WO2008075533A1 - Saturated polyester resin composition and adhesive composition containing the resin composition - Google Patents

Saturated polyester resin composition and adhesive composition containing the resin composition Download PDF

Info

Publication number
WO2008075533A1
WO2008075533A1 PCT/JP2007/072724 JP2007072724W WO2008075533A1 WO 2008075533 A1 WO2008075533 A1 WO 2008075533A1 JP 2007072724 W JP2007072724 W JP 2007072724W WO 2008075533 A1 WO2008075533 A1 WO 2008075533A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
adhesive
resin composition
saturated polyester
mass
Prior art date
Application number
PCT/JP2007/072724
Other languages
French (fr)
Japanese (ja)
Inventor
Madoka Furuta
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to JP2008550075A priority Critical patent/JP5168150B2/en
Publication of WO2008075533A1 publication Critical patent/WO2008075533A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
    • C08L2666/06Homopolymers or copolymers of unsaturated hydrocarbons; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • C08L2666/18Polyesters or polycarbonates according to C08L67/00 - C08L69/00; Derivatives thereof

Definitions

  • the present invention relates to a saturated polyester resin composition and an adhesive composition containing the composition.
  • the present invention relates to a saturated polyester resin composition containing a saturated polyester resin and an amorphous polyolefin resin, and an adhesive composition containing the resin composition.
  • Saturated polyester resins have excellent electrical and thermal characteristics, and also have excellent adhesion to plastic materials such as polyester resins and metal materials such as copper and aluminum. Because of this characteristic, saturated polyester resins are widely used as adhesives for various parts and laminate films in the automotive and electrical / electronic fields. For example, in recent years, an aluminum vapor-deposited film and an aluminum foil laminated film have been used as food packaging materials and electrolyte sealing materials for the purpose of imparting gas barrier properties and chemical stability. Saturated polyester resin is used as an adhesive for this film.
  • Saturated polyester hot melt adhesives have excellent adhesive strength to aluminum. However, it is easy to form a stable oxide film on the aluminum surface. Because of this oxide film, the surface adhesion between the saturated polyester hot melt adhesive and aluminum becomes insufficient, and peeling may occur at the adhesive interface between the aluminum and the adhesive. As a result, problems such as deterioration of gas barrier uniformity and liquid leakage may occur.
  • Patent Document 1 proposes a saturated polyester hot melt adhesive composition in which a low density polyethylene resin or a high density polyethylene resin is added to a saturated polyester resin and an epoxy resin is added. Also
  • Patent Document 2 proposes a saturated polyester hot melt adhesive composition in which a phenol resin is added to a saturated polyester resin. Further, Patent Document 3 proposes a saturated polyester hot melt adhesive composition comprising a crystalline polyester resin, an amorphous polyester resin, and an epoxy resin. Patent Document 1: Japanese Patent Application Laid-Open No. 2004-269654
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-327940
  • Patent Document 3 JP 2002-138269 Koyuki
  • the peel strength between aluminum and the adhesive is improved compared to the saturated polyester resin alone, which is the main component.
  • the peeling at the bonding interface between aluminum and the adhesive has not been solved. Therefore, a film using the adhesive composition is inferior in gas barrier properties and liquid sealing reliability.
  • the present invention is an invention for improving the constitution of a saturated polyester resin composition.
  • An object of the present invention is to provide a composition capable of improving the adhesive strength and the peeled state of the adhesive interface with respect to metal materials such as copper and aluminum and resin materials such as polyethylene terephthalate.
  • the present inventors have intensively studied in view of the above problems. As a result, the present inventors have found that the above problems can be solved by blending a specific polyolefin resin with a saturated polyester resin, and have completed the present invention.
  • the present invention is as follows.
  • a saturated polyester resin composition comprising a saturated polyester resin (A) and an amorphous polyolefin resin (B).
  • the content of the amorphous polyolefin resin (B) is 100% by mass relative to the total amount of the saturated polyester resin (A) and the amorphous polyolefin resin (B);
  • the non-crystalline polyolefin resin is based on 100% by mass of the saturated polyester resin (A), the non-crystalline polyolefin resin (B) and the crystalline polyolefin resin (C).
  • the saturated polyester resin composition according to [3] wherein the ratio of the crystalline polyolefin resin (C) to 100 parts by mass of the amorphous polyolefin resin (B) is 60 to 250 parts by mass. object.
  • a hot-melt adhesive comprising the saturated polyester resin composition according to any one of [1] to [7] above.
  • An adhesive member using the saturated polyester resin composition of the present invention as an adhesive has excellent adhesion performance.
  • the adhesive strength to metal materials such as copper and aluminum and resin materials such as polyethylene terephthalate can be improved, and the fracture mode can be improved.
  • the adhesive strength and fracture morphology at low temperatures are improved.
  • the interface peeling state between the adhesive and the adherend is improved, it is possible to obtain an adhesive member having excellent sealing properties and gas noisy properties.
  • the saturated polyester resin composition of the present invention (hereinafter referred to as “resin composition”) comprises a saturated polyester resin (A) (hereinafter also referred to as “resin component (A)”) and an amorphous substance. And a porous polyolefin resin (B) (hereinafter also referred to as “resin component (B)”). Further, the adhesive composition and hot melt adhesive of the present invention are characterized by containing the resin composition of the present invention. [0013] [1] Resin component (A)
  • the acid component and the polyol component which are monomers constituting the resin component (A).
  • aromatic dibasic acids, aliphatic dibasic acids, alicyclic dibasic acids, and ester formers thereof can be used.
  • aromatic dibasic acids and their ester formers include terephthalic acid, isophthalic acid, phthalic anhydride
  • a naphthalenedicarboxylic acid and / 3-naphthalenedicarboxylic acid, and ester formers thereof for example, C1-C3 alkyl esters such as methyl ester and ethyl ester
  • ester formers for example, C1-C3 alkyl esters such as methyl ester and ethyl ester
  • Specific examples of the aliphatic dibasic acid and its ester former include succinic acid, dartaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecylenic acid, and dodecanedioic acid, and These ester formers (for example, C1-C3 alkyl esters such as methyl ester and ethyl ester) and the like can be mentioned.
  • Specific examples of the alicyclic dibasic acid and its ester former include 1,4-cyclohexanedicarboxylic acid, tetrahydrophthal
  • terephthalic acid and its ester forming body strength are preferred in terms of adhesive strength.
  • the proportion of terephthalic acid is preferably 30 mol% or more with respect to the total acid components. When the terephthalic acid component is less than 30 mol%, the cohesive strength and hardness of the resin composition of the present invention are insufficient, and the adhesive strength is lowered.
  • the upper limit of the proportion of terephthalic acid is usually 100 mol%, preferably 90 mol%, more preferably 80 mol%, based on the total acid component.
  • a polycarboxylic acid such as trimellitic acid and pyromellitic acid can be used in combination as the acid component.
  • the polyvalent carboxylic acid can be used in combination within a range where gelation does not occur during polyester synthesis or within a range where adhesive strength is not impaired.
  • the polyvalent carboxylic acid can be used, for example, in a range of 5 mol% or less with respect to the total acid component.
  • the lower limit of the proportion of the polyvalent carboxylic acid is usually 0.1 mol% relative to the total acid component, preferably 0.5 mole 0/0, more preferably 1 mol%.
  • polyol component for example, aliphatic glycols and alicyclic glycol dihydric alcohols and polyhydric alcohols can be used.
  • the above aliphatic glycols may be used alone or in combination of two or more.
  • the alicyclic glycol is a single type Two or more types may be used in combination.
  • polyol component one or more of the above aliphatic glycols and one or more of the above alicyclic glycols may be used in combination.
  • the aliphatic glycol includes, for example, an aliphatic glycol having 2 to 14 carbon atoms, preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, and more preferably 2 to 8 carbon atoms.
  • the Specific examples of the aliphatic glycol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4 butanediol, 1,5-pentanzone, 1,6-hexanosanol, 1,8-octanesanol, 1,9-nonanediol, neopentyl glycol, 3 methylpentanediol, 2,2,3 trimethylpentanediol, diethylene glycol, triethylene glycol, and dipropylene glycol Is mentioned.
  • Specific examples of the alicyclic glycol include 1,4 cyclohexanedimethanol and hydrogenated bisphenol A.
  • polyhydric alcohols such as glycerin, trimethylolethane, trimethylol bread, and pentaerythritol can also be used.
  • the polyhydric alcohol can be used within a range of 5 mol% or less with respect to the total alcohol components.
  • the lower limit of the proportion of the polycarboxylic acid is usually 0 - 1 mole 0/0 relative to the total alcohol component, preferably 0 - 5 mole 0/0, more preferably 1 mole 0/0 It is.
  • the dihydric alcohol is preferably 1,4 butanediol.
  • the proportion of 1,4 butanediol is preferably 30 mol% or more based on the total alcohol components. When the proportion of 1,4-butanediol is less than 30 mol%, the obtained resin component (A) lacks cohesive strength and has low adhesive strength and insufficient heat resistance.
  • the melting point of the resin component (A) indicated by the heat of fusion peak temperature is preferably 50 to 200 ° C, more preferably 60 to 150 ° C.
  • the “melting heat peak temperature” is the main endothermic peak temperature at which the heat of fusion measured by a differential scanning calorimeter (hereinafter also referred to as “D SCj”) is not less than lj / g.
  • D SCj differential scanning calorimeter
  • the resin component (A) can be synthesized and produced by an ordinary method.
  • Resin component (A) Examples of the production method include (1) a melt polymerization method in which raw materials and a catalyst are charged and heated at a temperature equal to or higher than the melting point of the product, (2) a solid phase polymerization method in which polymerization is performed at a temperature lower than the melting point of the product, A solution polymerization method using is used. Any method may be adopted as a method for producing the resin component (A). However, in order to obtain a polyester having an appropriate degree of polymerization that meets the object of the present invention, the melt polymerization method is preferred from the viewpoint of economy.
  • the resin component (A) is produced, for example, by an ester exchange method or a direct esterification method.
  • the content of the resin component (A) is based on the total amount of the resin components (A) and (B). 50 to 99% by mass is preferable, and 55 to 95% by mass is more preferable, and 60 to 90% by mass is particularly preferable.
  • the ratio of the resin component (A) is less than 50% by mass, the strength of the resin composition itself of the present invention is lowered, so that the resulting peel strength tends to be lowered.
  • it exceeds 99% by mass the wettability to the adhesive substrate is lowered, and interfacial peeling is likely to occur.
  • the resin component (B) has a function of improving adhesion to an adhesive substrate such as aluminum.
  • an adhesive substrate such as aluminum.
  • the crystalline polyolefin resin has a low crystallinity in the heat-melted state, the surface free energy is low, so that the wetness to the adhesive substrate is good.
  • the cooled and solidified crystalline polyolefin resin increases the surface free energy as it crystallizes, and does not get wet to the adhesive substrate, and naturally peels off.
  • amorphous polyolefin resin has low surface free energy even in a cooled and solidified state, and therefore can improve adhesion to an adhesive substrate. Furthermore, since the resin component (B) is highly flexible even at room temperature, it is possible to prevent stress concentration at the interface between the adhesive and the adhesive base material against the peeling stress.
  • the present invention is not an explanation for defining the function and range of the resin component (B), nor is it an explanation for limiting the function and range of the resin component (B)! /, ).
  • the main monomer component constituting the resin component (B) is a bull monomer having an unsaturated double bond.
  • the bull monomer include polyethylene and polypropylene.
  • examples include ⁇ -olefin having 2 to 20 carbon atoms such as pyrene, and olefin monomer power such as alicyclic olefin monomer, and one or more of these monomer groups.
  • Preferred examples of the bulmonomer include monomers having propylene, ethylene, and 1-butene as main components, as shown in, for example, JP-A-11 80233 and JP-A-2000-198820.
  • the main monomer constituting the resin component ( ⁇ ) is a monomer other than the olefin-based monomer
  • the surface free energy of the resin composition of the present invention is increased, the adhesion to the adhesive substrate is lowered, and the interfacial peeling state It is easy to become.
  • the above bulle monomers may be used alone or in combination of two or more.
  • the monomer component constituting the resin component (i) one or more of other monomers can be used within a range not impairing the object of the present invention.
  • the other monomers include aromatic butyl monomers such as styrene and ⁇ -methyl styrene, acrylic ester butyl monomers such as ethyl acrylate, and carboxyl group-containing butyl monomers such as acrylic acid and phthalic anhydride. Is mentioned.
  • the resin component ( ⁇ ) is characterized by low crystallinity! /.
  • the “crystallinity” is indicated by the amount of heat of crystallization measured by DSC or the amount of heat of fusion measured by DSC.
  • the resin component ( ⁇ ) preferably has a heat of fusion measured by DSC of 10 j / g or less or a heat of crystallization of 10 j / g or less.
  • the resin component (B) preferably has a heat of fusion of 5 j / g or less or a heat of crystallization of 5 j / g or less.
  • the resin component (B) preferably has a heat of fusion of 3 j / g or less or a heat of crystallization of 3 j / g or less.
  • the heat of fusion or crystallization calorie of the resin component (B) exceeds 0j / g, the crystallinity increases and the wettability to the adhesive substrate decreases, and the peeling stress concentrates on the adhesive interface. Therefore, it is easy to be in a state of interface peeling.
  • the heat of fusion or heat of crystallization is Oj / g.
  • the heat of fusion or crystallization of the resin component (B) can be from 0 to 10 j / g, and the heat of fusion or crystallization of the resin component (B) can be from 0 j / g to the upper limit of each of the above. It can also be up to i.
  • the melt viscosity of the resin component (B)! can be expressed, for example, as a melt index value (hereinafter also referred to as “MI value”).
  • MI value a melt index value
  • the Ml value of resin component (B) is usually 0.5 to 150 g / 10 min, more preferably Is! ⁇ 120g / 10min.
  • the MI value is less than 0.5 g / 10 min, the melt viscosity is too high, so that the mixing with the resin component (A) becomes uneven and stable adhesive strength cannot be obtained.
  • the Ml value exceeds 150 g / 10 min, the resin composition becomes too soft and the adhesive strength decreases.
  • the content of the resin component (B) is the total amount of the resin component (A) and the resin component (B) 100. It is preferable that it is! ⁇ 50 mass% with respect to the mass%. It is more preferable that the mass is 5 to 45 mass% than S, 10 to 40 mass% is more preferable, and 10 to 30 mass% is more preferable. A preferred range is 10 to 25% by mass. If the content of the resin component (B) is less than 1% by mass, the interfacial delamination tends to occur because the wettability to the adhesive substrate is low! On the other hand, when it exceeds 50% by mass, the strength of the composition itself is lowered, so that the peel strength obtained is lowered.
  • the resin composition, adhesive, and hot melt adhesive of the present invention preferably further contain a crystalline polyolefin resin (C) (hereinafter also referred to as “resin component (C)”).
  • the resin component (C) plays a role of preventing peeling stress concentration on the adhesive substrate interface.
  • the resin component (C) is usually present in a finely dispersed state in the adhesive composition. Since the wettability between the surface of the dispersed particles and the interface of the resin component (A), which is the main component, is low !, a peeling stress is applied to the interface between the dispersed particles of the resin component (A) and the resin component (C). Can be dispersed.
  • the peeled state between the adhesive and the adhesive substrate interface can be improved (note that this description is an explanation for helping the understanding of the present invention.
  • the present invention is based on the resin component (C)). It is not an explanation for defining the function and range of the resin, nor is it an explanation for limiting the function and range of the resin component (C).) Therefore, as the resin component (C), the crystallinity is high and the polyolefin resin is preferred so that the surface free energy of the resin component (C) is high.
  • the resin component (C) is preferably a polyolefin resin having a high degree of crystallinity.
  • the resin component (C) preferably has a heat of fusion of 50 J / g or more or a crystallization caloric power of 0 j / g or more as measured by DSC.
  • the resin component (C) preferably has a heat of fusion of 80 j / g or more or a heat of crystallization of 80 j / g or more (usually 220 j / g or less). That is, the heat of fusion or crystallization of the resin component (C) is 50-2. 20j / g, and 80 (the above lower limit) to 220j / g.
