WO2008091838A2 - Medical injector with compliance tracking and monitoring - Google Patents

Medical injector with compliance tracking and monitoring Download PDF

Info

Publication number
WO2008091838A2
WO2008091838A2 PCT/US2008/051612 US2008051612W WO2008091838A2 WO 2008091838 A2 WO2008091838 A2 WO 2008091838A2 US 2008051612 W US2008051612 W US 2008051612W WO 2008091838 A2 WO2008091838 A2 WO 2008091838A2
Authority
WO
WIPO (PCT)
Prior art keywords
circuit system
electronic circuit
electronic
actuator
electronic signal
Prior art date
Application number
PCT/US2008/051612
Other languages
French (fr)
Other versions
WO2008091838A3 (en
Inventor
Eric S. Edwards
Evan T. Edwards
Mark J. Licata
Paul F. Meyers
David A. Weinzierl
T. Spencer Williamson, Iv
Original Assignee
Intelliject, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/671,025 external-priority patent/US8172082B2/en
Application filed by Intelliject, Inc. filed Critical Intelliject, Inc.
Priority to EP08728022A priority Critical patent/EP2125075A2/en
Publication of WO2008091838A2 publication Critical patent/WO2008091838A2/en
Publication of WO2008091838A3 publication Critical patent/WO2008091838A3/en

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/17ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0068Indicating or counting the number of dispensed doses or of remaining doses
    • A61M15/008Electronic counters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/009Inhalators using medicine packages with incorporated spraying means, e.g. aerosol cans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/19Syringes having more than one chamber, e.g. including a manifold coupling two parallelly aligned syringes through separate channels to a common discharge assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M5/2033Spring-loaded one-shot injectors with or without automatic needle insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M5/2053Media being expelled from injector by pressurised fluid or vacuum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • A61M5/2448Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic comprising means for injection of two or more media, e.g. by mixing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3205Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
    • A61M5/321Means for protection against accidental injuries by used needles
    • A61M5/3243Means for protection against accidental injuries by used needles being axially-extensible, e.g. protective sleeves coaxially slidable on the syringe barrel
    • A61M5/326Fully automatic sleeve extension, i.e. in which triggering of the sleeve does not require a deliberate action by the user
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M2005/2006Having specific accessories
    • A61M2005/2013Having specific accessories triggering of discharging means by contact of injector with patient body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M2005/206With automatic needle insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M2005/2073Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically preventing premature release, e.g. by making use of a safety lock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3129Syringe barrels
    • A61M2005/314Flat shaped barrel forms, e.g. credit card shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/14Detection of the presence or absence of a tube, a connector or a container in an apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3553Range remote, e.g. between patient's home and doctor's office
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3561Range local, e.g. within room or hospital
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3569Range sublocal, e.g. between console and disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3584Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using modem, internet or bluetooth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/43General characteristics of the apparatus making noise when used correctly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/581Means for facilitating use, e.g. by people with impaired vision by audible feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/582Means for facilitating use, e.g. by people with impaired vision by tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/583Means for facilitating use, e.g. by people with impaired vision by visual feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6018General characteristics of the apparatus with identification means providing set-up signals for the apparatus configuration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6036General characteristics of the apparatus with identification means characterised by physical shape, e.g. array of activating switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3129Syringe barrels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3202Devices for protection of the needle before use, e.g. caps
    • A61M5/3204Needle cap remover, i.e. devices to dislodge protection cover from needle or needle hub, e.g. deshielding devices

