WO2008080535A1 - Procede et dispositif de fabrication d'un anneau composite - Google Patents

Procede et dispositif de fabrication d'un anneau composite Download PDF

Info

Publication number
WO2008080535A1
WO2008080535A1 PCT/EP2007/010942 EP2007010942W WO2008080535A1 WO 2008080535 A1 WO2008080535 A1 WO 2008080535A1 EP 2007010942 W EP2007010942 W EP 2007010942W WO 2008080535 A1 WO2008080535 A1 WO 2008080535A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
ribbon
fibers
thickness
tape
Prior art date
Application number
PCT/EP2007/010942
Other languages
English (en)
Inventor
Antonio Delfino
Jean-Paul Meraldi
Original Assignee
Societe De Technologie Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe De Technologie Michelin, Michelin Recherche Et Technique S.A. filed Critical Societe De Technologie Michelin
Priority to US12/521,305 priority Critical patent/US8277590B2/en
Priority to AT07856688T priority patent/ATE477915T1/de
Priority to DE602007008618T priority patent/DE602007008618D1/de
Priority to CN200780048154.6A priority patent/CN101568424B/zh
Priority to EP07856688A priority patent/EP2125346B1/fr
Priority to JP2009543358A priority patent/JP2010514592A/ja
Publication of WO2008080535A1 publication Critical patent/WO2008080535A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/521Pultrusion, i.e. forming and compressing by continuously pulling through a die and impregnating the reinforcement before the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/38Textile inserts, e.g. cord or canvas layers, for tyres; Treatment of inserts prior to building the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/38Textile inserts, e.g. cord or canvas layers, for tyres; Treatment of inserts prior to building the tyre
    • B29D2030/381Textile inserts, e.g. cord or canvas layers, for tyres; Treatment of inserts prior to building the tyre the inserts incorporating reinforcing parallel cords; manufacture thereof

