WO2008081011A1 - Dérivés de n-méthyl carboxamide utiles comme fongicides - Google Patents

Dérivés de n-méthyl carboxamide utiles comme fongicides Download PDF

Info

Publication number
WO2008081011A1
WO2008081011A1 PCT/EP2008/050003 EP2008050003W WO2008081011A1 WO 2008081011 A1 WO2008081011 A1 WO 2008081011A1 EP 2008050003 W EP2008050003 W EP 2008050003W WO 2008081011 A1 WO2008081011 A1 WO 2008081011A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
halogen atoms
alkyl
het
atom
Prior art date
Application number
PCT/EP2008/050003
Other languages
English (en)
Inventor
Pierre-Yves Coqueron
Philippe Desbordes
Rüdiger Fischer
Oliver Gaertzen
Pierre Genix
Marie-Claire Grosjean-Cournoyer
Benoît HARTMANN
Klaus Kunz
Darren Mansfield
Amos Mattes
Oswald Ort
Alain Villier
Original Assignee
Bayer Cropscience Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Sa filed Critical Bayer Cropscience Sa
Publication of WO2008081011A1 publication Critical patent/WO2008081011A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles

Definitions

  • the present invention relates to novel N-methyl carboxamide derivatives, their process of preparation, their use as fungicides, particularly in the form of fungicidal compositions, and methods for the control of phytopathogenic fungi of plants using these compounds or their compositions.
  • the present invention relates to a N-methyl carboxamide derivative of general formula (I)
  • - n is 1, 2, 3 or 4;
  • - X is a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro- ⁇ 6 -sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a carbamoyl group, a N- hydroxycarbamoyl group, a carbamate group, a (hydroxyimino)-Ci-C6-alkyl group, a Ci-Cs-alkyl, a C 2 -C 8 -alkenyl, a C 2 -C 8 -alkynyl, a tri(Ci-C 8 -alkyl)silyl, a Ci-C 8 - alkylamino, a di-Ci-C 8 -alkylamino, a Ci
  • - A is an oxygen atom, a NR 4 group, a sulphur atom, a sulphinyl group, a sulphonyl group or a SiR 4 R 5 group;
  • R 1 and R 2 are chosen independently of each other as a hydrogen atom, a halogen atom, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a carbamoyl group, a N-hydroxycarbamoyl group, a carbamate group, a (hydroxyimino)-Ci-C 6 -alkyl group, a Ci-C 6 -alkyl, a C 2 -C 6 -alkenyl, a C 2 -C 6 -alkynyl, a tri(Ci-C 8 -alkyl)silyl, a Ci-C 6 -alkylamino, a di-Ci-C 6 -alkylamino, a Ci-C 6 -alkoxy, a Ci-C ⁇ -halogenoalkyl having 1
  • - R 3 is a hydrogen atom, a d-C 6 -alkyl, or a d-d-cycloalkyl; - R 4 and R 5 are chosen independently of each other as being a hydrogen atom or a Ci-C ⁇ -alkyl; and
  • Het represents a 5-, 6- or 7-membered non-fused heterocycle with one, two or three heteroatoms which may be the same or different, Het being linked by a carbon atom and Het being substituted by one or further substituents chosen from a halogen atom, a nitro group, a cyano group, a sulfanyl group, a pentafluoro- ⁇ 6 - sulfanyl group, a d-Cg-alkyl, a Ci-Cs-halogenoalkyl having 1 to 5 halogen atoms, a C 2 -C 8 -alkenyl, a C 2 -C 8 -alkynyl, a Ci-Cs-alkoxy, a Ci-Cs-halogenoalkoxy having 1 to 5 halogen atoms, a d-C 8 -alkoxy-C 2 -C 8 -alkenyl, a Ci-Cs-alkyls
  • - halogen means fluorine, bromine, chlorine or iodine
  • an alkyl group, an alkenyl group, and an alkynyl group as well as moieties containing these terms, can be linear or branched;
  • - heteroatom means sulphur, nitrogen or oxygen.
  • any of the compounds of the present invention can exist in one or more optical or chiral isomer forms depending on the number of asymmetric centres in the compound.
  • the invention thus relates equally to all the optical isomers and to their racemic or scalemic mixtures (the term "scalemic” denotes a mixture of enantiomers in different proportions), and to the mixtures of all the possible stereoisomers, in all proportions.
  • the diastereoisomers and/or the optical isomers can be separated according to the methods which are known per se by the man ordinary skilled in the art.
  • any of the compounds of the present invention can also exist in one or more geometric isomer forms depending on the number of double bonds in the compound.
  • the invention thus relates equally to all geometric isomers and to all possible mixtures, in all proportions.
  • the geometric isomers can be separated according to general methods, which are known per se by the man ordinary skilled in the art.
  • any of the compounds of general formula (I) wherein X represents a hydroxy, a sulfanyl group or an amino group may be found in its tautomeric form resulting from the shift of the proton of said hydroxy, sulfanyl or amino group.
  • Such tautomeric forms of such compounds are also part of the present invention. More generally speaking, all tautomeric forms of compounds of general formula (I) wherein X represents a hydroxy, a sulfanyl group or an amino group, as well as the tautomeric forms of the compounds which can optionally be used as intermediates in the preparation processes, and which will be defined in the description of these processes, are also part of the present invention.
  • the 2-pyridyl moiety of compound of general formula (I) may be substituted in any position by (X) n , X and n being as defined above.
  • the present invention relates to N-methyl carboxamide derivative of general formula (I) in which the different characteristics may be chosen alone or in combination as being :
  • n 1 or 2;
  • X is chosen as being a halogen atom, a cyano group, a (hydroxyimino)-Ci-C6-alkyl group, a d-Cg-alkyl, a C 2 -C 8 -alkenyl, a C 2 -C 8 -alkynyl, a tri(Ci-C8-alkyl)silyl, a Ci-Cs-alkoxy, a Ci-C ⁇ -haloalkyl group, a Ci-Cs- halogenoalkoxy having 1 to 5 halogen atoms, a Cs-Cs-cycloalkyl or a C3-C8- halogenocycloalkyl having 1 to 5 halogen atoms.
  • the carbon atom of the methylene moiety of compound of formula (I) is substituted by R 1 and R 2 ; R 1 and R 2 being as defined above.
  • the present invention also relates to N-methyl carboxamide derivative of general formula (I) in which R 1 and R 2 are chosen independently of each other as being a hydrogen atom, a halogen atom, a Ci-Cs-alkyl, a C 2 -Cs-alkenyl, a C 2 -C 8 -alkynyl, a tri(Ci-C8-alkyl)silyl, a Ci-Cs-alkoxy, a Ci-C ⁇ -haloalkyl group, a Ci-C8-halogenoalkoxy having 1 to 5 halogen atoms, a Cs-Cs-cycloalkyl or a C3-C8- halogenocycloalkyl having 1 to 5 halogen atoms.
