Verfahren zur Herstellung von Polymerpartikeln durch Polymerisation von Flüssigkeitstropfen in einer Gasphase
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polymerpartikeln durch Polymerisation von Flüssigkeitstropfen in einer die Tropfen umgebenden Gasphase, wobei die Tropfen mindestens ein Monomer enthalten und während der Polymerisation mit partikulären Feststoffen beschichtet werden.
US 5,269,980 beschreibt ein Verfahren zur Polymerisation monodisperser Tropfenketten in einer umgebenden erwärmten Gasphase. Die Tropfenketten werden erzeugt, indem die zu polymerisierende Lösung durch eine Vielzahl von Bohrungen definierter Größe hindurchtritt.
WO 2006/079631 A1 lehrt die Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation monodisperser Tropfenketten in einer umgebenden erwärmten Gasphase. Die erhaltenen Polymerpartikel können anschließend Agglomeriert werden.
Durch Polymerisation von Flüssigkeitstropfen in einer Gasphase können die Verfahrensschritte Polymerisation und Trocknung zusammengefasst werden. Zusätzlich kann die Partikelgröße durch geeignete Verfahrensführung in gewissen Grenzen eingestellt werden.
EP 0 496 594 A2 offenbart ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel, wobei während des Verfahrens anfallendes Unterkorn in die Polymerisation rückgeführt wird.
EP 0 945 143 A2 offenbart ein Verfahren zur Beschichtung wasserabsorbierender Po- lymerpartikel mit wasserabsorbierenden Polymerpartikeln, wobei die zur Beschichtung verwendeten Polymerpartikel höher vernetzt sind.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Verfahrens zur Herstellung von Polymerpartikeln durch Polymerisation von Flüssigkeitstrop- fen in einer die Tropfen umgebenden Gasphase.
Insbesondere war es eine Aufgabe der vorliegenden Erfindung ein Verfahren bereitzustellen, das wenig störanfällig ist und eine hohe Ausbeute ermöglicht.
Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung von Polymerpartikeln durch Polymerisation von Flüssigkeitstropfen, enthaltend mindestens ein Monomer, in einer die Tropfen umgebenden Gasphase, dadurch gekennzeichnet, dass die Tropfen während der Polymerisation mit partikulären Feststoffen beschichtet werden.
Durch die Beschichtung läßt sich die Bildung von Agglomeraten und Wandbelägen während der Polymerisation verhindern.
Insbesondere bei der Polymerisation von Monomerlösungen führt eine zu schnelle Trocknung zu niedrigen Monomerumsätzen. Andererseits sind Polymerpartikel mit höherem Lösungsmittelgehalt auch klebriger und haben daher auch eine erhöhte Neigung zur Bildung von Agglomeraten und Wandbelägen.
Durch die Beschichtung mit partikulären Feststoffen läßt sich nun die Bildung von Ag- glomeraten und Wandbelägen zurückdrängen.
Der mittlere Durchmesser der erzeugten Tropfen beträgt vorzugsweise mindestens 200 μm, besonders bevorzugt mindestens 250 μm, ganz besonders bevorzugt mindestens 300 μm, wobei der Tropfendurchmesser durch Lichtstreuung bestimmt werden kann.
Der Durchmesser der partikulären Feststoffen beträgt vorzugsweise weniger als 200 μm, besonders bevorzugt weniger als 150 μm, ganz besonders bevorzugt weniger als 100 μm, auf, wobei der Partikeldurchmesser durch Lichtstreuung bestimmt werden kann.
Die partikulären Feststoffe können auch selber Polymerpartikel sein.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden im Verfahren zwangsweise anfallende Polymerpartikel, beispielsweise durch Polymerisation zu kleiner Tropfen oder Abrieb, verwendet und auf diese Weise in das Verfahren rückgeführt.
Die Art der Beschichtung unterliegt keiner Beschränkung. Beispielsweise ist es möglich die Polymerisation in Gegenwart eines Kreisgases durchzuführen und den partikulären Feststoff in dem Kreisgas vorzudispergieren. Es ist aber auch möglich die partikulären Feststoffe mittels einer oder mehrerer Zweistoffdüsen in den Reaktionsraum zu dosieren.