Definitions

  • the invention relates generally to medical devices, and more particularly to medical systems, medicament delivery devices and methods for delivering a medicament into a body of a patient and outputting an electronic signal in response to such delivery.
  • Self-administered medicament delivery devices such as, for example pre-filled medical injectors, inhalers, transdermal delivery devices and the like are often used as a part of a patient's medication regimen.
  • known self-administered medicament delivery devices can be used as a part of a patient's emergency care regimen.
  • Emergency care regimens can include, for example, using an auto-injector to rapidly self-administer a medicament in response to an allergic reaction or for the treatment of other emergency conditions (e.g., nerve-agent poisoning on the battlefield).
  • Known self-administered medicament delivery devices can also be used as a part of a patient's chronic care regimen.
  • Chronic care regimens can include, for example, using a pen injector to self-administer a medicament according to a prescribed plan.
  • Examples of chronic care regimens can include, for example, the injection of insulin, the injection of human growth hormone (HGH), erythropoiesis-stimulating agents (ESA), DeMab, Interferons and other chronic therapies, or the like.
  • self-administered medicament delivery devices can also be used for preventive/prophylactic therapies.
  • preventive/prophylactic therapies include certain vaccines, such as an influenza vaccine.
  • Patient compliance can include any measure of a patient's conformance to a particular therapeutic drug delivery regimen or other indication as mandated by a health care provider or pharmaceutical manufacturer. More particularly, patient compliance measures can include the location where the device was activated, time of day, dose regimen, dosage and route of administration, frequency of device usage, functionality of the device once used, expiration date of the device, device status, medicament status, and any adverse event experienced by the user following the use of the device. Patient compliance can also include providing communication to the patient regarding their therapy (e.g., a notification of when to take their medication, etc.).
  • therapy e.g., a notification of when to take their medication, etc.
  • Patient compliance data can also be used to inform the manufacturer of the device about potential issues with the device (e.g., data demonstrating poor compliance with a particular device may trigger a manufacturer to investigate the cause of poor compliance and/or change the design or functionality of the device to improve patient care and outcome), alert emergency contacts (including family members, patient guardians, and individuals with Power of Attorney privileges), and aid the patient with adhering to their prescribed therapy.
  • Increasing patient compliance can also generate considerable cost savings for health care providers, pharmaceutical benefits managers (PBM), specialty pharmacies, clinical trial administrators, insurance companies and/or payors.
  • Ensuring patient compliance with some known medicament delivery devices can be problematic.
  • some known medicament delivery devices e.g., emergency care devices, as described above and/or chronic care devices
  • the user may be required to execute a series of operations.
  • the user must remove a protective cap, remove a locking device, place the auto- injector in a proper position against the body and then press a button to actuate the auto- injector. Failure to complete these operations properly can result in an incomplete injection and/or injection into an undesired location of the body.
  • a system includes a medicament delivery device and a container configured to receive at least a portion of the medicament delivery device.
  • the medicament delivery device includes an actuator and a first electronic circuit system.
  • the actuator is configured to initiate delivery of a medicament into a body when the actuator is moved from a first position to a second position.
  • the first electronic circuit system is configured to output a first electronic signal when the actuator is moved from the first position to the second position.
  • the container includes a second electronic circuit system configured to receive the first electronic signal.
  • the second electronic circuit system is configured to output a second electronic signal associated with the first electronic signal.
  • FIG. 1 is a perspective view of an auto-injector according to an embodiment of the invention.
  • FIG. 2 is a front cross-sectional view of the auto-injector shown in FIG. 1.
  • FIG. 3 is a schematic illustration of a portion of the auto-injector shown in FIG. 1.
  • FIG. 4 is a schematic illustration of a medicament delivery device according to an embodiment of the invention.
  • FIG. 5 is a perspective view of an auto-injector according to an embodiment of the invention.
  • FIG. 6 is a front view of the auto-injector illustrated in FIG. 5, with a portion of the auto-injector illustrated in phantom lines for ease of reference.
  • FIG. 7 is a partial cut-away front view of a portion of the auto-injector illustrated in FIG. 5.
  • FIG. 8 is a cross-sectional view of a portion of the auto-injector illustrated in FIG. 5 taken along line 8-8 in FIG. 7.
  • FIG. 9 is a cross-sectional view of a portion of the auto-injector illustrated in FIG. 5 taken along line 9-9 in FIG. 7.
  • FIG. 10 is a front view of a portion of the auto-injector illustrated in FIG. 5.
  • FIG. 11 is a schematic illustration of a portion of the auto-injector illustrated in FIG. 5.
  • FIG. 12 is a perspective view of a portion of the auto-injector illustrated in FIG. 5 in a second configuration.
  • FIG. 13 is a front plan view of a portion of the auto-injector illustrated in FIG. 5 in a third configuration.
  • FIG. 14 is a front plan view of a portion of the auto-injector illustrated in FIG. 5 in a fourth configuration.
  • FIGS. 15 and 16 are front plan views of a portion of the auto-injector labeled as region 15 in FIG. 10, in a first configuration and a second configuration, respectively.
  • FIGS. 17 and 18 are perspective views of an inhaler according to an embodiment of the invention, in a first configuration and a second configuration, respectively.
  • FIG. 19 is a schematic illustration of a medicament delivery device according an embodiment of the invention.
  • FIGS. 20-22 are schematic illustrations of a medical system according to an embodiment of the invention, in a first configuration, a second configuration and a third configuration, respectively.
  • FIG. 23 is a flow chart of a method according to an embodiment of the invention.
  • FIGS. 24-27 are perspective views of a medical system according to an embodiment of the invention, in a first configuration, a second configuration, a third configuration, and a fourth configuration, respectively.
  • FIG. 28 is a schematic illustration of a medical system according to an embodiment of the invention.
  • FIGS. 29-31 are perspective views of a medical system according to an embodiment of the invention, in a first configuration, a second configuration, and a third configuration, respectively.
  • FIGS. 32 and 33 are schematic illustrations of a medicament delivery device according to an embodiment of the invention, in a first configuration and a second configuration, respectively.
  • FIGS. 34 and 35 are schematic illustrations of a medicament delivery device according to an embodiment of the invention, in a first configuration and a second configuration, respectively.
  • FIG. 36 is a schematic illustration of a medicament delivery device according an embodiment of the invention.
  • FIG. 37 is a schematic illustration of a medicament delivery device according an embodiment of the invention.
  • FIG. 38 is a schematic illustration of a medicament delivery device according an embodiment of the invention.
  • FIG. 39 is a schematic illustration of a medicament delivery device according an embodiment of the invention.
  • a system includes a medicament delivery device and a container configured to receive at least a portion of the medicament delivery device.
  • the medicament delivery device which can be, for example, a single-use medical injector, includes an actuator and a first electronic circuit system.
  • the actuator is configured to initiate delivery of a medicament into a body when the actuator is moved from a first position to a second position.
  • the first electronic circuit system is configured to output a first electronic signal when the actuator is moved from the first position to the second position.
  • the first electronic signal can be, for example, a short-range radio frequency signal having a range of approximately 100 meters or less.
  • the container includes a second electronic circuit system configured to receive the first electronic signal.
  • the second electronic circuit system is configured to output a second electronic signal associated with the first electronic signal.
  • an apparatus includes a medicament delivery device and an electronic circuit system coupled to the medicament delivery device.
  • the medicament delivery device includes an actuator configured to initiate delivery of a medicament into a body when the actuator is moved from a first position to a second position.
  • the electronic circuit system includes a first radio frequency identification tag configured to output a first electronic signal and a second radio frequency identification tag configured to output a second electronic signal.
  • the second electronic signal has a characteristic (e.g., a frequency) different than a characteristic of the first electronic signal.
  • the actuator is configured to prevent the second radio frequency identification tag from outputting the second electronic signal when the actuator is moved from the first position to the second position.
  • the actuator is configured to sever at least a portion of the second radio frequency identification tag when the actuator is moved from the first position to the second position.
  • an apparatus includes a housing, a medicament container disposed within the housing, a needle, and an electronic circuit system.
  • the needle has a proximal end and a distal end, and is configured to be in fluid communication with the medicament container.
  • the needle is configured to be moved between a first position and a second position.
  • the distal end of the needle is disposed within the housing when the needle is in the first position.
  • At least a portion of the distal end of the needle is disposed outside of the housing when the needle is in the second position.
  • the electronic circuit system is configured to be coupled to the housing.
  • the electronic circuit system is configured to output an electronic signal associated with an impedance between the distal end of the needle and a portion of the housing.
  • a method includes moving an actuator of a medicament delivery device to initiate delivery of a medicament into a body.
  • the actuator can be, for example, a mechanical actuator configured to release a spring, an energy storage member, or the like to initiate medicament delivery when the actuator is moved from the first position to the second position.
  • a first electronic signal is output from a first electronic circuit system in response to the movement of the actuator between the first position and the second position.
  • the first electronic signal is a short-range radio frequency signal having a range of approximately 100 meters or less.
  • a second electronic signal associated with the first electronic signal is output from a second electronic circuit system.
  • the term "regimen” or “medication regimen” can include any program, schedule and/or procedure to enhance, improve, sustain, alter, and/or maintain a patient's well-being.
  • a regimen can include, for example, a schedule of medicament delivery events (e.g., injections, oral doses, etc.) that are prescribed or otherwise suggested for the patient.
  • a regimen can include daily insulin injections.
  • a regimen can also include a single medicament delivery event that can be prescribed or otherwise suggested for the patient to administer in response to given a set of circumstances.
  • a regimen can include a injection of epinephrine in response to an allergic reaction.
  • a regimen can also include the delivery of a placebo or inactive ingredient.
  • a clinical trial can include a regimen including various injections of a placebo.
  • a regimen can also include activities other than the delivery of drugs to the patient.
  • a regimen can include certain procedures to be followed to enhance the patient's well-being (e.g., a schedule of rest, a dietary plan, etc.).
  • FIGS. 1 and 2 are a perspective view and a partial cutaway front view, respectively, of an auto-injector 1002 according to an embodiment of the invention.
  • the auto-injector 1002 is similar to the auto-injectors described in U.S. Patent Application Serial Number 11/562,061, entitled “Devices, Systems and Methods for Medicament Delivery,” filed November 21, 2006, which is incorporated herein by reference in its entirety. Accordingly, only an overview of the mechanical components and related operation of the auto-injector 1002 is included below.
  • the auto-injector 1002 includes a housing 1110 that defines a gas chamber 1120.
  • the housing 1110 has a proximal end portion 1112 and a distal end portion 1114.
  • a base 1520 is movably coupled to the distal end portion 1114 of the housing 1110.
  • a safety lock 1710 is removably coupled to the base 1520. As discussed in more detail herein, when the safety lock 1710 is coupled to the base 1520, the auto-injector 1002 cannot be actuated. When the safety lock 1710 is removed from the base 1520, the base 1520 can be moved relative to the housing 1110, thereby actuating the auto-injector 1002.
  • the distal end portion 1114 of the housing 1110 is oriented towards the user such that the base 1520 is in contact with the portion of the body where the injection is to be made.
  • the base 1520 is then moved towards the proximal end 1112 of the housing 1110 to actuate the auto-injector 1002.
  • the auto-injector 1002 includes a medicament injector 1210 and a system actuator 1510 disposed non-coaxially within the housing 1110.
  • the medicament injector 1210 includes multiple medicament vials 1262, a plunger 1284 movably disposed within each medicament vial 1262, a movable member 1312 engaged with each plunger 1284 and a needle 1212.
  • Retraction springs 1350 located within a portion of the base 1520 and the housing 1110 can push the needle 1212 back within the housing 1110 after injection.
  • the system actuator 1510 includes a compressed spring 1560, a compressed gas cylinder 1412, and a puncturing mechanism 1612 to dispel the contents of the compressed gas cylinder 1412.
  • the puncturing mechanism 1612 punctures the compressed gas cylinder 1412 allowing a pressurized gas to flow into the gas chamber 1120.
  • the movable member 1312 moves distally within the housing 1110.
  • the needle 1212 is extended through the housing 1110.
  • the movement of the movable member 1312 also causes the plungers 1284 to move within the vials 1262, thereby expelling a medicament from the vials 1262.
  • the auto-injector 1002 includes an electronic circuit system 1920 configured to provide a predetermined sequence of electronic outputs and/or electronic signals during the use of the auto-injector 1002.
  • the electronic circuit system 1920 is powered by a battery (not shown in FIGS. 1 and 2) and includes a processor (see e.g., FIG. 3), a start button 1970, two switches 1972A and 1972B, a proximity sensor 1974, two visual output devices 1958 A and 1958B, an audio output device 1956, and a network interface device 1953.
  • the components of the electronic circuit system 1920 are operatively coupled by any suitable mechanism, such as, for example, a printed circuit board (not shown in FIGS. 1 and 2) having conductive traces.
  • the start button 1970 is disposed on the proximal end of the housing 1110 and can be manually actuated by the user to begin the sequence of electronic outputs.
  • the first switch 1972A is disposed on the distal portion 1114 of the housing 1110 adjacent the base 1520 and the locking member 1710.
  • the locking member 1710 is configured to engage the first switch 1972A such that when the locking member 1710 is removed, as shown in FIG. 1, the first switch 1972 A changes states. In this manner, removal of the locking member 1710 can trigger the processor to output a predetermined electronic output.
  • the electronic circuit system 1920 can produce and/or output an electronic signal and/or an electronic output when the auto-injector 1002 is moved from a "storage" configuration (i.e., a configuration in which the locking member 1710 will prevent the actuation of the auto- injector 1002) to a "ready" configuration (i.e., a configuration in which the auto-injector 1002 can be actuated).
  • a "storage” configuration i.e., a configuration in which the locking member 1710 will prevent the actuation of the auto- injector 1002
  • a "ready" configuration i.e., a configuration in which the auto-injector 1002 can be actuated
  • the proximity sensor 1974 is disposed on the base 1520 and is configured to produce an output when the base 1520 engages the body.
  • the proximity sensor can be, for example, a temperature sensor, an optical sensor, pressure sensor, impedance sensor or the like. In this manner, the processor can be prompted to output a predetermined electronic output when the base 1520 is positioned against the body.
  • the second switch 1972B is disposed on the housing 1110 adjacent the medicament injector 1210.
  • the medicament injector 1210 is configured to engage the second switch 1972B such that when the medicament injector 1210 is moved distally within the housing 1110 the second switch 1972B changes states.
  • the processor can be prompted to output a predetermined electronic output based on the position of the medicament injector 1210.
  • the electronic circuit system 1920 can produce and/or output an electronic signal and/or an electronic output in response to the actuation of the auto-injector 1002.
  • the electronic circuit system 1920 can be configured to output an electronic signal and/or an electronic output based on the output of the proximity sensor 1974 and the output from the second switch 1972B.
  • the electronic circuit system 1920 can output a first electronic signal when the output from the proximity sensor 1974 indicates that the base 1520 of the auto-injector 1002 is in contact with the body when the second switch 1972B changes states, and a second electronic signal when the output from the proximity sensor 1974 indicates that the base 1520 of the auto-injector 1002 is disposed apart from the body when the second switch 1972B changes states.
  • the electronic circuit system 1920 can be configured to output a first electronic signal associated with the occurrence of a valid injection event (i.e., an injection event during which there was a high likelihood that the medicament was properly injected into the body) and a second electronic signal associated with the occurrence of an invalid injection event (i.e., an injection event during which there was a high likelihood that the medicament was not injected into the body).
  • a valid injection event i.e., an injection event during which there was a high likelihood that the medicament was properly injected into the body
  • an invalid injection event i.e., an injection event during which there was a high likelihood that the medicament was not injected into the body
  • the first visual output device 1958A is disposed on the locking member 1710.
  • the second visual output device 1958B is disposed on the outer surface 1111 of the housing 1110.
  • the visual output devices 1958 A and 1958B are in electronic communication with the processor and are configured to produce an output in response to an electronic signal output by the processor.
  • the visual output devices 1958 A and 1958B, as well as any other visual output devices referenced herein, can be any suitable visual indicia, such as, light- emitting diodes (LEDs), liquid-crystal display (LCD) screens, optical polymers, fiber optic components or the like.
  • the visual output devices 1958 A and 1958B can be coupled to the housing 1110 and/or the locking member 1710 by a label 1910.
  • the audio output device 1956 is disposed within the housing 1110 such that it can project sound outside of the housing 1110.
  • the audio output device 1956 can be any suitable device for producing sound, such as a micro-speaker a piezo-electric transducer or the like. Such sound output can include, for example, an alarm, a series of beeps, recorded speech or the like.
  • the audio output device 1956 is in electronic communication with the processor and is configured to produce an output in response to an electronic signal output by the processor.
  • the network interface device 1953 is configured to operatively connect the electronic circuit system 1920 to a remote device 1941 (see FIG. 3) and/or a communications network (not shown in FIGS. 1-3). In this manner, the electronic circuit system 1920 can send information to and/or receive information from the remote device 1941.
  • the remote device 1941 can be, for example, a remote communications network, a computer, a compliance monitoring device, a cell phone, a personal digital assistant (PDA) or the like. Such an arrangement can be used, for example, to download replacement processor-readable code 1955 (see FIG. 3) from a central network to the memory device 1954 (see FIG. 3).
  • the electronic circuit system 1920 can download information associated with a medicament delivery device 1002, such as an expiration date, a recall notice, updated use instructions or the like. Similarly, in some embodiments, the electronic circuit system 1920 can upload compliance information associated with the use of the medicament delivery device 1002 via the network interface device 1953.
  • the user activates the electronic circuit system by pushing the start button 1970 to activate the processor, thereby causing the processor to output a predetermined sequence of electronic outputs.
  • the start button 1970 can activate the processor by providing an input to the processor.
  • the start button 1970 can activate the processor by placing the battery (not shown in FIGS. 1 and 2) in electronic communication with the processor.
  • the processor upon activation, can output an electronic signal to the audio output device 1956 thereby producing a first electronic output instructing the user in how to use the auto-injector 1002. Such a message can state, for example, "please remove the safety tab.” Additionally, the first visual output device 1958A can produce a flashing light to further indicate to the user where the locking member 1710 is located.
  • the processor can be configured to repeat the first audible instruction if the locking member 1710 is not removed within a predetermined time period.
  • the first switch 1972A changes states thereby triggering the processor to output an electronic output providing a second instruction to the user.
  • the second instruction can be, for example, an audible speech output instructing the user to "please place the base of the device on the outer portion of your thigh.”
  • the first visual output device 1958 A can produce a lighted output during this audible instruction, thereby visually indicating where the base 1520 is located and/or what portion of the base 1520 should be placed on the thigh.
  • the proximity sensor 1974 provides an input to the processor, thereby triggering the processor to output an electronic output providing a third instruction to the user.
  • the third instruction can be, for example, an audible speech output instructing the user to "push down on the top of the device to activate the injector.”
  • the medicament injector 1210 is configured to engage the second switch 1972B, thereby triggering the processor to output an electronic output providing a fourth instruction to the user.
  • a post-use instruction can be, for example, an audible speech output instructing the user to seek further medical attention, providing instructions for the safe disposal of the auto-injector 1002 or the like.
  • the processor 1950 can output an electrical signal associated with the second switch 1972B that is received by a remote device 1941, which can be, for example, a compliance tracking device.
  • a remote device 1941 can be, for example, a compliance tracking device.
  • the electronic circuit system 1920 can output, to the remote device 1941, an electrical signal associated with the end of the injection event.
  • the electronic circuit system 1920 on the auto-injector 1002 can cooperate with the remote device 1941 to electronically and/or automatically track the details of the use of the auto-injector 1002.
  • the electronic circuit system 1920 on the auto-injector 1002 and the remote device 1941 can electronically and/or automatically track the patient compliance data associated with the use of the auto-injector 1002.
  • FIG. 3 is a schematic illustration of the electronic circuit system 1920 of the auto- injector 1002.
  • the electronic circuit system 1920 includes a processor 1950 operatively coupled to a memory device 1954.
  • the memory device 1954 can be configured to store processor-readable code 1955 instructing the processor 1950 to perform the functions described above.
  • the processor-readable code 1955 can be modified and/or updated as circumstances dictate.
  • the electronic circuit system 1920 includes an input/output device 1952 configured to receive electronic inputs from the switches 1972A and 1972B, the proximity sensor 1974 and/or the start button 1970.
  • the input/output device 1952 is also configured to provide electronic signals to the various output devices, such as the visual output devices 1958 A and 1958B and the audio output device 1956.
  • the electronic circuit system 1920 also includes a network interface 1953 configured to couple the electronic circuit system 1920 to a remote device 1941 and/or a communications network (not shown in FIG. 3). Such an arrangement can be used, for example, to download replacement processor-readable code 1955 from a central network (not shown) to the memory device 1954.
  • the network interface 1953 can also be configured to transmit information from the electronic circuit system 1920 to a central network and/or the remote device 1941 (e.g., the user's home computer, the user's cell phone or the like).
  • the network interface 1953 can include any hardware, software and/or firmware suitable for establishing communication between the electronic circuit system 1920 and the remote device 1941.
  • the network interface 1953 can include a microprocessor, a transmitter, a receiver, a transceiver, a microchip, a radio chipset, a wireless interface card (WIC), a host controller interface (HCI), a universal asynchronous receiver/transmitter (UART), a power source (e.g., a battery), one or more sensors, a transponder, an antenna, a crystal, a circuit board, a liquid crystal display (LCD), a Small Computer System Interface (SCSI and ports), a Fire Wire (or other IEEE 1394 interfaces), a data uplink, a data downlink, a point-to-point link, a fiber optic link, a storage device (e.g., hard drive, flash drive or the like), a personal computer cards, a docking stations, a parallel and/or bit-serial connections, a Universal Serial Bus (USB) port or other serial ports, radiofrequency identification (RFID) devices and/or other common electronic components used to
  • WIC wireless interface card
  • FIG. 4 is a schematic illustration of a medical device 2002 according to an embodiment of the invention.
  • the medical device 2002 which can be, for example, a medicament delivery device such as an auto-injector, a pen injector, an inhaler, a transdermal delivery system or the like, includes a housing 2110 and a label 2910.
  • the label 2910 is coupled to an outer surface 2111 of the housing 2110.
  • the label 2910 includes a first surface 2912, a second surface 2914 and an electronic circuit system 2920.
  • the first surface 2912 is configured to engage the outer surface 2111 of the housing 2110 to couple the label 2910 to the housing 2110.
  • the first surface 2912 can include an adhesive to fixedly couple the label 2910 to the housing 2110.
  • the second surface 2914 includes a textual indicia 2916.
  • the textual indicia 2916 can include, for example, a description of the medicament delivery device, a source of the medicament delivery device and/or an instruction associated with the use of the medicament delivery device.
  • the first surface 2912 is shown as being opposite the second surface 2914, in other embodiments, the first surface 2912 and the second surface 2914 can be adjacent each other and/or co-planar.
  • the electronic circuit system 2920 is configured to output an electronic signal of the types shown and described herein. As discussed in more detail herein, the electronic circuit system 2920 can include many components, such as, for example, a processor, a switch, a visual output device and/or an audio output device.
  • the electronic signal can be, for example, an electronic signal communicated to an output device, such as, for example, a visual output device, an audio output device, a haptic output device or the like.
  • the electrical signal can be a communications signal configured to be received by a remote device, in a manner similar to that described herein.
  • the electronic signal can be associated with an aspect of the medical device 2002, such as an instruction associated with an initial use of the medical device 2002.
  • the electronic circuit system 2920 can output a text message to a display screen (not shown) disposed on the medical device 2002 instructing the user in the use of the medical device 2002.
  • the electronic circuit system 2920 can produce an audio output, such as recorded speech, instructing the user in the use of the medical device 2002.
  • the electronic circuit system 2920 can produce and/or transmit an electrical signal associated with a medicament delivery event. In this manner, the electronic circuit system 2920 can be used to track the patient compliance data associated with the use of the medicament delivery device 2002.
  • the electronic circuit system 2920 is shown as being disposed on the second surface 2914 of the label 2910, in other embodiments, the electronic circuit system can be disposed on the first surface 2912 of the label 2910. In yet other embodiments, the electronic circuit system 2920 can be disposed between the first surface 2912 and the second surface 2914 of the label 2910. In yet other embodiments, the label 2910 can include multiple discrete layers coupled together, within which portions of the electronic circuit system can be disposed.
  • FIG. 5 is a perspective view of an auto-injector 4002 according to an embodiment of the invention.
  • the auto-injector 4002 is similar to the auto-injectors described in U.S. Patent Application Serial Number 11/562,061, entitled “Devices, Systems and Methods for Medicament Delivery,” filed November 21, 2006, which is incorporated herein by reference in its entirety. Accordingly, the mechanical components and operation of the auto-injector 4002 are not described in detail herein.
  • the auto-injector 4002 includes a housing 4110 having a proximal end portion 4112 and a distal end portion 4114.
  • the distal end portion 4114 of the housing 4110 includes a protrusion 4142 to help a user grasp and retain the housing 4110 when using the auto- injector 4002. Said another way, the protrusion 4142 is configured to prevent the auto- injector 4002 from slipping from the user's grasp during use.
  • a base 4520 is movably coupled to the distal end portion 4114 of the housing 4110.
  • a needle guard assembly 4810 is removably coupled to the base 4520.
  • a safety lock 4710 is removably coupled to the base 4520.
  • the distal end portion 4114 of the housing is oriented towards the user such that the base 4520 is in contact with the portion of the body where the injection is to be made.
  • the base 4520 is then moved towards the proximal end 4112 of the housing 4110 to actuate the auto-injector 4002.
  • the auto-injector 4002 includes a label 4910 coupled to an outer surface 4111 of the housing 4110.
  • the label 4910 includes an outer layer 4911, an intermediate layer 4980 and an electronic circuit system 4920 (see FIGS. 7 - 9).
  • FIG. 6 is a front view of the auto- injector 4002 showing the outer layer 4911 of the label 4910 in phantom lines so that the intermediate layer 4980 and an electronic circuit system 4920 can be more clearly seen.
  • the outer layer 4911 which, in some embodiments, can be constructed from paper, has a first surface 4912 and a second surface 4914 opposite the first surface 4912. Multiple indicia 4916 are disposed on the first surface 4912.
  • the indicia 4916 include a textual indicia 4916A and two symbolic indicia 4916B.
  • the textual indicia 4916B can be written text describing the medicament delivery device, indicating a source of the medicament delivery device and/or instructing a user in the use of the medicament delivery device.
  • the symbolic indicia 4916B can include, for example, arrows, pointers, trademarks, symbols describing the use of the medicament delivery device or the like.
  • the label 4910 is coupled to the outer surface 4111 of the housing 4110 such that the portion of the first surface 4912 including the indicia 4916 is visible.
  • a portion of the second surface 4914 of the outer layer 4911 can be coupled to the outer surface 4111 of the housing 4110 by any suitable method.
  • the second surface 4914 of the outer layer 4911 includes an adhesive configured to bond the outer layer 4911 to the outer surface 4111 of the housing 4110.
  • Other portions of the second surface 4914 of the outer layer 4911 are adjacent the intermediate layer 4980 and portions of the electronic circuit system 4920. In this manner, the outer layer 4911 of the label 4910 retains the intermediate, or spacer, layer 4980 and the electronic circuit system 4920 in a predetermined position against the outer surface 4111 of the housing 4110.
  • the outer layer 4911 of the label 4910 includes multiple openings 4917 adjacent the audio output device 4956. In this manner, sound waves produced by the audio output device 4956 can be transmitted to an area outside of the housing 4110. Similarly, the outer layer 4911 of the label 4910 includes openings 4918 adjacent the light emitting diodes (LEDs) 4958 A and 4958B to allow the user to see the visual output. In some embodiments, the outer layer 4911 of the label 4910 can include a transparent portion adjacent the LEDs 4958 A and 4958B to allow the user to see the visual output.
  • LEDs light emitting diodes
  • the electronic circuit system 4920 includes a printed circuit board 4922 upon which a microprocessor 4950, two LEDs 4958A and 4958B, two switches 4972A and 4972B and various electronic components 4951, such as, for example, resistors, capacitors and diodes, are mounted.
  • the electronic circuit system 4920 also includes an audio output device 4956, such as, for example, a micro-speaker, coupled to the outer surface 4111 of the housing 4110 adjacent the printed circuit board 4922.
  • the printed circuit board 4922 includes a substrate 4924 upon which a series of electrical conductors 4934, such as for example, copper traces, are etched.
  • the substrate 4924 can be constructed from any material having suitable electrical properties, mechanical properties and flexibility, such as, for example Mylar®, Kapton® or impregnated paper.
  • a mask layer (not shown) is disposed over the substrate 4924 to electrically isolate selected portions of the electrical conductors 4934 from adjacent components.
  • the electrical conductors 4934 operatively couple the above-mentioned circuit components in a predetermined arrangement.
  • the electronic circuit system 4920 can be configured to output, via the LEDs 4958A and 4958B and/or the audio output device 4956, a predetermined sequence of electronic outputs during the use of the auto-injector 4002.
  • each of the batteries 4962 has a first surface 4964 and a second surface 4966 opposite the first surface.
  • the first surface 4964 can be, for example, an electrically negative terminal.
  • the second surface 4966 can be an electrically positive terminal.
  • the batteries 4962 are positioned such that a first electrical contact portion 4936 of the printed circuit board 4922 can be placed in contact with the first surface 4964 of the battery 4962 and a second electrical contact portion 4938 of the printed circuit board 4922 can be placed in contact with the second surface 4966 of the battery 4962. In this manner, the batteries 4962 can be operatively coupled to the electronic circuit system 4920.
  • a battery isolation tab 4860 is movably disposed between the first electrical contact portion 4936 of the printed circuit board 4922 and the first surface 4964 of one of the batteries 4962.
  • the battery isolation tab 4860 can be constructed from any electrically isolative material, such as, for example, Mylar®. As discussed in more detail herein, in this manner, the batteries 4962 can be selectively placed in electronic communication with the electronic circuit system 4920.
  • the intermediate, or spacer, layer 4980 is disposed between the outer layer 4911 and the electronic circuit system 4920.
  • the intermediate layer 4980 includes openings (not shown) within which various components of the electronic circuit system, such as, for example, the batteries 4962 are disposed.
  • the intermediate layer 4980 is sized to maintain a predetermined spacing between the various components included in the label 4910.
  • the intermediate layer can be constructed from any suitable material, such as, for example, flexible foam having an adhesive surface, polycarbonate or the like.
  • FIG. 10 is a front view of the electronic circuit system 4920 showing the arrangement of the various components (i.e., the microprocessor 4950, LEDs 4958A and 4958B, switches 4972A and 4972B, audio output device 4956 or the like).
  • FIG. 11 is a schematic illustration of the electronic circuit system 4920.
  • the operation of the auto-injector 4002 and the electronic circuit system 4920 is now discussed with reference to FIGS. 12 - 14.
  • the actuation of the electronic circuit system 4920 is performed in multiple steps that correspond to operations that are incorporated into the procedures for using the auto-injector 4002. In this manner, the user can actuate various portions and/or functions of the electronic circuit system 4920 without completing any additional operations.
  • the electronic circuit system 4920 can produce and/or transmit electronic outputs in response to the various stages of operation of the auto-injector 4002.
  • the electronic circuit system 4920 can include a network interface device, as described herein. In this manner, the electronic outputs produced and/or transmitted by the electronic circuit system 4920 can be used to track the patient compliance associated with the use of the auto-injector 4002.
  • the auto-injector 4002 is first enabled by removing the needle guard 4810 and the safety lock 4710 (see FIGS. 12 and 13). As illustrated by arrow AA in FIG. 12, the needle guard 4810 is removed by moving it distally.
  • the needle guard 4810 includes a sheath retainer 4840 and a sheath 4820.
  • the sheath 4820 is configured to receive a portion of the needle (not shown) when the needle guard 4810 is in a first (or installed) position.
  • the sheath retainer 4840 is coupled to the sheath 4820 such that when the sheath retainer 4840 is moved distally away from the base 4520 into a second (or removed) position, the sheath 4820 is removed from the needle.
  • the sheath retainer 4840 includes an actuator 4864 that is received by an opening 4862 in the isolation tab 4860. Accordingly, when the sheath retainer 4840 is moved distally away from the base 4520, the isolation tab 4860 is removed from the area between the first electrical contact portion 4936 of the printed circuit board 4922 and the first surface 4964 of one of the batteries 4962. In this manner, the batteries 4962 can be operatively coupled to the electronic circuit system 4920 when the needle guard 4810 is removed, thereby actuating the electronic circuit system 4920.
  • the electronic circuit system 4920 can output one or more predetermined electronic outputs.
  • the processor 4950 can output an electronic signal associated with recorded speech to the audible output device 4956.
  • Such an electronic signal can be, for example, associated with a .WAV file that contains a recorded instruction instructing the user in the operation of the auto-injector 4002.
  • Such an instruction can state, for example, "remove the blue safety tab near the base of the auto-injector.”
  • the processor can simultaneously output an electronic signal to the first LED 4958A, thereby causing the first LED 4958 A, which is located near the safety lock 4710, to flash a particular color. In this manner, the electronic circuit system 4920 can provide both audible and visual instructions to assist the user in the initial operation of the auto-injector 4002.
  • the electronic circuit system 4920 can output an electronic output associated with a description and/or status of the auto-injector 4002 and/or the medicament contained therein.
  • electronic circuit system 4920 can output an audible message indicating the type of medicament contained in the auto- injector, the expiration date of the medicament, the dosage of the medicament or the like.
  • the safety lock 4710 is removed by moving it substantially normal to the longitudinal axis of the housing 4110.
  • the safety lock 4710 has a first end 4712 and a second end 4714.
  • the second end 4714 extends around a portion of the base 4520 to space the base 4520 apart from the distal end portion 4114 of the housing 4110.
  • the first end 4714 includes a locking protrusion (not shown) that obstructs portions of the system actuator (not shown) further preventing the base 4520 from being moved proximally towards the housing 4110. Accordingly, when the safety lock 4710 is in its first position, the auto- injector 4002 cannot be actuated.
  • the safety lock 4710 includes an actuator 4732 that actuates the electronic circuit 4920 to trigger a predetermined output or sequence of outputs when the safety lock 4710 is moved from the first position to a second (or unlocked) position, as shown in FIG. 13. More particularly, as shown in FIGS. 10, 15 and 16, the actuator 4732 includes a protrusion 4730 that is received within a first opening 4928A defined by an actuation portion 4926 of the substrate 4924 when the safety lock 4710 is in the first position.
  • the boundary 4929 of the first opening 4928A has a discontinuous shape, such as, for example, a teardrop shape, that includes a stress concentration riser 4930.
  • the discontinuity and/or the stress concentration riser 4930 of the boundary 4929 can be of any suitable shape to cause the substrate 4924 to deform in a predetermined direction when the protrusion 4730 is moved relative to the first opening 4928A.
  • the first opening 4928A is defined adjacent an electrical conductor 4934 that, as discussed above, electronically couples the components included in the electronic circuit system 4920.
  • the electrical conductor 4934 includes a first switch 4972A, which can be, for example a frangible portion of the electrical conductor 4934.
  • the actuator 4732 moves in a direction substantially parallel to a plane defined by a surface of the actuation portion 4926 of the substrate 4924. The movement of the actuator 4732 causes the protrusion 4730 to move within the first opening 4928A, as indicated by the arrow DD in FIG. 16.
  • the movement of the protrusion 4730 tears the actuation portion 4926 of the substrate 4924, thereby separating the portion of the electrical conductor 4934 including the first switch 4972A. Said another way, when the safety lock 4710 is moved to the second position, the actuator 4732 moves irreversibly the first switch 4972A from a first state (e.g., a state of electrical continuity) to a second state (e.g., a state of electrical discontinuity).
  • a first state e.g., a state of electrical continuity
  • a second state e.g., a state of electrical discontinuity
  • the electronic circuit system 4920 can output one or more predetermined electronic outputs.
  • the processor 4950 can output an electronic signal associated with recorded speech to the audible output device 4956.
  • Such an electronic signal can be, for example, associated with a recorded message notifying the user of the status of the auto-injector 4002.
  • Such a status message can state, for example, "The auto- injector is now enabled.”
  • the processor can also simultaneously output an electronic signal to the first LED 4958 A, thereby causing the first LED 4958 A to stop flashing, change color or the like.
  • the electronic circuit system 4920 can be configured to output the status message for a predetermined time period, such as, for example, five seconds. After the predetermined time period has elapsed, the electronic circuit system 4920 can output an audible message further instructing the user in the operation of the auto-injector 4002. Such an instruction can state, for example, "Place the base of the auto-injector against the patient's thigh. To complete the injection, press the base firmly against the patient's thigh.” In some embodiments, the processor can simultaneously output an electronic signal to the second LED 4958B, thereby causing the second LED 4958B, which is located near the base 4520, to flash a particular color.
  • the electronic circuit system 4920 can provide both audible and visual instructions to assist the user in the placement and actuation of the auto-injector 4002.
  • the electronic circuit system 4920 can be configured to repeat the instructions after a predetermined time period has elapsed.
  • the auto-injector 4002 is actuated by moving the base 4520 proximally towards the housing 4110, as illustrated by arrow CC in FIG. 14.
  • the base 4520 includes an actuator 4538 that actuates the electronic circuit 4920 to trigger a predetermined output or sequence of outputs when the base 4520 is moved from a first position to a second position, as shown in FIG. 13.
  • the actuator 4538 includes a protrusion 4539 that is received within a second opening 4928B (see FIG. 10) defined by the substrate 4924 when the base 4520 is in the first position.
  • the configuration and operation of the protrusion 4539, the second opening 4928B and the second switch 4972B are similar to the configuration and operation of the protrusion 4730, the first opening 4928A and the first switch 4972A, and are therefore not described in detail.
  • the electronic circuit system 4920 can output one or more predetermined electronic outputs.
  • the processor 4950 can output an electronic signal associated with recorded speech to the audible output device 4956.
  • Such an electronic signal can be, for example, associated with a recorded message notifying the user that the injection is complete, instructing the user on post- injection disposal and safety procedures, instructing the user on post- injection medical treatment or the like.
  • Such a status message can state, for example, "The injection is now complete. Please seek further medical attention from a doctor.”
  • the processor can also simultaneously output an electronic signal to the first LED 4958 A, thereby causing the first LED 4958 A to stop flashing, change color or the like, to provide a visual indication that the injection is complete.
  • the audio output device 4956 can include, for example, a micro-speaker.
  • the audio output device 4956 can include an RS- 151 IA micro-speaker manufactured by Regal Electronics, Inc.
  • the microprocessor 4950 can be a commercially-available processing device dedicated to performing one or more specific tasks.
  • the microprocessor 4950 can be a commercially-available microprocessor, such as the Sonix SNC 12060 voice synthesizer.
  • the microprocessor 4950 can be an application-specific integrated circuit (ASIC) or a combination of ASICs, which are designed to perform one or more specific functions.
  • the microprocessor 4950 can be an analog or digital circuit, or a combination of multiple circuits.
  • the microprocessor 4950 can include a memory device (not shown) configured to receive and store information, such as a series of instructions, processor-readable code, a digitized signal, or the like.
  • the memory device can include one or more types of memory.
  • the memory device can include a read only memory (ROM) component and a random access memory (RAM) component.
  • the memory device can also include other types of memory suitable for storing data in a form retrievable by the microprocessor 4950, for example, electronically-programmable read only memory (EPROM), erasable electronically- programmable read only memory (EEPROM), or flash memory.
  • FIGS. 17 and 18 show an inhaler 6002 according to an embodiment of the invention.
  • the inhaler 6002 includes a housing 6110 and a medicament container 6262 movably disposed within the housing 6110.
  • the medicament container 6262 includes a metering mechanism (not shown in FIGS. 17 and 18) configured to discharge a predetermined volume of medicament when the inhaler 6002 is actuated.
  • the housing 6110 has a proximal end portion 6112 and a distal end portion 6114.
  • An label 6910 which includes at least a portion of an electronic circuit system 6920, is disposed on an outer surface 6111 of the housing 6110. As described above, a portion of the label 6910 can include a textual indicia 6916. Similar to the electronic circuit systems shown and described above, the electronic circuit system 6920 is configured to output at least one electronic signal associated with the user of the inhaler 6002.
  • the electronic circuit system 6920 includes a microprocessor (not shown), a microspeaker 6956 and an LED 6958.
  • the electronic circuit system 6920 also includes a motion sensor 6976, the function of which is discussed in more detail below.
  • the distal end portion 6114 of the housing 6110 includes a mouthpiece 6212 about which a protective cap 6710 is disposed.
  • the inhaler 6002 is first enabled by removing the protective cap 6710, as shown by the arrow GG in FIG. 18.
  • the protective cap 6710 includes an actuator 6732 that actuates the electronic circuit system 6920 to trigger a predetermined output or sequence of outputs when the protective cap 6710 is removed.
  • the actuator 6732 can include a protrusion that is received by an actuation portion of the electronic circuit system 6920, in a similar manner as described above.
  • the actuator 6732 can be configured to engage a microswitch that can be repeatedly moved between a first state and a second state.
  • the electronic circuit system 6920 can output one or more predetermined electronic outputs. For example, in some embodiments, the electronic circuit system 6920 can output an audible message via the microspeaker 6956 instructing the user to "vigorously shake the inhaler for five seconds.” The processor can simultaneously enable the motion sensor 6976.
  • the processor can then send an electronic signal to produce a second audible message.
  • a message can state, for example, "the inhaler is now sufficiently shaken and is ready for use.”
  • the electronic circuit system 6920 can also output an instruction associated with the correct placement of the inhaler 6002. For example, the electronic circuit system 6920 can output an audible message stating "please place the mouthpiece in your mouth and firmly press down on the medicament container.” The electronic circuit system 6920 can also simultaneously output a signal to the LED 6958 to provide a visual indication of where the mouthpiece 6212 is located.
  • the inhaler 6002 is actuated by moving the medicament container 6262 distally within housing 6110, as illustrated by arrow HH in FIG. 18.
  • the medicament container 6262 can include an actuator (not shown) that actuates the electronic circuit 6920, in a manner similar to those described above, to trigger a predetermined output or sequence of outputs.
  • the processor can output an electronic signal associated with recorded speech to the microspeaker 6956.
  • Such an electronic signal can be, for example, associated with a recorded message notifying the user that the medicament delivery is complete, instructing the user on post-inhalation procedures, instructing the user on post-inhalation medical treatment or the like.
  • a status message can state, for example, "The delivery of medication is now complete.”
  • an electronic circuit system of a medicament delivery device can include a network interface device.
  • the auto-injector 4002 can be configured to send electronic signals to and/or receive electronic signals from a communications network and/or a remote device.
  • the remote device can be, for example, a compliance monitoring device, a computer, a cell phone, a personal digital assistant (PDA) or the like. In this manner, the auto-injector 4002 can facilitate electronic and/or automatic compliance monitoring associated with its use.
  • a medicament delivery device can include a network interface device configured to send and/or receive electrical signals via a wireless network.
  • FIG. 19 is a schematic illustration of a medicament delivery device 7002 according an embodiment of the invention that includes a wireless communications system 7985.
  • the wireless communications system 7985 is configured to send and/or receive one or more electronic signals Sl to a variety of communications devices 7990 via a wireless communications network Nw-
  • the wireless communication network Nw includes a wireless access point (WAP) 7988 configured to operatively connect the communications devices 7990 and the wireless communications system 7985 on the medicament delivery device 7002 to form the wireless communications network Nw-
  • the communications devices 7990 can include, for example, a laptop computer, a personal digital assistant, a compliance monitoring device, a stand-alone processor, a workstation and/or the like.
  • the communications devices 7990 can be configured to communicate electronically to an internet server 7991 by sending electronic signals to and/or receiving electronic signals from the internet server. In this manner, the wireless communications system 7985 can transmit information associated with the medicament delivery device 7002 to and/or receive information associated with the medicament delivery device 7002 from any number of third party devices 7992 located anywhere in the world.
  • the wireless communications system 7985 can be used to send and/or receive information associated with the medicament delivery device 7002.
  • information can include, for example, information associated with the frequency with which medicament delivery device 7002 is used (e.g., a compliance log), the functionality of the medicament delivery device 7002 after use (e.g., the number of doses remaining), the date and/or time of use, a parameter measuring the success of the latest use of the medicament delivery device 7002, an expiration date of the medicament delivery device 7002 and/or the medicament contained therein, a status of the medicament delivery device 7002 and/or the medicament contained therein, instructions for using the medicament delivery device 7002, the need for additional medical devices, the need for additional drug dosages, and/or any other information that may be useful to users and/or medical professionals associated with the medicament delivery device 7002.
  • the wireless communications system 7985 can send one or more signals Sl including information related to a user's compliance to the user's home computer and/or a compliance monitoring device. In this manner, the user can use their home computer to track their compliance with a prescribed medication regimen or other usage of the medicament delivery device 7002. In other embodiments, the wireless communications system 7985 can send one or more signals Sl including information related to a user's compliance to a third party.
  • Such third parties can include, for example, a health care provider, an emergency contact, a manufacturer of the medicament delivery device 7002, a pharmaceutical benefits manager (PBM), a specialty pharmacy, a payor (e.g., an insurance company), a clinical trial administrator, an on-line support group or forum, and/or a pharmaceutical company.
  • the wireless communications system 7985 can send one or more signals Sl including information related to a user's compliance to the user's health care provider. In this manner, the health care provider can monitor the user's compliance with the prescribed medication regimen.
  • the wireless communications system 7985 can include any hardware, software and/or firmware suitable for wireless communication.
  • the wireless communications system 7985 can include a microprocessor, a transmitter, a receiver, a transceiver, a microchip, a radio chipset, a wireless interface card (WIC), a host controller interface (HCI), a universal asynchronous receiver/transmitter (UART), a power source (e.g., a battery), one or more sensors, a transponder, an antenna, a crystal, a circuit board, a liquid crystal display (LCD), a Small Computer System Interface (SCSI and ports), a Fire Wire (or other IEEE 1394 interfaces), a data uplink, a data downlink, a point-to-point link, a fiber optic link, a storage device (e.g., hard drive, flash drive or the like), a personal computer cards, a docking stations, a parallel and/or bit-serial connections, a Universal
  • the electronic components can be operatively coupled to form the wireless communications system 7985 by any suitable circuitry.
  • the wireless communications system 7985 can include the components used for wireless communication on a single chip, such as, for example, the BluetoothTM radio chip LMX9830 manufactured by National Semiconductor.
  • the wireless access point WAP is configured to establish the wireless network Nw and to transmit electronic signals between the medicament delivery device 7002 (which can be referred to as a wireless client device), wireless communications devices 7990 (which can be referred to as other wireless client devices) and/or other third party devices 7992.
  • the wireless communications devices 7990 and/or other third party devices 7992 can include, for example, laptops (computers), personal digital assistants (PDAs), wireless IP phones, servers, routers, and other wireless enabled network devices.
  • the wireless access point WAP is shown and described as being distinct from the wireless communications system 7985, in some embodiments, the wireless communications system 7985 can include the functionality of a wireless access point. In this manner, the medicament delivery device 7002 can be utilized as a wireless access point.
  • the wireless communications system 7985 can send and/or receive electronic signal Sl without the use of a wireless access point. In such embodiments, which can be referred to as peer-to-peer networks or ad-hoc networks, the wireless communications system 7985 can communicate directly with the wireless communications devices 7990 and/or other third party devices 7992.
  • the wireless communication system 7985 can employ any suitable protocol or protocols for sending and/or receiving the electronic signals S. Such protocols can include, for example, Wi-Fi, BluetoothTM, Zigbee, Wi-Max, 802.XX, HomeRF, any protocols associated with Radio Frequency Identification (RFID) transmission and/or a combination thereof.
  • RFID Radio Frequency Identification
  • the wireless communications system 7985 can employ a protocol having heightened security, such as for example, varying levels of encryption. In this manner any information associated with the medical records of a user can be protected against unauthorized access.
  • the information transmitted and/or received by the wireless communication system 7985 can be in a format configured to prevent the identification of the user.
  • the information transmitted and/or received by the wireless communication system 7985 can be associated with a unique identification number known only by certain parties, such as, for example, the end user and the end user's physician.
  • the wireless communications network Nw can have any suitable range.
  • the wireless communications network Nw can be a wireless local area network (WLAN).
  • a WLAN can be suitable in certain conditions in which the communications devices 7990 are confined to a limited geographical area, such as, for example, within a hospital, a nursing home or a triage unit.
  • the wireless communications network Nw can be a wireless metropolitan area network (WMAN).
  • WMAN wireless metropolitan area network
  • a WMAN can be suitable in certain conditions in which the communications devices 7990 are used within a predefined area that cannot easily be covered by a WLAN, such as, for example, within a city.
  • the wireless communications network Nw can be a wireless wide area network (WWAN).
  • WWAN wireless wide area network
  • the wireless communication system 7985 can transmit information to and/or receive information from the third party devices 7992 directly.
  • third party devices 7992 can be included within the wireless communications network Nw, which can be, for example, a wireless wide area network (WWAN).
  • WWAN wireless wide area network
  • the medicament delivery device 7002 can be any device suitable for delivering one or more doses of a medicament into a patient's body. As described herein, such devices can include, for example, auto-injectors, pen injectors, inhalers, transdermal patches, pre- filled syringes (PFS),syringes, catheters, stents, implantable vehicles, topical vehicles, pill dispensers or the like.
  • the medicament delivery device 7002 can be a single-dose device typically used in emergency situations.
  • the medicament delivery device 7002 can be a single-use medical injector, similar to auto-injector 4002 shown and described above with reference to FIGS. 5- 16.
  • the wireless communications system 7985 can be configured to send automatically data to a workstation and/or a compliance monitoring device during the various stages of operation of the medicament delivery device 7002.
  • the details of each stage of operation of the medicament delivery device 7002 can be electronically and/or automatically recorded to track patient compliance.
  • Such details can include, for example, a time stamp associate with the removal of a safety mechanism (i.e., the "arming" of the medicament delivery device), a time stamp associated with the actuation of the medicament delivery device, an indicator associated with the validity of the medicament delivery event and/or the like.
  • the medicament delivery device 7002 can be a chronic-care medicament delivery device containing multiple doses of medicament configured to be delivered on a regular schedule.
  • the medicament delivery device 7002 can be a chronic-care pen injector used for injectable pharmaceuticals that require daily, weekly and/or monthly injections, such as, for example, insulin or human growth hormone (HgH).
  • the wireless communication system 7985 can track the usage of the pen injector and transmit the use information to the patient's physician, specialty pharmacy, payor (e.g., an insurance company), PBM, clinical trial administrator or other provider. In this manner, for example, the patient's physician can ensure that the therapy regime is effective.
  • the medicament delivery device 7002 can be a single- use and/or disposable chronic-care medicament delivery device. As described in more detail herein, in such embodiments the medicament delivery device 7002 can be included within a kit containing the desired number of doses of medicament.
  • a medicament delivery device can be configured to produce and/or output an electrical signal when the medicament delivery device is actuated.
  • patient compliance data such as, for example, the frequency of use, the date and time of use and/or a parameter measuring the success and/or validity of the use of the medicament delivery device can be monitored based on the actuation of the medicament delivery device, rather than on the removal of a safety interlock from the medicament delivery device.
  • FIGS. 20-22 are schematic illustrations of a medical system 3000 according to an embodiment of the invention, in a first configuration, a second configuration and a third configuration, respectively.
  • the medical system 3000 includes a medicament delivery device 3002 and a container 3010. As shown in FIG.
  • the container 3010 is configured to receive at least a portion of the medicament delivery device 3002.
  • the container 3010 can include a recessed portion, a retainer, and/or any other suitable structure that matingly receives at least a portion of the medicament delivery device 3002.
  • the container 3010 includes an electronic circuit system 3020 configured to output at least electronic signals S2 and S4, as described in more detail herein.
  • the electronic circuit system 3020 can include any suitable electronic components operatively coupled to produce and/or output the electronic signal S2 and S4, and/or to perform the functions described herein.
  • the electronic circuit system 3020 is operatively coupled to the communications network Nw, which includes at least a personal computer (PC) 3990 or other processor, and an internet server 3991.
  • PC personal computer
  • the electronic circuit system 3020 can include a wireless communications device, similar to the wireless communications system 7985 shown and described above with reference to FIG. 19, to wirelessly connect the electronic circuit system 3020 to the PC 3990 and/or the communications network Nw-
  • the electronic circuit system 3020 can be operatively coupled to the PC 3990 and/or the communications network Nw via a wired connection.
  • the electronic circuit system 3020 of the container 3010 can transmit information associated with the medical system 3000 to and/or receive information associated with the medical system 3000 from any number of remotely located third party devices (not shown in FIGS. 20-22).
  • the medicament delivery device 3002 can be any device for delivering a medicament into a body, such as, for example, a medical injector (which can include an auto- injector, a pen injector, a multiple-use injector, a syringe or the like), an inhaler or the like.
  • the medicament delivery device 3002 includes an actuator 3970 and an electronic circuit system 3920.
  • the actuator 3970 is movable between a first position (FIGS. 20 and 21) and a second position (FIG. 22). When the actuator 3970 is moved from the first position to the second position, the actuator 3970 initiates the delivery of the medicament into the body.
  • the actuator 3970 can be configured to release a spring, an energy storage member, or the like, to initiate medicament delivery when the actuator 3970 is moved from the first position to the second position.
  • the actuator can be similar to the base 4520 shown and described above with reference to FIGS. 5-16.
  • the electronic circuit system 3920 of the medicament delivery device 3002 is configured to output at least an electronic signal S3 (see FIG. 22) when the actuator 3970 is moved from the first position to the second position.
  • the electronic circuit system 3920 of the medicament delivery device 3002 can include any suitable electronic components operatively coupled to produce and/or output the electronic signal S3 and/or to perform the functions described herein.
  • the electronic circuit system 3920 of the medicament delivery device 3002 can be similar to the electronic circuit system 4920 shown and described above with reference to FIGS. 5-16.
  • the medical system 3000 can be used to manage the patient's medication regimen and/or track the patient's compliance in following the prescribed medication regimen.
  • the medical system 3000 is in the first configuration (i.e., the "storage configuration"), as shown in FIG. 20, at least a portion of the medicament delivery device 3002 is disposed within the container 3010, and the electronic circuit system 3020 of the container 3010 is operatively coupled to the communications network Nw, and/or the personal computer (PC) 3990.
  • the electronic circuit system 3020 can optionally output one or more electronic signals (not shown in FIG. 20) associated with the medication regimen and/or the medicament delivery device 3002.
  • Such electronic signals can include, for example, a visual and/or an audible output reminding the patient of the date and time of the next dosage, indicating the expiration date of the medicament delivery device, providing instructions in the use of the medicament delivery device, providing instructions for monitoring compliance, or the like.
