WO2008087104A1 - Procédé de détermination de la valeur d'un point de mesure, en particulier lors de la détermination de l'emplacement de contours, ainsi qu'appareil de mesure de précision optique - Google Patents

Procédé de détermination de la valeur d'un point de mesure, en particulier lors de la détermination de l'emplacement de contours, ainsi qu'appareil de mesure de précision optique Download PDF

Info

Publication number
WO2008087104A1
WO2008087104A1 PCT/EP2008/050314 EP2008050314W WO2008087104A1 WO 2008087104 A1 WO2008087104 A1 WO 2008087104A1 EP 2008050314 W EP2008050314 W EP 2008050314W WO 2008087104 A1 WO2008087104 A1 WO 2008087104A1
Authority
WO
WIPO (PCT)
Prior art keywords
quality
measuring
measuring point
edge
image
Prior art date
Application number
PCT/EP2008/050314
Other languages
German (de)
English (en)
Inventor
Susanne TÖPFER
Karina Weissensee
Gerhard Linss
Uwe Nehse
Original Assignee
Technische Universität Ilmenau
Mahr Okm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Ilmenau, Mahr Okm Gmbh filed Critical Technische Universität Ilmenau
Priority to EP08701448A priority Critical patent/EP2115695A1/fr
Publication of WO2008087104A1 publication Critical patent/WO2008087104A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Definitions