  • the "A" atom of compound of formula (I) is chosen as being an oxygen atom, a NR 4 group, a sulphur atom, a sulphinyl group, a sulphonyl group or a SiR 4 R 5 group; R 4 and R 5 being as defined above.
  • the present invention also relates to N-methyl carboxamide derivative of general formula (I) in which the different characteristics may be chosen alone or in combination as being : - A is chosen as being an oxygen atom, a nitrogen atom, a sulphur atom; and
  • R 4 and R 5 are chosen independently of each other as being a Ci-C ⁇ -alkyl.
  • the nitrogen atom of the carboxamide moiety of the compound of formula (I) is substituted by R 5 , R 5 being a hydrogen atom, a Ci-C ⁇ -alkyl or a C 3 -C 7 -cycloalkyl.
  • R 5 being a hydrogen atom, a Ci-C ⁇ -alkyl or a C 3 -C 7 -cycloalkyl.
  • the C 3 -Cy-cycloalkyl is cyclopropyl.
  • Het of the compound of general formula (I) is a 5-, 6- or 7-membered non-fused heterocycle with one, two or three heteroatoms which may be the same or different, Het being linked by a carbon atom and being optionally substituted.
  • the present invention also relates to N- methyl carboxamide derivative of general formula (I) in which the different characteristics may be chosen alone or in combination as being :
  • - Het is chosen as being a 2-furan, 3-furan, 4,5-dihydro-3-furan, 2-thiophene, 3- thiophene, 2-pyrrole, 3-pyrrole, 5-oxazole, 4-oxazole, 5-thiazole, 4-thiazole, 5- pyrazole, 4-pyrazole, 3-pyrazole, 3-isoxazole, 4-isoxazole, 5-isoxazole, 3-isothiazole, 4-1,2,3-triazole, 4-thiadiazole, 5-thidiazole, 2-pyridine, 3-pyridine, 4-pyridine, 2- oxathiine, 4,5dihydro-3-pyran, 4,5dihydro-2-thiopyran, 4,5dihydro-3-thiopyran or 2- pyrazine;
  • - Het is substituted in ortho position by a halogen atom, a d-Cg-alkyl, a C 1 -C 8 - halogenoalkyl having 1 to 5 halogen atoms, a Ci-Cs-alkoxy or a C 1 -C 8 - halogenoalkoxy having 1 to 5 halogen atoms; and
  • - Het is substituted in any other position by a halogen atom or a d-Cs-alkyl.
  • Het of the compound of general formula (I) may be a five membered ring heterocycle.
  • Specific examples of compounds of the present invention where Het is a five membered heterocycle include : * Het represents a heterocycle of the general formula (Het-1)
  • R 6 and R 7 may be the same or different and may be a hydrogen atom, a halogen atom, an amino group, a nitro group, a d-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms; and
  • R 8 may be a halogen atom, a nitro group, a d-C 4 -alkyl or a C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms.
  • Het represents a heterocycle of the general formula (Het-2)
  • - R 9 may be a hydrogen atom, a halogen atom , a d-C 4 -alkyl or a C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms
  • - R 10 and R 11 may be the same or different and may be a hydrogen atom, a halogen atom, an amino group, a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms; provided that the R 9 and R 11 are not both a hydrogen atom.
  • Het represents a heterocycle of the general formula (Het-3)
  • R 12 may be a halogen atom, a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms;
  • R 13 may be a hydrogen atom, a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms.
  • Het represents a heterocycle of the general formula (Het-4)
  • R 14 and R 15 may be the same or different and may be a hydrogen atom, a halogen atom, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, a
  • R 16 may be a halogen atom, a cyano group, a Ci-C 4 -alkyl, a C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms or a Ci-C 4 -halogenoalkoxy having 1 to 5 halogen atoms.
  • Het represents a heterocycle of the general formula (Het-5)
  • R 17 and R 18 may be the same or different and may be a hydrogen atom, a halogen atom, a Ci -C h alky 1, a Ci -C h alky loxy or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms; and
  • R 19 may be a hydrogen atom, a halogen atom, a Ci-C 4 -alkyl or a C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms; provided that the R 18 and R 19 are not both a hydrogen atom.
  • Het represents a heterocycle of the general formula (Het-6)
  • R 20 may be a hydrogen atom, a halogen atom, a cyano group, a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms;
  • R 21 and R 23 may be the same or different and may be a hydrogen atom, a halogen atom, a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms;
  • R 22 may be a hydrogen atom, a cyano group, a Ci-C 4 -alkyl, a C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, a Ci-C 4 -alkoxy-Ci-C 4 -alkyl, a hydroxy- Ci-C 4 -alkyl, a Ci-C 4 -alkylsulphonyl, a di(Ci-C 4 -alkyl)aminosulphonyl, a C 1 -C 6 - alkylcarbonyl, a phenylsulphonyl optionally substituted by a halogen atom or a Ci- C 4 -alkyl, or a benzoyl optionally substituted by a halogen atom or a Ci-C 4 -alkyl; provided that the R 20 and R 23 are not both a hydrogen atom.
  • Het represents a heterocycle of the general formula (Het-7)
  • - R 24 may be a hydrogen atom, a cyano group, a Ci-C4-alkyl, a C1-C4- halogenoalkyl having 1 to 5 halogen atoms, a Ci-C 4 -alkoxy-Ci-C 4 -alkyl, a hydroxy- Ci-C 4 -alkyl, a Ci-C 4 -alkylsulphonyl, a di(Ci-C 4 -alkyl)aminosulphonyl, a C 1 -C 6 - alkylcarbonyl, a phenylsulphonyl optionally substituted by a halogen atom or a C 1 - C 4 -alkyl, or a benzoyl optionally substituted by a halogen atom or a Ci-C 4 -alkyl; and
  • R 25 , R 26 and R 27 may be the same or different and may be a hydrogen atom, a halogen atom, a cyano group, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms or a Ci-C 4 -alkylcarbonyl; provided that R 24 and R 27 are not both a hydrogen atom.
  • Het represents a heterocycle of the general formula (Het-8)
  • R 28 may be a hydrogen atom or a Ci-C 4 -alkyl
  • R 29 may be a halogen atom, a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms.
  • Het represents a heterocycle of the general formula (Het-9)
  • R 30 may be a hydrogen atom or a Ci-C 4 -alkyl
  • R 31 may be a halogen atom, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms or a phenyl optionally substituted by a halogen atom or a C 1 -C 4 - alkyl.
  • Het represents a heterocycle of the general formula (Het- 10)