  • the medicament delivery device 3002 is removed from the container 3010, as shown by the arrow JJ in FIG. 21.
  • the electronic circuit system 3020 of the container 3010 produces the first electronic signal S2.
  • the first electronic signal S2 can be associated with the prescribed medication regimen (including, for example, compliance data), an identification of the medicament delivery device 3002, a status of the medicament delivery device 3002, a use instruction associated with the medicament delivery device 3002, a status of the container 3010 (including, for example, an indication of whether the electronic circuit system 3020 of the container 3010 is connected to the network Nw, the remaining battery life of a battery powering the electronic circuit system 3020, or the like), a use instruction associated with the container 3010 and/or the like.
  • the prescribed medication regimen including, for example, compliance data
  • an identification of the medicament delivery device 3002 a status of the medicament delivery device 3002
  • a use instruction associated with the medicament delivery device 3002 a status of the container 3010 (including, for example, an indication of whether the electronic circuit system 3020 of the container 3010 is connected to the network Nw, the remaining battery life of a battery powering the electronic circuit system 3020, or the like), a use instruction associated with the container 3010 and/or the like.
  • the first electronic signal S2 can include a visual output, an audible output and/or a haptic output that instructs and/or provides cues to a user in the use of the container 3010 to track the patient's compliance.
  • the first electronic signal S2 can include a communications signal that can be transmitted via the PC 3990 and the internet server 3991 to a remotely located third party device (not shown in FIGS. 20-22).
  • the medicament delivery device 3002 is actuated by moving the actuator 3970 from the first position (FIG. 21) to the second position (FIG. 22), as shown by the arrow KK in FIG. 22.
  • the actuator 3970 is moved from the first position to the second position, actuation of the medicament delivery device is initiated.
  • the actuator 3970 is configured to initiate delivery of the medicament when the actuator 3970 is moved from the first position to the second position.
  • the actuator 3970 can be configured to release a spring, an energy storage member, or the like, to initiate medicament delivery when the actuator 3970 is moved from the first position to the second position.
  • the electronic circuit system 3920 of the medicament delivery device 3002 When the actuator 3970 is moved from the first position to the second position, the electronic circuit system 3920 of the medicament delivery device 3002 outputs the second electronic signal S3. Said another way, when actuator 3970 is moved from the first position to the second position, the actuator 3970 actuates the electronic circuit system 3920 of the medicament delivery device 3002 such that the electronic circuit system 3920 produces and/or outputs the second electronic signal S3. In some embodiments, the movement of the actuator 3970 produces an input that is received by the electronic circuit system 3920, thereby triggering the electronic circuit system 3920 to produce and/or out the second electronic signal S3. Said another way, in some embodiments, the movement of the actuator 3970 changes the state of a switch (not shown in FIGS.
  • the movement of the actuator 3970 can separate, tear, deform and/or sever an electrical conductor (not shown in FIGS. 20-22) within the electronic circuit system 3920.
  • the actuator 3970 can include a protrusion (not shown in FIGS. 20-22) configured to be received within and sever a portion of the electronic circuit system 3920, similar to the protrusion 4730 shown and described above with reference to FIGS. 14-16.
  • the movement of the actuator 3970 can electronically couple and/or decouple a power source (not shown in FIGS. 20-22) to a portion of the electronic circuit system 3920.
  • the actuator 3970 can include a battery isolation tab (not shown in FIGS. 20-22) configured to isolate a battery from a portion of the electronic circuit system 3920, similar to the battery isolation tab 4860 shown and described above with reference to FIGS. 7, 9 and 12.
  • the second electronic signal S3 is received by the electronic circuit system 3020 of the container 3010, which then produces the third electronic signal S4.
  • the third electronic signal S4 is associated with the second electronic signal S3.
  • the electronic circuit system 3020 of the container 3010 and the electronic circuit system 3920 of the medicament delivery device 3002 can cooperatively monitor the patient's compliance in using the medicament delivery device 3002.
  • the electronic circuit system 3920 and the electronic circuit system 3020 can be cooperatively designed to provide the desired functionality.
  • the container 3010 can be a reusable compliance tracking device and the medicament delivery device 3002 can be a single-use, disposable device.
  • the electronic circuit system 3020 of the container 3010 can include complicated circuit elements, circuit elements having a higher cost, and/or circuit elements having higher power consumption (e.g., speakers, long-range wireless communications systems and the like).
  • the electronic circuit system 3920 of the medicament delivery device 3002 can include fewer circuit elements, circuit elements having a lower cost, and/or circuit elements having lower power consumption.
  • the electronic circuit system 3920 of the medicament delivery device 3002 can include a transceiver (not shown in FIGS. 20-22) that consumes less than approximately 100 mA (at a supply voltage of approximately 1.8 volts) when outputting the second electronic signal S3.
  • the electronic circuit system 3920 of the medicament delivery device 3002 can include a transceiver (not shown in FIGS. 20-22) that consumes less than approximately 20 mA (at a supply voltage of approximately 1.8 volts) when outputting the second electronic signal S3.
  • a transceiver not shown in FIGS. 20-22
  • Such an arrangement can facilitate the use of the electronic circuit system 3920 on a single-use, disposable medicament delivery device.
  • the second electronic signal S3 can be any suitable communications signal (e.g., a radio frequency signal) that can be received by the electronic circuit system 3020 of the container 3010.
  • the second electronic signal S3 can be a short-range radio frequency signal having a range of approximately 100 meters or less.
  • the second electronic signal S3 can be a BluetoothTM-compatible electronic signal, including either a class 1, class 2 or class 3 signal.
  • the electronic circuit system 3920 of the medicament delivery device 3002 and the electronic circuit system 3020 of the container 3010 can be BluetoothTM- enabled circuits. In this manner, the medicament delivery device 3002 can electronically communicate with the container 3010 using low-cost circuit elements and/or using circuit elements having minimal power consumption.
  • the third electronic signal S4 can be any suitable electronic signal that can be produced and/or output by the electronic circuit system 3020 of the container 3010.
  • the third electronic signal S4 can be output to an audio output device and/or a video output device (not shown in FIGS. 20-22) within the electronic circuit system 3020.
  • the electronic circuit system 3020 of the container 3010 can produce an audible and/or a visual output associated with the actuation of the medicament delivery device 3002.
  • the third electronic signal S4 can be output to a speaker of the types shown and described above, thereby providing the user with a message associated with the use of and/or the compliance with the medicament delivery device 3002.
  • the third electronic signal S4 can be associated with a message instructing the user on post-injection disposal, safety procedures, post-injection medical treatment or the like. Such a message can state, for example, "THE DOSAGE OF XXX HAS BEEN SUCCESSFULLY ADMINISTERED. PLEASE SEEK FURTHER MEDICAL ATTENTION FROM A DOCTOR IF THE FOLLOWING SYMPTOMS OCCUR . . .”
  • the third electronic signal S4 can be associated with a message related to procedures for tracking compliance with the medication regimen.
  • Such a message can state, for example, "THE SUCCESSFUL DOSAGE OF XXX HAS BEEN RECORDED TO YOUR ELECTRONIC COMPLIANCE LOG. NO FURTHER ACTION IS REQUIRED.”
  • such a message can state, "PLEASE ENSURE THAT YOU RECORD THE CORRECT DOSAGE IN YOUR ELECTRONIC LOGBOOK.”
  • such a message can state, "PLEASE DO NOT EAT OR DRINK UNTIL XX P.M.”
  • such a message can state, "THE COMPLIANCE MONITOR IS CURRENTLY DISCONNECTED FROM THE NETWORK.
  • the third electronic signal S4 can be a communications signal (e.g., a radio frequency signal) that can be transmitted from the electronic circuit system 3020 of the container 3010 to the PC 3990 and/or the communications network Nw- Such transmission can occur using any suitable method and/or protocol.
  • the third electronic signal S4 can be transmitted, for example, in the form of an e-mail, a phone call, a data stream or the like.
  • the third electronic signal S4 can be associated with the patient's compliance in using the medicament delivery device 3002.
  • the third electronic signal S4 can be sent via the communications network Nw to the patient's pharmacy to automatically order additional pre- filled medicament delivery devices and/or replacement cartridges for the medicament delivery device.
  • the third electronic signal S4 can be sent via the communications network Nw to a health care provider, thereby allowing the health care provider to remotely monitor the patient's medication regimen.
  • the third electronic signal S4 can be sent via the communications network Nw to a clinical trial administrator, thereby allowing the clinical trial administrator to ensure that the clinical trial protocols are being properly followed.
  • FIG. 23 is a flow chart of a method 10 according to an embodiment of the invention.
  • the method includes moving an actuator on a medicament delivery device to initiate delivery of a medicament into a body, 12.
  • the actuator can be any suitable actuator configured to initiate the delivery of medicament into the body, as described above.
  • the actuator can be configured to release a spring, an energy storage member, or the like, to initiate medicament delivery when the actuator is moved.
  • the method can optionally include moving one or more safety locks before the actuator is moved.
  • safety locks can be similar to the safety lock 4710 shown and described above with reference to FIGS. 5-16, and can be configured to prevent the actuator from being moved.
  • a first electronic signal is then output from a first electronic system in response to the movement of the actuator, 14.
  • the first electronic signal is a short-range radio frequency signal having a range of approximately 100 meters or less.
  • the first electronic signal can be a BluetoothTM-compatible electronic signal, including either a class 1, a class 2 or a class 3 signal.
  • the first electronic signal can be a short-range signal produced by a radio frequency identification (“RFID”) tag within the first electronic circuit system.
  • RFID radio frequency identification
  • the first electronic circuit system can produce and/output the first electronic signal using electronic devices having a low power consumption, as described above.
  • the first electronic circuit system can be devoid of a battery.
  • the first electronic circuit system can be any suitable electronic circuit system of the types shown and described herein.
  • at least a portion of the first electronic circuit system can be disposed on the housing of the medicament delivery device.
  • at least a portion of the first electronic circuit system can be disposed on a portion of the medicament delivery device that is removably coupled to the housing of the medicament delivery device (e.g., a removable protective sheath, a removable safety lock or the like).
  • a medicament delivery device can include a protective sheath that includes a first portion of the first electronic circuit system, and a housing that includes a second portion of the first electronic circuit system.
  • the first portion of the first electronic circuit system can include a processor configured to control the second portion of the first electronic circuit system and/or a battery configured to provide power to the second portion of the first electronic circuit system.
  • the second portion of the first electronic circuit system can include a processor configured to control the first portion of the first electronic circuit system and/or a battery configured to provide power to the first portion of the first electronic circuit system.
  • a second electronic signal is then output from a second electronic circuit system, 16.
  • the second electronic signal is associated with the first electronic signal.
  • the second electronic circuit system outputs the second electronic signal in response to the first electronic signal.
  • the second electronic signal can include information associated with and/or included within the first electronic signal, such as, for example, the date and time when the first electronic signal was received by the second electronic circuit system.
  • the second electronic signal can include information identifying the contents of the medicament delivery device (e.g., the amount and type of medicament contained therein), an expiration date of the medicament delivery device, or the like.
  • the second electronic signal can be any suitable electronic signal that can be produced and/or output by the second electronic circuit system.
  • the second electronic signal can be output to an audio output device and/or a video output device.
  • the second electronic signal can be a communications signal (e.g., a radio frequency signal) that can be transmitted from the second electronic circuit system to the user's computer, a communications network Nw, and/or a remotely located device.
  • FIGS. 24-27 show a medical system 12000 according to an embodiment of the invention, in a first configuration, a second configuration, a third configuration, and a fourth configuration, respectively.
  • the medical system 12000 includes a medicament delivery device 12002 (see e.g., FIG. 25) and a compliance monitoring device 12510.
  • the compliance monitoring device 12510 includes a hinged lid 12518, an electronic circuit system 12530, a first switch 12536 and a second switch 12537. Additionally, the compliance monitoring device 12510 defines an internal region 12512 within which the medicament delivery device 12002 can be contained.
  • the electronic circuit system 12530 of the compliance monitoring device 12510 is configured to produce and/or output one or more electronic outputs and/or electronic signals of the type described above. As described in more detail below, the electronic circuit system 12530 includes a speaker 12544 and an LCD screen 12542. Moreover, similar to the container 3010 shown and described above with reference to FIGS. 20-22, the electronic circuit system 12530 of the compliance monitoring device 12510 is operatively coupled to a personal computer (PC) 12990. In this manner, as described in more detail herein, the electronic circuit system 12530 of the compliance monitoring device 12510 can transmit information associated with the medical system 12000 to and/or receive information associated with the medical system 12000 from any number of remotely located third party devices (not shown in FIGS. 24-27) via the PC 12990.
  • PC personal computer
  • the hinged lid 12518 has a first position (see FIG. 24) and a second position (see FIGS. 25 - 27). When the hinged lid 12518 is in the first position, the hinged lid 12518 covers the internal region 12512 of the compliance monitoring device 12510. Conversely, when the hinged lid 12518 is in the second position, at least a portion of the internal region 12512 of the compliance monitoring device 12510 is exposed. Said another way, when the hinged lid 12518 is in the second position, the medicament delivery device 12002 can be removed from the internal region 12512 of the compliance monitoring device 12510.
  • the electronic circuit system 12530 of the compliance monitoring device 12510 is operatively coupled to the first switch 12536 and the second switch 12537.
  • the first switch 12536 is configured to move between a first state (e.g., closed) and a second state (e.g., opened) when the hinged lid 12518 moves between its first position and its second position, as indicated by arrow LL in FIG. 25.
  • the electronic circuit system 12530 is configured to produce and/or output a first output OPl via the speaker 12544 when the first switch 12536 is moved from its first state to its second state.
  • the first output OPl can be a recorded speech output associated with an identification of the medicament delivery device 12002, an identification of patient symptoms (e.g., instructions for assessing the physical condition of the patient), an instruction for using the medicament delivery device 12002, an instruction for using the compliance monitoring device 12510, a message guiding the patient in procedures for adhering to the prescribed medication regimen, a status of the compliance monitoring device 12510 and/or a status of the patient's compliance with the prescribed medication regimen.
  • the first output OPl can state "YOU HAVE ACTIVATED THE ALLERGIC REACTION RESPONSE KIT. THIS KIT INCLUDES AN AUTO-INJECTOR CONTAINING EPINEPHRINE.
  • the first output OPl can state "YOUR NEXT DOSAGE IS NOT DUE UNTIL XX P.M. PLEASE DO NOT ADMINISTER THE DOSE AT THIS TIME.”
  • the first output OPl can state "BECAUSE THE MEDICAMENT HAS BEEN REFRIGERATED FOR STORAGE, THE MEDICAMENT IS CURRENTLY TOO COLD.
  • the first output OPl can state "THIS IS THE LAST DOSE IN THE CURRENT PRESCRIPTION. AFTER ADMINISTERING THIS DOSE, PLEASE CONTACT YOUR HEALTH CARE PROVIDER FOR FURTHER ADVICE.”
  • the first output OPl can be any type of electronic output as described herein.
  • the second switch 12537 is configured to move between a first state (e.g., closed) and a second state (e.g., opened) when the medicament delivery device 12002 is removed from the internal region 12512 of the compliance monitoring device 12510, as indicated by the arrow MM in FIG. 26.
  • the electronic circuit system 12530 of the compliance monitoring device 12510 is configured to output a second output OP2 via the speaker 12544 and/or the LCD screen 12542 when the second switch 12537 is moved from its first state to its second state.
  • the second output OP2 can be, for example, a recorded speech output and/or a video output associated with an identification of the medicament delivery device 12002, an identification of patient symptoms (e.g., instructions for assessing the physical condition of the patient), an instruction for using the medicament delivery device 12002, an instruction for using the compliance monitoring device 12510, a status of the compliance monitoring device 12510 and/or a status of the patient's compliance with the prescribed medication regimen.
  • the second output OP2 can be an audio-visual output via both the speaker 12544 and the LCD screen 12542 providing step-by-step instructions for using the medicament delivery device 12002 and/or the compliance monitoring device 12510.
  • the medicament delivery device 12002 can be any device for delivering a medicament into a body, of the types shown and described herein.
  • the medicament delivery device 12002 includes an actuator 12970 and an electronic circuit system 12920.
  • the actuator 12970 is movable between a first position (FIG. 26) and a second position (FIG. 27). When the actuator 12970 is moved from the first position to the second position, the actuator 12970 initiates the delivery of the medicament into the body.
  • the actuator 12970 can be similar to the base 4520 shown and described above with reference to FIGS. 5-16.
  • the electronic circuit system 12920 of the medicament delivery device 12002 is configured to output at least an electronic signal S5 (see FIG. 27) when the actuator 12970 is moved from the first position to the second position.
  • the electronic circuit system 12920 of the medicament delivery device 12002 can include any suitable electronic components operatively coupled to produce and/or output the electronic signal S5 and/or to perform the functions described herein.
  • the electronic circuit system 12920 of the medicament delivery device 3002 can be similar to the electronic circuit system 4920 shown and described above with reference to FIGS. 5-16.
  • the medical system 12000 can be used to manage the patient's medication regimen and/or track the patient's compliance in following the prescribed medication regimen in a similar manner as described above with reference to the medical system 3000.
  • the hinged lid 12518 is moved, as shown by the arrow LL in FIG. 25, and the medicament delivery device 12002 is removed from the compliance monitoring device 12510, as shown by the arrow MM in FIG. 26.
  • the movement of the hinged lid 12518 produces an input to the electronic circuit system 12530 via the first switch 12536.
  • the input from the first switch 12536 triggers the electronic circuit system 12530 to produce and/or output the first output OPl, as discussed above.
  • the second switch 12537 when the medicament delivery device 12002 is removed from the internal region 12512 of the compliance monitoring device 12510, the second switch 12537 produces an input to the electronic circuit system 12530.
  • the input from the second switch 12537 triggers the electronic circuit system 12530 to produce and/or output the second output OP2, as discussed above.
  • the medicament delivery device 12002 is first positioned adjacent a portion of a body B of a patient.
  • the portion of the body B is shown as being a surface, such as, for example, the skin, in other embodiments, the portion of the body B can be any suitable location for delivering the medicament (e.g., the mouth, the nasal passages, or the like).
  • the medicament delivery device 12002 is then actuated by moving the actuator 12970 from the first position (FIG. 26) to the second position (FIG. 27), as shown by the arrow NN in FIG. 27.
  • the electronic circuit system 12920 of the medicament delivery device 12002 outputs the electronic signal S5.
  • the actuator 12970 actuates the electronic circuit system 12920 of the medicament delivery device 12002 such that the electronic circuit system 12920 produces and/or outputs the electronic signal S5.
  • the actuator 12970 can actuate the electronic circuit system 12920 in any manner as described herein.
  • the electronic signal S5 can be any suitable communications signal, as described herein.
  • the electronic signal S5 is received by the electronic circuit system 12530 of the compliance monitoring device 12510, which then produces the third electronic output OP3.
  • the third electronic output OP3 is associated with the electronic signal S5.
  • the third electronic output OP3 can include a date and time stamp documenting when the electronic signal S5 was received.
  • the third electronic output OP3 can include information included within the electronic signal S5, such as a unique identification of the medicament delivery device 12002.
  • the electronic circuit system 12530 of the compliance monitoring device 12510 and the electronic circuit system 12920 of the medicament delivery device 12002 can cooperatively monitor the patient's compliance in using the medicament delivery device 12002.
  • the third electronic output OP3 includes a communications signal (e.g., a radio frequency signal) that can be transmitted from the electronic circuit system 12530 of the of the compliance monitoring device 12510 to the PC 12990.
  • a communications signal e.g., a radio frequency signal
  • the electronic circuit system 12530 of the compliance monitoring device 12510 is shown and described as receiving the electronic signal S5 from medicament delivery device 12002 in real-time when the medicament delivery device 12002 is actuated, in other embodiments, the electronic signal S5 can be received by the electronic circuit system 12530 of the compliance monitoring device 12510 at any time after the medicament delivery device 12002 has been actuated.
  • the electronic signal S5 can be a short-range radio frequency signal having a range of approximately 100 meters or less. Accordingly, in certain instances, the medicament delivery device 12002 may be actuated when the medicament delivery device 12002 is out of transmission range for transmitting the electronic signal S5 to the compliance monitoring device 12510.
  • the electronic circuit system 12530 of the compliance monitoring device 12510 and/or the electronic circuit system 12970 of the medicament delivery device 12002 can be configured to detect when the medicament delivery device is in range (e.g., when the patient returns home) and then transmit the electronic signal S5.
  • the electronic circuit system 12530 of the compliance monitoring device 12510 can include a scanner (e.g., an optical scanner or the like; not shown in FIGS. 24-27) such that the patient can scan the medicament delivery device 12002 when in proximity to the compliance monitoring device 12510 such that the electronic circuit system 12970 of the medicament delivery device 12002 can transmit the electronic signal S5 to the electronic circuit system 12530 of the compliance monitoring device 12510.
  • a medical system can include multiple medicament delivery devices. Such a system can be used, for example, as a part of a chronic-care medication regimen.
  • a medical system having multiple medicament delivery devices can be used to manage insulin delivery or the delivery of other medicaments (e.g., to treat Multiple Sclerosis, anemia, Rhuematoid Arthritis, Osteoporosis or the like), which can require daily, weekly and/or monthly injections.
  • FIG. 28 is a schematic illustration of a medical system 14000 according to an embodiment of the invention, that includes multiple medical injectors 14002A-14002G.
  • the medical system 14000 includes a container 14040, a compliance tracking device 14010 and multiple medical injectors 14002A- 14002G.
  • the compliance tracking device 14010 is similar to the compliance tracking device 12010 shown and described above, except that the medical injectors 14002A-14002G need not be disposed within the compliance tracking device 14010.
  • the compliance tracking device 14010 includes an electronic circuit system 14020, which can be operatively coupled to a computer, a communications network, or the like, as discussed above.
  • the medical injectors 14002A-14002G can be, for example, single-use, disposable auto-injectors of the types shown and described herein.
  • the medical injectors 14002A-14002G can include the same dosage of a medicament, and can be prescribed as a part of a chronic-care medicament regimen, clinical trial, or the like.
  • the medical injectors 14002A-14002G can include the different dosages and/or different medicament compositions.
  • Each of the medical injectors 14002A-14002G includes a removable cover 14070A-14070G, a first electronic circuit system 14920A-14920G and a second electronic circuit system 14080A-14080G.
  • the removable covers 14070A-14070G can be, for example, protective needle guards, safety locks, or any other protective device.
  • each of the second electronic circuit systems 14080A-14080G is coupled to the corresponding removable cover 14070A-14070G.
  • the first electronic circuit systems 14920A-14920G are coupled to the medicament injectors 14002A-14002G, as shown and described above.
  • the first electronic circuit systems 14920A-14920G and the second electronic circuit systems 14080A-14080G can each be similar in function and design to the electronic circuit systems shown and described above.
  • the first electronic circuit systems 14920A- 14920G and the second electronic circuit systems 14080A-14080G can be cooperatively designed to provide the desired functionality, as described above.
  • each medical injector 14002A-14002G can include only a single electronic circuit system.
  • the container 14040 includes an electronic circuit system 14050, and is configured to receive and/or hold at least a portion of each of the medical injectors 14002A- 14002G.
  • the container 14040 can include multiple recessed portions, retainers, and/or any other suitable structure that matingly receives at least a portion of each medical injector 14002A-14002G.
  • the medical injectors 14002A-14002G can be arranged within the container 14040 in a specific order and/or orientation. Such an arrangement can be used, for example, to facilitate the medication regimen.
  • the medical injectors 14002A- 14002G can be arranged in the order reflecting the order in which they are to be administered by the user. In other embodiments, however, the medical injectors 14002A-14002G can be arranged within the container 14040 randomly. Moreover, in some embodiments, the container 14040 can be configured to receive different types of medical injectors. This can allow the container 14040 to be used in both current and future therapeutic regimens for a patient.
  • the electronic circuit system 14050 of the container 14040 can be similar to the electronic circuit systems shown and described above, and can, for example, transmit and/or receive electronic signals from the electronic circuit system 14020 of the compliance monitor, the first electronic circuit systems 14920A-14920G and/or the second electronic circuit systems 14080A-14080G.
  • the electronic circuit system 14050 of the container 14040 can include an RFID tag encoded with information associated with the medical injectors 14002A-14002G, the medication regimen or the like. In this manner, the electronic signals output and/or produced by the electronic circuit system 14050 of the container 14040 can include information characterizing the medical injectors 14002 A- 14002G and/or the medication regimen.
  • Such information can include, for example, the number of medical injectors, the amount and type of medicament contained within each medical injector, an expiration date of each medical injector or the like.
  • the electronic circuit system 14050 of the container 14040 can be electronically encoded with information that can received by the compliance tracking device 14010. Accordingly, when the patient electronically couples the container 14040 to the compliance tracking device 14010 (e.g., by wired connection or a wireless connection), the container 14040 and the compliance tracking device 14010 can electronically and/or automatically update the patient compliance data associated with the medication regimen.
  • a container 14040 can include the medical injectors required to administer a predetermined medication regimen.
  • the container 14040 can be "loaded" by a pharmacy and delivered to the patient.
  • the container 14040 is then operatively coupled to the compliance tracking device 14010.
  • the electronic circuit system 14050 of the container 14040 can be electronically coupled to the electronic circuit system 14020 of the compliance tracking device 14010.
  • the electronic information included within the electronic circuit system 14050 of the container 14040 can be received by the electronic circuit system 14020 of the compliance tracking device 14010 to initialize and/or update a compliance tracking schedule associated with the patient's medication regimen.
  • the compliance tracking device 14010 can then produce and/or output one or more electronic outputs, as described above.
  • Such outputs can include, for example, visual and/or audible outputs reminding the patient of the date and time of the next dosage, indicating the expiration date of the medicament delivery device, providing instructions in the use of the medicament delivery device, a status of the compliance tracking device 14010, a use instruction associated with the compliance tracking device 14010 and/or the like.
  • the patient removes the appropriate medical injector (e.g., medical injector 14002A) from the container 14040.
  • the removal of the medical injector 14002A triggers the electronic circuit system 14050, the first electronic circuit system 14920A and/or the second electronic circuit system 14080A to output an electronic signal, as described above.
  • the first electronic circuit system 14920A and/or the second electronic circuit system 14080A can output an electronic signal, as described above.
  • the first electronic circuit system 14920A and/or the second electronic circuit system 14080A can output an electronic signal, as described above.
  • the medical injectors 14002A-14002G, the container 14040 and the compliance tracking device 14010 can cooperatively monitor the patient's compliance in adhering to the medication regimen.
  • a medical system can include a medicament delivery device that remains at least partially disposed within the container during a medicament delivery event.
  • FIGS. 29-31 show a medical system 13000 according to an embodiment of the invention in a first configuration, a second configuration and a third configuration, respectively.
  • the medical system 13000 includes a medicament delivery device 13002 and a container 13510.
  • the medicament delivery device 13002 has a proximal end portion 13112 and a distal end portion 13114.
  • the distal end portion 13114 includes an actuator 13970 configured to initiate the delivery of medicament from the medicament delivery device 13002, as described above.
  • the medicament delivery device 13002 also includes an electronic circuit system 13920.
  • the electronic circuit system 13920 of the medicament delivery device 13002 can include similar components and can have similar functionality as any of the electronic circuit systems described herein.
  • the container 13510 defines an internal region 13512 (see FIGS. 30 and 31) and a cover 13518 (FIG. 29).
  • the container 13510 also includes an electronic circuit system 13530.
  • the proximal end portion 13112 of the medicament delivery device 13002 is disposed within the internal region 13512 of the container 13510.
  • the internal region 13512 of the container 13510 can include a recessed portion, a retainer, and/or any other suitable structure that matingly receives at least a portion of the proximal end portion 13112 of the medicament delivery device 13002. In this manner, the medicament delivery device 13002 can be maintained within the container 13510 during use.
  • the cover 13518 is removably coupled to the container 13510.
  • the cover 13518 can protect the medicament delivery device 13002 and/or prevent the inadvertent use thereof.
  • the cover 13518 can be coupled to the container 13510 via an interference fit, a threaded coupling, a mating protrusion and recess coupling, or the like.
  • the electronic circuit system 13530 of the container 13510 includes at least a switch 13536 and a communications port 13531.
  • the electronic circuit system 13530 is configured to produce and/or output one more electronic signals when the switch 13536 changes states in response to the cover 13518 being removed from the container 13510.
  • the electronic circuit system 13530 is configured to produce and/or output a first electronic signal S2' when the switch 13536 changes states (e.g., when the cover 13518 is removed from the container 13510).
  • the first electronic signal S2' can be similar to any of the electronic signals and/or outputs described herein.
  • the communications port 13531 can be any suitable port for operatively coupling the electronic circuit system 13530 of the container 13510 to a remote device, such as a compliance monitoring device, a PC, a battery charger, or the like (not shown in FIGS. 29- 31).
  • the remote device can be coupled to the communications port 13531 via an electronic cable 13532 configured to be matingly coupled to the communications port 13531.
  • the internal region 13512 of the container 13510 can include a port and/or electronic coupling (not shown in FIGS.
  • the electronic circuit system 13920 of the medicament delivery device 13002 can be operatively coupled to the electronic circuit system 13530 of the container 13510 when the proximal end portion 13112 of the medicament delivery device 13002 is disposed within the container 13510.
  • the container 13510 can function as a docking station for the medicament delivery device 13002.
  • the electronic circuit system 13920 of the medicament delivery device 13002 can be powered by and/or use certain components of the electronic circuit system 13530 of the container 13510.
  • Such an arrangement can facilitate the use of a low- cost electronic circuit system on a single-use, disposable medicament delivery device.
  • the cover 13518 is removed from the container 13510, as shown by the arrow RR in FIG. 29.
  • the electronic circuit system 13530 of the container 13510 produces the first electronic signal S2'.
  • the first electronic signal S2' can be associated with the prescribed medication regimen (including, for example, compliance data), an identification of the medicament delivery device 13002, a status of the medicament delivery device 13002, a use instruction associated with the medicament delivery device 13002, a status of the container 13510, a use instruction associated with the container 13510 and/or the like.
  • the first electronic signal S2' can include a visual output, an audible output and/or a haptic output that instructs and/or provides cues to a user in the use of the container 13510 to track the patient's compliance.
  • the first electronic signal S2' can include a communications signal that can be transmitted via the port 15531 and/or by wireless transmission to a remote device (not shown in FIGS. 29-31).
  • the medicament delivery device 13002 is actuated by moving the actuator 13970 as shown by the arrow SS in FIG. 31.
  • the patient can move the actuator 13970, for example, by gripping the container 13510 and pressing the distal end portion 13114 of the medicament delivery device 13002 against the body.
  • the actuator 13970 is moved from the first position to the second position, actuation of the medicament delivery device is initiated.
  • the electronic circuit system 13920 of the medicament delivery device 13002 outputs the second electronic signal S3'.
  • the second electronic signal S3' is received by the electronic circuit system 13530 of the container 13510, which then produces the third electronic signal S4'.
  • the third electronic signal S4' is associated with the second electronic signal S3'.
  • the electronic signals S3' and S4' can be similar to the electronic signals S3 and S4 described above with reference to FIGS. 20-22.
  • the electronic signal S3' can include a time stamp associated with the actuation of the medicament delivery device 13002, and the electronic signal S4' can include information associated with the dosage, contents and/or status of the medicament delivery device 13002.
  • the electronic circuit system 13530 of the container 13510 and the electronic circuit system 13920 of the medicament delivery device 13002 can cooperatively monitor the patient's compliance in using the medicament delivery device 13002.
  • the electronic circuit system 13920 and the electronic circuit system 13530 can be cooperatively designed to provide the desired functionality.
  • the container 13530 can be a reusable compliance tracking device and the medicament delivery device 13002 can be a single-use, disposable device.
  • the patient can subsequent re-load the container 13510 with next medicament delivery device 13002, as prescribed.
  • FIGS. 32 and 33 are schematic illustrations of a medicament delivery device 5002 according to an embodiment of the invention, in a first configuration and a second configuration, respectively.
  • the medicament delivery device 5002 which can be medical injector (e.g., an auto-injector, a pen injector, a multiple-use injector, a syringe or the like), an inhaler or the like, includes an actuator 5970 and an electronic circuit system 5920.
  • the actuator 5970 is movable between a first position (FIG. 32) and a second position (FIG. 33). When the actuator 5970 is moved from the first position to the second position, the actuator 5970 initiates the delivery of the medicament into the body.
  • the actuator 5970 can be configured to release a spring, an energy storage member, or the like, to initiate medicament delivery when the actuator 5970 is moved from the first position to the second position.
  • the electronic circuit system 5920 includes at least a first RFID tag 5921 and a second RFID tag 5923.
  • the first RFID tag 5921 is configured to output a first electronic signal S6, which can be received by a compliance monitoring device (not shown in FIGS. 32 and 33) of the types shown and described herein.
  • the second RFID tag 5923 is configured to output a second electronic signal S7, which can be received by a compliance monitoring device.
  • the first electronic signal S6 has an electronic characteristic (e.g., frequency, amplitude, etc.) that is different from an electronic characteristic of the second electronic signal S7. In this manner, a receiving device (e.g., a compliance monitoring device) can distinguish the first electronic signal S6 from the second electronic signal S7.
  • the patient moves the actuator 5970 from the first position to the second position, as shown by the arrow OO in FIG. 33.
  • the actuator 5970 is moved from the first position to the second position, actuation of the medicament delivery device 5002 is initiated.
  • the actuator 5970 is configured to initiate delivery of the medicament when the actuator 5970 is moved from the first position to the second position.
  • the actuator 5970 When the actuator 5970 is moved from the first position to the second position, the actuator 5970 eliminates, blocks, and/or alters the second electronic signal S7, as indicated by the arrow PP in FIG. 33.
  • the receiving device e.g., a compliance monitoring device
  • the electronic feedback i.e., the elimination, blockage, and/or alteration of the second electronic signal S7 is provided without requiring the patient to execute any additional steps, other than those required to actuate the medicament delivery device 5002.
  • the medicament delivery device 5002 is configured to electronically and/or automatically track the details of its use.
  • the first electronic signal S6 can function as a validation signal to the receiving device during the actuation of the medicament delivery device 5002. Said another way, the electronic signal S6 can provide feedback associated with the functionality of the electronic circuit system 5920 (e.g., that the first electronic circuit system 5920 is within the transmission range of the receiving device, that the first electronic circuit system is receiving power, etc.).
  • the actuator 5970 can eliminate, block, and/or alter the second electronic signal S7 by any suitable mechanism.
  • the movement of the actuator 5970 produces an input that is received by the electronic circuit system 5920, thereby triggering the electronic circuit system 5920 to eliminate, block, and/or alter the second electronic signal S7 output by the second RFID tag 5923.
  • the movement of the actuator 5970 can change the state of a switch (not shown in FIGS. 32 and 33) within the electronic circuit system 5920 thereby triggering the electronic circuit system 5920 to eliminate, block, and/or alter the second electronic signal S7 output by the second RFID tag 5923.
  • the movement of the actuator 5970 can disrupt at least a portion of the second RFID tag 5923, thereby eliminating, blocking, and/or altering the second electronic signal S7.
  • the movement of the actuator 5970 can separate, tear, deform and/or sever a portion of the second RFID tag 5923.
  • the movement of the actuator 5970 can electronically shield a portion of the second RFID tag 5923, thereby eliminating, blocking, and/or altering the second electronic signal S7.
  • the actuator 5970 can include a shield portion configured to be disposed about the second RFID tag 5923 when the actuator is in the second position. Such a shield can, for example, block the signal S7 from being output by the second RFID tag 5923.
  • the movement of the actuator 5970 can electronically decouple a power source (not shown in FIGS. 32 and 33) from a portion of the electronic circuit system 5920 and/or the second RFID tag 5923.
  • the actuator 5970 can include a battery isolation tab (not shown in FIGS. 32-33) configured to isolate a battery from a portion of the electronic circuit system 5920.
  • the actuator 5970 can include a shield portion configured to be disposed about the second RFID tag 5923 when the actuator is in the second position. In this manner, the shield can prevent the second RFID tag 5923 from receiving power from a remote source (e.g., a master RFID tag disposed on the receiving device).
  • the first electronic signal S6 and/or the second electronic signal S7 can include information characterizing the first medicament delivery device 5002.
  • the first electronic signal S6 and/or the second electronic signal S7 can be associated with the contents of the medicament delivery device 5002 (e.g., the amount and type of medicament contained therein), an expiration date of the medicament delivery device 5002, a dosage of the medicament delivery device 5002 and/or a use instruction associated with the medicament delivery device 5002.
  • the receiving device (not shown in FIGS. 32 and 33) can produce the electronic outputs associated with information contained within the first electronic signal S6 and/or the second electronic signal S7. Said another way, this arrangement allows the receiving device to produce an electronic output that is unique to the medicament delivery device 5002.
  • the first RFID tag 5921 and/or the second RFID tag 5923 can be passive RFID tags.
  • the first RFID tag 5921 and/or the second RFID tag 5923 can be powered remotely by a parent RFID tag, which can be disposed, for example on a compliance monitoring device (not shown in FIGS. 32 and 33).
  • the electronic circuit system 5920 of the medicament delivery device 5002 can be devoid of a power supply (e.g., a battery or any other energy storage device).
  • the electronic circuit system 5920 can be a simple, low-cost circuit system 5920 that is suitable for use on a single-use, disposable medicament delivery device.
  • a medicament delivery device can include any suitable means for providing feedback associated with a dosage administration event.
  • the electronic circuit system 1920 shown and described above with reference to FIGS. 1-3 include a proximity sensor 1974 to provide feedback associated with the validity of an injection event, in other embodiments, a medicament delivery device can include any suitable feedback mechanism for providing feedback associated with the validity of a medicament delivery event.
  • FIGS. 34 and 35 are schematic illustrations of a medical injector 15002 according to an embodiment of the invention, in a first configuration and a second configuration, respectively.
  • the medical injector 1500 which can be, for example, a single-use, disposable auto-injector of the types shown and described herein, includes a housing 15110, a medicament container 15262, a needle 15212, and an electronic circuit system 15920.
  • the housing 15110 has a proximal end portion 15112 and a distal end portion 15114.
  • the medicament container 15262 is disposed within the housing 15110.
  • the medicament container 15262 is shown as being movably disposed within the housing 15110, in other embodiments, the medicament container 15262 can be fixedly disposed within the housing 15110.
  • the needle 15212 includes a proximal end 15216 and a distal end 15214, and is configured to be in fluid communication with the medicament container 15262. In this manner, the medicament within the medicament container 15262 can be conveyed into a body during an injection event via the needle 15212.
  • the needle 15212 is movably disposed within the housing 15110 between a first position (FIG. 34) and a second position (FIG. 35). When the needle 15212 is in the first position, the distal end 15214 of the needle is disposed within the housing 15110. When the needle 15212 is in the second position, the distal end 15214 of the needle is disposed outside of the housing 15110.
  • the needle 15212 can be moved between the first position and the second position to penetrate the patient's skin S (see FIG. 35) and/or provide a passageway for delivering the medicament into the patient's body B.
  • the electronic circuit system 15920 is includes at least a first electrode 15030 and a second electrode 15031.
  • the first electrode 15030 is disposed at the distal end 15214 of the needle 15212.
  • the second electrode 15031 is disposed at the distal end portion 15114 of the housing 15110.
  • the electronic circuit system 15920 is configured to output an electronic signal S8 associated with an impedance between the first electrode 15030 and the second electrode 15031.
  • the electronic signal S8 can be any suitable communications signal, of the types described herein, configured to be received by a compliance monitoring device (not shown in FIGS. 34 and 35) of the types shown and described herein. In this manner, as described in more detail below, the electronic circuit system 15920 can provide electronic and/or automatic feedback associated with the validity and/or administration of an injection event based on the impedance between the first electrode 15030 and the second electrode 15031.
  • the patient first places the distal end portion 15114 of the housing against the skin S of the body B.
  • the second electrode 15031 can include a proximity sensor, similar to the proximity sensor 1974 shown and described above with reference to FIGS. 1-3.
  • the electronic circuit system 15920 can produce one or more electronic outputs indicating that the medical injector 15002 is properly positioned and ready to be actuated.
  • the patient then actuates the medical injector 15002 thereby causing the needle to move from the first position to the second position, as shown by the arrow QQ in FIG. 35. Accordingly, the needle penetrates the patient's skin S to provide a passageway for delivering the medicament into the patient's body B.
  • the electronic circuit system 15920 is configured to measure the impedance Zi between the first electrode 15030 and the second electrode 15031. The electronic circuit system 15920 can then produce and/or output the electronic signal S8, which is associated with the impedance Z 1 . In some embodiments, the electronic signal S8 can be processed, either by the electronic circuit system 15920 or by a compliance monitoring device (not shown in FIGS. 34 and 35) to characterize the validity of the injection event.
  • a compliance monitoring device can determine whether the needle 15212 was disposed within bodily tissue T during the injection event. Said another way, because bodily tissue T has a characteristic impedance that is different from a characteristic impedance of other materials (e.g., a pillow, drywall, clothing materials or the like), the compliance monitoring device can evaluate the validity of the injection event based on the impedance Zi and/or the known depth of penetration of the needle 15212. Moreover, because different types of bodily tissue can have different characteristic impedance values, in some embodiments, the compliance monitoring device can evaluate whether the injection occurred within fatty tissue, muscle tissue, bone tissue or the like.
  • a medicament delivery device, a container and/or a compliance tracking device can include a wireless communications system configured to transmit a location of the medicament delivery device.
  • a wireless communications system configured to transmit a location of the medicament delivery device.
  • FIG. 36 is a schematic illustration of a medicament delivery device 8002 according an embodiment of the invention that includes a wireless communications system 8985 configured to communicate electronically directly with an emergency response dispatcher 8990E, via wireless network Nw as described above.
  • the wireless communications system 8985 includes a Global System for Mobile Communications and/or Global Positioning System (GPS) enabled feature, which can include a transmitter, a receiver, software, hardware and/or other electronics (not shown in FIG. 36) to transmit the geographical location of the medicament delivery device 8002 to the emergency response dispatcher 8990E.
  • GPS Global Positioning System
  • the medicament delivery device 8002 when used, it can be configured to automatically notify emergency response personnel (Emergency Medical Technicians, Fire, police and the like).
  • a wireless communications system can be configured to transmit the geographical location of the medicament delivery device to an emergency response dispatcher via a wireless communications device that is GPS-enabled.
  • FIG. 37 is a schematic illustration of a medicament delivery device 9002 according an embodiment of the invention that includes a wireless communications system 9985 configured to transmit the geographical location of the medicament delivery device 9002 via a wireless communications device 9990C that is GPS-enabled.
  • the GPS-enabled wireless communications device 9990C can be a cellular phone. In this manner, when the medicament delivery device 9002 is actuated, the wireless communications system 9985 transmits data to the GPS-enabled cell phone 9990C, as described above.
  • the GPS-enabled cell phone 9990C automatically dials an emergency number such as, for example, 911 (emergency dispatcher), and/or sends information associated with the location of the medicament delivery device 9002 and/or the end user location through GPS satellite positioning or network based positioning (using cell phone towers).
  • 911 electronic mail address
  • the GPS-enabled cell phone 9990C automatically dials an emergency number such as, for example, 911 (emergency dispatcher), and/or sends information associated with the location of the medicament delivery device 9002 and/or the end user location through GPS satellite positioning or network based positioning (using cell phone towers).
  • a wireless communications system can be configured to send and/or receive electronic signals associated with the actuation of a medicament delivery device. More particularly, in some embodiments a wireless communications system can be employed to remotely trigger various functions of a medicament delivery device.
  • FIG. 38 is a schematic illustration of a medicament delivery device 10002 according to an embodiment of the invention that includes such functionality.
  • the medicament delivery device 10002 includes a wireless communications system 10985 and an actuator 10995.
  • the wireless communications system 10985 which can be any suitable system of the type shown and described above is operatively coupled to the actuator 10995.
  • the actuator 10995 can be any suitable mechanism configured to receive an input from the wireless communications system 10985 and, based upon the input, trigger a function of the medicament delivery device 10002.
  • the actuator 10995 can be integrated into the wireless communications system 10985.
  • the actuator can include, for example, a programmable logic controller (PLC) and/or solenoid that allow the data received via the wireless communications system 10985 to be converted into an action to actuate the medicament delivery device 10002.
  • PLC programmable logic controller
  • the medicament delivery device 10002 can be a gas-powered auto-injector and the actuator 10995 can be configured to move a compressed gas cylinder to actuate the auto-injector.
  • the remote actuation feature of the medicament delivery device 10002 can be advantageous in circumstances in which the user of such a device is not able to actuate the medicament delivery device 10002 and/or there are no other individuals present to actuate the medicament delivery device 10002.
  • soldiers on a battlefield can carry the medicament delivery device 10002, which can contain one or more medicaments.
  • Such medicaments can be formulated to relieve acute pain (e.g., morphine), mitigate the effects of exposure to a nerve agent and/or prevent seizures secondary to such exposure.
  • the wireless communications system 10985 can be configured to send information to and/or receive information from a battlefield monitor station 10990B located in a secure area. In this manner, the battlefield monitor station 10990B can monitor and/or be in communication with the soldiers on the battlefield.
  • the medicament delivery device 10002 can be placed in a predetermined orientation relative to the soldier. For example, in some embodiments, the medicament delivery device 10002 can be retained within a specific pocket of the soldier's uniform.
  • a medicament delivery device can send signals to and/or receive signals from various communications devices using a combination of communications networks.
  • a medicament delivery device can send signals to and/or receive signals from various communications devices using any suitable combination of wireless networks and wired networks.
  • FIG. 39 is a schematic illustration of a medicament delivery device 11002 according to an embodiment of the invention that includes an electronic circuit system 11920 and an electronic communications port 11996.
  • the electronic circuit system 11920 can be any electronic circuit system of the type shown and described herein.
  • the electronic circuit system 11920 can be configured to monitor the status of the medicament delivery device 11002, actuate the medicament delivery device 11002, provide instructions for using the medicament delivery device 11002 or the like.
  • the electronic communications port 11996 can be any device configured to be operatively coupled to a docking station 11997, which is in turn operatively coupled via a communications network N to a communications device 11990.
  • the docking station 11977 can be, for example, a compliance monitoring device and/or a container of the types shown and described herein.
  • the communications device 11990 can be any communications device of the type shown and described above (e.g., a physician's computer, PDA, an insurer's computer, etc.). In this manner, the electronic circuit system 11920 can send electronic signals to and/or receive electronic signals from the communications device 11990 via the communications network N and the docking station 11997.
  • the docking station 11997 can include an electronic circuit system (not shown in FIG. 39) to store, process and/or produce electronic signals associated with the use of the medicament delivery device 11002.
  • the communications network N can be any suitable communications network, and can include, for example, wired networks.
  • the electronic communications port 11996 can be a serial bus port such as a USB ports or any another method of connecting the electronic circuit system 11920 to the docking station 11997 and/or the communications device 11990 to transfer data.
  • the electronic circuit system 11920, the electronic communications port 11996 and/or the docking station 11997 can include any electronic components (including hardware, firmware and/or software) configured to facilitate electronic communication.
  • the electronic circuit system 11920, the electronic communications port 11996 and/or the docking station 11997 can include Small Computer System Interface (SCSI and ports), Fire Wire (or other IEEE 1394 interfaces), data uplink, point-to-point link, fiber optic links, hard drives, pc cards, circuit boards, uplinks, downlinks, docking stations, parallel and bit-serial connections, and the like.
  • SCSI and ports Small Computer System Interface
  • Fire Wire or other IEEE 1394 interfaces
  • data uplink point-to-point link
  • fiber optic links fiber optic links
  • hard drives hard drives
  • pc cards circuit boards
  • the use of a wired communication system used as a part of the communications path can improve the reliability of the information being transferred and could ensure that the information is transferred at the right time and efficiently. For example, after a patient uses the medicament delivery device 11002, the user can place the device into the docking station 11997 connected to the user's workstation (i.e., the communications device 11990 to trigger the transfer of information.
  • the docking station 11997 connected to the user's workstation (i.e., the communications device 11990 to trigger the transfer of information.
  • the communications device 11990 can include software and/or hardware to download the information from the medicament delivery device to the workstation and transmit such information to a third party such as the patient's/user's health care provider (not shown in FIG. 39).
  • a third party such as the patient's/user's health care provider (not shown in FIG. 39).
  • information could include the location where the device was activated, time of day, dosage and route of administration, frequency of device usage, functionality of the device once used, expiration date of the device, device status, medicament status, and any adverse event experienced by the user following the use of the device.
  • the user can be notified that the information was sent successfully by receiving electronic confirmation from the communications device 11990 and/or the third party devices.
  • the illustrated communication system also allows the patient to connect to his or her workstation and download information to the medicament delivery device.
  • information can include, for example, updated dosing information, updated use instructions, critical software updates, and other information that would be useful to the patient.
  • the medicament delivery device could also connect to other devices other than just a workstation or docking station such as a mini USB drive to transfer the information.
  • the electronic circuit systems shown and described above can include one or more electronic components operatively coupled to perform the functions described herein
  • the electronic circuit systems shown and described herein can be similar to the electronic circuit system 1920 shown and described above with reference to FIG. 3.
  • the medical devices shown and described above include one electronic circuit system, in some embodiments, a medical device can include multiple electronic circuit systems configured to perform the functions described herein.
  • the components included in the electronic circuit system 4920 are shown and described as being operatively coupled by electrical conductors 4934, in other embodiments, the components can be operatively coupled without being physically connected.
  • the components included in an electronic circuit system can be inductively coupled. In other embodiments, at least a portion of the components included in an electronic circuit system can be evanescently coupled.
  • switches 4972A and 4972B are shown and described as being “tear- through” switches that are monolithically formed from the electrical conductors 4934, in other embodiments, a switch can be formed separately from the electrical conductors 4934.
  • an electrical circuit system can include a series of first electrical conductors having a first set of characteristics (e.g., the width, height, material from which the conductor is fabricated or the like) and a switch constructed from a second electrical conductor having a second set of characteristics different than the first set of characteristics.
  • a switch can be a separate component, such as, for example, a microswitch, that is mounted to the printed circuit board.
  • an electrical circuit system can include a "pop-out" switch that includes a biasing member to bias the switch in a predetermined state.
  • an electrical circuit system can include a switch that is disposed at a location other than on a printed circuit board.
  • switches 4972A and 4972B are shown and described as being irreversibly movable from a first state to a second state, in other embodiments, a switch can be reversibly movable between a first state and a second state. Moreover, in yet other embodiments, a switch can have more than two distinct states.
  • an actuator can be configured to actuate an electronic circuit system by moving in any direction.
  • a circuit actuator can be moved in a direction substantially normal to a portion of an electronic circuit system.
  • an electronic circuit system can include a printed circuit board having a substrate and a frangible switch tab disposed on the substrate.
  • An electrical conductor and/or a switch can be disposed on the frangible switch tab, such that when the switch tab is removed from the substrate the switch is moved from a first state to a second state. In this manner, the switch can be actuated without tearing and/or deforming a portion of the substrate.
  • an auto-injector can include a start button having an actuator configured to actuate an electronic circuit system.
  • an auto-injector can include a movable member configured to move a medicament container and/or a needle within a housing of the auto-injector, the movable member including an actuator configured to actuate an electronic circuit system.
  • a safety lock can remain coupled to the housing of an auto-injector when in its second position.
  • a safety lock can be moved from its first position to its second position by rotating a portion of the safety lock.
  • the safety lock 4710 is shown and described as including an actuator 4732 having a protrusion 4730 configured to be received within an opening 4928A defined by the substrate 4924.
  • the protrusions can be disposed on the substrate 4924 and the mating openings can be defined by the actuator 4732.
  • such components can be coupled together in any suitable way, which need not include protrusions and mating openings.
  • an actuator can be operatively coupled to an actuation portion of a substrate via mating shoulders, clips, adhesive or the like.
  • a medical system can include only a container having multiple medical injectors.
  • the container can be a tray or other device configured to hold the medical injectors.
  • the container can also perform the functions of the compliance monitoring device 14010, as described above.
  • a medical injector can include a sheath similar to sheath 14070, wherein the sheath performs the electronic functions of the compliance monitoring device 14010 and/or the container 14050, as described above.
  • an electronic circuit system can include any suitable sensor for providing feedback to the electronic circuit system.
  • an electronic circuit system can include a pressure sensor configured to sense the internal gas pressure within a gas-powered auto-injector. In this manner, the electronic circuit system can output an instruction, a status message, and/or an electronic signal to a compliance tracking device when the internal gas pressure crosses a predetermined threshold. For example, in some embodiments, when the internal gas pressure rapidly increases, the electronic circuit system can output a message, such as, for example, "Internal gas chamber has been successfully punctured - injection is in process.”
  • an electronic circuit system can include a temperature sensor configured to sense the temperature of the medicament contained within the medicament delivery device. In this manner, the electronic circuit system can output an instruction, a status message and/or an electronic signal to a compliance tracking device when the medicament is too cold for effective delivery.
  • the electronic circuit system can output a message, such as, for example, "MEDICAMENT IS TOO COLD - PLEASE BRISKLY RUB THE AUTO-INJECTOR BETWEEN YOUR HANDS.”
  • the electronic circuit system can output a message and/or a signal based upon the feedback from the temperature sensor, for example, indicating when the medicament will be at the appropriate temperature for delivery.
  • the electronic circuit system can output a message stating "THE CURRENT MEDICAMENT TEMPERATURE IS XX DEGREES.
  • the electronic circuit system can output an electronic signal to a compliance tracking device so that the temperature data can be stored and/or transmitted to a remote device, as described herein.
  • a medicament delivery device can have an electronic circuit system 5920 including only one RFID tag.
  • the signal S6 output by the first RFID tag 5921 is shown and described above as having a characteristic different from the signal S7 output by the second RFID tag 5923, in other embodiments, the signal S6 can be the same as the signal S7.
  • a medicament delivery device can include an electronic circuit system configured to produce a first electronic signal when the device is actuated, similar to the medicament delivery device 3002, and a second electronic signal based upon the impedance between various portions of the device, similar to the medicament delivery device 15002.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