  • the invention relates to a method for determining the quality of a measuring point in edge location determination (edge detection), in particular in optical length measuring technology. Furthermore, the invention relates to a precision measuring device, in particular a coordinate measuring machine for the dimensional detection of workpieces.
  • Coordinate measuring devices are frequently used in optical length measuring technology.
  • a coordinate measuring machine is understood to mean a device with a plurality of drives whose respective position can be determined by means of scales, wherein the measuring sensor system can be moved relative to the workpiece in the 3 coordinates x, y and z.
  • the measuring sensor system can consist of one sensor or of several different sensors (multi-sensors).
  • the present method can be used on all coordinate measuring machines in which at least one image sensor is present as part of the measuring sensor system.
  • the present method can be used on all measuring devices that have at least one image sensor, but no movement axes (image sensor as a stand-alone solution), for example in automation technology.
  • WO 02/084215 A1 discloses a method for optimizing the target variables during optical precision measurement.
  • auxiliary parameters are first obtained from image information of a workpiece to be measured, from which subsequently control information for the influencing variables of these target variables be derived.
  • the auxiliary parameters are determined such that they have a similar extreme of the functional dependence of the influencing variables.
  • DE 196 54 067 A1 describes a method for measuring edges on workpieces. For this purpose, a scanning point is moved over an edge to be measured in such a way that the edge is cut in a plurality of adjacent points. From the measured distance values, the intersections of the trajectory and the measured edge are determined by interpolation.
  • WO 2004/103181 A1 relates inter alia. a method for recording the movement of the internal organs of the body, wherein an image of the organ is generated and from this the movement parameters of the organ are determined.
  • the edge location criterion is a mathematical calculation rule that determines the associated edge location from an intensity transition in the image. Depending on the nature of the intensity transition in the image, different edge location criteria are suitable for generating the measuring point. In edge detection in optical length metrology, however, measuring points are also generated which, for example, were recorded in image areas with a low contrast, and therefore have a higher probing uncertainty. Measuring points that were recorded with very good contrast, have a low Antastunsort. In known optical coordinate measuring devices, the quality of a measuring point is not recorded. Thus, all points in the subsequent calculation of the geometry elements are considered equivalent.
  • WO 2005/050133 A1 relates to a method for calculating geometry elements and links between these measurement points measured on the basis of a coordinate measuring machine.
  • the type of the geometric elements and the type of links should be found automatically by determining a match with mathematical models.
  • measurement points with a high uncertainty with the same priority are taken into account in the geometry element calculation as measuring points with a low uncertainty. Consequently, not all the information available by the image sensor is used to solve the measurement task.
  • the calculated geometric element may have positional and shape errors that would not occur or only to a limited extent if the different quality of the measuring points were taken into account.
  • the invention is characterized in particular by the fact that not only the per se known determination of the position of a measuring point P (x, y) in a sensor coordinate system by evaluating a measuring signal with image data I (x, y) is carried out to determine the quality of a measuring point.
  • the determination of the quality of the measuring signal I and the determination of a quality index Q k which represents the quality of the measuring signal I at the measuring point P (x, y), take place according to the invention.
  • the position data and the quality index are combined to form a "complete" quality-valued measuring point P (x, y, Q ⁇ ).
  • FIG. 1 shows a basic structure of a known coordinate measuring machine, with which the inventive method can be performed
  • FIG. 4 shows a flow chart of the method according to the invention for the determination of a measuring point and the evaluation of the quality of the measuring point.
  • 1 shows by way of example the construction of a coordinate measuring apparatus (CMM) with which the method according to the invention can be carried out.
  • the coordinate measuring machine comprises a plurality of drives with slides 5, 6 and 8, whose respective position can be determined by means of linear scales Ia, Ib and Ic.
  • the carriages can be moved linearly along the coordinate axes x, y, z with the aid of the drives. In this case, the position of the respective carriages 5, 6 and 8 via the reading of an unillustrated reading heads, the associated
  • the CMM may have an axis of rotation 4, the position of which is determined with respect to an angle coordinate ⁇ via an angular measuring standard Id.
  • the drives and their carriages 5, 6, 8 are fastened to a base frame 2 or, in the case of the z-slide 8, to a z-pillar 3.
  • a workpiece 9 to be measured is either clamped on the axis of rotation 4 or fixed on a measuring table 10.
  • the measuring sensor system is an image sensor 7, which additionally has lighting devices and a corresponding imaging system.
  • the measuring sensor system can be moved relative to the workpiece 9 in the four coordinates x, y, z and ⁇ .
  • the measuring sensor can consist of a single sensor or several different sensors (multi-sensor).
  • a computer 11 This can be used simultaneously for the evaluation of the image information supplied by the image sensor 7.
  • the method according to the invention can be applied to all coordinate measuring machines in which at least one image sensor is present as part of the measuring sensor system. Instead of a CMM, simpler tasks such as acquiring the geometry of flattening In mass production, a much simpler gauge with only two or one axis of motion or without any relative movement between the image sensor and the workpiece can be used. The method according to the invention therefore does not depend on the use and special structure of the coordinate measuring device.
  • quality of a measuring point includes the evaluation of the suitability of the optical intensity profile at an edge of the workpiece to be measured for the precise location of the edge
  • An edge contains a change of the average intensity in the image stochastic errors. Systematic errors are not considered, as they can be detected and corrected by appropriate correction or calibration procedures.
  • the analysis of the intensity profile at an edge in the image serves as the basis for the determination of the quality of the measurement point, which is determined from this intensity profile.
  • the evaluation of the quality of the measuring point with the help of various quality indicators is shown in FIG.
  • the formulas for determining the quality indices are shown in the appended FIG. 3 and will be explained in more detail below.
  • the edge location is determined search-beam-based in the example explained in more detail below. Therefore, in all given formulas and equations (FIG. 3), the intensity I of the pixels always depends only on one spatial coordinate, namely the search beam coordinate x s . However, the edge location can not be determined search-beam-based.
  • the type of edge location determination in the sense of search-beam-based (evaluation of I (x s )) or not search-beam-based (evaluation of I (x, y)) is irrelevant to the applicability of the present method.
  • FIG. 4 shows the basic sequence of the method.
  • the method initially starts in a manner known per se with the determination of the measurement scene and the acquisition of an image, wherein an optical image is generated on the image sensor.
  • the image data I (x, y) of each individual pixel recorded by the image sensor are transmitted as measurement signal I to a processing unit, of which the following
  • Image processing is carried out, performing the method according to the invention.
  • the edge location determination initially takes place in a manner known per se, which need not be explained in more detail here.
  • a measurement field (AOI) in the recorded image is expediently selected before executing the edge location determination.
  • AOI a measurement field in the recorded image
  • search beams which intersect the edge to be found (ideally orthogonal).
  • the signal curve recorded by the image sensor, i. the measurement signal I corresponds to the intensity profile along a search beam (FIG. 2).
  • An essential core idea of the invention is the completely independent evaluation of the signal curve I (x s ) on the one hand for the determination of the edge location and on the other hand for the determination of the quality information.
  • the edge location determination (left branch in FIG. 4) yields as a result in each case a measuring point P (x, y) in the sensor coordinate system (SCS).
  • the measuring point P (x, y) denotes a point on the search beam which has been detected as an edge location.
  • Measurement signal along the search beam determines (right branch in Fig. 4).
  • the quality of the signal curve is determined for each individual measuring point.
  • Parallel processing is not necessarily to be understood as simultaneous, but in the sense of a determination of quality independent of the edge location determination. This corresponds to the separation of the measurement from the quality evaluation of the measurement signal.
  • Q K provides information about the quality of the measuring signal representing it.
  • the quality information on the suitability of the signal curve for precise edge location determination is combined with the coordinates of the measured edge location and yields the quality-evaluated measurement point P (x, y, Q ⁇ ) in the local sensor coordinate system (SCS) of the image sensor.
  • Q K is the quality index which contains the quantitative information about the "quality of the measuring signal.” Since this value is assigned directly to the respective measuring point, as illustrated in Fig. 4, this value is also referred to as "quality of the measuring point" ,
  • the value range of quality codes is between 0 and 100.
  • the explained method of determining the quality of individual measuring points can be used in the evaluation of each individual search beam.
  • the quality indicators obtained can be evaluated statistically, so that ultimately a statement about the quality of the found / measured edge can be made.
  • the determination of the quality of the measurement points can also be limited to selected search beams, for example in order to reduce the computational effort.
  • the methods for calculating the quality index Q K for the quality of a measuring point are based on the known signal-theoretical relationships in the image recording with areal image sensors. In the calculation of the quality index Q ⁇ for the quantitative determination of the quality of the measurement signal or of the intensity profile, no default values are used with regard to the variable to be measured.
  • the quality index Q ⁇ for the quality of a measuring point can be composed of any number of individual quality indicators.
  • five individual criteria (quality indicators) are used for the evaluation of the quality of a measuring point.
  • the formulas for the calculation of the individual quality indices are shown in FIG. This quality score system does not contain redundancies, that is, one and the same feature of the intensity history is not scored twice.
  • the quality index for the edge increase Q A is in the simplest case from the two intensity measurements above and determined below the mean level I E. The larger the increase, the more accurate the edge location can be calculated.
  • the ideal waveform corresponds to a jump input, which is imaged by the diffraction-limited optical imaging system on the image sensor and there depending on the
  • the overall quality of the measuring point is formed by weighted addition.
  • the five individual criteria are e.g. Noise, edge width, edge slope, edge uniqueness and edge shape.
  • the weighting of the individual criteria can be varied with each other or even criteria can be disregarded. This can be useful for computations that do not run on a PC, for computational reasons.
  • Iint ⁇ mean intensity in the interval Int ⁇ (x s ) - Dirac momentum b k - measured edge width b k , ideal ⁇ ideal edge width