  • R 32 may be a hydrogen atom, a halogen atom, an amino group, a cyano group, a Ci-C4-alkylamino, a di-(Ci-C4-alkyl)amino, a Ci-C4-alkyl, a C1-C4- halogenoalkyl having 1 to 5 halogen atoms or a phenyl optionally substituted by a halogen atom or a Ci-C 4 -alkyl; and
  • R 33 may be a halogen atom, a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms.
  • Het represents a heterocycle of the general formula (Het-11)
  • - R 34 may be a hydrogen atom, a halogen atom, an amino group, a cyano group, a Ci-C4-alkylamino, a di-(Ci-C4-alkyl)amino, a Ci-C4-alkyl or a C1-C4- halogenoalkyl having 1 to 5 halogen atoms; and
  • -R 35 may be a halogen atom, a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms.
  • Het represents a heterocycle of the general formula (Het- 12)
  • R 36 may be a halogen atom, a cyano group, a nitro group, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, a Cs-C ⁇ -cycloalkyl, a C 1 -C 4 - alkoxy, a Ci-C 4 -halogenoalkoxy having 1 to 5 halogen atoms, a Ci-C 4 -alkylthio, a Ci-C 4 -halogenoalkylthio having 1 to 5 halogen atoms, an amino carbonyl group or an aminocarbonyl-Ci-C 4 -alkyl;
  • R 37 may be a hydrogen atom, a halogen atom, a cyano group, a nitro group, a Ci-C 4 -alkyl, a Ci-C 4 -alkoxy or a Ci-C 4 -alkylthio; and - R 38 may be a hydrogen atom, a phenyl, a Ci-C 4 -alkyl, a C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, a hydroxy-Ci-C 4 -alkyl, a C 2 -C 6 -alkenyl, a C 3 -C 6 -cycloalkyl, a Ci-C 4 -alkylthio-Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkylthio-Ci-C 4 - alkyl having 1 to 5 halogen atoms, a Ci-C 4 -alkoxy-Ci
  • Het represents a heterocycle of the general formula (Het-13)
  • R 39 may be a hydrogen atom, a halogen atom, a cyano group, a nitro group, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, a C 3 -C 6 - cycloalkyl, a Ci-C 4 -alkoxy, a Ci-C 4 -halogenoalkoxy having 1 to 5 halogen atoms, a Ci-C 4 -alkylthio, a Ci-C 4 -halogenoalkylthio having 1 to 5 halogen atoms, an aminocarbonyl or an aminocarbonyl-Ci-C 4 -alkyl;
  • - R 40 may be a hydrogen atom, a halogen atom, a cyano group, a Ci-C 4 -alkyl, a Ci-C 4 -alkoxy, a Ci-C 4 -halogenoalkoxy having 1 to 5 halogen atoms or a Ci-C 4 - alkylthio; and - R 41 may be a hydrogen atom, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, a hydroxy-Ci-C 4 -alkyl, a C 2 -C 6 -alkenyl, a Cs-C ⁇ -cycloalkyl, a Ci-C 4 -alkylthio-Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkylthio-Ci-C 4 -alkyl having 1 to 5 halogen atoms, a Ci-C 4
  • Het represents a heterocycle of the general formula (Het- 14)
  • -R , 42 may be a hydrogen atom, a halogen atom, a cyano group, a nitro group, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, a Cs-C ⁇ -cycloalkyl, a Ci-C4-alkoxy, a Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, a C1-C4- alkylthio, a Ci-C4-halogenoalkylthio having 1 to 5 halogen atoms, an aminocarbonyl, or an aminocarbonyl-Ci-C 4 -alkyl;
  • R 43 may be a hydrogen atom, a halogen atom, a cyano group, a Ci-C 4 -alkyl, a Ci-C 4 -alkoxy, a Ci-C 4 -alkylthio or a Ci-C 4 -halogenoalky having 1 to 5 halogen atoms;
  • R 44 may be a hydrogen atom, a phenyl, a benzyl, a Ci-C 4 -alkyl, a C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, a hydroxy-Ci-C 4 -alkyl, a C 2 -C 6 -alkenyl, a C 3 -C 6 -cycloalkyl, a Ci-C 4 -alkylthio-Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkylthio-Ci-C 4 - alkyl having 1 to 5 halogen atoms, a Ci-C 4 -alkoxy-Ci-C 4 -alkyl, a C 1 -C 4 - halogenoalkoxy-Ci-C 4 -alkyl having 1 to 5 halogen atoms; provided that R 43 and R 44 are not both a hydrogen atom.
  • Het represents a heterocycle of the general formula (Het-15)
  • R 45 may be a hydrogen atom, a halogen atom, a C-C 4 -alkyl or a C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms;
  • R 46 may be a halogen atom, a C-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms.
  • Het represents a heterocycle of the general formula (Het- 16)
  • R 47 and R 48 may be the same or different and may be a hydrogen atom, a halogen atom, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, a phenyl optionally substituted by a halogen atom or a Ci-C 4 -alkyl, or a heterocyclyl optionally substituted by a halogen atom or a Ci-C 4 -alkyl; provided that R 47 and R 48 are not both a hydrogen atom.
  • Het represents a heterocycle of the general formula (Het-17)
  • R 49 may be a halogen atom, a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, and
  • R 50 may be a halogen atom, a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms.
  • Het represents a heterocycle of the general formula (Het- 18)
  • R 51 may be a halogen atom, a Ci-C4-alkyl or a Ci -C 4 - halogenoalkyl having 1 to 5 halogen atoms.
  • Het represents a heterocycle of the general formula (Het- 19)
  • R 52 may be a halogen atom, a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms;
  • R 53 may be a hydrogen atom, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, or a phenyl optionally substituted by a halogen atom or a C 1 -C 4 - alkyl.
  • Het represents a heterocycle of the general formula (Het-20)
  • R 54 may be a halogen atom, a Ci-C 4 -alkyl or a C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms.
  • Het of the compound of general formula (I) may be a six membered ring heterocycle.
  • Specific examples of compounds of the present invention where Het is a six membered heterocycle include :
  • Het represents a heterocycle of the general formula (Het-21)
  • - R 55 may be a halogen atom, a hydroxy group, a cyano group, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, a Ci-C 4 -alkoxy, a C 1 -C 4 - alkylthio, a Ci-C 4 -halogenoalkylthio having 1 to 5 halogen atoms or a C 1 -C 4 - halogenoalkoxy having 1 to 5 halogen atoms; - R 56 , R 57 and R 58 , which may be the same or different, may be a hydrogen atom, a halogen atom, a cyano group, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, a Ci-C 4 -alkoxy, a Ci-C 4 -alkylthi
  • - R 59 may be a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, a C 1 -C 4 - alkoxy, a Ci-Cs-alkylthio, a C 2 -Cs-alkenylthio a Ci-C 4 -halogenoalkylthio having 1 to 5 halogen atoms, a Ci-C 4 -halogenoalkoxy having 1 to 5 halogen atoms, a phenyloxy optionally substituted by a halogen atom or a Ci-C 4 -alkyl, or a phenylthio optionally substituted by a halogen atom or a Ci-C 4 -alkyl; - R 60 , R 61 and R 62 , which may the same or different, may