In einer Ausführungsform der vorliegenden Erfindung werden die partikulären Feststof- fe in einem Beeich zudosiert, wo der Monomerumsatz weniger als 90 mol-%, vorzugsweise weniger als 75 mol-%, besonders bevorzugt weniger als 60 mol-%, ganz besonders bevorzugt weniger als 45 mol-%, beträgt. Zur Bestimmung des Monomerumsat- zes werden die polymerisierenden Tropfen an der Stelle, wo der partikuläre Feststoff zugesetzt wird, in einem geeigneten Lösungsmittel mit einem geeigneten Polymerisati- onsinhibitor, aufgefangen. Anschließend kann der Monomergehalt der aufgefangenen Tropfen nach üblichen Methoden bestimmt werden. Bei niedrigen Monomerumsätzen
können die partikuläre Feststoffe tiefer in die Tropfen eindringen und werden fester gebunden. Weiterhin können auch größere Anteile an partikulären Feststoffen eingearbeitet werden.
In einer weiteren Ausführungsform der vorliegenden Erfindung fallen die polymerisie- renden Tropfen in eine Wirbelschicht und die Beschichtung mit dem partikulären Feststoff wird erst in der Wirbelschicht durchgeführt. Aufgrund der längeren Verweilzeit ist hierbei die Beschichtungsausbeute höher.
Selbstverständlich sind auch Kombinationen der vorgenannten Ausführungsformen möglich.
Die Art der Monomeren und deren Konzentration in der Flüssigkeit unterliegen keiner Beschränkung. So ist es möglich Monomere in Substanz oder als Lösung in einem geeigneten Lösungsmittel, beispielsweise Methanol, Diethylether oder Wasser, zu po- lymerisieren. Vorzugsweise werden im erfindungsgemäßen Verfahren ethylenisch ungesättigte Monomere eingesetzt.
Ethylenisch ungesättigte Monomere sind beispielsweise ethylenisch ungesättigte C3- Cβ-Carbonsäuren. Bei diesen Verbindungen handelt es sich beispielsweise um Acryl- säure, Methacrylsäure, Ethacrylsäure, α-Chloracrylsäure, Crotonsäure, Maleinsäure, Maleinsäureanhydrid, Itaconsäure, Citraconsäure, Mesaconsäure, Glutaconsäure, A- conitsäure und Fumarsäure sowie die Alkali- oder Ammoniumsalze dieser Säuren.
Weitere geeignete Monomere sind Acrylamidopropansulfonsäure, Vinylphosphonsäure und/oder Alkali- bzw. Ammoniumsalze der Vinylsulfonsäure, wobei Säuren entweder in nicht neutralisierter Form oder in partiell bzw. bis zu 100 % neutralisierter Form eingesetzt werden.
Weiterhin kommen monoethylenisch ungesättigte Sulfon- oder Phosphonsäuren als Monomere in Betracht, beispielsweise Allylsulfonsäure, Sulfoethylacrylat, Sulfoethyl- methacrylat, Sulfopropylacrylat, Sulfopropylmethacrylat, 2-Hydroxy-3- acryloxypropylsulfonsäure, 2-Hydroxy-3-methacryloxypropylsulfonsäure, Al- lylphosphonsäure, Styrolsulfonsäure und 2-Acrylamido-2-methylpropansulfonsäure.
Weitere geeignete Monomere sind beispielsweise Acrylamid, Methacrylamid, Croton- säureamid, Acrylnitril, Methacrylnitril, Dimethylaminoethylmethacrylat, Dimethylami- noethylacrylat, Dimethylaminopropylacrylat, Diethylaminopropylacrylat, Dimethylami- nobutylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylmethacrylat, Di- methylaminoneopentylacrylat und Dimethylaminoneopentylmethacrylat sowie deren Quarternisierungsprodukte, beispielsweise mit Methylchlorid, Hydroxyethylacrylat, Hydroxyethylmethacrylat, Hydroxypropylacrylat und Hydroxypropylmethacrylat.
Weitere geeignete Monomere sind Monomere, die durch Umsetzung von stickstoffhaltigen Heterocyclen und/oder Carbonsäureamiden, wie Vinylimidazol, Vinylpyrazol sowie Vinylpyrrolidon, Vinylcaprolactam und Vinylformamid, mit Acetylen erhältlich sind, die auch quarternisiert sein können, beispielsweise mit Methylchlorid, und Monomere, die durch Umsetzung von stickstoffhaltigen Verbindungen, wie Diallyldimethylammoni- umchlorid, mit Allylalkohol oder Allylchlorid erhältlich sind.
