WO2008093857A1 - 熱可塑性樹脂成形品の製造方法 - Google Patents

熱可塑性樹脂成形品の製造方法 Download PDF

Info

Publication number
WO2008093857A1
WO2008093857A1 PCT/JP2008/051703 JP2008051703W WO2008093857A1 WO 2008093857 A1 WO2008093857 A1 WO 2008093857A1 JP 2008051703 W JP2008051703 W JP 2008051703W WO 2008093857 A1 WO2008093857 A1 WO 2008093857A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
mold
base material
foamed
functional member
Prior art date
Application number
PCT/JP2008/051703
Other languages
English (en)
French (fr)
Inventor
Satoshi Hanada
Original Assignee
Sumitomo Chemical Company, Limited
Sumika Plastech Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited, Sumika Plastech Co., Ltd. filed Critical Sumitomo Chemical Company, Limited
Priority to DE112008000317T priority Critical patent/DE112008000317T5/de
Priority to US12/524,493 priority patent/US20100109190A1/en
Publication of WO2008093857A1 publication Critical patent/WO2008093857A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14795Porous or permeable material, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • B29C2045/14442Coating a portion of the article, e.g. the edge of the article injecting a grill or grid on the insert

Definitions

  • the present invention includes a foam base material made of a first thermoplastic resin, and a functional member made of a second thermoplastic resin that is fusion bonded to the foam base material so as to protrude from the surface of the foam base material.
  • TECHNICAL FIELD The present invention relates to a method for producing a thermoplastic resin molded article having
  • thermoplastic resin foam sheets are excellent in light weight, recyclability, heat insulation, and the like, and thus are used in various applications such as automobile materials and building materials.
  • a thermoplastic resin molded product in which a non-foamed functional member made of a thermoplastic resin such as a rib, boss, or hook is fused to such a foam molded product can also be used as an automotive interior part or the like.
  • a method for producing the thermoplastic resin molded article a method including the following steps (1) to (4) is known (see, for example, the publication of Japanese Patent Laid-Open No. 2000-012 1561). .
  • thermoplastic resin foam sheet between a pair of molds each having a functional member-shaped recess formed in at least one of them.
  • thermoplastic resin foam sheet A step of closing the mold and shaping the thermoplastic resin foam sheet, and simultaneously closing the opening of the recess with the thermoplastic resin foam sheet.
  • thermoplastic resin foam sheet In a state where the mold is closed and the opening of the recess is closed with a thermoplastic resin foam sheet, the molten thermoplastic resin passes through a resin passage provided in the mold so as to pass through the recess.
  • thermoplastic resin and the heat Process for forming the thermoplastic resin molded product by fusing and integrating a foam sheet made of a plastic resin
  • thermoplastic resin molded product obtained by the method described above includes “sink marks” on the surface of the thermoplastic resin molded product (2) corresponding to the portion provided with the functional member (1) as shown in FIG. A dent called (3) sometimes occurred.
  • the present invention provides a foamed base material made of a first thermoplastic resin, and a functional member made of a second thermoplastic resin fusion-bonded to the foamed base material so as to protrude from the surface of the foamed base material.
  • a method for producing a thermoplastic resin molded article having the above a method for obtaining a molded article having good appearance without sink marks is provided. That is, the present invention relates to a foamed base material made of a first thermoplastic resin, and a functional member made of a second thermoplastic resin fusion-bonded to the foamed base material so as to protrude from the surface of the foamed base material.
  • a first molded surface having a recess that defines a cavity for shaping the functional member, and communicates with the cavity.
  • a first mold having a resin passage therein; and a second mold having a second molding surface and disposed so that the molding surface faces the first molding surface. It is a method having the following steps (1) to (6) carried out using a molding apparatus.
  • a step of supplying a foamed substrate made of the first thermoplastic resin between the first mold and the second mold (2) The first mold and the second mold until the force to press the foamed base material made of the first thermoplastic resin becomes a predetermined force P 1 by the first mold and the second mold. The process of clamping the mold
  • thermoplastic resin is cooled and solidified in a state in which the foamed base material is pressed with the pressure P 2 by the first and second molding dies, so that the functional member is placed in the recess. And forming a thermoplastic resin molded article having the functional member and the foamed base material at the same time.
  • FIG. 1 is a cross-sectional view of sink marks generated on the surface of a molded product corresponding to a portion provided with a functional member.
  • FIG. 2 is a sectional view of the first mold.
  • FIG. 3 is another cross-sectional view of the first mold.
  • FIG. 4 (1.) to FIG. 4 (4) are diagrams showing an outline of the method of the present invention.
  • FIG. 5 is a plan view of a thermoplastic resin molded product having ribs.
  • FIG. 6 is a sectional view taken along line (a) of the thermoplastic resin molded product of FIG.
  • the reference numbers in the figure have the following meanings.
  • the present invention includes a foam base material made of a first thermoplastic resin, and a functional member made of a second thermoplastic resin that is fusion-bonded to the foam base material so as to protrude from the surface of the foam base material.
  • a method for producing a thermoplastic resin molded article having a first molding surface having a recess that defines a cavity for shaping the functional member; A first molding die having a resin passage communicating with the cavity inside; a second molding surface; and a second molding surface disposed so that the molding surface faces the first molding surface. It is carried out using a molding apparatus having a forming die.
  • the first mold and the second mold may be collectively referred to as a pair of molds.
  • the first mold and the second mold may be either a male mold and the other is a female mold, both are female molds, and both are plate-shaped molds.
  • the position and shape of the molding surface of the first mold, that is, the concave portion provided on the first molding surface is not particularly limited, and depends on the position and shape of the functional member to be joined on the foamed substrate.
  • a molding die provided with a recess can be used.
  • the molded product produced by the method of the present invention may have one functional member, or may have two or more functional members. In the case of manufacturing a molded product having one functional member, the first mold having only one cavity for forming the functional member is used, and two or more functional members are used.
  • the first mold having the same number of cavities as the number of functional members to be formed is used.
  • the material of the first and second molds is not particularly limited, but is usually made of metal from the viewpoint of dimensional stability and durability, and the cost is made of aluminum or stainless steel from the viewpoint of light weight. It is preferable that it is manufactured.
  • both molds have a structure in which the temperature can be adjusted with a heater or a heating medium. From the viewpoint of suppressing the deformation of the foamed base material, both molds preferably have a molding surface within the range of 20 to 80 t when the thermoplastic resin molded product is manufactured. It is more preferable to use the inside.
  • a mold capable of vacuum suction and supply of compressed air may be used.
  • the first mold (10) has a resin passage for introducing a molten thermoplastic resin into the cavity (6) defined by the concave portion of the first molding surface. And open to the recess at one end thereof.
  • the other end of the passage is connected to the nozzle (5) at the tip of the screw type extruder (4).
  • the portion (7) where the resin passage opens into the recess is called a gate, and the gate (7) is arranged at the bottom of the recess.
  • molten thermoplastic resin is supplied from the gate to the cavity (6) through a groove (9) called a runner and a cylindrical cavity (8) called a sprue.
  • One recess may be provided with one gate, or a plurality of gates may be provided.