  • the heat of fusion or crystallization of the resin component (C) is less than 50 j / g, the interfacial adhesion between the resin component (A) and the particle surface of the resin component (C) is increased. Peeling easily occurs at the adhesive substrate interface.
  • the component constituting the resin component (C) is selected from one or more of bulle monomers having an unsaturated double bond.
  • the bulle monomer include olefin bule monomers having 2 to 20 carbon atoms such as polyethylene and polypropylene.
  • Preferred are high-density polyethylene resins containing ethylene as a main component (for example, density 0.94 to 0.97 g / cm 3 ) and low-density polyethylene resin (for example, density 0.91-0.93 g / cm 3 ).
  • the bull monomer is low density polyethylene.
  • the melt viscosity of the resin component (C) is not particularly limited! /.
  • the melt viscosity can be expressed, for example, as an Ml value.
  • the Ml value (measured under conditions of a temperature of 190 ° C and a load of 21.2 N) of the resin component (C) is usually 0.5 to 150 g / 10 min, preferably;! To 120 g / 10 min.
  • the Ml value is less than 5 g / 10 min, the melt viscosity is too high, so the mixing with the saturated polyester resin composition becomes uneven and stable adhesive strength cannot be obtained.
  • the Ml value exceeds 150 g / 10 min, the adhesive composition becomes too soft and the adhesive strength decreases.
  • the content of each resin component is not particularly limited.
  • the content of each resin component can be set within an arbitrary range.
  • the resin component (B) is: -30% by mass, and the resin component (C) is preferably 3-30% by mass.
  • the resin component (B) is more preferably 5 to 25% by mass, and the resin component (C) is more preferably 5 to 25% by mass.
  • the resin component (B) is more preferably 10 to 20% by mass, and the resin component (C) is more preferably 10 to 20% by mass.
  • the ratio of the resin components (B) and (C) is not particularly limited.
  • one or more arbitrary tackifiers can be used as long as the object of the present invention is not impaired.
  • the above-mentioned tackifier is usually effectively used for adjusting the heat resistance and elastic modulus of the resin composition, adhesive and hot melt adhesive of the present invention, and adjusting the adhesion to the adhesive substrate.
  • arbitrary resin-type tackifiers are mentioned, for example.
  • the resin type tackifier examples include (1) epoxy resin type tackifiers such as bisphenol type epoxy resin, phenol type epoxy resin, nopolac type epoxy resin, and cresol nopolac type epoxy resin, (2 ) Terpene resin, terpene phenol resin, aromatic modified terpene resin, terpene resin type tackifier such as hydrogenated terpene resin, (3) rosin modified resin type tackifier such as rosin modified phenol resin, and (4) fat It is possible to use petroleum resin type tackifiers such as aromatic petroleum resins, alicyclic petroleum resins, and aromatic petroleum resins. The above resin-type tackifiers may be used alone or in combination of two or more.
  • the R & B softening point of the resin-type tackifier is preferably 50 to 180 ° C.
  • the R & B softening point is a resin physical property defined by JIS K-6863-1994.
  • the amount of the tackifier (for example, the resin-type tackifier) used is usually 30 parts by mass or less (for example, 0.;!) With respect to 100 parts by mass of the resin composition of the present invention. To 30 parts by mass), preferably 20 parts by mass or less.
  • the lower limit of the amount of the tackifier used is usually 0.1 parts by weight, preferably 0.5 parts by weight, and more preferably 1 part by weight with respect to 100 parts by weight of the resin composition of the present invention. .
  • any filler can be used as long as the object of the present invention is not impaired.
  • the filler is effectively used for adjusting the heat resistance, elastic modulus, blocking resistance, productivity and the like of the resin composition of the present invention.
  • the filler include (1) talc, organic surface-treated talc, clay, heavy calcium carbonate, light calcium carbonate, silica, fumed silica, zinc oxide, magnesium hydroxide, aluminum hydroxide, titanium oxide, and glass.
  • inorganic compound type fillers such as fibers, smectite type layered silicate compounds, and organically treated smectite type layered silicate compounds, and (2) organic compound type fillers such as carbon black and chemical fibers.
  • organic compound type fillers such as carbon black and chemical fibers.
  • the above fillers may be used alone or in combination of two or more. Yes
  • the amount of the filler used is usually 30 parts by mass or less (eg, 0.;! To 30 parts by mass), preferably 20 parts by mass with respect to 100 parts by mass of the resin composition of the present invention. Below, more preferably 10 parts by mass or less.
  • the lower limit of the amount of the filler used is usually 0.1 parts by weight, preferably 0.5 parts by weight, and more preferably 1 part by weight with respect to 100 parts by weight of the resin composition of the present invention.
  • any stabilizer can be used as long as the object of the present invention is not impaired.
  • the stabilizer is effectively used for suppressing the thermal decomposition or hydrolysis of the resin composition of the present invention and adjusting the stability of the adhesive performance.
  • the stabilizer include hydrolysis inhibitors such as polycarpositimide, and antioxidants such as phenolic antioxidants, phosphite antioxidants, and thioteric antioxidants.
  • the above stabilizers may be used alone or in combination of two or more.
  • the amount of the stabilizer used is usually 10 parts by mass or less (for example, 0.;! To 10 parts by mass), preferably 5 parts by mass or less, with respect to 100 parts by mass of the resin composition of the present invention.
  • the lower limit of the amount of the stabilizer used is usually 0.1 parts by weight, preferably 0.5 parts by weight, and more preferably 1 part by weight with respect to 100 parts by weight of the resin composition of the present invention.
  • any coupling agent can be used as long as the object of the present invention is not impaired.
  • the coupling agent usually works on the surface of the adhesive substrate of the resin composition, adhesive, and hot melt adhesive of the present invention, and is effectively used for adjusting the heat and humidity resistance.
  • the above coupling agents may be used alone or in combination of two or more.
  • a silane force coupling agent, an aluminum coupling agent, and a titanate coupling agent are used as the coupling agent.
  • silane coupling agent examples include alkyl-based silane coupling agents such as dimethyldimethoxysilane, amino group-containing silane coupling agents such as 3-aminopropyltriethoxysilane, and 3-glycol.
  • Epoxy group-containing silane coupling agents such as sidoxypropyltrimethoxysilane, and bur group-containing silane cuts such as butyltriacetoxysilane Examples include pulling agents.
  • Al coupling agent include acetoalkoxyaluminum diisopropylate.
  • titanate coupling agent examples include isopropyl triisostearoyl titanate. These additives may further improve the characteristics of the present invention and can be used as appropriate.
  • the amount of the coupling agent used is 5 parts by mass or less (for example, 0 .;! To 5 parts by mass), preferably 3 parts by mass or less, with respect to 100 parts by mass of the resin composition of the present invention. More preferably, it is 2 parts by mass or less.
  • the lower limit of the amount of the coupling agent used is usually 0.1 parts by weight, preferably 0.5 parts by weight, and more preferably 1 part by weight with respect to 100 parts by weight of the resin composition of the present invention.
  • any other additive may be used alone or in combination as long as the object of the present invention is not impaired.
  • the resin composition of the present invention may use one or more of flame retardants such as brominated flame retardants and phosphorus flame retardants, ultraviolet absorbers, plasticizers, and crystal nucleating agents. it can.
  • the method for producing the resin composition of the present invention is not particularly limited.
  • the resin composition of the present invention can be obtained by mixing the resin component (A), the resin component (B), and the resin component (C) by any method.
  • the resin composition of the present invention includes, for example, a single-screw extruder, a mesh-type co-directional parallel-shaft twin-screw extruder, a mesh-type hetero-directional parallel-axis twin-screw extruder, and a mesh-type hetero-directional oblique-axis bi-axial extrusion.
  • Extruder non-matching twin screw extruder, incomplete mating twin screw extruder, conida single screw extruder, planetary gear extruder, transfer mix extruder, ram extruder, roller extruder, etc. It can be obtained by mixing each raw material with a kneader or the like. Prior to the mixing, the raw materials can be premixed using a Henschel mixer or a tumbler.
  • the shape and property of each raw material component of the resin composition of this invention A raw material component having an arbitrary shape or property such as a pellet shape, a powder shape, and a liquid shape can be used.
  • the form in the case of using the resin composition of the present invention as an adhesive may be any form without particular limitation.
  • the resin composition of the present invention when used as an adhesive, as a pellet shape, a powder shape, a sheet 'film shape, a rod shape, a solution state dissolved in a solvent, etc. Use with power.
  • the use form of the resin composition of the present invention is not particularly limited! /.
  • the resin composition of the present invention can be used in the form of pellets, powders, sheets'films, rods, and dissolved nights dissolved in a solvent.
  • the resin composition, adhesive, and hot-melt adhesive of the present invention are excellent in adhesive strength, particularly adhesion, to various metals and plastic materials.
  • the resin composition, adhesive and hot melt adhesive of the present invention can be used in various fields.
  • the resin composition, the adhesive, and the hot melt adhesive of the present invention can be used as an adhesive, a sealing material, and a sealing material for parts in the electronic / electrical field.
  • the resin composition, adhesive and hot melt adhesive of the present invention can be used as an adhesive between laminated films or laminated sheets in the packaging field.
  • the resin composition, the adhesive, and the hot melt adhesive of the present invention can be used as an adhesive for interior materials and a sheath material for wire harness in the automotive field.
  • the melting point of the saturated polyester resin (A-1) (measured using DSC at a temperature rise of 10 ° C / min) is 135 ° C, the glass transition point is 18 ° C, and the melt flow The rate (measured in accordance with JIS-K-7660-1981, 190. C, load 21.2N) was 80 g / 10mii.
  • amorphous PO-1 amorphous polyethylene
  • 292 g of low density polyethylene (LDPE) (“Geylex LD JM910” manufactured by Nippon Polyolefin Co., Ltd.) was used. Measured by DSC (using RDC220 manufactured by Seiko Instruments Inc., sample amount: 8 mg, temperature rising condition: 10 ° C / min, under air atmosphere) by the method according to JIS-K7122 The heat of fusion was measured and found to be 2.5 j / g.
  • Composition 1 was hot pressed (lkg / cm 2 , 30 seconds) at 180 ° C. to produce a sheet having a thickness of approximately 100 111 (80 to 120 m). The obtained sheet was cut into a width of 25 mm and a length of 50 mm to prepare an adhesive sheet. Also, a copper plate (material C-1100P, thickness 150 ⁇ m) as an adhesive substrate was cut into a width of 25 mm and a length of 75 mm. The adhesive sheet is sandwiched between two adhesive substrates so that the length of the tension gripping margin remains approximately 25 mm, and the composition is heated and pressed at 180 ° C, 0. IMPa for 30 seconds. / A copper specimen was created.
  • composition 2 in the same manner as composition 1.
  • Composition 1 / copper test piece and A composition 2 / copper test piece was prepared under the same conditions, and the adhesive strength was measured in the same manner as in Example 1.
  • the tensile speed was 5 mm / min, 20 mm / min, 50 mm / min.
  • the tensile strengths were 5.2 kgf, 6.7 kgf, 7.8 kgf, and 11.4 kgf, respectively.
  • interfacial peeling at the interface between the copper test piece and the adhesive was observed.
  • Example 1 Compared to Comparative Example 1, Example 1 was found to have a tensile strength that was about twice as high. Further, in Example 1, cohesive failure was more likely to occur than interfacial peeling. From this result, it can be judged that by adding the amorphous polyolefin resin (resin component (B)) to the saturated polyester resin, the adhesion to the copper base material is increased, and the adhesion performance and the sealing performance are enhanced.
  • resin component (B) amorphous polyolefin resin
  • composition 3 ⁇ (Composition 3 ⁇ ; method for producing 1 1)
  • compositions 3 to 11 were obtained in the same manner as the production method of Composition 1 with the composition blending ratio shown in Table 1.
  • compositions / copper specimens were prepared using compositions 3-5 and 10-; Tensile strength was measured in the same manner as in Example 1, and the peel form was visually confirmed. The results are shown in Examples 2 to 3 and 13 to; 14 and Comparative Example 2 in Table 2.
  • Epoxy resin Bisphenol A type epoxy resin, R & B softening point 1383 ⁇ 4 was used.
  • Comparative Example 2 is an example using an epoxy resin type tackifier. According to Table 2, compared with Comparative Example 1, the tensile strength was slightly increased under the tensile speed condition of 5 mm / min.
  • Examples 2 and 3 it was confirmed that the tensile strength was about twice as high as that in Comparative Examples 1 and 2. In Examples 2 and 3, cohesive failure was more likely to occur than interfacial peeling. From this result, the adhesion performance and the sealing performance with high adhesion to the copper base material are high. It can be judged that it became. Furthermore, in Examples 1 to 3, although the melt viscosity of the amorphous polyolefin resin used was 124 g / 10 min, 3 g / 10 min, and lOg / 10 min, respectively, The adhesion was excellent.
  • a composition / aluminum test piece was prepared in the same manner as the copper test piece, except that an aluminum plate (material AL5052, thickness 300 m) was used as the adhesive substrate. Tensile strength was measured in the same manner as in Example 1, and the peel form was visually confirmed. The results are shown in Table 3.
  • Example 4 and Example 5 have a cohesive failure mode regardless of the melt viscosity of the amorphous polyolefin resin, compared with Comparative Example 3 using an epoxy resin tackifier. It was confirmed that it has excellent adhesion to aluminum and easy sealing.
  • Example 6 although the amount of the amorphous polyolefin resin added was smaller than that in Example 5, cohesive failure was more likely to occur in aluminum than in Comparative Example 3. Excellent wearability and sealability!
  • a composition / PET film test piece was prepared in the same manner as the copper test piece, except that a 100 Hm thick polyethylene terephthalate film (hereinafter also referred to as “PET film”) was used as the adhesive substrate. .
  • PET film polyethylene terephthalate film
  • Tensile strength was measured in the same manner as in Example 1, and the peel form was visually confirmed. The results are shown in Table 4.
  • Example 7 compared to Comparative Example 4 using an epoxy resin-based tackifier, the fracture form in which the tensile strength is twice or more is easy to cause cohesive failure. From this result, it can be seen that the resin composition containing the amorphous polyolefin resin has better adhesion to polyethylene terephthalate and sealability than the resin composition containing the epoxy resin tackifier. It was confirmed. On the other hand, in Example 8 and Example 9, polyethylene terephthalate is more susceptible to cohesive failure than Comparative Example 4 regardless of the amount of amorphous polyolefin resin added.
  • Example 10 It was excellent in adhesiveness to the fracture surface and sealability. Further, in Example 10, the amount of the crystalline polyethylene resin used is less than that in Example 7! / The composition is used! /, The cohesive failure is likely to occur, and there is an adverse effect on the adhesion and sealability. It was a powerful force.
  • composition / PET film test piece shown in Table 5 measure the tensile strength when the temperature condition of the tensile test is set to 40 ° C and 5 ° C, and the tensile speed is 200 mm / min. The peeling form was confirmed visually. The results are shown in Table 5.
  • Example 11 and Example 12 have high adhesion to the PET film substrate even at 40 ° C and 5 ° C. Further, in Example 11 and Example 12, cohesive failure and material failure of the PET film substrate were observed. On the other hand, in Comparative Example 5 and Comparative Example 6, since the adhesion to the PET film substrate was insufficient, the adhesive strength was low and the peeling form was interfacial peeling.
  • the resin composition of the present invention and an adhesive such as a hot melt adhesive containing the resin composition are materials having high adhesion strength to metal materials and resin materials and excellent adhesion. Therefore, the resin composition and adhesive of the present invention are suitable for use in sealing materials and sealing materials in the electric / electronic field and automobile field, or for bonding different materials (metal / resin). Further, the resin composition and the adhesive of the present invention can be used with a force S that can be utilized in the packaging field where gas barrier properties are required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a saturated polyester resin composition which is excellent in sealing property and adhesion strength to metal materials such as copper and aluminum and resin materials such as polyethylene terephthalate. Also disclosed is an adhesive containing such a resin composition. The resin composition contains a saturated polyester resin (A) and an amorphous polyolefin resin (B). The resin composition may further contain a crystalline polyolefin resin (C). The resin composition and adhesive are suitable for sealing materials and encapsulating materials in electrical/electronic fields and automobile fields, or applications to adhesive bonding between different materials.