Abstract

L'invention concerne un procédé et un appareil destinés à déterminer la valeur d'un point de mesure au moyen de capteurs d'image, en particulier lors de la détection de contours dans la technique de longimétrie optique. Selon l'invention, la réception d'une image optique a lieu au moyen d'un capteur d'image et la détection d'un signal de mesure I au moyen de données d'image I (x,y) pour les pixels du capteur d'image. Grâce à l'évaluation des données d'image I (x,y), la position d'un point de mesure P (x,y) est déterminée dans un système de coordonnées de capteur. Parallèlement à cela, la détermination de la valeur du signal de mesure I a lieu indépendamment de la détermination de position du point de mesure P(x,y) et la détection d'un indice de qualité QK, qui représente la valeur du signal de mesure I au point de mesure P (x,y). Enfin, les données de position et l'indice de qualité pour la définition d'un point de mesure P (x,y,QK) dont la valeur est évaluée sont réunis dans le système de coordonnées de capteur. Le procédé peut être utilisé sur tous les appareils de mesure de coordonnées, dans lesquels au moins un capteur d'image est présent en tant que partie de la technologie des capteurs de mesure.
PCT/EP2008/050314 2007-01-15 2008-01-12 Procédé de détermination de la valeur d'un point de mesure, en particulier lors de la détermination de l'emplacement de contours, ainsi qu'appareil de mesure de précision optique WO2008087104A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08701448A EP2115695A1 (fr) 2007-01-15 2008-01-12 Procédé de détermination de la valeur d'un point de mesure, en particulier lors de la détermination de l'emplacement de contours, ainsi qu'appareil de mesure de précision optique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007003060A DE102007003060A1 (de) 2007-01-15 2007-01-15 Verfahren zur Bestimmung der Güte eines Messpunktes bei der Kantendetektion in der optischen Längenmesstechnik
DE102007003060.8 2007-01-15