A system (1002) includes a medicament delivery device (121O) and a container (1262) configured to receive at least a portion of the medicament delivery device. The medicament delivery device includes an actuator (1970) and a first electronic circuit system (1920) The actuator is configured to initiate delivery of a medicament into a body when the actuator is moved from a first position to a second position. The first electronic circuit system is configured to output a first electronic signal when the actuator is moved from the first position to the second position. The container includes a second electronic circuit system configured to receive the first electronic signal. The second electronic circuit system is configured to output a second electronic signal associated with the first electronic signal.

Description

MEDICAL INJECTOR WITH COMPLIANCE TRACKING AND MONITORING
Cross-Reference to Related Applications
[1001] This application is a continuation-in-part of U.S. Patent Application Serial No. 11/671,025, entitled "Devices, Systems and Methods for Medicament Delivery," filed February 5, 2007, which claims priority to U.S. Provisional Application Serial No. 60/787,046, entitled "Devices, Systems and Methods for Medicament Delivery," filed March 29, 2006; each of which is incorporated herein by reference in its entirety. U.S. Patent Application Serial No. 11/671,025 is also a continuation-in-part of U.S. Patent Application Serial No. 11/621,236, entitled "Devices, Systems and Methods for Medicament Delivery," filed January 9, 2007, which is a continuation-in-part of U.S. Patent Application Serial No. 10/572,148, entitled "Devices, Systems and Methods for Medicament Delivery," filed March 16, 2006, which is a national stage filing under 35 U. S. C. § 371 of International Patent Application No. PCT/US2006/003415, entitled "Devices, Systems and Methods for Medicament Delivery," filed February 1, 2006, which claims priority to U.S. Provisional Application Serial No. 60/648,822, entitled "Devices, Systems and Methods for Medicament Delivery," filed February 1, 2005 and U.S. Provisional Application Serial No. 60/731,886, entitled "Auto-Injector with Feedback," filed October 31, 2005; each of which is incorporated herein by reference in its entirety.
[1002] This application claims priority to U.S. Provisional Application Serial No. 60/885,969, entitled "Medicament Delivery Devices with Wireless Communication," filed January 22, 2007, which is incorporated herein by reference in its entirety.
Background
[1003] The invention relates generally to medical devices, and more particularly to medical systems, medicament delivery devices and methods for delivering a medicament into a body of a patient and outputting an electronic signal in response to such delivery.
[1004] Self-administered medicament delivery devices, such as, for example pre-filled medical injectors, inhalers, transdermal delivery devices and the like are often used as a part of a patient's medication regimen. For example, known self-administered medicament delivery devices can be used as a part of a patient's emergency care regimen. Emergency care regimens can include, for example, using an auto-injector to rapidly self-administer a medicament in response to an allergic reaction or for the treatment of other emergency conditions (e.g., nerve-agent poisoning on the battlefield). Known self-administered medicament delivery devices can also be used as a part of a patient's chronic care regimen. Chronic care regimens can include, for example, using a pen injector to self-administer a medicament according to a prescribed plan. Examples of chronic care regimens can include, for example, the injection of insulin, the injection of human growth hormone (HGH), erythropoiesis-stimulating agents (ESA), DeMab, Interferons and other chronic therapies, or the like. Furthermore, self-administered medicament delivery devices can also be used for preventive/prophylactic therapies. Examples of preventive/prophylactic therapies include certain vaccines, such as an influenza vaccine.
[1005] In the pharmaceutical industry, it can be important to understand patient compliance with self-administered medicament delivery devices. Patient compliance can include any measure of a patient's conformance to a particular therapeutic drug delivery regimen or other indication as mandated by a health care provider or pharmaceutical manufacturer. More particularly, patient compliance measures can include the location where the device was activated, time of day, dose regimen, dosage and route of administration, frequency of device usage, functionality of the device once used, expiration date of the device, device status, medicament status, and any adverse event experienced by the user following the use of the device. Patient compliance can also include providing communication to the patient regarding their therapy (e.g., a notification of when to take their medication, etc.). Understanding patient compliance with medicament delivery devices can enhance the ability of a health care provider to effectively manage a patient's medication regimen, which can lead to improved patient outcomes. Patient compliance data can also be used to inform the manufacturer of the device about potential issues with the device (e.g., data demonstrating poor compliance with a particular device may trigger a manufacturer to investigate the cause of poor compliance and/or change the design or functionality of the device to improve patient care and outcome), alert emergency contacts (including family members, patient guardians, and individuals with Power of Attorney privileges), and aid the patient with adhering to their prescribed therapy. Increasing patient compliance can also generate considerable cost savings for health care providers, pharmaceutical benefits managers (PBM), specialty pharmacies, clinical trial administrators, insurance companies and/or payors.
[1006] Ensuring patient compliance with some known medicament delivery devices can be problematic. For example, some known medicament delivery devices (e.g., emergency care devices, as described above and/or chronic care devices) can be bulky and conspicuous, which can make carrying them inconvenient and undesirable. Accordingly, the patient may not carry the medicament delivery device at all times, resulting in the failure to use the medicament delivery device as prescribed.
[1007] Similarly, to actuate some known medicament delivery devices, the user may be required to execute a series of operations. For example, to actuate some known auto- injectors, the user must remove a protective cap, remove a locking device, place the auto- injector in a proper position against the body and then press a button to actuate the auto- injector. Failure to complete these operations properly can result in an incomplete injection and/or injection into an undesired location of the body.
[1008] The likelihood of improper use of known medicament delivery devices can be compounded by the nature of the user and/or the circumstances under which such devices are used. For example, many users are not trained medical professionals and may have never been trained in the operation of such devices. Moreover, in certain situations, the user may not be the patient, and may therefore have no experience with the medicament delivery device. Similarly, because some known medicament delivery devices are configured to be used relatively infrequently in response to an allergic reaction or the like, even those users familiar with the device and/or who have been trained may not be well practiced at operating the device. Finally, such devices often can be used during an emergency situation, during which even experienced and/or trained users may be subject to confusion, panic and/or the physiological effects of the condition requiring treatment.
[1009] Monitoring the patient's compliance with known medicament delivery devices can also be problematic. For example, some known medicament delivery systems include a medicament delivery device and an electronic system to assist the user in setting the proper dosage and/or maintaining a compliance log. Such known medicament delivery systems and the accompanying electronic systems can be large and therefore not conveniently carried by the user. Such known medicament delivery systems and the accompanying electronic systems can also be complicated to use and/or expensive to manufacture.
[1010] Thus, a need exists for medicament delivery systems and/or devices that can provide compliance information associated with the use of the device. Moreover, a need exists for medicament delivery systems and/or devices that can communicate electronically with other communications devices.
Summary
[1011] Medicament delivery systems and devices are described herein. In some embodiments, a system includes a medicament delivery device and a container configured to receive at least a portion of the medicament delivery device. The medicament delivery device includes an actuator and a first electronic circuit system. The actuator is configured to initiate delivery of a medicament into a body when the actuator is moved from a first position to a second position. The first electronic circuit system is configured to output a first electronic signal when the actuator is moved from the first position to the second position. The container includes a second electronic circuit system configured to receive the first electronic signal. The second electronic circuit system is configured to output a second electronic signal associated with the first electronic signal.
Brief Description of the Drawings
[1012] FIG. 1 is a perspective view of an auto-injector according to an embodiment of the invention.
[1013] FIG. 2 is a front cross-sectional view of the auto-injector shown in FIG. 1.
[1014] FIG. 3 is a schematic illustration of a portion of the auto-injector shown in FIG. 1.
[1015] FIG. 4 is a schematic illustration of a medicament delivery device according to an embodiment of the invention.
[1016] FIG. 5 is a perspective view of an auto-injector according to an embodiment of the invention. [1017] FIG. 6 is a front view of the auto-injector illustrated in FIG. 5, with a portion of the auto-injector illustrated in phantom lines for ease of reference.
[1018] FIG. 7 is a partial cut-away front view of a portion of the auto-injector illustrated in FIG. 5.
[1019] FIG. 8 is a cross-sectional view of a portion of the auto-injector illustrated in FIG. 5 taken along line 8-8 in FIG. 7.
[1020] FIG. 9 is a cross-sectional view of a portion of the auto-injector illustrated in FIG. 5 taken along line 9-9 in FIG. 7.
[1021] FIG. 10 is a front view of a portion of the auto-injector illustrated in FIG. 5.
[1022] FIG. 11 is a schematic illustration of a portion of the auto-injector illustrated in FIG. 5.
[1023] FIG. 12 is a perspective view of a portion of the auto-injector illustrated in FIG. 5 in a second configuration.
[1024] FIG. 13 is a front plan view of a portion of the auto-injector illustrated in FIG. 5 in a third configuration.
[1025] FIG. 14 is a front plan view of a portion of the auto-injector illustrated in FIG. 5 in a fourth configuration.
[1026] FIGS. 15 and 16 are front plan views of a portion of the auto-injector labeled as region 15 in FIG. 10, in a first configuration and a second configuration, respectively.
[1027] FIGS. 17 and 18 are perspective views of an inhaler according to an embodiment of the invention, in a first configuration and a second configuration, respectively.
[1028] FIG. 19 is a schematic illustration of a medicament delivery device according an embodiment of the invention.
[1029] FIGS. 20-22 are schematic illustrations of a medical system according to an embodiment of the invention, in a first configuration, a second configuration and a third configuration, respectively. [1030] FIG. 23 is a flow chart of a method according to an embodiment of the invention.
[1031] FIGS. 24-27 are perspective views of a medical system according to an embodiment of the invention, in a first configuration, a second configuration, a third configuration, and a fourth configuration, respectively.
[1032] FIG. 28 is a schematic illustration of a medical system according to an embodiment of the invention.
[1033] FIGS. 29-31 are perspective views of a medical system according to an embodiment of the invention, in a first configuration, a second configuration, and a third configuration, respectively.
[1034] FIGS. 32 and 33 are schematic illustrations of a medicament delivery device according to an embodiment of the invention, in a first configuration and a second configuration, respectively.
[1035] FIGS. 34 and 35 are schematic illustrations of a medicament delivery device according to an embodiment of the invention, in a first configuration and a second configuration, respectively.
[1036] FIG. 36 is a schematic illustration of a medicament delivery device according an embodiment of the invention.
[1037] FIG. 37 is a schematic illustration of a medicament delivery device according an embodiment of the invention.
[1038] FIG. 38 is a schematic illustration of a medicament delivery device according an embodiment of the invention.
[1039] FIG. 39 is a schematic illustration of a medicament delivery device according an embodiment of the invention.
Detailed Description
[1040] In some embodiments, a system includes a medicament delivery device and a container configured to receive at least a portion of the medicament delivery device. The medicament delivery device, which can be, for example, a single-use medical injector, includes an actuator and a first electronic circuit system. The actuator is configured to initiate delivery of a medicament into a body when the actuator is moved from a first position to a second position. The first electronic circuit system is configured to output a first electronic signal when the actuator is moved from the first position to the second position. The first electronic signal can be, for example, a short-range radio frequency signal having a range of approximately 100 meters or less. The container includes a second electronic circuit system configured to receive the first electronic signal. The second electronic circuit system is configured to output a second electronic signal associated with the first electronic signal.
[1041] In some embodiments, an apparatus includes a medicament delivery device and an electronic circuit system coupled to the medicament delivery device. The medicament delivery device includes an actuator configured to initiate delivery of a medicament into a body when the actuator is moved from a first position to a second position. The electronic circuit system includes a first radio frequency identification tag configured to output a first electronic signal and a second radio frequency identification tag configured to output a second electronic signal. The second electronic signal has a characteristic (e.g., a frequency) different than a characteristic of the first electronic signal. The actuator is configured to prevent the second radio frequency identification tag from outputting the second electronic signal when the actuator is moved from the first position to the second position. In some embodiments, for example, the actuator is configured to sever at least a portion of the second radio frequency identification tag when the actuator is moved from the first position to the second position.
[1042] In some embodiments, an apparatus includes a housing, a medicament container disposed within the housing, a needle, and an electronic circuit system. The needle has a proximal end and a distal end, and is configured to be in fluid communication with the medicament container. The needle is configured to be moved between a first position and a second position. The distal end of the needle is disposed within the housing when the needle is in the first position. At least a portion of the distal end of the needle is disposed outside of the housing when the needle is in the second position. The electronic circuit system is configured to be coupled to the housing. The electronic circuit system is configured to output an electronic signal associated with an impedance between the distal end of the needle and a portion of the housing. [1043] In some embodiments, a method includes moving an actuator of a medicament delivery device to initiate delivery of a medicament into a body. The actuator can be, for example, a mechanical actuator configured to release a spring, an energy storage member, or the like to initiate medicament delivery when the actuator is moved from the first position to the second position. A first electronic signal is output from a first electronic circuit system in response to the movement of the actuator between the first position and the second position. The first electronic signal is a short-range radio frequency signal having a range of approximately 100 meters or less. A second electronic signal associated with the first electronic signal is output from a second electronic circuit system.
[1044] As used herein, the term "regimen" or "medication regimen" can include any program, schedule and/or procedure to enhance, improve, sustain, alter, and/or maintain a patient's well-being. A regimen can include, for example, a schedule of medicament delivery events (e.g., injections, oral doses, etc.) that are prescribed or otherwise suggested for the patient. For example, a regimen can include daily insulin injections. A regimen can also include a single medicament delivery event that can be prescribed or otherwise suggested for the patient to administer in response to given a set of circumstances. For example, a regimen can include a injection of epinephrine in response to an allergic reaction. A regimen can also include the delivery of a placebo or inactive ingredient. For example, a clinical trial can include a regimen including various injections of a placebo. Finally, a regimen can also include activities other than the delivery of drugs to the patient. For example, a regimen can include certain procedures to be followed to enhance the patient's well-being (e.g., a schedule of rest, a dietary plan, etc.).
[1045] FIGS. 1 and 2 are a perspective view and a partial cutaway front view, respectively, of an auto-injector 1002 according to an embodiment of the invention. The auto-injector 1002 is similar to the auto-injectors described in U.S. Patent Application Serial Number 11/562,061, entitled "Devices, Systems and Methods for Medicament Delivery," filed November 21, 2006, which is incorporated herein by reference in its entirety. Accordingly, only an overview of the mechanical components and related operation of the auto-injector 1002 is included below.
[1046] The auto-injector 1002 includes a housing 1110 that defines a gas chamber 1120. The housing 1110 has a proximal end portion 1112 and a distal end portion 1114. A base 1520 is movably coupled to the distal end portion 1114 of the housing 1110. A safety lock 1710 is removably coupled to the base 1520. As discussed in more detail herein, when the safety lock 1710 is coupled to the base 1520, the auto-injector 1002 cannot be actuated. When the safety lock 1710 is removed from the base 1520, the base 1520 can be moved relative to the housing 1110, thereby actuating the auto-injector 1002. Accordingly, to inject a medicament into the body, the distal end portion 1114 of the housing 1110 is oriented towards the user such that the base 1520 is in contact with the portion of the body where the injection is to be made. The base 1520 is then moved towards the proximal end 1112 of the housing 1110 to actuate the auto-injector 1002.
[1047] The auto-injector 1002 includes a medicament injector 1210 and a system actuator 1510 disposed non-coaxially within the housing 1110. The medicament injector 1210 includes multiple medicament vials 1262, a plunger 1284 movably disposed within each medicament vial 1262, a movable member 1312 engaged with each plunger 1284 and a needle 1212. Retraction springs 1350 located within a portion of the base 1520 and the housing 1110 can push the needle 1212 back within the housing 1110 after injection. The system actuator 1510 includes a compressed spring 1560, a compressed gas cylinder 1412, and a puncturing mechanism 1612 to dispel the contents of the compressed gas cylinder 1412.
[1048] In use, when the auto-injector 1002 is actuated, the puncturing mechanism 1612 punctures the compressed gas cylinder 1412 allowing a pressurized gas to flow into the gas chamber 1120. In response to a force produced by the pressurized gas on the movable member 1312, the movable member 1312 moves distally within the housing 1110. As a result, the needle 1212 is extended through the housing 1110. The movement of the movable member 1312 also causes the plungers 1284 to move within the vials 1262, thereby expelling a medicament from the vials 1262.
[1049] The auto-injector 1002 includes an electronic circuit system 1920 configured to provide a predetermined sequence of electronic outputs and/or electronic signals during the use of the auto-injector 1002. The electronic circuit system 1920 is powered by a battery (not shown in FIGS. 1 and 2) and includes a processor (see e.g., FIG. 3), a start button 1970, two switches 1972A and 1972B, a proximity sensor 1974, two visual output devices 1958 A and 1958B, an audio output device 1956, and a network interface device 1953. The components of the electronic circuit system 1920 are operatively coupled by any suitable mechanism, such as, for example, a printed circuit board (not shown in FIGS. 1 and 2) having conductive traces.
[1050] The start button 1970 is disposed on the proximal end of the housing 1110 and can be manually actuated by the user to begin the sequence of electronic outputs. The first switch 1972A is disposed on the distal portion 1114 of the housing 1110 adjacent the base 1520 and the locking member 1710. The locking member 1710 is configured to engage the first switch 1972A such that when the locking member 1710 is removed, as shown in FIG. 1, the first switch 1972 A changes states. In this manner, removal of the locking member 1710 can trigger the processor to output a predetermined electronic output. Said another way, the electronic circuit system 1920 can produce and/or output an electronic signal and/or an electronic output when the auto-injector 1002 is moved from a "storage" configuration (i.e., a configuration in which the locking member 1710 will prevent the actuation of the auto- injector 1002) to a "ready" configuration (i.e., a configuration in which the auto-injector 1002 can be actuated).
[1051] The proximity sensor 1974 is disposed on the base 1520 and is configured to produce an output when the base 1520 engages the body. The proximity sensor can be, for example, a temperature sensor, an optical sensor, pressure sensor, impedance sensor or the like. In this manner, the processor can be prompted to output a predetermined electronic output when the base 1520 is positioned against the body.
[1052] Similarly, the second switch 1972B is disposed on the housing 1110 adjacent the medicament injector 1210. The medicament injector 1210 is configured to engage the second switch 1972B such that when the medicament injector 1210 is moved distally within the housing 1110 the second switch 1972B changes states. In this manner, the processor can be prompted to output a predetermined electronic output based on the position of the medicament injector 1210. Said another way, the electronic circuit system 1920 can produce and/or output an electronic signal and/or an electronic output in response to the actuation of the auto-injector 1002.
[1053] In some embodiments, the electronic circuit system 1920 can be configured to output an electronic signal and/or an electronic output based on the output of the proximity sensor 1974 and the output from the second switch 1972B. For example, in some embodiments, the electronic circuit system 1920 can output a first electronic signal when the output from the proximity sensor 1974 indicates that the base 1520 of the auto-injector 1002 is in contact with the body when the second switch 1972B changes states, and a second electronic signal when the output from the proximity sensor 1974 indicates that the base 1520 of the auto-injector 1002 is disposed apart from the body when the second switch 1972B changes states. Said another way, in some embodiments, the electronic circuit system 1920 can be configured to output a first electronic signal associated with the occurrence of a valid injection event (i.e., an injection event during which there was a high likelihood that the medicament was properly injected into the body) and a second electronic signal associated with the occurrence of an invalid injection event (i.e., an injection event during which there was a high likelihood that the medicament was not injected into the body).
[1054] The first visual output device 1958A is disposed on the locking member 1710. Similarly, the second visual output device 1958B is disposed on the outer surface 1111 of the housing 1110. The visual output devices 1958 A and 1958B are in electronic communication with the processor and are configured to produce an output in response to an electronic signal output by the processor. The visual output devices 1958 A and 1958B, as well as any other visual output devices referenced herein, can be any suitable visual indicia, such as, light- emitting diodes (LEDs), liquid-crystal display (LCD) screens, optical polymers, fiber optic components or the like. In some embodiments, the visual output devices 1958 A and 1958B can be coupled to the housing 1110 and/or the locking member 1710 by a label 1910.
[1055] The audio output device 1956 is disposed within the housing 1110 such that it can project sound outside of the housing 1110. The audio output device 1956, as well as any other audio output devices referenced herein, can be any suitable device for producing sound, such as a micro-speaker a piezo-electric transducer or the like. Such sound output can include, for example, an alarm, a series of beeps, recorded speech or the like. The audio output device 1956 is in electronic communication with the processor and is configured to produce an output in response to an electronic signal output by the processor.
[1056] The network interface device 1953 is configured to operatively connect the electronic circuit system 1920 to a remote device 1941 (see FIG. 3) and/or a communications network (not shown in FIGS. 1-3). In this manner, the electronic circuit system 1920 can send information to and/or receive information from the remote device 1941. The remote device 1941 can be, for example, a remote communications network, a computer, a compliance monitoring device, a cell phone, a personal digital assistant (PDA) or the like. Such an arrangement can be used, for example, to download replacement processor-readable code 1955 (see FIG. 3) from a central network to the memory device 1954 (see FIG. 3). In some embodiments, for example, the electronic circuit system 1920 can download information associated with a medicament delivery device 1002, such as an expiration date, a recall notice, updated use instructions or the like. Similarly, in some embodiments, the electronic circuit system 1920 can upload compliance information associated with the use of the medicament delivery device 1002 via the network interface device 1953.
[1057] In use, the user activates the electronic circuit system by pushing the start button 1970 to activate the processor, thereby causing the processor to output a predetermined sequence of electronic outputs. In some embodiments, the start button 1970 can activate the processor by providing an input to the processor. In other embodiments, the start button 1970 can activate the processor by placing the battery (not shown in FIGS. 1 and 2) in electronic communication with the processor.
[1058] In some embodiments, upon activation, the processor can output an electronic signal to the audio output device 1956 thereby producing a first electronic output instructing the user in how to use the auto-injector 1002. Such a message can state, for example, "please remove the safety tab." Additionally, the first visual output device 1958A can produce a flashing light to further indicate to the user where the locking member 1710 is located. The processor can be configured to repeat the first audible instruction if the locking member 1710 is not removed within a predetermined time period.
[1059] When the user removes the locking member 1710, the first switch 1972A changes states thereby triggering the processor to output an electronic output providing a second instruction to the user. The second instruction can be, for example, an audible speech output instructing the user to "please place the base of the device on the outer portion of your thigh." The first visual output device 1958 A can produce a lighted output during this audible instruction, thereby visually indicating where the base 1520 is located and/or what portion of the base 1520 should be placed on the thigh.
[1060] When the user places the base 1520 against the body, the proximity sensor 1974 provides an input to the processor, thereby triggering the processor to output an electronic output providing a third instruction to the user. The third instruction can be, for example, an audible speech output instructing the user to "push down on the top of the device to activate the injector."
[1061] When the injection is completed, the medicament injector 1210 is configured to engage the second switch 1972B, thereby triggering the processor to output an electronic output providing a fourth instruction to the user. Such a post-use instruction can be, for example, an audible speech output instructing the user to seek further medical attention, providing instructions for the safe disposal of the auto-injector 1002 or the like.
[1062] In some embodiments, the processor 1950 can output an electrical signal associated with the second switch 1972B that is received by a remote device 1941, which can be, for example, a compliance tracking device. Said another way, in some embodiments, the electronic circuit system 1920 can output, to the remote device 1941, an electrical signal associated with the end of the injection event. In this manner the electronic circuit system 1920 on the auto-injector 1002 can cooperate with the remote device 1941 to electronically and/or automatically track the details of the use of the auto-injector 1002. Similarly stated, the electronic circuit system 1920 on the auto-injector 1002 and the remote device 1941 can electronically and/or automatically track the patient compliance data associated with the use of the auto-injector 1002.
[1063] FIG. 3 is a schematic illustration of the electronic circuit system 1920 of the auto- injector 1002. The electronic circuit system 1920 includes a processor 1950 operatively coupled to a memory device 1954. The memory device 1954 can be configured to store processor-readable code 1955 instructing the processor 1950 to perform the functions described above. In some embodiments, the processor-readable code 1955 can be modified and/or updated as circumstances dictate. The electronic circuit system 1920 includes an input/output device 1952 configured to receive electronic inputs from the switches 1972A and 1972B, the proximity sensor 1974 and/or the start button 1970. The input/output device 1952 is also configured to provide electronic signals to the various output devices, such as the visual output devices 1958 A and 1958B and the audio output device 1956.
[1064] As described above, the electronic circuit system 1920 also includes a network interface 1953 configured to couple the electronic circuit system 1920 to a remote device 1941 and/or a communications network (not shown in FIG. 3). Such an arrangement can be used, for example, to download replacement processor-readable code 1955 from a central network (not shown) to the memory device 1954. The network interface 1953 can also be configured to transmit information from the electronic circuit system 1920 to a central network and/or the remote device 1941 (e.g., the user's home computer, the user's cell phone or the like). The network interface 1953 can include any hardware, software and/or firmware suitable for establishing communication between the electronic circuit system 1920 and the remote device 1941. For example, in some embodiments, the network interface 1953 can include a microprocessor, a transmitter, a receiver, a transceiver, a microchip, a radio chipset, a wireless interface card (WIC), a host controller interface (HCI), a universal asynchronous receiver/transmitter (UART), a power source (e.g., a battery), one or more sensors, a transponder, an antenna, a crystal, a circuit board, a liquid crystal display (LCD), a Small Computer System Interface (SCSI and ports), a Fire Wire (or other IEEE 1394 interfaces), a data uplink, a data downlink, a point-to-point link, a fiber optic link, a storage device (e.g., hard drive, flash drive or the like), a personal computer cards, a docking stations, a parallel and/or bit-serial connections, a Universal Serial Bus (USB) port or other serial ports, radiofrequency identification (RFID) devices and/or other common electronic components used to establish electronic communication.
[1065] FIG. 4 is a schematic illustration of a medical device 2002 according to an embodiment of the invention. The medical device 2002, which can be, for example, a medicament delivery device such as an auto-injector, a pen injector, an inhaler, a transdermal delivery system or the like, includes a housing 2110 and a label 2910. The label 2910 is coupled to an outer surface 2111 of the housing 2110. The label 2910 includes a first surface 2912, a second surface 2914 and an electronic circuit system 2920. The first surface 2912 is configured to engage the outer surface 2111 of the housing 2110 to couple the label 2910 to the housing 2110. In some embodiments, the first surface 2912 can include an adhesive to fixedly couple the label 2910 to the housing 2110. The second surface 2914 includes a textual indicia 2916. The textual indicia 2916 can include, for example, a description of the medicament delivery device, a source of the medicament delivery device and/or an instruction associated with the use of the medicament delivery device. Although the first surface 2912 is shown as being opposite the second surface 2914, in other embodiments, the first surface 2912 and the second surface 2914 can be adjacent each other and/or co-planar. [1066] The electronic circuit system 2920 is configured to output an electronic signal of the types shown and described herein. As discussed in more detail herein, the electronic circuit system 2920 can include many components, such as, for example, a processor, a switch, a visual output device and/or an audio output device. The electronic signal can be, for example, an electronic signal communicated to an output device, such as, for example, a visual output device, an audio output device, a haptic output device or the like. In some embodiments, the electrical signal can be a communications signal configured to be received by a remote device, in a manner similar to that described herein.
[1067] In some embodiments, the electronic signal can be associated with an aspect of the medical device 2002, such as an instruction associated with an initial use of the medical device 2002. For example, in some embodiments, the electronic circuit system 2920 can output a text message to a display screen (not shown) disposed on the medical device 2002 instructing the user in the use of the medical device 2002. In other embodiments, the electronic circuit system 2920 can produce an audio output, such as recorded speech, instructing the user in the use of the medical device 2002. In yet other embodiments, the electronic circuit system 2920 can produce and/or transmit an electrical signal associated with a medicament delivery event. In this manner, the electronic circuit system 2920 can be used to track the patient compliance data associated with the use of the medicament delivery device 2002.
[1068] Although the electronic circuit system 2920 is shown as being disposed on the second surface 2914 of the label 2910, in other embodiments, the electronic circuit system can be disposed on the first surface 2912 of the label 2910. In yet other embodiments, the electronic circuit system 2920 can be disposed between the first surface 2912 and the second surface 2914 of the label 2910. In yet other embodiments, the label 2910 can include multiple discrete layers coupled together, within which portions of the electronic circuit system can be disposed.
[1069] FIG. 5 is a perspective view of an auto-injector 4002 according to an embodiment of the invention. The auto-injector 4002 is similar to the auto-injectors described in U.S. Patent Application Serial Number 11/562,061, entitled "Devices, Systems and Methods for Medicament Delivery," filed November 21, 2006, which is incorporated herein by reference in its entirety. Accordingly, the mechanical components and operation of the auto-injector 4002 are not described in detail herein.
[1070] The auto-injector 4002 includes a housing 4110 having a proximal end portion 4112 and a distal end portion 4114. The distal end portion 4114 of the housing 4110 includes a protrusion 4142 to help a user grasp and retain the housing 4110 when using the auto- injector 4002. Said another way, the protrusion 4142 is configured to prevent the auto- injector 4002 from slipping from the user's grasp during use. A base 4520 is movably coupled to the distal end portion 4114 of the housing 4110. A needle guard assembly 4810 is removably coupled to the base 4520. Similarly, a safety lock 4710 is removably coupled to the base 4520. To inject a medicament into the body, the distal end portion 4114 of the housing is oriented towards the user such that the base 4520 is in contact with the portion of the body where the injection is to be made. The base 4520 is then moved towards the proximal end 4112 of the housing 4110 to actuate the auto-injector 4002.
[1071] The auto-injector 4002 includes a label 4910 coupled to an outer surface 4111 of the housing 4110. The label 4910 includes an outer layer 4911, an intermediate layer 4980 and an electronic circuit system 4920 (see FIGS. 7 - 9). FIG. 6 is a front view of the auto- injector 4002 showing the outer layer 4911 of the label 4910 in phantom lines so that the intermediate layer 4980 and an electronic circuit system 4920 can be more clearly seen. As shown in FIGS. 7 - 9, the outer layer 4911, which, in some embodiments, can be constructed from paper, has a first surface 4912 and a second surface 4914 opposite the first surface 4912. Multiple indicia 4916 are disposed on the first surface 4912. The indicia 4916 include a textual indicia 4916A and two symbolic indicia 4916B. The textual indicia 4916B can be written text describing the medicament delivery device, indicating a source of the medicament delivery device and/or instructing a user in the use of the medicament delivery device. The symbolic indicia 4916B can include, for example, arrows, pointers, trademarks, symbols describing the use of the medicament delivery device or the like. The label 4910 is coupled to the outer surface 4111 of the housing 4110 such that the portion of the first surface 4912 including the indicia 4916 is visible.
[1072] A portion of the second surface 4914 of the outer layer 4911 can be coupled to the outer surface 4111 of the housing 4110 by any suitable method. For example, in some embodiments, the second surface 4914 of the outer layer 4911 includes an adhesive configured to bond the outer layer 4911 to the outer surface 4111 of the housing 4110. Other portions of the second surface 4914 of the outer layer 4911 are adjacent the intermediate layer 4980 and portions of the electronic circuit system 4920. In this manner, the outer layer 4911 of the label 4910 retains the intermediate, or spacer, layer 4980 and the electronic circuit system 4920 in a predetermined position against the outer surface 4111 of the housing 4110.
[1073] The outer layer 4911 of the label 4910 includes multiple openings 4917 adjacent the audio output device 4956. In this manner, sound waves produced by the audio output device 4956 can be transmitted to an area outside of the housing 4110. Similarly, the outer layer 4911 of the label 4910 includes openings 4918 adjacent the light emitting diodes (LEDs) 4958 A and 4958B to allow the user to see the visual output. In some embodiments, the outer layer 4911 of the label 4910 can include a transparent portion adjacent the LEDs 4958 A and 4958B to allow the user to see the visual output.
[1074] The electronic circuit system 4920 includes a printed circuit board 4922 upon which a microprocessor 4950, two LEDs 4958A and 4958B, two switches 4972A and 4972B and various electronic components 4951, such as, for example, resistors, capacitors and diodes, are mounted. The electronic circuit system 4920 also includes an audio output device 4956, such as, for example, a micro-speaker, coupled to the outer surface 4111 of the housing 4110 adjacent the printed circuit board 4922. The printed circuit board 4922 includes a substrate 4924 upon which a series of electrical conductors 4934, such as for example, copper traces, are etched. The substrate 4924 can be constructed from any material having suitable electrical properties, mechanical properties and flexibility, such as, for example Mylar®, Kapton® or impregnated paper.
[1075] A mask layer (not shown) is disposed over the substrate 4924 to electrically isolate selected portions of the electrical conductors 4934 from adjacent components. The electrical conductors 4934 operatively couple the above-mentioned circuit components in a predetermined arrangement. In this manner, the electronic circuit system 4920 can be configured to output, via the LEDs 4958A and 4958B and/or the audio output device 4956, a predetermined sequence of electronic outputs during the use of the auto-injector 4002.
[1076] Power is supplied to the electronic circuit system 4920 by two batteries 4962 connected in series. The batteries can be, for example, three volt, "watch-style" lithium batteries. As shown in FIG. 9, each of the batteries 4962 has a first surface 4964 and a second surface 4966 opposite the first surface. The first surface 4964 can be, for example, an electrically negative terminal. Similarly, the second surface 4966 can be an electrically positive terminal. As discussed in more detail herein, the batteries 4962 are positioned such that a first electrical contact portion 4936 of the printed circuit board 4922 can be placed in contact with the first surface 4964 of the battery 4962 and a second electrical contact portion 4938 of the printed circuit board 4922 can be placed in contact with the second surface 4966 of the battery 4962. In this manner, the batteries 4962 can be operatively coupled to the electronic circuit system 4920.
[1077] As shown in FIGS. 7 and 9, a battery isolation tab 4860 is movably disposed between the first electrical contact portion 4936 of the printed circuit board 4922 and the first surface 4964 of one of the batteries 4962. The battery isolation tab 4860 can be constructed from any electrically isolative material, such as, for example, Mylar®. As discussed in more detail herein, in this manner, the batteries 4962 can be selectively placed in electronic communication with the electronic circuit system 4920.
[1078] The intermediate, or spacer, layer 4980 is disposed between the outer layer 4911 and the electronic circuit system 4920. The intermediate layer 4980 includes openings (not shown) within which various components of the electronic circuit system, such as, for example, the batteries 4962 are disposed. The intermediate layer 4980 is sized to maintain a predetermined spacing between the various components included in the label 4910. The intermediate layer can be constructed from any suitable material, such as, for example, flexible foam having an adhesive surface, polycarbonate or the like.
[1079] FIG. 10 is a front view of the electronic circuit system 4920 showing the arrangement of the various components (i.e., the microprocessor 4950, LEDs 4958A and 4958B, switches 4972A and 4972B, audio output device 4956 or the like). FIG. 11 is a schematic illustration of the electronic circuit system 4920.
[1080] The operation of the auto-injector 4002 and the electronic circuit system 4920 is now discussed with reference to FIGS. 12 - 14. The actuation of the electronic circuit system 4920 is performed in multiple steps that correspond to operations that are incorporated into the procedures for using the auto-injector 4002. In this manner, the user can actuate various portions and/or functions of the electronic circuit system 4920 without completing any additional operations. Similarly stated, the electronic circuit system 4920 can produce and/or transmit electronic outputs in response to the various stages of operation of the auto-injector 4002. Although not explicitly shown in FIGS. 5-14, in some embodiments, the electronic circuit system 4920 can include a network interface device, as described herein. In this manner, the electronic outputs produced and/or transmitted by the electronic circuit system 4920 can be used to track the patient compliance associated with the use of the auto-injector 4002.
[1081] Prior to use, the auto-injector 4002 is first enabled by removing the needle guard 4810 and the safety lock 4710 (see FIGS. 12 and 13). As illustrated by arrow AA in FIG. 12, the needle guard 4810 is removed by moving it distally. The needle guard 4810 includes a sheath retainer 4840 and a sheath 4820. The sheath 4820 is configured to receive a portion of the needle (not shown) when the needle guard 4810 is in a first (or installed) position. The sheath retainer 4840 is coupled to the sheath 4820 such that when the sheath retainer 4840 is moved distally away from the base 4520 into a second (or removed) position, the sheath 4820 is removed from the needle.
[1082] The sheath retainer 4840 includes an actuator 4864 that is received by an opening 4862 in the isolation tab 4860. Accordingly, when the sheath retainer 4840 is moved distally away from the base 4520, the isolation tab 4860 is removed from the area between the first electrical contact portion 4936 of the printed circuit board 4922 and the first surface 4964 of one of the batteries 4962. In this manner, the batteries 4962 can be operatively coupled to the electronic circuit system 4920 when the needle guard 4810 is removed, thereby actuating the electronic circuit system 4920.
[1083] When actuated, the electronic circuit system 4920 can output one or more predetermined electronic outputs. For example, in some embodiments, the processor 4950 can output an electronic signal associated with recorded speech to the audible output device 4956. Such an electronic signal can be, for example, associated with a .WAV file that contains a recorded instruction instructing the user in the operation of the auto-injector 4002. Such an instruction can state, for example, "remove the blue safety tab near the base of the auto-injector." The processor can simultaneously output an electronic signal to the first LED 4958A, thereby causing the first LED 4958 A, which is located near the safety lock 4710, to flash a particular color. In this manner, the electronic circuit system 4920 can provide both audible and visual instructions to assist the user in the initial operation of the auto-injector 4002.
[1084] In other embodiments, the electronic circuit system 4920 can output an electronic output associated with a description and/or status of the auto-injector 4002 and/or the medicament contained therein. For example, in some embodiments, electronic circuit system 4920 can output an audible message indicating the type of medicament contained in the auto- injector, the expiration date of the medicament, the dosage of the medicament or the like.
[1085] As illustrated by arrow BB in FIG. 13, the safety lock 4710 is removed by moving it substantially normal to the longitudinal axis of the housing 4110. The safety lock 4710 has a first end 4712 and a second end 4714. When the safety lock 4710 is in its first (or locked) position, the second end 4714 extends around a portion of the base 4520 to space the base 4520 apart from the distal end portion 4114 of the housing 4110. Additionally, the first end 4714 includes a locking protrusion (not shown) that obstructs portions of the system actuator (not shown) further preventing the base 4520 from being moved proximally towards the housing 4110. Accordingly, when the safety lock 4710 is in its first position, the auto- injector 4002 cannot be actuated.
[1086] In some embodiments, the safety lock 4710 includes an actuator 4732 that actuates the electronic circuit 4920 to trigger a predetermined output or sequence of outputs when the safety lock 4710 is moved from the first position to a second (or unlocked) position, as shown in FIG. 13. More particularly, as shown in FIGS. 10, 15 and 16, the actuator 4732 includes a protrusion 4730 that is received within a first opening 4928A defined by an actuation portion 4926 of the substrate 4924 when the safety lock 4710 is in the first position. The boundary 4929 of the first opening 4928A has a discontinuous shape, such as, for example, a teardrop shape, that includes a stress concentration riser 4930. The discontinuity and/or the stress concentration riser 4930 of the boundary 4929 can be of any suitable shape to cause the substrate 4924 to deform in a predetermined direction when the protrusion 4730 is moved relative to the first opening 4928A.
[1087] As shown in FIGS. 15 and 16, the first opening 4928A is defined adjacent an electrical conductor 4934 that, as discussed above, electronically couples the components included in the electronic circuit system 4920. The electrical conductor 4934 includes a first switch 4972A, which can be, for example a frangible portion of the electrical conductor 4934. In use, when the safety lock 4710 is moved from the first position to the second position, the actuator 4732 moves in a direction substantially parallel to a plane defined by a surface of the actuation portion 4926 of the substrate 4924. The movement of the actuator 4732 causes the protrusion 4730 to move within the first opening 4928A, as indicated by the arrow DD in FIG. 16. The movement of the protrusion 4730 tears the actuation portion 4926 of the substrate 4924, thereby separating the portion of the electrical conductor 4934 including the first switch 4972A. Said another way, when the safety lock 4710 is moved to the second position, the actuator 4732 moves irreversibly the first switch 4972A from a first state (e.g., a state of electrical continuity) to a second state (e.g., a state of electrical discontinuity).
[1088] When the actuator 4732 actuates the electronic circuit system 4920 as described above, the electronic circuit system 4920 can output one or more predetermined electronic outputs. For example, in some embodiments, the processor 4950 can output an electronic signal associated with recorded speech to the audible output device 4956. Such an electronic signal can be, for example, associated with a recorded message notifying the user of the status of the auto-injector 4002. Such a status message can state, for example, "The auto- injector is now enabled." The processor can also simultaneously output an electronic signal to the first LED 4958 A, thereby causing the first LED 4958 A to stop flashing, change color or the like.
[1089] In some embodiments, the electronic circuit system 4920 can be configured to output the status message for a predetermined time period, such as, for example, five seconds. After the predetermined time period has elapsed, the electronic circuit system 4920 can output an audible message further instructing the user in the operation of the auto-injector 4002. Such an instruction can state, for example, "Place the base of the auto-injector against the patient's thigh. To complete the injection, press the base firmly against the patient's thigh." In some embodiments, the processor can simultaneously output an electronic signal to the second LED 4958B, thereby causing the second LED 4958B, which is located near the base 4520, to flash a particular color. In this manner, the electronic circuit system 4920 can provide both audible and visual instructions to assist the user in the placement and actuation of the auto-injector 4002. In some embodiments, the electronic circuit system 4920 can be configured to repeat the instructions after a predetermined time period has elapsed. [1090] After the auto-injector 4002 is enabled and placed against the body of the patient, the auto-injector 4002 is actuated by moving the base 4520 proximally towards the housing 4110, as illustrated by arrow CC in FIG. 14. The base 4520 includes an actuator 4538 that actuates the electronic circuit 4920 to trigger a predetermined output or sequence of outputs when the base 4520 is moved from a first position to a second position, as shown in FIG. 13. The actuator 4538 includes a protrusion 4539 that is received within a second opening 4928B (see FIG. 10) defined by the substrate 4924 when the base 4520 is in the first position. The configuration and operation of the protrusion 4539, the second opening 4928B and the second switch 4972B are similar to the configuration and operation of the protrusion 4730, the first opening 4928A and the first switch 4972A, and are therefore not described in detail.
[1091] When the actuator 4538 actuates the electronic circuit system 4920, the electronic circuit system 4920 can output one or more predetermined electronic outputs. For example, in some embodiments, the processor 4950 can output an electronic signal associated with recorded speech to the audible output device 4956. Such an electronic signal can be, for example, associated with a recorded message notifying the user that the injection is complete, instructing the user on post- injection disposal and safety procedures, instructing the user on post- injection medical treatment or the like. Such a status message can state, for example, "The injection is now complete. Please seek further medical attention from a doctor." The processor can also simultaneously output an electronic signal to the first LED 4958 A, thereby causing the first LED 4958 A to stop flashing, change color or the like, to provide a visual indication that the injection is complete.
[1092] As described above, the audio output device 4956, can include, for example, a micro-speaker. In some embodiments, for example, the audio output device 4956 can include an RS- 151 IA micro-speaker manufactured by Regal Electronics, Inc.
[1093] Similarly, the microprocessor 4950 can be a commercially-available processing device dedicated to performing one or more specific tasks. For example, in some embodiments, the microprocessor 4950 can be a commercially-available microprocessor, such as the Sonix SNC 12060 voice synthesizer. Alternatively, the microprocessor 4950 can be an application-specific integrated circuit (ASIC) or a combination of ASICs, which are designed to perform one or more specific functions. In yet other embodiments, the microprocessor 4950 can be an analog or digital circuit, or a combination of multiple circuits. [1094] The microprocessor 4950 can include a memory device (not shown) configured to receive and store information, such as a series of instructions, processor-readable code, a digitized signal, or the like. The memory device can include one or more types of memory. For example, the memory device can include a read only memory (ROM) component and a random access memory (RAM) component. The memory device can also include other types of memory suitable for storing data in a form retrievable by the microprocessor 4950, for example, electronically-programmable read only memory (EPROM), erasable electronically- programmable read only memory (EEPROM), or flash memory.
[1095] FIGS. 17 and 18 show an inhaler 6002 according to an embodiment of the invention. The inhaler 6002 includes a housing 6110 and a medicament container 6262 movably disposed within the housing 6110. The medicament container 6262 includes a metering mechanism (not shown in FIGS. 17 and 18) configured to discharge a predetermined volume of medicament when the inhaler 6002 is actuated.
[1096] The housing 6110 has a proximal end portion 6112 and a distal end portion 6114. An label 6910, which includes at least a portion of an electronic circuit system 6920, is disposed on an outer surface 6111 of the housing 6110. As described above, a portion of the label 6910 can include a textual indicia 6916. Similar to the electronic circuit systems shown and described above, the electronic circuit system 6920 is configured to output at least one electronic signal associated with the user of the inhaler 6002. The electronic circuit system 6920 includes a microprocessor (not shown), a microspeaker 6956 and an LED 6958. The electronic circuit system 6920 also includes a motion sensor 6976, the function of which is discussed in more detail below.
[1097] The distal end portion 6114 of the housing 6110 includes a mouthpiece 6212 about which a protective cap 6710 is disposed. Prior to use, the inhaler 6002 is first enabled by removing the protective cap 6710, as shown by the arrow GG in FIG. 18. The protective cap 6710 includes an actuator 6732 that actuates the electronic circuit system 6920 to trigger a predetermined output or sequence of outputs when the protective cap 6710 is removed. In some embodiments, the actuator 6732 can include a protrusion that is received by an actuation portion of the electronic circuit system 6920, in a similar manner as described above. In other embodiments, the actuator 6732 can be configured to engage a microswitch that can be repeatedly moved between a first state and a second state. [1098] When actuated, the electronic circuit system 6920 can output one or more predetermined electronic outputs. For example, in some embodiments, the electronic circuit system 6920 can output an audible message via the microspeaker 6956 instructing the user to "vigorously shake the inhaler for five seconds." The processor can simultaneously enable the motion sensor 6976.
[1099] Upon receiving a predetermined input from the motion sensor 6976, which can be any sensor suitable for detecting the rapid motion of the inhaler 6002, the processor can then send an electronic signal to produce a second audible message. Such a message can state, for example, "the inhaler is now sufficiently shaken and is ready for use." In some embodiments, the electronic circuit system 6920 can also output an instruction associated with the correct placement of the inhaler 6002. For example, the electronic circuit system 6920 can output an audible message stating "please place the mouthpiece in your mouth and firmly press down on the medicament container." The electronic circuit system 6920 can also simultaneously output a signal to the LED 6958 to provide a visual indication of where the mouthpiece 6212 is located.
[1100] After the inhaler 6002 is enabled and placed within the mouth of the patient, the inhaler 6002 is actuated by moving the medicament container 6262 distally within housing 6110, as illustrated by arrow HH in FIG. 18. In some embodiments, the medicament container 6262 can include an actuator (not shown) that actuates the electronic circuit 6920, in a manner similar to those described above, to trigger a predetermined output or sequence of outputs. For example, in some embodiments, the processor can output an electronic signal associated with recorded speech to the microspeaker 6956. Such an electronic signal can be, for example, associated with a recorded message notifying the user that the medicament delivery is complete, instructing the user on post-inhalation procedures, instructing the user on post-inhalation medical treatment or the like. Such a status message can state, for example, "The delivery of medication is now complete."
[1101] As described above, although not explicitly shown in FIGS. 5-14, in some embodiments, an electronic circuit system of a medicament delivery device can include a network interface device. Similarly stated, in some embodiments, the auto-injector 4002 can be configured to send electronic signals to and/or receive electronic signals from a communications network and/or a remote device. The remote device can be, for example, a compliance monitoring device, a computer, a cell phone, a personal digital assistant (PDA) or the like. In this manner, the auto-injector 4002 can facilitate electronic and/or automatic compliance monitoring associated with its use.
[1102] In some embodiments, for example, a medicament delivery device can include a network interface device configured to send and/or receive electrical signals via a wireless network. For example, FIG. 19 is a schematic illustration of a medicament delivery device 7002 according an embodiment of the invention that includes a wireless communications system 7985. The wireless communications system 7985 is configured to send and/or receive one or more electronic signals Sl to a variety of communications devices 7990 via a wireless communications network Nw- The wireless communication network Nw includes a wireless access point (WAP) 7988 configured to operatively connect the communications devices 7990 and the wireless communications system 7985 on the medicament delivery device 7002 to form the wireless communications network Nw- As described herein, the communications devices 7990 can include, for example, a laptop computer, a personal digital assistant, a compliance monitoring device, a stand-alone processor, a workstation and/or the like. Moreover, as shown in FIG. 19, the communications devices 7990 can be configured to communicate electronically to an internet server 7991 by sending electronic signals to and/or receiving electronic signals from the internet server. In this manner, the wireless communications system 7985 can transmit information associated with the medicament delivery device 7002 to and/or receive information associated with the medicament delivery device 7002 from any number of third party devices 7992 located anywhere in the world.
[1103] In use, the wireless communications system 7985 can be used to send and/or receive information associated with the medicament delivery device 7002. Such information can include, for example, information associated with the frequency with which medicament delivery device 7002 is used (e.g., a compliance log), the functionality of the medicament delivery device 7002 after use (e.g., the number of doses remaining), the date and/or time of use, a parameter measuring the success of the latest use of the medicament delivery device 7002, an expiration date of the medicament delivery device 7002 and/or the medicament contained therein, a status of the medicament delivery device 7002 and/or the medicament contained therein, instructions for using the medicament delivery device 7002, the need for additional medical devices, the need for additional drug dosages, and/or any other information that may be useful to users and/or medical professionals associated with the medicament delivery device 7002. For example, in some embodiments, the wireless communications system 7985 can send one or more signals Sl including information related to a user's compliance to the user's home computer and/or a compliance monitoring device. In this manner, the user can use their home computer to track their compliance with a prescribed medication regimen or other usage of the medicament delivery device 7002. In other embodiments, the wireless communications system 7985 can send one or more signals Sl including information related to a user's compliance to a third party. Such third parties can include, for example, a health care provider, an emergency contact, a manufacturer of the medicament delivery device 7002, a pharmaceutical benefits manager (PBM), a specialty pharmacy, a payor (e.g., an insurance company), a clinical trial administrator, an on-line support group or forum, and/or a pharmaceutical company. For example, in some embodiments, the wireless communications system 7985 can send one or more signals Sl including information related to a user's compliance to the user's health care provider. In this manner, the health care provider can monitor the user's compliance with the prescribed medication regimen.
[1104] The wireless communications system 7985 can include any hardware, software and/or firmware suitable for wireless communication. For example, in some embodiments, the wireless communications system 7985 can include a microprocessor, a transmitter, a receiver, a transceiver, a microchip, a radio chipset, a wireless interface card (WIC), a host controller interface (HCI), a universal asynchronous receiver/transmitter (UART), a power source (e.g., a battery), one or more sensors, a transponder, an antenna, a crystal, a circuit board, a liquid crystal display (LCD), a Small Computer System Interface (SCSI and ports), a Fire Wire (or other IEEE 1394 interfaces), a data uplink, a data downlink, a point-to-point link, a fiber optic link, a storage device (e.g., hard drive, flash drive or the like), a personal computer cards, a docking stations, a parallel and/or bit-serial connections, a Universal Serial Bus (USB) port or other serial ports, a light emitting diode (LEDs), a speaker, an amplifier, radiofrequency identification (RFID) devices and/or other common electronic components used for wireless communication. The electronic components can be operatively coupled to form the wireless communications system 7985 by any suitable circuitry. In some embodiments, the wireless communications system 7985 can include the components used for wireless communication on a single chip, such as, for example, the Bluetooth™ radio chip LMX9830 manufactured by National Semiconductor. [1105] As described above, the wireless access point WAP is configured to establish the wireless network Nw and to transmit electronic signals between the medicament delivery device 7002 (which can be referred to as a wireless client device), wireless communications devices 7990 (which can be referred to as other wireless client devices) and/or other third party devices 7992. In some embodiments, the wireless communications devices 7990 and/or other third party devices 7992 can include, for example, laptops (computers), personal digital assistants (PDAs), wireless IP phones, servers, routers, and other wireless enabled network devices. Although the wireless access point WAP is shown and described as being distinct from the wireless communications system 7985, in some embodiments, the wireless communications system 7985 can include the functionality of a wireless access point. In this manner, the medicament delivery device 7002 can be utilized as a wireless access point. In yet other embodiments, the wireless communications system 7985 can send and/or receive electronic signal Sl without the use of a wireless access point. In such embodiments, which can be referred to as peer-to-peer networks or ad-hoc networks, the wireless communications system 7985 can communicate directly with the wireless communications devices 7990 and/or other third party devices 7992.
[1106] The wireless communication system 7985 can employ any suitable protocol or protocols for sending and/or receiving the electronic signals S. Such protocols can include, for example, Wi-Fi, Bluetooth™, Zigbee, Wi-Max, 802.XX, HomeRF, any protocols associated with Radio Frequency Identification (RFID) transmission and/or a combination thereof. In some embodiments, the wireless communications system 7985 can employ a protocol having heightened security, such as for example, varying levels of encryption. In this manner any information associated with the medical records of a user can be protected against unauthorized access.
[1107] In addition to encryption, in some embodiments, the information transmitted and/or received by the wireless communication system 7985 can be in a format configured to prevent the identification of the user. For example, in some embodiments, the information transmitted and/or received by the wireless communication system 7985 can be associated with a unique identification number known only by certain parties, such as, for example, the end user and the end user's physician. [1108] The wireless communications network Nw can have any suitable range. For example, in some embodiments, the wireless communications network Nw can be a wireless local area network (WLAN). A WLAN can be suitable in certain conditions in which the communications devices 7990 are confined to a limited geographical area, such as, for example, within a hospital, a nursing home or a triage unit. In other embodiments, the wireless communications network Nw can be a wireless metropolitan area network (WMAN). A WMAN can be suitable in certain conditions in which the communications devices 7990 are used within a predefined area that cannot easily be covered by a WLAN, such as, for example, within a city. In yet other embodiments, the wireless communications network Nw can be a wireless wide area network (WWAN).
[1109] Although the arrangement shown in FIG. 19 shows the wireless communication system 7985 sending information to and/or receiving information from the third party devices 7992 via the wireless access point 7988 and the wireless communications devices 7990, in other embodiments, the wireless communication system 7985 can transmit information to and/or receive information from the third party devices 7992 directly. For example, in some embodiments, third party devices 7992 can be included within the wireless communications network Nw, which can be, for example, a wireless wide area network (WWAN).
[1110] The medicament delivery device 7002 can be any device suitable for delivering one or more doses of a medicament into a patient's body. As described herein, such devices can include, for example, auto-injectors, pen injectors, inhalers, transdermal patches, pre- filled syringes (PFS),syringes, catheters, stents, implantable vehicles, topical vehicles, pill dispensers or the like. In some embodiments, for example, the medicament delivery device 7002 can be a single-dose device typically used in emergency situations. For example, in some embodiments, the medicament delivery device 7002 can be a single-use medical injector, similar to auto-injector 4002 shown and described above with reference to FIGS. 5- 16. In such embodiments, the wireless communications system 7985 can be configured to send automatically data to a workstation and/or a compliance monitoring device during the various stages of operation of the medicament delivery device 7002. In this manner, the details of each stage of operation of the medicament delivery device 7002 can be electronically and/or automatically recorded to track patient compliance. Such details can include, for example, a time stamp associate with the removal of a safety mechanism (i.e., the "arming" of the medicament delivery device), a time stamp associated with the actuation of the medicament delivery device, an indicator associated with the validity of the medicament delivery event and/or the like.
[1111] In other embodiments, the medicament delivery device 7002 can be a chronic-care medicament delivery device containing multiple doses of medicament configured to be delivered on a regular schedule. In some embodiments, for example, the medicament delivery device 7002 can be a chronic-care pen injector used for injectable pharmaceuticals that require daily, weekly and/or monthly injections, such as, for example, insulin or human growth hormone (HgH). In such embodiments, the wireless communication system 7985 can track the usage of the pen injector and transmit the use information to the patient's physician, specialty pharmacy, payor (e.g., an insurance company), PBM, clinical trial administrator or other provider. In this manner, for example, the patient's physician can ensure that the therapy regime is effective.
[1112] In yet other embodiments, the medicament delivery device 7002 can be a single- use and/or disposable chronic-care medicament delivery device. As described in more detail herein, in such embodiments the medicament delivery device 7002 can be included within a kit containing the desired number of doses of medicament.
[1113] As described above, in some embodiments, a medicament delivery device can be configured to produce and/or output an electrical signal when the medicament delivery device is actuated. In this manner, patient compliance data, such as, for example, the frequency of use, the date and time of use and/or a parameter measuring the success and/or validity of the use of the medicament delivery device can be monitored based on the actuation of the medicament delivery device, rather than on the removal of a safety interlock from the medicament delivery device. For example, FIGS. 20-22 are schematic illustrations of a medical system 3000 according to an embodiment of the invention, in a first configuration, a second configuration and a third configuration, respectively. The medical system 3000 includes a medicament delivery device 3002 and a container 3010. As shown in FIG. 20, the container 3010 is configured to receive at least a portion of the medicament delivery device 3002. For example, in some embodiments, the container 3010 can include a recessed portion, a retainer, and/or any other suitable structure that matingly receives at least a portion of the medicament delivery device 3002. [1114] The container 3010 includes an electronic circuit system 3020 configured to output at least electronic signals S2 and S4, as described in more detail herein. The electronic circuit system 3020 can include any suitable electronic components operatively coupled to produce and/or output the electronic signal S2 and S4, and/or to perform the functions described herein. The electronic circuit system 3020 is operatively coupled to the communications network Nw, which includes at least a personal computer (PC) 3990 or other processor, and an internet server 3991. In some embodiments, for example, the electronic circuit system 3020 can include a wireless communications device, similar to the wireless communications system 7985 shown and described above with reference to FIG. 19, to wirelessly connect the electronic circuit system 3020 to the PC 3990 and/or the communications network Nw- In other embodiments, the electronic circuit system 3020 can be operatively coupled to the PC 3990 and/or the communications network Nw via a wired connection. In this manner, as described in more detail herein, the electronic circuit system 3020 of the container 3010 can transmit information associated with the medical system 3000 to and/or receive information associated with the medical system 3000 from any number of remotely located third party devices (not shown in FIGS. 20-22).
[1115] The medicament delivery device 3002 can be any device for delivering a medicament into a body, such as, for example, a medical injector (which can include an auto- injector, a pen injector, a multiple-use injector, a syringe or the like), an inhaler or the like. The medicament delivery device 3002 includes an actuator 3970 and an electronic circuit system 3920. The actuator 3970 is movable between a first position (FIGS. 20 and 21) and a second position (FIG. 22). When the actuator 3970 is moved from the first position to the second position, the actuator 3970 initiates the delivery of the medicament into the body. In some embodiments, the actuator 3970 can be configured to release a spring, an energy storage member, or the like, to initiate medicament delivery when the actuator 3970 is moved from the first position to the second position. For example, in some embodiments, the actuator can be similar to the base 4520 shown and described above with reference to FIGS. 5-16.
[1116] The electronic circuit system 3920 of the medicament delivery device 3002 is configured to output at least an electronic signal S3 (see FIG. 22) when the actuator 3970 is moved from the first position to the second position. The electronic circuit system 3920 of the medicament delivery device 3002 can include any suitable electronic components operatively coupled to produce and/or output the electronic signal S3 and/or to perform the functions described herein. In some embodiments, for example, the electronic circuit system 3920 of the medicament delivery device 3002 can be similar to the electronic circuit system 4920 shown and described above with reference to FIGS. 5-16.
[1117] The medical system 3000 can be used to manage the patient's medication regimen and/or track the patient's compliance in following the prescribed medication regimen. When the medical system 3000 is in the first configuration (i.e., the "storage configuration"), as shown in FIG. 20, at least a portion of the medicament delivery device 3002 is disposed within the container 3010, and the electronic circuit system 3020 of the container 3010 is operatively coupled to the communications network Nw, and/or the personal computer (PC) 3990. In some embodiments, when the medical system 3000 is in the first configuration, the electronic circuit system 3020 can optionally output one or more electronic signals (not shown in FIG. 20) associated with the medication regimen and/or the medicament delivery device 3002. Such electronic signals can include, for example, a visual and/or an audible output reminding the patient of the date and time of the next dosage, indicating the expiration date of the medicament delivery device, providing instructions in the use of the medicament delivery device, providing instructions for monitoring compliance, or the like.
[1118] To move the medical system 3000 from the first configuration to the second configuration (i.e., a "pre-delivery" configuration), the medicament delivery device 3002 is removed from the container 3010, as shown by the arrow JJ in FIG. 21. When the medicament delivery device 3002 is removed from the container 3010, the electronic circuit system 3020 of the container 3010 produces the first electronic signal S2. The first electronic signal S2 can be associated with the prescribed medication regimen (including, for example, compliance data), an identification of the medicament delivery device 3002, a status of the medicament delivery device 3002, a use instruction associated with the medicament delivery device 3002, a status of the container 3010 (including, for example, an indication of whether the electronic circuit system 3020 of the container 3010 is connected to the network Nw, the remaining battery life of a battery powering the electronic circuit system 3020, or the like), a use instruction associated with the container 3010 and/or the like. In some embodiments, for example, the first electronic signal S2 can include a visual output, an audible output and/or a haptic output that instructs and/or provides cues to a user in the use of the container 3010 to track the patient's compliance. In other embodiments, the first electronic signal S2 can include a communications signal that can be transmitted via the PC 3990 and the internet server 3991 to a remotely located third party device (not shown in FIGS. 20-22).
