiln clean. The device provides increased productivity while reducing the height and volume of the furnace, its operational introduction into mode, ensuring compact production, high economic efficiency and high environmental safety.
Claims
1. Устройство для получения железа или стали из железоокисных материалов, содержащее плавильную печь (1) и соединенный с ней реактор восстановления (2), подогреватель (6) исходного материала, узлы ввода (10) и выпуска материала и продуктов плавки, средства ввода кислородсодержащего газа и отвода газообразных продуктов реакции, отличающееся тем, что плавильная печь (1) и реактор восстановления (2) объединены футерованным кожухом и разделены стенкой (3) кладки, в верхней части которой выполнен горизонтальный канал (4) для отвода из печи газообразных продуктов реакции в сводовую часть (5) реактора восстановления (2), в нижней части которого расположен газоотводной канал (20), соединенный газопроводом (22) с камерой смешения (23), которая через газоходы связана с внутренней полостью подогревателя (6) исходного материала, выполненного в виде герметичного кожуха с внутренней футеровкой и размещенными в нем вертикальными камерами (15), боковые стенки которых образуют с верхней крышкой подогревателя проем (18) для прохода газа, при этом на выходе из газоходов в проеме (18) подогревателя (6) установлены газовые горелки (27), а в нижней части каждой камеры, с одной стороны расположен узел выгрузки (28) материала, а с другой - канал (29) отходящего газа, который газовой магистралью связан с камерой дожигания (30) и газоотводом (31) дымовых газов.1. A device for producing iron or steel from iron oxide materials, comprising a melting furnace (1) and a reduction reactor (2) connected to it, a heater (6) of the starting material, input units (10) and the discharge of material and smelting products, oxygen-containing input means gas and removal of gaseous reaction products, characterized in that the melting furnace (1) and recovery reactor (2) are combined with a lined casing and separated by a wall (3) of masonry, in the upper part of which a horizontal channel (4) is made for the removal of gaseous from the furnace reaction products into the arched part (5) of the reduction reactor (2), in the lower part of which there is a gas outlet channel (20) connected by a gas pipeline (22) to a mixing chamber (23), which is connected through gas ducts to the internal cavity of the preheater (6) of the starting material made in the form of a sealed casing with an inner lining and vertical chambers (15) placed in it, the side walls of which form an opening (18) with a top cover for the heater for gas passage, while at the outlet of the gas ducts in the opening (18) of the heater (6) installed gas burners (27), and in the lower part of each chamber, on one side there is a discharge unit (28) of material, and on the other, an exhaust gas channel (29), which is connected by a gas line to the afterburner (30) and the gas outlet (31) flue gas.
2. Устройство по п. 1, отличающееся тем, что плавильная печь (1) снабжена плазмотронами косвенного действия, два из которых (7,8) расположены в крышке (9), параллельно продольной оси печи, а в нижней части печи плазмотроны (11,12) расположены на противоположных стенках симметрично под углом к поду, при этом в боковых стенках печи в плоскости установки плазмотронов (11Д2) расположены форсунки (13,14) для подачи кислорода или кислородсодержащего газа. 2. The device according to claim 1, characterized in that the melting furnace (1) is equipped with indirect plasmatrons, two of which (7.8) are located in the lid (9), parallel to the longitudinal axis of the furnace, and plasmatrons in the lower part of the furnace (11) , 12) are located on opposite walls symmetrically at an angle to the hearth, while nozzles (13.14) for supplying oxygen or an oxygen-containing gas are located in the side walls of the furnace in the plane of installation of the plasma torches (11D2).
3. Устройство по п. 1, отличающееся тем, что в горизонтальном канале (4) для отвода из печи газообразных продуктов реакции установлены патрубки (33,34,35), соединенные с трубопроводами для подачи пара, воздуха и метана.3. The device according to p. 1, characterized in that in the horizontal channel (4) for the removal of gaseous reaction products from the furnace, nozzles (33.34.35) are connected to the pipelines for supplying steam, air and methane.
4. Устройство по п. 1, отличающееся тем, что камера смешения (23) дополнительно снабжена трубопроводами (25,26) для подачи воздуха и метана. 4. The device according to claim 1, characterized in that the mixing chamber (23) is additionally provided with pipelines (25.26) for supplying air and methane.
5. Устройство по п.п. 3 и 4, отличающееся тем, что в канале (4) отвода из печи газообразных продуктов реакции и в газопроводе (22) перед камерой смешения (23) установлены газоанализаторы (32).5. The device according to p. 3 and 4, characterized in that gas analyzers (32) are installed in the channel (4) for removing gaseous reaction products from the furnace and in the gas pipeline (22) in front of the mixing chamber (23).
6. Устройство по п. 1, отличающееся тем, что каналы (29) отходящего газа с каждой камеры (15) подогревателя (6) исходного материала снабжены шиберами (36). 6. The device according to p. 1, characterized in that the channels (29) of the exhaust gas with each chamber (15) of the heater (6) of the source material is equipped with gates (36).