  • the functional member formed in the cavity (6) is a rib
  • the cross section perpendicular to the length direction of the recess defining the cavity (6) usually has a shape as shown in FIG.
  • the recesses that define the capity (6) are the opening width (1 1 ), Bottom width (1 2), height (1 3), etc., and the opening width (1 1) is usually the bottom width (1 2
  • Olefin resins such as olefin copolymers obtained by copolymerizing two or more monomers selected from ethylene, ethylene-vinyl ester copolymers, ethylene mono (meth) acrylic acid copolymers, ethylene Examples include (meth) acrylic acid ester copolymers, ester resins, amide resins, styrene resins, acrylic resins, acrylonitrile resins, and ionomer resins. These resins may be used alone or in combination with a plurality of resins. Olefin resins are preferably used from the viewpoints of moldability, oil resistance, cost, etc., and propylene resins are particularly preferably used from the viewpoint of rigidity and heat resistance of the resulting molded product.
  • propylene resin examples include a propylene homopolymer and a propylene copolymer containing 50 mol% or more of a monomer unit derived from propylene.
  • the copolymer may be a block copolymer, a random copolymer, or a graft copolymer.
  • propylene-based copolymer examples include a copolymer of ethylene or ⁇ -olefin having 4 to 10 carbon atoms and propylene.
  • ⁇ -olefins having 4 to 10 carbon atoms examples include 1-butene, 4-methylpentene-1, 1-hexene and 1-octene.
  • the content of monomer units other than propylene in the propylene copolymer is ethylene. Is preferably 15 mol% or less, and ⁇ -olefin having 4 to 10 carbon atoms is preferably 30 mol% or less.
  • the propylene-based resin may be composed of one type of polymer or a mixture of two or more types of polymers.
  • -Based resin foam substrate can be obtained.
  • non-crosslinked propylene resins are preferably used because they are unlikely to form a gel during recycling.
  • the foaming agent used for forming the foamed base material used in the present invention may be a so-called chemical foaming agent or physical foaming agent, and these may be used in combination.
  • the chemical foaming agent include pyrolytic foaming agents that decompose and generate nitrogen gas (azodicarbonamide, azobisisoptyronitrile, dinitrosopentamethylenetetramine, ⁇ -toluenesulfonyl hydrazide, ⁇ , ⁇ '—oxybis (benzenesulfonyl hydrazide), etc., and pyrolysis inorganic foaming agents that decompose to generate carbon dioxide (sodium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate, etc.) Examples include foamable compounds.
  • the physical foaming agent examples include propane, butane, water, and carbon dioxide gas.
  • the foaming agents exemplified above water, carbon dioxide, etc. are used because the sheet is less susceptible to deformation due to secondary foaming during heating during vacuum forming, is a high temperature condition, and is inert to fire.
  • the amount of the foaming agent used is appropriately selected according to the type of foaming agent and resin used so that a desired foaming ratio can be obtained. ⁇ 2 0 Parts by weight.
  • the method for producing the foamed substrate is not particularly limited, but a sheet obtained by extrusion molding using a flat die (T-die) or a circular die is preferable, and extrusion is performed while foaming a resin melted from the circular die.
  • a method of stretching and cooling along a mandrel or the like is particularly preferably used.
  • the foamed sheet is produced by extrusion molding, the molten resin can be extruded from a die and cooled and solidified, and then stretched.
  • the foamed sheet may be a single layer or a multilayer. From the viewpoint of preventing foam breakage during sheet production, a foamed sheet having a multilayer structure having non-foamed layers in both outer layers is preferred.
  • the resin constituting the non-foamed layer those described above as examples of the resin constituting the foamed layer can be used, but the same type of resin as that constituting the foamed layer is preferable.
  • the foamed layer When is a propylene-based resin the non-foamed layer is also preferably composed of a propylene-based resin.
  • the thermoplastic resin foam sheet to be used is not particularly limited, and a foam sheet having a foaming ratio of 2 to 10 times and a thickness of about 1 to 10 mm is usually used. Materials may be laminated. Examples of skin materials include those that act as decoration, touch improvement, reinforcement, protection, etc. Specifically, woven fabrics, nonwoven fabrics, knitted fabrics, sheets, films, foams, nets, etc.
  • the materials constituting these skin materials include thermoplastic resins such as olefin resins, vinyl chloride resins and styrene resins, thermosetting resins such as urethane resins, cis-1,4-polybutagene, Examples include rubbers such as ethylene-propylene copolymer, cellulosic fibers such as thermoplastic elastomer, cotton, hemp, and bamboo.
  • These skin materials may have uneven patterns such as spots, printed or dyed,
  • the skin material may have a single-layer structure or a multilayer structure, and a skin material provided with a cushion layer may be used to give a soft feeling.
  • Lamination of the foamed substrate and the skin layer can be performed by dry lamination, sand lamination, hot roll bonding, hot air bonding, or the like.
  • the foam base material used in the present invention may contain an additive.
  • additives include fillers, antioxidants, light stabilizers, ultraviolet absorbers, plasticizers, antistatic agents, colorants, release agents, fluidity-imparting agents, and lubricants.
  • specific examples of the filler include inorganic fibers such as glass fibers and carbon fibers, inorganic particles such as talc, clay, silica, titanium oxide, calcium carbonate, and magnesium sulfate.
  • the thermoplastic resin used as the material of the functional member is not particularly limited, but a resin excellent in fusion property with the thermoplastic resin constituting the foamed substrate is selected. From the viewpoint of fusion strength with the foamed substrate, a thermoplastic resin having the same or similar composition as the thermoplastic resin constituting the foamed substrate is preferred.
  • the thermoplastic resin for functional members may also contain various additives. Examples of the additive include a filler, an antioxidant, a light stabilizer, an ultraviolet absorber, a plasticizer, an antistatic agent, a colorant, a release agent, a fluidity imparting agent, and a lubricant.
  • the method of the present invention has a first molding surface having a recess that defines a cavity for shaping a functional member, and communicates with the cavity at a gate that opens at the bottom of the recess.
  • a first mold having a resin passage inside, a second mold having a second molding surface, and arranged so that the molding surface faces the first molding surface; It is carried out using a molding apparatus having
  • the process (.1) includes the first mold (10) and the second component. This is a step of supplying a foamed base material (14) made of the first thermoplastic resin between the mold (16). In this process, the foamed substrate is usually fixed to the clamp frame (15).
  • the foamed substrate may be pre-shaped into a desired shape before being supplied between the molds.
  • a first mold and a second mold can be used for the pre-shaping of the foam substrate.
  • a mold having a molding surface having the same shape as that of the first mold may be used except that the recess is not provided.
  • the foamed substrate may be heated and softened before being supplied between the molds.
  • the step (2) described later is preferably performed before the foamed base material loses the softened state suitable for shaping.
  • the method for heating the foam substrate is not particularly limited, and examples thereof include a method of heating with a hot air or hot air.
  • the heating may be performed so that the surface temperature of the foamed base material is not lower than the melting point of the thermoplastic resin constituting the foamed base material (in the case of a crystalline resin) and not lower than the softening temperature (in the case of an amorphous resin).
  • the surface temperature of the foamed substrate can be measured by contacting a thermocouple.
  • step (2) the first mold and the second mold are used until the force pressing the foamed base material made of the first thermoplastic resin becomes a predetermined force P 1. And clamping the second mold.
  • the force P 1 is preferably in the range of 0.1 to 0.5 MPa.
  • Fig. 4 (2) shows the state where mold clamping is completed.