Definitions

  • the present invention relates to composite materials based on fibers and curable resin, to composite parts made from such materials and to processes and devices for manufacturing such materials or composite parts.
  • Patent Application EP-AI 074 369 describes a method of manufacturing a composite part of given thickness, of convex shape, comprising reinforcing fibers parallel to at least one preferred reinforcing direction, said fibers being embedded in a matrix based on a composition comprising an ionizing radiation-curable resin, the process comprising the following steps:
  • Composite parts may then be prepared by unwinding and then rewinding in solid layers of said wire or ribbon, on any support of appropriate shape.
  • the second method requires, like the previous one, that the solidification (polymerization) operation of the resin is carried out over a substantial thickness of material in such a way that the product is sufficiently “stabilized”, that is to say manipulable without destroying it, for the subsequent operations of manufacturing the final composite parts.
  • This requirement implies in particular the use of stabilization chambers of large lengths, with several irradiation tubes in series, to obtain sufficient processing intensities, in particular when it is desired to work at high speeds of scrolling.
  • the Applicant has found a novel process which makes it possible to prepare a composite part of very high quality, in the form of a continuous ring, while completely eliminating the stabilization chamber and its series of UV irradiation tubes. as described in EPA-I 174,250 above. This significantly simplifies the manufacturing process and device, thereby substantially reducing the final industrial cost of the composite blocks in question.
  • the subject of the present invention is a process for manufacturing a composite block of closed geometry, in the form of a continuous ring, based on reinforcing fibers and a crosslinkable resin, by continuous winding and superposition in a predetermined number of layers Nc of a ribbon of said reinforcing fibers embedded in a matrix based on a composition comprising said crosslinkable resin, said method comprising, from upstream to downstream, the following steps: • make a rectilinear arrangement of reinforcing fibers, and cause this arrangement in a direction of advancement;
  • the invention also relates to a device for the manufacture of a composite block of closed geometry, in the form of a continuous ring, based on reinforcing fibers and a crosslinkable resin, by continuous winding and superposition in several layers.
  • an impregnation chamber (14, 15, 16, 17, 18) for impregnating the fibers (11, 12) with the resin composition in the liquid state (17);
  • FIG. 1 a composite block (continuous elementary ring) obtained according to the method of the invention (Fig. 2), as well as an example of an assembly of several composite blocks (Fig. 3) that can constitute a structure reinforcement for a non-pneumatic elastic bandage (Fig. 4).
  • the first three stages (arrangement, degassing then impregnation) of the process of the invention are steps known to those skilled in the art, as well as the materials (fibers and resin compositions) used; they have, for example, been described in one and / or both of the above-mentioned applications EP-A-I 074 369 and EP-A-I 174 250.
  • any type of reinforcing fiber is usable as long as the latter is compatible with its crosslinkable resin matrix.
  • a fiber is for example chosen from the group consisting of polyacrylic fibers, polyacrylonitrile, polyvinyl alcohol, aromatic polyamide (or “aramid”), polyamide-imide, polyimide, chlorofibers, polyester fibers, aromatic polyester, polyethylene, polypropylene, cellulose fibers, rayon, viscose, polyphenylene benzobisoxazole (or "PBO”), polyethylene naphthenate (“PEN”), glass, carbon, silica fibers, ceramic fibers, and mixtures of such fibers. It is preferred to use high tenacity fibers, particularly fibers selected from the group consisting of glass fibers, carbon fibers and mixtures of such fibers.
  • a degassing step of the fiber arrangement must be carried out by the action of the vacuum, in particular to reinforce the effectiveness of the impregnation and especially to guarantee the absence of bubbles inside. of the composite ring final.
  • Such a degassing step has been described in detail in the aforementioned EP-AI 174 250.
  • the resin composition used is preferably a composition of the crosslinkable (or curable) type by ionizing radiation, such as, for example, a UV or UV-visible radiation emitting preferably in the spectrum of at least 300 nm to 450 nm. , a beam of accelerated electrons or X-rays.
  • ionizing radiation such as, for example, a UV or UV-visible radiation emitting preferably in the spectrum of at least 300 nm to 450 nm. , a beam of accelerated electrons or X-rays.
  • polyester resin As a crosslinkable resin, a polyester or vinylester resin is preferably used.
  • polyester resin By “polyester” resin is meant in known manner an unsaturated polyester resin.
  • Vinylester resins are well known in the field of composite materials.
  • the vinylester resin is preferably of the epoxyvinylester type. It is more preferable to use a vinylester resin, in particular of the epoxide type, which is at least partly based (that is to say grafted on a structure of the type) novolac (also called phenoplast) and / or bisphenol, or preferably a vinylester resin containing novolac, bisphenolic, or novolak and bisphenol.
  • a vinylester resin in particular of the epoxide type, which is at least partly based (that is to say grafted on a structure of the type) novolac (also called phenoplast) and / or bisphenol, or preferably a vinylester resin containing novolac, bisphenolic, or novolak and bisphenol.
  • a novolac-based epoxyvinylester resin (part in square brackets in formula I below), for example, corresponds, in a known manner, to the following formula (I):
  • a bisphenol A epoxyvinylester resin (part in square brackets of formula II below) for example meets the formula (the "A” recalling that the product is manufactured using acetone):
  • An epoxyvinylester resin of novolac and bisphenolic type has shown excellent results.
  • Such epoxyvinylester resins are available from other manufacturers such as Reichhold, Cray Valley, UCB.
  • the so-called “calibration" die makes it possible, by virtue of a cross-section of determined dimensions, generally and preferably rectangular, to adjust the proportion of resin with respect to the reinforcing fibers while imposing on the impregnated form and thickness aimed for the ribbon.
  • the method of the invention then has the essential characteristic of integrating, at the output of the calibration die and before unidirectional winding of the ribbon on its final support, a specific surface treatment, which can be described as an extreme-surface, on the face.
  • a specific surface treatment which can be described as an extreme-surface, on the face.
  • the thickness Ep is less than 10%, preferably less than 5% of the thickness Er ribbon.
  • said upper face serves as a base or support sufficiently stable during the subsequent winding of the tape on itself, without dealing in depth and therefore more intensely said tape.
  • the intensity of the treatment is adjusted so that the crosslinking of the resin is just sufficient to allow the winding and stacking of the Nc ribbon layers, without causing the parasitic effect of the type "capstan” described above.
  • the ribbon thus treated superficially, to a depth Ep as low can not be described as "stabilized” within the meaning of the aforementioned patent application EP-A-I 174 250; in other words, thus treated, it is not manipulable without destroying it.
  • the thickness of the skin or film thus formed be between 2 and 10 ⁇ m, more preferably between 3 and 10 ⁇ m.
  • the solidification of the upper face of the ribbon may be obtained by any appropriate means of treatment, very localized, preferably by a sufficient primer of crosslinking or polymerization of the impregnating composition.
  • an ionizing treatment, especially of the UV type is preferentially carried out in the latter case in the presence of a photoinitiator agent in the impregnating composition.
  • solid skin in the present application, by definition, a skin whose characteristic is not to be soluble in an organic solvent such as acetone, at room temperature (23 ° C).
  • a simple test of solubility in acetone will consist in taking a sample of ribbon thus treated, directly at the outlet of the treatment means 22 described later, to washing it and rinsing abundantly in acetone for at least 2 minutes at room temperature ( 23 ° C): then, except for the solid reinforcing fibers, only a very thin film of cross-linked resin having a thickness Ep representing less than 10% of the thickness Er of the ribbon, preferably between 3 and 10 microns, and corresponding to the upper part of the ribbon which has undergone the solidification treatment or crosslinking.
  • duration of this surface treatment carried out continuously on the tape being scrolled, be as short as possible, preferably less than 10 seconds, typically of the order of a few tenths of seconds at most. This is where we can talk about treatment of the "flash" type.
  • the duration of the treatment will depend directly on many variables among which, in particular, the nature of the resin, the amount of photoinitiator, the power, the length of the light. wave and the remoteness of the UV emission source. Those skilled in the art will easily adapt and control their particular treatment conditions to implement the method of the invention, if necessary by a few successive adjustment tests. It is preferred that the duration of the treatment (duration of exposure to the UV source in particular) is less than 5 seconds, more preferably still less than 2 seconds.
  • the fiber ribbon thus treated in "extreme-surface” then arrives, continuously, on a support or mandrel of adapted form on which it is then wound directly, unidirectionally, by superposition of the predetermined number Nc of layers.
  • a closed and continuous ring is thus formed whose cross section is essentially rectangular.
  • the tension stress experienced by the reinforcing fibers in the ribbon being moved is between 0.2 and 5 cN / tex. (centinewton per tex); it is therefore the tension measured between the calibration die and the entry of the support or mandrel dictating the shape of the block final composite. It was found that outside this preferred tension range, there was a risk of deformation or at least loss of regularity of shape of the tape, which could be detrimental to the quality and endurance of the final composite block. For this reason, said tension stress is more preferably between 0.5 and 2.5 cN / tex.
  • the operation of winding the ribbon on said mandrel is preferably by rotation of the mandrel itself in a fixed plane and tangential to the arrival plane of the ribbon on the rotating mandrel.
  • the winding operation is stopped once the Nc ribbon layers are wound on themselves.
  • a significant advantage of the process of the invention and of its surface treatment is that the tape still retains sufficient stickiness to allow the adhesion, on the N-order layer, of the next layer (N + 1) without it is necessary to exert any additional mechanical and / or thermal action.
  • each layer of order N can be mechanically pressed at the entrance of the support or mandrel, for example by rolling with a wheel of the same width as the ribbon, so as to compact slightly all, ensure excellent adhesion between successive layers, distribute the fibers evenly laterally.
  • the particular geometry of the ring thus formed is of course dictated by that of the support or mandrel on which the ribbon has been wound.
  • the support or mandrel for example of metal, is provided with a reception groove conforming to the shape of the ribbon, of suitable depth to receive and geometrically stabilize the Nc superimposed ribbon layers.
  • the resin is preferably subjected to sufficient polymerization (for example using UV) to sufficiently stabilize said ring, this time over its entire thickness, before separation from its support.
  • sufficient polymerization for example using UV
  • said support or mandrel is advantageously constructed of two removable parts, symmetrical or not, which can be easily separated mechanically.
  • the thus stabilized composite block in which the resin composition is then essentially in the solid phase, can then be easily handled without the risk of destroying it, stored as is or treated immediately in order to finish polymerizing the resin if necessary (baking or final crosslinking).
  • the final firing operation can be carried out by any means known to those skilled in the art, under simple atmospheric pressure that is to say “outside the mold” (or “open mold” according to a recognized terminology), for example in a UV chamber or a simple oven, or under high pressure (typically several bars to several tens of bars) at the appropriate temperature.
  • An alternative embodiment is to completely bake the composite block on its support or receiving chuck, and to extract the latter after complete cooking.
  • the thickness of the final composite ring is preferably between 0.5 and 5.0 mm (millimeters), more preferably in a range of 1 to 2 mm. Its width is preferably less than 25 mm, more preferably in a range of 5 to 20 mm.
  • its largest dimension is typically of the order from a few cm (centimeters) to a few tens of cm.
  • Two other essential characteristics of the process of the invention are on the one hand the maximum thickness of the tape at the output of the calibration die, which must be less than 0.5 mm, and secondly the maximum number of layers which are wound for forming the composite ring, which must be less than 15. It turned out that if these two characteristics are not verified, the shape and regularity of the ribbon as those of the final composite are no longer under control, which causes a crippling degradation of the endurance in flexion-compression of the final composite ring. In addition, a thickness of less than 0.1 mm (ie 100 ⁇ m) is not compatible with industrial production constraints.
  • the thickness of the strip at the outlet of the die is preferably chosen between 0.10 and 0.35 mm, more preferably between 0.15 and 0.30 mm; the number of layers Nc is in turn preferably less than 10, more preferably between 5 and 10.
  • the method of the invention can be implemented using a device itself object of the invention.
  • FIG. 1 appended schematizes very simply an example of such a device 1, for a part (after exit of the die 20) shown in perspective in order to illustrate the birth of the ribbon 21 after passing through the calibration means 19, 20.
  • the coil is unwound continuously by driving, so as to achieve a rectilinear arrangement 12 of these fibers 11.
  • This arrangement 12 then passes through a vacuum chamber 13 (connected to a vacuum pump not shown), disposed between an inlet pipe 13a and an outlet pipe 13b opening on the impregnation chamber 14, the two pipes preferably to rigid wall having for example a minimum upper section (typically twice as much) to the total fiber section and a much greater length (typically 50 times more) to said minimum section.
  • the use of rigid wall pipes, both for the inlet in the vacuum chamber and the outlet of the vacuum chamber and the transfer from the vacuum chamber to the impregnation chamber is compatible both with high rates of passage of fibers through the orifices without breaking the fibers, but also ensures a sufficient seal. It suffices, if necessary experimentally, to search for the largest section of passage, taking into account the total section of the fibers to be treated, again making it possible to provide sufficient sealing, taking into account the speed of advance of the fibers and the length of the tubing.
  • the vacuum inside the chamber 13 is for example of the order of 0.1 bar.
  • the arrangement 12 of fibers 11 passes through an impregnation chamber 14 comprising a feed tank 15 (connected to a metering pump not shown) and an impregnation tank 16 sealed completely filled with impregnating composition 17 based on a vinylester-type curable resin (eg, "ATLAC 590" from
  • the composition further comprises (at a weight ratio of 1 to 2%) a photoinitiator agent suitable for the UV and / or UV-visible radiation by which the composition will subsequently be treated, for example the bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide ("Irgacure 819" from Ciba).
  • a photoinitiator agent suitable for the UV and / or UV-visible radiation by which the composition will subsequently be treated
  • the impregnating composition 17 is in the liquid state. It emerges from the impregnation chamber 14, in an outlet pipe 18 sealed (always under vacuum), an impregnated which comprises for example
  • the impregnated material then passes through calibration means 19 comprising at least one calibration die 20 whose channel (not shown here), for example of rectangular or conical shape, is adapted to the particular conditions of production.
  • this channel has a minimum rectangular cross-section whose downstream orifice has dimensions (for example 5.3 mm ⁇ 0.25 mm or 10.6 mm ⁇ 0.25 mm) slightly greater than the target ribbon.
  • the die has a length that is typically greater than at least 100 times the minimum dimension of the minimum section. Its function is to ensure a high dimensional accuracy to the finished product, it can also play a role of dosing the fiber ratio with respect to the resin.
  • the die 20 can be directly integrated into the impregnation chamber 14, which avoids, for example, the use of the outlet pipe 18.
  • a surface treatment of the flash type (that is to say very short, for example of the order of 1 second) is applied using the means treatment unit 22 intended to create, on the upper face of said strip, a solid skin whose thickness Ep represents less than 10% of the thickness Er of the strip (less than 20 ⁇ m in the present example); the means 22 consist for example in a UV lamp ("UVAprint" lamp from the company Dr. H ⁇ nle, wavelength 200 to 600 nm).
  • the ribbon 21 thus treated arrives on its final receiving medium 23, for example a rotating mandrel of convex shape (here oval, by way of example), at the entrance of which it can be, according to an advantageous embodiment, mechanically pressed using the means 24 (for example by mechanical rolling with a wheel) exerting a slight pressure P on the upper face of the ribbon 21.
  • the rotating mandrel 23 is preferably provided with a groove receiving 25 conforming to the shape and width of the ribbon 21 and thus facilitating the winding of the ribbon on itself in its different layers Nc superimposed.
  • stabilizing means (26) adapted for example to polymerize the resin of said composite ring on said support or mandrel (23).
  • the ribbon thus stabilized can be handled easily, for example it is treated for 5 min in a UV oven before final curing, for example in a furnace under pressure and temperature (for example at 230 ° C for 5 to 6 min at 10 bar).
  • the entire cooking operation could be performed under UV radiation, entirely or not on the receiving mandrel.
  • a composite block is obtained in the form of a closed continuous ring, the reinforcing fibers of which are distributed homogeneously throughout the volume.
  • This composite block has excellent mechanical properties, in particular with very high endurance in bending and shearing.
  • composite block 30 has been reproduced schematically in Figure 2 attached, it was obtained by winding on a convex mandrel of elliptical shape. It consists of a continuous closed flat ring whose rectangular cross section has dimensions 10 mm x
  • the shape or geometry of the ring is substantially elliptical with internal longitudinal dimensions (denoted A in Figure 2) of the order of 15 cm and transverse (denoted B in FIG. 2) of the order of 6 cm.
  • the invention thus offers the possibility of manufacturing a composite block in very small sections that can have many industrial applications, whether used individually or associated with other composite blocks for forming more complex structures.
  • Such structures may serve in particular reinforcing reinforcement to any system of ground connection of motor vehicles, such as non-pneumatic tire, tire, internal safety support for tire, wheel, other suspension element and anti-vibration.
  • the latter can be advantageously nested within each other , then stapled mechanically or "chemically” thanks for example to the use of a filling polymer for filling all the interstices present between the elementary rings.
  • This filling polymer must of course be compatible with the resin of the composite ring and capable of good adhesion with the latter, if necessary by means of an appropriate adhesive composition as described for example in the application WO 2004/058909 .
  • This polymer is for example a diene elastomer or a polyurethane.
  • the armature 40 may comprise mechanical connection means 42 (for example a staple) intended to ensure the subsequent connection to the rigid part of a wheel as explained below.
  • This composite reinforcing reinforcement may form a radial reinforcing arch of a non-pneumatic tire carcass as described, for example, in patent applications WO-A-00/37269 and EP-A-I 359 028.
  • FIG. 4 shows a partial perspective of such a non-pneumatic flexible tire 50.
  • a tire when it is associated with any other rigid mechanical element intended to ensure the connection between the flexible tire and the hub, replaces the assembly. constituted by the tire and the wheel as known on most current road vehicles.
  • the bandage profile delimits a toroidal internal cavity of ovoid section.
  • the tire 50 comprises a fixing zone 51 (comprising the connecting means 42 illustrated in FIG. 3), two sidewalls 52 and a tread 53.
  • the attachment zone is intended to be rigidly connected to a wheel hub via a mechanical element such as a disk or wheel web (not shown here).
  • the tread 53 has several circumferential ribs, but this aspect of course has no limiting character.
  • the flanks 52 are rounded and occupy most of the radial height of the tire 50.
  • the supporting structure comprises a plurality of support members constituted by the composite reinforcing plates 40 illustrated in Figure 3 above.
  • the support members 40 are circumferentially adjacent and each extends substantially radially outwardly from the attachment zone 51.
  • FIG. 4 also shows a principle of this type of non-pneumatic tire according to which it is the flexion of the support elements that can carry the load.
  • the tire comprises one hundred support elements 40. This number may of course be very different depending, for example, on the type of vehicle and the type of use for which it is intended and the characteristics of the support elements. .
  • the number of elements may thus vary, for example, from 30 to 300.
  • an interconnection structure disposed radially under the tread 53 which is relatively rigid in longitudinal traction-compression, connects circumferentially all of the support elements 40. .
  • Such a non-pneumatic tire is likely to equip any type of motor vehicle, for example of tourism type, two wheels (including motorcycles, scooters), aircraft, such as industrial vehicles chosen from vans, "heavy-weight" - it that is, metros, buses, road transport vehicles (trucks, tractors, trailers), off-the-road vehicles such as agricultural or civil engineering vehicles, other transport or handling vehicles.
  • motor vehicle for example of tourism type, two wheels (including motorcycles, scooters), aircraft, such as industrial vehicles chosen from vans, "heavy-weight" - it that is, metros, buses, road transport vehicles (trucks, tractors, trailers), off-the-road vehicles such as agricultural or civil engineering vehicles, other transport or handling vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Laminated Bodies (AREA)