Des Weiteren können auch Vinyl- und Allylester sowie Vinyl- und Allylether, wie Vinyl- acetat, Allylacetat, Methylvinylether und Methylallylether, als Monomere verwendet werden.
Die Monomeren können allein oder in Mischung untereinander eingesetzt werden, beispielsweise Mischungen, enthaltend zwei oder mehr Monomere.
Das erfindungsgemäße Verfahren eignet sich beispielsweise zur Herstellung wasserabsorbierender Polymerpartikel. Die Herstellung wasserabsorbierender Polymerpartikel wird in der Monographie "Modern Superabsorbent Polymer Technology", F. L. Buchholz und AT. Graham, Wiley-VCH, 1998, Seiten 71 bis 103, beschrieben.
Wasserabsorbierende Polymere werden als wässrige Lösungen absorbierende Produkte zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
Die erzeugten Tropfen enthalten vorzugsweise
a) mindestens ein ethylenisch ungesättigtes Monomer, b) mindestens einen Vernetzer, c) mindestens einen Initiator und d) Wasser.
Während der Beschichtung beträgt der Wassergehalt der polymerisierenden Tropfen vorzugsweise mindestens 15 Gew.-%, besonders bevorzugt mindestens 30 Gew.-%, ganz besonders bevorzugt mindestens 45 Gew.-%. Zur Bestimmung des Wasserge- halts werden die polymerisierenden Tropfen an der Stelle, wo der partikuläre Feststoff zugesetzt wird, aufgefangen. Anschließend kann der Wassergehalt der aufgefangenen Tropfen nach üblichen Methoden, beispielsweise Karl-Fischer-Titration, bestimmt werden.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind die zur Beschichtung verwendeten partikulären Feststoffe selber wasserabsorbierende Polymerpartikel.
Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz besonders bevorzugt mindestens 50 g/100 g Wasser, und haben vorzugsweise mindestens je eine Säuregruppe.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevor- zugt ist Acrylsäure.
Die bevorzugten Monomere a) haben mindestens eine Säuregruppe, wobei die Säuregruppen vorzugsweise zumindest teilweise neutralisiert sind.
Der Anteil an Acrylsäure und/oder deren Salzen an der Gesamtmenge der Monomeren a) beträgt vorzugsweise mindestens 50 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz besonders bevorzugt mindestens 95 mol-%.
Die Säuregruppen der Monomere a) sind üblicherweise teilweise neutralisiert, vor- zugsweise zu 25 bis 85 mol-%, bevorzugt zu 50 bis 80 mol-%, besonders bevorzugt 60 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Alkalimetallcarbonate oder Alkali- metallhydrogencarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium sind als Alkalimetalle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Natriumhydroxid, Natri- umcarbonat oder Natriumhydrogencarbonat sowie deren Mischungen. Üblicherweise wird die Neutralisation durch Einmischung des Neutralisationsmittels als wässrige Lösung, als Schmelze, oder bevorzugt auch als Feststoff erreicht. Beispielsweise kann Natriumhydroxid mit einem Wasseranteil deutlich unter 50 Gew.-% als wachsartige Masse mit einem Schmelzpunkt oberhalb 23°C vorliegen. In diesem Fall ist eine Dosierung als Stückgut oder Schmelze bei erhöhter Temperatur möglich.
Die Monomere a), insbesondere Acrylsäure, enthalten vorzugsweise bis zu 0,025 Gew.-% eines Hydrochinonhalbethers. Bevorzugte Hydrochinonhalbether sind Hydro- chinonmonomethylether (MEHQ).
Die Monomerlösung enthält vorzugsweise höchstens 160 Gew.-ppm, bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindesten 10 Gew.-ppm, besonders bevorzugt mindesten 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf Acrylsäure, wobei Acrylsäure- salze als Acrylsäure mit berücksichtigt werden. Beispielsweise kann zur Herstellung
der Monomerlösung eine Acrylsäure mit einem entsprechenden Gehalt an Hydrochi- nonhalbether verwendet werden.
Vernetzer b) sind Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldiacrylat, Al- lylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallyloxyethan, wie in EP 530 438 A1 beschrieben, Di- und Triacrylate, wie in EP 547 847 A1 , EP 559 476 A1 , EP 632 068 A1 , WO 93/21237 A1 , WO 2003/104299 A1 , WO 2003/104300 A1 , WO 2003/104301 A1 und DE 103 31 450 A1 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE 103 31 456 A1 und DE 103 55 401 A1 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 und WO 2002/32962 A2 beschrieben.