  • the step (3) is a step of supplying the molten second thermoplastic resin to the cavity through the resin passage until the cavity is filled with the pressure to pressurize the foamed substrate maintained at P 1. It is.
  • Figure 4 (3) shows the thermoplastic The state where the supply of the functional resin is completed is shown.
  • the surface temperature of the foamed base material when the molten thermoplastic resin is supplied is preferably lower, but usually the thermoplastic resin that constitutes the foamed base material is used.
  • the surface temperature is preferably within the range of 100 to 50 for a foamed base material made of propylene-based resin, for example.
  • Step (4) is a step of reducing the force for pressing the foamed base material from P 1 to a predetermined force P 2 after stopping the supply of the molten second thermoplastic resin. After stopping the supply of the molten second thermoplastic resin, it is preferable to reduce the pressure P 1 to be applied within 60 seconds to a predetermined force P 2 and to reduce it within 30 seconds. More preferably, it is even more preferable to reduce it within 10 seconds.
  • the force P2 is preferably in the range of 0.01 to 0.09 MPa. The pressing force can be reduced by slightly increasing the clearance between the molding surfaces by relatively separating the first mold and the second mold by a minute distance.
  • the second thermoplastic resin is cooled and solidified in a state where the foamed base material is pressurized with the cap P 2 by the first and second molds. It is a step of forming a functional member and simultaneously forming a thermoplastic resin molded article having the functional member and the foamed base material.
  • P 1 is preferably in the range of 0.:! To 0.5 MPa, and P 2 is preferably in the range of 0.0 1 to 0.09 MPa. Furthermore, P 1 and P 2 preferably satisfy the relationship 2 ⁇ P 1 ZP 2 ⁇ 30.
  • the shrinkage of the surface of the functional member is equalized by reducing the force to pressurize the foam base before the shrinkage occurs, thereby preventing the sink.
  • the foam substrate is pressurized with a predetermined force P 0 before pressing the foam substrate with a predetermined force P 1 in step (2). It is preferable to shape the foamed substrate into a predetermined shape.
  • the predetermined force P 0 is a force weaker than the force P 1. As described above, first, the weak force PIT foam base is shaped into a predetermined shape, and then the foam base is deformed by pressing the foam base with a strong force P 2 and supplying a molten thermoplastic resin.
  • thermoplastic resin molded article having a beautiful appearance.
  • the force P 0 is preferably in the range of 0.001 to 0.09 M Pa. Moreover, it is preferable to satisfy 2 ⁇ P1ZP0 ⁇ 30.
  • vacuum suction or compressed air may be supplied from the molding surface of the mold.
  • vacuum suction is performed from the molding surface of the molding die, vacuum suction is performed from the molding surface of the molding die, or compressed air is transmitted from the molding surface of the second molding die. May be supplied.
  • the pressure-resistant sheet or foamed substrate is brought into close contact with the molding surface to prevent the pressure-resistant sheet from dropping or misaligned. It is possible to prevent leakage of the molten resin supplied or supplied.
  • the degree of vacuum between the molding surface and the foamed sheet be in the range of 0.05 to 0.1 MPa.
  • the degree of vacuum is the pressure of the gap between the molding surface and the foamed substrate with reference to atmospheric pressure.
  • “Vacuum is — 0.05 MP a” means that the difference between the vacuum pressure between the molding surface and the foamed substrate based on the atmospheric pressure and the atmospheric pressure is 0.05.
  • the degree of vacuum is measured in a vacuum suction passage in the mold. When the compressed gas is supplied from the molding surface of the second mold, the pressure in the gap between the molding surface and the foamed substrate is in the range of 0.05 to 0.7 MPa. It is preferable to supply.
  • Step (6) is a step of opening the mold and taking out the thermoplastic resin molded product as shown in FIG. 4 (4).
  • An example of a thermoplastic resin molded article obtained by the method of the present invention is shown in FIGS.
  • the obtained thermoplastic resin molded article (1 8) was fusion-bonded to the foamed base material (14) composed of the first thermoplastic resin and the foamed base material so as to protrude from the surface of the foamed base material.
  • the functional member in the present invention specifically refers to a rib having a function of reinforcing a thermoplastic resin molded product, or a member such as a boss, clip, or hook having a function of attaching the thermoplastic resin molded product to another member. It is.
  • the functional member (17) is a rib
  • reference numeral 19 represents the length of the rib (17).
  • the thermoplastic resin molded product obtained by the present invention has a surface of the foam base opposite to the surface where the functional member is fusion-bonded to the foam base, that is, the surface formed by the second mold. It is usually a design surface.
  • the thermoplastic resin molded product obtained by the present invention is a packaging material such as a food container. It can be used for automobiles, automobile interior parts, building materials, and home appliances. Examples of automotive interior parts include door trims, ceilings, and trunk sides. For example, if a thermoplastic resin molded product in which ribs are fused as a functional member is used as an automobile interior part, an automobile equipped with the interior part will be superior in strength, and boss hook will be used as a functional member. When a fused thermoplastic resin molded product is used, it can be easily connected to other automobile components.
  • Molds used in the examples and comparative examples are as follows.
  • First mold A mold having a recess on the molding surface that defines a cavity for forming a rib with a thickness of 3 mm, a height of 5 mm, and a length of 150 mm.
  • the recess was opened by connecting a resin passage composed of a sprue, a runner and the like provided in the mold through a gate having a diameter of 8 mm.
  • Second mold A mold having a flat molding surface and capable of being vacuumed.
  • a laminated sheet consisting of a 0.6 mm thick polyolefin thermoplastic elastomer sheet and a foamed polypropylene foam sheet with a foaming ratio of 10 times and a thickness of 2.5 mm (trade name Vinyla made by Kyowa Leather Co., Ltd.) And a polypropylene non-crosslinked foam sheet (trade name Sumicera, manufactured by Sumika Plustech Co., Ltd.) having a foaming ratio of 3 times and a thickness of 3 mm, to produce a foamed base material.
  • the surface of the polypropylene non-crosslinked foamed sheet is melted by blowing hot air at a temperature of 2550X from the hot air supply source at a wind speed of 15 m / sec.
  • the melted polypropylene non-crosslinked foam sheet is the laminated sheet.
  • a foamed substrate was produced.
  • a foam base is fixed to the clamp frame of a vacuum forming machine equipped with an extruder (VA IM 0 3 0 1 manufactured by Sato Iron Works), and a polypropylene non-crosslinked foam sheet of the foam base is formed by a near infrared heater.
  • the foam substrate was softened by heating so that the surface temperature was 200.degree.
  • the thickness of the softened foamed base material was 6.3 mm.
  • the first mold and the second mold are clamped until the force P 0 applied to the foamed substrate P 0 reaches 0.03 MPa, and from the molding surface of the second mold — 0.0 9 Vacuum suction was performed with MPa, and the foamed substrate was shaped. After cooling until the temperature of the polypropylene non-crosslinked foamed sheet surface of the foamed substrate reaches 8 Ot :, press the first mold and the first mold until the force P1 to press the foamed substrate reaches 0.2 MPa.
  • the first mold and the second mold are clamped until the force P 0 applied to the foamed substrate P 0 reaches 0.2 MP a. From the molding surface of the second mold — 0.0 9 MP Vacuum suction was performed with a to shape the foamed substrate.
  • Polypropylene foam base material After cooling until the surface of the non-crosslinked foam sheet reaches 80 ° C, molten polypropylene resin (polypropylene manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene BUE 8 1 E 6, MFR Is supplied to the cavity for 1.1 seconds at a speed of 3 gZ sec through a runner and a sprue that form a resin passage in the first mold, and the cavity is melted into propylene.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