Abstract

Procédé de fabrication d'un bloc composite de géométrie fermée, sous forme d'un anneau continu, à base de fibres de renforcement et d'une résine réticulable, par enroulement en continu et superposition en un nombre de couches prédéterminé Nc d'un ruban desdites fibres de renforcement noyées dans une matrice à base d'une composition comportant ladite résine réticulable, ledit procédé comportant, d'amont en aval, les étapes suivantes: réaliser un arrangement (12) rectiligne de fibres (11) de renforcement, et entraîner cet arrangement dans une direction d'avancement (F); dégazer l'arrangement de fibres (12) par l'action du vide (13); après dégazage, imprégner ledit arrangement de fibres (12) par ladite composition de résine à l'état liquide (17); faire passer l'imprégné ainsi obtenu au travers d'une filière (20) pour imposer audit imprégné une forme de ruban (21) constitué des fibres de renforcement (11) dans leur matrice de résine liquide (17), l'épaisseur (Er) dudit ruban étant comprise entre 0,1 mm et 0,5 mm; en sortie de filière (20), appliquer un traitement de surface (22) sur la face supérieure dudit ruban (21) pour créer une peau solide dont l'épaisseur (Ep) représente moins de 10% de l'épaisseur (Er) du ruban, de telle manière que ladite peau serve de base stable lors de l'enroulement subséquent du ruban (21) sur lui-même; déposer le ruban (21) ainsi traité superficiellement sur un support (23) dictant la forme finale du bloc composite, et enrouler ledit ruban (21) sur ledit support (23), unidirectionnellement, par superposition du nombre Nc de couches pour formation directe dudit anneau continu (30) sur ledit support (23), Nc étant inférieur à 15.