7. Устройство по п. 1, отличающееся тем, что вертикальные камеры (15) подогревателя (6) исходного материала разделены между собой перегородкой (16). 7. The device according to p. 1, characterized in that the vertical chambers (15) of the heater (6) of the source material are separated by a partition (16).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
UAA200701437 | 2007-02-12 | ||
UAA200701437A UA83439C2 (en) | 2007-02-12 | 2007-02-12 | Device for obtaining of iron or steel from iron-oxide material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008100238A1 true WO2008100238A1 (en) | 2008-08-21 |
Family
ID=39690360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/UA2007/000017 WO2008100238A1 (en) | 2007-02-12 | 2007-03-19 | Device for producing iron or steel from iron oxide materials |
Country Status (3)
Country | Link |
---|---|
RU (1) | RU2361927C1 (en) |
UA (1) | UA83439C2 (en) |
WO (1) | WO2008100238A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014035276A1 (en) * | 2012-08-28 | 2014-03-06 | Общество С Ограниченной Ответственностью Промышленная Компания "Технология Металлов" | Method and apparatus for producing metal from materials containing iron oxides |
CN116200566B (en) * | 2023-03-07 | 2023-12-22 | 酒泉钢铁(集团)有限责任公司 | Heat accumulating type gas-based shaft furnace direct reduction process for multistage reduction heat supply |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB923233A (en) * | 1958-06-07 | 1963-04-10 | Roman Rummel | A process and apparatus for smelting metal oxide-containing dusts or ores in finely divided or particulate form |
SU967279A3 (en) * | 1979-04-19 | 1982-10-15 | Клекнер-Хумбольдт-Дойтц Аг (Фирма) | Charge for thermal treatment and melting of material |
RU2060281C1 (en) * | 1991-10-03 | 1996-05-20 | Каргилл, Инкорпорейтед | Method for production of iron-carbon alloy (its versions) and device for its embodiment |
RU2077595C1 (en) * | 1988-12-20 | 1997-04-20 | Си-Ар-Эй Сервисиз Лимитед | Method and apparatus (alternatives) for producing iron and/or alloys thereof from iron oxide materials |
-
2007
- 2007-02-12 UA UAA200701437A patent/UA83439C2/en unknown
- 2007-03-19 WO PCT/UA2007/000017 patent/WO2008100238A1/en active Application Filing
- 2007-10-12 RU RU2007137946/02A patent/RU2361927C1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB923233A (en) * | 1958-06-07 | 1963-04-10 | Roman Rummel | A process and apparatus for smelting metal oxide-containing dusts or ores in finely divided or particulate form |
SU967279A3 (en) * | 1979-04-19 | 1982-10-15 | Клекнер-Хумбольдт-Дойтц Аг (Фирма) | Charge for thermal treatment and melting of material |
RU2077595C1 (en) * | 1988-12-20 | 1997-04-20 | Си-Ар-Эй Сервисиз Лимитед | Method and apparatus (alternatives) for producing iron and/or alloys thereof from iron oxide materials |
RU2060281C1 (en) * | 1991-10-03 | 1996-05-20 | Каргилл, Инкорпорейтед | Method for production of iron-carbon alloy (its versions) and device for its embodiment |
Also Published As
Publication number | Publication date |
---|---|
UA83439C2 (en) | 2008-07-10 |
RU2007137946A (en) | 2009-04-20 |
RU2361927C1 (en) | 2009-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2431679C2 (en) | Installation for direct melting | |
US5042964A (en) | Flash smelting furnace | |
EP3543634B1 (en) | Oxy-fuel combustion system for melting a pelleted charge material | |
EA028690B1 (en) | Starting a smelting process | |
RU2348881C2 (en) | Liquid-phase furnace for smelting materials containing ferrous and nonferrous metals | |
RU2361927C1 (en) | Device for receiving of iron from steel made of ironoxide materials | |
CN211626117U (en) | Side-blown smelting furnace | |
WO2004065643A1 (en) | Eaf side wall panel to provide for primary and secondary combustion as well as particel injection at the same time, and operating method therefor | |
RU2285049C2 (en) | Device for delivery of gas to reservoir | |
RU2295574C2 (en) | Method of production of metal and plant for realization of this method | |
EP2794934B1 (en) | Controllable solids injection | |
KR101511178B1 (en) | Method for the pyrometallurigical treatment of metals, molten metals, and/or slags | |
EP1226283B1 (en) | High temperature premelting apparatus | |
RU2368666C2 (en) | Method for direct melting and department | |
RU2760199C9 (en) | Continuous steel production unit | |
JP2014510193A (en) | Method and apparatus for producing molten iron and steel | |
RU2319749C2 (en) | Method of the direct production of iron, in particular steels, and installation for its implementation | |
RU2342442C2 (en) | Facility for receiving of iron melt | |
RU2285047C1 (en) | Method of production of iron by direct reduction and device for realization of this method | |
RU58123U1 (en) | DEVICE FOR RESTORING METAL OXIDES | |
RU2611229C2 (en) | Processing method of metallurgical raw materials and device for such method implementation | |
WO1997002365A1 (en) | Device for after-burning combustible components of the atmosphere in metallurgical smelting vessels | |
RU2342441C2 (en) | Method of iron-carbon alloy direct receiving and facility for its implementation | |
RU2167205C1 (en) | Method for making steel of iron-containing raw material and aggregate for performing the same | |
CN113074558A (en) | Side-blown smelting furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07748791 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07748791 Country of ref document: EP Kind code of ref document: A1 |