[1119] To move the medical system 3000 from the second configuration to the third configuration (i.e., a "post-delivery" configuration), the medicament delivery device 3002 is actuated by moving the actuator 3970 from the first position (FIG. 21) to the second position (FIG. 22), as shown by the arrow KK in FIG. 22. When the actuator 3970 is moved from the first position to the second position, actuation of the medicament delivery device is initiated. Said another way, the actuator 3970 is configured to initiate delivery of the medicament when the actuator 3970 is moved from the first position to the second position. As described above, the actuator 3970 can be configured to release a spring, an energy storage member, or the like, to initiate medicament delivery when the actuator 3970 is moved from the first position to the second position.
[1120] When the actuator 3970 is moved from the first position to the second position, the electronic circuit system 3920 of the medicament delivery device 3002 outputs the second electronic signal S3. Said another way, when actuator 3970 is moved from the first position to the second position, the actuator 3970 actuates the electronic circuit system 3920 of the medicament delivery device 3002 such that the electronic circuit system 3920 produces and/or outputs the second electronic signal S3. In some embodiments, the movement of the actuator 3970 produces an input that is received by the electronic circuit system 3920, thereby triggering the electronic circuit system 3920 to produce and/or out the second electronic signal S3. Said another way, in some embodiments, the movement of the actuator 3970 changes the state of a switch (not shown in FIGS. 20-22) within the electronic circuit system 3920, thereby triggering the electronic circuit system 3920 to produce and/or output the second electronic signal S3. Such a switch can be either reversible or irreversible, as described above. For example, in some embodiments, the movement of the actuator 3970 can separate, tear, deform and/or sever an electrical conductor (not shown in FIGS. 20-22) within the electronic circuit system 3920. For example, in some embodiments, the actuator 3970 can include a protrusion (not shown in FIGS. 20-22) configured to be received within and sever a portion of the electronic circuit system 3920, similar to the protrusion 4730 shown and described above with reference to FIGS. 14-16. In other embodiments, the movement of the actuator 3970 can electronically couple and/or decouple a power source (not shown in FIGS. 20-22) to a portion of the electronic circuit system 3920. For example, in some embodiments, the actuator 3970 can include a battery isolation tab (not shown in FIGS. 20-22) configured to isolate a battery from a portion of the electronic circuit system 3920, similar to the battery isolation tab 4860 shown and described above with reference to FIGS. 7, 9 and 12.
[1121] The second electronic signal S3 is received by the electronic circuit system 3020 of the container 3010, which then produces the third electronic signal S4. The third electronic signal S4 is associated with the second electronic signal S3. In this manner, the electronic circuit system 3020 of the container 3010 and the electronic circuit system 3920 of the medicament delivery device 3002 can cooperatively monitor the patient's compliance in using the medicament delivery device 3002. By utilizing two electronic circuit systems, the electronic circuit system 3920 and the electronic circuit system 3020 can be cooperatively designed to provide the desired functionality. For example, in some embodiments, the container 3010 can be a reusable compliance tracking device and the medicament delivery device 3002 can be a single-use, disposable device. In such an arrangement, the electronic circuit system 3020 of the container 3010 can include complicated circuit elements, circuit elements having a higher cost, and/or circuit elements having higher power consumption (e.g., speakers, long-range wireless communications systems and the like). Conversely, the electronic circuit system 3920 of the medicament delivery device 3002 can include fewer circuit elements, circuit elements having a lower cost, and/or circuit elements having lower power consumption. In some embodiments, for example, the electronic circuit system 3920 of the medicament delivery device 3002 can include a transceiver (not shown in FIGS. 20-22) that consumes less than approximately 100 mA (at a supply voltage of approximately 1.8 volts) when outputting the second electronic signal S3. In other embodiments, the electronic circuit system 3920 of the medicament delivery device 3002 can include a transceiver (not shown in FIGS. 20-22) that consumes less than approximately 20 mA (at a supply voltage of approximately 1.8 volts) when outputting the second electronic signal S3. Such an arrangement can facilitate the use of the electronic circuit system 3920 on a single-use, disposable medicament delivery device.
[1122] The second electronic signal S3 can be any suitable communications signal (e.g., a radio frequency signal) that can be received by the electronic circuit system 3020 of the container 3010. For example, in some embodiments, the second electronic signal S3 can be a short-range radio frequency signal having a range of approximately 100 meters or less. In some embodiments, the second electronic signal S3 can be a Bluetooth™-compatible electronic signal, including either a class 1, class 2 or class 3 signal. Said another way, in some embodiments, the electronic circuit system 3920 of the medicament delivery device 3002 and the electronic circuit system 3020 of the container 3010 can be Bluetooth™- enabled circuits. In this manner, the medicament delivery device 3002 can electronically communicate with the container 3010 using low-cost circuit elements and/or using circuit elements having minimal power consumption.
[1123] The third electronic signal S4 can be any suitable electronic signal that can be produced and/or output by the electronic circuit system 3020 of the container 3010. For example, in some embodiments, the third electronic signal S4 can be output to an audio output device and/or a video output device (not shown in FIGS. 20-22) within the electronic circuit system 3020. In this manner, the electronic circuit system 3020 of the container 3010 can produce an audible and/or a visual output associated with the actuation of the medicament delivery device 3002. For example, in some embodiments, the third electronic signal S4 can be output to a speaker of the types shown and described above, thereby providing the user with a message associated with the use of and/or the compliance with the medicament delivery device 3002. In some embodiments, the third electronic signal S4 can be associated with a message instructing the user on post-injection disposal, safety procedures, post-injection medical treatment or the like. Such a message can state, for example, "THE DOSAGE OF XXX HAS BEEN SUCCESSFULLY ADMINISTERED. PLEASE SEEK FURTHER MEDICAL ATTENTION FROM A DOCTOR IF THE FOLLOWING SYMPTOMS OCCUR . . ." In other embodiments, the third electronic signal S4 can be associated with a message related to procedures for tracking compliance with the medication regimen. Such a message can state, for example, "THE SUCCESSFUL DOSAGE OF XXX HAS BEEN RECORDED TO YOUR ELECTRONIC COMPLIANCE LOG. NO FURTHER ACTION IS REQUIRED." In other embodiments, such a message can state, "PLEASE ENSURE THAT YOU RECORD THE CORRECT DOSAGE IN YOUR ELECTRONIC LOGBOOK." In yet other embodiments, such a message can state, "PLEASE DO NOT EAT OR DRINK UNTIL XX P.M." In yet other embodiments, such a message can state, "THE COMPLIANCE MONITOR IS CURRENTLY DISCONNECTED FROM THE NETWORK. PLEASE ENSURE THAT THE COMPLIANCE MONITOR IS CONNECTED TO YOUR HOME COMPUTER." [1124] In some embodiments, the third electronic signal S4 can be a communications signal (e.g., a radio frequency signal) that can be transmitted from the electronic circuit system 3020 of the container 3010 to the PC 3990 and/or the communications network Nw- Such transmission can occur using any suitable method and/or protocol. The third electronic signal S4 can be transmitted, for example, in the form of an e-mail, a phone call, a data stream or the like.
[1125] In some embodiments, for example, the third electronic signal S4 can be associated with the patient's compliance in using the medicament delivery device 3002. For example, in some embodiments, the third electronic signal S4 can be sent via the communications network Nw to the patient's pharmacy to automatically order additional pre- filled medicament delivery devices and/or replacement cartridges for the medicament delivery device. In other embodiments, the third electronic signal S4 can be sent via the communications network Nw to a health care provider, thereby allowing the health care provider to remotely monitor the patient's medication regimen. In yet other embodiments, the third electronic signal S4 can be sent via the communications network Nw to a clinical trial administrator, thereby allowing the clinical trial administrator to ensure that the clinical trial protocols are being properly followed.
[1126] FIG. 23 is a flow chart of a method 10 according to an embodiment of the invention. The method includes moving an actuator on a medicament delivery device to initiate delivery of a medicament into a body, 12. The actuator can be any suitable actuator configured to initiate the delivery of medicament into the body, as described above. For example, in some embodiments, the actuator can be configured to release a spring, an energy storage member, or the like, to initiate medicament delivery when the actuator is moved. In some embodiments, the method can optionally include moving one or more safety locks before the actuator is moved. Such safety locks can be similar to the safety lock 4710 shown and described above with reference to FIGS. 5-16, and can be configured to prevent the actuator from being moved.
[1127] A first electronic signal is then output from a first electronic system in response to the movement of the actuator, 14. The first electronic signal is a short-range radio frequency signal having a range of approximately 100 meters or less. In some embodiments, for example, the first electronic signal can be a Bluetooth™-compatible electronic signal, including either a class 1, a class 2 or a class 3 signal. In other embodiments, the first electronic signal can be a short-range signal produced by a radio frequency identification ("RFID") tag within the first electronic circuit system. In this manner, the first electronic circuit system can produce and/output the first electronic signal using electronic devices having a low power consumption, as described above. As described in more detail herein, in some embodiments, the first electronic circuit system can be devoid of a battery.
[1128] The first electronic circuit system can be any suitable electronic circuit system of the types shown and described herein. For example, in some embodiments, at least a portion of the first electronic circuit system can be disposed on the housing of the medicament delivery device. In other embodiments, at least a portion of the first electronic circuit system can be disposed on a portion of the medicament delivery device that is removably coupled to the housing of the medicament delivery device (e.g., a removable protective sheath, a removable safety lock or the like). In some embodiments, for example, a medicament delivery device can include a protective sheath that includes a first portion of the first electronic circuit system, and a housing that includes a second portion of the first electronic circuit system. In such embodiments, the first portion of the first electronic circuit system can include a processor configured to control the second portion of the first electronic circuit system and/or a battery configured to provide power to the second portion of the first electronic circuit system. Similarly, the second portion of the first electronic circuit system can include a processor configured to control the first portion of the first electronic circuit system and/or a battery configured to provide power to the first portion of the first electronic circuit system.
[1129] A second electronic signal is then output from a second electronic circuit system, 16. The second electronic signal is associated with the first electronic signal. Similarly stated, the second electronic circuit system outputs the second electronic signal in response to the first electronic signal. In some embodiments, for example, the second electronic signal can include information associated with and/or included within the first electronic signal, such as, for example, the date and time when the first electronic signal was received by the second electronic circuit system. In other embodiments, the second electronic signal can include information identifying the contents of the medicament delivery device (e.g., the amount and type of medicament contained therein), an expiration date of the medicament delivery device, or the like. [1130] As described above, the second electronic signal can be any suitable electronic signal that can be produced and/or output by the second electronic circuit system. For example, in some embodiments, the second electronic signal can be output to an audio output device and/or a video output device. In other embodiments, the second electronic signal can be a communications signal (e.g., a radio frequency signal) that can be transmitted from the second electronic circuit system to the user's computer, a communications network Nw, and/or a remotely located device.
[1131] FIGS. 24-27 show a medical system 12000 according to an embodiment of the invention, in a first configuration, a second configuration, a third configuration, and a fourth configuration, respectively. The medical system 12000 includes a medicament delivery device 12002 (see e.g., FIG. 25) and a compliance monitoring device 12510. As shown in FIG. 25, the compliance monitoring device 12510 includes a hinged lid 12518, an electronic circuit system 12530, a first switch 12536 and a second switch 12537. Additionally, the compliance monitoring device 12510 defines an internal region 12512 within which the medicament delivery device 12002 can be contained.
[1132] The electronic circuit system 12530 of the compliance monitoring device 12510 is configured to produce and/or output one or more electronic outputs and/or electronic signals of the type described above. As described in more detail below, the electronic circuit system 12530 includes a speaker 12544 and an LCD screen 12542. Moreover, similar to the container 3010 shown and described above with reference to FIGS. 20-22, the electronic circuit system 12530 of the compliance monitoring device 12510 is operatively coupled to a personal computer (PC) 12990. In this manner, as described in more detail herein, the electronic circuit system 12530 of the compliance monitoring device 12510 can transmit information associated with the medical system 12000 to and/or receive information associated with the medical system 12000 from any number of remotely located third party devices (not shown in FIGS. 24-27) via the PC 12990.
[1133] The hinged lid 12518 has a first position (see FIG. 24) and a second position (see FIGS. 25 - 27). When the hinged lid 12518 is in the first position, the hinged lid 12518 covers the internal region 12512 of the compliance monitoring device 12510. Conversely, when the hinged lid 12518 is in the second position, at least a portion of the internal region 12512 of the compliance monitoring device 12510 is exposed. Said another way, when the hinged lid 12518 is in the second position, the medicament delivery device 12002 can be removed from the internal region 12512 of the compliance monitoring device 12510.
[1134] The electronic circuit system 12530 of the compliance monitoring device 12510 is operatively coupled to the first switch 12536 and the second switch 12537. The first switch 12536 is configured to move between a first state (e.g., closed) and a second state (e.g., opened) when the hinged lid 12518 moves between its first position and its second position, as indicated by arrow LL in FIG. 25. The electronic circuit system 12530 is configured to produce and/or output a first output OPl via the speaker 12544 when the first switch 12536 is moved from its first state to its second state. The first output OPl can be a recorded speech output associated with an identification of the medicament delivery device 12002, an identification of patient symptoms (e.g., instructions for assessing the physical condition of the patient), an instruction for using the medicament delivery device 12002, an instruction for using the compliance monitoring device 12510, a message guiding the patient in procedures for adhering to the prescribed medication regimen, a status of the compliance monitoring device 12510 and/or a status of the patient's compliance with the prescribed medication regimen. For example, in some embodiments the first output OPl can state "YOU HAVE ACTIVATED THE ALLERGIC REACTION RESPONSE KIT. THIS KIT INCLUDES AN AUTO-INJECTOR CONTAINING EPINEPHRINE. BEFORE USING THIS AUTO- INJECTOR, PLEASE ENSURE THAT THE PATIENT IS EXHIBITING THE FOLLOWING SYMPTOMS . . ." In other embodiments, the first output OPl can state "YOUR NEXT DOSAGE IS NOT DUE UNTIL XX P.M. PLEASE DO NOT ADMINISTER THE DOSE AT THIS TIME." In yet other embodiments, the first output OPl can state "BECAUSE THE MEDICAMENT HAS BEEN REFRIGERATED FOR STORAGE, THE MEDICAMENT IS CURRENTLY TOO COLD. THE CURRENT TEMPERATURE OF THE MEDICAMENT IS XX DEGREES, PLEASE LEAVE THE MEDICAMENT AT ROOM TEMPERATURE FOR XX MINUTES BEFORE ADMINISTERING THE DOSE." In yet other embodiments, the first output OPl can state "THIS IS THE LAST DOSE IN THE CURRENT PRESCRIPTION. AFTER ADMINISTERING THIS DOSE, PLEASE CONTACT YOUR HEALTH CARE PROVIDER FOR FURTHER ADVICE." Although described as an audible output, in other embodiments, the first output OPl can be any type of electronic output as described herein. [1135] The second switch 12537 is configured to move between a first state (e.g., closed) and a second state (e.g., opened) when the medicament delivery device 12002 is removed from the internal region 12512 of the compliance monitoring device 12510, as indicated by the arrow MM in FIG. 26. The electronic circuit system 12530 of the compliance monitoring device 12510 is configured to output a second output OP2 via the speaker 12544 and/or the LCD screen 12542 when the second switch 12537 is moved from its first state to its second state. The second output OP2 can be, for example, a recorded speech output and/or a video output associated with an identification of the medicament delivery device 12002, an identification of patient symptoms (e.g., instructions for assessing the physical condition of the patient), an instruction for using the medicament delivery device 12002, an instruction for using the compliance monitoring device 12510, a status of the compliance monitoring device 12510 and/or a status of the patient's compliance with the prescribed medication regimen. For example, in some embodiments the second output OP2 can be an audio-visual output via both the speaker 12544 and the LCD screen 12542 providing step-by-step instructions for using the medicament delivery device 12002 and/or the compliance monitoring device 12510.
[1136] The medicament delivery device 12002 can be any device for delivering a medicament into a body, of the types shown and described herein. The medicament delivery device 12002 includes an actuator 12970 and an electronic circuit system 12920. The actuator 12970 is movable between a first position (FIG. 26) and a second position (FIG. 27). When the actuator 12970 is moved from the first position to the second position, the actuator 12970 initiates the delivery of the medicament into the body. In some embodiments, the actuator 12970 can be similar to the base 4520 shown and described above with reference to FIGS. 5-16.
[1137] The electronic circuit system 12920 of the medicament delivery device 12002 is configured to output at least an electronic signal S5 (see FIG. 27) when the actuator 12970 is moved from the first position to the second position. The electronic circuit system 12920 of the medicament delivery device 12002 can include any suitable electronic components operatively coupled to produce and/or output the electronic signal S5 and/or to perform the functions described herein. In some embodiments, for example, the electronic circuit system 12920 of the medicament delivery device 3002 can be similar to the electronic circuit system 4920 shown and described above with reference to FIGS. 5-16. [1138] The medical system 12000 can be used to manage the patient's medication regimen and/or track the patient's compliance in following the prescribed medication regimen in a similar manner as described above with reference to the medical system 3000. To move the medical system 12000 from a storage configuration (FIG. 24) to a pre-delivery configuration (FIG. 26), the hinged lid 12518 is moved, as shown by the arrow LL in FIG. 25, and the medicament delivery device 12002 is removed from the compliance monitoring device 12510, as shown by the arrow MM in FIG. 26. As described above, the movement of the hinged lid 12518 produces an input to the electronic circuit system 12530 via the first switch 12536. The input from the first switch 12536 triggers the electronic circuit system 12530 to produce and/or output the first output OPl, as discussed above. Similarly, when the medicament delivery device 12002 is removed from the internal region 12512 of the compliance monitoring device 12510, the second switch 12537 produces an input to the electronic circuit system 12530. The input from the second switch 12537 triggers the electronic circuit system 12530 to produce and/or output the second output OP2, as discussed above.
[1139] To administer the medication (i.e., to move the medical system 12000 to a post- delivery configuration, as shown in FIG. 27), the medicament delivery device 12002 is first positioned adjacent a portion of a body B of a patient. Although the portion of the body B is shown as being a surface, such as, for example, the skin, in other embodiments, the portion of the body B can be any suitable location for delivering the medicament (e.g., the mouth, the nasal passages, or the like). The medicament delivery device 12002 is then actuated by moving the actuator 12970 from the first position (FIG. 26) to the second position (FIG. 27), as shown by the arrow NN in FIG. 27.
[1140] When the actuator 12970 is moved from the first position to the second position, the electronic circuit system 12920 of the medicament delivery device 12002 outputs the electronic signal S5. Said another way, when actuator 12970 is moved from the first position to the second position, the actuator 12970 actuates the electronic circuit system 12920 of the medicament delivery device 12002 such that the electronic circuit system 12920 produces and/or outputs the electronic signal S5. The actuator 12970 can actuate the electronic circuit system 12920 in any manner as described herein. The electronic signal S5 can be any suitable communications signal, as described herein. [1141] In a similar manner as described above with reference to the medical system 3000, the electronic signal S5 is received by the electronic circuit system 12530 of the compliance monitoring device 12510, which then produces the third electronic output OP3. The third electronic output OP3 is associated with the electronic signal S5. For example, the third electronic output OP3 can include a date and time stamp documenting when the electronic signal S5 was received. In some embodiments, the third electronic output OP3 can include information included within the electronic signal S5, such as a unique identification of the medicament delivery device 12002. In this manner, the electronic circuit system 12530 of the compliance monitoring device 12510 and the electronic circuit system 12920 of the medicament delivery device 12002 can cooperatively monitor the patient's compliance in using the medicament delivery device 12002. As described above, in some embodiments, the third electronic output OP3 includes a communications signal (e.g., a radio frequency signal) that can be transmitted from the electronic circuit system 12530 of the of the compliance monitoring device 12510 to the PC 12990.
[1142] Although the electronic circuit system 12530 of the compliance monitoring device 12510 is shown and described as receiving the electronic signal S5 from medicament delivery device 12002 in real-time when the medicament delivery device 12002 is actuated, in other embodiments, the electronic signal S5 can be received by the electronic circuit system 12530 of the compliance monitoring device 12510 at any time after the medicament delivery device 12002 has been actuated. For example, in some embodiments, the electronic signal S5 can be a short-range radio frequency signal having a range of approximately 100 meters or less. Accordingly, in certain instances, the medicament delivery device 12002 may be actuated when the medicament delivery device 12002 is out of transmission range for transmitting the electronic signal S5 to the compliance monitoring device 12510. In some such embodiments, for example, the electronic circuit system 12530 of the compliance monitoring device 12510 and/or the electronic circuit system 12970 of the medicament delivery device 12002 can be configured to detect when the medicament delivery device is in range (e.g., when the patient returns home) and then transmit the electronic signal S5. In other such embodiments, the electronic circuit system 12530 of the compliance monitoring device 12510 can include a scanner (e.g., an optical scanner or the like; not shown in FIGS. 24-27) such that the patient can scan the medicament delivery device 12002 when in proximity to the compliance monitoring device 12510 such that the electronic circuit system 12970 of the medicament delivery device 12002 can transmit the electronic signal S5 to the electronic circuit system 12530 of the compliance monitoring device 12510.
[1143] Although the medical system 12000 is shown and described above as including one medicament delivery device 12002, in other embodiments, a medical system can include multiple medicament delivery devices. Such a system can be used, for example, as a part of a chronic-care medication regimen. For example, a medical system having multiple medicament delivery devices can be used to manage insulin delivery or the delivery of other medicaments (e.g., to treat Multiple Sclerosis, anemia, Rhuematoid Arthritis, Osteoporosis or the like), which can require daily, weekly and/or monthly injections. FIG. 28 is a schematic illustration of a medical system 14000 according to an embodiment of the invention, that includes multiple medical injectors 14002A-14002G. Because the medical system 14000 is similar in many respects to the medical systems shown and described above, the medical system 14000 is shown in only one configuration. The medical system 14000 includes a container 14040, a compliance tracking device 14010 and multiple medical injectors 14002A- 14002G. The compliance tracking device 14010 is similar to the compliance tracking device 12010 shown and described above, except that the medical injectors 14002A-14002G need not be disposed within the compliance tracking device 14010. The compliance tracking device 14010 includes an electronic circuit system 14020, which can be operatively coupled to a computer, a communications network, or the like, as discussed above.
[1144] The medical injectors 14002A-14002G can be, for example, single-use, disposable auto-injectors of the types shown and described herein. In some embodiments, the medical injectors 14002A-14002G can include the same dosage of a medicament, and can be prescribed as a part of a chronic-care medicament regimen, clinical trial, or the like. In other embodiments, the medical injectors 14002A-14002G can include the different dosages and/or different medicament compositions.
[1145] Each of the medical injectors 14002A-14002G includes a removable cover 14070A-14070G, a first electronic circuit system 14920A-14920G and a second electronic circuit system 14080A-14080G. The removable covers 14070A-14070G can be, for example, protective needle guards, safety locks, or any other protective device. As shown in FIG. 28, each of the second electronic circuit systems 14080A-14080G is coupled to the corresponding removable cover 14070A-14070G. The first electronic circuit systems 14920A-14920G are coupled to the medicament injectors 14002A-14002G, as shown and described above. The first electronic circuit systems 14920A-14920G and the second electronic circuit systems 14080A-14080G can each be similar in function and design to the electronic circuit systems shown and described above. By utilizing two electronic circuit systems on each medical injector (e.g., the first electronic circuit system 14920A and the second electronic circuit system 14080A), the first electronic circuit systems 14920A- 14920G and the second electronic circuit systems 14080A-14080G can be cooperatively designed to provide the desired functionality, as described above. In other embodiments, however, each medical injector 14002A-14002G can include only a single electronic circuit system.
[1146] The container 14040 includes an electronic circuit system 14050, and is configured to receive and/or hold at least a portion of each of the medical injectors 14002A- 14002G. For example, in some embodiments, the container 14040 can include multiple recessed portions, retainers, and/or any other suitable structure that matingly receives at least a portion of each medical injector 14002A-14002G. In some embodiments, the medical injectors 14002A-14002G can be arranged within the container 14040 in a specific order and/or orientation. Such an arrangement can be used, for example, to facilitate the medication regimen. Said another way, in some embodiments, the medical injectors 14002A- 14002G can be arranged in the order reflecting the order in which they are to be administered by the user. In other embodiments, however, the medical injectors 14002A-14002G can be arranged within the container 14040 randomly. Moreover, in some embodiments, the container 14040 can be configured to receive different types of medical injectors. This can allow the container 14040 to be used in both current and future therapeutic regimens for a patient.
[1147] The electronic circuit system 14050 of the container 14040 can be similar to the electronic circuit systems shown and described above, and can, for example, transmit and/or receive electronic signals from the electronic circuit system 14020 of the compliance monitor, the first electronic circuit systems 14920A-14920G and/or the second electronic circuit systems 14080A-14080G. In some embodiments, the electronic circuit system 14050 of the container 14040 can include an RFID tag encoded with information associated with the medical injectors 14002A-14002G, the medication regimen or the like. In this manner, the electronic signals output and/or produced by the electronic circuit system 14050 of the container 14040 can include information characterizing the medical injectors 14002 A- 14002G and/or the medication regimen. Such information can include, for example, the number of medical injectors, the amount and type of medicament contained within each medical injector, an expiration date of each medical injector or the like. In this manner, when a patient receives a container 14040 for use, the electronic circuit system 14050 of the container 14040 can be electronically encoded with information that can received by the compliance tracking device 14010. Accordingly, when the patient electronically couples the container 14040 to the compliance tracking device 14010 (e.g., by wired connection or a wireless connection), the container 14040 and the compliance tracking device 14010 can electronically and/or automatically update the patient compliance data associated with the medication regimen.
[1148] In use, a container 14040 can include the medical injectors required to administer a predetermined medication regimen. For example, in some embodiments the container 14040 can be "loaded" by a pharmacy and delivered to the patient. The container 14040 is then operatively coupled to the compliance tracking device 14010. Said another way, the electronic circuit system 14050 of the container 14040 can be electronically coupled to the electronic circuit system 14020 of the compliance tracking device 14010. In this manner, the electronic information included within the electronic circuit system 14050 of the container 14040 can be received by the electronic circuit system 14020 of the compliance tracking device 14010 to initialize and/or update a compliance tracking schedule associated with the patient's medication regimen.
[1149] The compliance tracking device 14010 can then produce and/or output one or more electronic outputs, as described above. Such outputs can include, for example, visual and/or audible outputs reminding the patient of the date and time of the next dosage, indicating the expiration date of the medicament delivery device, providing instructions in the use of the medicament delivery device, a status of the compliance tracking device 14010, a use instruction associated with the compliance tracking device 14010 and/or the like.
[1150] To administer a dosage, the patient removes the appropriate medical injector (e.g., medical injector 14002A) from the container 14040. In some embodiments, the removal of the medical injector 14002A triggers the electronic circuit system 14050, the first electronic circuit system 14920A and/or the second electronic circuit system 14080A to output an electronic signal, as described above. Similarly, when the patient removes the removable cover 14070A to place the medical injector 14002 A in a "ready" position, the first electronic circuit system 14920A and/or the second electronic circuit system 14080A can output an electronic signal, as described above. Finally, when the patient actuates the medical injector 14002A, the first electronic circuit system 14920A and/or the second electronic circuit system 14080A can output an electronic signal, as described above. In this manner, the medical injectors 14002A-14002G, the container 14040 and the compliance tracking device 14010 can cooperatively monitor the patient's compliance in adhering to the medication regimen.
[1151] Although the medical system 3000 is shown and described above as including a medicament delivery device 3002 that is removed from a container 3010 during the medicament delivery event, in other embodiments, a medical system can include a medicament delivery device that remains at least partially disposed within the container during a medicament delivery event. For example, FIGS. 29-31 show a medical system 13000 according to an embodiment of the invention in a first configuration, a second configuration and a third configuration, respectively. The medical system 13000 includes a medicament delivery device 13002 and a container 13510. As shown in FIGS. 30 and 31, the medicament delivery device 13002 has a proximal end portion 13112 and a distal end portion 13114. The distal end portion 13114 includes an actuator 13970 configured to initiate the delivery of medicament from the medicament delivery device 13002, as described above. The medicament delivery device 13002 also includes an electronic circuit system 13920. The electronic circuit system 13920 of the medicament delivery device 13002 can include similar components and can have similar functionality as any of the electronic circuit systems described herein.
[1152] The container 13510 defines an internal region 13512 (see FIGS. 30 and 31) and a cover 13518 (FIG. 29). The container 13510 also includes an electronic circuit system 13530. As shown in FIGS. 30 and 31, the proximal end portion 13112 of the medicament delivery device 13002 is disposed within the internal region 13512 of the container 13510. In some embodiments, the internal region 13512 of the container 13510 can include a recessed portion, a retainer, and/or any other suitable structure that matingly receives at least a portion of the proximal end portion 13112 of the medicament delivery device 13002. In this manner, the medicament delivery device 13002 can be maintained within the container 13510 during use.
[1153] The cover 13518 is removably coupled to the container 13510. When the cover 13518 is coupled to the container 13510, the distal end portion 13114 of the medicament delivery device 13002 is within the cover 13518. In this manner, the cover 13518 can protect the medicament delivery device 13002 and/or prevent the inadvertent use thereof. In some embodiments, the cover 13518 can be coupled to the container 13510 via an interference fit, a threaded coupling, a mating protrusion and recess coupling, or the like.
[1154] The electronic circuit system 13530 of the container 13510 includes at least a switch 13536 and a communications port 13531. The switch 13536, which can be similar to the switch 12536 shown and described above, produces an electronic input to the electronic circuit system 13530 when the cover 13518 is removed from the container 13510. Said another way, the electronic circuit system 13530 is configured to produce and/or output one more electronic signals when the switch 13536 changes states in response to the cover 13518 being removed from the container 13510. For example, as shown in FIG. 30, in some embodiments, the electronic circuit system 13530 is configured to produce and/or output a first electronic signal S2' when the switch 13536 changes states (e.g., when the cover 13518 is removed from the container 13510). The first electronic signal S2' can be similar to any of the electronic signals and/or outputs described herein.
[1155] The communications port 13531 can be any suitable port for operatively coupling the electronic circuit system 13530 of the container 13510 to a remote device, such as a compliance monitoring device, a PC, a battery charger, or the like (not shown in FIGS. 29- 31). The remote device can be coupled to the communications port 13531 via an electronic cable 13532 configured to be matingly coupled to the communications port 13531. In some embodiments, the internal region 13512 of the container 13510 can include a port and/or electronic coupling (not shown in FIGS. 29-31) such that the electronic circuit system 13920 of the medicament delivery device 13002 can be operatively coupled to the electronic circuit system 13530 of the container 13510 when the proximal end portion 13112 of the medicament delivery device 13002 is disposed within the container 13510. In this manner, the container 13510 can function as a docking station for the medicament delivery device 13002. Said another way, the electronic circuit system 13920 of the medicament delivery device 13002 can be powered by and/or use certain components of the electronic circuit system 13530 of the container 13510. Such an arrangement can facilitate the use of a low- cost electronic circuit system on a single-use, disposable medicament delivery device.
[1156] To move the medical system 13000 from the first configuration to the second configuration (i.e., a "pre-delivery" configuration), the cover 13518 is removed from the container 13510, as shown by the arrow RR in FIG. 29. When the cover 13518 is removed from the container 13510, the electronic circuit system 13530 of the container 13510 produces the first electronic signal S2'. The first electronic signal S2' can be associated with the prescribed medication regimen (including, for example, compliance data), an identification of the medicament delivery device 13002, a status of the medicament delivery device 13002, a use instruction associated with the medicament delivery device 13002, a status of the container 13510, a use instruction associated with the container 13510 and/or the like. In some embodiments, for example, the first electronic signal S2' can include a visual output, an audible output and/or a haptic output that instructs and/or provides cues to a user in the use of the container 13510 to track the patient's compliance. In other embodiments, the first electronic signal S2' can include a communications signal that can be transmitted via the port 15531 and/or by wireless transmission to a remote device (not shown in FIGS. 29-31).
[1157] To move the medical system 13000 from the second configuration to the third configuration (i.e., a "post-delivery" configuration), the medicament delivery device 13002 is actuated by moving the actuator 13970 as shown by the arrow SS in FIG. 31. The patient can move the actuator 13970, for example, by gripping the container 13510 and pressing the distal end portion 13114 of the medicament delivery device 13002 against the body. When the actuator 13970 is moved from the first position to the second position, actuation of the medicament delivery device is initiated. Moreover, when the actuator 3970 is moved, the electronic circuit system 13920 of the medicament delivery device 13002 outputs the second electronic signal S3'.
[1158] The second electronic signal S3' is received by the electronic circuit system 13530 of the container 13510, which then produces the third electronic signal S4'. As described above, the third electronic signal S4' is associated with the second electronic signal S3'. The electronic signals S3' and S4' can be similar to the electronic signals S3 and S4 described above with reference to FIGS. 20-22. For example, in some embodiments, the electronic signal S3' can include a time stamp associated with the actuation of the medicament delivery device 13002, and the electronic signal S4' can include information associated with the dosage, contents and/or status of the medicament delivery device 13002.
[1159] In this manner, the electronic circuit system 13530 of the container 13510 and the electronic circuit system 13920 of the medicament delivery device 13002 can cooperatively monitor the patient's compliance in using the medicament delivery device 13002. By utilizing two electronic circuit systems, the electronic circuit system 13920 and the electronic circuit system 13530 can be cooperatively designed to provide the desired functionality. For example, in some embodiments, the container 13530 can be a reusable compliance tracking device and the medicament delivery device 13002 can be a single-use, disposable device. Upon completion of the injection, the patient can subsequent re-load the container 13510 with next medicament delivery device 13002, as prescribed.
[1160] Although the electronic circuit systems disposed on the medicament delivery devices are shown and described above as outputting an electronic signal in response to the movement of an actuator, in other embodiments, an electronic circuit system can be configured to prevent, eliminate, reduce and/or alter the transmission of an electronic signal in response to the actuation of the medicament delivery device. For example, FIGS. 32 and 33 are schematic illustrations of a medicament delivery device 5002 according to an embodiment of the invention, in a first configuration and a second configuration, respectively.
[1161] The medicament delivery device 5002, which can be medical injector (e.g., an auto-injector, a pen injector, a multiple-use injector, a syringe or the like), an inhaler or the like, includes an actuator 5970 and an electronic circuit system 5920. The actuator 5970 is movable between a first position (FIG. 32) and a second position (FIG. 33). When the actuator 5970 is moved from the first position to the second position, the actuator 5970 initiates the delivery of the medicament into the body. In some embodiments, for example, the actuator 5970 can be configured to release a spring, an energy storage member, or the like, to initiate medicament delivery when the actuator 5970 is moved from the first position to the second position.
[1162] The electronic circuit system 5920 includes at least a first RFID tag 5921 and a second RFID tag 5923. The first RFID tag 5921 is configured to output a first electronic signal S6, which can be received by a compliance monitoring device (not shown in FIGS. 32 and 33) of the types shown and described herein. Similarly, the second RFID tag 5923 is configured to output a second electronic signal S7, which can be received by a compliance monitoring device. The first electronic signal S6 has an electronic characteristic (e.g., frequency, amplitude, etc.) that is different from an electronic characteristic of the second electronic signal S7. In this manner, a receiving device (e.g., a compliance monitoring device) can distinguish the first electronic signal S6 from the second electronic signal S7.
[1163] To deliver a dose of medicament, the patient moves the actuator 5970 from the first position to the second position, as shown by the arrow OO in FIG. 33. When the actuator 5970 is moved from the first position to the second position, actuation of the medicament delivery device 5002 is initiated. Said another way, the actuator 5970 is configured to initiate delivery of the medicament when the actuator 5970 is moved from the first position to the second position.
[1164] When the actuator 5970 is moved from the first position to the second position, the actuator 5970 eliminates, blocks, and/or alters the second electronic signal S7, as indicated by the arrow PP in FIG. 33. In this manner, the receiving device (e.g., a compliance monitoring device) can receive electronic feedback from the electronic circuit system 5920 corresponding to the actuation of the medicament delivery device 5002. Moreover, the electronic feedback (i.e., the elimination, blockage, and/or alteration of the second electronic signal S7) is provided without requiring the patient to execute any additional steps, other than those required to actuate the medicament delivery device 5002. In this manner, the medicament delivery device 5002 is configured to electronically and/or automatically track the details of its use.
[1165] When the actuator 5970 is moved from the first position to the second position, the first electronic signal S6 is not changed. Accordingly, the first electronic signal S6 can function as a validation signal to the receiving device during the actuation of the medicament delivery device 5002. Said another way, the electronic signal S6 can provide feedback associated with the functionality of the electronic circuit system 5920 (e.g., that the first electronic circuit system 5920 is within the transmission range of the receiving device, that the first electronic circuit system is receiving power, etc.). [1166] The actuator 5970 can eliminate, block, and/or alter the second electronic signal S7 by any suitable mechanism. For example, in some embodiments, the movement of the actuator 5970 produces an input that is received by the electronic circuit system 5920, thereby triggering the electronic circuit system 5920 to eliminate, block, and/or alter the second electronic signal S7 output by the second RFID tag 5923. Said another way, in some embodiments, the movement of the actuator 5970 can change the state of a switch (not shown in FIGS. 32 and 33) within the electronic circuit system 5920 thereby triggering the electronic circuit system 5920 to eliminate, block, and/or alter the second electronic signal S7 output by the second RFID tag 5923.
[1167] In other embodiments, the movement of the actuator 5970 can disrupt at least a portion of the second RFID tag 5923, thereby eliminating, blocking, and/or altering the second electronic signal S7. For example, in some embodiments, the movement of the actuator 5970 can separate, tear, deform and/or sever a portion of the second RFID tag 5923. In other embodiments, the movement of the actuator 5970 can electronically shield a portion of the second RFID tag 5923, thereby eliminating, blocking, and/or altering the second electronic signal S7. For example, in some embodiments, the actuator 5970 can include a shield portion configured to be disposed about the second RFID tag 5923 when the actuator is in the second position. Such a shield can, for example, block the signal S7 from being output by the second RFID tag 5923.
[1168] In other embodiments, the movement of the actuator 5970 can electronically decouple a power source (not shown in FIGS. 32 and 33) from a portion of the electronic circuit system 5920 and/or the second RFID tag 5923. For example, in some embodiments, the actuator 5970 can include a battery isolation tab (not shown in FIGS. 32-33) configured to isolate a battery from a portion of the electronic circuit system 5920. In other embodiments, the actuator 5970 can include a shield portion configured to be disposed about the second RFID tag 5923 when the actuator is in the second position. In this manner, the shield can prevent the second RFID tag 5923 from receiving power from a remote source (e.g., a master RFID tag disposed on the receiving device).
[1169] As described herein, the first electronic signal S6 and/or the second electronic signal S7 can include information characterizing the first medicament delivery device 5002. For example, in some embodiments, the first electronic signal S6 and/or the second electronic signal S7 can be associated with the contents of the medicament delivery device 5002 (e.g., the amount and type of medicament contained therein), an expiration date of the medicament delivery device 5002, a dosage of the medicament delivery device 5002 and/or a use instruction associated with the medicament delivery device 5002. In this manner, the receiving device (not shown in FIGS. 32 and 33) can produce the electronic outputs associated with information contained within the first electronic signal S6 and/or the second electronic signal S7. Said another way, this arrangement allows the receiving device to produce an electronic output that is unique to the medicament delivery device 5002.
[1170] In some embodiments, the first RFID tag 5921 and/or the second RFID tag 5923 can be passive RFID tags. In such an arrangement, the first RFID tag 5921 and/or the second RFID tag 5923 can be powered remotely by a parent RFID tag, which can be disposed, for example on a compliance monitoring device (not shown in FIGS. 32 and 33). In this manner, the electronic circuit system 5920 of the medicament delivery device 5002 can be devoid of a power supply (e.g., a battery or any other energy storage device). Accordingly, the electronic circuit system 5920 can be a simple, low-cost circuit system 5920 that is suitable for use on a single-use, disposable medicament delivery device.
[1171] Although the medicament delivery devices are shown and described above as outputting an electronic signal in response to the movement of an actuator, in other embodiments, a medicament delivery device can include any suitable means for providing feedback associated with a dosage administration event. Moreover, although the electronic circuit system 1920 shown and described above with reference to FIGS. 1-3 include a proximity sensor 1974 to provide feedback associated with the validity of an injection event, in other embodiments, a medicament delivery device can include any suitable feedback mechanism for providing feedback associated with the validity of a medicament delivery event. For example, FIGS. 34 and 35 are schematic illustrations of a medical injector 15002 according to an embodiment of the invention, in a first configuration and a second configuration, respectively.
[1172] The medical injector 15002, which can be, for example, a single-use, disposable auto-injector of the types shown and described herein, includes a housing 15110, a medicament container 15262, a needle 15212, and an electronic circuit system 15920. The housing 15110 has a proximal end portion 15112 and a distal end portion 15114. The medicament container 15262 is disposed within the housing 15110. Although the medicament container 15262 is shown as being movably disposed within the housing 15110, in other embodiments, the medicament container 15262 can be fixedly disposed within the housing 15110.
[1173] The needle 15212 includes a proximal end 15216 and a distal end 15214, and is configured to be in fluid communication with the medicament container 15262. In this manner, the medicament within the medicament container 15262 can be conveyed into a body during an injection event via the needle 15212. The needle 15212 is movably disposed within the housing 15110 between a first position (FIG. 34) and a second position (FIG. 35). When the needle 15212 is in the first position, the distal end 15214 of the needle is disposed within the housing 15110. When the needle 15212 is in the second position, the distal end 15214 of the needle is disposed outside of the housing 15110. Accordingly, when the medical injector 15002 is actuated, the needle 15212 can be moved between the first position and the second position to penetrate the patient's skin S (see FIG. 35) and/or provide a passageway for delivering the medicament into the patient's body B.
[1174] The electronic circuit system 15920 is includes at least a first electrode 15030 and a second electrode 15031. The first electrode 15030 is disposed at the distal end 15214 of the needle 15212. The second electrode 15031 is disposed at the distal end portion 15114 of the housing 15110. The electronic circuit system 15920 is configured to output an electronic signal S8 associated with an impedance between the first electrode 15030 and the second electrode 15031. The electronic signal S8 can be any suitable communications signal, of the types described herein, configured to be received by a compliance monitoring device (not shown in FIGS. 34 and 35) of the types shown and described herein. In this manner, as described in more detail below, the electronic circuit system 15920 can provide electronic and/or automatic feedback associated with the validity and/or administration of an injection event based on the impedance between the first electrode 15030 and the second electrode 15031.
[1175] To deliver a dose of medicament, the patient first places the distal end portion 15114 of the housing against the skin S of the body B. In some embodiments, the second electrode 15031 can include a proximity sensor, similar to the proximity sensor 1974 shown and described above with reference to FIGS. 1-3. Accordingly, in such embodiments, the electronic circuit system 15920 can produce one or more electronic outputs indicating that the medical injector 15002 is properly positioned and ready to be actuated. The patient then actuates the medical injector 15002 thereby causing the needle to move from the first position to the second position, as shown by the arrow QQ in FIG. 35. Accordingly, the needle penetrates the patient's skin S to provide a passageway for delivering the medicament into the patient's body B.
[1176] During the above-described injection event, the electronic circuit system 15920 is configured to measure the impedance Zi between the first electrode 15030 and the second electrode 15031. The electronic circuit system 15920 can then produce and/or output the electronic signal S8, which is associated with the impedance Z1. In some embodiments, the electronic signal S8 can be processed, either by the electronic circuit system 15920 or by a compliance monitoring device (not shown in FIGS. 34 and 35) to characterize the validity of the injection event. For example, based on the impedance Z1, the known depth of penetration of the needle 15212 (i.e., the distance between the distal end 15114 of the housing 15110 and the distal end 15214 of the needle 15212), and/or the characteristic impedance of various types of bodily tissue, a compliance monitoring device can determine whether the needle 15212 was disposed within bodily tissue T during the injection event. Said another way, because bodily tissue T has a characteristic impedance that is different from a characteristic impedance of other materials (e.g., a pillow, drywall, clothing materials or the like), the compliance monitoring device can evaluate the validity of the injection event based on the impedance Zi and/or the known depth of penetration of the needle 15212. Moreover, because different types of bodily tissue can have different characteristic impedance values, in some embodiments, the compliance monitoring device can evaluate whether the injection occurred within fatty tissue, muscle tissue, bone tissue or the like.
[1177] Although the medicament delivery devices, containers and/or compliance tracking devices shown and described above can be configured to send and/or receive electronic signals associated with a wide range of information, in some embodiments, a medicament delivery device, a container and/or a compliance tracking device can include a wireless communications system configured to transmit a location of the medicament delivery device. Such embodiments, can be particularly appropriate, for example, when the medicament delivery device is a single-dose device for use in emergency situations. For example, FIG. 36 is a schematic illustration of a medicament delivery device 8002 according an embodiment of the invention that includes a wireless communications system 8985 configured to communicate electronically directly with an emergency response dispatcher 8990E, via wireless network Nw as described above. Moreover, the wireless communications system 8985 includes a Global System for Mobile Communications and/or Global Positioning System (GPS) enabled feature, which can include a transmitter, a receiver, software, hardware and/or other electronics (not shown in FIG. 36) to transmit the geographical location of the medicament delivery device 8002 to the emergency response dispatcher 8990E. In this manner, when the medicament delivery device 8002 is used, it can be configured to automatically notify emergency response personnel (Emergency Medical Technicians, Fire, Police and the like).
[1178] In some embodiments, a wireless communications system can be configured to transmit the geographical location of the medicament delivery device to an emergency response dispatcher via a wireless communications device that is GPS-enabled. For example, FIG. 37 is a schematic illustration of a medicament delivery device 9002 according an embodiment of the invention that includes a wireless communications system 9985 configured to transmit the geographical location of the medicament delivery device 9002 via a wireless communications device 9990C that is GPS-enabled. For example, in some embodiments, the GPS-enabled wireless communications device 9990C can be a cellular phone. In this manner, when the medicament delivery device 9002 is actuated, the wireless communications system 9985 transmits data to the GPS-enabled cell phone 9990C, as described above. The GPS-enabled cell phone 9990C automatically dials an emergency number such as, for example, 911 (emergency dispatcher), and/or sends information associated with the location of the medicament delivery device 9002 and/or the end user location through GPS satellite positioning or network based positioning (using cell phone towers).
[1179] Although the wireless communications systems are shown and described above as being configured to send and/or receive electronic signals associated with a wide range of information, in some embodiments, a wireless communications system can be configured to send and/or receive electronic signals associated with the actuation of a medicament delivery device. More particularly, in some embodiments a wireless communications system can be employed to remotely trigger various functions of a medicament delivery device. For example, FIG. 38 is a schematic illustration of a medicament delivery device 10002 according to an embodiment of the invention that includes such functionality. The medicament delivery device 10002 includes a wireless communications system 10985 and an actuator 10995. The wireless communications system 10985, which can be any suitable system of the type shown and described above is operatively coupled to the actuator 10995. The actuator 10995 can be any suitable mechanism configured to receive an input from the wireless communications system 10985 and, based upon the input, trigger a function of the medicament delivery device 10002. For example, in some embodiments, the actuator 10995 can be integrated into the wireless communications system 10985. The actuator can include, for example, a programmable logic controller (PLC) and/or solenoid that allow the data received via the wireless communications system 10985 to be converted into an action to actuate the medicament delivery device 10002. For example, in some embodiments, as described in more detail herein, the medicament delivery device 10002 can be a gas-powered auto-injector and the actuator 10995 can be configured to move a compressed gas cylinder to actuate the auto-injector.
[1180] In use, the remote actuation feature of the medicament delivery device 10002 can be advantageous in circumstances in which the user of such a device is not able to actuate the medicament delivery device 10002 and/or there are no other individuals present to actuate the medicament delivery device 10002. For example, in certain situations, soldiers on a battlefield can carry the medicament delivery device 10002, which can contain one or more medicaments. Such medicaments can be formulated to relieve acute pain (e.g., morphine), mitigate the effects of exposure to a nerve agent and/or prevent seizures secondary to such exposure. The wireless communications system 10985 can be configured to send information to and/or receive information from a battlefield monitor station 10990B located in a secure area. In this manner, the battlefield monitor station 10990B can monitor and/or be in communication with the soldiers on the battlefield.
[1181] When a critical incident occurs requiring the use of the medicament delivery device 10002, monitoring personnel can send a signal from the battlefield monitor station 10990B to the medicament delivery device 10002 on the soldier requiring medical attention. The wireless communications system 10985 can receive the signal and process the signal into "activation" data, which can then be transmitted to the actuator 10995 to trigger the actuation of the medicament delivery device 10002 and subsequent delivery of the required medication and/or agent. To ensure that the medicament is delivered in the desired location within the soldier's body, the medicament delivery device 10002 can be placed in a predetermined orientation relative to the soldier. For example, in some embodiments, the medicament delivery device 10002 can be retained within a specific pocket of the soldier's uniform.
[1182] Although the medicament delivery devices have been shown and described above as including a wireless communications system, in some embodiments, a medicament delivery device can send signals to and/or receive signals from various communications devices using a combination of communications networks. For example, in some embodiments, a medicament delivery device can send signals to and/or receive signals from various communications devices using any suitable combination of wireless networks and wired networks. For example, FIG. 39 is a schematic illustration of a medicament delivery device 11002 according to an embodiment of the invention that includes an electronic circuit system 11920 and an electronic communications port 11996. The electronic circuit system 11920 can be any electronic circuit system of the type shown and described herein. For example, the electronic circuit system 11920 can be configured to monitor the status of the medicament delivery device 11002, actuate the medicament delivery device 11002, provide instructions for using the medicament delivery device 11002 or the like.
[1183] The electronic communications port 11996 can be any device configured to be operatively coupled to a docking station 11997, which is in turn operatively coupled via a communications network N to a communications device 11990. The docking station 11977 can be, for example, a compliance monitoring device and/or a container of the types shown and described herein. The communications device 11990 can be any communications device of the type shown and described above (e.g., a physician's computer, PDA, an insurer's computer, etc.). In this manner, the electronic circuit system 11920 can send electronic signals to and/or receive electronic signals from the communications device 11990 via the communications network N and the docking station 11997. Moreover, as described herein, the docking station 11997 can include an electronic circuit system (not shown in FIG. 39) to store, process and/or produce electronic signals associated with the use of the medicament delivery device 11002. The communications network N can be any suitable communications network, and can include, for example, wired networks.
[1184] In some embodiments, the electronic communications port 11996 can be a serial bus port such as a USB ports or any another method of connecting the electronic circuit system 11920 to the docking station 11997 and/or the communications device 11990 to transfer data. The electronic circuit system 11920, the electronic communications port 11996 and/or the docking station 11997 can include any electronic components (including hardware, firmware and/or software) configured to facilitate electronic communication. For example, in some embodiments, the electronic circuit system 11920, the electronic communications port 11996 and/or the docking station 11997 can include Small Computer System Interface (SCSI and ports), Fire Wire (or other IEEE 1394 interfaces), data uplink, point-to-point link, fiber optic links, hard drives, pc cards, circuit boards, uplinks, downlinks, docking stations, parallel and bit-serial connections, and the like.
[1185] In some embodiments, the use of a wired communication system used as a part of the communications path, can improve the reliability of the information being transferred and could ensure that the information is transferred at the right time and efficiently. For example, after a patient uses the medicament delivery device 11002, the user can place the device into the docking station 11997 connected to the user's workstation (i.e., the communications device 11990 to trigger the transfer of information.
[1186] Moreover, as described above, in some embodiments, the communications device 11990 can include software and/or hardware to download the information from the medicament delivery device to the workstation and transmit such information to a third party such as the patient's/user's health care provider (not shown in FIG. 39). As described above, such information could include the location where the device was activated, time of day, dosage and route of administration, frequency of device usage, functionality of the device once used, expiration date of the device, device status, medicament status, and any adverse event experienced by the user following the use of the device. Moreover, as described above, after the information is sent, the user can be notified that the information was sent successfully by receiving electronic confirmation from the communications device 11990 and/or the third party devices. The illustrated communication system also allows the patient to connect to his or her workstation and download information to the medicament delivery device. Such information can include, for example, updated dosing information, updated use instructions, critical software updates, and other information that would be useful to the patient. The medicament delivery device could also connect to other devices other than just a workstation or docking station such as a mini USB drive to transfer the information. [1187] The electronic circuit systems shown and described above can include one or more electronic components operatively coupled to perform the functions described herein For example, the electronic circuit systems shown and described herein (including those included as a part of the medicament delivery devices, the containers, and the compliance monitoring devices shown and described herein) can be similar to the electronic circuit system 1920 shown and described above with reference to FIG. 3. Although the medical devices shown and described above include one electronic circuit system, in some embodiments, a medical device can include multiple electronic circuit systems configured to perform the functions described herein.
[1188] While various embodiments of the invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods described above indicate certain events occurring in certain order, the ordering of certain events may be modified. Additionally, certain of the events may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above.
[1189] For example, although the components included in the electronic circuit system 4920 (e.g., the microprocessor 4950, the LEDs 4958A and 4958B or the like) are shown and described as being operatively coupled by electrical conductors 4934, in other embodiments, the components can be operatively coupled without being physically connected. For example, in some embodiments, at least a portion of the components included in an electronic circuit system can be inductively coupled. In other embodiments, at least a portion of the components included in an electronic circuit system can be evanescently coupled.
[1190] Although the switches 4972A and 4972B are shown and described as being "tear- through" switches that are monolithically formed from the electrical conductors 4934, in other embodiments, a switch can be formed separately from the electrical conductors 4934. For example, in some embodiments, an electrical circuit system can include a series of first electrical conductors having a first set of characteristics (e.g., the width, height, material from which the conductor is fabricated or the like) and a switch constructed from a second electrical conductor having a second set of characteristics different than the first set of characteristics. In other embodiments, a switch can be a separate component, such as, for example, a microswitch, that is mounted to the printed circuit board. In yet other embodiments, an electrical circuit system can include a "pop-out" switch that includes a biasing member to bias the switch in a predetermined state. In yet other embodiments, an electrical circuit system can include a switch that is disposed at a location other than on a printed circuit board.
[1191] Similarly, although the switches 4972A and 4972B are shown and described as being irreversibly movable from a first state to a second state, in other embodiments, a switch can be reversibly movable between a first state and a second state. Moreover, in yet other embodiments, a switch can have more than two distinct states.
[1192] Although the actuators 4732, 4539 are shown and described as being configured to move in a direction substantially parallel to the surface of the substrate 4924, in other embodiments, an actuator can be configured to actuate an electronic circuit system by moving in any direction. For example, in some embodiments a circuit actuator can be moved in a direction substantially normal to a portion of an electronic circuit system.
[1193] Similarly, although the actuators 4732, 4539 are shown and described as actuating the switches 4972A and 4972B by tearing and/or deforming a portion of the substrate 4924, in other embodiments, a switch can be moved from a first state to a second state without deforming the substrate. For example, in some embodiments, an electronic circuit system can include a printed circuit board having a substrate and a frangible switch tab disposed on the substrate. An electrical conductor and/or a switch can be disposed on the frangible switch tab, such that when the switch tab is removed from the substrate the switch is moved from a first state to a second state. In this manner, the switch can be actuated without tearing and/or deforming a portion of the substrate.
[1194] Although the actuators 4732, 4539 are shown and described as being included on the safety lock 4710 and the base 4520, respectively, in other embodiments, the actuators can be included on any component of a medicament delivery device. For example, in some embodiments, an auto-injector can include a start button having an actuator configured to actuate an electronic circuit system. In other embodiments, an auto-injector can include a movable member configured to move a medicament container and/or a needle within a housing of the auto-injector, the movable member including an actuator configured to actuate an electronic circuit system. [1195] Although the safety lock 4710 is shown and described as being removed from the housing 4110 of the auto-injector 4002 when in its second position, in other embodiments, a safety lock can remain coupled to the housing of an auto-injector when in its second position. For example, in some embodiments, a safety lock can be moved from its first position to its second position by rotating a portion of the safety lock.
[1196] Certain components of the auto-injector 4002 are shown and described as being coupled together via protrusions and mating openings. The protrusions and/or openings can be disposed on any of the components to be coupled together and need not be limited to only a certain component. For example, the safety lock 4710 is shown and described as including an actuator 4732 having a protrusion 4730 configured to be received within an opening 4928A defined by the substrate 4924. In some embodiments, however, the protrusions can be disposed on the substrate 4924 and the mating openings can be defined by the actuator 4732. In other embodiments, such components can be coupled together in any suitable way, which need not include protrusions and mating openings. For example, in some embodiments, an actuator can be operatively coupled to an actuation portion of a substrate via mating shoulders, clips, adhesive or the like.
[1197] Although the medical system 14000 shown as including a container 14040, a compliance tracking device 14010 and multiple medical injectors 14002A-14002G, each having at least one electronic circuit system (see e.g., electronic circuit systems 14050, 14020, 14080 and 14920), in some embodiments, a medical system can include only a container having multiple medical injectors. In such embodiments, the container can be a tray or other device configured to hold the medical injectors. The container can also perform the functions of the compliance monitoring device 14010, as described above. Moreover, in some embodiments, a medical injector can include a sheath similar to sheath 14070, wherein the sheath performs the electronic functions of the compliance monitoring device 14010 and/or the container 14050, as described above.
[1198] Although the electronic circuit systems are shown and described above as outputting recorded speech in English, in other embodiments, the electronic circuit system can output recorded speech in any language. In yet other embodiments, the electronic circuit system can output recorded speech in multiple languages. [1199] Although some of the electronic circuit systems are shown and described above as including a proximity sensor, in other embodiments, an electronic circuit system can include any suitable sensor for providing feedback to the electronic circuit system. For example, in some embodiments, an electronic circuit system can include a pressure sensor configured to sense the internal gas pressure within a gas-powered auto-injector. In this manner, the electronic circuit system can output an instruction, a status message, and/or an electronic signal to a compliance tracking device when the internal gas pressure crosses a predetermined threshold. For example, in some embodiments, when the internal gas pressure rapidly increases, the electronic circuit system can output a message, such as, for example, "Internal gas chamber has been successfully punctured - injection is in process."
[1200] Similarly, in some embodiments, an electronic circuit system can include a temperature sensor configured to sense the temperature of the medicament contained within the medicament delivery device. In this manner, the electronic circuit system can output an instruction, a status message and/or an electronic signal to a compliance tracking device when the medicament is too cold for effective delivery. For example, in some embodiments, when the medicament is too cold for effective delivery (this may occur, for example, if the medicament delivery device has been left outside overnight or refrigerated for storage), the electronic circuit system can output a message, such as, for example, "MEDICAMENT IS TOO COLD - PLEASE BRISKLY RUB THE AUTO-INJECTOR BETWEEN YOUR HANDS." Similarly, in some embodiments, the electronic circuit system can output a message and/or a signal based upon the feedback from the temperature sensor, for example, indicating when the medicament will be at the appropriate temperature for delivery. For example, in some embodiments, the electronic circuit system can output a message stating "THE CURRENT MEDICAMENT TEMPERATURE IS XX DEGREES. PLEASE ALLOW THE MEDICAMENT TO STAND AT ROOM TEMPERATURE FOR APPROXIMATELY XX MINUTES BEFORE ADMINISTERING THE DOSE. PLEASE DO NOT MICROWAVE OR OTHERWISE HEAT THE MEDICAMENT." Similarly, in some embodiments, the electronic circuit system can output an electronic signal to a compliance tracking device so that the temperature data can be stored and/or transmitted to a remote device, as described herein.
[1201] Although the medicament delivery device 5002 is shown and described above as having an electronic circuit system 5920 including a first RFID tag 5921 and a second RFID tag 5923, in other embodiments, a medicament delivery device can have an electronic circuit system 5920 including only one RFID tag. Similarly, although the signal S6 output by the first RFID tag 5921 is shown and described above as having a characteristic different from the signal S7 output by the second RFID tag 5923, in other embodiments, the signal S6 can be the same as the signal S7.
[1202] Although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having a combination of any features and/or components from any of embodiments where appropriate. For example, in some embodiments, a medicament delivery device can include an electronic circuit system configured to produce a first electronic signal when the device is actuated, similar to the medicament delivery device 3002, and a second electronic signal based upon the impedance between various portions of the device, similar to the medicament delivery device 15002.