熱可塑性樹脂発泡基材と該発泡基材に融着接合された機能性部材とを有する熱可塑性樹脂成形品の製造方法が提供される。機能性部材を形成するためのキャビティに溶融状熱可塑性樹脂を供給した後、該樹脂の固化に伴う収縮が生じる前に発泡基材を加圧する力を減少させて機能性部材表面の収縮を均等化させることにより、成形体表面におけるヒケの発生を防止する。

Description

明細書 熱可塑性樹脂成形品の製造方法 技術分野
本発明は、 第 1の熱可塑性樹脂からなる発泡基材と、 該発泡基材の表 面から突き出るように該発泡基材に融着接合された第 2の熱可塑性樹脂 からなる機能性部材とを有する熱可塑性樹脂成形品の製造方法に関する 背景技術
熱可塑性樹脂発泡シートを成形して得られる発泡成形品は、 軽量性、 リサイクル性、 断熱性などに優れることから、 自動車部材ゃ建築材料等 の種々の用途に用いられている。 このような発泡成形品にリブ、 ボス、 フック等の熱可塑性樹脂からなる非発泡の機能性部材が融着されてなる 熱可塑性樹脂成形品もまた、 自動車内装用部品等として使用可能である 。 前記熱可塑性樹脂成形品の製造方法として、 以下の工程 ( 1 ) 〜 (4 ) を含む方法が知られている (例えば特開 2 0 0 1 — 1 2 1 5 6 1号公 報を参照) 。
( 1 ) 少なくとも一方に機能性部材の形状の凹部が形成された一対の金 型間に、 熱可塑性樹脂製発泡シートを供給する工程
( 2 ) 金型を閉じて前記熱可塑性樹脂発泡シートを賦形すると同時に、 前記凹部の開口部を熱可塑性樹脂製発泡シートで塞ぐ工程
( 3 ) 金型を閉じて前記凹部の開口部を熱可塑性樹脂製発泡シートで塞 いだ状態で、 該凹部に通ずるように金型内に設けられた樹脂通路を通じ て溶融状態の熱可塑性樹脂を該凹部に供給し、 該熱可塑性樹脂と前記熱 可塑性樹脂製発泡シートとを融着一体化して前記熱可塑性樹脂成形品を 形成する工程
(4 ) 工程 ( 3 ) で形成した熱可塑性樹脂成形品を冷却し、 金型から取 り外す工程 発明の開示
前記のような方法によって得られる熱可塑性樹脂成形品には、 図 1 に 示すような機能性部材 ( 1 ) が設けられた部分に対応する熱可塑性樹脂 成形品 ( 2 ) の表面に 「ヒケ」 と呼ばれるへこみ ( 3 ) が生じることが あった。
本発明は、 第 1 の熱可塑性樹脂からなる発泡基材と、 該発泡基材の表 面から突き出るように該発泡基材に融着接合された第 2の熱可塑性樹脂 からなる機能性部材とを有する熱可塑性樹脂成形品の製造方法において 、 ヒケのない外観良好な成形品が得られる方法を提供するものである。 すなわち本発明は、 第 1の熱可塑性樹脂からなる発泡基材と、 該発泡 基材の表面から突き出るように該発泡基材に融着接合された第 2の熱可 塑性樹脂からなる機能性部材とを有する熱可塑性樹脂成形品を製造する 方法であって、 前記機能性部材を賦形するためのキヤビティを画成する 凹部を有する第 1 の成形面を有し、 前記キヤビティに連通している樹脂 通路を内部に有する第 1の成形型と、 第 2の成形面を有し、 その成形面 が前記第 1の成形面と対向するように配置された第 2の成形型とを有す る成形装置を用いて実施される下記の工程 ( 1 ) 〜 ( 6 ) を有する方法 である。
( 1 ) 第 1 の成形型と第 2の成形型との間に、 第 1 の熱可塑性樹脂から なる発泡基材を供給する工程 ( 2 ) 第 1の成形型と第 2の成形型によって、 第 1の熱可塑性樹脂から なる発泡基材を加圧する力が所定の力 P 1 となるまで、 第 1 の成形型と 第 2の成形型を型締めする工程
( 3 ) 発泡基材を加圧する力を P 1 に維持した状態で、 樹脂通路を通じ て溶融状の第 2の熱可塑性樹脂を、 前記キヤビティが満たされるまで前 記キヤビテイ に供給する工程
( 4 ) 溶融状の第 2の熱可塑性樹脂の供給を停止した後、 発泡基材を加 圧する力を P 1から所定の力 P 2に減少させる工程
( 5 ) 第 1及び第 2の成形型によって前記発泡基材をカ P 2で加圧して いる状態で第 2の熱可塑性樹脂を冷却して固化させることにより、 前記 凹部内で機能性部材を形成し、 同時に、 該機能性部材と前記発泡基材と を有する熱可塑性樹脂成形品を形成する工程
( 6 ) 型開きして熱可塑性樹脂成形品を取り出す工程 図面の簡単な説明
図 1は、 機能性部材が設けられた部分に対応する成形品表面に発生し たヒケの断面図である。
図 2は、 第 1.の成形型の断面図である。
図 3は、 第 1 の成形型の他の断面図である。
図 4 ( 1. ) 〜図 4 ( 4 ) は、 本発明の方法の概略を示す図である。 図 5は、 リブを有する熱可塑性樹脂成形品の平面図である。
図 6は、 図 5の熱可塑性樹脂成形品の ( a ) 線での断面図である。 図中の参照番号は、 それぞれ以下のとおりの意味を有する。
1 : 機能性部材、 2 : 熱可塑性樹脂成形品、 3 : 成形品表面の ヒケ、 4 : スクリユー式押出機、 5 : ノズル、 6 : キヤビティ、 7 : ゲート、 8 : スプルー、 9 : ランナー、 1 0 : 第 1の成形 型、 1 1 : 開口部幅、 1 2 : 底部幅、 1 3 : 高さ、 1 4 : 発泡 基材、 1 5 : クランプ枠、 1 6 : 第 2 の成形型、 1 7 : リブ (機 能性部材) 、 1 8 : 熱可塑性樹脂成形品、 1 9 : リブ長さ。 発明を実施するための形態
本発明は、 第 1の熱可塑性樹脂からなる発泡基材と、 該発泡基材の表 面から突き出るように該発泡基材に融着接合された第 2 の熱可塑性樹脂 からなる機能性部材とを有する熱可塑性樹脂成形品の製造方法を提供す るものであり、 この方法は、 前記機能性部材を賦形するためのキヤビテ ィを画成する凹部を有する第 1の成形面を有し、 前記キヤビティに連通 している樹脂通路を内部に有する第 1の成形型と、 第 2の成形面を有し 、 その成形面が前記第 1 の成形面と対向するように配置された第 2 の成 形型とを有する成形装置を用いて実施される。 以下の説明において、 前 記第 1の成形型と第 2の成形型を合わせて、 一対の成形型と称すること がある。
第 1の成形型、 第 2の成形型は、 一方が雄型で他方が雌型、 両方が雌 型、 両方が板状成形型等、 いずれの組み合わせでもよい。 第 1の成形型 の成形面、 すなわち第 1の成形面に設けられる凹部の位置、 形状は特に 限定されるものではなく、 発泡基材上に接合する機能性部材の位置、 形 状に応じた凹部が設けられた成形型を用いることができる。 本発明の方 法で製造される成形品は、 1個の機能性部材を有してもよく、 2個以上 の機能性部材を有してもよい。 1個の機能性部材を有する成形品を製造 する場合には、 機能性部材を形成するためのキヤビティ を 1個だけ有す る第 1 の成形型が用いられ、 2個以上の機能性部材を有する成形品を製 造する場合には、 形成する機能性部材の数に等しい数のキヤビティを有 する第 1の成形型が用いられる。 第 1及び第 2の成形型の材質は特に限 定されるものではないが、 通常寸法安定性、 耐久性などの観点から金属 製であり、 コス トゃ軽量性などの面からアルミ製やステンレス製である ことが好ましい。 また両成形型は、 ヒータ一ゃ熱媒などにより温度調整 可能な構造であることが好ましい。 発泡基材の変形抑制の観点から、 両 成形型は、 熱可塑性樹脂成形品製造時には、 その成形面を 2 0〜 8 0 t の範囲内とすることが好ましく、 3 0〜 6 0での範囲内とすることがさ らに好ましい。 また成形型は、 真空吸引や圧縮空気の供給が可能なもの を用いてもよい。