Description

明 細 書  Specification
飽和ポリエステル系樹脂組成物及び該組成物を含む接着剤組成物 技術分野  TECHNICAL FIELD The present invention relates to a saturated polyester resin composition and an adhesive composition containing the composition.
[0001] 本発明は、飽和ポリエステル樹脂と非結晶性ポリオレフイン系樹脂とを含有する飽 和ポリエステル系樹脂組成物及び該樹脂組成物を含む接着剤組成物に関する。 背景技術  The present invention relates to a saturated polyester resin composition containing a saturated polyester resin and an amorphous polyolefin resin, and an adhesive composition containing the resin composition. Background art
[0002] 飽和ポリエステル系樹脂は、電気的及び熱的特性が優れており、また、ポリエステ ル樹脂等のプラスチック材料及び銅'アルミニウム等の金属材料への密着性に優れ る。この特性から、飽和ポリエステル系樹脂は、自動車分野及び電気電子分野にお ける各種部品、並びにラミネートフィルムの接着剤として広く用いられている。例えば 、近年、ガスバリヤ一性及び薬品安定性を付与する目的で、アルミニウム蒸着フィル ム及びアルミニウム箔貼り合わせフィルムが、食品包装材料及び電解液封止材料とし て用いられている。飽和ポリエステル系樹脂は、このフィルムの接着剤として使用され ている。  [0002] Saturated polyester resins have excellent electrical and thermal characteristics, and also have excellent adhesion to plastic materials such as polyester resins and metal materials such as copper and aluminum. Because of this characteristic, saturated polyester resins are widely used as adhesives for various parts and laminate films in the automotive and electrical / electronic fields. For example, in recent years, an aluminum vapor-deposited film and an aluminum foil laminated film have been used as food packaging materials and electrolyte sealing materials for the purpose of imparting gas barrier properties and chemical stability. Saturated polyester resin is used as an adhesive for this film.
[0003] 飽和ポリエステル系ホットメルト接着剤は、アルミニウムへの接着強度が優れている 。しかし、アルミニウム表面には、安定な酸化皮膜ができ易い。この酸化皮膜のため、 飽和ポリエステル系ホットメルト接着剤とアルミニウムとの表面密着性が不十分となり、 アルミニウムと接着剤との接着界面で剥離が起こることがある。その結果、ガスバリヤ 一性の低下及び液漏れ等の問題が発生するおそれがある。  [0003] Saturated polyester hot melt adhesives have excellent adhesive strength to aluminum. However, it is easy to form a stable oxide film on the aluminum surface. Because of this oxide film, the surface adhesion between the saturated polyester hot melt adhesive and aluminum becomes insufficient, and peeling may occur at the adhesive interface between the aluminum and the adhesive. As a result, problems such as deterioration of gas barrier uniformity and liquid leakage may occur.
[0004] そこで従来、飽和ポリエステル系樹脂に種々の樹脂成分を添加'混合したホットメル ト接着剤組成物が提案されている。例えば、特許文献 1では、飽和ポリエステル系樹 脂に低密度ポリエチレン樹脂や高密度ポリエチレン樹脂を添加し、かつエポキシ系 樹脂を添加した飽和ポリエステル系ホットメルト接着剤組成物が提案されてレ、る。また[0004] Therefore, a hot melt adhesive composition in which various resin components are added to and mixed with a saturated polyester resin has been proposed. For example, Patent Document 1 proposes a saturated polyester hot melt adhesive composition in which a low density polyethylene resin or a high density polyethylene resin is added to a saturated polyester resin and an epoxy resin is added. Also
、特許文献 2では、飽和ポリエステル系樹脂にフエノール樹脂を添加した飽和ポリェ ステル系ホットメルト接着剤組成物が提案されている。更に、特許文献 3では、結晶性 ポリエステル系樹脂と非結晶性ポリエステル系樹脂、及びエポキシ系樹脂からなる飽 和ポリエステル系ホットメルト接着剤組成物が提案されている。 [0005] 特許文献 1 :特開 2004— 269654号公報 Patent Document 2 proposes a saturated polyester hot melt adhesive composition in which a phenol resin is added to a saturated polyester resin. Further, Patent Document 3 proposes a saturated polyester hot melt adhesive composition comprising a crystalline polyester resin, an amorphous polyester resin, and an epoxy resin. Patent Document 1: Japanese Patent Application Laid-Open No. 2004-269654
特許文献 2:特開 2003— 327940号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-327940
特許文献 3:特開 2002— 138269号公幸  Patent Document 3: JP 2002-138269 Koyuki
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 特許文献 1〜3に記載された接着剤組成物によれば、アルミニウムと接着剤との剥 離強度は、主成分である飽和ポリエステル樹脂単体より向上している。し力、しな力 、 特許文献 1〜3に記載された接着剤組成物では、アルミニウムと接着剤との接着界面 での剥離は解決していない。従って、該接着剤組成物を用いたフィルムは、ガスバリ ヤー性及び液封止の信頼性に劣る。  [0006] According to the adhesive compositions described in Patent Documents 1 to 3, the peel strength between aluminum and the adhesive is improved compared to the saturated polyester resin alone, which is the main component. In the adhesive composition described in Patent Documents 1 to 3, the peeling at the bonding interface between aluminum and the adhesive has not been solved. Therefore, a film using the adhesive composition is inferior in gas barrier properties and liquid sealing reliability.
[0007] 本発明は、飽和ポリエステル系樹脂組成物の構成を改良する発明である。本発明 は、この改良により、銅及びアルミニウム等の金属材料並びにポリエチレンテレフタレ ート等の樹脂材料に対する接着強度及び接着界面の剥離状態を改善できる組成物 を提供することを目的とする。  [0007] The present invention is an invention for improving the constitution of a saturated polyester resin composition. An object of the present invention is to provide a composition capable of improving the adhesive strength and the peeled state of the adhesive interface with respect to metal materials such as copper and aluminum and resin materials such as polyethylene terephthalate.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、上記課題に鑑みて鋭意検討した。その結果、本発明者らは、飽和 ポリエステル樹脂に特定のポリオレフイン系樹脂を配合することにより、上記課題を解 決できることを見出し、本発明を完成させるに至った。  [0008] The present inventors have intensively studied in view of the above problems. As a result, the present inventors have found that the above problems can be solved by blending a specific polyolefin resin with a saturated polyester resin, and have completed the present invention.
[0009] 即ち、本発明は以下のとおりである。 That is, the present invention is as follows.
〔1〕飽和ポリエステル樹脂 (A)と非結晶性ポリオレフイン系樹脂 (B)とを含有すること を特徴とする飽和ポリエステル系樹脂組成物。  [1] A saturated polyester resin composition comprising a saturated polyester resin (A) and an amorphous polyolefin resin (B).
〔2〕上記飽和ポリエステル樹脂 (A)及び上記非結晶性ポリオレフイン系樹脂(B)の合 計量 100質量%に対して、上記非結晶性ポリオレフイン系樹脂 (B)の含有量は、;!〜 50質量%である上記〔1〕記載の飽和ポリエステル系樹脂組成物。  [2] The content of the amorphous polyolefin resin (B) is 100% by mass relative to the total amount of the saturated polyester resin (A) and the amorphous polyolefin resin (B); The saturated polyester resin composition according to the above [1], which is in mass%.
〔3〕結晶性ポリオレフイン系樹脂(C)を更に含有する上記〔1〕記載の飽和ポリエステ ル系樹脂組成物。  [3] The saturated polyester resin composition according to [1], further including a crystalline polyolefin resin (C).
〔4〕上記結晶性ポリオレフイン系樹脂(C)の結晶の融解熱量が 50j/g以上である上 記〔3〕記載の飽和ポリエステル系樹脂組成物。 〔5〕上記非結晶性ポリオレフイン系樹脂(B)の結晶の融解熱量が 10j/g以下である 上記〔3〕記載の飽和ポリエステル系樹脂組成物。 [4] The saturated polyester resin composition according to the above [3], wherein the crystalline polyolefin resin (C) has a crystal heat of fusion of 50 j / g or more. [5] The saturated polyester resin composition according to the above [3], wherein the heat of fusion of crystals of the amorphous polyolefin resin (B) is 10 j / g or less.
〔6〕上記飽和ポリエステル樹脂 (A)、上記非結晶性ポリオレフイン系樹脂(B)及び上 記結晶性ポリオレフイン系樹脂(C)の合計量 100質量%に対して、上記非結晶性ポ リオレフイン系樹脂 (B)の含有量は;!〜 30質量%、結晶性ポリオレフイン系樹脂(C) の含有量は 3〜30質量%である上記〔3〕記載の飽和ポリエステル系樹脂組成物。 〔7〕上記非結晶性ポリオレフイン系樹脂 (B) 100質量部に対する上記結晶性ポリオレ フィン系樹脂(C)の割合は、 60〜250質量部である上記〔3〕記載の飽和ポリエステ ル系樹脂組成物。  [6] The non-crystalline polyolefin resin is based on 100% by mass of the saturated polyester resin (A), the non-crystalline polyolefin resin (B) and the crystalline polyolefin resin (C). The saturated polyester resin composition according to [3] above, wherein the content of (B) is! ~ 30 mass%, and the content of the crystalline polyolefin resin (C) is 3-30 mass%. [7] The saturated polyester resin composition according to [3], wherein the ratio of the crystalline polyolefin resin (C) to 100 parts by mass of the amorphous polyolefin resin (B) is 60 to 250 parts by mass. object.
〔8〕上記〔1〕乃至〔7〕のいずれ力、 1項に記載の飽和ポリエステル系樹脂組成物を含 むことを特徴とする接着剤組成物。  [8] An adhesive composition comprising the saturated polyester resin composition according to 1 above, wherein any one of the above [1] to [7] is used.
〔9〕上記〔1〕乃至〔7〕のいずれか 1項に記載の飽和ポリエステル系樹脂組成物を含 むことを特徴とするホットメルト接着剤。  [9] A hot-melt adhesive comprising the saturated polyester resin composition according to any one of [1] to [7] above.
発明の効果  The invention's effect
[0010] 本発明の飽和ポリエステル系樹脂組成物を接着剤(ホットメルト接着剤等)として用 いた接着部材は、優れた密着性能を有する。その結果、銅及びアルミニウム等の金 属材料並びにポリエチレンテレフタレート等の樹脂材料に対する接着強度が向上し、 且つ破壊形態を改善することができる。特に、低温における接着強度と破壊形態が 改善される。また、接着剤と被着材との界面剥離状態が改善されることから、シール 性及びガスノ リヤー性の優れた接着部材を得ることができる。  [0010] An adhesive member using the saturated polyester resin composition of the present invention as an adhesive (hot melt adhesive or the like) has excellent adhesion performance. As a result, the adhesive strength to metal materials such as copper and aluminum and resin materials such as polyethylene terephthalate can be improved, and the fracture mode can be improved. In particular, the adhesive strength and fracture morphology at low temperatures are improved. Further, since the interface peeling state between the adhesive and the adherend is improved, it is possible to obtain an adhesive member having excellent sealing properties and gas noisy properties.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の一実施形態について説明すると以下の通りである。しかし、本発明はこれ に限定されない。 [0011] One embodiment of the present invention will be described as follows. However, the present invention is not limited to this.
[0012] 本発明の飽和ポリエステル系樹脂組成物(以下、「樹脂組成物」という。)は、飽和ポ リエステル樹脂 (A) (以下、「樹脂成分 (A)」ともいう。)と、非結晶性ポリオレフイン系 樹脂 (B) (以下、「樹脂成分 (B)」ともいう。)とを含むことを特徴とする。また、本発明 の接着剤組成物及びホットメルト接着剤は、本発明の樹脂組成物を含有することを特 徴とする。 [0013] 〔1〕樹脂成分 (A) [0012] The saturated polyester resin composition of the present invention (hereinafter referred to as "resin composition") comprises a saturated polyester resin (A) (hereinafter also referred to as "resin component (A)") and an amorphous substance. And a porous polyolefin resin (B) (hereinafter also referred to as “resin component (B)”). Further, the adhesive composition and hot melt adhesive of the present invention are characterized by containing the resin composition of the present invention. [0013] [1] Resin component (A)
樹脂成分 (A)を構成するモノマーである酸成分及びポリオール成分には特に限定 はない。上記酸成分としては、芳香族二塩基性酸、脂肪族二塩基性酸、及び脂環族 二塩基性酸、並びにこれらのエステル形成体等が使用できる。芳香族二塩基性酸及 びそのエステル形成体の具体例としては、テレフタル酸、イソフタル酸、無水フタル酸 There are no particular limitations on the acid component and the polyol component, which are monomers constituting the resin component (A). As the acid component, aromatic dibasic acids, aliphatic dibasic acids, alicyclic dibasic acids, and ester formers thereof can be used. Specific examples of aromatic dibasic acids and their ester formers include terephthalic acid, isophthalic acid, phthalic anhydride
、 a ナフタレンジカルボン酸、及び /3—ナフタレンジカルボン酸、並びにこれらの エステル形成体(例えば、メチルエステル及びェチルエステル等の C1〜C3アルキル エステル)等が挙げられる。脂肪族二塩基性酸及びそのエステル形成体の具体例と しては、コハク酸、ダルタル酸、アジピン酸、ピメリン酸、スベリン酸、ァゼライン酸、セ バチン酸、ゥンデシレン酸、及びドデカン二酸、並びにこれらのエステル形成体(例え ば、メチルエステル及びェチルエステル等の C1〜C3アルキルエステル)等が挙げら れる。脂環族二塩基性酸及びそのエステル形成体の具体例としては、 1、 4ーシクロ へキサンジカルボン酸、テトラヒドロ無水フタル酸、及びへキサヒドロ無水フタル酸が 挙げられる。 , A naphthalenedicarboxylic acid and / 3-naphthalenedicarboxylic acid, and ester formers thereof (for example, C1-C3 alkyl esters such as methyl ester and ethyl ester) and the like. Specific examples of the aliphatic dibasic acid and its ester former include succinic acid, dartaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecylenic acid, and dodecanedioic acid, and These ester formers (for example, C1-C3 alkyl esters such as methyl ester and ethyl ester) and the like can be mentioned. Specific examples of the alicyclic dibasic acid and its ester former include 1,4-cyclohexanedicarboxylic acid, tetrahydrophthalic anhydride, and hexahydrophthalic anhydride.
[0014] 上記酸成分のうち、テレフタル酸及びそのエステル形成体力 接着強度の点で好 ましい。テレフタル酸の割合は、全酸成分に対して 30モル%以上であることが好まし い。テレフタル酸成分が 30モル%に満たないときは、本発明の樹脂組成物の凝集力 及び硬さが不足し、接着強度が低くなる。テレフタル酸の割合の上限値は、通常、全 酸成分に対して 100モル%、好ましくは 90モル%、更に好ましくは 80モル%である。  [0014] Among the above acid components, terephthalic acid and its ester forming body strength are preferred in terms of adhesive strength. The proportion of terephthalic acid is preferably 30 mol% or more with respect to the total acid components. When the terephthalic acid component is less than 30 mol%, the cohesive strength and hardness of the resin composition of the present invention are insufficient, and the adhesive strength is lowered. The upper limit of the proportion of terephthalic acid is usually 100 mol%, preferably 90 mol%, more preferably 80 mol%, based on the total acid component.