Claims

What is claimed is:
1. An system, comprising: a medicament delivery device including an actuator and a first electronic circuit system, the actuator configured to initiate delivery of a medicament into a body when the actuator is moved from a first position to a second position, the first electronic circuit system configured to output a first electronic signal when the actuator is moved from the first position to the second position; and a container configured to receive at least a portion of the medicament delivery device, the container including a second electronic circuit system configured to receive the first electronic signal and to output a second electronic signal associated with the first electronic signal.
2. The system of claim 1, wherein the first electronic signal is a short-range radio frequency signal having a range of approximately 100 meters or less.
3. The system of claim 1, wherein the first electronic circuit and the second electronic circuit system are Bluetooth™-enabled circuit systems.
4. The system of claim 1, wherein the first electronic circuit system includes a radio frequency identification tag configured to output the first electronic signal.
5. The system of claim 1, wherein the second electronic signal is associated with an audible output associated with at least one of a use of the medicament delivery device, a use of the container, a post-use procedure, or a compliance tracking procedure.
6. The system of claim 1, wherein: the second electronic circuit system is configured to be operatively coupled to a communications network; and the second electronic signal is configured to be transmitted to a device operatively coupled to the communications network and located remotely from the container.
7. The system of claim 1, wherein the second electronic signal includes a communications signal configured to be received by an emergency response system.
8. The system of claim 1, wherein the second electronic circuit system includes a memory device configured to store the first electronic signal.
9. The system of claim 1, wherein: the first electronic circuit system includes a radio frequency identification tag configured to output the first electronic signal; and the actuator includes a shield portion configured to prevent the transmission of the first electronic signal from the radio frequency identification tag when the actuator is in the first position.
10. The system of claim 1, wherein: the first electronic circuit system includes a switch, the first electronic circuit system configured to output the first electronic signal when the switch is moved from a first state to a second state; and the actuator is configured to move the switch from the first state to the second state when the actuator is moved from the first position to the second position.
11. The system of claim 1 , wherein: the first electronic circuit system includes an electrical conductor and a substrate, the first electronic circuit system configured to output the first electronic signal when the electrical conductor is disrupted, the substrate defining an opening adjacent the electrical conductor, the opening configured to receive a portion of the actuator such that when the actuator is moved from the first position to the second position the portion of the actuator disrupts the electrical conductor.
12. The system of claim 1, wherein: the medicament delivery device is a medical injector having a needle through which the medicament is delivered into the body; and the actuator is configured to move the needle between a first needle position and a second needle position, in the first needle position the second end of the needle is within the housing, in the second needle position the second end of the needle is outside the housing.
13. The system of claim 1, wherein the medicament delivery device is a single-use medical injector.
14. An apparatus, comprising: a medicament delivery device including an actuator configured to initiate delivery of a medicament into a body when the actuator is moved from a first position to a second position; and an electronic circuit system coupled to the medicament delivery device, the electronic circuit system including a first radio frequency identification tag configured to output a first electronic signal and a second radio frequency identification tag configured to output a second electronic signal, the second electronic signal having a characteristic different than a characteristic of the first electronic signal, the actuator configured to prevent the second radio frequency identification tag from outputting the second electronic signal when the actuator is moved from the first position to the second position.
15. The apparatus of claim 14, wherein the actuator is configured to disrupt at least a portion of the second radio frequency identification tag when the actuator is moved from the first position to the second position.
16. The apparatus of claim 14, wherein the actuator is configured to sever at least a portion of the second radio frequency identification tag when the actuator is moved from the first position to the second position.
17. The apparatus of claim 14, wherein the actuator is configured to shield at least a portion of the second radio frequency identification tag when the actuator is moved from the first position to the second position.
18. The apparatus of claim 14, wherein the actuator is configured to decouple a power source from the second radio frequency identification tag when the actuator is moved from the first position to the second position.
19. The apparatus of claim 14, wherein at least one of the first radio frequency identification or the second radio frequency identification tag is a passive radio frequency identification tag.
20. The apparatus of claim 14, further comprising: a container configured to removably receive at least a portion of the medicament delivery device, the container including an electronic circuit system configured to receive the first electronic signal and the second electronic signal, the electronic circuit system of the container configured to output a compliance electronic signal associated with the first electronic signal and the second electronic signal.
21. The apparatus of claim 14, wherein the medicament delivery device is a single-use medical injector, the medical injector including a label configured to be coupled to an outer surface of the medical injector, at least a portion of the electronic circuit system is incorporated into the label.
22. An apparatus, comprising: a housing; a medicament container disposed within the housing; a needle having a proximal end and a distal end, the needle configured to be in fluid communication with the medicament container, the needle configured to be moved between a first position and a second position, the distal end of the needle disposed within the housing when the needle is in the first position, at least a portion of the distal end of the needle disposed outside of the housing when the needle is in the second position; and an electronic circuit system configured to be coupled to the housing, the electronic circuit system configured to output an electronic signal associated with an impedance between the distal end of the needle and a portion of the housing.
23. The apparatus of claim 22, wherein the electronic circuit system configured to output an electronic signal associated with an impedance between the distal end of the needle a portion of the housing when the needle is in the second position.
24. The apparatus of claim 22, wherein the electronic signal is a short-range radio frequency signal having a range of approximately 100 meters or less.
25. The apparatus of claim 22, wherein the electronic signal is a first electronic signal, the apparatus further comprising: an actuator configured to initiate movement of the needle from the first position to the second position when the actuator is moved from a first actuator position to a second actuator position, the electronic circuit system configured to output a second electronic signal when the actuator is moved from the first actuator position to the second actuator position, the second electronic signal different from the first electronic signal.
26. The apparatus of claim 22, wherein the electronic circuit system is a first electronic circuit system, the electronic signal is a first electronic signal, the apparatus further comprising: a container configured to removably receive at least a portion of the housing, the container including a second electronic circuit system configured to receive the first electronic signal, the second electronic circuit system configured to output a second electronic signal associated with the first electronic signal.
27. A method, comprising: moving an actuator of a medicament delivery device to initiate delivery of a medicament into a body; outputting, from a first electronic circuit system, a first electronic signal in response to the moving, the first electronic signal being a short-range radio frequency signal having a range of approximately 100 meters or less; and outputting, from a second electronic circuit system, a second electronic signal associated with the first electronic signal.
28. The method of claim 27, wherein: the first electronic circuit system includes an electrical conductor, the first electronic circuit system configured to output the first electronic signal when the electrical conductor is disrupted; and the moving includes disrupting the electrical conductor.
PCT/US2008/051612 2007-01-22 2008-01-22 Medical injector with compliance tracking and monitoring WO2008091838A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08728022A EP2125075A2 (en) 2007-01-22 2008-01-22 Medical injector with compliance tracking and monitoring

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US88596907P 2007-01-22 2007-01-22
US60/885,969 2007-01-22
US11/671,025 US8172082B2 (en) 2005-02-01 2007-02-05 Devices, systems and methods for medicament delivery
US11/671,025 2007-02-05

Publications (2)

Publication Number Publication Date
WO2008091838A2 true WO2008091838A2 (en) 2008-07-31
WO2008091838A3 WO2008091838A3 (en) 2009-02-05

Family

ID=39362498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/051612 WO2008091838A2 (en) 2007-01-22 2008-01-22 Medical injector with compliance tracking and monitoring

Country Status (3)

Country Link
US (5) US8226610B2 (en)
EP (1) EP2125075A2 (en)
WO (1) WO2008091838A2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023591A2 (en) 2008-08-25 2010-03-04 Koninklijke Philips Electronics N.V. Respiratory drug delivery apparatus which provides audio instructions
WO2010112560A1 (en) * 2009-03-31 2010-10-07 Sanofi-Aventis Deutschland Gmbh Drug delivery device body
WO2011083377A1 (en) * 2010-01-07 2011-07-14 Koninklijke Philips Electronics N.V. Respiratory drug delivery apparatus including a feedback and compliance device
CN102176939A (en) * 2008-10-08 2011-09-07 阿斯利康(瑞典)有限公司 Inhaler with audible indicator means
JP2012504007A (en) * 2008-09-29 2012-02-16 ベクトン ディキンソン フランス Injection device with holding means actuated by a needle shield
US8438044B2 (en) 2011-01-18 2013-05-07 Audiahealth, Llc Systems and methods combining print and audio technologies to deliver and personalize health information
US8668670B2 (en) 2004-06-23 2014-03-11 Abbvie Biotechnology Ltd Automatic injection devices
WO2014089083A1 (en) 2012-12-03 2014-06-12 Mylan Inc. Medicament storage, dispensing, and administration system and method
WO2014106096A1 (en) 2012-12-27 2014-07-03 Kaleo, Inc. Devices, systems and methods for locating and interacting with medicament delivery systems
US8807131B1 (en) 2013-06-18 2014-08-19 Isonea Limited Compliance monitoring for asthma inhalers
WO2014128156A1 (en) * 2013-02-19 2014-08-28 Novo Nordisk A/S Rotary sensor module with axial switch
WO2014191355A1 (en) * 2013-05-27 2014-12-04 Novo Nordisk A/S Drug delivery device and system with pre-set dose feature
WO2015006701A2 (en) 2013-07-12 2015-01-15 Schuster Jeffrey A Acoustic based drug delivery monitor
EP2355858A4 (en) * 2008-11-11 2015-09-30 Kaleo Inc Apparatus and methods for self-administration of vaccines and other medicaments
WO2015185687A1 (en) * 2014-06-06 2015-12-10 Novo Nordisk A/S Logging device for drug delivery device
WO2016101031A1 (en) * 2014-12-23 2016-06-30 Davoodi Pty Ltd Delivery apparatus, system and associated methods
US9443445B2 (en) 2012-03-02 2016-09-13 Abbvie Inc. Automatic injection training device
US9486584B2 (en) 2006-06-30 2016-11-08 Abbvie Biotechnology Ltd. Automatic injection device
US9643770B2 (en) 2012-12-03 2017-05-09 Mylan Inc. System and method for medicament storage, dispensing, and administration
US9649448B2 (en) 2013-11-21 2017-05-16 Novo Nordisk A/S Rotary sensor module with resynchronization feature
WO2017120178A1 (en) * 2016-01-06 2017-07-13 Amgen Inc. Auto-injector with signaling electronics
US9750886B2 (en) 2013-02-19 2017-09-05 Novo Nordisk A/S Drug delivery device with dose capturing module
US9878102B2 (en) 2011-01-24 2018-01-30 Abbvie Biotechnology Ltd. Automatic injection devices having overmolded gripping surfaces
EP3233164A4 (en) * 2014-12-19 2018-09-19 Medaxor Pty. Ltd. Multi-use injection system
EP2414978B1 (en) * 2009-04-01 2018-12-19 Adherium (NZ) Limited Improvements in or relating to medicament delivery devices
US10182969B2 (en) 2015-03-10 2019-01-22 Regeneron Pharmaceuticals, Inc. Aseptic piercing system and method
US10183119B2 (en) 2014-06-06 2019-01-22 Novo Nordisk A/S Logging device operated by drug delivery device
US10201664B2 (en) 2013-02-19 2019-02-12 Novo Nordisk A/S Dose capturing cartridge module for drug delivery device
CN110234373A (en) * 2016-11-17 2019-09-13 希云捷达有限公司 Online mass vaccination campaign and data collection system in real time
US10417937B2 (en) 2013-03-28 2019-09-17 F. Hoffmann-La Roche Ag Training device for medicine injection devices and reset device for resetting such a training device
US10869966B2 (en) 2015-02-20 2020-12-22 Regeneron Pharmaceuticals, Inc. Syringe systems, piston seal systems, stopper systems, and methods of use and assembly
WO2021123613A1 (en) 2019-12-19 2021-06-24 Aptar France Sas Device for dispensing a fluid product
WO2021123611A1 (en) 2019-12-19 2021-06-24 Aptar France Sas Device for dispensing a fluid product
US11052198B2 (en) 2013-11-21 2021-07-06 Novo Nordisk A/S Rotary sensor assembly with axial switch and redundancy feature
US11311678B2 (en) 2013-11-21 2022-04-26 Novo Nordisk A/S Rotary sensor assembly with space efficient design
US11547801B2 (en) 2017-05-05 2023-01-10 Regeneron Pharmaceuticals, Inc. Auto-injector
USD1007676S1 (en) 2021-11-16 2023-12-12 Regeneron Pharmaceuticals, Inc. Wearable autoinjector
US11872375B2 (en) 2012-09-05 2024-01-16 E3D Agricultural Cooperative Association Ltd. Electronic auto-injection device