第 1の成形型 ( 1 0 ) は図 2に示すように、 第 1の成形面の凹部で画 成されたキヤビティ ( 6 ) 内に溶融状熱可塑性樹脂を導入するための樹 脂通路を有しており、 その一端で前記凹部に開口している。 この実施態 様では、 該通路の他の一端はスクリュー式押出機 (4 ) 先端のノズル ( 5 ) と接続されている。 該樹脂通路が凹部に開口している部分 ( 7 ) は ゲートと呼ばれ、 該ゲート ( 7 ) は、 前記凹部の底部に配置されている 。 一般的な構造の樹脂通路の場合、 ランナーと呼ばれる溝 ( 9 ) や、 ス プル一と呼ばれる円柱形空洞 ( 8 ) を経て、 ゲートからキヤビティ ( 6 ) に溶融状熱可塑性樹脂が供給される。 樹脂通路が長い場合は、 溶融状 熱可塑性樹脂が冷えて固化するのを防止するためにヒーター等の加熱機 構を備えていることが好ましい。 1つの凹部には、 1つのゲートが設け られていてもよく、 また、 複数のゲートが設けられていてもよい。 キヤ ビティ ( 6 ) 内で形成される機能性部材がリブである場合、 該キヤビテ ィ ( 6 ) を画成する凹部の長さ方向に垂直な断面は通常、 図 3の様な形 状を有しており、 キヤピティ ( 6 ) を画成する凹部は、 開口部幅 ( 1 1 ) 、 底部幅 ( 1 2 ) 、 高さ ( 1 3 ) などにより特徴づけられており、 成 形時の離型性に優れること力 ら通常、 開口部幅 ( 1 1 ) は底部幅 ( 1 2
) より 0 . 1 0 . 5 m m程度大さくする。
本発明では 、 熱可塑性樹脂からなる発泡基材を用いる。 該発泡基材を 構成する熱可 性樹脂としては 、 ェチレン、 プロピレン、 ブテン、 ペン テン、 へキセン等の炭素原子数が 2〜 6のォレフィ ンホモポリマ一や、 炭素原子数が 2 〜 1 0のォレフィ ンから選択される 2種類以上のモノマ 一を共重合して得られるォレフィ ン共重合体などのォレフィ ン系樹脂、 エチレン—ビニルエステル共重合体、 エチレン一 (メタ) アクリル酸共 重合体、 エチレン一 (メタ) アクリル酸エステル共重合体、 エステル系 樹脂、 アミ ド系樹脂、 スチレン系樹脂、 アクリル系樹脂、 ァクリロニト リル系樹脂、 アイオノマー樹脂などがあげられる。 これらの樹脂は単独 で使用してもよく、 複数の樹脂を併用してもよい。 成形性、 耐油性、 コ ス トなどの観点からォレフィ ン系樹脂が好ましく用いられ、 得られる成 形品の剛性、 耐熱性などの観点からプロピレン系樹脂が特に好ましく用 いられる。
プロピレン系樹脂としては、 プロピレンホモポリマーや、 プロピレン 由来のモノマー単位を 5 0モル%以上含むプロピレン系共重合体をあげ ることができる。 共重合体は、 ブロック共重合体、 ランダム共重合体、 グラフ ト共重合体のいずれでもよい。 好ましく用いられるプロピレン系 共重合体の例としては、 エチレンまたは炭素原子数 4 ~ 1 0の α —ォレ フィ ンとプロピレンとの共重合体を挙げることができる。 炭素原子数 4 ~ 1 0の α —ォレフィ ンとしては、 例えば、 1 ーブテン、 4 —メチルぺ ンテン一 1、 1 —へキセンおよび 1 —ォクテンが挙げられる。 プロピレ ン系共重合体中のプロピレン以外のモノマー単位の含有量は、 エチレン については 1 5モル%以下、 炭素原子数 4〜 1 0の α —ォレフィ ンにつ いては 3 0モル%以下であることが好ましい。 プロピレン系樹脂は、 1 種類の重合体からなっていてよく、 2種類以上の重合体の混合物でもよ い。
長鎖分岐プロピレン系樹脂や重量平均分子量が 1 X I 0 5以上の高分子 量プロピレン系樹脂を、 発泡層を構成する熱可塑性樹脂の 5 0重量%以 上用いることにより、 微細な気泡を有するプロピレン系樹脂発泡基材を 得ることができる。 さらにこのようなプロピレン系樹脂の中でも、 リサ ィクル時にゲルを生じにくいことから非架橋のプロピレン系樹脂が好ま しく使用される。
本発明で用いる発泡基材を形成するために使用される発泡剤は、 いわ ゆる化学発泡剤および物理発泡剤のいずれでもよく、 これらを併用して もよい。 上記化学発泡剤としては、 例えば分解されて窒素ガスを発生す る熱分解型発泡剤 (ァゾジカルボンアミ ド、 ァゾビスイソプチロニトリ ル、 ジニトロソペンタメチレンテトラミン、 ρ — トルエンスルホニルヒ ドラジド、 ρ, ρ ' —ォキシ一ビス (ベンゼンスルホニルヒ ドラジド) など) 、 分解されて炭酸ガスを発生する熱分解型無機発泡剤 (炭酸水素 ナトリウム、 炭酸アンモニゥム、 炭酸水素アンモニゥムなど) など公知 の熱分解型発泡性化合物が挙げられる。 物理発泡剤としては、 具体的に はプロパン、 ブタン、 水、 炭酸ガス等があげられる。 上記例示の発泡剤 のうち、 シートが真空成形時の加熱において 2次発泡による変形を生じ にくいことや、 高温条件や、 火に対して不活性な物質であることから、 水や炭酸ガス等が好適に用いられる。 発泡剤の使用量は所望の発泡倍率 が得られるように、 用いる発泡剤や樹脂の種類に応じて適宜選択される ものであり、 通常熱可塑性樹脂 1 0 0重量に対して発泡剤 0 . 5 ~ 2 0 重量部である。
発泡基材の製造方法は特に限定するものではないが、 フラッ トダイ ( Tダイ) やサーキユラ一ダイを用いた押出成形により得られたシートが 好ましく、 サーキユラ一ダイから溶融した樹脂を発泡させながら押出し 、 マンドレル等に沿わせて延伸、 冷却を行なう方法が特に好ましく用い られる。 発泡シートを押出成形により製造する場合には、 溶融した樹脂 をダイから押出し冷却固化させた後に延伸を行なうこともできる。 発泡 シートは単層であっても多層であってもよいが、 シート製造時の破泡を 防止する観点から、 非発泡層を両外層に有する多層構成の発泡シートが 好ましい。 非発泡層を構成する樹脂は、 発泡層を構成する樹脂の例とし て前記したものを使用することができるが、 発泡層を構成する樹脂と同 種類のものであるものが好ましく、 例えば発泡層がプロピレン系樹脂で ある場合、 非発泡層もプロピレン系樹脂で構成されることが好ましい。 使用する熱可塑性樹脂発泡シートは特に限定されるものではなく、 通常 発泡倍率 2〜 1 0倍、 厚さ 1〜 1 0 m m程度の発泡シートが用いられる 本発明で用いる発泡基材は表面に表皮材が積層されていてもよい。 表 皮材の例としては、 装飾、 触感向上、 補強、 保護などの作用をするもの が挙げられ、 具体的には、 織布、 不織布、 編布、 シート、 フィルム、 発 泡体、 網状物などが挙げられる。 これらの表皮材を構成する材料として は、 ォレフィ ン系樹脂、 塩化ビニル系樹脂、 スチレン系樹脂などの熱可 塑性樹脂、 ウレタン系樹脂などの熱硬化性樹脂、 シス— 1 , 4 —ポリブ タジェン、 エチレン一プロピレン共重合体などのゴムや熱可塑性エラス トマ一、 綿、 麻、 竹などのセルロース系繊維などが挙げられる。 これら 表皮材にはシポなどの凹凸模様、 印刷や染色が施されていてもよく、 表 皮材は、 単層構成であっても多層構成であってもよく、 ソフ ト感を付与 する為にクッショ ン層を設けた表皮材を用いてもよい。 発泡基材と表皮 層との積層はドライラミネーシヨ ン、 サンドラミネ一シヨ ン、 熱ロール 貼合、 熱風貼合などにより行なうことができる。