[0015] また、上記酸成分として、トリメリット酸及びピロメリット酸等の多価カルボン酸も併用 すること力 Sできる。該多価カルボン酸は、ポリエステル合成時のゲル化が生じない範 囲内又は接着強度を損なわない範囲内で併用することが可能である。上記多価カル ボン酸は、例えば、全酸成分に対して 5モル%以下の範囲で使用することができる。 尚、上記多価カルボン酸の使用割合の下限値は、通常、全酸成分に対して 0. 1モル %、好ましくは 0. 5モル0 /0、更に好ましくは 1モル%である。 [0015] In addition, a polycarboxylic acid such as trimellitic acid and pyromellitic acid can be used in combination as the acid component. The polyvalent carboxylic acid can be used in combination within a range where gelation does not occur during polyester synthesis or within a range where adhesive strength is not impaired. The polyvalent carboxylic acid can be used, for example, in a range of 5 mol% or less with respect to the total acid component. The lower limit of the proportion of the polyvalent carboxylic acid is usually 0.1 mol% relative to the total acid component, preferably 0.5 mole 0/0, more preferably 1 mol%.
[0016] 上記ポリオール成分としては、例えば、脂肪族グリコール及び脂環族グリコールの 2 価アルコール、並びに多価アルコールが使用できる。上記脂肪族グリコールは、 1種 単独で用いてもよぐ 2種以上を併用してもよい。上記脂環族グリコールは、 1種単独 で用いてもよぐ 2種以上を併用してもよい。上記ポリオール成分として、上記脂肪族 グリコールの 1種又は 2種以上と、上記脂環族グリコールの 1種又は 2種以上とを併用 してもよい。 As the polyol component, for example, aliphatic glycols and alicyclic glycol dihydric alcohols and polyhydric alcohols can be used. The above aliphatic glycols may be used alone or in combination of two or more. The alicyclic glycol is a single type Two or more types may be used in combination. As the polyol component, one or more of the above aliphatic glycols and one or more of the above alicyclic glycols may be used in combination.
[0017] 脂肪族グリコールとしては、例えば、炭素数 2〜; 14、好ましくは炭素数 2〜12、更に 好ましくは炭素数 2〜10、より好ましくは炭素数 2〜8の脂肪族グリコールが挙げられ る。上記脂肪族グリコールの具体例としては、エチレングリコール、 1 , 2—プロピレン グリコール、 1 , 3—プロピレングリコール、 1 , 3—ブタンジオール、 1 , 4 ブタンジォ 一ノレ、 1 , 5—ペンタンシォーノレ、 1 , 6—へキサンシォーノレ、 1 , 8—オクタンシォーノレ 、 1 , 9ーノナンジオール、ネオペンチルグリコール、 3 メチルペンタンジオール、 2, 2, 3 トリメチルペンタンジオール、ジエチレングリコール、トリエチレングリコール、及 びジプロピレングリコールが挙げられる。脂環族グリコールの具体例としては、 1 , 4 シクロへキサンジメタノール及び水添ビスフエノール Aが挙げられる。  [0017] The aliphatic glycol includes, for example, an aliphatic glycol having 2 to 14 carbon atoms, preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, and more preferably 2 to 8 carbon atoms. The Specific examples of the aliphatic glycol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4 butanediol, 1,5-pentanzone, 1,6-hexanosanol, 1,8-octanesanol, 1,9-nonanediol, neopentyl glycol, 3 methylpentanediol, 2,2,3 trimethylpentanediol, diethylene glycol, triethylene glycol, and dipropylene glycol Is mentioned. Specific examples of the alicyclic glycol include 1,4 cyclohexanedimethanol and hydrogenated bisphenol A.
[0018] また、上記ポリオール成分として、グリセリン、トリメチロールェタン、トリメチロールプ 口パン、及びペンタエリスリトール等の多価アルコールも使用することができる。該多 価アルコールは、例えば、全アルコール成分に対して 5モル%以下の範囲で使用す ること力 Sできる。尚、上記多価カルボン酸の使用割合の下限値は、通常、全アルコー ル成分に対して 0· 1モル0 /0、好ましくは 0· 5モル0 /0、更に好ましくは 1モル0 /0である。 [0018] In addition, as the polyol component, polyhydric alcohols such as glycerin, trimethylolethane, trimethylol bread, and pentaerythritol can also be used. For example, the polyhydric alcohol can be used within a range of 5 mol% or less with respect to the total alcohol components. The lower limit of the proportion of the polycarboxylic acid is usually 0 - 1 mole 0/0 relative to the total alcohol component, preferably 0 - 5 mole 0/0, more preferably 1 mole 0/0 It is.
[0019] 上記二価アルコールとしては、 1 , 4 ブタンジオールが好ましい。 1 , 4 ブタンジ オールの割合は、全アルコール成分に対して 30モル%以上が好ましい。 1 , 4—ブタ ンジオールの割合が 30モル%未満であると、得られた樹脂成分 (A)は、凝集力に欠 け、接着強度が低ぐ耐熱性が不足する。  [0019] The dihydric alcohol is preferably 1,4 butanediol. The proportion of 1,4 butanediol is preferably 30 mol% or more based on the total alcohol components. When the proportion of 1,4-butanediol is less than 30 mol%, the obtained resin component (A) lacks cohesive strength and has low adhesive strength and insufficient heat resistance.
[0020] 融解熱ピーク温度で示される樹脂成分 (A)の融点は、 50〜200°Cが好ましぐ 60 〜150°Cが更に好ましい。尚、「融解熱ピーク温度」は、示差走査熱量計(以下、「D SCjともいう。 )の測定による融解熱量が lj/g以上である主たる吸熱ピーク温度で示 される。この融点が 50°C未満のときは、本発明の樹脂組成物の耐熱性が不足し、 20 0°Cを超えるときは、塗工温度及び接着温度が高くなるため、接着基材シートの熱劣 化が起こり、接着不良の原因となる。  [0020] The melting point of the resin component (A) indicated by the heat of fusion peak temperature is preferably 50 to 200 ° C, more preferably 60 to 150 ° C. The “melting heat peak temperature” is the main endothermic peak temperature at which the heat of fusion measured by a differential scanning calorimeter (hereinafter also referred to as “D SCj”) is not less than lj / g. When it is less than C, the heat resistance of the resin composition of the present invention is insufficient, and when it exceeds 200 ° C., the coating temperature and the adhesion temperature are increased, so that the thermal deterioration of the adhesive base sheet occurs, It causes adhesion failure.
[0021] 樹脂成分 (A)は、通常の方法により合成 ·製造することができる。樹脂成分 (A)の 製造方法としては、例えば、(1)原料及び触媒を仕込み、生成物の融点以上の温度 で加熱する溶融重合法、(2)生成物の融点以下で重合する固相重合法、(3)溶媒を 使用する溶液重合法が挙げられる。樹脂成分 (A)の製造方法として、いずれの方法 を採用しても良いが、本発明の目的に沿う適度な重合度のポリエステルを得るため、 及び経済性の面から、溶融重合法が好ましい。樹脂成分 (A)は、例えば、エステノレ 交換法又は直接エステル化法により製造される。 [0021] The resin component (A) can be synthesized and produced by an ordinary method. Resin component (A) Examples of the production method include (1) a melt polymerization method in which raw materials and a catalyst are charged and heated at a temperature equal to or higher than the melting point of the product, (2) a solid phase polymerization method in which polymerization is performed at a temperature lower than the melting point of the product, A solution polymerization method using is used. Any method may be adopted as a method for producing the resin component (A). However, in order to obtain a polyester having an appropriate degree of polymerization that meets the object of the present invention, the melt polymerization method is preferred from the viewpoint of economy. The resin component (A) is produced, for example, by an ester exchange method or a direct esterification method.
[0022] 本発明の樹脂組成物、接着剤、及びホットメルト接着剤にお!/、て、樹脂成分 (A)の 含有量は、樹脂成分 (A)及び (B)の合計量に対して、 50〜99質量%であることが好 ましぐ 55〜95質量%であることがより好まぐ 60〜90質量%であることが特に好ま しい。樹脂成分 (A)の割合が 50質量%に満たない場合は、本発明の樹脂組成物自 体の強度が低下するため、得られる剥離強度が低下する傾向がある。一方、 99質量 %を越える場合は、接着基材への濡れ性が低下し、界面剥離が起き易くなる。  [0022] In the resin composition, adhesive, and hot melt adhesive of the present invention, the content of the resin component (A) is based on the total amount of the resin components (A) and (B). 50 to 99% by mass is preferable, and 55 to 95% by mass is more preferable, and 60 to 90% by mass is particularly preferable. When the ratio of the resin component (A) is less than 50% by mass, the strength of the resin composition itself of the present invention is lowered, so that the resulting peel strength tends to be lowered. On the other hand, when it exceeds 99% by mass, the wettability to the adhesive substrate is lowered, and interfacial peeling is likely to occur.
[0023] 〔2〕樹脂成分 (B)  [0023] [2] Resin component (B)
樹脂成分 (B)は、アルミニウム等の接着基材への密着性を改善する機能を有する。 接着基材への密着性を向上する手段として、〔1〕接着剤の接着基材への濡れ性の 向上、及び〔2〕接着剤組成物の柔軟性により、接着剤と接着基材界面への剥離応力 の応力集中を防ぐ事が重要である。結晶性ポリオレフイン系樹脂は、加熱溶融状態 で結晶化度が低い場合、表面自由エネルギーが低いため、接着基材への濡れが良 好である。しかし、冷却 ·固化した結晶性ポリオレフイン系樹脂は、結晶化と共に表面 自由エネルギーが上昇し、接着基材へ濡れなくなり、自然と剥離してしまう。一方、非 結晶性ポリオレフイン系樹脂は、冷却 ·固化した状態でも、表面自由エネルギーが低 いため、接着基材への密着性を向上する事ができる。更に、樹脂成分 (B)は、室温 でも柔軟性が高いため、剥離応力に対して接着剤と接着基材界面への応力集中を 防ぐことができる(尚、本説明は、本発明の理解を助けるための説明である。本発明 は、樹脂成分 (B)の機能及び範囲を定義するための説明ではなぐまた、樹脂成分( B)の機能及び範囲を限定するための説明でもな!/、。 )。  The resin component (B) has a function of improving adhesion to an adhesive substrate such as aluminum. As a means to improve the adhesion to the adhesive substrate, [1] improvement of the wettability of the adhesive to the adhesive substrate, and [2] flexibility of the adhesive composition, to the interface between the adhesive and the adhesive substrate. It is important to prevent stress concentration of the peeling stress. When the crystalline polyolefin resin has a low crystallinity in the heat-melted state, the surface free energy is low, so that the wetness to the adhesive substrate is good. However, the cooled and solidified crystalline polyolefin resin increases the surface free energy as it crystallizes, and does not get wet to the adhesive substrate, and naturally peels off. On the other hand, amorphous polyolefin resin has low surface free energy even in a cooled and solidified state, and therefore can improve adhesion to an adhesive substrate. Furthermore, since the resin component (B) is highly flexible even at room temperature, it is possible to prevent stress concentration at the interface between the adhesive and the adhesive base material against the peeling stress. The present invention is not an explanation for defining the function and range of the resin component (B), nor is it an explanation for limiting the function and range of the resin component (B)! /, ).
[0024] 樹脂成分 (B)を構成する主モノマー成分は、不飽和二重結合を有するビュルモノ マーである。該ビュルモノマーとして具体的には、例えば、ポリエチレン及びポリプロ ピレン等の炭素数 2〜20の α ォレフィン、及び脂環族ォレフイン系モノマー等のォ レフイン系モノマー力、らなるモノマー群の 1種又は 2種以上が挙げられる。該ビュルモ ノマーとして好ましくは、例えば、特開平 11 80233号公報及び特開 2000— 1988 20号公報に示すように、プロピレン、エチレン、及び 1ーブテンを主成分とするモノマ 一が挙げられる。樹脂成分 (Β)を構成する主モノマーが、ォレフィン系以外のモノマ 一であると、本発明の樹脂組成物の表面自由エネルギーが高くなり、接着基材への 密着性が低下し、界面剥離状態になり易い。尚、上記ビュルモノマーは 1種単独でも よぐ 2種以上を用いてもよい。 [0024] The main monomer component constituting the resin component (B) is a bull monomer having an unsaturated double bond. Specific examples of the bull monomer include polyethylene and polypropylene. Examples include α-olefin having 2 to 20 carbon atoms such as pyrene, and olefin monomer power such as alicyclic olefin monomer, and one or more of these monomer groups. Preferred examples of the bulmonomer include monomers having propylene, ethylene, and 1-butene as main components, as shown in, for example, JP-A-11 80233 and JP-A-2000-198820. When the main monomer constituting the resin component (Β) is a monomer other than the olefin-based monomer, the surface free energy of the resin composition of the present invention is increased, the adhesion to the adhesive substrate is lowered, and the interfacial peeling state It is easy to become. In addition, the above bulle monomers may be used alone or in combination of two or more.
[0025] また、樹脂成分 (Β)を構成するモノマー成分として、本発明の目的を損なわない範 囲で、他のモノマーの 1種又は 2種以上を用いることができる。該他のモノマーとして は、例えば、スチレン及び α—メチルスチレン等の芳香族系ビュルモノマー、アクリル 酸ェチル等のアクリル酸エステル系ビュルモノマー、並びにアクリル酸及び無水フタ ル酸等のカルボキシル基含有ビュルモノマーが挙げられる。 [0025] Further, as the monomer component constituting the resin component (i), one or more of other monomers can be used within a range not impairing the object of the present invention. Examples of the other monomers include aromatic butyl monomers such as styrene and α-methyl styrene, acrylic ester butyl monomers such as ethyl acrylate, and carboxyl group-containing butyl monomers such as acrylic acid and phthalic anhydride. Is mentioned.
[0026] 樹脂成分 (Β)は、結晶化度が低!/、ことを特徴とする。ここで、「結晶化度」とは、 DS Cで測定した結晶化熱量又は DSCで測定した融解熱量で示される。樹脂成分 (Β) は、 DSCで測定した融解熱量が 10j/g以下、又は結晶化熱量が 10j/g以下であ ること力 S好ましい。特に、樹脂成分 (B)は、上記融解熱量が 5j/g以下、又は上記結 晶化熱量が 5j/g以下であることがより好ましい。更に、樹脂成分 (B)は、上記融解 熱量が 3j/g以下、又は上記結晶化熱量が 3j/g以下であることがより好ましい。樹 脂成分 (B)の融解熱量又は結晶化熱量力 0j/gを超えると、結晶化度が高くなるた め、接着基材への濡れ性が低下し、また、剥離応力が接着界面へ集中するため、界 面剥離状態になり易い。尚、樹脂成分 (B)が完全に非結晶である場合は、融解熱量 又は結晶化熱量は Oj/gである。樹脂成分(B)の融解熱量又は結晶化熱量は 0〜1 0j/gとすることができ、また、樹脂成分 (B)の融解熱量又は結晶化熱量は、 0j/g から上記の各々の上限ィ直までとすることもできる。  [0026] The resin component (Β) is characterized by low crystallinity! /. Here, the “crystallinity” is indicated by the amount of heat of crystallization measured by DSC or the amount of heat of fusion measured by DSC. The resin component (Β) preferably has a heat of fusion measured by DSC of 10 j / g or less or a heat of crystallization of 10 j / g or less. In particular, the resin component (B) preferably has a heat of fusion of 5 j / g or less or a heat of crystallization of 5 j / g or less. Furthermore, the resin component (B) preferably has a heat of fusion of 3 j / g or less or a heat of crystallization of 3 j / g or less. When the heat of fusion or crystallization calorie of the resin component (B) exceeds 0j / g, the crystallinity increases and the wettability to the adhesive substrate decreases, and the peeling stress concentrates on the adhesive interface. Therefore, it is easy to be in a state of interface peeling. When the resin component (B) is completely amorphous, the heat of fusion or heat of crystallization is Oj / g. The heat of fusion or crystallization of the resin component (B) can be from 0 to 10 j / g, and the heat of fusion or crystallization of the resin component (B) can be from 0 j / g to the upper limit of each of the above. It can also be up to i.