  • Het represents a heterocycle of the general formula (Het-23)
  • R 63 , R 64 , R 65 and R 66 which may be the same or different, may be a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a C 1 -C 4 - alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, a Ci-C 4 -alkoxy, a C 1 -C 4 - alkylthio, a Ci-C4-halogenoalkylthio having 1 to 5 halogen atoms, a C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, a Ci-C 4 -alkylsulphinyl or a C 1 -C 4 - alkylsulphonyl; provided that the R 63 and R 66 are not both a hydrogen atom.
  • Het represents a heterocycle of the general formula (Het-24)
  • - R > 67 may be a halogen atom, a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms;
  • R 68 may be a hydrogen atom, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, a Ci-C ⁇ -alkoxycarbonyl, a benzyl optionally substituted by 1 to 3 halogen atoms, a benzyloxycarbonyl optionally substituted by 1 to 3 halogen atoms or a heterocyclyl.
  • Het represents a heterocycle of the general formula (Het-25)
  • - R , 69 may be a halogen atom, a hydroxy group, a cyano group, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, a Ci-C 4 -alkoxy, a C 1 -C 4 - alkylthio, a Ci-C4-halogenoalkylthio having 1 to 5 halogen atoms or a C 1 -C 4 - halogenoalkoxy having 1 to 5 halogen atoms;
  • R 70 may be a hydrogen atom, a Ci-C 4 -alkyl, a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms or a benzyl.
  • Het represents a heterocycle of the general formula (Het-26)
  • - X 1 may be a sulphur atom, -SO-, -SO 2 - or -CH 2 -;
  • R 71 may be a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms;
  • R 72 and R 73 may be the same or different and may be a hydrogen atom or a Ci-C 4 -alkyl.
  • Het represents a heterocycle of the general formula (Het-27)
  • Het represents a heterocycle of the general formula (Het-28)
  • R 75 may be a Ci-C 4 -alkyl or a Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms.
  • Het represents a heterocycle of the general formula (Het-29)
  • R 76 may be a halogen atom, a Ci-C 4 -alkyl or a C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms.
  • the present invention also relates to a process for the preparation of the compound of general formula (I).
  • a process for the preparation of compound of general formula (I) as defined above which comprises reacting a N-methyl carboxamide derivative of general formula (II) or one of its salt :
  • - Het, R 1 , R 2 and R 3 are as defined above;
  • - U is a leaving group chosen as being a halogen atom, a hydroxyl group, -OR a , -OCOR a , R a being a Ci-C 6 alkyl, a Ci-C 6 haloalkyl, a benzyl, 4- methoxybenzyl or a pentafluorophenyl group; with a 2-pyridinyl derivative of the general formula (III)
  • Suitable bases may be chosen as being a alkaline earth metal base, a alkali metal hydride base, a hydroxide base, an amide base, an alcoholate base, an acetate base, a carbonate base, a hydrogen carbonate base or a tertiary amine base.
  • the base is chosen as being hydrogen carbonate, sodium hydride, sodium amide, lithium diisopropylamide, sodium methanoate, sodium ethanoate, potassium tert-butanoate, sodium acetate, potassium acetate, calcium acetate, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, potassium bicarbonate, sodium bicarbonate, ammonium carbonate, trimethylamine, triethylamine, tributyl-amine, N,N-dimethyl-aniline, N,N-di-methyl-benzylamine pyridine, N-methylpiperidine, N-methyl-morpholine, N,N-dimethylaminopyridine, diazabicyclooctane (DABCO), diazabicyclononene (DBN) or diazabicycloundecene (DBU). Still preferably, the base is chosen as being potassium hydroxide, sodium hydroxide, potassium bicarbonate, sodium bicarbonate or sodium hydr
  • the base / compound of formula (III) molar ratio is of from 1 to 2.5;
  • N-methyl carboxamide derivatives of general formula (II) may be prepared by different processes.
  • One example (A) of such a process may be when :
  • N-methyl carboxamide derivative of general formula (II) may be prepared according to a process which comprises :
  • R 1 , R 2 , R 3 and Het are as defined above; comprising the reaction of a carboxamide derivative of formula (IV) with an acyl derivative of formula (V) in a acyl / benzamide derivative molar ratio of from 1 to 10, in a polar solvent, in the presence of a mineral base in catalytic quantity, at a temperature of from 20 0 C to reflux, to provide a N-hydroxymethylbenzamide derivative of formula (VI);
  • the compound according to the present invention can be prepared according to the general processes of preparation described above. It will nevertheless be understood that, on the basis of his general knowledge and of available publications, the skilled worker will be able to adapt this method according to the specifics of each of the compounds, which it is desired to synthesise.
  • the present invention also relates to a fungicidal composition
  • a fungicidal composition comprising an effective amount of an active material of general formula (I).
  • a fungicidal composition comprising, as an active ingredient, an effective amount of a compound of general formula (I) as defined above and an agriculturally acceptable support, carrier or filler.
  • the term "support” denotes a natural or synthetic, organic or inorganic material with which the active material is combined to make it easier to apply, notably to the parts of the plant.
  • This support is thus generally inert and should be agriculturally acceptable.
  • the support may be a solid or a liquid.
  • suitable supports include clays, natural or synthetic silicates, silica, resins, waxes, solid fertilisers, water, alcohols, in particular butanol, organic solvents, mineral and plant oils and derivatives thereof. Mixtures of such supports may also be used.
  • the composition may also comprise additional components. In particular, the composition may further comprise a surfactant.
  • the surfactant can be an emulsifier, a dispersing agent or a wetting agent of ionic or non-ionic type or a mixture of such surfactants. Mention may be made, for example, of polyacrylic acid salts, lignosulphonic acid salts, phenolsulphonic or naphthalenesulphonic acid salts, poly condensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (in particular alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (in particular alkyl taurates), phosphoric esters of polyoxyethylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the above compounds containing sulphate, sulphonate and phosphate functions.