Families Citing this family (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252321B2 (en) 2004-09-13 2012-08-28 Chrono Therapeutics, Inc. Biosynchronous transdermal drug delivery for longevity, anti-aging, fatigue management, obesity, weight loss, weight management, delivery of nutraceuticals, and the treatment of hyperglycemia, alzheimer's disease, sleep disorders, parkinson's disease, aids, epilepsy, attention deficit disorder, nicotine addiction, cancer, headache and pain control, asthma, angina, hypertension, depression, cold, flu and the like
JP5254616B2 (en) 2004-09-13 2013-08-07 クロノ セラピューティクス、インコーポレイテッド Biosynchronous transdermal drug delivery
US7947017B2 (en) * 2004-11-22 2011-05-24 Intelliject, Inc. Devices, systems and methods for medicament delivery
WO2006083876A2 (en) * 2005-02-01 2006-08-10 Intelliject, Llc Devices, systems, and methods for medicament delivery
US8231573B2 (en) 2005-02-01 2012-07-31 Intelliject, Inc. Medicament delivery device having an electronic circuit system
US9022980B2 (en) 2005-02-01 2015-05-05 Kaleo, Inc. Medical injector simulation device
US7731686B2 (en) * 2005-02-01 2010-06-08 Intelliject, Inc. Devices, systems and methods for medicament delivery
US8206360B2 (en) 2005-02-01 2012-06-26 Intelliject, Inc. Devices, systems and methods for medicament delivery
US8226610B2 (en) 2005-02-01 2012-07-24 Intelliject, Inc. Medical injector with compliance tracking and monitoring
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
EP2392258B1 (en) 2005-04-28 2014-10-08 Proteus Digital Health, Inc. Pharma-informatics system
KR101568660B1 (en) * 2006-05-02 2015-11-12 프로테우스 디지털 헬스, 인코포레이티드 Patient customized therapeutic regimens
WO2008008281A2 (en) * 2006-07-07 2008-01-17 Proteus Biomedical, Inc. Smart parenteral administration system
EP2083680B1 (en) 2006-10-25 2016-08-10 Proteus Digital Health, Inc. Controlled activation ingestible identifier
EP2069004A4 (en) 2006-11-20 2014-07-09 Proteus Digital Health Inc Active signal processing personal health signal receivers
US8858432B2 (en) 2007-02-01 2014-10-14 Proteus Digital Health, Inc. Ingestible event marker systems
EP2111661B1 (en) * 2007-02-14 2017-04-12 Proteus Digital Health, Inc. In-body power source having high surface area electrode
US8932221B2 (en) * 2007-03-09 2015-01-13 Proteus Digital Health, Inc. In-body device having a multi-directional transmitter
WO2008112578A1 (en) 2007-03-09 2008-09-18 Proteus Biomedical, Inc. In-body device having a deployable antenna
US20080262414A1 (en) * 2007-04-20 2008-10-23 Transport Pharmaceuticals, Inc. Single use applicator cartridge for an electrokinetic delivery system and method for self administration of medicaments
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
ES2928197T3 (en) * 2007-09-25 2022-11-16 Otsuka Pharma Co Ltd Intracorporeal device with virtual dipole signal amplification
EP2211974A4 (en) * 2007-10-25 2013-02-27 Proteus Digital Health Inc Fluid transfer port information system
US8419638B2 (en) * 2007-11-19 2013-04-16 Proteus Digital Health, Inc. Body-associated fluid transport structure evaluation devices
DK2073135T3 (en) * 2007-12-21 2019-01-02 Hoffmann La Roche Blood glucose system with time synchronization
JP2011513865A (en) 2008-03-05 2011-04-28 プロテウス バイオメディカル インコーポレイテッド Multi-mode communication ingestible event marker and system and method of using the same
USD994111S1 (en) 2008-05-12 2023-08-01 Kaleo, Inc. Medicament delivery device cover
US8021344B2 (en) 2008-07-28 2011-09-20 Intelliject, Inc. Medicament delivery device configured to produce an audible output
US8177749B2 (en) 2008-05-20 2012-05-15 Avant Medical Corp. Cassette for a hidden injection needle
US8052645B2 (en) 2008-07-23 2011-11-08 Avant Medical Corp. System and method for an injection using a syringe needle
CA2724641C (en) 2008-05-20 2020-03-24 Avant Medical Corp. Autoinjector system
ES2696984T3 (en) 2008-07-08 2019-01-21 Proteus Digital Health Inc Ingestion event marker data infrastructure
AU2009281876B2 (en) 2008-08-13 2014-05-22 Proteus Digital Health, Inc. Ingestible circuitry
SG196787A1 (en) 2009-01-06 2014-02-13 Proteus Digital Health Inc Ingestion-related biofeedback and personalized medical therapy method and system
TWI602561B (en) 2009-01-06 2017-10-21 波提亞斯數位康健公司 Pharmaceutical dosages delivery system
US8540664B2 (en) 2009-03-25 2013-09-24 Proteus Digital Health, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
SG10201810784SA (en) 2009-04-28 2018-12-28 Proteus Digital Health Inc Highly Reliable Ingestible Event Markers And Methods For Using The Same
EP2432458A4 (en) 2009-05-12 2014-02-12 Proteus Digital Health Inc Ingestible event markers comprising an ingestible component
TWI517050B (en) 2009-11-04 2016-01-11 普羅托斯數位健康公司 System for supply chain management
US9293060B2 (en) 2010-05-06 2016-03-22 Ai Cure Technologies Llc Apparatus and method for recognition of patient activities when obtaining protocol adherence data
MX2012008922A (en) 2010-02-01 2012-10-05 Proteus Digital Health Inc Data gathering system.
JP5330609B2 (en) 2010-02-01 2013-10-30 プロテウス デジタル ヘルス, インコーポレイテッド Data collection system on two wrists
BR112012025650A2 (en) 2010-04-07 2020-08-18 Proteus Digital Health, Inc. miniature ingestible device
TW201208643A (en) * 2010-04-11 2012-03-01 Proteus Biomedical Inc Apparatus, system and method for detection and delivery of a medicinal dose
US9875666B2 (en) 2010-05-06 2018-01-23 Aic Innovations Group, Inc. Apparatus and method for recognition of patient activities
US9883786B2 (en) 2010-05-06 2018-02-06 Aic Innovations Group, Inc. Method and apparatus for recognition of inhaler actuation
US10116903B2 (en) 2010-05-06 2018-10-30 Aic Innovations Group, Inc. Apparatus and method for recognition of suspicious activities
TWI557672B (en) 2010-05-19 2016-11-11 波提亞斯數位康健公司 Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device
US8910630B2 (en) 2010-06-28 2014-12-16 Palliatech, Inc. Cannabis drug delivery and monitoring system
EP2642983A4 (en) 2010-11-22 2014-03-12 Proteus Digital Health Inc Ingestible device with pharmaceutical product
US8939943B2 (en) 2011-01-26 2015-01-27 Kaleo, Inc. Medicament delivery device for administration of opioid antagonists including formulations for naloxone
US8627816B2 (en) 2011-02-28 2014-01-14 Intelliject, Inc. Medicament delivery device for administration of opioid antagonists including formulations for naloxone
US10446269B2 (en) 2011-03-24 2019-10-15 Sanofi-Aventis Deutschland Gmbh Device and method for detecting an actuation action performable with a medical device
EP2699293B8 (en) 2011-04-20 2022-07-20 Amgen Inc. Autoinjector apparatus
CA2834111C (en) * 2011-04-29 2019-04-30 Hopitaux Universitaires De Geneve Apparatus for the treatment and/or prevention of corneal diseases
CA2841785A1 (en) 2011-07-06 2013-01-10 The Parkinson's Institute Compositions and methods for treatment of symptoms in parkinson's disease patients
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
UA118745C2 (en) 2011-07-21 2019-03-11 Протеус Діджитал Хелс, Інк. Mobile communication device, system, and method
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
WO2013078416A2 (en) * 2011-11-23 2013-05-30 Proteus Digital Health, Inc. Apparatus, system, and method to promote behavior change based on mindfulness methodologies
USD898908S1 (en) 2012-04-20 2020-10-13 Amgen Inc. Pharmaceutical product cassette for an injection device
USD808010S1 (en) 2012-04-20 2018-01-16 Amgen Inc. Injection device
ES2821811T3 (en) 2012-06-25 2021-04-27 Gecko Health Innovations Inc Devices, systems and methods for monitoring compliance and patient interaction
US9717857B2 (en) * 2012-06-27 2017-08-01 Becton Dickinson France Medical injection device
KR20150038038A (en) 2012-07-23 2015-04-08 프로테우스 디지털 헬스, 인코포레이티드 Techniques for manufacturing ingestible event markers comprising an ingestible component
KR101565013B1 (en) 2012-10-18 2015-11-02 프로테우스 디지털 헬스, 인코포레이티드 Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device
GB201218913D0 (en) * 2012-10-22 2012-12-05 Ucb Pharma Sa Auto-injector and drive unit therefor
WO2014070799A1 (en) 2012-10-30 2014-05-08 Truinject Medical Corp. System for injection training
US9633325B2 (en) 2012-11-12 2017-04-25 Global Healthcare Exchange, Llc Systems and methods for supply chain management
US9179260B2 (en) 2012-12-03 2015-11-03 Mylan Inc. Medicament information system and method
US9692829B2 (en) 2012-12-03 2017-06-27 Mylan Inc. Medication delivery system and method
US10888662B2 (en) 2013-01-15 2021-01-12 Sanofi-Aventis Deutschland Gmbh Apparatus for recording information concerning the use of an injection device
JP2016508529A (en) 2013-01-29 2016-03-22 プロテウス デジタル ヘルス, インコーポレイテッド Highly expandable polymer film and composition containing the same
US9071972B1 (en) * 2013-02-25 2015-06-30 Quantenna Communications Inc. Asynchronous tiered access control to a wireless home network
EP2968800B1 (en) * 2013-03-15 2017-12-20 Chris V. Ciancone Inhaler spacer and storage apparatus
US11744481B2 (en) 2013-03-15 2023-09-05 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
JP6336564B2 (en) * 2013-03-15 2018-06-06 アムゲン・インコーポレーテッド Drug cassette, auto-injector, and auto-injector system
TWI639453B (en) 2013-03-15 2018-11-01 美商安美基公司 Cassette for an injector
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
US9373269B2 (en) * 2013-03-18 2016-06-21 Lifescan Scotland Limited Patch pump training device
EP2988807B1 (en) 2013-04-22 2018-05-23 Sanofi-Aventis Deutschland GmbH Sensor device with oled
KR102402909B1 (en) 2013-08-28 2022-05-27 게코 헬스 이노베이션즈, 인크. Devices, systems, and methods for adherence monitoring and devices, systems, and methods for monitoring use of consumable dispensers
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
MX2016005252A (en) 2013-10-24 2016-10-07 Univ Boston Infusion system for preventing mischanneling of multiple medicaments.
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US9922578B2 (en) 2014-01-17 2018-03-20 Truinject Corp. Injection site training system
US10290231B2 (en) 2014-03-13 2019-05-14 Truinject Corp. Automated detection of performance characteristics in an injection training system
MX2016015854A (en) 2014-06-03 2017-07-19 Amgen Inc Controllable drug delivery system and method of use.
WO2015189700A1 (en) 2014-06-13 2015-12-17 Aterica Inc. System and device for management of medication delivery devices
US9517307B2 (en) 2014-07-18 2016-12-13 Kaleo, Inc. Devices and methods for delivering opioid antagonists including formulations for naloxone
US9589443B2 (en) 2014-09-02 2017-03-07 At&T Intellectual Property I, L.P. Method and apparatus for providing an emergency notification for an allergic reaction
US10971260B2 (en) 2014-09-14 2021-04-06 Becton, Dickinson And Company System and method for capturing dose information
US10704944B2 (en) 2014-09-14 2020-07-07 Becton, Dickinson And Company System and method for capturing dose information
EP3021245A1 (en) 2014-10-06 2016-05-18 Carebay Europe Ltd. Information provider system
WO2016055290A2 (en) * 2014-10-06 2016-04-14 Carebay Europe Ltd Information provider system
US10716901B2 (en) 2014-10-06 2020-07-21 Aktivax, Inc. Auto-injector
US10235904B2 (en) 2014-12-01 2019-03-19 Truinject Corp. Injection training tool emitting omnidirectional light
US9333289B1 (en) 2015-01-16 2016-05-10 Plas-Tech Engineering, Inc. Tamper evident closure container
ES2718026T3 (en) * 2015-01-16 2019-06-27 Becton Dickinson France Drug storage and dispensing system for pre-loaded containers
EP3250258A4 (en) 2015-01-28 2018-09-05 Chrono Therapeutics, Inc. Drug delivery methods and systems
EP3058970A1 (en) 2015-02-19 2016-08-24 Sanofi-Aventis Deutschland GmbH Data collection device for attachment to an injection device
EP3067081A1 (en) 2015-03-12 2016-09-14 Sanofi Drug delivery device
AU2016228779A1 (en) 2015-03-12 2017-09-07 Chrono Therapeutics Inc. Craving input and support system
WO2016196934A1 (en) 2015-06-04 2016-12-08 Medimop Medical Projects Ltd. Cartridge insertion for drug delivery device
ES2805230T5 (en) 2015-06-09 2023-11-24 Sanofi Aventis Deutschland Data collection apparatus for attachment to an injection device
CN107835700A (en) 2015-06-30 2018-03-23 Kaleo公司 For the automatic injector for the medicament being applied in pre-filled syringe
JP7125204B2 (en) 2015-07-08 2022-08-24 トラスティーズ オブ ボストン ユニバーシティ Infusion system and its components
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
EP3365049A2 (en) 2015-10-20 2018-08-29 Truinject Medical Corp. Injection system
WO2017093200A1 (en) 2015-11-30 2017-06-08 Sanofi-Aventis Deutschland Gmbh Packaging assembly
JOP20170042B1 (en) 2016-02-12 2022-09-15 Amgen Inc Drug Delivery Device, Method of Manufacture and Method of Use
WO2017151441A2 (en) 2016-02-29 2017-09-08 Truinject Medical Corp. Cosmetic and therapeutic injection safety systems, methods, and devices
WO2017151963A1 (en) 2016-03-02 2017-09-08 Truinject Madical Corp. Sensory enhanced environments for injection aid and social training
WO2017156523A1 (en) * 2016-03-11 2017-09-14 Quio Technologies Llc Automatic injector devices and systems for controlled delivery of dosage and associated methods
MX2018012290A (en) * 2016-04-08 2019-02-07 Amgen Inc Drug delivery device.
GB2601424B (en) 2016-06-06 2022-12-07 E3D Agricultural Cooporative Association Ltd Multiple use computerized injector
US11173247B2 (en) 2016-07-14 2021-11-16 Sanofi Medicament delivery device
TWI728155B (en) 2016-07-22 2021-05-21 日商大塚製藥股份有限公司 Electromagnetic sensing and detection of ingestible event markers
CN109963499B (en) 2016-10-26 2022-02-25 大冢制药株式会社 Method for manufacturing capsules with ingestible event markers
EP3532131A4 (en) 2016-10-31 2020-06-17 Summit Street Medical LLC Wearable drug delivery device
EP3315151A1 (en) 2016-11-01 2018-05-02 MEDA Pharma GmbH & Co. KG Kit for administration of medicaments
US11278665B2 (en) 2016-11-22 2022-03-22 Eitan Medical Ltd. Method for delivering a therapeutic substance
IL267822B2 (en) 2017-01-06 2023-09-01 Univ Boston Infusion system and components thereof
JP2020503950A (en) 2017-01-06 2020-02-06 クロノ セラピューティクス インコーポレイテッドChrono Therapeutics Inc. Device and method for transdermal drug delivery
WO2018136413A2 (en) * 2017-01-17 2018-07-26 Kaleo, Inc. Medicament delivery devices with wireless connectivity and event detection
US10269266B2 (en) 2017-01-23 2019-04-23 Truinject Corp. Syringe dose and position measuring apparatus
EP3579735A4 (en) * 2017-02-13 2020-08-26 Alerje, Inc. Detachable medical device system
DE102017103511A1 (en) 2017-02-21 2018-08-23 Karl Storz Se & Co. Kg Medical device and medical system and use of an RFID element
CN110582312B (en) 2017-02-24 2023-02-17 赛诺菲 Package assembly
DK3585457T3 (en) 2017-02-24 2024-01-22 Sanofi Sa PACKAGING DEVICE
WO2018187744A1 (en) * 2017-04-06 2018-10-11 West Pharmaceutical Services, Inc. Injector with ready to use indicator
US11395880B2 (en) 2017-06-23 2022-07-26 Amgen Inc. Electronic drug delivery device
US10478561B2 (en) * 2017-08-03 2019-11-19 Minhong Yu Wireless transmission system with integrated sensing capability
EP3706830B1 (en) * 2017-11-06 2024-08-07 Amgen Inc. Drug delivery device with placement and flow sensing
WO2019101962A1 (en) 2017-11-23 2019-05-31 Sanofi Medicament injection device with rotary encoder
JP7402799B2 (en) 2017-12-22 2023-12-21 ウェスト ファーマ サービシーズ イスラエル リミテッド Syringes available with different cartridge sizes
US10617605B2 (en) * 2018-01-05 2020-04-14 Kali Care, Inc. Method and apparatus for smart medication authentication through considering non-smart incidental materials
WO2019182745A1 (en) 2018-03-19 2019-09-26 Bryn Pharma, LLC Epinephrine spray formulations
US10722427B2 (en) * 2018-03-29 2020-07-28 Simon Charles Cantor Hermetically sealable case for medical device and medicine
DE202018102402U1 (en) 2018-04-30 2018-08-10 Meda Pharma Gmbh & Co. Kg Set for administering medication
US11400220B2 (en) * 2018-05-01 2022-08-02 Portal Instruments, Inc. Active injection guide
EE01519U1 (en) * 2018-05-02 2020-12-15 Meda Pharma Gmbh & Co. Kg Kit for Administration of Medicaments
US11590299B1 (en) * 2018-05-13 2023-02-28 Keith Good Methods and systems for metered dose inhalation monitoring and communication
US11596779B2 (en) 2018-05-29 2023-03-07 Morningside Venture Investments Limited Drug delivery methods and systems
US10835685B2 (en) * 2018-05-30 2020-11-17 Amgen Inc. Thermal spring release mechanism for a drug delivery device
WO2020018433A1 (en) 2018-07-16 2020-01-23 Kaleo, Inc. Medicament delivery devices with wireless connectivity and compliance detection
CA3114111C (en) 2018-10-03 2024-01-02 Eli Lilly And Company Status sensing systems within an injection device assembly
EP3744368A1 (en) 2018-10-05 2020-12-02 Sorrel Medical Ltd. Triggering sequence
CN109893718B (en) * 2019-04-04 2021-05-07 刘俊英 Device for sandwich injection
GB201906143D0 (en) * 2019-05-01 2019-06-12 Norton Waterford Ltd Electronic module for medical device
JP2022542818A (en) 2019-07-16 2022-10-07 ベータ バイオニクス,インコーポレイテッド Ambulatory device and its components
USD1031975S1 (en) 2020-03-10 2024-06-18 Beta Bionics, Inc. Medicament infusion pump device
US11278661B2 (en) 2020-03-10 2022-03-22 Beta Bionics, Inc. Infusion system and components thereof
DE102021127724A1 (en) 2021-10-25 2023-04-27 Vega Grieshaber Kg sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003758A1 (en) * 1999-07-10 2001-01-18 Baxter International Inc. Volumetric infusion pump with servo valve control
WO2006045525A1 (en) * 2004-10-21 2006-05-04 Novo Nordisk A/S Injection device with a processor for collecting ejection information
WO2006057636A1 (en) * 2004-11-22 2006-06-01 Intelliject, Llc Devices, systems, and methods for medicament delivery
WO2007126851A2 (en) * 2006-03-29 2007-11-08 Intelliject, Llc Devices, systems and methods for medicament delivery