本発明で用いる発泡基材は、 添加剤を含有していてもよい。 添加剤と しては、 充填剤、 酸化防止剤、 光安定剤、 紫外線吸収剤、 可塑剤、 帯電 防止剤、 着色剤、 剥離剤、 流動性付与剤、 滑剤などがあげられる。 上記 充填剤の例としては、 具体的にはガラス繊維、 カーボン繊維等の無機繊 維、 タルク、 クレー、 シリカ、 酸化チタン、 炭酸カルシウム、 硫酸マグ ネシゥム等の無機粒子等があげられる。
本発明において、 機能性部材の材料となる熱可塑性樹脂は特に限定は されないが、 発泡基材を構成する熱可塑性樹脂との融着性に優れた樹脂 が選択される。 発泡基材との融着強度の観点からは、 発泡基材を構成す る熱可塑性樹脂と同じか、 類似組成の熱可塑性樹脂が好ましい。 機能性 部材用の熱可塑性榭脂も、 種々の添加剤を含有していてもよい。 添加剤 としては、 充填剤、 酸化防止剤、 光安定剤、 紫外線吸収剤、 可塑剤、 帯 電防止剤、 着色剤、 剥離剤、 流動性付与剤、 滑剤などが挙げられる。 前述のとおり本発明の方法は、 機能性部材を賦形するためのキヤビテ ィを画成する凹部を有する第 1の成形面を有し、 前記凹部底部に開口す るゲートにおいて前記キヤビティに連通している樹脂通路を内部に有す る第 1 の成形型と、 第 2 の成形面を有し、 その成形面が前記第 1 の成形 面と対向するように配置された第 2の成形型とを有する成形装置を用い て実施される。
本発明の方法を、 図 4 ( 1 ) 〜図 4 ( 4 ) を参照して説明する。 工程 ( .1 ) は、 図 4 ( 1 ) に示すように、 第 1の成形型 ( 1 0 ) と第 2の成 形型 ( 1 6 ) との間に、 第 1の熱可塑性樹脂からなる発泡基材 ( 1 4 ) を供給する工程である。 この工程では通常、 発泡基材はクランプ枠 ( 1 5 ) に固定される。
該発泡基材は、 成形型間への供給の前に所望の形状に予備賦形されて いてもよい。 該発泡基材の予備賦形には、 第 1の成形型と、 第 2の成形 型を用いることができる。 また、 第 1の成形型の代わりに、 凹部を有し ない以外は第 1の成形型と同じ形状の成形面を有する成形型を用いても よい。 また、 成形型間への供給の前に発泡基材を加熱して軟化させても よい。 この場合、 後述する工程 ( 2 ) は、 発泡基材が賦形に適した軟化 状態を失わないうちに行われるのが好ましい。 発泡基材を加熱する方法 は特に限定されるものではなく、 ヒ一夕一や熱風で加熱する方法が挙げ られる。 加熱は、 発泡基材の表面温度が該発泡基材を構成する熱可塑性 樹脂の融点以上 (結晶性樹脂の場合) 、 軟化温度以上 (非晶性樹脂の場 合) となるように行うことが好ましく、 例えばプロピレン系樹脂からな る発泡基材の場合には、 表面温度が 1 8 0〜2 2 0で程度となるように 加熱することが好ましい。 発泡基材の表面温度は、 熱電対を接触させて 測定することができる。
工程 ( 2 ) は、 第 1 の成形型と第 2の成形型によって、 第 1の熱可塑 性樹脂からなる発泡基材を加圧する力が所定の力 P 1 となるまで、 第 1 の成形型と第 2の成形型を型締めする工程である。 前記力 P 1は、 0. 1〜0. 5 M P aの範囲内であることが好ましい。 図 4 ( 2 ) は、 型締 めが完了した状態を示している。
工程 ( 3 ) は、 発泡基材を加圧する力を P 1 に維持した状態で、 樹脂 通路を通じて溶融状の第 2の熱可塑性樹脂を、 前記キヤビティが満たさ れ.るまで前記キヤビティ に供給する工程である。 図 4 ( 3 ) は、 熱可塑 性樹脂の供給が完了した状態を示している。
加熱して軟化させた発泡基材を用いる場合、 溶融状熱可塑性樹脂を供 給する時の発泡基材の表面温度は低い方が好ましいが、 通常は、 発泡基 材を構成する熱可塑性樹脂の軟化温度以下であればよく、 例えばプロピ レン系樹脂からなる発泡基材であれば、 表面温度は 1 0 0〜 5 0での範 囲内であることが好ましい。
工程 (4 ) は、 溶融状の第 2の熱可塑性樹脂の供給を停止した後、 発 泡基材を加圧する力を P 1から所定の力 P 2に減少させる工程である。 溶融状の第 2の熱可塑性樹脂の供給を停止した後、 6 0秒以内に加圧す る力 P 1 を所定の力 P 2に減少させることが好ましく、 3 0秒以内に減 少させることがより好ましく、 1 0秒以内に減少させることがさらに好 ましい。 前記力 P 2は 0. 0 1〜 0. 0 9 MP aの範囲内であることが 好ましい。 加圧力は、 第 1の成形型と第 2の成形型とを微小距離だけ相 対的に離隔させて成形面間のクリアランスを僅かに増大させることによ り減少させることができる。
工程 ( 5 ) は、 第 1及び第 2の成形型によって前記発泡基材をカ P 2 で加圧している状態で第 2の熱可塑性樹脂を冷却して固化させることに より、 前記キヤビティ内で機能性部材を形成し、 同時に、 該機能性部材 と前記発泡基材とを有する熱可塑性樹脂成形品を形成する工程である。
P 1は 0. :!〜 0. 5 MP aの範囲内であり、 かつ、 P 2は 0. 0 1 〜 0. 0 9 MP aの範囲内であることが好ましい。 さらに P 1及び P 2 は、 2≤ P 1 ZP 2≤ 3 0 の関係を満たすことが好ましい。
一般的な射出成形においては、 溶融状熱可塑性樹脂を供給した後は射 出成形品のヒケ防止のため射出樹脂や金型を加圧することが知られてい る。 しかしながら本発明のように、 発泡基材の一部のみに溶融状熱可塑 性樹脂を融着させる場合には、 溶融状熱可塑性樹脂を供給した後も発泡 基材を強い力で加圧し続けると、 成形型の凹部と接触している機能性部 材表面が急冷されて先に固化されるが、 機能性部材と発泡基材との界面 は冷却が遅いため、 界面における機能性部材の収縮が大きくなつてしま う。 そしてこの収縮により、 発泡基材が機能性部材との融着部分に引つ 張られ、 機能性部材が融着された部分の反対側の成形品表面にヒケが発 生しやすくなつていた。 そのため本発明では、 収縮が生じる前に発泡基 材を加圧する力を減少させて機能性部材表面の収縮を均等化させること により、 ヒケ ^防止する。
発泡基材としてシート状の発泡基材を使用する場合、 工程 ( 2 ) にお いて所定の力 P 1で発泡基材を加圧する前に、 所定の力 P 0で発泡基材 を加圧し、 発泡基材を所定の形状に賦形することが好ましい。 所定の力 P 0 とは、 力 P 1よりも弱い力である。 このように、 まず弱い力 P I T 発泡基材を所定の形状に賦形した後、 強い力 P 2で発泡基材を加圧して 溶融状熱可塑性樹脂を供給することにより、 発泡基材の変形を抑え、 か つ、 溶融状熱可塑性樹脂が成形型凹部から発泡基材表面に流れ出ること を防ぐことができ、 外観美麗な熱可塑性樹脂成形品を得ることができる 。 前記力 P 0は、 0. 0.1〜 0. 0 9 M P aの範囲内であることが好ま しい。 また、 2≤ P 1 ZP 0≤ 3 0 を満たすことが好ましい。