[0027] 樹脂成分 (B)の溶融粘度には特に限定はな!/、。溶融粘度は、例えば、メルトインデ ックス値 (以下「MI値」ともいう。)として示すこと力 Sできる。樹脂成分 (B)の Ml値 (温度 230°C、荷重 21. 2Nの条件で測定)は、通常、 0. 5〜; 150g/10分、更に好ましく は;!〜 120g/10分である。 MI値が 0. 5g/10分未満の場合、溶融粘度が高すぎる ため、樹脂成分 (A)との混合が不均一となり、安定した接着強度が得られない。また 、 Ml値が 150g/10分を超えると、樹脂組成物が柔ら力べなりすぎるため、接着強度 が低下する。 [0027] There is no particular limitation on the melt viscosity of the resin component (B)! The melt viscosity can be expressed, for example, as a melt index value (hereinafter also referred to as “MI value”). The Ml value of resin component (B) (measured under the conditions of a temperature of 230 ° C and a load of 21.2 N) is usually 0.5 to 150 g / 10 min, more preferably Is! ~ 120g / 10min. When the MI value is less than 0.5 g / 10 min, the melt viscosity is too high, so that the mixing with the resin component (A) becomes uneven and stable adhesive strength cannot be obtained. On the other hand, if the Ml value exceeds 150 g / 10 min, the resin composition becomes too soft and the adhesive strength decreases.
[0028] 本発明の樹脂組成物、接着剤及びホットメルト接着剤にお!/、て、樹脂成分 (B)の含 有量は、樹脂成分 (A)及び樹脂成分 (B)の合計量 100質量%に対して、;!〜 50質 量%であることが好ましぐ 5〜45質量%であること力 Sより好ましく、 10〜40質量%が 更に好ましぐ 10〜30質量%がより好ましぐ 10〜25質量%が特に好ましい。樹脂 成分 (B)の含有量が 1質量%に満たな!/、場合は、接着基材への濡れ性が低!/、ため に界面剥離する傾向がある。一方、 50質量%を越える場合は、該組成物の自体の 強度が低下するため、得られる剥離強度が低下する。  [0028] In the resin composition, adhesive and hot melt adhesive of the present invention, the content of the resin component (B) is the total amount of the resin component (A) and the resin component (B) 100. It is preferable that it is! ~ 50 mass% with respect to the mass%. It is more preferable that the mass is 5 to 45 mass% than S, 10 to 40 mass% is more preferable, and 10 to 30 mass% is more preferable. A preferred range is 10 to 25% by mass. If the content of the resin component (B) is less than 1% by mass, the interfacial delamination tends to occur because the wettability to the adhesive substrate is low! On the other hand, when it exceeds 50% by mass, the strength of the composition itself is lowered, so that the peel strength obtained is lowered.
[0029] 〔3〕結晶性ポリオレフイン系樹脂(C)  [0029] [3] Crystalline polyolefin resin (C)
本発明の樹脂組成物、接着剤、及びホットメルト接着剤には、更に結晶性ポリオレ フィン系樹脂 (C) (以下、「樹脂成分 (C)」ともいう。)が含有されることが好ましい。樹 脂成分 (C)は、接着基材界面への剥離応力集中を防ぐ役割を担う。樹脂成分 (C)は 、通常、接着剤組成物中に微細分散した状態で存在する。その分散粒子表面と主成 分である樹脂成分 (A)の界面との濡れ性が低!/、ため、樹脂成分 (A)と樹脂成分 (C) の分散粒子との界面に、剥離応力を分散させることができる。その結果、接着剤と接 着基材界面との剥離状態を改善することができる(尚、本説明は、本発明の理解を助 けるための説明である。本発明は、樹脂成分 (C)の機能及び範囲を定義するための 説明ではなぐまた、樹脂成分 (C)の機能及び範囲を限定するための説明でもない。 )。従って、樹脂成分 (C)の表面自由エネルギーが高くなるように、樹脂成分 (C)とし て、結晶化度の高レ、ポリオレフイン系樹脂が好ましレ、。  The resin composition, adhesive, and hot melt adhesive of the present invention preferably further contain a crystalline polyolefin resin (C) (hereinafter also referred to as “resin component (C)”). The resin component (C) plays a role of preventing peeling stress concentration on the adhesive substrate interface. The resin component (C) is usually present in a finely dispersed state in the adhesive composition. Since the wettability between the surface of the dispersed particles and the interface of the resin component (A), which is the main component, is low !, a peeling stress is applied to the interface between the dispersed particles of the resin component (A) and the resin component (C). Can be dispersed. As a result, the peeled state between the adhesive and the adhesive substrate interface can be improved (note that this description is an explanation for helping the understanding of the present invention. The present invention is based on the resin component (C)). It is not an explanation for defining the function and range of the resin, nor is it an explanation for limiting the function and range of the resin component (C).) Therefore, as the resin component (C), the crystallinity is high and the polyolefin resin is preferred so that the surface free energy of the resin component (C) is high.
[0030] 上記のように、樹脂成分(C)は、結晶化度の高いポリオレフイン系樹脂が好ましい。  [0030] As described above, the resin component (C) is preferably a polyolefin resin having a high degree of crystallinity.
より具体的には、例えば、樹脂成分(C)は、 DSCで測定した場合の融解熱量が 50J /g以上又は結晶化熱量力 ¾0j/g以上であることが好ましい。特に、樹脂成分(C) は、融解熱量が 80j/g以上又は結晶化熱量が 80j/g以上(通常 220j/g以下)で あることがより好ましい。即ち、樹脂成分(C)の融解熱量又は結晶化熱量は、 50〜2 20j/gとすることができ、 80 (上記の下限値)〜 220j/gとすることもできる。樹脂成 分(C)の融解熱量又は結晶化熱量が 50j/g未満であると、樹脂成分 (A)と樹脂成 分 (C)の粒子表面との界面密着性が高くなるため、接着剤と接着基材界面での剥離 が起こり易くなる。 More specifically, for example, the resin component (C) preferably has a heat of fusion of 50 J / g or more or a crystallization caloric power of 0 j / g or more as measured by DSC. In particular, the resin component (C) preferably has a heat of fusion of 80 j / g or more or a heat of crystallization of 80 j / g or more (usually 220 j / g or less). That is, the heat of fusion or crystallization of the resin component (C) is 50-2. 20j / g, and 80 (the above lower limit) to 220j / g. When the heat of fusion or crystallization of the resin component (C) is less than 50 j / g, the interfacial adhesion between the resin component (A) and the particle surface of the resin component (C) is increased. Peeling easily occurs at the adhesive substrate interface.
[0031] 樹脂成分(C)を構成する成分は、不飽和二重結合を有するビュル系モノマーの 1 種又は 2種以上から選択される。該ビュル系モノマーとしては、例えば、ポリエチレン 及びポリプロピレン等の炭素数 2〜20のォレフィン系ビュルモノマーが挙げられる。 好ましくは、エチレンを主成分とした高密度ポリエチレン樹脂(例えば、密度 0. 94〜 0. 97g/cm3)及び低密度ポリエチレン樹脂(例えば、密度 0. 91-0. 93g/cm3) である。上記ビュル系モノマーとしてより好ましくは、低密度ポリエチレンである。 [0031] The component constituting the resin component (C) is selected from one or more of bulle monomers having an unsaturated double bond. Examples of the bulle monomer include olefin bule monomers having 2 to 20 carbon atoms such as polyethylene and polypropylene. Preferred are high-density polyethylene resins containing ethylene as a main component (for example, density 0.94 to 0.97 g / cm 3 ) and low-density polyethylene resin (for example, density 0.91-0.93 g / cm 3 ). . More preferably, the bull monomer is low density polyethylene.
[0032] 樹脂成分(C)の溶融粘度には特に限定はな!/、。溶融粘度は、例えば、 Ml値として 示すことができる。樹脂成分 (C)の Ml値 (温度 190°C、荷重 21. 2Nの条件で測定) は、通常、 0. 5〜; 150g/10分、好ましくは;!〜 120g/10分である。 Ml値力 5g /10分未満の場合、溶融粘度が高すぎるため、飽和ポリエステル系樹脂組成物との 混合が不均一となり、安定した接着強度が得られない。また、 Ml値が 150g/10分 を超えると、接着剤組成物が柔らかくなりすぎるため、接着強度が低下する。  [0032] The melt viscosity of the resin component (C) is not particularly limited! /. The melt viscosity can be expressed, for example, as an Ml value. The Ml value (measured under conditions of a temperature of 190 ° C and a load of 21.2 N) of the resin component (C) is usually 0.5 to 150 g / 10 min, preferably;! To 120 g / 10 min. When the Ml value is less than 5 g / 10 min, the melt viscosity is too high, so the mixing with the saturated polyester resin composition becomes uneven and stable adhesive strength cannot be obtained. On the other hand, if the Ml value exceeds 150 g / 10 min, the adhesive composition becomes too soft and the adhesive strength decreases.
[0033] 本発明の樹脂組成物、接着剤、及びホットメルト接着剤が樹脂成分 (B)及び (C)を 含有する場合、各々の樹脂成分の含有量には特に限定はない。各々の樹脂成分の 含有量は、任意の範囲とすること力 Sできる。しかし、両樹脂成分を含有することによる 作用効果を十分に得るためには、樹脂成分 (A)〜(C)の合計含有量を 100質量% とした場合に、樹脂成分 (B)は;!〜 30質量%、樹脂成分 (C)は 3〜30質量%である ことが好ましい。特に、樹脂成分 (B)は 5〜25質量%、樹脂成分 (C)は 5〜25質量 %であることがより好ましい。更に、樹脂成分 (B)は 10〜20質量%、樹脂成分 (C)は 10〜20質量%であることがより好ましい。  [0033] When the resin composition, adhesive, and hot melt adhesive of the present invention contain the resin components (B) and (C), the content of each resin component is not particularly limited. The content of each resin component can be set within an arbitrary range. However, in order to obtain the full effect of including both resin components, when the total content of the resin components (A) to (C) is 100% by mass, the resin component (B) is: -30% by mass, and the resin component (C) is preferably 3-30% by mass. In particular, the resin component (B) is more preferably 5 to 25% by mass, and the resin component (C) is more preferably 5 to 25% by mass. Further, the resin component (B) is more preferably 10 to 20% by mass, and the resin component (C) is more preferably 10 to 20% by mass.
[0034] また、樹脂成分 (B)及び (C)の割合にも特に限定がない。例えば、樹脂成分 (B) l 00質量部に対する樹脂成分(C)の割合は 60〜250質量部、好ましくは 70〜230質 量部、更に好ましくは 75〜200質量部とすることができる。  [0034] Further, the ratio of the resin components (B) and (C) is not particularly limited. For example, the ratio of the resin component (C) to 100 parts by mass of the resin component (B) 100-250 parts by mass, preferably 70-230 parts by mass, and more preferably 75-200 parts by mass.
[0035] 〔4〕その他 本発明の樹脂組成物、接着剤、及びホットメルト接着剤には、本発明の目的を損な わない範囲で、任意の粘着付与剤の 1種又は 2種以上を用いることができる。上記粘 着付与剤は、通常、本発明の樹脂組成物、接着剤、及びホットメルト接着剤の耐熱 性及び弾性率の調整並びに接着基材への密着性の調整に有効に用いられる。上記 粘着付与剤としては、例えば、任意の樹脂型粘着付与剤が挙げられる。該樹脂型粘 着付与剤として、例えば、(1)ビスフエノール型エポキシ樹脂、フエノール型エポキシ 樹脂、ノポラック型エポキシ樹脂、及びクレゾールノポラック型エポキシ樹脂等のェポ キシ樹脂型粘着付与剤、(2)テルペン樹脂、テルペンフエノール樹脂、芳香族変性 テルペン樹脂、及び水添テルペン樹脂等のテルペン樹脂型粘着付与剤、(3)ロジン 変性フエノール樹脂等のロジン変性樹脂型粘着付与剤、並びに (4)脂肪族系石油 樹脂、脂環族系石油樹脂、及び芳香族系石油樹脂等の石油樹脂型粘着付与剤を 用いること力 Sできる。上記樹脂型粘着付与剤は、 1種単独で用いてもよぐ 2種以上を 併用してもよい。上記樹脂型粘着付与剤の R&B軟化点は、 50〜180°Cが好ましい 。 R&B軟化点とは、 JIS K— 6863— 1994によって規定される樹脂物性である。 [0035] [4] Other In the resin composition, adhesive, and hot melt adhesive of the present invention, one or more arbitrary tackifiers can be used as long as the object of the present invention is not impaired. The above-mentioned tackifier is usually effectively used for adjusting the heat resistance and elastic modulus of the resin composition, adhesive and hot melt adhesive of the present invention, and adjusting the adhesion to the adhesive substrate. As said tackifier, arbitrary resin-type tackifiers are mentioned, for example. Examples of the resin type tackifier include (1) epoxy resin type tackifiers such as bisphenol type epoxy resin, phenol type epoxy resin, nopolac type epoxy resin, and cresol nopolac type epoxy resin, (2 ) Terpene resin, terpene phenol resin, aromatic modified terpene resin, terpene resin type tackifier such as hydrogenated terpene resin, (3) rosin modified resin type tackifier such as rosin modified phenol resin, and (4) fat It is possible to use petroleum resin type tackifiers such as aromatic petroleum resins, alicyclic petroleum resins, and aromatic petroleum resins. The above resin-type tackifiers may be used alone or in combination of two or more. The R & B softening point of the resin-type tackifier is preferably 50 to 180 ° C. The R & B softening point is a resin physical property defined by JIS K-6863-1994.
[0036] また、上記粘着付与剤 (例えば、上記樹脂型粘着付与剤)の使用量は、通常、本発 明の樹脂組成物 100質量部に対して 30質量部以下 (例えば、 0. ;!〜 30質量部)、 好ましくは、 20質量部以下である。上記粘着付与剤の使用量の下限値は、通常、本 発明の樹脂組成物 100質量部に対して 0. 1質量部、好ましくは 0. 5質量部、更に好 ましくは 1質量部である。  [0036] The amount of the tackifier (for example, the resin-type tackifier) used is usually 30 parts by mass or less (for example, 0.;!) With respect to 100 parts by mass of the resin composition of the present invention. To 30 parts by mass), preferably 20 parts by mass or less. The lower limit of the amount of the tackifier used is usually 0.1 parts by weight, preferably 0.5 parts by weight, and more preferably 1 part by weight with respect to 100 parts by weight of the resin composition of the present invention. .
[0037] 本発明の樹脂組成物、接着剤、及びホットメルト接着剤には、本発明の目的を損な わない範囲で、任意の充填剤を用いることができる。上記充填剤は、通常、本発明の 樹脂組成物の耐熱性、弾性率、耐ブロッキング性、及び生産性等の調整に有効に用 いられる。上記充填剤として、例えば、(1)タルク、有機表面処理タルク、クレー、重 質炭酸カルシウム、軽質炭酸カルシウム、シリカ、フュームドシリカ、酸化亜鉛、水酸 化マグネシウム、水酸化アルミニウム、酸化チタン、ガラスファイバー、スメクタイト型層 状珪酸塩化合物、及び有機処理スメクタイト型層状珪酸塩化合物等の無機化合物 型充填剤、並びに(2)カーボンブラック及び化学繊維等の有機化合物型充填剤を用 いること力 Sできる。上記充填剤は、 1種単独で用いてもよぐ 2種以上を併用してもよい 〇 [0037] In the resin composition, adhesive, and hot melt adhesive of the present invention, any filler can be used as long as the object of the present invention is not impaired. Usually, the filler is effectively used for adjusting the heat resistance, elastic modulus, blocking resistance, productivity and the like of the resin composition of the present invention. Examples of the filler include (1) talc, organic surface-treated talc, clay, heavy calcium carbonate, light calcium carbonate, silica, fumed silica, zinc oxide, magnesium hydroxide, aluminum hydroxide, titanium oxide, and glass. It is possible to use inorganic compound type fillers such as fibers, smectite type layered silicate compounds, and organically treated smectite type layered silicate compounds, and (2) organic compound type fillers such as carbon black and chemical fibers. . The above fillers may be used alone or in combination of two or more. Yes