Description

PROCEDE ET DISPOSITIF DE FABRICATION D'UN ANNEAU COMPOSITE
La présente invention est relative aux matériaux composites à base de fibres et de résine durcissable, aux pièces composites fabriquées à partir de tels matériaux ainsi qu'aux procédés et dispositifs de fabrication de tels matériaux ou pièces composites.
La demande de brevet EP-A-I 074 369 a décrit un procédé de fabrication d'une pièce composite d'épaisseur donnée, de forme convexe, comprenant des fibres de renforcement parallèles à au moins une direction de renforcement privilégiée, lesdites fibres étant noyées dans une matrice à base d'une composition comprenant une résine durcissable par un rayonnement ionisant, le procédé comportant les étapes suivantes :
disposer lesdites fibres de renforcement sensiblement parallèlement à un plan et les imprégner de ladite composition à l'état liquide ; - exposer la composition contenant lesdites fibres, en couche d'épaisseur inférieure à ladite épaisseur donnée, à un rayonnement ionisant, pour polymériser partiellement la résine et obtenir un précomposite dans lequel ladite composition est en phase solide ; prélever des tronçons élémentaires dans le précomposite solide ainsi obtenu et les appliquer sur un support, dont la surface est de forme non plane, en les empilant les uns sur les autres en un nombre dicté par ladite épaisseur donnée, et en leur faisant épouser intimement ladite forme du support et ainsi créer un empilage de tronçons élémentaires contraints ; soumettre enfin l'empilage ainsi obtenu à un moulage final, sous pression et température élevées, afin de poursuivre la polymérisation de la résine et solidariser ainsi les différents tronçons de précomposite.
Grâce au procédé décrit, il est possible d'obtenir des pièces composites utilisables notamment pour la fabrication de bandages non pneumatiques pour véhicule automobile.
Un inconvénient toutefois de ce procédé est qu'il nécessite, après solidification de la matrice à base de résine, d'abord de sectionner le précomposite solide en tronçons élémentaires, ensuite de superposer, à la forme finale désirée, les tronçons élémentaires contraints, autant de manipulations successives qui sont pénalisantes du point de vue industriel et antinomiques de la recherche de cadences de fabrication élevées. La demande de brevet EP-A-I 174 250 a proposé quant à elle :
de dégazer l'arrangement de fibres avant de l'imprégner ; après imprégnation sous vide, de faire passer l'imprégné liquide au travers d'une filière calibrée, ayant une section de surface et de forme prédéfinies, pour imposer une forme prédéterminée audit imprégné telle que par exemple celle d'un fil de section ronde (voir par exemple Fig. 1 à 3) ou plus particulièrement celle d'un ruban (Fig. 4 à 7) ; puis, en aval de la filière, de stabiliser ledit fil ou ruban par une solidification substantielle de la résine dans des chambres dites de stabilisation comportant une série de tubes d'irradiation (référencés par exemple respectivement 131 et 231 aux Fig. 1 et
4) émettant dans le spectre UV-visible ; enfin d'enrouler ledit fil ou ruban solide (stabilisé) sur une bobine de réception de grand diamètre (référencée par exemple 141 à la Fig. 1), pour un stockage intermédiaire.
On peut ensuite préparer des pièces composites par dévidage puis ré-enroulement en couches solides dudit fil ou ruban, sur tout support de forme appropriée.
Toutefois, si les précédents inconvénients de tronçonnage et d'assemblage de tronçons précontraints sont ainsi supprimés, le second procédé exige comme le précédent que l'opération de solidification (polymérisation) de la résine soit conduite sur une épaisseur substantielle de matière de telle manière que le produit soit suffisamment "stabilisé", c'est-à- dire manipulable sans le détruire, pour les opérations ultérieures de fabrication des pièces composites finales. Cette exigence implique notamment l'emploi de chambres de stabilisation de longueurs importantes, avec plusieurs tubes d'irradiation en série, pour l'obtention d'intensités de traitement suffisantes, en particulier lorsque l'on souhaite travailler à des vitesses de défilement élevées.
Poursuivant ses recherches, la Demanderesse a trouvé un procédé nouveau qui permet de préparer une pièce composite de très haute qualité, sous forme d'un anneau continu, tout en supprimant purement et simplement la chambre de stabilisation et sa série de tubes d'irradiation UV tels que décrits dans la demande EPA-I 174 250 ci-dessus. Ceci simplifie de manière notable procédé et dispositif de fabrication, réduisant du même coup sensiblement le coût industriel final des blocs composites visés.
En conséquence, la présente invention a pour objet un procédé de fabrication d'un bloc composite de géométrie fermée, sous forme d'un anneau continu, à base de fibres de renforcement et d'une résine réticulable, par enroulement en continu et superposition en un nombre de couches prédéterminé Nc d'un ruban desdites fibres de renforcement noyées dans une matrice à base d'une composition comportant ladite résine réticulable, ledit procédé comportant, d'amont en aval, les étapes suivantes : • réaliser un arrangement rectiligne de fibres de renforcement, et entraîner cet arrangement dans une direction d'avancement ;
• dégazer l'arrangement de fibres par l'action du vide ; " après dégazage, imprégner ledit arrangement de fibres par ladite composition de résine à l'état liquide ;
• faire passer l'imprégné ainsi obtenu au travers d'une filière pour imposer audit imprégné une forme de ruban constitué des fibres de renforcement dans leur matrice de résine liquide, l'épaisseur (notée "Er") dudit ruban étant comprise entre 0,1 mm et 0,5 mm ; " en sortie de filière, appliquer un traitement de surface sur la face supérieure dudit ruban pour créer une peau solide dont l'épaisseur (notée "Ep") représente moins de 10% de l'épaisseur Er du ruban, de telle manière que ladite peau serve de base lors de l'enroulement subséquent du ruban sur lui-même ;
" déposer le ruban ainsi traité superficiellement sur un support dictant la forme finale du bloc composite, et enrouler ledit ruban sur ledit support, unidirectionnellement, par superposition du nombre Nc de couches pour formation directe dudit anneau continu sur ledit support, Nc étant inférieur à 15.
On a constaté, de manière inattendue, qu'un tel traitement de surface, sur une profondeur Ep aussi faible, était néanmoins suffisant pour que la couche d'ordre N (N variant de 1 à Nc-I) serve de support suffisamment stable à la couche d'ordre N+l qui la suit immédiatement, lors de l'enroulement du ruban sur lui-même en Nc couches superposées, empêchant ainsi les fibres de renforcement de migrer d'une couche N vers les couches de rang inférieur (N-I, N-2, etc.).
L'invention concerne également un dispositif pour la fabrication d'un bloc composite de géométrie fermée, sous forme d'un anneau continu, à base de fibres de renforcement et d'une résine réticulable, par enroulement en continu et superposition en plusieurs couches d'un ruban desdites fibres de renforcement noyées dans une matrice à base d'une composition comportant ladite résine réticulable, ledit dispositif comportant d'amont en aval (références aux figures 1 et 2):
" des moyens d'arrangement (10) rectiligne des fibres de renforcement (11) et d'entraînement (23) dudit arrangement (12) dans une direction d'avancement (F) ; " une chambre à vide (13, 13a, 13b) ;
" en sortie de la chambre à vide, une chambre d'imprégnation (14, 15, 16, 17, 18) destinée à imprégner les fibres (11, 12) par la composition de résine à l'état liquide (17) ;
" des moyens de calibrage (19, 20) comportant au moins une filière de calibrage (20), pour formation d'un ruban (21) comportant les fibres (11) et la résine (17) à l'état liquide ; " des moyens de traitement de surface (22) aptes à solidifier la face supérieure dudit ruban
(21) ; " un support ou mandrin (23) de forme fermée, de préférence convexe, destiné à recevoir ledit ruban (21) pour formation d'un anneau composite (30), par superposition et enroulement unidirectionnel de plusieurs couches dudit ruban.
L'invention ainsi que ses autres avantages seront aisément compris à la lumière de la description détaillée et des exemples de réalisation qui suivent, ainsi que des figures relatives à ces exemples qui schématisent un dispositif utilisable pour la mise en œuvre du procédé de l'invention (Fig. 1), un bloc composite (anneau élémentaire continu) obtenu selon le procédé de l'invention (Fig. 2), ainsi qu'un exemple d'un assemblage de plusieurs blocs composites (Fig. 3) pouvant constituer une structure de renforcement pour un bandage élastique non pneumatique (Fig. 4).
DESCRIPTION DETAILLEE DE L'INVENTION
Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des % en masse.
Les trois premières étapes (arrangement, dégazage puis imprégnation) du procédé de l'invention sont des étapes connues de l'homme du métier, ainsi que les matières (fibres et compositions de résine) utilisées ; elles ont par exemple été décrites dans l'une et/ou l'autre des deux demandes EP-A-I 074 369 et EP-A-I 174 250 précitées.
Tout type de fibre de renforcement est utilisable dès lors que cette dernière est compatible avec sa matrice de résine réticulable. Une telle fibre est par exemple choisie dans le groupe constitué par les fibres polyacrylique, polyacrylonitrile, alcool polyvinylique, polyamide aromatique (ou "aramide"), polyamide-imide, polyimide, les chlorofibres, les fibres polyester, polyester aromatique, polyéthylène, polypropylène, les fibres de cellulose, rayonne, viscose, polyphénylène benzobisoxazole (ou "PBO"), polyéthylène naphténate ("PEN"), les fibres de verre, de carbone, de silice, les fibres céramiques, et les mélanges de telle fibres. On préfère utiliser des fibres à haute ténacité, particulièrement des fibres choisies dans le groupe constitué par les fibres de verre, les fibres de carbone et les mélanges de telles fibres.
Avant toute imprégnation des fibres, doit être conduite une étape de dégazage de l'arrangement de fibres par l'action du vide, afin notamment de renforcer l'efficacité de l'imprégnation et surtout de garantir l'absence de bulles à l'intérieur de l'anneau composite final. Une telle étape de dégazage a été décrite en détail dans la demande EP-A-I 174 250 précitée.
La composition de résine employée est de préférence une composition du type réticulable (ou durcissable) par un rayonnement ionisant, tel que par exemple un rayonnement de type UV ou UV-visible émettant de préférence dans le spectre allant au moins de 300 nm à 450 nm, un faisceau d'électrons accélérés ou de rayons X.
A titre de résine réticulable, on utilise de préférence une résine polyester ou vinylester. Par résine "polyester", on entend de manière connue une résine du type polyester insaturé. Les résines vinylester sont quant à elles bien connues dans le domaine des matériaux composites.
Sans que cette définition soit limitative, la résine vinylester est préférentiellement du type époxyvinylester. On utilise plus préférentiellement une résine vinylester, notamment du type époxyde, qui au moins pour partie est à base (c'est-à-dire greffée sur une structure du type) novolaque (encore appelée phénoplaste) et/ou bisphénolique, soit préférentiellement une résine vinylester à base novolaque, bisphénolique, ou novolaque et bisphénolique.
Une résine époxyvinylester à base novolaque (partie entre crochets dans la formule I ci- dessous) répond par exemple, de manière connue, à la formule (I) qui suit :
(I)
Figure imgf000007_0001
Une résine époxyvinylester à base bisphénolique A (partie entre crochets de la formule II ci- dessous) répond par exemple à la formule (le "A" rappelant que le produit est fabriqué à l'aide d'acétone):
(H)
Figure imgf000007_0002
Une résine époxyvinylester de type novolaque et bisphénolique a montré d'excellents résultats. A titre d'exemple d'une telle résine, on peut citer notamment la résine vinylester "ATLAC 590" de la société DSM (diluée avec environ 40% de styrène) décrite dans les demandes EP-A-I 074 369 et EP-A-I 174 250 précitées. De telles résines époxyvinylester sont disponibles chez d'autres fabricants tels que Reichhold, Cray Valley, UCB.
La filière dite "de calibrage" permet, grâce à une section droite de dimensions déterminées, généralement et de préférence rectangulaire, d'ajuster la proportion de résine par rapport aux fibres de renforcement tout en imposant à l'imprégné la forme et l'épaisseur visées pour le ruban.
Le procédé de l'invention a ensuite pour caractéristique essentielle d'intégrer, en sortie de filière de calibrage et avant enroulement unidirectionnel du ruban sur son support final, un traitement de surface spécifique, pouvant être qualifié d'extrême-surface, sur la face supérieure dudit ruban afin de créer une peau solide, une pellicule très fine, dont l'épaisseur Ep représente moins de 10%, préférentiellement moins de 5% de l'épaisseur Er du ruban.
Sans la présence de ce traitement de surface, l'enroulement sur lui-même du composite encore "liquide" (c'est-à-dire que, par définition, les fibres de renforcement sont encore dans une matrice de résine liquide) s'avère très difficile lorsqu'on souhaite augmenter les vitesses de défilement. Il risque de se produire un effet "tranchant" parasite (dit aussi "effet de cabestan") des fibres solides s'enfonçant à travers la résine liquide : les fibres tendent alors à se rapprocher du centre instantané de courbure du mandrin de réception, et la résine à s'en éloigner ; il s'ensuit une distribution des fibres et de la résine qui n'est pas totalement homogène dans le volume de la pièce composite, et des hétérogénéités de compactage qui peuvent nuire aux propriétés mécaniques et à l'endurance des composites fabriqués.
L'essentiel est que ladite face supérieure, grâce à la peau solide ainsi formée, serve de base ou support suffisamment stable lors de l'enroulement subséquent du ruban sur lui-même, sans pour autant traiter en profondeur et donc plus intensément ledit ruban. L'intensité du traitement est ajustée de telle manière que la réticulation de la résine soit juste suffisante pour permettre l'enroulement et l'empilage des Nc couches de ruban, sans provoquer l'effet parasite du type "cabestan" décrit ci-dessus. Mais en aucun cas le ruban ainsi traité superficiellement, sur une profondeur Ep aussi faible, ne peut être qualifié de "stabilisé" au sens de la demande de brevet EP-A-I 174 250 précitée ; en d'autres termes, ainsi traité, il n'est pas manipulable sans le détruire.
