WO2008072701A1 - ポストフィルタおよびフィルタリング方法 - Google Patents

ポストフィルタおよびフィルタリング方法 Download PDF

Info

Publication number
WO2008072701A1
WO2008072701A1 PCT/JP2007/074044 JP2007074044W WO2008072701A1 WO 2008072701 A1 WO2008072701 A1 WO 2008072701A1 JP 2007074044 W JP2007074044 W JP 2007074044W WO 2008072701 A1 WO2008072701 A1 WO 2008072701A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
pitch
filter coefficient
subframe
pitch filter
Prior art date
Application number
PCT/JP2007/074044
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Morii
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN2007800445944A priority Critical patent/CN101548319B/zh
Priority to JP2008549360A priority patent/JPWO2008072701A1/ja
Priority to EP07850564A priority patent/EP2099026A4/en
Priority to US12/518,741 priority patent/US20100010810A1/en
Publication of WO2008072701A1 publication Critical patent/WO2008072701A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/12Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
    • G10L19/125Pitch excitation, e.g. pitch synchronous innovation CELP [PSI-CELP]

Definitions

  • the present invention relates to a boss used for a speech decoding apparatus that decodes a coded speech signal.
  • a post-filter is generally applied to the synthesized sound before output. Most of the standard codecs for mobile phones use this post filter.
  • a pole zero type (ARMA type) pole enhancement filter In the CELP post filter, a pole zero type (ARMA type) pole enhancement filter, a high frequency band enhancement filter, and a pitch filter using LPC parameters are used.
  • the pitch filter is an important post filter that can audibly reduce noise by further enhancing the periodicity contained in the synthesized sound.
  • Patent Document 1 a problem is that a low-rate codec such as CELP is compression encoding on a frame-by-frame basis, and a transition in which the pitch period and pitch periodicity characteristics change within the frame.
  • An algorithm of a comb filter (equivalent to a pitch filter) that can obtain a synthesized sound of good quality even in a portion having a characteristic is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-147700
  • the pitch filter changes discontinuously at the boundary between subframes, so that there is a problem that the decoded speech signal becomes discontinuous and the sound quality is deteriorated if an abnormal noise is felt.
  • the present invention has been made in view of the strengths and problems, and when a decoded speech signal is obtained by applying a pitch filter to a synthesized signal having a subframe length, the decoded speech signal is used at the boundary between subframes. It is an object of the present invention to provide a post filter and a filtering method that can be changed continuously.
  • the post filter of the present invention is a post filter that applies a pitch filter to a subframe length signal at a predetermined sample timing interval, with an initial value of 0 and asymptotically approaching a predetermined value.
  • the first filter coefficient calculation means for obtaining the pitch filter coefficient of the current subframe for each sample, and the initial value as the value of the pitch filter coefficient obtained by the first filter coefficient calculation means, and asymptotically approaching 0
  • a second filter coefficient calculation means for obtaining a pitch filter coefficient of a subframe for each sample, and a pitch filter for each sample of the signal using the pitch filter coefficient of the previous subframe and the pitch filter coefficient of the current subframe.
  • a filter operation means for applying the above.
  • the filtering method of the present invention is a filtering method in which a pitch filter is applied to a subframe length signal at a predetermined sampling timing interval, with an initial value of 0 and asymptotically approaching the predetermined value.
  • the first filter coefficient calculation step for obtaining the pitch filter coefficient of the current subframe for each sample and the initial value as the pitch filter coefficient value obtained in the first filter coefficient calculation step are asymptotically set to 0.
  • a filter calculation step of applying a pitch filter every time is a filtering method in which a pitch filter is applied to a subframe length signal at a predetermined sampling timing interval, with an initial value of 0 and asymptotically approaching the predetermined value.
  • the filter of the pitch period of the current subframe is operated with gradually increasing strength, and the filter of the pitch period of the previous subframe is also used while being gradually attenuated.
  • FIG. 1 is a block diagram showing a configuration of a speech encoding apparatus that transmits encoded data to a speech decoding apparatus that includes a post filter according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a speech decoding apparatus including a post filter according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing an internal configuration of a post filter according to an embodiment of the present invention.