[0038] また、上記充填剤の使用量は、通常、本発明の樹脂組成物 100質量部に対して 3 0質量部以下 (例えば、 0. ;!〜 30質量部)、好ましくは 20質量部以下、より好ましくは 10質量部以下である。上記充填剤の使用量の下限値は、通常、本発明の樹脂組成 物 100質量部に対して 0. 1質量部、好ましくは 0. 5質量部、更に好ましくは 1質量部 である。  [0038] The amount of the filler used is usually 30 parts by mass or less (eg, 0.;! To 30 parts by mass), preferably 20 parts by mass with respect to 100 parts by mass of the resin composition of the present invention. Below, more preferably 10 parts by mass or less. The lower limit of the amount of the filler used is usually 0.1 parts by weight, preferably 0.5 parts by weight, and more preferably 1 part by weight with respect to 100 parts by weight of the resin composition of the present invention.
[0039] 本発明の樹脂組成物、接着剤、及びホットメルト接着剤には、本発明の目的を損な わない範囲で、任意の安定剤を用いることができる。上記安定剤は、通常、本発明の 樹脂組成物の熱分解又は加水分解を抑制し、接着性能の安定性を調整するのに有 効に用いられる。上記安定剤として、例えば、ポリカルポジイミド等の加水分解防止 剤、並びにフエノール系酸化防止剤、フォスファイト系酸化防止剤、及びチォエーテ ル系酸化防止剤等の酸化防止剤を用いることができる。上記安定剤は、 1種単独で 用いてもよぐ 2種以上を併用してもよい。  [0039] In the resin composition, adhesive, and hot melt adhesive of the present invention, any stabilizer can be used as long as the object of the present invention is not impaired. Usually, the stabilizer is effectively used for suppressing the thermal decomposition or hydrolysis of the resin composition of the present invention and adjusting the stability of the adhesive performance. Examples of the stabilizer include hydrolysis inhibitors such as polycarpositimide, and antioxidants such as phenolic antioxidants, phosphite antioxidants, and thioteric antioxidants. The above stabilizers may be used alone or in combination of two or more.
[0040] 上記安定剤の使用量は、通常、本発明の樹脂組成物 100質量部に対して 10質量 部以下 (例えば、 0. ;!〜 10質量部)、好ましくは 5質量部以下である。上記安定剤の 使用量の下限値は、通常、本発明の樹脂組成物 100質量部に対して 0. 1質量部、 好ましくは 0. 5質量部、更に好ましくは 1質量部である。  [0040] The amount of the stabilizer used is usually 10 parts by mass or less (for example, 0.;! To 10 parts by mass), preferably 5 parts by mass or less, with respect to 100 parts by mass of the resin composition of the present invention. . The lower limit of the amount of the stabilizer used is usually 0.1 parts by weight, preferably 0.5 parts by weight, and more preferably 1 part by weight with respect to 100 parts by weight of the resin composition of the present invention.
[0041] 本発明の樹脂組成物、接着剤、及びホットメルト接着剤には、本発明の目的を損な わない範囲で、任意のカップリング剤を用いることができる。上記カップリング剤は、 通常、本発明の樹脂組成物、接着剤、及びホットメルト接着剤の接着基材表面に作 用し、耐湿熱安定性の調整に有効に用いられる。上記カップリング剤は、 1種単独で 用いてもよぐ 2種以上を併用してもよい。上記カップリング剤として、例えば、シラン力 ップリング剤、アルミニウム系カップリング剤、及びチタネート系カップリング剤を用い ること力 Sでさる。  [0041] In the resin composition, adhesive, and hot melt adhesive of the present invention, any coupling agent can be used as long as the object of the present invention is not impaired. The coupling agent usually works on the surface of the adhesive substrate of the resin composition, adhesive, and hot melt adhesive of the present invention, and is effectively used for adjusting the heat and humidity resistance. The above coupling agents may be used alone or in combination of two or more. For example, a silane force coupling agent, an aluminum coupling agent, and a titanate coupling agent are used as the coupling agent.
[0042] 上記シランカップリング剤として具体的には、例えば、ジメチルジメトキシシラン等の アルキル系シランカップリング剤、 3—ァミノプロピルトリエトキシシラン等のアミノ基含 有シランカップリング剤、 3—グリシドキシプロピルトリメトキシシラン等のエポキシ基含 有シランカップリング剤、及びビュルトリァセトキシシラン等のビュル基含有シランカツ プリング剤が挙げられる。上記アルミニウム系カップリング剤として具体的には、例え ば、ァセトアルコキシアルミニウムジイソプロピレートが挙げられる。上記チタネート系 カップリング剤として具体的には、例えば、イソプロピルトリイソステアロイルチタネート が挙げられる。これらの添加剤は、本発明の特徴を更に向上させる場合があり、適宜 使用することが可能である。 [0042] Specific examples of the silane coupling agent include alkyl-based silane coupling agents such as dimethyldimethoxysilane, amino group-containing silane coupling agents such as 3-aminopropyltriethoxysilane, and 3-glycol. Epoxy group-containing silane coupling agents such as sidoxypropyltrimethoxysilane, and bur group-containing silane cuts such as butyltriacetoxysilane Examples include pulling agents. Specific examples of the aluminum coupling agent include acetoalkoxyaluminum diisopropylate. Specific examples of the titanate coupling agent include isopropyl triisostearoyl titanate. These additives may further improve the characteristics of the present invention and can be used as appropriate.
[0043] 上記カップリング剤の使用量は、本発明の樹脂組成物 100質量部に対して、 5質量 部以下(例えば、 0.;!〜 5質量部)であり、好ましくは 3質量部以下、より好ましくは 2 質量部以下である。上記カップリング剤の使用量の下限値は、通常、本発明の樹脂 組成物 100質量部に対して 0. 1質量部、好ましくは 0. 5質量部、更に好ましくは 1質 量部である。 [0043] The amount of the coupling agent used is 5 parts by mass or less (for example, 0 .;! To 5 parts by mass), preferably 3 parts by mass or less, with respect to 100 parts by mass of the resin composition of the present invention. More preferably, it is 2 parts by mass or less. The lower limit of the amount of the coupling agent used is usually 0.1 parts by weight, preferably 0.5 parts by weight, and more preferably 1 part by weight with respect to 100 parts by weight of the resin composition of the present invention.
[0044] 本発明の樹脂組成物、接着剤、及びホットメルト接着剤には、本発明の目的を損な わない範囲で、任意のその他の添加剤を 1種又は 2種以上用いることができる。例え ば、本発明の樹脂組成物には、臭素系難燃剤及びリン系難燃剤等の難燃剤、紫外 線吸収剤、可塑剤、並びに結晶核剤等の 1種又は 2種以上を用いることができる。  [0044] In the resin composition, adhesive, and hot melt adhesive of the present invention, any other additive may be used alone or in combination as long as the object of the present invention is not impaired. . For example, the resin composition of the present invention may use one or more of flame retardants such as brominated flame retardants and phosphorus flame retardants, ultraviolet absorbers, plasticizers, and crystal nucleating agents. it can.
[0045] 本発明の樹脂組成物の製造方法には特に限定はない。本発明の樹脂組成物は、 樹脂成分 (A)、樹脂成分 (B)、及び樹脂成分 (C)を任意の方法により混合させて得 ること力 Sできる。本発明の樹脂組成物は、例えば、単軸押出機、嚙合い形同方向平 行軸二軸押出機、嚙合い形異方向平行軸二軸押出機、嚙合い形異方向斜軸ニ軸 押出機、非嚙合い形二軸押出機、不完全嚙合い形二軸押出機、コニーダ一形押出 機、プラネタリギヤ形押出機、トランスファミックス押出機、ラム押出機、ローラ押出機 等の押出成形機又はニーダ一等により、各原料を混合することにより得ることができ る。また、上記混合に先立って、ヘンシェルミキサー又はタンブラ一等を使用して、原 料を予備混合することもできる。尚、本発明の樹脂組成物の各原料成分の形状及び 性状には特に限定はない。ペレット形状、パウダー形状、及び液状等の任意の形状 又は性状の原料成分を使用することができる。  [0045] The method for producing the resin composition of the present invention is not particularly limited. The resin composition of the present invention can be obtained by mixing the resin component (A), the resin component (B), and the resin component (C) by any method. The resin composition of the present invention includes, for example, a single-screw extruder, a mesh-type co-directional parallel-shaft twin-screw extruder, a mesh-type hetero-directional parallel-axis twin-screw extruder, and a mesh-type hetero-directional oblique-axis bi-axial extrusion. Extruder, non-matching twin screw extruder, incomplete mating twin screw extruder, conida single screw extruder, planetary gear extruder, transfer mix extruder, ram extruder, roller extruder, etc. It can be obtained by mixing each raw material with a kneader or the like. Prior to the mixing, the raw materials can be premixed using a Henschel mixer or a tumbler. In addition, there is no limitation in particular in the shape and property of each raw material component of the resin composition of this invention. A raw material component having an arbitrary shape or property such as a pellet shape, a powder shape, and a liquid shape can be used.
[0046] 本発明の樹脂組成物を接着剤として用いる場合の形態には特に限定はなぐ任意 の形態とすることができる。例えば、本発明の樹脂組成物を接着剤として用いる場合 、ペレット形状、粉末状、シート'フィルム状、棒状、溶媒に溶解させた溶液状等として 使用すること力でさる。 [0046] The form in the case of using the resin composition of the present invention as an adhesive may be any form without particular limitation. For example, when the resin composition of the present invention is used as an adhesive, as a pellet shape, a powder shape, a sheet 'film shape, a rod shape, a solution state dissolved in a solvent, etc. Use with power.
[0047] 本発明の樹脂組成物の使用形態には特に限定はな!/、。例えば、本発明の樹脂組 成物は、ペレット形状、粉末状、シート'フィルム状、棒状、及び溶媒に溶解させた溶 ί夜状として使用すること力 Sできる。  [0047] The use form of the resin composition of the present invention is not particularly limited! /. For example, the resin composition of the present invention can be used in the form of pellets, powders, sheets'films, rods, and dissolved nights dissolved in a solvent.
[0048] 本発明の樹脂組成物、接着剤、及びホットメルト接着剤は、各種金属及びプラスチ ック材料に対する接着強度、特に密着性に優れている。本発明の樹脂組成物、接着 剤、及びホットメルト接着剤は、様々な分野に用いることができる。例えば、本発明の 樹脂組成物、接着剤、及びホットメルト接着剤は、電子 ·電機分野において、部品の 接着剤、シール材、及び封止材等として用いることができる。また、本発明の樹脂組 成物、接着剤、及びホットメルト接着剤は、包装分野において、積層フィルム間又は 積層シート間の接着剤として用いることができる。更に、本発明の樹脂組成物、接着 剤、及びホットメルト接着剤は、 自動車分野において、内装材の接着剤及びワイヤハ 一ネスのシーノレ材等として用いることができる。  [0048] The resin composition, adhesive, and hot-melt adhesive of the present invention are excellent in adhesive strength, particularly adhesion, to various metals and plastic materials. The resin composition, adhesive and hot melt adhesive of the present invention can be used in various fields. For example, the resin composition, the adhesive, and the hot melt adhesive of the present invention can be used as an adhesive, a sealing material, and a sealing material for parts in the electronic / electrical field. The resin composition, adhesive and hot melt adhesive of the present invention can be used as an adhesive between laminated films or laminated sheets in the packaging field. Furthermore, the resin composition, the adhesive, and the hot melt adhesive of the present invention can be used as an adhesive for interior materials and a sheath material for wire harness in the automotive field.
実施例  Example
[0049] (飽和ポリエステル系樹脂の製造)  [0049] (Production of saturated polyester resin)
撹拌装置、窒素導入管、留出管及び温度計を備えた四ッロフラスコに、テレフタル 酸ジメチノレ 0. 6モノレ、 1 , 4—ブタンジオール 1. 6モノレ、 1 , 6—へキサンジオール 0. 2モノレ、及び触媒としてテトラー η—ブチルチタネート 0· 2 X 10— 2モルを仕込んだ。次 いで、窒素を導入しながら昇温し、 130〜200°Cでメタノールを留出させた後、イソフ タノレ酸 0. 15モノレ及びセノ チン酸 0. 25モノレをカロ免て、 200〜240°Cで水を留出さ せた。その後、引き続き、徐々に減圧にしながら、 250°Cで ImmHgの減圧下で 3時 間反応させて飽和ポリエステル系樹脂 (A— 1)を得た。 Into a four-flask equipped with a stirrer, nitrogen inlet tube, distillation tube and thermometer, dimethino terephthalate 0.6 monole, 1,4-butanediol 1.6 monole, 1,6-hexanediol 0.2 monole , and was charged with tetra-η- butyl titanate 0 · 2 X 10- 2 mol of a catalyst. Next, the temperature was increased while introducing nitrogen, and methanol was distilled off at 130 to 200 ° C. Then, 0.1-monoole of isobutanolic acid and 0.25 monolecate of cenotic acid were calorie-free and 200-240 °. C distilled water. Thereafter, the reaction was continued for 3 hours under reduced pressure of ImmHg at 250 ° C. while gradually reducing the pressure to obtain a saturated polyester resin (A-1).
[0050] 飽和ポリエステル系樹脂 (A— 1)の融点(DSCを用い 10°C/分の昇温条件で測定 )は 135°Cであり、ガラス転移点は一 18°Cであり、メルトフローレート (JIS—K— 7660 — 1981に準じ、 190。C、荷重 21. 2Nの条件で測定)は 80g/10miiであった。また 、 NMR分析によって飽和ポリエステル系樹脂 (A— 1)のモノマー組成を分析した。 該モノマー組成は、モル比でテレフタル酸/イソフタル酸/セバチン酸 /1 , 4ーブタ ンジ才一ノレ /1 , 6—へキサンジ才ーノレ = 60/15/25/80/20であった。 [0051] (組成物 1の製造方法) [0050] The melting point of the saturated polyester resin (A-1) (measured using DSC at a temperature rise of 10 ° C / min) is 135 ° C, the glass transition point is 18 ° C, and the melt flow The rate (measured in accordance with JIS-K-7660-1981, 190. C, load 21.2N) was 80 g / 10mii. Further, the monomer composition of the saturated polyester resin (A-1) was analyzed by NMR analysis. The monomer composition was terephthalic acid / isophthalic acid / sebatic acid / 1,4-butanediol / 1,6-hexanediol / norre = 60/15/25/80/20 in molar ratio. [0051] (Production Method of Composition 1)
樹脂成分 (A)として、飽和ポリエステル系樹脂 (A—I) 1424g、樹脂成分 (B)として 、住友化学株式会社製「タフセレン SCC— 24」(以下、「非晶 PO— 1」ともいう。 ) 292 g、樹脂成分(C)として、低密度ポリエチレン (LDPE) (日本ポリオレフイン社製「ジヱ ィレックス LD JM910」)284gを用いた。 JIS— K7122に準じた方法による DSC (セ イコーインスツル社製 RDC220使用、試料量; 8mg、昇温条件; 10°C/分、空気雰 囲気下)の測定で、上記「非晶 PO— 1」の融解熱量を測定したところ、 2. 5j/gであ つた。  As the resin component (A), 1424 g of saturated polyester resin (AI) and as the resin component (B), “Tufselen SCC-24” (hereinafter also referred to as “amorphous PO-1”) manufactured by Sumitomo Chemical Co., Ltd. As the resin component (C), 292 g of low density polyethylene (LDPE) (“Geylex LD JM910” manufactured by Nippon Polyolefin Co., Ltd.) was used. Measured by DSC (using RDC220 manufactured by Seiko Instruments Inc., sample amount: 8 mg, temperature rising condition: 10 ° C / min, under air atmosphere) by the method according to JIS-K7122 The heat of fusion was measured and found to be 2.5 j / g.
[0052] 樹脂成分 (A)〜(C)を予め均一混合し、池貝社製 30mm2軸押出機「PCM— 30」 に投入し、 160°Cで溶融混合した。押出機よりストランド形状で吐出した溶融樹脂を 水槽で冷却固化した。固化した樹脂をペレタイザ一にてペレット形状に切断して、組 成物 1を 500g得た。 [0052] The resin component (A) ~ (C) previously mixed uniformly, and poured into Ikegai Corp. 30 mm 2 screw extruder "PCM-30", was melt-mixed at 160 ° C. The molten resin discharged in the form of a strand from the extruder was cooled and solidified in a water tank. The solidified resin was cut into a pellet shape with a pelletizer, and 500 g of composition 1 was obtained.
[0053] (組成物/銅試験片の作成方法)  [0053] (Composition / Method of preparing copper test piece)