Geeignete Vernetzer b) sind insbesondere N,N'-Methylenbisacrylamid und N, N'- Methylenbismethacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren von Po- lyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethylenglykoldiac- rylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen, wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallyloxyethan, Triallylamin, Tetraallylethylendiamin, Allylester der Phosphorsäure sowie Vi- nylphosphonsäurederivate, wie sie beispielsweise in EP 343 427 A2 beschrieben sind. Weiterhin geeignete Vernetzer b) sind Pentaerythritoldi-, Pentaerythritoltri- und Pentae- rythritoltetraallylether, Polyethylenglykoldiallylether, Ethylenglykoldiallylether, Glyzerin- di- und Glyzerintriallylether, Polyallylether auf Basis Sorbitol, sowie ethoxylierte Varianten davon. Im erfindungsgemäßen Verfahren einsetzbar sind Di(meth)acrylate von Po- lyethylenglykolen, wobei das eingesetzte Polyethylenglykol ein Molekulargewicht zwischen 300 und 1000 aufweist.
Besonders vorteilhafte Vernetzer b) sind jedoch Di- und Triacrylate des 3- bis 20-fach ethoxylierten Glyzerins, des 3- bis 20-fach ethoxylierten Trimethylolpropans, des 3- bis 20-fach ethoxylierten Trimethylolethans, insbesondere Di- und Triacrylate des 2- bis 6-fach ethoxylierten Glyzerins oder Trimethylolpropans, des 3-fach propoxylierten Glyzerins oder Trimethylolpropans, sowie des 3-fach gemischt ethoxylierten oder propoxy- lierten Glyzerins oder Trimethylolpropans, des 15-fach ethoxylierten Glyzerins oder
Trimethylolpropans, sowie des mindestens 40-fach ethoxylierten Glyzerins, Trimethylolethans oder Trimethylolpropans.
Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine, wie sie beispielsweise in WO 2003/104301 A1 beschrieben sind. Besonders
vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Die Monomerlösung enthält vorzugsweise mindestens 0,1 Gew.-%, bevorzugt mindestens 0,2 Gew.-%, besonders bevorzugt mindestens 0,3 Gew.-%, ganz besonders bevorzugt mindestens 0,4 Gew.-%, Vernetzer b), jeweils bezogen auf Monomer a).
Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen in Radikale zerfallende Verbindungen eingesetzt werden, beispielsweise Peroxide, Hydroperoxide, Wasserstoffperoxid, Persulfate, Azoverbindungen und die sogenannten Redoxinitiato- ren. Bevorzugt ist der Einsatz von wasserlöslichen Initiatoren. In manchen Fällen ist es vorteilhaft, Mischungen verschiedener Initiatoren zu verwenden, beispielsweise Mischungen aus Wasserstoffperoxid und Natrium- oder Kaliumperoxodisulfat. Mischun- gen aus Wasserstoffperoxid und Natriumperoxodisulfat können in jedem beliebigen Verhältnis verwendet werden.
Besonders bevorzugte Initiatoren c) sind Azoinitiatoren, wie 2,2'-Azobis[2-(2- imidazolin-2-yl)propan]dihydrochlorid und 2,2'-Azobis[2-(5-methyl-2-imidazolin-2- yl)propan]dihydrochlorid, und Photoinitiatoren, wie 2-Hydroxy-2-methylpropiophenon und 1 -[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1 -propan-1 -on, Redoxinitiato- ren, wie Natriumpersulfat/ Hydroxymethylsulfinsäure, Ammoniumperoxodisul- fat/Hydroxymethylsulfinsäure, Wasserstoffperoxid/Hydroxymethylsulfinsäure, Natrium- persulfat/Ascorbinsäure, Ammoniumperoxodisulfat/Ascorbinsäure und Wasserstoffpe- roxid/Ascorbinsäure, Photoinitiatoren, wie 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2- methyl-1-propan-1-on, sowie deren Mischungen.
Die Initiatoren werden in üblichen Mengen eingesetzt, beispielsweise in Mengen von 0,001 bis 5 Gew.-%, vorzugsweise 0,01 bis 1 Gew.-%, bezogen auf die Monomeren a).