Pour toutes les raisons exposées ci-dessus, on préfère que l'épaisseur de la peau ou pellicule ainsi formée soit comprise entre 2 et 10 μm, plus préférentiellement entre 3 et 10 μm. La solidification de la face supérieure du ruban pourra être obtenue par tout moyen de traitement approprié, très localisé, de préférence par une amorce suffisante de réticulation ou polymérisation de la composition d'imprégnation. On citera par exemple un traitement ionisant, notamment du type UV conduit préférentiellement dans ce dernier cas en présence d'un agent photo-initiateur dans la composition d'imprégnation.
Par peau « solide », on entend dans la présente demande, par définition, un peau dont la caractéristique est de ne pas être soluble dans un solvant organique tel que l'acétone, à température ambiante (23°C). Un test simple de solubilité dans l'acétone consistera à prélever un échantillon de ruban ainsi traité, directement en sortie des moyens de traitement 22 décrits ultérieurement, à le laver et rincer abondamment dans l'acétone pendant au moins 2 minutes à la température ambiante (23°C) : on ne doit récupérer alors, hormis les fibres de renforcement solides, qu'une pellicule très fine de résine réticulée, d'épaisseur Ep représentant moins de 10% de l'épaisseur Er du ruban, préférentiellement comprise entre 3 et 10 μm, et correspondant à la partie supérieure du ruban qui a subi le traitement de solidification ou réticulation.
On souhaite que la durée de ce traitement de surface, réalisée en continu sur le ruban en cours de défilement, soit la plus courte possible, préférentiellement inférieure à 10 secondes, typiquement de l'ordre de quelques dixièmes de secondes tout au plus. C'est en cela que l'on peut parler de traitement du type "flash".
Dans le cas d'un flash UV par exemple, on comprend aisément que la durée du traitement va dépendre directement de nombreuses variables parmi lesquelles, notamment, la nature de la résine, la quantité de photo-initiateur, la puissance, la longueur d'onde et l'éloignement de la source d'émission UV. L'homme du métier saura aisément adapter et contrôler ses conditions particulières de traitement pour mettre en œuvre le procédé de l'invention, le cas échéant par quelques essais d'ajustement successifs. On préfère que la durée du traitement (durée d'exposition à la source UV notamment) soit inférieure à 5 s, plus préférentiellement encore inférieure à 2 s.
Le ruban de fibres ainsi traité en "extrême-surface" arrive ensuite, en continu, sur un support ou mandrin de forme adaptée sur lequel il est alors enroulé directement, unidirectionnellement, par superposition du nombre Nc prédéterminé de couches. On forme ainsi un anneau continu et fermé dont la section droite est essentiellement rectangulaire.
Selon un mode de réalisation préférentiel, la contrainte de tension subie par les fibres de renforcement, dans le ruban en cours de défilement (c'est-à-dire par les fibres imprégnées), est comprise entre 0,2 et 5 cN/tex (centinewton par tex) ; il s'agit donc de la tension mesurée entre la filière de calibrage et l'entrée du support ou mandrin dictant la forme du bloc composite final. On a constaté qu'en dehors de ce domaine de tension préférentiel, il existait un risque de déformation ou tout au moins de perte de régularité de forme du ruban, pouvant être nuisible à la qualité et endurance du bloc composite final. Pour cette raison, ladite contrainte de tension est plus préférentiellement comprise entre 0,5 et 2,5 cN/tex.
L'opération d'enroulement du ruban sur ledit mandrin se fait de préférence par rotation du mandrin lui-même dans un plan fixe et tangentiel au plan d'arrivée du ruban sur le mandrin tournant. On stoppe l'opération d'enroulement une fois les Nc couches de ruban enroulées sur elles-mêmes.
Un avantage notable du procédé de l'invention et de son traitement de surface est que le ruban garde encore un pouvoir collant suffisant pour permettre l'adhésion, sur la couche d'ordre N, de la couche suivante (N+ 1) sans qu'il soit nécessaire d'exercer une quelconque action mécanique et/ou thermique supplémentaire.
Toutefois, selon une variante de réalisation possible, chaque couche d'ordre N peut être pressée mécaniquement à l'entrée du support ou mandrin, par exemple par rouletage à l'aide d'une roulette de même largeur que le ruban, de manière à compacter légèrement l'ensemble, garantir une excellente adhésion entre les couches successives, répartir les fibres de manière homogène latéralement.
A ce stade est obtenu un bloc composite se présentant sous la forme d'un anneau plat continu, dont les fibres de renforcement sont sensiblement unidirectionnelles, réparties de manière homogène dans tout le volume de la matrice (composition de résine).
La géométrie particulière de l'anneau ainsi formé, de préférence convexe (par exemple circulaire, ovale, elliptique), est bien sûr dictée par celle du support ou mandrin sur lequel le ruban a été enroulé. Selon une variante de réalisation préférentielle, le support ou mandrin, par exemple en métal, est pourvu d'une gorge de réception épousant la forme du ruban, de profondeur appropriée pour recevoir et stabiliser géométriquement les Nc couches de ruban superposées.
Une fois l'anneau composite ainsi formé, on soumet préférentiellement la résine à une polymérisation suffisante (par exemple à l'aide d'UV) pour stabiliser suffisamment ledit anneau, cette fois sur toute son épaisseur, avant séparation d'avec son support. Pour faciliter cette séparation, ledit support ou mandrin est avantageusement construit en deux parties amovibles, symétriques ou non, qui peuvent être aisément séparées mécaniquement.
Le bloc composite ainsi stabilisé, dans lequel la composition de résine est alors essentiellement en phase solide, peut alors être aisément manipulé sans risque de le détruire, stocké tel quel ou traité immédiatement afin de finir de polymériser la résine le cas échéant (cuisson ou réticulation finale).
L'opération de cuisson finale peut être réalisée par tout moyen connu de l'homme du métier, sous simple pression atmosphérique c'est-à-dire "hors moule" (ou "moule ouvert" selon une terminologie reconnue), par exemple dans une enceinte UV ou un simple four, ou encore sous pression élevée (typiquement plusieurs bars à plusieurs dizaines de bars) à la température appropriée. Une variante de réalisation possible consiste à cuire totalement le bloc composite sur son support ou mandrin de réception, et à n'extraire ce dernier qu'après cuisson complète.
L'épaisseur de l'anneau composite final est de préférence comprise entre 0,5 et 5,0 mm (millimètres), plus préférentiellement comprise dans un domaine de 1 à 2 mm. Sa largeur est de préférence inférieure à 25 mm, plus préférentiellement comprise dans un domaine de 5 à 20 mm.
Quant aux dimensions de l'anneau lui-même (i.e., sensiblement celle du mandrin ou support ayant servi à sa fabrication), sa plus grande dimension (par exemple son diamètre si l'anneau est de géométrie circulaire) est typiquement de l'ordre de quelques cm (centimètres) à quelques dizaines de cm.
Deux autres caractéristiques essentielles du procédé de l'invention sont d'une part l'épaisseur maximale du ruban en sortie de filière de calibrage, qui doit être inférieure à 0,5 mm, d'autre part le nombre maximal de couches qui sont enroulées pour formation de l'anneau composite, qui doit être inférieur à 15. Il s'est avéré que si ces deux caractéristiques ne sont pas vérifiées, la forme et la régularité du ruban comme celles du composite final ne sont plus sous contrôle, ce qui entraîne une dégradation rédhibitoire de l'endurance en flexion-compression de l'anneau composite final. Par ailleurs, une épaisseur inférieure à 0,1 mm (soit 100 μm) n'est pas compatible avec les contraintes de production industrielles.
Pour toutes les raisons indiquées ci-dessus, l'épaisseur du ruban en sortie de filière est choisie préférentiellement comprise entre 0,10 et 0,35 mm, plus préférentiellement comprise entre 0,15 et 0,30 mm ; le nombre de couches Nc est quant à lui préférentiellement inférieur à 10, plus préférentiellement compris entre 5 et 10.
L'homme du métier s'attendait à ce que des bulles d'air se forment inévitablement en surface du ruban, à la sortie de la filière de calibrage, en raison de la surpression imposée (fin de zone sous vide), et que ces bulles soient ensuite aisément emprisonnées entre les couches de ruban en raison de la technique d'enroulement ici adoptée, en l'occurrence un enroulement unidirectionnel par superposition de couches (sans trancannage, fibres non croisées), qui plus est en l'absence de tension notable sur les fibres. Un tel effet parasite aurait naturellement nuit à la qualité, à l'apparence du composite final ainsi qu'à son endurance.
De manière inattendue il n'est en rien, à condition de respecter toutes les caractéristiques techniques combinées du procédé de l'invention, en particulier les deux conditions essentielles énoncées ci-dessus relatives à l'épaisseur du ruban élémentaire et au nombre de couches superposées.
Le procédé de l'invention peut être mis en œuvre à l'aide d'un dispositif lui-même objet de l'invention.
La figure 1 annexée schématise très simplement un exemple d'un tel dispositif 1 , pour une partie (après sortie de la filière 20) représenté en perspective afin d'illustrer la naissance du ruban 21 après passage dans les moyens de calibrage 19, 20.
On y voit une bobine 10 contenant, dans l'exemple illustré, des fibres de verre 11. La bobine est déroulée en continu par entraînement, de manière à réaliser un arrangement rectiligne 12 de ces fibres 11. En général, les fibres de renforcement sont livrées en "rovings", c'est à dire déjà en groupes de fibres enroulées en parallèle sur une bobine (par exemple, on utilise des fibres commercialisées par Owens Corning sous la désignation de fibre "Advantex", de titre égal à 1200 tex (pour rappel, 1 tex = 1 g/1000 m de fibre)). C'est par exemple la traction exercée par la réception tournante 23 qui va permettre l'avancement des fibres en parallèle et du ruban tout le long de l'installation 1.
Cet arrangement 12 traverse ensuite une chambre à vide 13 (reliée à une pompe à vide non représentée), disposée entre une tubulure d'entrée 13a et une tubulure de sortie 13b débouchant sur la chambre d'imprégnation 14, les deux tubulures de préférence à paroi rigide ayant par exemple une section minimale supérieure (typiquement deux fois plus) à la section totale de fibres et une longueur très supérieure (typiquement 50 fois plus) à ladite section minimale.
Comme déjà enseigné par la demande EP-A-I 174 250 précitée, l'utilisation de tubulures à paroi rigide, aussi bien pour l'orifice d'entrée dans la chambre à vide que pour l'orifice de sortie de la chambre à vide et le transfert depuis la chambre à vide jusqu'à la chambre d'imprégnation, s'avère compatible à la fois avec des cadences élevées de passage des fibres au travers des orifices sans rompre les fibres, mais aussi permet d'assurer une étanchéité suffisante. Il suffit, au besoin expérimentalement, de rechercher la plus grande section de passage, compte tenu de la section totale des fibres à traiter, permettant encore d'offrir une étanchéité suffisante, compte tenu de la vitesse d'avancement des fibres et de la longueur des tubulures. Typiquement, le vide à l'intérieur de la chambre 13 est par exemple de l'ordre de 0,1 bar.
En sortie de la chambre à vide 13, l'arrangement 12 de fibres 11 traverse une chambre d'imprégnation 14 comportant un réservoir d'alimentation 15 (relié à une pompe doseuse non représentée) et un réservoir d'imprégnation 16 étanche totalement rempli de composition d'imprégnation 17 à base d'une résine durcissable du type vinylester (e.g., "ATLAC 590" de
DSM). A titre d'exemple, la composition comporte en outre (à un taux pondéral de 1 à 2%) un agent photo-initiateur approprié pour le rayonnement UV et/ou UV-visible par lequel la composition sera ultérieurement traitée, par exemple l'oxyde de bis(2,4,6-triméthylbenzoyl)- phénylphosphine ("Irgacure 819" de la société Ciba). Bien entendu, la composition d'imprégnation 17 est à l'état liquide. Il ressort de la chambre d'imprégnation 14, dans une tubulure de sortie 18 étanche (toujours sous vide), un imprégné qui comporte par exemple de
50 à 75% (% en poids) de fibres solides 11, le reste étant constitué par la matrice liquide d'imprégnation 17.
L'imprégné passe ensuite à travers des moyens de calibrage 19 comportant au moins une filière de calibrage 20 dont le canal (non représenté ici), par exemple de forme rectangulaire ou conique, est adapté aux conditions particulières de réalisation. A titre d'exemple, ce canal a une section droite minimale de forme rectangulaire dont l'orifice aval a des dimensions (par exemple 5,3 mm x 0,25 mm ou 10,6 mm x 0,25 mm) légèrement supérieures à celle du ruban visé. Ladite filière a une longueur qui est typiquement supérieure d'au moins 100 fois à la dimension minimale de la section minimale. Elle a pour fonction d'assurer une grande précision dimensionnelle au produit fini, elle peut également jouer un rôle de dosage du taux de fibre par rapport à la résine. Selon une variante de réalisation possible, la filière 20 peut être directement intégrée à la chambre d'imprégnation 14, ce qui évite par exemple l'emploi de la tubulure de sortie 18.
Grâce aux moyens de calibrage (19, 20) est obtenu à ce stade un ruban composite 21 "liquide" (liquide au sens que sa résine d'imprégnation est toujours liquide pour plus de 90% de son épaisseur Er), dont la forme de la section droite est essentiellement rectangulaire (par exemple 5 mm x 0,2 mm ou 10 mm x 0,2 mm, respectivement). Ce ruban 21 d'épaisseur Er est entraîné dans le sens de la flèche F.
Avant enroulement du ruban liquide 21 sur son support de réception final 23, on applique un traitement de surface du type flash (c'est-à-dire très court, par exemple de l'ordre de 1 seconde) à l'aide des moyens de traitement 22 destinés à créer, sur la face supérieure dudit ruban, une peau solide dont l'épaisseur Ep représente moins de 10% de l'épaisseur Er du ruban (soit moins de 20 μm dans le présent exemple) ; les moyens 22 consistent par exemple en une lampe UV (lampe "UVAprint" de la société Dr. Hδnle, de longueur d'onde 200 à 600 nm).