組成物 1を 180°Cの条件で熱プレス(lkg/cm2、 30秒)して、およそ 100 111 (80 〜; 120 m)の厚さのシートを作成した。得られたシートを幅 25mm、長さ 50mmに切 断し、接着剤シートを作成した。また、接着基材の銅板 (材質 C— 1100P、厚さ 150 ^ m)を幅 25mm、長さ 75mmに切断した。引張つかみ代の長さを約 25mm残すよう に、接着剤シートを 2枚の接着基材の間に挟み、 180°C、 0. IMPaの条件で、 30秒 間熱プレスして、組成物 1/銅試験片を作成した。 Composition 1 was hot pressed (lkg / cm 2 , 30 seconds) at 180 ° C. to produce a sheet having a thickness of approximately 100 111 (80 to 120 m). The obtained sheet was cut into a width of 25 mm and a length of 50 mm to prepare an adhesive sheet. Also, a copper plate (material C-1100P, thickness 150 ^ m) as an adhesive substrate was cut into a width of 25 mm and a length of 75 mm. The adhesive sheet is sandwiched between two adhesive substrates so that the length of the tension gripping margin remains approximately 25 mm, and the composition is heated and pressed at 180 ° C, 0. IMPa for 30 seconds. / A copper specimen was created.
[0054] (銅基材への接着強度試験)  [0054] (Adhesive strength test to copper substrate)
(実施例 1)  (Example 1)
組成物 1/銅試験片が T字型になるように、組成物 1/銅試験片を引張試験機(島 津製作所社製オートグラフ「DSS— 500」)のチャックに固定し、 23°C、 5mm/分の 引張速度の条件で引張荷重を測定した。この条件での引張強さは 11. Okgfであつ た。また、引張速度を 20mm/分及び 50mm/分とした時の引張強さがそれぞれ、 15. 8kgf及び 16. 3kgfであった。更に引張速度を 200mm/分とした場合の引張 強さは、 15. 6kgfであり、剥離形態を目視で確認したところ、接着剤の凝集破壊が認 められた。 [0055] (比較例 1) Fix the composition 1 / copper test piece to the chuck of a tensile tester (Shimadzu Autograph “DSS-500”) so that the composition 1 / copper test piece is T-shaped. The tensile load was measured under the condition of a tensile speed of 5 mm / min. The tensile strength under this condition was 11. Okgf. Moreover, the tensile strengths when the tensile speed was 20 mm / min and 50 mm / min were 15.8 kgf and 16.3 kgf, respectively. Furthermore, the tensile strength when the tensile speed was 200 mm / min was 15.6 kgf, and when the peeled form was visually confirmed, cohesive failure of the adhesive was observed. [0055] (Comparative Example 1)
飽和ポリエステル系樹脂(A— 1 ) 1666g、樹脂成分(C)「ジヱイレックス LDJH527J 334gを均一混合し、組成物 1と同様の方法で組成物 2を得た。また、組成物 1/銅 試験片と同様の条件で、組成物 2/銅試験片を作成した。そして、実施例 1と同様の 方法で接着強度を測定した。その結果、引張速度が 5mm/分、 20mm/分、 50m m/分、及び 200mm/分の場合、それぞれの引張強さは、 5. 2kgf、 6. 7kgf、 7. 8kgf及び 11. 4kgfであった。また、いずれの引張速度の条件においても、剥離形態 を目視で確認したところ、銅試験片と接着剤の界面での界面剥離が認められた。  Saturated polyester-based resin (A-1) 1666g and resin component (C) "Di-Ilex LDJH527J 334g were uniformly mixed to obtain composition 2 in the same manner as composition 1. Composition 1 / copper test piece and A composition 2 / copper test piece was prepared under the same conditions, and the adhesive strength was measured in the same manner as in Example 1. As a result, the tensile speed was 5 mm / min, 20 mm / min, 50 mm / min. And 200 mm / min, the tensile strengths were 5.2 kgf, 6.7 kgf, 7.8 kgf, and 11.4 kgf, respectively. When confirmed, interfacial peeling at the interface between the copper test piece and the adhesive was observed.
[0056] 実施例 1は、比較例 1と比較して、引張強さが約 2倍程度高くなつたことが認められ た。また、実施例 1は、界面剥離より凝集破壊が起こり易くなつた。この結果から、非 結晶性ポリオレフイン系樹脂(樹脂成分 (B) )を飽和ポリエステル樹脂に添加すること により、銅基材への密着性が高くなり、接着性能及びシール性能が高くなつたと判断 できる。 [0056] Compared to Comparative Example 1, Example 1 was found to have a tensile strength that was about twice as high. Further, in Example 1, cohesive failure was more likely to occur than interfacial peeling. From this result, it can be judged that by adding the amorphous polyolefin resin (resin component (B)) to the saturated polyester resin, the adhesion to the copper base material is increased, and the adhesion performance and the sealing performance are enhanced.
[0057] (組成物 3〜; 1 1の製造方法)  [0057] (Composition 3 ~; method for producing 1 1)
表 1記載の組成物配合比で、組成物 1の製造方法と同様の方法で、組成物 3〜; 11 を得た。  Compositions 3 to 11 were obtained in the same manner as the production method of Composition 1 with the composition blending ratio shown in Table 1.
[0058] (実施例 2〜3及び 13〜; 14、並びに比較例 2)  [0058] (Examples 2-3 and 13-; 14, and Comparative Example 2)
組成物 3〜 5及び 10〜; 11を用いて、組成物/銅試験片を作成した。実施例 1と同 様の方法で引張強さを測定し、剥離形態を目視で確認した。その結果を表 2の実施 例 2〜3及び 13〜; 14並びに比較例 2に示す。  Compositions / copper specimens were prepared using compositions 3-5 and 10-; Tensile strength was measured in the same manner as in Example 1, and the peel form was visually confirmed. The results are shown in Examples 2 to 3 and 13 to; 14 and Comparative Example 2 in Table 2.
[0059] [表 1] [0059] [Table 1]
§ §
表 1table 1
Figure imgf000017_0001
Figure imgf000017_0001
非晶 PO— 1 : 住友化学 製 「タフセレン SCC24J, Ml値 =124g/10分 (温度 230°C、荷重 21.2N), 融解熱量 2.5J/g 非晶 PO— 2 : 住友化学 製 Γタフセレン H3002J, Ml値 =3g 10分 (温度 230°C、荷重 21.2N), 融解熱量 3.2JZg 非晶 PO— 3 : 住友化学㈱製 「タフセレン H5002丄 Ml値 =10g/10分 (温度 230°C、荷重 21.2N), 融解熱量 1.9J/g LDPE : 結晶性ポリエチレン樹脂 (低密度ポリエチレン)、融解熱量 112J/g Amorphous PO— 1 : Sumitomo Chemical Co., Ltd. “Tough Selenium SCC24J, Ml value = 124 g / 10 min (Temperature 230 ° C, Load 21.2N), Heat of fusion 2.5J / g Amorphous PO— 2: Sumitomo Chemical Co., Ltd. , Ml value = 3g 10min (Temperature 230 ° C, Load 21.2N), Heat of fusion 3.2JZg Amorphous PO—3: “Tough selenium H5002 丄 Ml value = 10g / 10min (temperature 230 ° C, load) 21.2N), heat of fusion 1.9J / g LDPE: crystalline polyethylene resin (low density polyethylene), heat of fusion 112J / g
エポキシ樹脂 : ビスフエノール A型エポキシ樹脂、 R&B軟化点 138¾を使用した。 Epoxy resin: Bisphenol A type epoxy resin, R & B softening point 138¾ was used.
Figure imgf000018_0001
Figure imgf000018_0001
[0061] 比較例 2は、エポキシ樹脂型粘着付与剤を使用した例である。表 2によれば、比較 例 1と比較して、 5mm/分の引張速度条件で、引張強さが若干強くなつている力 破 壊形態の改善は認められてレ、なレ、。 [0061] Comparative Example 2 is an example using an epoxy resin type tackifier. According to Table 2, compared with Comparative Example 1, the tensile strength was slightly increased under the tensile speed condition of 5 mm / min.
[0062] 一方、実施例 2及び 3は、比較例 1や比較例 2と比較して引張強さが約 2倍程度高く なったことが認められた。また、実施例 2及び 3は、界面剥離より凝集破壊が起こり易 くなつた。この結果から、銅基材への密着性が高ぐ接着性能及びシール性能が高く なったと判断できる。更に実施例 1〜3では、用いられている非結晶性ポリオレフイン 系樹脂の溶融粘度がそれぞれ、 124g/10分、 3g/10分、 lOg/10分と異なるに も関わらず、銅基材への密着性は優れていた。 On the other hand, in Examples 2 and 3, it was confirmed that the tensile strength was about twice as high as that in Comparative Examples 1 and 2. In Examples 2 and 3, cohesive failure was more likely to occur than interfacial peeling. From this result, the adhesion performance and the sealing performance with high adhesion to the copper base material are high. It can be judged that it became. Furthermore, in Examples 1 to 3, although the melt viscosity of the amorphous polyolefin resin used was 124 g / 10 min, 3 g / 10 min, and lOg / 10 min, respectively, The adhesion was excellent.
[0063] (アルミニウム基材への接着強度試験)  [0063] (Adhesive strength test to aluminum substrate)
(実施例 4〜6、及び比較例 3)  (Examples 4 to 6 and Comparative Example 3)
接着基材としてアルミニウム板 (材質 AL5052、厚さ 300 m)を用いた他は、銅試 験片と同様の方法で、組成物/アルミニウム試験片を作成した。実施例 1と同様の方 法で引張強さを測定し、剥離形態を目視で確認した。その結果を表 3に示す。  A composition / aluminum test piece was prepared in the same manner as the copper test piece, except that an aluminum plate (material AL5052, thickness 300 m) was used as the adhesive substrate. Tensile strength was measured in the same manner as in Example 1, and the peel form was visually confirmed. The results are shown in Table 3.
[0064] [表 3] [0064] [Table 3]
Figure imgf000020_0001
表 3によれば、実施例 4及び実施例 5は、エポキシ樹脂系粘着付与剤を使用した比 較例 3と比べ、非結晶性ポリオレフイン系樹脂の溶融粘度に関わらず、破壊形態が凝 集破壊になり易ぐアルミニウムへの密着性及びシール性に優れていることが認めら れた。また実施例 6では、非結晶性ポリオレフイン系樹脂の添加量を実施例 5よりも少 なくしているにも関わらず、比較例 3よりも凝集破壊が起こり易ぐアルミニウムへの密 着性及びシール性に優れて!/、た。
Figure imgf000020_0001
According to Table 3, Example 4 and Example 5 have a cohesive failure mode regardless of the melt viscosity of the amorphous polyolefin resin, compared with Comparative Example 3 using an epoxy resin tackifier. It was confirmed that it has excellent adhesion to aluminum and easy sealing. In Example 6, although the amount of the amorphous polyolefin resin added was smaller than that in Example 5, cohesive failure was more likely to occur in aluminum than in Comparative Example 3. Excellent wearability and sealability!
[0066] (ポリエチレンテレフタレートフィルムへの接着強度試験) [0066] (Adhesive strength test to polyethylene terephthalate film)
(実施例 7〜; 10、及び比較例 4)  (Examples 7 to 10; and Comparative Example 4)
接着基材として厚さ 100 H mのポリエチレンテレフタレートフィルム(以下、「PETフ イルム」ともいう。)を用いた他は、銅試験片と同様の方法で、組成物/ PETフィルム 試験片を作成した。実施例 1と同様の方法で引張強さを測定し、剥離形態を目視で 確認した。その結果を表 4に示す。  A composition / PET film test piece was prepared in the same manner as the copper test piece, except that a 100 Hm thick polyethylene terephthalate film (hereinafter also referred to as “PET film”) was used as the adhesive substrate. . Tensile strength was measured in the same manner as in Example 1, and the peel form was visually confirmed. The results are shown in Table 4.
[0067] [表 4] [0067] [Table 4]
Figure imgf000022_0001
表 4によれば、実施例 7は、エポキシ樹脂系粘着付与剤を使用した比較例 4と比べ 、引張強さが 2倍以上高ぐ破壊形態が凝集破壊になり易レ、。この結果から、非結晶 性ポリオレフイン系樹脂を含む樹脂組成物は、エポキシ樹脂系粘着付与剤を含む樹 脂組成物よりもポリエチレンテレフタレートへの密着性及びシール性に優れているこ とが確認された。一方、実施例 8及び実施例 9では、非結晶性ポリオレフイン系樹脂 の添加量に関わらず、比較例 4よりも凝集破壊が起こり易ぐポリエチレンテレフタレ 凝材破界
Figure imgf000022_0001
According to Table 4, in Example 7, compared to Comparative Example 4 using an epoxy resin-based tackifier, the fracture form in which the tensile strength is twice or more is easy to cause cohesive failure. From this result, it can be seen that the resin composition containing the amorphous polyolefin resin has better adhesion to polyethylene terephthalate and sealability than the resin composition containing the epoxy resin tackifier. It was confirmed. On the other hand, in Example 8 and Example 9, polyethylene terephthalate is more susceptible to cohesive failure than Comparative Example 4 regardless of the amount of amorphous polyolefin resin added.
ートへの破壊面集密着性及びシール性に優れていた。更に、実施例 10では、結晶性ポリェチ レン樹脂の使用量が実施例 7よりも少な!/、組成物を用いて!/、る力 凝集破壊が起こり 易く、密着性やシール性に悪影響は見られな力 た。  It was excellent in adhesiveness to the fracture surface and sealability. Further, in Example 10, the amount of the crystalline polyethylene resin used is less than that in Example 7! / The composition is used! /, The cohesive failure is likely to occur, and there is an adverse effect on the adhesion and sealability. It was a powerful force.
[0069] (接着強度の温度依存性試験)  [0069] (Temperature dependency test of adhesive strength)
(実施例 11〜; 12、及び比較例 5〜6)  (Examples 11-; 12, and Comparative Examples 5-6)
表 5に示す組成物/ PETフィルム試験片につ!/、て、引張試験の温度条件を 40°C 及び 5°Cに設定し、引張速度を 200mm/分の場合の引張強度を測定し、剥離形態 を目視で確認した。その結果を表 5に示す。  For the composition / PET film test piece shown in Table 5, measure the tensile strength when the temperature condition of the tensile test is set to 40 ° C and 5 ° C, and the tensile speed is 200 mm / min. The peeling form was confirmed visually. The results are shown in Table 5.
[0070] [表 5] 表 5  [0070] [Table 5] Table 5
Figure imgf000023_0001
Figure imgf000023_0001
形態  Form
接着剤と接着基材との界面剥離  Interfacial peeling between adhesive and adhesive substrate
接着剤の凝集破壊  Adhesive cohesive failure
PETフィルムの破壊  Destruction of PET film
[0071] 表 5によれば、実施例 11及び実施例 12は、 40°C及び 5°Cにおいても PETフィルム 基材への密着性が高い。また、実施例 11及び実施例 12では、凝集破壊及び PETフ イルム基材の材料破壊が観察された。一方、比較例 5及び比較例 6では、 PETフィル ム基材への密着性が不足するために、接着強度が低ぐかつ剥離形態が界面剥離と なった。 [0071] According to Table 5, Example 11 and Example 12 have high adhesion to the PET film substrate even at 40 ° C and 5 ° C. Further, in Example 11 and Example 12, cohesive failure and material failure of the PET film substrate were observed. On the other hand, in Comparative Example 5 and Comparative Example 6, since the adhesion to the PET film substrate was insufficient, the adhesive strength was low and the peeling form was interfacial peeling.
産業上の利用可能性 本発明の樹脂組成物及び該樹脂組成物を含むホットメルト接着剤等の接着剤は、 金属材料及び樹脂材料への接着強度が高ぐ密着性にも優れた材料である。従って 、本発明の樹脂組成物及び接着剤は、電気 ·電子分野及び自動車分野のシール材 及び封止材、又は異種材料 (金属/樹脂)の接着への利用に適している。更に、本 発明の樹脂組成物及び接着剤は、ガスバリヤ一性が要求される包装分野へ活用す ること力 Sでさる。 Industrial applicability The resin composition of the present invention and an adhesive such as a hot melt adhesive containing the resin composition are materials having high adhesion strength to metal materials and resin materials and excellent adhesion. Therefore, the resin composition and adhesive of the present invention are suitable for use in sealing materials and sealing materials in the electric / electronic field and automobile field, or for bonding different materials (metal / resin). Further, the resin composition and the adhesive of the present invention can be used with a force S that can be utilized in the packaging field where gas barrier properties are required.