  • FIG. 4 is a flowchart for explaining an algorithm of a pitch filter in a post filter according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of changes in pitch filter coefficients when a window function is used in the post filter according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a speech encoding apparatus that transmits encoded data to a speech decoding apparatus including a post filter according to the present embodiment.
  • the pre-processing unit 101 performs a waveform shaping process and a pre-facility process on the input audio signal to improve the performance of the high-pass filter process that removes the DC component and the subsequent encoding process.
  • the signal (Xin) is output to the LPC analysis unit 102 and the addition unit 105.
  • the LPC analysis unit 102 performs linear prediction analysis using Xin, and outputs the analysis result (linear prediction coefficient) to the LPC quantization unit 103.
  • the LPC quantization unit 103 quantizes the linear prediction coefficient (LPC) output from the LPC analysis unit 102, outputs the quantized LPC to the synthesis filter 104, and multiplexes a code (U is multiplexed) representing the quantized LPC. Output to part 114.
  • LPC linear prediction coefficient
  • Synthesis filter 104 generates a synthesized signal by performing filter synthesis on a driving sound source output from adder 111 described later using a filter coefficient based on quantized LPC, and adds the synthesized signal to adder Output to 105.
  • the adder 105 inverts the polarity of the synthesized signal and adds it to Xin to generate an error signal.
  • the error signal is calculated and output to the auditory weighting unit 112.
  • Adaptive excitation codebook 106 stores in the buffer the driving excitation that was output in the past by addition section 111, and one frame from the past driving excitation specified by the signal output from parameter determination section 113. Min samples are extracted as adaptive sound source vectors and output to the multiplier 109.
  • Gain codebook 107 outputs the gain of the adaptive excitation vector and the gain of the fixed excitation vector specified by the signal output from parameter determining section 113 to multiplication section 109 and multiplication section 110, respectively.
  • Fixed excitation codebook 108 stores a plurality of predetermined excitation source vectors in a buffer, and multiplies a pulse source vector having a shape specified by the signal output from parameter determining unit 113 by a diffusion vector.
  • the fixed sound source vector obtained in this way is output to multiplication section 110.
  • Multiplying section 109 multiplies the gain output from gain codebook 107 by the adaptive excitation vector output from adaptive excitation codebook 106 and outputs the result to adding section 111.
  • Multiplication section 110 multiplies the gain output from gain codebook 107 by the fixed excitation vector output from fixed excitation codebook 108 and outputs the result to addition section 111.
  • Adder 111 receives the adaptive excitation vector and fixed excitation vector after gain multiplication from multiplication unit 109 and multiplication unit 110, respectively, adds these vectors, and adds the drive sound source that is the addition result to the synthesis filter 104 and adaptive excitation codebook 106.
  • the driving sound source input to the adaptive sound source code book 106 is stored in the buffer.
  • the auditory weighting unit 112 performs auditory weighting on the error signal output from the adding unit 105 and outputs it to the parameter determining unit 113 as coding distortion.
  • the parameter determining unit 113 searches for the adaptive excitation vector, the fixed excitation vector and the quantization gain code that minimizes the coding distortion output from the perceptual weighting unit 112, and searches for the adaptive excitation source that has been searched.
  • a code (A) representing a vector, a code (F) representing a fixed excitation vector, and a code (G) representing a quantization gain are output to the multiplexing unit 114.
  • the multiplexing unit 114 receives the code (L) representing the quantized LPC from the LPC quantization unit 103, and the code (A) representing the adaptive excitation vector from the parameter determination unit 113, representing the fixed excitation vector.
  • the code (F) and the code (G) representing the quantization gain are input, and the information is multiplexed and output as encoded information.
  • FIG. 2 is a block diagram showing a configuration of a speech decoding apparatus including the post filter according to the present embodiment.
  • the encoded information is separated into individual codes (L, A, G, F) by the multiplexing / separating unit 201.
  • the code (L) representing the quantized LPC is output to the LPC decoding unit 202
  • the code (A) representing the adaptive excitation vector is output to the adaptive excitation codebook 203
  • the code (G) representing the quantization gain is
  • the code (F) that is output to the gain codebook 204 and represents the fixed excitation vector book is output to the fixed excitation codebook 205.