Publications (1)

Publication Number Publication Date
WO2008087104A1 true WO2008087104A1 (fr) 2008-07-24

Family

ID=39267747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050314 WO2008087104A1 (fr) 2007-01-15 2008-01-12 Procédé de détermination de la valeur d'un point de mesure, en particulier lors de la détermination de l'emplacement de contours, ainsi qu'appareil de mesure de précision optique

Country Status (3)

Country Link
EP (1) EP2115695A1 (fr)
DE (1) DE102007003060A1 (fr)
WO (1) WO2008087104A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104165894A (zh) * 2014-06-23 2014-11-26 中国计量学院 一种用于曲面工件表面缺陷的检测装置
CN108107860A (zh) * 2017-12-26 2018-06-01 内蒙古蒙牛乳业(集团)股份有限公司 确定检测工艺的方法及系统
DE102017212339A1 (de) 2017-07-19 2019-01-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bewertung von Bildausschnitten für eine Korrespondenzbildung
JP2020525961A (ja) * 2017-07-03 2020-08-27 ボリュームグラフィックス ゲーエムベーハーVolume Graphics Gmbh 物体の測定から測定データにおける不確定性を判定する方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008025896A1 (de) 2008-05-23 2009-11-26 Landesamt für Mess- und Eichwesen Thüringen Verfahren zur Ermittlung der Messunsicherheit bei der Geometriemessung
DE102010037746B4 (de) 2010-09-23 2013-01-24 Carl Mahr Holding Gmbh Verfahren zum optischen Antasten einer Kante in oder an einem Oberflächenbereich
DE102018218095B4 (de) 2018-09-28 2022-01-13 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zur Kantenermittlung eines Messobjekts in der optischen Messtechnik und Koordinatenmessgerät

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084215A1 (fr) * 2001-04-18 2002-10-24 Carl Zeiss Procede de reglage automatique de la distance focale et de l'eclairage, ainsi que de demarrage objective du palpage de la position d'arete dans la technique de mesure de precision optique

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19654067A1 (de) * 1996-10-21 1998-04-23 Zeiss Carl Fa Verfahren zur Vermessung von Kanten an Werkstücken
US5969273A (en) * 1998-02-12 1999-10-19 International Business Machines Corporation Method and apparatus for critical dimension and tool resolution determination using edge width
CN1791359A (zh) * 2003-05-21 2006-06-21 皇家飞利浦电子股份有限公司 记录身体器官的运动的设备和方法
WO2005050133A1 (fr) 2003-11-14 2005-06-02 Werth Messtechnik Gmbh Procede de mesure automatique a l'aide d'appareils de mesure de coordonnees
JP5069814B2 (ja) * 2004-11-19 2012-11-07 株式会社ホロン 測定値の判定方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084215A1 (fr) * 2001-04-18 2002-10-24 Carl Zeiss Procede de reglage automatique de la distance focale et de l'eclairage, ainsi que de demarrage objective du palpage de la position d'arete dans la technique de mesure de precision optique

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GEORGESCU B ET AL: "Edge detection with embedded confidence", IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE, IEEE SERVICE CENTER, LOS ALAMITOS, CA, US, vol. 23, no. 12, 1 December 2001 (2001-12-01), pages 1351 - 1365, XP011094035, ISSN: 0162-8828 *
KHVOROSTOV P V ET AL: "EDGE QUALITY METRIC FOR ARBITRARY TWO-DIMENSIONAL EDGES", OPTICAL ENGINEERING, SOC. OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS. BELLINGHAM, US, vol. 35, no. 11, 1 November 1996 (1996-11-01), pages 3222 - 3226, XP000638619, ISSN: 0091-3286 *
LAKARE S ET AL: "3D digital cleansing using segmentation rays", PROCEEDINGS VISUALIZATION 2000. VIS 2000. SALT LAKE CITY, UT, OCT. 8 - 13, 2000; [ANNUAL IEEE CONFERENCE ON VISUALIZATION], LOS ALAMITOS, CA : IEEE COMP. SOC, US, 8 October 2000 (2000-10-08), pages 37 - 44, XP010524583, ISBN: 978-0-7803-6478-3 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104165894A (zh) * 2014-06-23 2014-11-26 中国计量学院 一种用于曲面工件表面缺陷的检测装置
CN104165894B (zh) * 2014-06-23 2017-08-08 中国计量学院 一种用于曲面工件表面缺陷的检测装置
JP2020525961A (ja) * 2017-07-03 2020-08-27 ボリュームグラフィックス ゲーエムベーハーVolume Graphics Gmbh 物体の測定から測定データにおける不確定性を判定する方法
JP7206249B2 (ja) 2017-07-03 2023-01-17 ボリュームグラフィックス ゲーエムベーハー 物体の測定から測定データにおける不確定性を判定する方法
DE102017212339A1 (de) 2017-07-19 2019-01-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bewertung von Bildausschnitten für eine Korrespondenzbildung
WO2019015877A1 (fr) 2017-07-19 2019-01-24 Robert Bosch Gmbh Procédé et dispositif pour l'évaluation de sections d'images pour un calcul de correspondance
US11100624B2 (en) 2017-07-19 2021-08-24 Robert Bosch Gmbh Method and device for analyzing image sections for a correspondence calculation
CN108107860A (zh) * 2017-12-26 2018-06-01 内蒙古蒙牛乳业(集团)股份有限公司 确定检测工艺的方法及系统