  • the presence of at least one surfactant is generally essential when the active material and/or the inert support are water-insoluble and
  • additional components may also be included, e.g. protective colloids, adhesives, thickeners, thixotropic agents, penetration agents, stabilisers, sequestering agents.
  • the active materials can be combined with any solid or liquid additive, which complies with the usual formulation techniques.
  • compositions according to the invention may contain from 0.05 to 99% (by weight) of active material, preferably 10 to 70% by weight.
  • Compositions according to the present invention can be used in various forms such as aerosol dispenser, capsule suspension, cold fogging concentrate, dustable powder, emulsif ⁇ able concentrate, emulsion oil in water, emulsion water in oil, encapsulated granule, fine granule, flowable concentrate for seed treatment, gas (under pressure),gas generating product, granule, hot fogging concentrate, macrogranule, microgranule, oil dispersible powder, oil miscible flowable concentrate, oil miscible liquid, paste, plant rodlet, powder for dry seed treatment, seed coated with a pesticide, soluble concentrate, soluble powder, solution for seed treatment, suspension concentrate (flowable concentrate), ultra low volume (ulv) liquid, ultra low volume (ulv) suspension, water dispersible granules or tablets, water dispersible powder for slurry treatment, water soluble granules or tablets, water
  • the compounds of the invention can also be mixed with one or more insecticides, fungicides, bactericides, attractant acaricides or pheromones or other compounds with biological activity.
  • the mixtures thus obtained have a broadened spectrum of activity.
  • the mixtures with other fungicides are particularly advantageous. Examples of suitable fungicide mixing partners may be selected in the following lists :
  • a compound capable to inhibit the nucleic acid synthesis like benalaxyl, benalaxyl-M, bupirimate, chiralaxyl, clozylacon, dimethirimol, ethirimol, furalaxyl, hymexazol, mefenoxam, metalaxyl, metalaxyl-M, ofurace, oxadixyl, oxolinic acid ;
  • a compound capable to inhibit the respiration for example as Cl-respiration inhibitor like diflumetorim; as Cll-respiration inhibitor like boscalid, carboxin, fenfuram, flutolanil, furametpyr, furmecyclox, mepronil, oxycarboxine, penthiopyrad, thifluzamide; as CHI-respiration inhibitor like amisulbrom, azoxystrobin, cyazofamid, dimoxystrobin, enestrobin, famoxadone, fenamidone, fluoxastrobin, kresoxim- methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, trifloxystrobin; 4) a compound capable of to act as an uncoupler like dinocap, fluazinam, meptyldinocap;
  • a compound capable to inhibit ATP production like fentin acetate, fentin chloride, fentin hydroxide, silthiofam;
  • a compound capable to inhibit lipid and membrane synthesis like biphenyl, chlozolinate, edifenphos, etridiazole, iodocarb, iprobenfos, iprodione, isoprothiolane, procymidone, propamocarb, propamocarb hydrochloride, pyrazophos, tolclofos- methyl, vinclozolin ;
  • a compound capable to inhibit ergosterol biosynthesis like aldimorph, azaconazole, bitertanol, bromuconazole, cyproconazole, diclobutrazole, difenoconazole, diniconazole, diniconazole-M, dodemorph, dodemorph acetate, epoxiconazole, etaconazole, fenarimol, fenbuconazole, fenhexamid, fenpropidin, fenpropimorph, fluquinconazole, flurprimidol, flusilazole, flutriafol, furconazole, furconazole-cis, hexaconazole, imazalil, imazalil sulfate, imibenconazole, ipconazole, metconazole, myclobutanil, naftifme, nuarimol, oxpoconazole, paclobutrazol
  • a compound capable to inhibit cell wall synthesis like benthiavalicarb, bialaphos, dimethomorph, flumorph, iprovalicarb, mandipropamid, polyoxins, polyoxorim, validamycin A;
  • a compound capable to have a multisite action like Bordeaux mixture, captafol, captan, chlorothalonil, copper naphthenate, copper oxide, copper oxychloride, copper preparations such as copper hydroxide, copper sulphate, dichlofluanid, dithianon, dodine, dodine free base, ferbam, fluorofolpet, folpet, guazatine, guazatine acetate, iminoctadine, iminoctadine albesilate, iminoctadine triacetate, mancopper, mancozeb, maneb, metiram, metiram zinc, oxine-copper, propineb, sulphur and sulphur preparations including calcium polysulphide, thiram, tolylfluanid, zineb, ziram;
  • composition according to the invention comprising a mixture of a compound of formula (I) with a bactericide compound may also be particularly advantageous.
  • suitable bactericide mixing partners may be selected in the following list : bronopol, dichlorophen, nitrapyrin, nickel dimethyldithiocarbamate, kasugamycin, octhilinone, furancarboxylic acid, oxytetracycline, probenazole, streptomycin, tecloftalam, copper sulphate and other copper preparations.
  • the fungicidal compositions of the present invention can be used to curative Iy or preventively control the phytopathogenic fungi of crops.
  • a method for curatively or preventively controlling the phytopathogenic fungi of crops characterised in that a fungicidal composition as hereinbefore defined is applied to the seed, the plant and/or to the fruit of the plant or to the soil in which the plant is growing or in which it is desired to grow.
  • composition as used against phytopathogenic fungi of crops comprises an effective and non-phytotoxic amount of an active material of general formula (I).
  • an effective and non-phytotoxic amount means an amount of composition according to the invention which is sufficient to control or destroy the fungi present or liable to appear on the crops, and which does not entail any appreciable symptom of phytotoxicity for the said crops. Such an amount can vary within a wide range depending on the fungus to be controlled, the type of crop, the climatic conditions and the compounds included in the fungicidal composition according to the invention.