Die Polymerisationsinhibitoren können auch durch Absorption, beispielsweise an Aktivkohle, entfernt werden.
Der Feststoffgehalt der Monomerlösung beträgt vorzugsweise mindestens 35 Gew.-%, bevorzugt mindestens 38 Gew.-%, besonders bevorzugt mindestens 40 Gew.-%, ganz besonders bevorzugt mindestens 42 Gew.-%. Dabei ist der Feststoffgehalt die Summe aller nach der Polymerisation nichtflüchtigen Bestandteile. Dies sind Monomer a), Vernetzer b) und Initiator c).
Der Sauerstoffgehalt der Monomerlösung beträgt vorzugsweise mindestens 1 Gew.- ppm, besonders bevorzugt mindestens 2 Gew.-ppm, ganz besonders bevorzugt min-
destens 5 Gew.-ppm. Auf die übliche Inertisierung der Monomerlösung kann daher weitgehend verzichtet werden.
Der erhöhte Sauerstoffgehalt stabilisiert die Monomerlösung und ermöglicht die Ver- wendung geringerer Mengen an Polymerisationsinhibitor und vermindert damit die durch den Polymerisationsinhibitor verursachten Produktverfärbungen.
Die Monomerlösung wird zur Polymerisation in die Gasphase dosiert. Der Sauerstoffgehalt der Gasphase beträgt vorzugsweise 0,001 bis 0,15 Vol. -%, besonders bevor- zugt 0,002 bis 0,1 Vol.-%, ganz besonders bevorzugt 0,005 bis 0,05 Vol.-%.
Die Gasphase enthält neben Sauerstoff vorzugsweise nur inerte Gase, d.h. Gase, die unter Reaktionsbedingungen nicht in die Polymerisation eingreifen, beispielsweise Stickstoff und/oder Wasserdampf.
Vorzugsweise werden weitgehend monodisperse Tropfenketten erzeugt, beispielsweise mittels einer Vertropferplatte oder einem Vertropferrohr.
Eine Vertropferplatte ist eine Platte mit mindestens einer Bohrung, wobei die Flüssig- keit von oben durch die Bohrung tritt. Die Vertropferplatte bzw. die Flüssigkeit kann in Schwingungen versetzt werden, wodurch an der Unterseite der Vertropferplatte je Bohrung eine idealerweise monodisperse Tropfenkette erzeugt wird.
Ein Vertropferrohr ist eine Rohr mit mindestens einer Bohrung, wobei die Flüssigkeit von oben durch die Bohrung tritt. Das Vertropferrohr bzw. die Flüssigkeit kann in
Schwingungen versetzt werden, wodurch an der Unterseite des Vertropferrohrs je Bohrung eine idealerweise monodisperse Tropfenkette erzeugt wird.
Die Anzahl und die Größe der Bohrungen werden gemäß der gewünschten Kapazität und Tropfengröße ausgewählt. Der Tropfendurchmesser beträgt dabei üblicherweise das 1 ,9fache des Durchmessers der Bohrung. Wichtig ist hierbei, dass die zu vertropfende Flüssigkeit nicht zu schnell durch die Bohrung tritt bzw. der Druckverlust über die Bohrung nicht zu groß ist. Ansonsten wird die Flüssigkeit nicht vertropft, sondern der Flüssigkeitsstrahl wird infolge der hohen kinetischen Energie zerrissen (versprüht). Der Vertropfer wird im Strömungsbereich des laminaren Strahlzerfalls betrieben, d.h. die Reynoldszahl bezogen auf den Durchsatz pro Bohrung und den Bohrungsdurchmesser ist vorzugsweise kleiner als 2.000, bevorzugt kleiner 1.000, besonders bevorzugt kleiner 500, ganz besonders bevorzugt kleiner 100. Der Druckverlust über die Bohrung beträgt vorzugsweise weniger als 2,5 bar, besonders bevorzugt weniger als 1 ,5 bar, ganz besonders bevorzugt weniger als 1 bar.
Der Durchmesser der Bohrungen wird an die gewünschte Tropfengröße angepasst. Die erzeugten Tropfen weisen eine mittlere Tropfengröße von vorzugsweise mindestens 200 μm, besonders bevorzugt von mindestens 250 μm, ganz besonders bevorzugt von mindestens 300 μm, auf, wobei der Tropfendurchmesser durch Lichtstreuung be- stimmt werden kann.