  • the LPC decoding unit 202 decodes the quantized LSP parameter from the code (L) representing the quantized LPC, reconverts the obtained quantized LSP parameter into the quantized LPC parameter, and combines the synthesized FNO 209 ⁇ output.
  • Adaptive excitation codebook 203 stores past driving excitations used in synthesis filter 209, and the past driving specified by the adaptive excitation codebook lag corresponding to code (A) representing the adaptive excitation vector.
  • code (A) representing the adaptive excitation vector.
  • One frame sample from the sound source is extracted as an adaptive sound source vector and output to the multiplication unit 206.
  • the adaptive excitation codebook 203 updates the driving excitation stored and / or stored by the driving excitation output from the adder 208.
  • Gain codebook 204 decodes the adaptive excitation vector gain and the fixed excitation vector gain specified by the code (G) representing the quantization gain, and outputs the adaptive excitation vector gain to multiplication section 206.
  • the gain of the fixed sound source vector is output to the multiplication unit 207.
  • Fixed excitation codebook 205 stores a plurality of predetermined excitation source vectors in a buffer, and multiplies a pulse excitation vector having a shape specified by a code (F) representing the fixed excitation vector by a diffusion vector.
  • F code representing the fixed excitation vector by a diffusion vector.
  • a fixed sound source vector is generated and output to the multiplication unit 207.
  • Multiplier 206 multiplies the adaptive excitation vector by a gain and outputs the result to adder 208.
  • Multiplier 207 multiplies the fixed sound source vector by the gain and outputs the result to adder 208.
  • Adder 208 adds the adaptive excitation vector after gain multiplication output from multipliers 206 and 207 and the fixed excitation vector to generate a drive excitation, and generates this as synthesis filter 209 and adaptive excitation codebook Output to 203.
  • Synthesis filter 209 uses the filter coefficient decoded by LPC decoding section 202. Then, filter synthesis of the driving sound source output from the adder 208 is performed, and the obtained signal (hereinafter referred to as “first synthesized signal”) and the quantized LPC parameter are output to the post filter 210.
  • the post filter 210 applies a very strong filter to the first synthesized signal using the quantized LPC parameter. Further, the post-filter 210 performs a pitch analysis of the first synthesized signal, and uses the highest correlation pitch period and long-term correlation coefficient obtained by the pitch analysis to perform a pole enhancement filter (hereinafter, the synthesized signal). , “The second synthesized signal”) is subjected to a pitch filter to obtain a decoded speech signal.
  • pitch analysis may be omitted to reduce the amount of calculation, and filtering may be performed using adaptive excitation codebook lag of adaptive excitation codebook 203 and adaptive excitation vector gain.
  • G Damping coefficient (the former is for the previous subframe, the latter is for the current frame)
  • p (-i), p (o) pitch period (the former is for the previous subframe, the latter is for the current subframe)
  • fs the state of the pitch filter (past decoded speech signal)
  • the post filter 210 includes a pole enhancement filter 301, a pitch analysis unit 302, a ROM (Read Only Memory) 303, a counter 304, a gain calculator 305, and a first final coefficient calculation 306.
  • the pole enhancement filter 301 applies a pole enhancement filter to the first synthesized signal using the quantized LPC parameter for each subframe, and outputs the resulting second synthesized signal X to the pitch filter 309. . Further, the pole emphasis finalizer 301 outputs a control signal indicating the start of the filter operation by the pitch filter 309 to the ROM 303.
  • Pitch analysis section 302 performs pitch analysis of the first synthesized signal for each subframe, and outputs the most highly correlated pitch period P (0) obtained as a result to filter state setting section 308 for long-term phase.
  • the relation number ⁇ is output to the gain calculation unit 305.
  • the ROM 303 includes the attenuation coefficients G and G, the subframe length I, the intensity coefficient R, and the pitch period.
  • the initial value of the filter state fs is stored.
  • the ROM 303 receives the initial values of the attenuation coefficient G and the pitch filter coefficient g when the control signal is input from the pole enhancement filter 301.