  • the method of treatment according to the present invention is useful to treat propagation material such as tubers or rhizomes, but also seeds, seedlings or seedlings pricking out and plants or plants pricking out. This method of treatment can also be useful to treat roots.
  • the method of treatment according to the present invention can also be useful to treat the overground parts of the plant such as trunks, stems or stalks, leaves, flowers and fruits of the concerned plant.
  • Solanaceae sp. for instance tomatoes
  • Liliaceae sp. for instance lettuces
  • Umbelliferae sp. for instance lettuces
  • Umbelliferae sp. for instance lettuces
  • Umbelliferae sp. for instance lettuces
  • Cilionaceae sp. for instance peas
  • Rosaceae sp. for instance strawberries
  • major crops such as Graminae sp. (for instance maize, lawn or cereals such as wheat, rice, barley and triticale), Asteraceae sp. (for instance sunflower), Cruciferae sp. (for instance colza), Fabacae sp.
  • Powdery mildew diseases such as :
  • Blumeria diseases caused for example by Blumeria graminis
  • Podosphaera diseases caused for example by Podosphaera leucotricha
  • Sphaerotheca diseases caused for example by Sphaerotheca fuliginea
  • Uncinula diseases caused for example by Uncinula necator; Rust diseases such as :
  • Gymnosporangium diseases caused for example by Gymnosporangium sabinae
  • Hemileia diseases caused for example by Hemileia vastatrix
  • Phakopsora diseases caused for example by Phakopsora pachyrhizi or Phakopsora meibomiae;
  • Puccinia diseases caused for example by Puccinia recondita
  • Uromyces diseases caused for example by Uromyces appendiculatus; Oomycete diseases such as :
  • Bremia diseases caused for example by Bremia lactucae
  • Peronospora diseases caused for example by Peronospora pisi or P. brassicae;
  • Phytophthora diseases caused for example by Phytophthora infestans
  • Plasmopara diseases caused for example by Plasmopara viticola
  • Pseudoperonospora diseases caused for example by Pseudoperonospora humuli or Pseudoperonospora cubensis
  • Plasmopara diseases caused for example by Plasmopara viticola
  • Pseudoperonospora diseases caused for example by Pseudoperonospora humuli or Pseudoperonospora cubensis
  • Pythium diseases caused for example by Pythium ultimum;
  • Leafspot, leaf blotch and leaf blight diseases such as :
  • Alternaria diseases caused for example by Alternaria solani
  • Cercospora diseases caused for example by Cercospora beticola
  • Cladiosporum diseases caused for example by Cladiosporium cucumerinum;
  • Cochlio bolus diseases caused for example by Cochliobolus sativus;
  • Colletotrichum diseases caused for example by Colletotrichum lindemuthanium
  • Cycloconium diseases caused for example by Cycloconium oleaginum
  • Diaporthe diseases caused for example by Diaporthe citri;
  • Elsinoe diseases caused for example by Elsinoe fawcettii;
  • Gloeosporium diseases caused for example by Gloeosporium laeticolor
  • Glomerella diseases caused for example by Glomerella cingulata
  • Guignardia diseases caused for example by Guignardia bidwelli
  • Leptosphaeria diseases caused for example by Leptosphaeria maculans; Leptosphaeria nodorum;
  • Magnaporthe diseases caused for example by Magnaporthe grisea
  • Mycosphaerella diseases caused for example by Mycosphaerella graminicola; Mycosphaerella arachidicola; Mycosphaerella fijiensis;
  • Phaeosphaeria diseases caused for example by Phaeosphaeria nodorum
  • Pyrenophora diseases caused for example by Pyrenophora teres
  • Ramularia diseases caused for example by Ramularia collo-cygni;
  • Rhynchosporium diseases caused for example by Rhynchosporium secalis
  • Septoria diseases caused for example by Septoria apii or Septoria lycopercisi
  • Typhula diseases caused for example by Typhula incarnata
  • Venturia diseases caused for example by Venturia inaequalis
  • Root and stem diseases such as :
  • Corticium diseases caused for example by Corticium graminearum
  • Fusarium diseases caused for example by Fusarium oxysporum
  • Gaeumannomyces diseases caused for example by Gaeumannomyces graminis;
  • Rhizoctonia diseases caused for example by Rhizoctonia solani;
  • Tapesia diseases caused for example by Tapesia acuformis
  • Thielaviopsis diseases caused for example by Thielaviopsis basicola
  • Ear and panicle diseases such as : Alternaria diseases, caused for example by A lternaria spp.; Aspergillus diseases, caused for example by Aspergillus flavus; Cladosporium diseases, caused for example by Cladosporium spp.; Claviceps diseases, caused for example by Claviceps purpurea; Fusarium diseases, caused for example by Fusarium culmorum;
  • Gibberella diseases caused for example by Gibberella zeae
  • Monographella diseases caused for example by Monographella nivalis
  • Smut and bunt diseases such as :
  • Sphacelotheca diseases caused for example by Sphacelotheca reiliana
  • Tilletia diseases caused for example by Tilletia caries
  • Urocystis diseases caused for example by Urocystis occulta
  • Ustilago diseases caused for example by Ustilago nuda
  • Fruit rot and mould diseases such as :
  • Aspergillus diseases caused for example by Aspergillus flavus
  • Botrytis diseases caused for example by Botrytis cinerea
  • Penicillium diseases caused for example by Penicillium expansum
  • Sclerotinia diseases caused for example by Sclerotinia sclerotiorum
  • Verticilium diseases caused for example by Verticilium alboatrum
  • Seed and soilborne decay, mould, wilt, rot and damping-off diseases Fusarium diseases, caused for example by Fusarium culmorum;
  • Phytophthora diseases caused for example by Phytophthora cactorum
  • Pythium diseases caused for example by Pythium ultimum
  • Rhizoctonia diseases caused for example by Rhizoctonia solani
  • Sclerotium diseases caused for example by Sclerotium rolfsii
  • Microdochium diseases caused for example by Microdochium nivale
  • Canker, broom and dieback diseases such as :
  • Nectria diseases caused for example by Nectria galligena; Blight diseases such as :
  • Monilinia diseases caused for example by Monilinia laxa;
  • Leaf blister or leaf curl diseases such as :
  • Taphrina diseases caused for example by Taphrina deformans; Decline diseases of wooden plants such as :
  • Esca diseases caused for example by Phaemoniella clamydospora