Family Cites Families (433)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2960087A (en) 1954-02-16 1960-11-15 Auguste Rooseboom Hypodermic injection apparatus
US3055362A (en) 1956-05-16 1962-09-25 Auguste Rooseboom Hypodermic injection apparatus
US3115133A (en) 1962-05-15 1963-12-24 Morando Emilio Donald Needleless prefilled disposable hypodermic injector
US3426448A (en) 1967-02-02 1969-02-11 Stanley J Sarnoff Training injection device
US3688765A (en) 1969-10-03 1972-09-05 Jack S Gasaway Hypodermic injection device
US3768472A (en) 1972-02-07 1973-10-30 M Hodosh Fluid dispensing gun
US3795061A (en) 1973-03-21 1974-03-05 Survival Technology Training injector
US3945379A (en) 1974-08-08 1976-03-23 Smithkline Corporation Injection device
FR2348709A1 (en) 1976-04-23 1977-11-18 Pistor Michel MESOTHERAPIC TREATMENT PROCESS AND INJECTION DEVICE, FORMING AUTOMATIC MICRO-INJECTOR, INCLUDING APPLICATION
US4124024A (en) * 1977-03-03 1978-11-07 Schwebel Paul R Disposable hypodermic injection ampule
NO140145C (en) 1977-04-06 1979-07-11 Elkem Spigerverket As DEVICE AT LOAD.
US4226235A (en) 1979-01-25 1980-10-07 Survival Technology, Inc. Plural injecting device
US4360019A (en) 1979-02-28 1982-11-23 Andros Incorporated Implantable infusion device
US4424057A (en) 1982-04-01 1984-01-03 House Hugh A Wet-dry syringe
US4441629A (en) 1982-08-10 1984-04-10 Mackal Glenn H Compressed gas powered caulking gun
US4524243A (en) 1983-07-07 1985-06-18 Lifeline Systems, Inc. Personal alarm system
US4673657A (en) 1983-08-26 1987-06-16 The Regents Of The University Of California Multiple assay card and system
US4484910A (en) 1983-12-21 1984-11-27 Survival Technology, Inc. Dual mode automatic injector
US4573976A (en) 1984-05-24 1986-03-04 Dolores A. Smith Shielded needle
US4795433A (en) 1985-05-20 1989-01-03 Survival Technology, Inc. Automatic injector for emergency treatment
US4613328A (en) 1984-10-22 1986-09-23 Cecil Boyd Bio-medical injector apparatus
DE3566866D1 (en) 1984-11-02 1989-01-26 Duphar Int Res Automatic injection device
US4617557A (en) 1984-11-08 1986-10-14 National Patent Development Corporation Medication compliance aid for unit dose packaging
FR2573310B1 (en) 1984-11-20 1988-12-30 Poutrait Morin BULB FOR HYPODERMIC SYRINGE, IN PARTICULAR SELF-INJECTING SYRINGE
US4666430A (en) 1984-12-05 1987-05-19 I-Flow Corporation Infusion pump
US4596556A (en) 1985-03-25 1986-06-24 Bioject, Inc. Hypodermic injection apparatus
SE451295B (en) 1985-03-27 1987-09-28 Fagersta El & Diesel Ab OGONDUSCH
US4689042A (en) 1985-05-20 1987-08-25 Survival Technology, Inc. Automatic medicament ingredient mixing and injecting apparatus
US4610666A (en) 1985-06-24 1986-09-09 Pizzino Joanne L Dual syringe
ES2017924B3 (en) 1985-10-11 1991-03-16 Duphar Int Res B V AUTOMATIC INJECTOR.
US4640686A (en) 1986-02-24 1987-02-03 Survival Technology, Inc. Audible signal autoinjector training device
DE3622399A1 (en) 1986-07-01 1988-02-04 Eberhardt Schlueter AUTOMATIC INJECTION DEVICE AND AMPOULE OR CARTRIDGE FOR AN INJECTION DEVICE
US4693708A (en) 1986-10-16 1987-09-15 Wanderer Alan A Combination needle shield/needle guard device for a hypodermic syringe with a permanently attached needle
US4782841A (en) 1987-04-07 1988-11-08 Icu Medical, Inc. Medical device
SE457417B (en) 1987-04-14 1988-12-27 Astra Meditec Ab AUTOMATIC SQUARE SPRAY, PROCEDURE FOR MIXING AND INJECTION WITH THE SPRAYER AND AMPULA FOR PRIVATE CHAMBER SPRAY
US4865582A (en) 1987-06-05 1989-09-12 Drug Delivery Systems Inc. Disposable transdermal drug applicators
US4941880A (en) 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
US4874382A (en) 1987-10-15 1989-10-17 Servetus Partnership Safety syringe
US4781697A (en) 1987-12-04 1988-11-01 Robert Slaughter Removable protective shield for needle sheath
US4853521A (en) 1987-12-28 1989-08-01 Claeys Ronald W System for verifying and recording drug administration to a patient
US4826489A (en) 1988-01-14 1989-05-02 Habley Medical Technology Corporation Disposable safety syringe having means for retracting its needle cannula into its medication cartridge
US4959056A (en) 1988-06-14 1990-09-25 Wayne State University Digital dispenser
US4894054A (en) 1988-06-20 1990-01-16 Miskinyar Shir A Preloaded automatic disposable syringe
US4906235A (en) 1988-08-22 1990-03-06 Roberts Christopher W Needle guard
USRE35986E (en) 1988-08-23 1998-12-08 Meridian Medical Technologies, Inc. Multiple chamber automatic injector
GB8819977D0 (en) 1988-08-23 1988-09-21 Medimech Ltd Automatic injectors
US5024656A (en) 1988-08-30 1991-06-18 Injet Medical Products, Inc. Gas-pressure-regulated needleless injection system
US4915695A (en) 1988-09-12 1990-04-10 Koobs David C Multiple barrel syringe
US5038023A (en) 1989-06-28 1991-08-06 C. Itoh Information Systems Development, Inc. System for storing and monitoring bar coded articles such as keys in a drawer
US6096005A (en) 1989-07-11 2000-08-01 Mdc Investment Holdings, Inc. Retractable needle medical devices
US5085642A (en) 1989-07-17 1992-02-04 Survival Technology, Inc. Conveniently carried frequent use autoinjector
EP0423864A1 (en) 1989-10-16 1991-04-24 Duphar International Research B.V Training device for an automatic injector
EP0425003A1 (en) 1989-10-24 1991-05-02 Duphar International Research B.V Training device for an automatic injector
US5064413A (en) 1989-11-09 1991-11-12 Bioject, Inc. Needleless hypodermic injection device
US5752235A (en) 1990-01-17 1998-05-12 Informedix, Inc. Electronic medication monitoring and dispensing method
US5642731A (en) 1990-01-17 1997-07-01 Informedix, Inc. Method of and apparatus for monitoring the management of disease
CA2077751A1 (en) 1990-03-08 1991-09-09 Zoran Milijasevic Flow controllers for fluid infusion sets
US5125898A (en) 1990-03-22 1992-06-30 Harry Kaufhold, Jr. Disposable syringe with automatic needle retraction
US5000736A (en) 1990-03-22 1991-03-19 Harry Kaufhold, Jr. Disposable syringe with automatic needle retraction
US5092843A (en) 1990-04-12 1992-03-03 Survival Technology, Inc. Dispersion multichamber auto-injector
US5062603A (en) 1990-04-25 1991-11-05 Dow Brands Inc. Vacuum drum purge method and apparatus
US5167625A (en) 1990-10-09 1992-12-01 Sarcos Group Multiple vesicle implantable drug delivery system
US5286258A (en) 1991-03-08 1994-02-15 Habley Medical Technology Corporation Multipharmaceutical delivery system
US5240146A (en) 1990-12-14 1993-08-31 Smedley William H Variable proportion dispenser
US5360410A (en) 1991-01-16 1994-11-01 Senetek Plc Safety syringe for mixing two-component medicaments
US5404871A (en) 1991-03-05 1995-04-11 Aradigm Delivery of aerosol medications for inspiration
US5394866A (en) 1991-03-05 1995-03-07 Aradigm Corporation Automatic aerosol medication delivery system and methods
US5298023A (en) 1991-03-08 1994-03-29 Habley Medical Technology Corporation Multiple pharmaceutical dispenser with accumulator
US5199949A (en) 1991-03-08 1993-04-06 Habley Medical Technology Corp. Multiple pharmaceutical syringe
IT223172Z2 (en) 1991-04-09 1995-06-13 Tecnomedica Ricerche Srl DEVICE FOR THE ADMINISTRATION OF DRUGS, PARTICULARLY TWO-COMPONENT PHARMA-CI
DK68991D0 (en) 1991-04-17 1991-04-17 Novo Nordisk As HEADER
US5405362A (en) 1991-04-29 1995-04-11 The Board Of Regents For The University Of Texas System Interactive external defibrillation and drug injection system
US5167641A (en) 1991-05-29 1992-12-01 Arnis, Inc. Auto-retracting needle injector system
US5363842A (en) 1991-12-20 1994-11-15 Circadian, Inc. Intelligent inhaler providing feedback to both patient and medical professional
US5417660A (en) 1992-02-03 1995-05-23 T. A. Kershenstine Self-locking syringe holder for use with a hypodermic syringe
US5369261A (en) 1992-02-12 1994-11-29 Shamir; Harry Multi-color information encoding system
EP0562671B1 (en) 1992-03-27 1996-05-29 Duphar International Research B.V Automatic injector
US5281198A (en) 1992-05-04 1994-01-25 Habley Medical Technology Corporation Pharmaceutical component-mixing delivery assembly
US5615771A (en) 1992-05-18 1997-04-01 Smiths Industries Medical Systems, Inc. Safety needle cartridge system
ATE160510T1 (en) 1992-06-02 1997-12-15 Alza Corp DISPENSING DEVICE FOR ELECTRICALLY TRANSFERRING MEDICINAL PRODUCTS
US5312326A (en) 1992-06-02 1994-05-17 Alza Corporation Iontophoretic drug delivery apparatus
US5354284A (en) 1992-06-09 1994-10-11 Habley Medical Technology Corporation Multiple injection syringe system
US5785049A (en) 1994-09-21 1998-07-28 Inhale Therapeutic Systems Method and apparatus for dispersion of dry powder medicaments
US5383851A (en) 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
US5314406A (en) 1992-10-09 1994-05-24 Symbiosis Corporation Endoscopic electrosurgical suction-irrigation instrument
US5224936A (en) 1992-10-15 1993-07-06 Brian Gallagher Automatic self-protecting hypodermic needle assembly
DE69319753T2 (en) 1992-11-19 1999-04-15 Tebro S.A., Luxembourg AUTOMATIC INJECTION DEVICE FOR PRE-FILLED SYRINGES
FR2701399B1 (en) 1993-02-16 1995-03-31 Valois Portable spray device with actuation triggered by inhalation.
US5584815A (en) 1993-04-02 1996-12-17 Eli Lilly And Company Multi-cartridge medication injection device
US5344407A (en) 1993-05-04 1994-09-06 Ryan Dana W Safety holder for pre-filled disposable syringe cartridge
US5846089A (en) 1993-07-01 1998-12-08 Weiss; Richard C. Medicine container for indicating patient information
WO1995001809A1 (en) 1993-07-06 1995-01-19 Earle Michael L Bone cement delivery gun
US5837546A (en) 1993-08-24 1998-11-17 Metrika, Inc. Electronic assay device and method
US5343519A (en) 1993-09-07 1994-08-30 Peter Feldman Autodialer with pin feature
SE9303453D0 (en) 1993-10-20 1993-10-20 Kabi Pharmacia Ab Injection cartridge
GB9323121D0 (en) 1993-11-09 1994-01-05 Smiths Industries Plc Needle protection assemblies
US5399823A (en) * 1993-11-10 1995-03-21 Minimed Inc. Membrane dome switch with tactile feel regulator shim
US5505192A (en) 1993-11-12 1996-04-09 New-Med Corporation Dispenser monitoring system
CA2129284C (en) 1993-11-24 1999-03-09 Kenneth J. Niehoff Controlling plunger drives for fluid injection in animals
DE4422710C1 (en) 1994-06-29 1995-09-14 Boehringer Ingelheim Kg Inhaler with storage container for aerosol
US5536249A (en) 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
WO1995026009A1 (en) 1994-03-21 1995-09-28 Ibv Technologies, Inc. Programmable voice instructed medication delivery and outcomes monitoring system
US5645534A (en) 1994-06-24 1997-07-08 Becton Dickinson And Company Time of last injection indicator for medication delivery pen
US5905653A (en) 1994-07-14 1999-05-18 Omnicell Technologies, Inc. Methods and devices for dispensing pharmaceutical and medical supply items
US5544647A (en) 1994-11-29 1996-08-13 Iep Group, Inc. Metered dose inhalator
US6030363A (en) 1994-12-02 2000-02-29 Science Incorporated Medicament dispenser
US5690618A (en) 1995-02-22 1997-11-25 Mark Timothy Smith Electronic syringe
US5659741A (en) 1995-03-29 1997-08-19 Stuart S. Bowie Computer system and method for storing medical histories using a carrying size card
EP0821566B1 (en) 1995-04-20 2003-10-15 ACIST Medical Systems, Inc. Angiographic injector
US6221045B1 (en) 1995-04-20 2001-04-24 Acist Medical Systems, Inc. Angiographic injector system with automatic high/low pressure switching
US20030028145A1 (en) 1995-04-20 2003-02-06 Duchon Douglas J. Angiographic injector system with multiple processor redundancy
US5772635A (en) 1995-05-15 1998-06-30 Alaris Medical Systems, Inc. Automated infusion system with dose rate calculator
US5809997A (en) 1995-05-18 1998-09-22 Medtrac Technologies, Inc. Electronic medication chronolog device
US5730723A (en) 1995-10-10 1998-03-24 Visionary Medical Products Corporation, Inc. Gas pressured needle-less injection device and method
CA2151407A1 (en) 1995-06-09 1996-12-10 Duncan Newman Injection device
US5651775A (en) 1995-07-12 1997-07-29 Walker; Richard Bradley Medication delivery and monitoring system and methods
US5645571B1 (en) 1995-08-01 1999-08-24 Surviva Link Corp Automated external defibrillator with lid activated self-test system
US5558679A (en) 1995-08-21 1996-09-24 Micron Communications, Inc. Method for mounting a battery on a substrate
IE77523B1 (en) 1995-09-11 1997-12-17 Elan Med Tech Medicament delivery device
US5716348A (en) 1995-10-19 1998-02-10 Meridian Medical Technologies, Inc. Anti-coring needle
US5970457A (en) 1995-10-25 1999-10-19 Johns Hopkins University Voice command and control medical care system
US5567160A (en) 1995-10-26 1996-10-22 Survival Technology, Inc. Autoinjector training device
US5697916A (en) 1995-11-21 1997-12-16 Stat Medical Devices Inc. Hypodermic dosage measuring device
WO1997027829A1 (en) 1996-01-31 1997-08-07 The Trustees Of The University Of Pennsylvania Remote control drug delivery device
EP0959922B1 (en) 1996-02-23 2003-05-21 Novo Nordisk A/S Syringe with electronic representation of parameters
ATE494027T1 (en) 1996-03-12 2011-01-15 Novo Nordisk As INJECTION DEVICE WITH ELECTRONIC DISPLAY OF THE SELECTED DOSE
US5853292A (en) 1996-05-08 1998-12-29 Gaumard Scientific Company, Inc. Computerized education system for teaching patient care
US5805423A (en) 1996-05-17 1998-09-08 United Technologies Automotive Battery contact and retention apparatus for printed circuit boards
US5848988A (en) 1996-07-26 1998-12-15 Alaris Medical Systems, Inc. Infusion device with audible data output
US5823363A (en) 1996-10-18 1998-10-20 Cassel; Douglas Medical syringe holding/transport apparatus
US5954641A (en) 1997-09-08 1999-09-21 Informedix, Inc. Method, apparatus and operating system for managing the administration of medication and medical treatment regimens
US6249717B1 (en) 1996-11-08 2001-06-19 Sangstat Medical Corporation Liquid medication dispenser apparatus
US6259654B1 (en) 1997-03-28 2001-07-10 Telaric, L.L.C. Multi-vial medication organizer and dispenser
US6529446B1 (en) 1996-12-20 2003-03-04 Telaric L.L.C. Interactive medication container
US5852590A (en) 1996-12-20 1998-12-22 De La Huerga; Carlos Interactive label for medication containers and dispensers
DE19701494A1 (en) 1997-01-17 1998-07-23 Boehringer Mannheim Gmbh Transdermal injection system
USD407487S (en) 1997-02-05 1999-03-30 Hoechst Marion Roussel Duetschland Medication delivery pen
US5860957A (en) 1997-02-07 1999-01-19 Sarcos, Inc. Multipathway electronically-controlled drug delivery system
US5991655A (en) 1997-03-03 1999-11-23 Drug Delivery Systems, Inc. Iontophoretic drug delivery device and method of manufacturing the same
US6270455B1 (en) 1997-03-28 2001-08-07 Health Hero Network, Inc. Networked system for interactive communications and remote monitoring of drug delivery
US5868713A (en) 1997-04-03 1999-02-09 L.O.M. Laboratories Inc. Pneumatic retractable syringe
US6530900B1 (en) 1997-05-06 2003-03-11 Elan Pharma International Limited Drug delivery device
US5993412A (en) 1997-05-19 1999-11-30 Bioject, Inc. Injection apparatus
US6077106A (en) 1997-06-05 2000-06-20 Micron Communications, Inc. Thin profile battery mounting contact for printed circuit boards
US6500150B1 (en) 1997-06-16 2002-12-31 Elan Pharma International Limited Pre-filled drug-delivery device and method of manufacture and assembly of same
EP0888790A1 (en) 1997-07-04 1999-01-07 PowderJect Research Limited Drug particle delivery device
US5823346A (en) 1997-08-04 1998-10-20 Weiner; Steven L. Medicine bottle reminder attachment
SE9702872D0 (en) 1997-08-06 1997-08-06 Pharmacia & Upjohn Ab Automated delivery device and method for its operation
WO1999010031A1 (en) 1997-08-27 1999-03-04 Farrens Frank L Device for injecting material beneath the skin of a human or animal
US6039713A (en) 1997-08-28 2000-03-21 Mdc Investment Holdings, Inc. Pre-filled retractable needle injection device
US5941857A (en) 1997-09-12 1999-08-24 Becton Dickinson And Company Disposable pen needle
US5971953A (en) 1998-01-09 1999-10-26 Bachynsky; Nicholas Dual chamber syringe apparatus
US6149626A (en) 1997-10-03 2000-11-21 Bachynsky; Nicholas Automatic injecting syringe apparatus
IE970782A1 (en) 1997-10-22 1999-05-05 Elan Corp An improved automatic syringe
US6045534A (en) 1997-10-27 2000-04-04 Sarcos, Inc. Disposable fluid injection module
US6086562A (en) 1997-10-27 2000-07-11 Sarcos, Inc. Disposable automatic injection device
WO1999025152A2 (en) 1997-11-07 1999-05-20 Via, Inc. Interactive devices and methods
US6015438A (en) 1997-11-14 2000-01-18 Retractable Technologies Inc. Full displacement retractable syringe
TW346257U (en) 1997-11-27 1998-11-21 Hon Hai Prec Ind Co Ltd Battery seat
EP1039942B1 (en) 1997-12-16 2004-10-13 Meridian Medical Technologies, Inc. Automatic injector for administrating a medicament
DE29801168U1 (en) 1998-01-24 1999-08-12 Medico Dev Investment Co Injection device
US6358058B1 (en) 1998-01-30 2002-03-19 1263152 Ontario Inc. Aerosol dispensing inhaler training device
FR2774294B1 (en) 1998-02-04 2000-04-14 Marc Brunel DEVICE FOR AUTOMATICALLY INJECTING A DOSE OF MEDICINAL PRODUCT
US5978230A (en) 1998-02-19 1999-11-02 Micron Communications, Inc. Battery mounting apparatuses, electronic devices, and methods of forming electrical connections
FI109272B (en) 1998-02-26 2002-06-28 Raimo Juselius Intake event detector and method for detecting intake event
US6221055B1 (en) 1998-03-04 2001-04-24 Retractable Technologies, Inc. Retractable dental syringe
AU3050499A (en) 1998-03-23 1999-10-18 Elan Corporation, Plc Drug delivery device
US6200289B1 (en) 1998-04-10 2001-03-13 Milestone Scientific, Inc. Pressure/force computer controlled drug delivery system and the like
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6219587B1 (en) 1998-05-27 2001-04-17 Nextrx Corporation Automated pharmaceutical management and dispensing system
US6158613A (en) 1998-06-04 2000-12-12 Voice Based Products, Inc. Voice based pharmaceutical container apparatus and method for programming
US5964739A (en) 1998-06-18 1999-10-12 Champ; Raynido A. Safety disposable needle structure
US6428528B2 (en) 1998-08-11 2002-08-06 Antares Pharma, Inc. Needle assisted jet injector
US6074213A (en) 1998-08-17 2000-06-13 Hon; David C. Fractional process simulator with remote apparatus for multi-locational training of medical teams
US6554798B1 (en) 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
EP2229879A1 (en) 1998-10-08 2010-09-22 Medtronic MiniMed, Inc. Telemetered characteristic monitor system
CA2251863A1 (en) 1998-10-20 2000-04-20 Zoni Inc. Belt system for housing medical device
SE9803662D0 (en) 1998-10-26 1998-10-26 Pharmacia & Upjohn Ab autoinjector
WO2000029049A1 (en) 1998-11-13 2000-05-25 Elan Pharma International Limited Drug delivery systems and methods
US6783509B1 (en) 1998-11-18 2004-08-31 Bioject Inc. Single-use needle-less hypodermic jet injection apparatus and method
US6096002A (en) 1998-11-18 2000-08-01 Bioject, Inc. NGAS powered self-resetting needle-less hypodermic jet injection apparatus and method
US6264629B1 (en) 1998-11-18 2001-07-24 Bioject, Inc. Single-use needle-less hypodermic jet injection apparatus and method
US6689093B2 (en) 1998-11-18 2004-02-10 Bioject, Inc. Single-use needle-less hypodermic jet injection apparatus and method
WO2000030712A1 (en) 1998-11-20 2000-06-02 Medtronic Physio-Control Manufacturing Corp. Visual and aural user interface for an automated external defibrillator
US20060058848A1 (en) 1998-11-20 2006-03-16 Medtronic Emergency Response Systems, Inc. AED with user inputs in response to prompts
US6540672B1 (en) 1998-12-09 2003-04-01 Novo Nordisk A/S Medical system and a method of controlling the system for use by a patient for medical self treatment
US6312412B1 (en) 1998-12-02 2001-11-06 V. C. Saied, M.D. Apparatus and method for painless intramuscular or subcutaneous injections
US6364866B1 (en) 1999-01-22 2002-04-02 Douglas Furr Syringe loading aid
US6872080B2 (en) 1999-01-29 2005-03-29 Cardiac Science, Inc. Programmable AED-CPR training device
US6317630B1 (en) 1999-01-29 2001-11-13 Yossi Gross Drug delivery device
DE29904864U1 (en) 1999-03-17 2000-08-03 B. Braun Melsungen Ag, 34212 Melsungen Injection device with a pen
EP1171185B1 (en) 1999-04-16 2005-11-02 Becton Dickinson and Company Pen style injector with automated substance combining feature
US6202642B1 (en) 1999-04-23 2001-03-20 Medtrac Technologies, Inc. Electronic monitoring medication apparatus and method
US6190326B1 (en) 1999-04-23 2001-02-20 Medtrac Technologies, Inc. Method and apparatus for obtaining patient respiratory data
US6192891B1 (en) 1999-04-26 2001-02-27 Becton Dickinson And Company Integrated system including medication delivery pen, blood monitoring device, and lancer
US6245046B1 (en) 1999-05-03 2001-06-12 University Of New Mexico Reciprocating syringes
US6428517B1 (en) 1999-05-10 2002-08-06 Milestone Scientific, Inc. Hand-piece for injection device with a retractable and rotating needle
US6084526A (en) 1999-05-12 2000-07-04 Time Warner Entertainment Co., L.P. Container with means for displaying still and moving images
DE19925904C1 (en) 1999-06-07 2001-02-01 Disetronic Licensing Ag Unit for subcutaneous application of an injectable product comprises a system which indicates whether the protection sleeve of the injection needle is in its fully retracted position
US6398760B1 (en) 1999-10-01 2002-06-04 Baxter International, Inc. Volumetric infusion pump with servo valve control
US6238374B1 (en) 1999-08-06 2001-05-29 Proxima Therapeutics, Inc. Hazardous fluid infuser
US6377848B1 (en) 1999-08-25 2002-04-23 Vyteris, Inc. Devices activating an iontophoretic delivery device
US6102896A (en) 1999-09-08 2000-08-15 Cambridge Biostability Limited Disposable injector device
JP2003510135A (en) 1999-09-29 2003-03-18 スターリング メディヴェイションズ インコーポレイテッド Reusable pharmaceutical injection device
JP2003511760A (en) 1999-10-01 2003-03-25 グラクソ グループ リミテッド Patient data monitoring system
US6413236B1 (en) 1999-10-08 2002-07-02 Lewis R. Van Dyke Automatically retractable needle safety syringe
US6514230B1 (en) 1999-10-12 2003-02-04 Novo Nordisk A/S Air shot mechanism for electronic injection devices
US6569123B2 (en) 1999-10-14 2003-05-27 Becton, Dickinson And Company Prefillable intradermal injector
US6585698B1 (en) 1999-11-01 2003-07-01 Becton, Dickinson & Company Electronic medical delivery pen having a multifunction actuator
CO5270018A1 (en) 1999-12-11 2003-04-30 Glaxo Group Ltd MEDICINAL DISTRIBUTOR
US6193695B1 (en) 2000-01-14 2001-02-27 Wayland J. Rippstein, Jr. Disposable safety syringe having a retractable needle
ATE289499T1 (en) 2000-01-18 2005-03-15 Zimmer Gmbh GUN FOR EXPRESSING BONE CEMENT WITH AN ATTACHABLE CEMENT SYRINGE
US6210359B1 (en) 2000-01-21 2001-04-03 Jet Medica, L.L.C. Needleless syringe
GB0002095D0 (en) 2000-01-28 2000-03-22 Novartis Ag Device
US20030060765A1 (en) 2000-02-16 2003-03-27 Arthur Campbell Infusion device menu structure and method of using the same
US6478769B1 (en) 2000-02-22 2002-11-12 The Board Of Trustees Of The University Of Arkansas Anatomical fluid evacuation apparatus and method
US6321654B1 (en) 2000-02-22 2001-11-27 The United States Of America As Represented By The Secretary Of The Army Microelectromechanical systems (MEMS) -type devices having latch release and output mechanisms
US6485465B2 (en) 2000-03-29 2002-11-26 Medtronic Minimed, Inc. Methods, apparatuses, and uses for infusion pump fluid pressure and force detection
US6297737B1 (en) 2000-04-03 2001-10-02 Ericsson Inc Object locating system
CA2406994C (en) 2000-04-18 2010-09-07 Mdc Investment Holdings, Inc. Medical device with shield having a retractable needle
US20040069667A1 (en) 2000-05-12 2004-04-15 Tomellini Dalita R. Cases for medication delivery devices
CZ20023818A3 (en) 2000-05-18 2003-06-18 Alaris Meidical Systems, Inc. System and method for management of information concerning provision of medical care
TW499314B (en) 2000-05-30 2002-08-21 Novo Nordisk As A medication delivery device with replaceable cooperating modules and a method of making same
US20020000225A1 (en) 2000-06-02 2002-01-03 Carlos Schuler Lockout mechanism for aerosol drug delivery devices
US6517517B1 (en) 2000-06-08 2003-02-11 Mayo Foundation For Medical Education And Research Automated injection device for administration of liquid medicament
AU2001275393A1 (en) 2000-06-08 2001-12-17 Meridian Medical Technologies, Inc. Wet/dry automatic injector assembly
US6892941B2 (en) 2000-06-08 2005-05-17 Mendota Healthcare, Inc. Automatic prescription drug dispenser
US6633796B1 (en) 2000-06-14 2003-10-14 Dan B. Pool Medication timing device
US6540675B2 (en) 2000-06-27 2003-04-01 Rosedale Medical, Inc. Analyte monitor
EP1297517A2 (en) 2000-06-30 2003-04-02 University Of Florida Method, system, and apparatus for medical device training
US6961285B2 (en) 2000-07-07 2005-11-01 Ddms Holdings L.L.C. Drug delivery management system
US6411567B1 (en) 2000-07-07 2002-06-25 Mark A. Niemiec Drug delivery management system
BR0112825A (en) 2000-07-28 2003-07-01 Mdc Invest Holdings Inc Process for injecting medicine from a medical device that has a needle with a sharp tip and medical device
US6589229B1 (en) * 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device
US6572584B1 (en) 2000-08-07 2003-06-03 Retractable Technologies, Inc. Retractable syringe with reduced retraction force
DE10038936B4 (en) 2000-08-09 2009-02-05 Tecpharma Licensing Ag Device for dosing substances with continuous speech output
US6530904B1 (en) 2000-08-15 2003-03-11 Evan T. Edwards Medical injector
US6803856B1 (en) 2000-09-07 2004-10-12 Hewlett-Packard Development Company, L.P. Storage apparatus
AU2002211629A1 (en) 2000-10-10 2002-04-22 Microchips, Inc. Microchip reservoir devices using wireless transmission of power and data
US6953445B2 (en) 2000-10-10 2005-10-11 Meridian Medical Technologies, Inc. Wet/dry automatic injector assembly
US7621887B2 (en) 2000-10-10 2009-11-24 Meridian Medical Technologies, Inc. Wet/dry automatic injector assembly
US6770052B2 (en) 2000-10-10 2004-08-03 Meridian Medical Technologies, Inc. Wet/dry automatic injector assembly
WO2002032287A2 (en) 2000-10-17 2002-04-25 Schneider Patricia G Emergency medical dispensing card
FR2815544B1 (en) 2000-10-23 2003-02-14 Poudres & Explosifs Ste Nale SAFETY NEEDLE SYRINGE WITH COMPACT ARCHITECTURE
US6551298B1 (en) 2000-11-21 2003-04-22 Jack Y. Zhang Controlled medicament security enclosure system
SE518981C2 (en) 2000-12-14 2002-12-17 Shl Medical Ab autoinjector
US20020076679A1 (en) 2000-12-19 2002-06-20 Aman Craig S. Web enabled medical device training
US6387078B1 (en) 2000-12-21 2002-05-14 Gillespie, Iii Richard D. Automatic mixing and injecting apparatus
IL156245A0 (en) 2000-12-22 2004-01-04 Dca Design Int Ltd Drive mechanism for an injection device
DE10065160A1 (en) 2000-12-23 2002-06-27 Pfeiffer Erich Gmbh & Co Kg Device for detecting the actuation of a dispenser and dispenser
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
WO2002056822A1 (en) 2001-01-19 2002-07-25 Raimo Juselius Device for monitoring the administration of doses and system for monitoring the administration of doses
US6707763B2 (en) 2001-02-02 2004-03-16 Diduminder Corporation Closure cap including timer and cooperating switch member and associated methods
US6749437B2 (en) 2001-02-05 2004-06-15 Thinking Technology, Inc. Electronic display materials associated with products
WO2002068018A2 (en) 2001-02-23 2002-09-06 Stryker Instruments Integrated medication delivery system
GB0108228D0 (en) 2001-04-02 2001-05-23 Glaxo Group Ltd Medicament dispenser
US6817986B2 (en) * 2001-04-13 2004-11-16 Avant Medical Corp. Jet injector with data logging system for use in compliance and dose monitoring programs
US20050192530A1 (en) * 2001-04-13 2005-09-01 Penjet Corporation Method and apparatus for needle-less injection with a degassed fluid
US6539281B2 (en) 2001-04-23 2003-03-25 Accenture Global Services Gmbh Online medicine cabinet
CA2448264C (en) 2001-05-21 2016-06-21 Scott Laboratories, Inc. Label for a medical container
US6875208B2 (en) 2001-05-31 2005-04-05 Massachusetts Institute Of Technology Microchip devices with improved reservoir opening
US6585685B2 (en) 2001-06-08 2003-07-01 Bioject Inc. Jet injector apparatus and method
US6648850B2 (en) 2001-06-08 2003-11-18 Bioject, Inc. Durable needle-less jet injector apparatus and method
US6752781B2 (en) 2001-06-08 2004-06-22 Sergio Landau Durable hypodermic jet injector apparatus and method
US6711460B1 (en) 2001-06-18 2004-03-23 Diebold Incorporated Pharmaceutical system in which pharmaceutical care is provided by a remote professional serving multiple pharmacies
US7544188B2 (en) 2001-07-19 2009-06-09 Intelliject, Inc. Medical injector
US6747556B2 (en) 2001-07-31 2004-06-08 Medtronic Physio-Control Corp. Method and system for locating a portable medical device
WO2003015855A1 (en) 2001-08-09 2003-02-27 Becton, Dickinson And Company Retracting needle safety device
US20080177154A1 (en) 2001-08-13 2008-07-24 Novo Nordisk A/S Portable Device and Method Of Communicating Medical Data Information
US20030065536A1 (en) * 2001-08-13 2003-04-03 Hansen Henrik Egesborg Portable device and method of communicating medical data information
US6722916B2 (en) 2001-08-30 2004-04-20 Siemens Vdo Automotive Corporation Surface battery clip
JP2003070909A (en) 2001-08-30 2003-03-11 Japan Servo Co Ltd Transfusion device
MXPA04001859A (en) 2001-09-06 2004-06-15 Microdose Technologies Inc Adaptors for inhalers to improve performance.
US6875195B2 (en) 2001-09-19 2005-04-05 Soo Bong Choi Portable automatic insulin syringe device with blood sugar measuring function
US6723077B2 (en) 2001-09-28 2004-04-20 Hewlett-Packard Development Company, L.P. Cutaneous administration system
WO2003030974A1 (en) 2001-10-08 2003-04-17 Eli Lilly And Company Portable medication inhalation kit
US6494863B1 (en) 2001-10-15 2002-12-17 Retractable Technologies, Inc. One-use retracting syringe with positive needle retention
CA2465436A1 (en) 2001-11-02 2003-05-15 Meridian Medical Technologies, Inc. A medicament container, a medicament dispensing kit for administering medication and a method for packaging the same
DE60236949D1 (en) 2001-11-09 2010-08-19 Alza Corp PNEUMATICALLY DRIVEN AUTO INJECTOR
US6736796B2 (en) 2001-11-26 2004-05-18 Nili-Med Ltd. Fluid drug delivery device
CN1602212B (en) 2001-12-13 2010-04-07 松下电器产业株式会社 Administration instrument for medical use
US6952604B2 (en) 2001-12-21 2005-10-04 Becton, Dickinson And Company Minimally-invasive system and method for monitoring analyte levels
US20030120324A1 (en) 2001-12-26 2003-06-26 Osborn Brett A. System and method for remote programming of a medical device
CA2366887C (en) 2001-12-31 2011-11-01 Michael Petersen Replicate incorporating an electronic content monitoring system for use in form-fill-seal applications
US20030132128A1 (en) 2002-01-11 2003-07-17 Mazur David P. Container for syringe
US6985870B2 (en) 2002-01-11 2006-01-10 Baxter International Inc. Medication delivery system
GB0200637D0 (en) 2002-01-12 2002-02-27 Dca Design Int Ltd Improvements in and relating to medicament injection apparatus
WO2003068290A2 (en) 2002-02-11 2003-08-21 Antares Pharma, Inc. Intradermal injector
AU2003212498B2 (en) 2002-02-22 2008-09-18 G W Pharma Limited Dose dispensing system and apparatus
US6708050B2 (en) 2002-03-28 2004-03-16 3M Innovative Properties Company Wireless electrode having activatable power cell
AU2003247344A1 (en) 2002-04-16 2003-11-17 Rob Vann Teaching module and virtual library of modules
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US6743635B2 (en) 2002-04-25 2004-06-01 Home Diagnostics, Inc. System and methods for blood glucose sensing
US6946299B2 (en) 2002-04-25 2005-09-20 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
GB0210631D0 (en) 2002-05-09 2002-06-19 Glaxo Group Ltd Novel device
US7048141B2 (en) 2002-05-14 2006-05-23 Antioch Holdings, Inc. Personal medication dispenser
US6979316B1 (en) 2002-05-23 2005-12-27 Seedlings Life Science Ventures Llc Apparatus and method for rapid auto-injection of medication
ATE506894T1 (en) 2002-05-31 2011-05-15 Vidacare Corp DEVICE FOR ACCESSING BONE MARROW
EP1369139A1 (en) 2002-06-03 2003-12-10 3M Innovative Properties Company Dose indicators and dispensing canister-indicator assemblies
US6676630B2 (en) 2002-06-04 2004-01-13 Bioject Medical Technologies, Inc. Needle-free injection system
RU2209166C1 (en) 2002-06-07 2003-07-27 ООО "Марс" Package with sound reproduction
MY139059A (en) 2002-06-24 2009-08-28 Alza Corp Reusable, spring driven autoinjector
WO2004000392A1 (en) 2002-06-25 2003-12-31 Medrad, Inc. Devices, systems and methods for injecting multiple fluids into a patient
DE60335108D1 (en) 2002-07-02 2011-01-05 Panasonic Corp
JP2005532129A (en) 2002-07-10 2005-10-27 ノボ・ノルデイスク・エー/エス Syringe with dose setting limiter
US7278983B2 (en) 2002-07-24 2007-10-09 Medtronic Minimed, Inc. Physiological monitoring device for controlling a medication infusion device
CN100420426C (en) * 2002-08-08 2008-09-24 斯科特实验室公司 Resuscitation kit system and method and pre-use protocols for a sedation and analgesia system
US20040039337A1 (en) 2002-08-21 2004-02-26 Letzing Michael Alexander Portable safety auto-injector
GB0224505D0 (en) * 2002-10-22 2002-11-27 Medical House The Plc Needles injection device
WO2004041330A2 (en) 2002-11-05 2004-05-21 M 2 Medical A/S A disposable wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device
AU2002358977A1 (en) 2002-11-18 2004-06-15 Sergio Restelli Guard mechanism attached to standard syringe to transform it into a safety syringe
US20040116854A1 (en) 2002-12-12 2004-06-17 Abulhaj Ramzi F. Syringe retractable needle and method
EP1583571B1 (en) 2002-12-23 2008-02-13 M2 Medical A/S Medical dispensing device for insulin
US6767336B1 (en) 2003-01-09 2004-07-27 Sheldon Kaplan Automatic injector
WO2004073498A2 (en) 2003-02-14 2004-09-02 Brue Vesta L Medication compliance device
US6935384B2 (en) 2003-02-19 2005-08-30 Bioject Inc. Needle-free injection system
US6814265B2 (en) 2003-03-06 2004-11-09 Alcon, Inc. Device for dispensing fluid medicine
US7126879B2 (en) 2003-03-10 2006-10-24 Healthtrac Systems, Inc. Medication package and method
US7534107B2 (en) 2003-04-14 2009-05-19 The General Hospital Corporation Inoculation training kit
US7102526B2 (en) * 2003-04-25 2006-09-05 Stephen Eliot Zweig Electronic time-temperature indicator and logger
JP4443957B2 (en) 2003-04-28 2010-03-31 株式会社根本杏林堂 Leak detection device and method
US7351223B2 (en) 2003-05-05 2008-04-01 Physicians Industries, Inc. Infusion syringe with integrated pressure transducer
US20040267204A1 (en) 2003-06-26 2004-12-30 Brustowicz Robert M. On-demand needle retaining and locking mechanism for use in intravenous catheter assemblies
US20050027255A1 (en) 2003-07-31 2005-02-03 Sid Technologies, Llc Automatic injector
US20050055014A1 (en) 2003-08-04 2005-03-10 Coppeta Jonathan R. Methods for accelerated release of material from a reservoir device
US20050062603A1 (en) 2003-08-06 2005-03-24 Oren Fuerst Secure, networked and wireless access, storage and retrival system and method utilizing tags and modular nodes
US20060247578A1 (en) 2003-08-11 2006-11-02 Andrew Arguedas Powered automatic injection device
US7490021B2 (en) 2003-10-07 2009-02-10 Hospira, Inc. Method for adjusting pump screen brightness
US8065161B2 (en) 2003-11-13 2011-11-22 Hospira, Inc. System for maintaining drug information and communicating with medication delivery devices
US20050088289A1 (en) 2003-10-10 2005-04-28 Marc Rochkind Split-responsibility medication reminder system, and associated methods
US20050148931A1 (en) 2003-10-30 2005-07-07 Juhasz Paul R. Safety syringe
SG179415A1 (en) 2003-11-06 2012-04-27 Lifescan Inc Drug delivery pen with event notification means
US7494481B2 (en) 2004-12-03 2009-02-24 Medtronic Minimed, Inc. Multi-position infusion set device and process
US20050197654A1 (en) 2003-12-12 2005-09-08 Edman Carl F. Multiple section parenteral drug delivery apparatus
US7256682B2 (en) 2003-12-18 2007-08-14 Odin Technologies, Inc. Remote identification of container contents by means of multiple radio frequency identification systems
CH696421A5 (en) 2003-12-18 2007-06-15 Tecpharma Licensing Ag Autoinjector with arresting the drug container.
US20050148945A1 (en) 2003-12-24 2005-07-07 Chen Yong S. Medical syringe
US7604613B2 (en) 2004-01-20 2009-10-20 Beckton, Dickinson And Company Syringe having a retractable needle
GB2410188B (en) 2004-01-23 2006-01-25 Medical House Plc Injection device
US20050168337A1 (en) 2004-01-30 2005-08-04 Mahoney Jerome R. Wirelessly loaded speaking medicine container
WO2005074790A1 (en) 2004-02-06 2005-08-18 Koninklijke Philips Electronics, N.V. Telemetry system with out of range notification features
DK1715904T3 (en) 2004-02-18 2015-11-30 Ares Trading Sa Handheld electronically controlled injection device for injection of liquid drugs
US7263947B2 (en) 2004-02-24 2007-09-04 Harry Giewercer Extended use reminder device
CN1922836A (en) 2004-02-26 2007-02-28 诺和诺德公司 A method and a system for safe pairing of wireless communication devices
CA2559750C (en) 2004-03-31 2014-01-07 Eli Lilly And Company Injection apparatus having a needle cassette for delivering a pharmaceutical liquid
EP1740254B1 (en) * 2004-04-30 2019-12-25 Becton Dickinson and Company Systems and methods for administering a medical regimen
US7717874B2 (en) 2004-05-28 2010-05-18 Bioject, Inc. Needle-free injection system
GB0414054D0 (en) 2004-06-23 2004-07-28 Owen Mumford Ltd Improvements relating to automatic injection devices
JP4615926B2 (en) 2004-07-30 2011-01-19 テルモ株式会社 Wireless automatic recognition device (RFID) and automatic medicine recognition system
US7449012B2 (en) 2004-08-06 2008-11-11 Meridian Medical Technologies, Inc. Automatic injector
US20060074519A1 (en) 2004-08-27 2006-04-06 Barker Kenneth N Medication accuracy comparison system
DE102004042581B4 (en) 2004-09-02 2022-09-15 Ypsomed Ag Auto-Pen for dual-chamber ampoule
PL1786496T3 (en) 2004-09-03 2015-07-31 L O M Laboratories Inc Gas-actuated retractable syringe
US8150509B2 (en) * 2004-10-21 2012-04-03 Cardiac Pacemakers, Inc. Systems and methods for drug therapy enhancement using expected pharmacodynamic models
US7648483B2 (en) 2004-11-22 2010-01-19 Intelliject, Inc. Devices, systems and methods for medicament delivery
WO2006083876A2 (en) 2005-02-01 2006-08-10 Intelliject, Llc Devices, systems, and methods for medicament delivery
US7947017B2 (en) 2004-11-22 2011-05-24 Intelliject, Inc. Devices, systems and methods for medicament delivery
US7648482B2 (en) 2004-11-22 2010-01-19 Intelliject, Inc. Devices, systems, and methods for medicament delivery
AU2004231230A1 (en) 2004-11-23 2006-06-08 Anbil, Llc Powered automatic injection device
US20060116639A1 (en) 2004-11-29 2006-06-01 Russell Claudia J Total patient input monitoring
US7434686B2 (en) 2004-12-10 2008-10-14 Michael Prindle Auto-injector storage and dispensing system
US8249889B2 (en) 2005-01-31 2012-08-21 Hewlett-Packard Development Company, L.P. Providing information regarding a product
US9022980B2 (en) 2005-02-01 2015-05-05 Kaleo, Inc. Medical injector simulation device
US8361026B2 (en) 2005-02-01 2013-01-29 Intelliject, Inc. Apparatus and methods for self-administration of vaccines and other medicaments
US7731686B2 (en) 2005-02-01 2010-06-08 Intelliject, Inc. Devices, systems and methods for medicament delivery
US8206360B2 (en) 2005-02-01 2012-06-26 Intelliject, Inc. Devices, systems and methods for medicament delivery
US8231573B2 (en) 2005-02-01 2012-07-31 Intelliject, Inc. Medicament delivery device having an electronic circuit system
US8226610B2 (en) 2005-02-01 2012-07-24 Intelliject, Inc. Medical injector with compliance tracking and monitoring
EP1690560A1 (en) 2005-02-14 2006-08-16 Ares Trading S.A. Medication delivery device
EP1690559A1 (en) 2005-02-14 2006-08-16 Ares Trading S.A. Medication delivery device
DE102005007614A1 (en) 2005-02-18 2006-08-24 Tecpharma Licensing Ag Auto-injector with a release lock
US7828776B2 (en) 2005-04-11 2010-11-09 Nemoto Kyorindo Co., Ltd. Chemical liquid injection system
US7390319B2 (en) 2005-04-13 2008-06-24 Steven Friedman Automatic needle injector having safety triggering mechanism
NZ540250A (en) 2005-05-20 2008-04-30 Nexus6 Ltd Reminder alarm for inhaler with variable and selectable ring tone alarms
WO2006125692A1 (en) 2005-05-26 2006-11-30 Novo Nordisk A/S A dosing operation in a medical device
US20090143761A1 (en) * 2005-06-03 2009-06-04 Transdermal Patents Company, Llc Agent delivery system and uses of same
EP1893256B1 (en) 2005-06-16 2012-09-26 Novo Nordisk A/S Method and apparatus for assisting patients in self administration of medication
US7782189B2 (en) 2005-06-20 2010-08-24 Carestream Health, Inc. System to monitor the ingestion of medicines
US20070074722A1 (en) 2005-09-21 2007-04-05 Kurve Technology, Inc. Medicament delivery control, monitoring, and reporting system and method
US8992511B2 (en) 2005-11-09 2015-03-31 The Invention Science Fund I, Llc Acoustically controlled substance delivery device
US8357114B2 (en) 2006-01-06 2013-01-22 Acelrx Pharmaceuticals, Inc. Drug dispensing device with flexible push rod
US7514172B2 (en) 2006-01-25 2009-04-07 Eveready Battery Company, Inc. Battery controlled device that can operate with alternative size batteries
CN101379704B (en) 2006-01-31 2011-12-07 阿雷斯贸易股份有限公司 Injection device with a capacitive proximity sensor
US20070210147A1 (en) 2006-03-09 2007-09-13 Jack Morrone Pocket-size talking card or pamphlet device and packages containing the same
US20070239140A1 (en) 2006-03-22 2007-10-11 Revascular Therapeutics Inc. Controller system for crossing vascular occlusions
US8535286B2 (en) 2006-05-02 2013-09-17 Marlafin Ag Vibrating tampon apparatus with remote control
US7796038B2 (en) 2006-06-12 2010-09-14 Intelleflex Corporation RFID sensor tag with manual modes and functions
US7382268B2 (en) 2006-06-13 2008-06-03 Hartman Kevin L Device and method for tethering a person wirelessly with a cellular telephone
CN101484199B (en) 2006-06-30 2014-06-25 艾伯维生物技术有限公司 Automatic injection device
AU2007272253A1 (en) 2006-07-11 2008-01-17 Pcas Patient Care Automation Services Inc. Method, system and apparatus for dispensing drugs
US20080014550A1 (en) 2006-07-13 2008-01-17 Henry Schein, Inc. Dental handpiece performance sensor
US8044778B2 (en) 2007-07-12 2011-10-25 Henry Schein, Inc. Injection device and case with reporting ability
US20080160492A1 (en) 2006-08-08 2008-07-03 Insulet Corporation Interactive training system and method
US7772986B2 (en) 2006-09-18 2010-08-10 Vesstech, Inc. Verbal warning systems and other audible warning systems for use with various types of devices, containers, products and other things
US20080234625A1 (en) 2006-10-16 2008-09-25 Bruno Dacquay Fuse Assembly For Single Use Medical Device
US20090124996A1 (en) 2006-11-03 2009-05-14 Scott Heneveld Apparatus and methods for injecting high viscosity dermal fillers
DE102007026560A1 (en) 2007-06-08 2009-01-15 Tecpharma Licensing Ag Delivery device with axially movable indicator
US20090030285A1 (en) * 2007-07-25 2009-01-29 Andersen Bjorn K Monitoring of use status and automatic power management in medical devices
WO2009024562A1 (en) 2007-08-17 2009-02-26 Novo Nordisk A/S Medical device with value sensor
US20090062730A1 (en) 2007-09-01 2009-03-05 San Hoon Woo Control of body fluid condition using diuretics, based on biological parameters
EP2223544A1 (en) 2007-11-14 2010-09-01 Telefonaktiebolaget LM Ericsson (publ) Mobile terminal having in case of emergency state and method for entering such state
US9550031B2 (en) 2008-02-01 2017-01-24 Reciprocal Labs Corporation Device and method to monitor, track, map, and analyze usage of metered-dose inhalers in real-time
US8021344B2 (en) 2008-07-28 2011-09-20 Intelliject, Inc. Medicament delivery device configured to produce an audible output
EP2349412B1 (en) 2008-10-01 2019-07-24 Novo Nordisk A/S Medical assembly with monitoring device
US8208973B2 (en) 2008-11-05 2012-06-26 Medtronic Minimed, Inc. System and method for variable beacon timing with wireless devices
CA2745936A1 (en) 2008-12-11 2010-06-17 Sanofi-Aventis Deutschland Gmbh Medication delivery device
DK2393533T3 (en) 2009-02-05 2015-06-29 Sanofi Aventis Deutschland DELIVERY DEVICE FOR medications
NZ574666A (en) 2009-02-05 2009-04-30 Nexus6 Ltd A medicament inhaler holder that uses optical means to count and display the number of doses used
US20100214095A1 (en) 2009-02-20 2010-08-26 Davide Vicki C Locator system with audible location indicator
US9724475B2 (en) 2009-02-27 2017-08-08 Lifescan, Inc. Drug delivery management systems and methods
NZ575836A (en) 2009-03-27 2009-08-28 Nexus6 Ltd Improvements in or Relating to Medicament Delivery Systems
NZ575943A (en) 2009-04-01 2009-07-31 Nexus6 Ltd Improvements in or Relating to Medicament Delivery Devices
US20100268303A1 (en) 2009-04-19 2010-10-21 Mitchell William J Establishing a communication session between an implantable medical device and an external device using a burst period and a sniff interval
JP5666560B2 (en) 2009-04-30 2015-02-12 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Pen syringe with ergonomic button arrangement
US20100286612A1 (en) 2009-05-06 2010-11-11 William Cirillo Medication injection supervisor device
EP2453948B1 (en) 2009-07-15 2015-02-18 DEKA Products Limited Partnership Apparatus, systems and methods for an infusion pump assembly
US20110046698A1 (en) 2009-08-24 2011-02-24 Medtronic, Inc. Recovery of a wireless communication session with an implantable medical device
US8267310B2 (en) 2010-02-05 2012-09-18 Donald Waugh Method and apparatus for handling packages in an automated dispensary
CA2796123A1 (en) 2010-04-05 2011-10-13 Pcas Patient Care Automation Services Inc. Medication delivery and compliance system, method and apparatus
US8396447B2 (en) 2010-08-27 2013-03-12 Don Reich Emergency call notification system and method
RU2596879C2 (en) 2010-11-08 2016-09-10 Конинклейке Филипс Электроникс Н.В. System and method for exchanging duty-cycle information in wireless networks
US9084849B2 (en) 2011-01-26 2015-07-21 Kaleo, Inc. Medicament delivery devices for administration of a medicament within a prefilled syringe
US8939943B2 (en) 2011-01-26 2015-01-27 Kaleo, Inc. Medicament delivery device for administration of opioid antagonists including formulations for naloxone
US8627816B2 (en) 2011-02-28 2014-01-14 Intelliject, Inc. Medicament delivery device for administration of opioid antagonists including formulations for naloxone
CN103930141B (en) 2011-09-22 2017-04-26 艾伯维公司 Automatic injection device
ES2691492T3 (en) 2011-09-22 2018-11-27 Abbvie Inc. Syringe holder for an automatic injection device
NZ595367A (en) 2011-09-23 2012-02-24 Nexus6 Ltd A dose counting mechanism adapted to enclose a medicament delivery device
US10748449B2 (en) 2012-04-04 2020-08-18 Noble International, Inc. Medicament delivery training device
US9522235B2 (en) 2012-05-22 2016-12-20 Kaleo, Inc. Devices and methods for delivering medicaments from a multi-chamber container
GB2523512A (en) 2012-12-27 2015-08-26 Kaleo Inc Devices, systems and methods for locating and interacting with medicament delivery systems
US20140276413A1 (en) 2013-03-15 2014-09-18 Jeff Baker Medicament delivery and simulation system with a removable disposable container for medicament and a rotatable actuation component
AU2014232211B2 (en) 2013-03-15 2017-05-25 Windgap Medical, Inc. Portable drug mixing and delivery system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003758A1 (en) * 1999-07-10 2001-01-18 Baxter International Inc. Volumetric infusion pump with servo valve control
WO2006045525A1 (en) * 2004-10-21 2006-05-04 Novo Nordisk A/S Injection device with a processor for collecting ejection information
WO2006057636A1 (en) * 2004-11-22 2006-06-01 Intelliject, Llc Devices, systems, and methods for medicament delivery
WO2007126851A2 (en) * 2006-03-29 2007-11-08 Intelliject, Llc Devices, systems and methods for medicament delivery

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668670B2 (en) 2004-06-23 2014-03-11 Abbvie Biotechnology Ltd Automatic injection devices
US9017287B2 (en) 2004-06-23 2015-04-28 Abbvie Biotechnology Ltd Automatic injection devices
US9764090B2 (en) 2004-06-23 2017-09-19 Abbvie Biotechnology Ltd Relating to automatic injection devices
US9486584B2 (en) 2006-06-30 2016-11-08 Abbvie Biotechnology Ltd. Automatic injection device
US9572938B2 (en) 2006-06-30 2017-02-21 Abbvie Biotechnology Ltd Automatic injection device
WO2010023591A3 (en) * 2008-08-25 2010-04-22 Koninklijke Philips Electronics N.V. Respiratory drug delivery apparatus which provides audio instructions
US9555202B2 (en) 2008-08-25 2017-01-31 Koninklijke Philips N.V. Respiratory drug delivery apparatus which provides audio instructions
CN102159268A (en) * 2008-08-25 2011-08-17 皇家飞利浦电子股份有限公司 Respiratory drug delivery apparatus which provides audio instructions
WO2010023591A2 (en) 2008-08-25 2010-03-04 Koninklijke Philips Electronics N.V. Respiratory drug delivery apparatus which provides audio instructions
US10391263B2 (en) 2008-09-29 2019-08-27 Becton Dickinson France Injection device with retaining means actuated by needle shield
JP2012504007A (en) * 2008-09-29 2012-02-16 ベクトン ディキンソン フランス Injection device with holding means actuated by a needle shield
CN102176939A (en) * 2008-10-08 2011-09-07 阿斯利康(瑞典)有限公司 Inhaler with audible indicator means
EP2355858A4 (en) * 2008-11-11 2015-09-30 Kaleo Inc Apparatus and methods for self-administration of vaccines and other medicaments
WO2010112560A1 (en) * 2009-03-31 2010-10-07 Sanofi-Aventis Deutschland Gmbh Drug delivery device body
US9474861B2 (en) 2009-03-31 2016-10-25 Sanofi-Aventis Deutschland Gmbh Drug delivery device body
EP2414978B1 (en) * 2009-04-01 2018-12-19 Adherium (NZ) Limited Improvements in or relating to medicament delivery devices
WO2011083377A1 (en) * 2010-01-07 2011-07-14 Koninklijke Philips Electronics N.V. Respiratory drug delivery apparatus including a feedback and compliance device
US9352107B2 (en) 2010-01-07 2016-05-31 Koninklijke Philips N.V. Respiratory drug delivery apparatus including a feedback and compliance device
US8438044B2 (en) 2011-01-18 2013-05-07 Audiahealth, Llc Systems and methods combining print and audio technologies to deliver and personalize health information
US9878102B2 (en) 2011-01-24 2018-01-30 Abbvie Biotechnology Ltd. Automatic injection devices having overmolded gripping surfaces
US11565048B2 (en) 2011-01-24 2023-01-31 Abbvie Biotechnology Ltd. Automatic injection devices having overmolded gripping surfaces
US9443445B2 (en) 2012-03-02 2016-09-13 Abbvie Inc. Automatic injection training device
US11872375B2 (en) 2012-09-05 2024-01-16 E3D Agricultural Cooperative Association Ltd. Electronic auto-injection device
US9682200B2 (en) 2012-12-03 2017-06-20 Mylan Inc. System and method for medicament storage, dispensing, and administration
EP2925272A4 (en) * 2012-12-03 2016-08-31 Mylan Inc Medicament storage, dispensing, and administration system and method
US10398524B2 (en) 2012-12-03 2019-09-03 Mylan Inc. Medicament storage, dispensing, and administration system and method
US9566395B2 (en) 2012-12-03 2017-02-14 Mylan Inc Medicament storage, dispensing, and administration system and method
WO2014089083A1 (en) 2012-12-03 2014-06-12 Mylan Inc. Medicament storage, dispensing, and administration system and method
US9643770B2 (en) 2012-12-03 2017-05-09 Mylan Inc. System and method for medicament storage, dispensing, and administration
EP2939224A4 (en) * 2012-12-27 2016-09-07 Kaleo Inc Devices, systems and methods for locating and interacting with medicament delivery systems
WO2014106096A1 (en) 2012-12-27 2014-07-03 Kaleo, Inc. Devices, systems and methods for locating and interacting with medicament delivery systems
AU2013370281B2 (en) * 2012-12-27 2017-09-07 Kaleo, Inc. Devices, systems and methods for locating and interacting with medicament delivery systems
CN104981262A (en) * 2013-02-19 2015-10-14 诺和诺德股份有限公司 Rotary sensor module with axial switch
US10201664B2 (en) 2013-02-19 2019-02-12 Novo Nordisk A/S Dose capturing cartridge module for drug delivery device
WO2014128156A1 (en) * 2013-02-19 2014-08-28 Novo Nordisk A/S Rotary sensor module with axial switch
US9750886B2 (en) 2013-02-19 2017-09-05 Novo Nordisk A/S Drug delivery device with dose capturing module
US9833576B2 (en) 2013-02-19 2017-12-05 Novo Nordisk A/S Rotary sensor module with axial switch
US10417937B2 (en) 2013-03-28 2019-09-17 F. Hoffmann-La Roche Ag Training device for medicine injection devices and reset device for resetting such a training device
CN105228672A (en) * 2013-05-27 2016-01-06 诺和诺德股份有限公司 There is the delivery device and system that pre-set dose characteristics
WO2014191355A1 (en) * 2013-05-27 2014-12-04 Novo Nordisk A/S Drug delivery device and system with pre-set dose feature
US8807131B1 (en) 2013-06-18 2014-08-19 Isonea Limited Compliance monitoring for asthma inhalers
WO2014204511A3 (en) * 2013-06-18 2015-05-14 Isonea Limited Compliance monitoring for asthma inhalers
WO2015006701A2 (en) 2013-07-12 2015-01-15 Schuster Jeffrey A Acoustic based drug delivery monitor
US9649448B2 (en) 2013-11-21 2017-05-16 Novo Nordisk A/S Rotary sensor module with resynchronization feature
US11311678B2 (en) 2013-11-21 2022-04-26 Novo Nordisk A/S Rotary sensor assembly with space efficient design
US11052198B2 (en) 2013-11-21 2021-07-06 Novo Nordisk A/S Rotary sensor assembly with axial switch and redundancy feature
US10159797B2 (en) 2014-06-06 2018-12-25 Novo Nordisk A/S Logging device for drug delivery device
US10183119B2 (en) 2014-06-06 2019-01-22 Novo Nordisk A/S Logging device operated by drug delivery device
USRE49438E1 (en) 2014-06-06 2023-02-28 Novo Nordisk A/S Logging device for drug delivery device
WO2015185687A1 (en) * 2014-06-06 2015-12-10 Novo Nordisk A/S Logging device for drug delivery device
EP3233164A4 (en) * 2014-12-19 2018-09-19 Medaxor Pty. Ltd. Multi-use injection system
US11883260B2 (en) 2014-12-23 2024-01-30 Automed Patent Holdco, Llc Delivery apparatus, system and associated methods
WO2016101031A1 (en) * 2014-12-23 2016-06-30 Davoodi Pty Ltd Delivery apparatus, system and associated methods
US10869966B2 (en) 2015-02-20 2020-12-22 Regeneron Pharmaceuticals, Inc. Syringe systems, piston seal systems, stopper systems, and methods of use and assembly
US10182969B2 (en) 2015-03-10 2019-01-22 Regeneron Pharmaceuticals, Inc. Aseptic piercing system and method
US11406565B2 (en) 2015-03-10 2022-08-09 Regeneran Pharmaceuticals, Inc. Aseptic piercing system and method
WO2017120178A1 (en) * 2016-01-06 2017-07-13 Amgen Inc. Auto-injector with signaling electronics
US11154661B2 (en) 2016-01-06 2021-10-26 Amgen Inc. Auto-injector with signaling electronics
CN110234373B (en) * 2016-11-17 2022-07-15 希云捷达有限公司 Online real-time large-scale vaccination and data acquisition system
CN110234373A (en) * 2016-11-17 2019-09-13 希云捷达有限公司 Online mass vaccination campaign and data collection system in real time
US11547801B2 (en) 2017-05-05 2023-01-10 Regeneron Pharmaceuticals, Inc. Auto-injector
FR3105002A1 (en) 2019-12-19 2021-06-25 Aptar France Sas Fluid dispenser device
FR3105001A1 (en) 2019-12-19 2021-06-25 Aptar France Sas Fluid dispenser device
WO2021123611A1 (en) 2019-12-19 2021-06-24 Aptar France Sas Device for dispensing a fluid product
WO2021123613A1 (en) 2019-12-19 2021-06-24 Aptar France Sas Device for dispensing a fluid product
US11951294B2 (en) 2019-12-19 2024-04-09 Aptar France Sas Device for dispensing a fluid product
USD1007676S1 (en) 2021-11-16 2023-12-12 Regeneron Pharmaceuticals, Inc. Wearable autoinjector

Also Published As

Publication number Publication date
US8226610B2 (en) 2012-07-24
US10105489B2 (en) 2018-10-23
US20190030247A1 (en) 2019-01-31
US20150196711A1 (en) 2015-07-16
WO2008091838A3 (en) 2009-02-05
US20090024112A1 (en) 2009-01-22
US9278177B2 (en) 2016-03-08
US9327077B2 (en) 2016-05-03
US20130184649A1 (en) 2013-07-18
US20160235916A1 (en) 2016-08-18
EP2125075A2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
US10105489B2 (en) Medical injector with compliance tracking and monitoring
US10258735B2 (en) Apparatus and methods for self-administration of vaccines and other medicaments
US10726701B2 (en) Devices, systems and methods for locating and interacting with medicament delivery systems
KR102354959B1 (en) injection monitoring device
TWI608851B (en) Medicament delivery device
US20080033393A1 (en) Devices, systems and methods for medicament delivery
JP7427111B2 (en) Activation and detection system for auxiliary devices attached to drug delivery devices
JP2023511451A (en) An actuation system for an auxiliary device attached to a drug delivery device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08728022

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008728022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008728022

Country of ref document: EP