本発明の熱可塑性樹脂成形品の製造方法の各工程では、 成形型の成形 面から真空吸引や圧縮空気を供給してもよい。 本発明の熱可塑性樹脂成 形品の製造方法において、 成形型の成形面から真空吸引を行ったり、 成 形型の成形面から真空吸引を行ったり、 第 2の成形型の成形面から圧縮 空気の供給を行ってもよい。 真空吸引や圧縮空気の供給を行うことで耐 圧シートや発泡基材を成形面に密着させ耐圧シートの脱落や位置ずれの 防止や供給される溶融樹脂の漏れ防止をすることができる。 真空吸引す る場合には、 成形面と発泡シートとの間の真空度が一 0. 0 5〜一 0. 1 MP aとなるようにすることが好ましい。 真空度とは、 大気圧を基準 とする成形面と発泡基材との間の間隙の圧である。 すなわち 「真空度が — 0. 0 5 M P a」 とは、 大気圧を基準とする成形面と発泡基材との間の 真空吸引されている間隙圧力と大気圧との差が 0. 0 5 M P aであるこ とを示す。 真空度は、 成形型内の真空吸引用通路において測定される。 第 2の成形型の成形面から圧縮ガスの供給を行う場合には、 該成形面と 発泡基材の間の間隙の圧が 0. 0 5〜 0. 7 M P aの範囲内となるよう に供給することが好ましい。
工程 ( 6 ) は、 図 4 ( 4 ) に示すように、 型開きして熱可塑性樹脂成 形品を取り出す工程である。 本発明の方法により.得られる熱可塑性樹脂 成形品の一例を図 5および図 6に示す。 得られる熱可塑性樹脂成形品 ( 1 8 ) は、 第 1の熱可塑性樹脂からなる発泡基材 ( 1 4 ) と、 該発泡基 材の表面から突き出るように該発泡基材に融着接合された第 2の熱可塑 性樹脂からなる'機能性部材 ( 1 7 ) とを有する熱可塑性樹脂成形品であ る。 本発明における機能性部材とは、 具体的には熱可塑性樹脂成形品を 補強する機能を有するリブ、 あるいは熱可塑性樹脂成形品を他部材に取 り付ける機能を有するボス、 クリップ、 フックなどの部材である。 図 5 に描かれた成形体において、 機能性部材 ( 1 7 ) はリブであり、 参照符 号 1 9はリブ ( 1 7 ) の長さを表わす。 本発明で得られる熱可塑性榭脂 成形品は、 発泡基材に機能性部材が融着接合された面と反対側の発泡基 材の面、 すなわち第 2の成形型によって賦形される面が、 通常意匠面で ある。
本発明により得られる熱可塑性樹脂成形品は、 食品容器などの包装材 料や、 自動車内装部品、 建築材料、 家電製品などに使用することができ る。 自動車内装部品の例としてはドア トリム、 天井、 トランクサイ ドな どが挙げることができる。 例えば機能性部材としてリブが融着されてな る熱可塑性樹脂成形品を自動車内装部品として用いると、 その内装部品 を備える自動車は強度に優れたものとなり、 機能性部材としてボスゃフ ックが融着されてなる熱可塑性樹脂成形品を用いた場合には、 他の自動 車構成材料と容易に接続することができる。
[実施例]
以下、 本発明を実施例に基づき説明するが、 本発明は実施例に何ら限 定されるものではない。
実施例および比較例で用いた成形型は、 以下のとおりである。
第 1の成形型 : 厚み 3 mm、 高さ 5 mm、 長さ 1 5 0 mmのリブを賦 形するためのキヤビティを画成する凹部を成形面に有する成形型。 前記 凹部は、 型内に設けられたスプル一、 ランナーなどから構成される樹脂 通路が直径 8 mmのゲートを介して接続されて開口していた。
第 2の成形型 : 平板状の成形面を有し、 真空吸引可能な成形型。
( 1 ) 発泡基材の作製
厚さ 0. 6 mmのォレフィ ン系熱可塑性エラス トマ一シートと発泡倍 率 1 0倍、 厚み 2. 5 mmのポリプロピレン架橋発泡シートからなる積 層シート (共和レザー株式会社製 商品名ビニラ一) と、 発泡倍率 3倍 、 厚み 3 mmのポリプロピレン非架橋発泡シート (住化プラステック株 式会社製 商品名スミセラ一) とを用いて、 発泡基材を製造した。
ポリプロピレン非架橋発泡シート表面に熱風供給源より温度 2 5 0 X: 、 風速 1 5 m/ s e cの熱風を吹き付けて表面を溶融させ、 溶融させた ボリプロピレン非架橋発泡シ一卜が積層シー トのポリプロピレン架橋発 泡シート面と対向するように重ねて、 ロール間距離 3 mm、 ロールニッ プ圧 0. 0 5 M P aの一対のロール間にライン速度 2. 5 m/m i nで 供給し、 厚さ 6. 1 mmの発泡基材を製造した。
[実施例 1 ]
押出機を備えた真空成形機 (佐藤鉄工所製 VA I M 0 3 0 1 ) のクラ ンプ枠に発泡基材を固定し、 近赤外ヒーターにより該発泡基材のポリプ ロピレン非架橋発泡シ一ト面の温度が 2 0 0でになるように加熱し、 該 発泡基材を軟化した。 軟化した該発泡基材厚みは 6. 3 mmであった。 該発泡基材をクランプ枠に固定した状態で、 第 1の成形型と第 2の成形 型との間に、 ポリプロピレン非架橋発泡シート面が第 1の成形型側にな るように供給した。 第 2の成形型は 5 0でに温度調整して用いた。
第 1の成形型と第 2の成形型を、 発泡基材を加圧する力 P 0が 0. 0 3 MP aとなるまで型締めし、 第 2の成形型の成形面から— 0. 0 9 M P aで真空吸引を行い、 発泡基材を賦形した。 発泡基材のポリプロピレ ン非架橋発泡シート面の温度が 8 O t:になるまで冷却した後、 発泡基材 を加圧する力 P 1が 0. 2 MP aとなるまで第 1の成形型と第 2の成形 型とを型締めし、 溶融状のプロピレン系樹脂 (住友化学株式会社製ポリ プロピレン、 商品名 : ノーブレン B U E 8 1 E 6、 M F R = 8 0 g/ l O m i n) を、 第 1の成形型内の樹脂通路を形成するランナーとスプル 一を通じて、 3 gZ s e cの速度でキヤビティに 1. 1秒間供給し、 前 記キヤビティを溶融状プロピレン系樹脂で充填した。 溶融状プロピレン 系樹脂の供給を停止した後 5秒後に、 発泡基材を加圧する力 P 2を 0. 0 3 M P aまで低下させ、 発泡基材のポリプロピレン非架橋発泡シート 面の温度が 4 0でになるまで冷却した後、 型開きして成形品を取り出し た。 不要な端部を切断し、 図 5 と図 6に示すようなリブが平板 (発泡基 材) に融着されてなる成形品を得た。 得られた成形品は、 リブが設けら れた部分に対応する成形品表面にもヒケはなく、 外観良好であった。
[比較例 1 ]
第 1の成形型と第 2の成形型を、 発泡基材を加圧する力 P 0が 0. 2 M P aとなるまで型締めし、 第 2の成形型の成形面から— 0. 0 9 MP aで真空吸引を行い、 発泡基材を賦形した。 発泡基材のポリプロピレン 非架橋発泡シート面の温度が 8 0でになるまで冷却した後、 溶融状のプ ロピレン系樹脂 (住友化学株式会社製ポリプロピレン、 商品名 : ノーブ レン B U E 8 1 E 6、 M F R = 8 0 g/ 1 0 m i n) を、 第 1の成形型 内の樹脂通路を形成するランナーとスプルーを通じて、 3 gZ s e cの 速度でキヤビティに 1. 1秒間供給し、 前記キヤビティを溶融状プロピ レン系樹脂で充填した。 発泡基材を加圧する力 P 0を 0. 2 MP aに維 持したまま、 発泡基材のポリプロピレン非架橋発泡シート面の温度が 4 0 tになるまで冷却した後、 型開きして成形品を取り出した。 不要な端 部-を切断し、 図 5 と図 6に示すようなリブが平板 (発泡基材) に融着さ れてなる成形品を得た。 得られた成形品は、 リブが設けられた部分に対 応する成形品表面にヒケが発生していた。 産業上の利用可能性
本発明の方法によれば、 発泡基材の、 機能性部材が融着された部分の 反対側の成形品表面にヒケがなく、 外観良好な成形品を得ることができ る。