  • Diseases of flowers and Seeds such as : Botrytis diseases, caused for example by Botrytis cinerea;
  • Rhizoctonia diseases caused for example by Rhizoctonia solani
  • Helminthosporium diseases caused for example by Helminthosporium solani.
  • the fungicide composition according to the present invention may also be used against fungal diseases liable to grow on or inside timber.
  • the term "timber" means all types of species of wood, and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and plywood.
  • the method for treating timber according to the invention mainly consists in contacting one or more compounds of the present invention, or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means.
  • the dose of active material usually applied in the treatment according to the present invention is generally and advantageously between 10 and 800 g/ha, preferably between 50 and 300 g/ha for applications in foliar treatment.
  • the dose of active substance applied is generally and advantageously between 2 and 200 g per 100 kg of seed, preferably between 3 and 15O g per 100 kg of seed in the case of seed treatment. It is clearly understood that the doses indicated above are given as illustrative examples of the invention. A person skilled in the art will know how to adapt the application doses according to the nature of the crop to be treated.
  • the fungicidal composition according to the present invention may also be used in the treatment of genetically modified organisms with the compounds according to the invention or the agrochemical compositions according to the invention.
  • Genetically modified plants are plants into whose genome a heterologous gene encoding a protein of interest has been stably integrated.
  • the expression "heterologous gene encoding a protein of interest” essentially means genes which give the transformed plant new agronomic properties, or genes for improving the agronomic quality of the transformed plant.
  • compositions according to the present invention may also be used for the preparation of composition useful to curatively or preventively treat human and animal fungal diseases such as, for example, mycoses, dermatoses, trichophyton diseases and candidiases or diseases caused by Aspergillus spp., for example Aspergillus fumigatus.
  • fungal diseases such as, for example, mycoses, dermatoses, trichophyton diseases and candidiases or diseases caused by Aspergillus spp., for example Aspergillus fumigatus.
  • M+l or M-I
  • M-I means the molecular ion peak, plus or minus 1 a.m.u. (atomic mass units) respectively, as observed in mass spectroscopy
  • M (Apcl+) means the molecular ion peak as it was found via positive atmospheric pressure chemical ionisation in mass spectroscopy.
  • reaction mixture was poured into 30ml of diethyl ether. After separation of the phases, the organic phase was washed thrice with 20ml of water and dried over magnesium sulphate.
  • Example A in vivo test on Syhaerotheca fulisinea (cucurbits powdery mildew)
  • the active ingredients tested are prepared by potter homogenisation in a mixture of DMSO/acetone/tween, then diluted with water to obtain the desired active material concentration.
  • Gherkin plants (Vert petit de Paris variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 20°C/23°C, are treated at the cotyledon ZI l stage by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material.
  • the plants are contaminated by spraying them with an aqueous suspension of Sphaerotheca fuliginea spores (100 000 spores per ml).
  • the spores are collected from a contaminated plants .
  • the contaminated gerkhin plants are incubated at about 20°C/25°C and at 60/70% relative humidity.
  • the compound Al showed very good protection (at least 90%) at a dose of 500 ppm.
  • Example B in vivo test on Pyrenophora teres (Barley Net blotch)
  • the active ingredients tested are prepared by homogenization in a mixture of
  • Barley plants (Express variety), sown on a 50/50 peat soil-pozzolana substrate in starter cups and grown at 12°C, are treated at the 1-leaf stage (10 cm tall) by spraying with the active ingredient prepared as described above. Plants, used as controls, are treated with the mixture of acetone/tween/DMSO/water not containing the active material.
  • the plants are contaminated by spraying them with an aqueous suspension of Pyrenophora teres spores (12,000 spores per ml).
  • the spores are collected from a 12-day-old culture .
  • the contaminated barley plants are incubated for 24 hours at about 20 0 C and at 100% relative humidity, and then for 12 days at 80% relative humidity.
  • Example C cell test on ⁇ lternaria alternata
  • the growth of Alternaria alternata is performed on PDA medium at 20°C under black light during 14 days.
  • the PDA medium is prepared by mixing 39 grams of PDA (Merck) in 1 liter of demineralized water. The medium is sterilized by autoclave 15 minutes at 121°C. After 14 days of growth, the spores of Alternaria alternata are recovered in sterilized water and the concentration of spores adjusted to 10 6 spores per ml.
  • the compounds is solubilized in DMSO and added to sterile liquid glucose/mycopeptone medium (14.6 g/1 of D-glucose, 7.1 g/1 of mycological peptone (Oxoid) and 1.4 g/1 of yeast extract (Merck)) at a concentration of 10 ppm.
  • the medium is inoculated with the spore suspension at a concentration of 10 5 spores per ml.
  • the efficacy of the compounds is assessed by OD measurement at 620 nm after 5 days at 20 0 C in comparison with a control.
  • the compound Al showed good protection (at least 60 %) at the dose of 2 ppm.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention porte sur un composé représenté par la formule générale (I) ; sur un procédé de préparation de ce composé ; sur une composition fongicide comportant un composé représenté par la formule générale (I) ; sur un procédé de traitement de plantes par l'application d'un composé représenté par la formule générale (I) ou sur une composition le comportant.
PCT/EP2008/050003 2007-01-03 2008-01-02 Dérivés de n-méthyl carboxamide utiles comme fongicides WO2008081011A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07356001 2007-01-03
EP07356001.3 2007-01-03