Also Published As

Publication number Publication date
EP2115695A1 (fr) 2009-11-11
DE102007003060A1 (de) 2008-07-17

Similar Documents

Publication Publication Date Title
EP3278302B1 (fr) Système de mesure de déplacement d'une machine et procédé de fonctionnement du système de mesure de déplacement
EP2040026B1 (fr) Procédé et système de calibrage d'un appareil de mesure de la forme d'une surface réfléchissante
DE3424806C2 (fr)
EP1711777B2 (fr) Procede pour determiner la position et le mouvement relativ d'un objet dans un espace
EP2108105B1 (fr) Procédé de détermination d'une grandeur d'influence sur l'excentricité dans un dispositif de mesure d'angle
DE102014206309B4 (de) System und Verfahren zum Erhalten von Bildern mit Versatz zur Verwendung für verbesserte Kantenauflösung
EP1488191B1 (fr) Procede pour determiner et corriger des erreurs de conduite dans un appareil de mesure de coordonnees
WO2008087104A1 (fr) Procédé de détermination de la valeur d'un point de mesure, en particulier lors de la détermination de l'emplacement de contours, ainsi qu'appareil de mesure de précision optique
EP1910779B1 (fr) Procede pour corriger les erreurs d'interpolation d'une machine, notamment d'un appareil de mesure de coordonnees
WO2001088471A1 (fr) Procede et dispositif pour determiner la forme en trois dimensions d'un objet
EP2133659A1 (fr) Procédé et dispositif destinés à la détermination de la position d'un capteur
DE102014106837A1 (de) Driftkompensation / Parallelminimierung
EP2865988B1 (fr) Capteur de profil optique
DE102014106839A1 (de) Driftkompensation / Einschränkung des Lösungsraums
DE102019102927A1 (de) Verfahren und Vorrichtung zum Bestimmen von dimensionalen und/oder geometrischen Eigenschaften eines Messobjekts
EP1316777A1 (fr) Procédé et dispositif de mesure en trois dimensions de pièces usinées sur une machine-outil
EP2578988A1 (fr) Interféromètre de trame de cohérence et procédé de mesure optique à résolution spatiale de la géométrie de surface d'un objet
DE10214489A1 (de) Verfahren zur Bestimmung und Korrektur von Führungsfehlern bei einem Koordinatenmeßgerät
DE3909855A1 (de) Verfahren zur lagerbestimmung einer positionierbaren flaeche sowie lagegeber
DE102011000088A1 (de) Verfahren zur Ermittlung eines Verfahrweges bei der Messung von Strukturen eines Objekts
DE102018208189B4 (de) Verfahren und Vorrichtung zum Ermitteln der Torsionsfehler einer Maschinenachse
EP0479759B1 (fr) Procédé et dispositif pour la mesure de longueurs ou d'angles
DE4434233A1 (de) Verfahren und Anordnung zur berührungslosen dreidimensionalen Messung, insbesondere von ungleichförmig bewegten Meßobjekten
DE10001800C2 (de) Verfahren und Vorrichtung zur Messung insbesondere von Oberflächentopologien in mikroskopischer Auflösung
DE102015117276B4 (de) Verfahren und Vorrichtung zum Vermessen eines Messobjekts mit verbesserter Messgenauigkeit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08701448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008701448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008701448

Country of ref document: EP