Claims

請求の範囲 [ 1 ] 第 1め熱可塑性樹脂からなる発泡基材と、 該発泡基材の表面か ら突き出るように該発泡基材に融着接合された第 2の熱可塑性樹脂から なる機能性部材とを有する熱可塑性樹脂成形品を製造する方法であって 、 前記機能性部材を賦形するためのキヤビティを画成する凹部を有する 第 1の成形面を有し、 前記キヤビティに連通している樹脂通路を内部に 有する第 1の成形型と、 第 2の成形面を有し、 その成形面が前記第 1の 成形面と対向するように配置された第 2の成形型とを有する成形装置を 用いて実施される下記の工程 ( 1 ) 〜 ( 6 ) を有する方法。
( 1 ) 第 1の成形型と第 2の成形型との間に、 第 1の熱可塑性樹脂から なる発泡基材を供給する工程
( 2 ) 第 1の成形型と第 2の成形型によって、 第 1の熱可塑性樹脂から なる発泡基材を加圧する力が所定の力 P 1 となるまで、 第 1 の成形型と 第 2の成形型を型締めする工程
( 3 ) 発泡基材を加圧する力を P 1 に維持した状態で、 樹脂通路を通じ て溶融状の第 2の熱可塑性樹脂を、 前記キヤビティが満たされるまで前 記キヤビティに供給する工程
( 4 ) 溶融状の第 2の熱可塑性樹脂の供給を停止した後、 発泡基材を加 圧する力を P 1から所定の力 P 2に減少させる工程
( 5 ) 第 1及び第 2の成形型によって前記発泡基材をカ P 2で加圧して いる状態で第 2の熱可塑性樹脂を冷却して固化させることにより、 前記 凹部内で機能性部材を形成し、 同時に、 該機能性部材と前記発泡基材と を有する熱可塑性樹脂成形品を形成する工程
( 6 ) 型開きして熱可塑性樹脂成形品を取り出す工程 [ 2 ] 前記力 P Iが 0. 1〜 0. 5 MP aの範囲内であり、 かつ、 前 記力 P 2力 S O . 0 1〜 0. 0 9 MP aの範囲内である請求項 1に記載の 方法。
[ 3 ] 前記 P 1及ぴ P 2が、 2≤ Ρ 1 ΖΡ 2≤ 3 0 の関係を満た す請求項 2に記載の方法。
PCT/JP2008/051703 2007-01-30 2008-01-29 熱可塑性樹脂成形品の製造方法 WO2008093857A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112008000317T DE112008000317T5 (de) 2007-01-30 2008-01-29 Verfahren zur Herstellung von thermoplastischen Harzformkörpern
US12/524,493 US20100109190A1 (en) 2007-01-30 2008-01-29 Process for producing thermoplastic resin molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007018994 2007-01-30
JP2007-018994 2007-01-30

Publications (1)

Publication Number Publication Date
WO2008093857A1 true WO2008093857A1 (ja) 2008-08-07

Family

ID=39674158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051703 WO2008093857A1 (ja) 2007-01-30 2008-01-29 熱可塑性樹脂成形品の製造方法

Country Status (5)

Country Link
US (1) US20100109190A1 (ja)
JP (1) JP2008207548A (ja)
CN (1) CN101663147A (ja)
DE (1) DE112008000317T5 (ja)
WO (1) WO2008093857A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2390077A1 (en) * 2010-05-25 2011-11-30 Sika Technology AG Overmolding extruded profiles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328318B2 (ja) * 2019-02-22 2023-08-16 古河電気工業株式会社 電線用外装体及び外装体付きワイヤーハーネス
WO2020175979A1 (en) * 2019-02-27 2020-09-03 Sterk Hendrik Apparatus for forming food products

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121561A (ja) * 1999-10-26 2001-05-08 Sumitomo Chem Co Ltd 熱可塑性樹脂成形品およびその製造方法
JP2002011771A (ja) * 2000-06-29 2002-01-15 Ube Machinery Corporation Ltd 貼合わせ成形方法
JP2002178364A (ja) * 2000-12-14 2002-06-26 Idemitsu Petrochem Co Ltd 自動車内装材およびその成形方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077672A (en) * 1976-09-27 1978-03-07 Tantera, Inc. Method of making a sponge mop part
JPS63205212A (ja) * 1986-11-22 1988-08-24 Nippon Denso Co Ltd 多孔質弾性部材を有する合成樹脂製物品の製造方法
FR2620966B1 (fr) * 1987-09-24 1990-03-02 Duret Fils Ets M Procede de moulage d'un cadre sur une garniture de siege en vue de la realisation d'un element de siege
DE3933416A1 (de) * 1989-10-06 1991-04-18 Daimler Benz Ag Verfahren zum oertlich definierten, festhaftenden anbringen von kunststoff-kleinteilen an im wesentlichen aus verklebten oder kunstharzgebundenen naturfasern oder spaenen bestehenden formpressteilen
US5792407A (en) * 1996-03-18 1998-08-11 Berzack; Jeffrey A. Method for attaching flexible, low density or compressible structures to injection molded polymer parts
US6413461B1 (en) * 1998-05-08 2002-07-02 Sumitomo Chemical Company, Limited Process for producing multilayer molded article
US6413460B1 (en) * 1998-09-10 2002-07-02 Visteon Global Technologies, Inc. Method of forming a partially covered panel
JP4395987B2 (ja) * 2000-04-27 2010-01-13 株式会社デンソー 通風路開閉用ドアの製造方法
JP4529250B2 (ja) * 2000-07-27 2010-08-25 住友化学株式会社 繊維強化熱可塑性樹脂膨張成形体の製造方法
GB2366230A (en) * 2000-08-26 2002-03-06 Visteon Uk Ltd Plastics moulding
DE10301712B4 (de) * 2003-01-13 2004-11-04 Sai Automotive Sal Gmbh Verfahren zum Herstellen von hinterspritzten Kunststoffformteilen
FR2889101B1 (fr) * 2005-07-29 2010-07-30 Faurecia Interieur Ind Procede de fabrication d'une piece comprenant une couche de mousse supportee par un support

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121561A (ja) * 1999-10-26 2001-05-08 Sumitomo Chem Co Ltd 熱可塑性樹脂成形品およびその製造方法
JP2002011771A (ja) * 2000-06-29 2002-01-15 Ube Machinery Corporation Ltd 貼合わせ成形方法
JP2002178364A (ja) * 2000-12-14 2002-06-26 Idemitsu Petrochem Co Ltd 自動車内装材およびその成形方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2390077A1 (en) * 2010-05-25 2011-11-30 Sika Technology AG Overmolding extruded profiles
WO2011147872A1 (en) * 2010-05-25 2011-12-01 Sika Technology Ag Overmolding extruded profiles
US9718240B2 (en) 2010-05-25 2017-08-01 Sika Technology Ag Overmolding extruded profiles

Also Published As

Publication number Publication date
CN101663147A (zh) 2010-03-03
JP2008207548A (ja) 2008-09-11
US20100109190A1 (en) 2010-05-06
DE112008000317T5 (de) 2010-03-11

Similar Documents

Publication Publication Date Title
US6565795B1 (en) Process for producing a thermoplastic resin-molded article
US20070216056A1 (en) Method for producing a thermoplastic resin molded article
US20060163765A1 (en) Method for producing a thermoplastic resin article
US20060163764A1 (en) Method for producing a thermoplastic resin article
KR20200067184A (ko) 발포 성형체, 및 그 제조 방법
WO2008093857A1 (ja) 熱可塑性樹脂成形品の製造方法
JP4539238B2 (ja) 熱可塑性樹脂発泡シートの真空成形方法
JP4890280B2 (ja) 熱可塑性樹脂成形品の製造方法
US20060049551A1 (en) Method for producing a thermoplastic resin foamed article
JP4388853B2 (ja) 熱可塑性樹脂発泡成形品の製造方法
JP4797570B2 (ja) ポリプロピレン系樹脂製射出成形体の製造方法
JP6551966B2 (ja) サンドイッチパネルおよびサンドイッチパネルの成形方法
JP4344651B2 (ja) 熱可塑性樹脂発泡成形品の製造方法
US20060061003A1 (en) Method for producing a thermoplastic resin foamed article
WO2008093858A1 (ja) 熱可塑性樹脂成形品の製法
JP4507784B2 (ja) 熱可塑性樹脂発泡シートの真空成形方法
JP3459845B2 (ja) 成形用金型およびそれを用いる多層成形品の製造法
JP4165527B2 (ja) 熱可塑性樹脂成形品の製造方法
JP2007007869A (ja) 熱可塑性樹脂成形品の製造方法
JP4172685B2 (ja) 表皮材付き発泡成形体の製造方法
JP2007007870A (ja) 熱可塑性樹脂発泡成形品の製造方法
JP3599838B2 (ja) 多層品の製造方法
JP2009029021A (ja) 複合成形品の製造方法
JP2007203502A (ja) 熱可塑性樹脂製成形品およびその製造方法
JP2009274460A (ja) 熱可塑性樹脂発泡成形品の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880003170.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08704382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120080003173

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 12524493

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08704382

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112008000317

Country of ref document: DE

Date of ref document: 20100311

Kind code of ref document: P