Publications (1)

Publication Number Publication Date
WO2008081011A1 true WO2008081011A1 (fr) 2008-07-10

Family

ID=38007917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050003 WO2008081011A1 (fr) 2007-01-03 2008-01-02 Dérivés de n-méthyl carboxamide utiles comme fongicides

Country Status (3)

Country Link
AR (1) AR064565A1 (fr)
CL (1) CL2008000007A1 (fr)
WO (1) WO2008081011A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011151369A1 (fr) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)aryléthyl)]pyrazole(thio)carboxamides et leurs analogues hétérosubstitués
WO2011151368A2 (fr) 2010-06-03 2011-12-08 Bayer Cropscience Ag Dérivés de n-[(silyle trisubstitué) méthyle] carboxamide fongicides
WO2013075817A1 (fr) 2011-11-21 2013-05-30 Bayer Intellectual Property Gmbh Dérivés fongicides du n-[(silyle trisubstitué)méthyle]carboxamide
CN104428282A (zh) * 2012-07-12 2015-03-18 日产化学工业株式会社 肟取代酰胺化合物和有害生物防除剂
TWI670254B (zh) * 2014-01-15 2019-09-01 日商日產化學工業股份有限公司 肟取代醯胺化合物及有害生物防治劑

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT508818B1 (de) 2009-09-30 2011-10-15 Tannpapier Gmbh Mundstückbelag oder filterhülle einer zigarette

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011965A1 (fr) * 1999-08-18 2001-02-22 Aventis Cropscience Gmbh Fongicides
WO2003006456A1 (fr) * 2001-07-11 2003-01-23 Bayer Cropscience S.A. Derives d'amide d'acide picolinique substitues en 4, utilises comme fongicides
EP1449841A1 (fr) * 2003-02-19 2004-08-25 Bayer CropScience SA Nouveaux composés fungicides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011965A1 (fr) * 1999-08-18 2001-02-22 Aventis Cropscience Gmbh Fongicides
WO2003006456A1 (fr) * 2001-07-11 2003-01-23 Bayer Cropscience S.A. Derives d'amide d'acide picolinique substitues en 4, utilises comme fongicides
EP1449841A1 (fr) * 2003-02-19 2004-08-25 Bayer CropScience SA Nouveaux composés fungicides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY ONLINE CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 2004, XP002433762, retrieved from STN *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933556B (zh) * 2010-06-03 2015-08-26 拜尔农科股份公司 N-[(杂)芳基乙基]吡唑(硫代)羧酰胺及其杂取代的类似物
WO2011151368A2 (fr) 2010-06-03 2011-12-08 Bayer Cropscience Ag Dérivés de n-[(silyle trisubstitué) méthyle] carboxamide fongicides
CN102933556A (zh) * 2010-06-03 2013-02-13 拜尔农科股份公司 N-[(杂)芳基乙基)]吡唑(硫代)羧酰胺及其杂取代的类似物
WO2011151369A1 (fr) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)aryléthyl)]pyrazole(thio)carboxamides et leurs analogues hétérosubstitués
JP2013528613A (ja) * 2010-06-03 2013-07-11 バイエル・クロップサイエンス・アーゲー N−[(ヘタ)アリールエチル)]ピラゾール(チオ)カルボキサミド類及びそれらのヘテロ置換された類似体
AU2011260332B2 (en) * 2010-06-03 2014-10-02 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
US9232799B2 (en) 2010-06-03 2016-01-12 Bayer Intellectual Property Gmbh N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
WO2013075817A1 (fr) 2011-11-21 2013-05-30 Bayer Intellectual Property Gmbh Dérivés fongicides du n-[(silyle trisubstitué)méthyle]carboxamide
EP2873658A4 (fr) * 2012-07-12 2015-12-30 Nissan Chemical Ind Ltd Composé amide substitué par oxime et agent de lutte contre les organismes nuisibles
CN104428282A (zh) * 2012-07-12 2015-03-18 日产化学工业株式会社 肟取代酰胺化合物和有害生物防除剂
US9434684B2 (en) 2012-07-12 2016-09-06 Nissan Chemical Industries, Ltd. Oxime-substituted amide compound and pest control agent
CN107266333A (zh) * 2012-07-12 2017-10-20 日产化学工业株式会社 肟取代酰胺化合物和有害生物防除剂
US9920046B2 (en) 2012-07-12 2018-03-20 Nissan Chemical Industries, Ltd. Oxime-substituted amide compound and pest control agent
RU2668547C2 (ru) * 2012-07-12 2018-10-02 Ниссан Кемикал Индастриз, Лтд. Замещенное оксимом амидное соединение и средство для борьбы с вредителями
TWI670254B (zh) * 2014-01-15 2019-09-01 日商日產化學工業股份有限公司 肟取代醯胺化合物及有害生物防治劑

Also Published As

Publication number Publication date
CL2008000007A1 (es) 2008-07-11
AR064565A1 (es) 2009-04-08

Similar Documents

Publication Publication Date Title
EP1954674B1 (fr) Nouveaux derives de n-phenethylcarboxamide
EP1960379B1 (fr) Dèrivès de n-(1-alkyl-2-phenylethyl)-carboxamide et leur utilisation comme fongicides
EP2125740B1 (fr) Dérivés fongicides de n-(3-phénylpropyl)carboxamide
US20080096932A1 (en) 3-Pyridinylethylcarboxamide Derivatives as Fungicides
EP1879878B1 (fr) Nouveaux dérivés hétérocyclyléthylcarboxamides
US20080096933A1 (en) 4-Pyridinylethylcarboxamide Derivatives Useful as Fungicides
EP1885712A1 (fr) Nouveaux derives 2-pyridinylcycloalkylcarboxamide utiles en tant que fongicides.
WO2008003746A1 (fr) Nouveaux dérivés de n-(4-pyridin-2-ylbutyle) carboxamide, procédé de préparation et utilisation comme fongicides
WO2006008191A1 (fr) Derives de 3-pyridinylethylbenzamide en tant que fongicides
US8148538B2 (en) N-alkyl-heterocyclyl carboxamide derivatives
WO2008081011A1 (fr) Dérivés de n-méthyl carboxamide utiles comme fongicides
WO2008101975A2 (fr) Nouveaux dérivés de n-(3-phénylpropyl)benzamide
WO2008081017A1 (fr) Nouveaux dérivés de n-alkynylcarboxamide
EP2049489A2 (fr) Derives de n_methyl benzamide utiles comme fongicides
US20090209589A1 (en) N-[(pyridin-2-yl) methoxy] hetrocyclyl carboxamide derivatives and related compounds as fungicides
WO2008061866A1 (fr) Nouveaux dérivés de benzamide
WO2008046838A2 (fr) Nouveaux dérivés de n-(3-pyridine-2-ylpropyl)benzamide
WO2008081016A1 (fr) Nouveaux dérivés de n-alkynylbenzamide
EP2041091A1 (fr) Dérivés de n-[(pyridin-2-yl) méthoxy]benzamide et composés apparentés en tant que fongicides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08701191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08701191

Country of ref document: EP

Kind code of ref document: A1