Entre les moyens de calibrage (19, 20) et le support de réception finale (23), on préfère maintenir les tensions subies par les fibres à un niveau modéré, compris par exemple entre 0,5 et 2,5 cN/tex ; pour contrôler cela, on pourra par exemple mesurer ces tensions directement en sortie de filière, à l'aide de tensiomètres appropriés bien connus de l'homme du métier.
Le ruban 21 ainsi traité arrive ensuite sur son support de réception finale 23, par exemple un mandrin tournant de forme convexe (ici ovale, à titre d'exemple), à l'entrée duquel il peut être, selon un mode de réalisation avantageux, pressé mécaniquement à l'aide des moyens 24 (par exemple par rouletage mécanique à l'aide d'une roulette) exerçant une légère pression P sur la face supérieure du ruban 21. Le mandrin tournant 23 est de préférence pourvu d'une gorge de réception 25 épousant la forme et largeur du ruban 21 et facilitant ainsi l'enroulement du ruban sur lui-même en ses différentes couches Nc superposées.
Une fois les Nc couches de ruban enroulées sur le support ou mandrin 23, on stoppe l'enroulement, pour l'obtention du bloc composite final visé (référencé 30 à la Fig. 2).
Au regard du mandrin 23 peuvent être éventuellement disposés des moyens de stabilisation (26) aptes par exemple à polymériser la résine dudit anneau composite sur ledit support ou mandrin (23). Le ruban ainsi stabilisé peut être manipulé aisément, il est par exemple traité 5 min dans un four UV avant cuisson finale, par exemple dans un four sous pression et température (par exemple à 230°C pendant 5 à 6 min sous 10 bars). Selon une autre variante de réalisation, toute l'opération de cuisson pourrait être réalisée sous rayonnement UV, entièrement ou non sur le mandrin de réception.
On obtient finalement un bloc composite sous forme d'un anneau continu fermé, dont les fibres de renforcement sont réparties de manière homogène dans tout le volume. Ce bloc composite est doté d'excellentes propriétés mécaniques, avec en particulier une très haute endurance en flexion et en cisaillement.
Un tel exemple de bloc composite 30 a été reproduit schématiquement à la figure 2 annexée, il a été obtenu par enroulement sur un mandrin convexe de forme elliptique. Il consiste en un anneau continu plat 30 fermé dont la section droite rectangulaire a pour dimensions 10 mm x
1,4 mm. Comme on le voit à la figure 2, la forme ou géométrie de l'anneau est essentiellement elliptique avec des dimensions intérieures longitudinale (notée A à la fig. 2) de l'ordre de 15 cm et transversale (notée B à la fig. 2) de l'ordre de 6 cm. Un tel anneau ou bloc composite a été préparé par enroulement de 7 (Nc = 7) couches successives de ruban, conformément au procédé de l'invention précédemment décrit, à l'aide d'un dispositif tel que schématisé à la figure 1.
L'invention offre ainsi la possibilité de fabriquer un bloc composite en très petites sections qui peut avoir de très nombreuses applications industrielles, qu'il soit utilisé individuellement ou associé avec d'autres blocs composites pour formation de structures plus complexes. De telles structures pourront servir notamment d'armature de renforcement à tout système de liaison au sol de véhicules automobiles, tels que bandage non pneumatique, bandage pneumatique, appui interne de sécurité pour pneumatique, roue, autre élément de suspension et anti-vibratoire.
A titre d'exemple, en adaptant le nombre "Na" (Na préférentiellement inférieur à 10, par exemple compris dans un domaine de 3 à 7) et les dimensions de ces anneaux élémentaires, ces derniers peuvent être avantageusement emboîtés les uns dans les autres, puis agrafés mécaniquement ou "chimiquement" grâce par exemple à l'emploi d'un polymère de remplissage destiné à combler tous les interstices présents entre les anneaux élémentaires. Ce polymère de remplissage devra bien entendu être compatible avec la résine de l'anneau composite et capable d'une bonne adhésion avec cette dernière, si besoin aux moyens d'une composition adhésive appropriée telle que décrite par exemple dans la demande WO 2004/058909. Ce polymère est par exemple un élastomère diénique ou un polyuréthane.
On a schématisé à la figure 3 un exemple d'une telle armature de renforcement composite 40 formée de 5 (Na = 5) anneaux élémentaires 30 qui sont solidarisés "chimiquement" grâce à l'emploi d'un polymère de remplissage 41 (par exemple en polyuréthane ou en caoutchouc diénique) comblant les interstices présents entre les 5 anneaux élémentaires 30. L'armature 40 peut comporter des moyens de liaison mécaniques 42 (par exemple une agrafe) destinés à assurer la liaison ultérieure à la partie rigide d'une roue comme expliqué ci-après.
Cette armature de renforcement composite peut former un arceau de renforcement radial d'une carcasse de bandage non pneumatique tel que décrit par exemple dans les demandes de brevet WO-A-00/37269 et EP-A-I 359 028.
La figure 4 annexée montre une perspective partielle d'un tel bandage flexible non pneumatique 50. Un tel bandage, lorsqu'il est associé à tout autre élément mécanique rigide destiné à assurer la liaison entre le bandage flexible et le moyeu, remplace l'ensemble constitué par la pneumatique et la roue tels qu'on les connaît sur la plupart des véhicules routiers actuels.
Le profil du bandage délimite une cavité interne torique de section ovoïdale. Le bandage 50 comporte une zone de fixation 51 (comportant les moyens de liaison 42 illustrés à la figure 3), deux flancs 52 et une bande de roulement 53. La zone de fixation est destinée à être rigidement liée à un moyeu de roue par l'intermédiaire d'un élément mécanique comme un disque ou voile de roue (non représenté ici). Sur cette figure 4, la bande de roulement 53 comporte plusieurs nervures circonférentielles, mais cet aspect n'a bien entendu aucun caractère limitatif. Les flancs 52 sont arrondis et occupent la majeure partie de la hauteur radiale du bandage 50. La structure portante comporte une pluralité d'éléments de support constitués par les armatures de renforcement composites 40 illustrés à la figure 3 précédente.
Les éléments de support 40 sont adjacents circonférentiellement et s'étendent chacun sensiblement radialement vers l'extérieur à partir de la zone de fixation 51. La figure 4 montre également un principe de ce type de bandage non pneumatique selon lequel c'est la flexion des éléments de support qui permet de porter la charge. Sur cet exemple particulier, le bandage comporte une centaine d'éléments de support 40. Ce nombre peut bien sûr être très différent en fonction par exemple du type de véhicule et du type d'usage auxquels il est destiné et des caractéristiques des éléments de support. Le nombre d'éléments peut ainsi varier par exemple de 30 à 300. De préférence, une structure d'interconnexion disposée radialement sous la bande de roulement 53, relativement rigide en traction-compression longitudinale, relie circonférentiellement l'ensemble des éléments de support 40.
Pour d'autres détails sur la constitution de ces éléments de support et de la structure d'interconnexion, le lecteur pourra se reporter utilement aux demandes de brevet WO-A- 00/37269 et EP-A-I 359 028 précitées.
Un tel bandage non pneumatique est susceptible d'équiper tout type de véhicule à moteur, par exemple de type tourisme, deux roues (notamment motos, scooters), avions, comme des véhicules industriels choisis parmi camionnettes, "Poids-lourd" - c'est-à-dire métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route tels qu'engins agricoles ou de génie civil -, autres véhicules de transport ou de manutention.
En conclusion, grâce au procédé de l'invention, il est désormais possible d'obtenir un anneau composite de très haute qualité par simple enroulement unidirectionnel de couches de résine à l'état essentiellement liquide, ceci au moindre coût, en évitant notamment l'emploi de longues chambres de stabilisation et leurs série de tubes d'irradiation.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un bloc composite de géométrie fermée, sous forme d'un anneau continu, à base de fibres de renforcement et d'une résine réticulable, par enroulement en continu et superposition en un nombre de couches prédéterminé Nc d'un ruban desdites fibres de renforcement noyées dans une matrice à base d'une composition comportant ladite résine réticulable, ledit procédé comportant, d'amont en aval, les étapes suivantes :
" réaliser un arrangement rectiligne de fibres de renforcement, et entraîner cet arrangement dans une direction d'avancement ; " dégazer l'arrangement de fibres par l'action du vide ; 1 après dégazage, imprégner ledit arrangement de fibres par ladite composition de résine à l'état liquide ; " faire passer l'imprégné ainsi obtenu au travers d'une filière pour imposer audit imprégné une forme de ruban constitué des fibres de renforcement dans leur matrice de résine liquide, l'épaisseur (notée "Er") dudit ruban étant comprise entre 0,1 mm et 0,5 mm ;
" en sortie de filière, appliquer un traitement de surface sur la face supérieure dudit ruban pour créer une peau solide dont l'épaisseur (notée "Ep") représente moins de 10% de l'épaisseur Er du ruban, de telle manière que ladite peau serve de base lors de l'enroulement subséquent du ruban sur lui-même ;
" déposer le ruban ainsi traité superficiellement sur un support dictant la forme finale du bloc composite, et enrouler ledit ruban sur ledit support, unidirectionnellement, par superposition du nombre Nc de couches pour formation directe dudit anneau continu sur ledit support, Nc étant inférieur à 15.
2. Procédé selon la revendication 1, dans lequel les fibres de renforcement sont choisies dans le groupe constitué par les fibres de verre, les fibres de carbone, et les mélanges de telles fibres.
3. Procédé selon les revendications 1 ou 2, dans lequel la résine de la composition est une résine réticulable par un rayonnement ionisant.
4. Procédé selon l'une quelconque des revendications 1 à 3, la résine étant une résine polyester ou vinylester, de préférence une résine vinylester.
5. Procédé selon la revendication 4, la résine vinylester étant une résine époxyvinylester à base novolaque et/ou bisphénolique.
6. Procédé selon l'une quelconque des revendications 1 à 5, l'épaisseur de peau Ep représentant moins de 5% de l'épaisseur Er du ruban.
7. Procédé selon l'une quelconque des revendications 1 à 6, l'épaisseur Er du ruban étant comprise entre 0,10 et 0,35 mm.
8. Procédé selon l'une quelconque des revendications 1 à 7, l'épaisseur Ep de la peau étant comprise entre 2 et 10 μm.
9. Procédé selon l'une quelconque des revendications 1 à 8, le traitement de surface consistant en un traitement de réticulation de la résine.
10. Procédé selon la revendication 9, le traitement de réticulation consistant en un traitement ionisant.
11. Procédé selon la revendication 10, le traitement ionisant consistant en un traitement UV.
12. Procédé selon l'une quelconque des revendications 1 à 11, Nc étant inférieur à 10.
13. Procédé selon la revendication 12, Nc étant compris entre 5 et 10.
14. Procédé selon l'une quelconque des revendications 1 à 13, l'épaisseur dudit anneau étant comprise entre 0,5 et 5,0 mm.
15. Procédé selon la revendication 14, l'épaisseur dudit anneau étant comprise dans un domaine de 1 à 2 mm.
16. Procédé selon l'une quelconque des revendications 1 à 15, la largeur dudit anneau étant inférieure à 25 mm.
17. Procédé selon la revendication 16, la largeur dudit anneau étant comprise dans un domaine de 5 à 20 mm.
18. Dispositif pour la fabrication d'un bloc composite de géométrie fermée, sous forme d'un anneau continu, à base de fibres de renforcement et d'une résine réticulable, par enroulement en continu et superposition en plusieurs couches d'un ruban desdites fibres de renforcement noyées dans une matrice à base d'une composition comportant ladite résine réticulable, ledit dispositif comportant d'amont en aval : " des moyens d'arrangement rectiligne (10) des fibres de renforcement (11) et d'entraînement (23) dudit arrangement (12) dans une direction d'avancement (F) ;
" une chambre à vide (13, 13a, 13b) ;
" en sortie de la chambre à vide, une chambre d'imprégnation (14, 15, 16, 17, 18) destinée à imprégner les fibres (11, 12) par la composition de résine à l'état liquide (17) ; a des moyens de calibrage (19, 20) comportant au moins une filière de calibrage (20), pour formation d'un ruban (21) comportant les fibres (11) et la résine (17) à l'état liquide ;
" des moyens de traitement de surface (22) aptes à solidifier la face supérieure dudit ruban
(21) ; " un support ou mandrin (23) de forme fermée, de préférence convexe, destiné à recevoir ledit ruban (21) pour formation d'un anneau composite (30), par superposition et enroulement unidirectionnel de plusieurs couches dudit ruban.
19. Dispositif selon la revendication 18, les moyens de traitement de surface (22) consistant en des moyens de réticulation de la résine.
20. Dispositif selon la revendication 19, les moyens de réticulation consistant en un rayonnement ionisant.
21. Dispositif selon la revendication 20, le rayonnement ionisant consistant en un rayonnement UV.
PCT/EP2007/010942 2006-12-27 2007-12-13 Procede et dispositif de fabrication d'un anneau composite WO2008080535A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/521,305 US8277590B2 (en) 2006-12-27 2007-12-13 Method and device for the manufacture of a composite ring
AT07856688T ATE477915T1 (de) 2006-12-27 2007-12-13 Verfahren und vorrichtung zur herstellung eines verbundrings
DE602007008618T DE602007008618D1 (de) 2006-12-27 2007-12-13 Verfahren und vorrichtung zur herstellung eines verbundrings
CN200780048154.6A CN101568424B (zh) 2006-12-27 2007-12-13 制造复合环的方法和设备
EP07856688A EP2125346B1 (fr) 2006-12-27 2007-12-13 Procede et dispositif de fabrication d'un anneau composite
JP2009543358A JP2010514592A (ja) 2006-12-27 2007-12-13 複合リングの製造方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR06/11514 2006-12-27
FR0611514A FR2910838B1 (fr) 2006-12-27 2006-12-27 Procede et dispositif de fabrication d'un anneau composite