Die Vertropfung kann aber auch mittels pneumatischer Ziehdüsen, Rotation, Zerschneiden eines Strahls oder schnell ansteuerbarer Mikroventildüsen durchgeführt werden.
In einer pneumatischen Ziehdüse wird ein Flüssigkeitsstrahl zusammen mit einem Gasstrom durch eine Blende beschleunigt. Über die Gasmenge kann der Durchmesser des Flüssigkeitsstrahls und damit der Tropfendurchmesser beeinflusst werden.
Bei der Vertropfung durch Rotation tritt die Flüssigkeit durch die Öffnungen einer rotierenden Scheibe. Durch die auf die Flüssigkeit wirkende Fliehkraft werden Tropfen definierter Größe abgerissen. Bevorzugte Vorrichtungen zur Rotationsvertropfung werden beispielsweise in DE 43 08 842 A1 beschrieben
Der austretende Flüssigkeitsstrahl kann aber auch mittels eines rotierenden Messers in definierte Segmente zerschnitten werden. Jedes Segment bildet anschließend einen Tropfen.
Bei Verwendung von Mikroventildüsen werden direkt Tropfen mit definiertem Flüssig- keitsvolumen erzeugt.
Bevorzugt strömt die Gasphase als Trägergas durch den Reaktionsraum. Dabei kann das Trägergas im Gleichstrom oder im Gegenstrom zu den frei fallenden Tropfen der Monomerlösung durch den Reaktionsraum geführt werden, bevorzugt im Gleichstrom. Vorzugsweise wird das Trägergas nach einem Durchgang zumindest teilweise, bevorzugt zu mindestens 50%, besonders bevorzugt zu mindestens 75%, als Kreisgas in den Reaktionsraum zurückgeführt. Üblicherweise wird eine Teilmenge des Trägergases nach jedem Durchgang ausgeschleust, vorzugsweise bis zu 10%, besonders bevorzugt bis zu 3%, ganz besonders bevorzugt bis zu 1 %.
Die Gasgeschwindigkeit wird vorzugsweise so eingestellt, dass die Strömung im Polymerisationsreaktor gerichtet ist, beispielsweise liegen keine der allgemeinen Strömungsrichtung entgegengesetzte Konvektionswirbel vor, und beträgt beispielsweise 0,01 bis 5 m/s, vorzugsweise 0,02 bis 4 m/s, besonders bevorzugt 0,05 bis 3 m/s, ganz besonders bevorzugt 0,1 bis 2 m/s.
Das den Reaktor durchströmende Gas wird zweckmäßigerweise vor dem Reaktor auf die Reaktionstemperatur vorgewärmt.
Die Reaktionstemperatur beträgt bei der thermisch induzierten Polymerisation vorzugsweise 100 bis 2500C, besonders bevorzugt 120 bis 2000C, ganz besonders bevorzugt 150 bis 180°C.
Die Reaktion kann im Überdruck oder im Unterdruck durchgeführt werden, ein Unter- druck von bis zu 100 mbar gegenüber dem Umgebungsdruck ist bevorzugt.
Das Reaktionsabgas, d.h. das der Reaktionsraum verlassende Gas, kann beispielsweise in einem Wärmeaustauscher abgekühlt werden. Dabei kondensieren Wasser und nicht umgesetztes Monomer a). Danach kann das Reaktionsabgas zumindest teil- weise wieder aufgewärmt und als Kreisgas in den Reaktor zurückgeführt werden. Ein Teil des Reaktionsabgases kann ausgeschleust und durch frisches Gas ersetzt werden, wobei im Reaktionsabgas enthaltenes Wasser und nicht umgesetzte Monomere a) abgetrennt und rückgeführt werden können.
Besonders bevorzugt ist ein Wärmeverbund, dass heißt, ein Teil der Abwärme beim Abkühlen des Abgases wird zum Aufwärmen des Kreisgases verwendet.
Die Reaktoren können begleitbeheizt werden. Die Begleitheizung wird dabei so eingestellt, dass die Wandtemperatur mindestens 5°C oberhalb der Reaktorinnentemperatur liegt und die Kondensation an den Reaktorwänden zuverlässig vermieden wird.
Das Reaktionsprodukt kann dem Reaktor in üblicher weise entnommen werden und wahlweise bis zur gewünschten Restfeuchte und zum gewünschten Restmonomeren- gehalt getrocknet werden.