Claims

請求の範囲 The scope of the claims
[1] 飽和ポリエステル樹脂 (A)と非結晶性ポリオレフイン系樹脂 (B)とを含有することを 特徴とする飽和ポリエステル系樹脂組成物。  [1] A saturated polyester resin composition comprising a saturated polyester resin (A) and an amorphous polyolefin resin (B).
[2] 上記飽和ポリエステル樹脂 (A)及び上記非結晶性ポリオレフイン系樹脂(B)の合 計量 100質量%に対して、上記非結晶性ポリオレフイン系樹脂 (B)の含有量は、;!〜[2] With respect to 100% by mass of the total amount of the saturated polyester resin (A) and the amorphous polyolefin resin (B), the content of the amorphous polyolefin resin (B) is:
50質量%である請求項 1記載の飽和ポリエステル系樹脂組成物。 The saturated polyester resin composition according to claim 1, wherein the content is 50% by mass.
[3] 結晶性ポリオレフイン系樹脂(C)を更に含有する請求項 1記載の飽和ポリエステル 系樹脂組成物。 [3] The saturated polyester resin composition according to claim 1, further comprising a crystalline polyolefin resin (C).
[4] 上記結晶性ポリオレフイン系樹脂(C)の結晶の融解熱量が 50j/g以上である請求 項 3記載の飽和ポリエステル系樹脂組成物。  [4] The saturated polyester resin composition according to claim 3, wherein the crystalline polyolefin resin (C) has a crystal heat of fusion of 50 j / g or more.
[5] 上記非結晶性ポリオレフイン系樹脂 (B)の結晶の融解熱量が 10j/g以下である請 求項 3記載の飽和ポリエステル系樹脂組成物。 [5] The saturated polyester resin composition according to claim 3, wherein the heat of fusion of the amorphous polyolefin resin (B) is 10 j / g or less.
[6] 上記飽和ポリエステル樹脂 (A)、上記非結晶性ポリオレフイン系樹脂(B)及び上記 結晶性ポリオレフイン系樹脂(C)の合計量 100質量%に対して、上記非結晶性ポリ ォレフィン系樹脂 (B)の含有量は;!〜 30質量%、結晶性ポリオレフイン系樹脂(C)の 含有量は 3〜30質量%である請求項 3記載の飽和ポリエステル系樹脂組成物。 [6] The amorphous polyolefin resin (A), the amorphous polyolefin resin (B), and the crystalline polyolefin resin (C) in a total amount of 100% by mass. The saturated polyester resin composition according to claim 3, wherein the content of B) is;! -30 mass%, and the content of the crystalline polyolefin resin (C) is 3-30 mass%.
[7] 上記非結晶性ポリオレフイン系樹脂 (B) 100質量部に対する上記結晶性ポリオレフ イン系樹脂(C)の割合は、 60〜250質量部である請求項 3記載の飽和ポリエステル 系樹脂組成物。 [7] The saturated polyester resin composition according to claim 3, wherein the ratio of the crystalline polyolefin resin (C) to 100 parts by mass of the amorphous polyolefin resin (B) is 60 to 250 parts by mass.
[8] 請求項 1乃至 7のいずれ力、 1項に記載の飽和ポリエステル系樹脂組成物を含むこと を特徴とする接着剤組成物。  [8] An adhesive composition comprising the saturated polyester resin composition according to any one of [1] to [7].
[9] 請求項 1乃至 7のいずれ力、 1項に記載の飽和ポリエステル系樹脂組成物を含むこと を特徴とするホットメルト接着剤。 [9] A hot-melt adhesive comprising the saturated polyester resin composition according to any one of [1] to [7].
PCT/JP2007/072724 2006-12-20 2007-11-26 Saturated polyester resin composition and adhesive composition containing the resin composition WO2008075533A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008550075A JP5168150B2 (en) 2006-12-20 2007-11-26 Saturated polyester resin composition and adhesive composition containing the composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006342600 2006-12-20
JP2006-342600 2006-12-20

Publications (1)

Publication Number Publication Date
WO2008075533A1 true WO2008075533A1 (en) 2008-06-26

Family

ID=39536167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072724 WO2008075533A1 (en) 2006-12-20 2007-11-26 Saturated polyester resin composition and adhesive composition containing the resin composition

Country Status (3)

Country Link
JP (1) JP5168150B2 (en)
TW (1) TW200844176A (en)
WO (1) WO2008075533A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018070484A1 (en) * 2016-10-12 2019-09-12 凸版印刷株式会社 Transfer foil, security laminate, and method of manufacturing security laminate
CN113717676A (en) * 2021-08-25 2021-11-30 深圳市睿晖新材料有限公司 Flame-retardant hot melt adhesive, flame-retardant hot melt adhesive film and flexible wire rod

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014823A1 (en) * 2010-07-30 2012-02-02 東洋紡績株式会社 Resin composition for low-pressure insert molding of electric and electronic components, sealing body for electric and electronic components, and method for producing sealing body for electric and electronic components

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07137195A (en) * 1993-11-12 1995-05-30 Nippon Steel Corp Metal plate with organic coating having adhesiveness and lubricity
JPH08134428A (en) * 1994-10-20 1996-05-28 Minnesota Mining & Mfg Co <3M> Solid adhesive composition
JP2000511583A (en) * 1996-06-03 2000-09-05 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー Heat deformation pressure sensitive adhesive
JP2001064615A (en) * 1999-08-24 2001-03-13 Sekisui Chem Co Ltd Curable type tacky adhesive composition and curable type tacky adhesive sheet
JP2002052674A (en) * 2000-08-11 2002-02-19 Mitsubishi Polyester Film Copp Fine cell-containing laminated polyester film
JP2002155153A (en) * 2000-09-06 2002-05-28 Mitsui Chemicals Inc Polyester film
JP2003103737A (en) * 2001-09-27 2003-04-09 Sumitomo Chem Co Ltd Easily recyclable container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07137195A (en) * 1993-11-12 1995-05-30 Nippon Steel Corp Metal plate with organic coating having adhesiveness and lubricity
JPH08134428A (en) * 1994-10-20 1996-05-28 Minnesota Mining & Mfg Co <3M> Solid adhesive composition
JP2000511583A (en) * 1996-06-03 2000-09-05 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー Heat deformation pressure sensitive adhesive
JP2001064615A (en) * 1999-08-24 2001-03-13 Sekisui Chem Co Ltd Curable type tacky adhesive composition and curable type tacky adhesive sheet
JP2002052674A (en) * 2000-08-11 2002-02-19 Mitsubishi Polyester Film Copp Fine cell-containing laminated polyester film
JP2002155153A (en) * 2000-09-06 2002-05-28 Mitsui Chemicals Inc Polyester film
JP2003103737A (en) * 2001-09-27 2003-04-09 Sumitomo Chem Co Ltd Easily recyclable container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018070484A1 (en) * 2016-10-12 2019-09-12 凸版印刷株式会社 Transfer foil, security laminate, and method of manufacturing security laminate
EP3527405A4 (en) * 2016-10-12 2019-10-23 Toppan Printing Co., Ltd. Transfer foil, security laminate, and security laminate production method
US10675840B2 (en) 2016-10-12 2020-06-09 Toppan Printing Co., Ltd. Transfer foil, security laminate, and security laminate production method
JP7044068B2 (en) 2016-10-12 2022-03-30 凸版印刷株式会社 Method for manufacturing transfer foil, security laminate, and security laminate
CN113717676A (en) * 2021-08-25 2021-11-30 深圳市睿晖新材料有限公司 Flame-retardant hot melt adhesive, flame-retardant hot melt adhesive film and flexible wire rod

Also Published As

Publication number Publication date
JP5168150B2 (en) 2013-03-21
TW200844176A (en) 2008-11-16
JPWO2008075533A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5158086B2 (en) Saturated polyester resin composition and hot melt adhesive composition
JP4992626B2 (en) Release film for hot press molding
TWI335350B (en)
JP5786715B2 (en) Resin composition, metal coating using the same, and adhesive
JP2008291217A (en) Adhesive and sealing material made flame-retardant
CN110300783B (en) Laminate for battery
EP3060620B1 (en) Hot melt adhesive
JP2006083263A (en) Thermoplastic adhesive composition and laminate using the same
JP4277174B2 (en) Resin composition
WO2008075533A1 (en) Saturated polyester resin composition and adhesive composition containing the resin composition
JP2012180385A (en) Resin composition, sealing body of electrical and electronic component using the resin composition, and method for producing the sealing body
JP2014074157A (en) Resin composition for coating metal
JP2005255752A (en) Resin composition and adhesive using the same
WO1999029797A1 (en) Hot-melt adhesive composition and resin-laminated ic cards
JP2017132851A (en) Adhesive, film, and lid material for polyethylene terephthalate-made container
JP4811083B2 (en) Laminated body for easy opening lid and easy opening container
JP4715130B2 (en) Adhesive composition and laminate using the same
JP4277175B2 (en) Resin composition and adhesive
JP4935018B2 (en) Thermoplastic liquid crystal polyester film laminate
JPH06108027A (en) Adhesive resin composition
JP5853701B2 (en) RESIN COMPOSITION FOR ELECTRIC AND ELECTRONIC COMPONENT LOW PRESS INSERT MOLDING, ELECTRIC ELECTRONIC COMPONENT ENCLOSURE, AND METHOD FOR PRODUCING ELECTRIC ELECTRONIC COMPONENT
JP6183082B2 (en) Resin composition for metal coating
JP6439962B2 (en) Hot melt adhesive composition with excellent transparency
JP2023026099A (en) thermoplastic resin sheet
JP2020196885A (en) Resin composition for electric/electronic component sealing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008550075

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832449

Country of ref document: EP

Kind code of ref document: A1