Publications (1)

Publication Number Publication Date
WO2008080535A1 true WO2008080535A1 (fr) 2008-07-10

Family

ID=38328536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/010942 WO2008080535A1 (fr) 2006-12-27 2007-12-13 Procede et dispositif de fabrication d'un anneau composite

Country Status (8)

Country Link
US (1) US8277590B2 (fr)
EP (1) EP2125346B1 (fr)
JP (1) JP2010514592A (fr)
CN (1) CN101568424B (fr)
AT (1) ATE477915T1 (fr)
DE (1) DE602007008618D1 (fr)
FR (1) FR2910838B1 (fr)
WO (1) WO2008080535A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015090973A1 (fr) 2013-12-19 2015-06-25 Compagnie Generale Des Etablissements Michelin Renfort multi-composite pour pneumatique
WO2015165777A1 (fr) 2014-04-29 2015-11-05 Compagnie Generale Des Etablissements Michelin Renfort plat multi-composite
WO2016116457A1 (fr) 2015-01-21 2016-07-28 Compagnie Generale Des Etablissements Michelin Renfort multi-composite verre-résine à propriétés améliorées
WO2016189209A1 (fr) 2015-05-28 2016-12-01 Compagnie Generale Des Etablissements Michelin Renfort multi-composite en verre-resine ameliore
WO2016189126A1 (fr) 2015-05-28 2016-12-01 Compagnie Generale Des Etablissements Michelin Renfort plat multi-composite
WO2019086798A1 (fr) 2017-10-30 2019-05-09 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'une couche interne a base d'au moins un elastomere isoprenique, une resine renforçante et un sel metallique
WO2019106293A1 (fr) 2017-11-30 2019-06-06 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a haut module comprenant un systeme de reticulation au soufre efficace
WO2019106294A1 (fr) 2017-11-30 2019-06-06 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a haut module comprenant un ultra-accelerateur de vulcanisation
FR3089996A1 (fr) 2018-12-18 2020-06-19 Compagnie Generale Des Etablissements Michelin Composition de résine comprenant un agent de réticulation spécifique
FR3089994A1 (fr) 2018-12-18 2020-06-19 Compagnie Generale Des Etablissements Michelin Composition de résine comprenant un agent de réticulation spécifique
US11491820B2 (en) 2013-08-01 2022-11-08 Compagnie Generale Des Etablissements Michelin GRC (glass-resin composite) monofilament
FR3140304A1 (fr) 2022-10-04 2024-04-05 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une composition de caoutchouc amelioree