Das Reaktionsprodukt wird vorzugsweise in mindestens einer Wirbelschicht getrocknet.
Die Polymerpartikel können zur weiteren Verbesserung der Eigenschaften nachver- netzt werden.
Nachvernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylatgruppen des Hydrogels kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise Alkoxysiliylverbindungen, Polyaziridine, Polyamine, Polyamidoamine, Di- oder Polyepoxide, wie in EP 83 022 A2, EP 543 303 A1 und EP 937 736 A2 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE 33 14 019 A1 ,
DE 35 23 617 A1 und EP 450 922 A2 beschrieben, oder ß-Hydroxyalkylamide, wie in DE 102 04 938 A1 und US 6,239,230 beschrieben.
Des weiteren sind in DE 40 20 780 C1 zyklische Karbonate, in DE 198 07 502 A1 2- Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE 198 07 992 C1 Bis- und Poly-2-oxazolidinone, in DE 198 54 573 A1 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE 198 54 574 A1 N-Acyl-2-Oxazolidone, in DE 102 04 937 A1 zyklische Harnstoffe, in DE 103 34 584 A1 bizyklische Amidacetale, in EP 1 199 327 A2 Oxetane und zyklische Harnstoffe und in WO 2003/31482 A1 Morpholin-2,3- dion und dessen Derivate als geeignete Nachvernetzer beschrieben.
Die Menge an Nachvernetzer beträgt vorzugsweise 0,01 bis 1 Gew.-%, besonders bevorzugt 0,05 bis 0,5 Gew.-%, ganz besonders bevorzugt 0,1 bis 0,2 Gew.-%, jeweils bezogen auf das Polymer.
Die Nachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Nach- vernetzers auf das Hydrogel oder die trockenen Polymerpartikel aufgesprüht wird. Im Anschluss an das Aufsprühen wird thermisch getrocknet, wobei die Nachvernetzungsreaktion sowohl vor als auch während der Trocknung stattfinden kann.
Das Aufsprühen einer Lösung des Vernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Paddelmischer, Scheibenmischer, Pflugscharmischer und Schaufelmischer, durchgeführt werden. Besonders bevorzugt sind Vertikalmischer, ganz besonders bevorzugt sind Pflugscharmischer und Schau- feimischer. Geeignete Mischer sind beispielsweise Lödige-Mischer, Bepex-Mischer, Nauta-Mischer, Processall-Mischer und Schugi-Mischer.
Die thermische Trocknung wird vorzugsweise in Kontakttrocknern, besonders bevorzugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Bepex-T rockner und Nara-T rockner. Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie bei- spielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Besonders vorteilhaft wird in einem Wirbelschichttrockner gemischt und getrocknet.
Bevorzugte Trocknungstemperaturen liegen im Bereich 170 bis 2500C, bevorzugt 180 bis 2200C, und besonders bevorzugt 190 bis 2100C. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt vorzugsweise mindes-
tens 10 Minuten, besonders bevorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten.
Das erfindungsgemäße Verfahren ermöglicht die Herstellung wasserabsorbierender Polymerpartikel mit gleichbleibenden Eigenschaften.
Die gemäß dem erfindungsgemäßen Verfahren erhältlichen wasserabsorbierenden Polymerpartikel weisen eine Zentrifugenretentionskapazität (CRC) von typischerweise mindestens 15 g/g, vorzugsweise mindestens 20 g/g, bevorzugt mindestens 25 g/g, besonders bevorzugt mindestens 30 g/g, ganz besonders bevorzugt mindestens 35 g/g, auf. Die Zentrifugenretentionskapazität (CRC) der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 100 g/g. Die Zentrifugenretentionskapazität der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA (Euro- pean Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 441.2- 02 "Centrifuge retention capacity" bestimmt.
Der mittlere Durchmesser der gemäß dem erfindungsgemäßen Verfahren erhältlichen wasserabsorbierenden Polymerpartikel beträgt vorzugsweise mindestens 200 μm, besonders bevorzugt von 250 bis 600 μm, ganz besonders von 300 bis 500 μm, wobei der Partikeldurchmesser durch Lichtstreuung bestimmt werden kann und den volu- mengemittelten mittleren Durchmesser bedeutet. 90% der Polymerpartikel weisen einen Durchmesser von vorzugsweise 100 bis 800 μm, besonders bevorzugt von 150 bis 700 μm, ganz besonders bevorzugt von 200 bis 600 μm, auf.