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962938B1 (fr) * 2010-07-20 2013-06-14 Michelin Soc Tech Bandage flexible non pneumatique dont la structure porteuse comporte des lames metalliques
US20130280479A1 (en) * 2010-12-13 2013-10-24 Toray Industries, Inc. Carbon-fiber-reinforced plastic molded article
US9751270B2 (en) 2013-06-15 2017-09-05 Advancing Mobility, Llc Annular ring and non-pneumatic tire
US10953696B2 (en) 2015-02-04 2021-03-23 Camso Inc Non-pneumatic tire and other annular devices
EP3368263B1 (fr) 2015-10-30 2023-09-27 Compagnie Générale des Etablissements Michelin Dispositif permettant l'imprégnation de fibres continues avec de la résine et le durcissement de ces derniers
WO2017106750A1 (fr) 2015-12-16 2017-06-22 Thompson Ronald H Système de chenille pour la traction d'un véhicule
CN108099225B (zh) * 2017-12-18 2023-10-31 金发科技股份有限公司 一种交变压力熔融浸渍设备及熔融浸渍方法
CN112793042B (zh) * 2021-04-08 2021-08-10 江苏国富氢能技术装备股份有限公司 用于纤维湿法缠绕工艺的纤维无损浸胶方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109365A1 (de) * 1981-03-12 1982-09-23 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Einrichtung zum wickeln von bauteilen aus faserverstaerkten werkstoffen
EP1174250A1 (fr) * 2000-07-17 2002-01-23 Conception et Développement Michelin S.A. Imprégnation en continu de fibres en grandes longueurs, par de la résine, pour la fabrication d'éléments composites longilignes

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1422778A (en) * 1972-04-10 1976-01-28 Ici Ltd Shaped polymeric articles
JPS5929605B2 (ja) * 1976-03-31 1984-07-21 住友電気工業株式会社 繊維束への樹脂連続含浸方法及び装置
EP0056689B1 (fr) * 1981-01-20 1987-02-25 Hallite Holdings Limited Bague pour transmissions à fluide
JPH01153712A (ja) * 1987-12-11 1989-06-15 Hitachi Chem Co Ltd プリプレグの製造方法
JP3058897B2 (ja) * 1990-08-29 2000-07-04 宇部日東化成株式会社 繊維強化硬化性樹脂製細線条物の製造方法
US5425829A (en) * 1991-06-10 1995-06-20 General Motors Corporation Method of manufacturing hybrid composite leaf springs
US6148885A (en) * 1998-07-21 2000-11-21 Bridgestone/Firestone Research, Inc. Pneumatic tire with band element
FR2787388B1 (fr) * 1998-12-18 2001-01-12 Conception & Dev Michelin Sa Bandage elastique utilisable de facon non pneumatique
JP2000351163A (ja) * 1999-04-05 2000-12-19 Mitsubishi Rayon Co Ltd 管状成形体及びその製造方法
EP1074369B1 (fr) * 1999-08-04 2005-10-05 Conception et Développement Michelin S.A. Procédé de fabrication de pièces en composite fortement sollicitées
FR2839015A1 (fr) * 2002-04-29 2003-10-31 Conception & Dev Michelin Sa Bandage flexible non pneumatique
JP2004122683A (ja) * 2002-10-04 2004-04-22 Toyobo Co Ltd 繊維強化熱可塑性樹脂円環の製造方法
FR2875437B1 (fr) * 2004-09-23 2006-11-24 Conception & Dev Michelin Sa Bandage flexible non pneumatique
ATE552957T1 (de) * 2006-01-27 2012-04-15 Michelin Rech Tech Verfahren zur herstellung eines verbundstoffrings

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109365A1 (de) * 1981-03-12 1982-09-23 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Einrichtung zum wickeln von bauteilen aus faserverstaerkten werkstoffen
EP1174250A1 (fr) * 2000-07-17 2002-01-23 Conception et Développement Michelin S.A. Imprégnation en continu de fibres en grandes longueurs, par de la résine, pour la fabrication d'éléments composites longilignes

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11491820B2 (en) 2013-08-01 2022-11-08 Compagnie Generale Des Etablissements Michelin GRC (glass-resin composite) monofilament
WO2015090973A1 (fr) 2013-12-19 2015-06-25 Compagnie Generale Des Etablissements Michelin Renfort multi-composite pour pneumatique
WO2015165777A1 (fr) 2014-04-29 2015-11-05 Compagnie Generale Des Etablissements Michelin Renfort plat multi-composite
US10259266B2 (en) 2014-04-29 2019-04-16 Compagnie Generale Des Etablissements Michelin Multi-composite planar reinforcement
WO2016116457A1 (fr) 2015-01-21 2016-07-28 Compagnie Generale Des Etablissements Michelin Renfort multi-composite verre-résine à propriétés améliorées
KR20180013903A (ko) * 2015-05-28 2018-02-07 꽁빠니 제네날 드 에따블리세망 미쉘린 다중복합체 편평형 보강재
US10994573B2 (en) 2015-05-28 2021-05-04 Compagnie Generale Des Etablissements Michelin Multi-composite planar reinforcement
WO2016189126A1 (fr) 2015-05-28 2016-12-01 Compagnie Generale Des Etablissements Michelin Renfort plat multi-composite
KR102521824B1 (ko) 2015-05-28 2023-04-17 꽁빠니 제네날 드 에따블리세망 미쉘린 다중복합체 편평형 보강재
WO2016189209A1 (fr) 2015-05-28 2016-12-01 Compagnie Generale Des Etablissements Michelin Renfort multi-composite en verre-resine ameliore
WO2019086798A1 (fr) 2017-10-30 2019-05-09 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'une couche interne a base d'au moins un elastomere isoprenique, une resine renforçante et un sel metallique
US12060489B2 (en) 2017-10-30 2024-08-13 Compagnie Generale Des Etablissements Michelin Tire provided with an inner layer made from at least an isoprene elastomer, a reinforcing resin and a metal salt
WO2019106294A1 (fr) 2017-11-30 2019-06-06 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a haut module comprenant un ultra-accelerateur de vulcanisation
WO2019106293A1 (fr) 2017-11-30 2019-06-06 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a haut module comprenant un systeme de reticulation au soufre efficace
US12071545B2 (en) 2017-11-30 2024-08-27 Compagnie Generale Des Etablissements Michelin High-modulus rubber composition comprising a vulcanization ultra-accelerator
WO2020128288A1 (fr) 2018-12-18 2020-06-25 Compagnie Generale Des Etablissements Michelin Composition de résine comprenant un agent de réticulation spécifique
WO2020128289A1 (fr) 2018-12-18 2020-06-25 Compagnie Generale Des Etablissements Michelin Composition de resine comprenant un agent de reticulation specifique
FR3089994A1 (fr) 2018-12-18 2020-06-19 Compagnie Generale Des Etablissements Michelin Composition de résine comprenant un agent de réticulation spécifique
FR3089996A1 (fr) 2018-12-18 2020-06-19 Compagnie Generale Des Etablissements Michelin Composition de résine comprenant un agent de réticulation spécifique
FR3140304A1 (fr) 2022-10-04 2024-04-05 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une composition de caoutchouc amelioree
WO2024074787A1 (fr) 2022-10-04 2024-04-11 Compagnie Generale Des Etablissements Michelin Pneumatique

Also Published As

Publication number Publication date
JP2010514592A (ja) 2010-05-06
EP2125346A1 (fr) 2009-12-02
DE602007008618D1 (de) 2010-09-30
ATE477915T1 (de) 2010-09-15
US8277590B2 (en) 2012-10-02
CN101568424B (zh) 2013-03-27
FR2910838A1 (fr) 2008-07-04
EP2125346B1 (fr) 2010-08-18
FR2910838B1 (fr) 2009-03-06
CN101568424A (zh) 2009-10-28
US20100181006A1 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
EP2125346B1 (fr) Procede et dispositif de fabrication d'un anneau composite
EP1981700B1 (fr) Procede de fabrication d'un anneau composite
EP3027395B1 (fr) Procede de fabrication d'un monobrin en composite verre-resine
EP3027795B1 (fr) Monobrin en cvr (composite verre-résine) amélioré
EP3247827B1 (fr) Renfort multi-composite verre-résine à propriétés améliorées
EP3137317B1 (fr) Renfort plat multi-composite
EP3303006B1 (fr) Renfort plat multi-composite
EP3083775B1 (fr) Renfort multi-composite pour pneumatique
EP2195158B1 (fr) Produit stratifie composite
EP1174250B1 (fr) Imprégnation en continu de fibres en grandes longueurs, par de la résine, pour la fabrication d'éléments composites longilignes
EP2257424B1 (fr) Produit stratifie composite
WO2009033620A1 (fr) Roue élastique non pneumatique
EP3887472B1 (fr) Matériau multi-composite à base de composite verre-résine
WO2020109721A1 (fr) Matériau multi-composite à base de composite verre-résine
EP3887470B1 (fr) Matériau multi-composite à base de composite verre-résine
WO2020109722A1 (fr) Matériau multi-composite à base de composite verre-résine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780048154.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07856688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009543358

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007856688

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12521305

Country of ref document: US