  • P (-1) P (-1) is output to the second filter coefficient calculation unit 307, and the attenuation coefficient G is output to the first filter coefficient calculation unit 30.
  • the strength coefficient R is output to the gain calculation unit 305, the maximum value P of the pitch period, the initial value of the pitch period P (-l), and the pitch final value.
  • the initial value of the data state fs is output to the filter state setting unit 308.
  • the counter 304 increments the sample value i every time a control signal indicating completion of filter operation for each sample is input from the pitch filter 309.
  • the counter 304 resets the sample value i when the sample value i becomes equal to the subframe length I, and sends a control signal indicating the end of the filter operation for each subframe to the gain calculation unit 305 and the first filter.
  • the coefficient is output to coefficient calculation section 306, filter state setting section 308, and pitch filter 309.
  • Gain calculation section 305 uses long-term correlation coefficient ⁇ and intensity coefficient R for each subframe.
  • the pitch filter strength g is obtained by the following equation (1), and this is output to the first filter coefficient calculation unit 306. If the long-term correlation coefficient ⁇ force is greater than the pitch filter strength g
  • the value is equal to the strength coefficient R, and 0 if the long-term correlation coefficient ⁇ is less than 0.0. This does not take extreme values
  • the first filter coefficient calculation unit 306 includes an attenuation coefficient G for each of the units z:
  • the pitch filter coefficient g of the current sensor is obtained by the following formula (2) using the h filter coefficient g> intensity g, and this is output to the pitch filter 309. Equation (2) below
  • the pitch filter coefficient g becomes asymptotically a predetermined value of the pitch filter strength g.
  • the first filter coefficient calculation unit 306 outputs the pitch filter coefficient g to the second filter coefficient calculation unit 307 at the time when the filter operation is completed for one subframe.
  • the second filter coefficient calculation unit 307 performs the attenuation coefficient G and the previous signal:
  • the pitch filter coefficient g is input from the filter coefficient calculation unit 306 and is input to the new pitch filter.
  • the filter coefficient is g.
  • Seven- state setting unit 308 sets the pitch fno iterator state fs using the initial value of pitch filter state fs for each subframe or the decoded speech signal y obtained by applying a pitch filter in the past. , The decoded speech signal y and P (-l) samples before the current sample
  • the filter state setting unit 308 inputs the decoded audio signal y from the pitch filter 309 for each sample, updates the filter state at the time when the filter calculation is completed for one subframe, and newly sets the pitch period P (0).
  • the pitch period is P (-l).
  • the pitch filter 309 includes pitch filter coefficients g, g, a past decoded speech signal y,
  • the decoded audio signal y is obtained.
  • the pitch filter 309 sends a control signal indicating completion of the filter operation to the counter 304, the first filter coefficient calculation unit 306, and the second filter. Output to the number calculation unit 307 and the filter state setting unit 308.
  • the pitch filter 309 performs the filter operation on the second synthesized signal X of the next subframe when the filter operation is completed for one subframe.
  • the decoded audio signal y can be continuously changed at the border between the frames.
  • the term of g Xy converges to 0 each time the filter operation for each sample is executed.
  • the constant values stored in ROM303 are assumed to be those with a sampling rate of 8 kHz and a subframe length of 5 ms, which are the units used in a general telephone low bit rate codec! .
  • constants of the post filter 210 are stored in advance.
  • each parameter and array are initialized (ST401, ST402).
  • the second composite signal X is calculated by the pole enhancement filter 301 (ST403), and pitch analysis is performed by the pitch analysis unit 302, and the pitch cycle P (0) and long-term phase relationship having the highest correlation are calculated.
  • Number ⁇ is calculated by the pole enhancement filter 301 (ST403), and pitch analysis is performed by the pitch analysis unit 302, and the pitch cycle P (0) and long-term phase relationship having the highest correlation are calculated.
  • the sample value i of the counter 304 and the pitch filter coefficient g of the current frame of the first filter coefficient calculation unit 306 are initialized.
  • gain calculation section 305 calculates pitch filter strength g of the current subframe (ST405).
  • the first filter coefficient calculation unit 306 and the second filter coefficient calculation unit 307 calculate pitch filter coefficients g and g for each sample, and the pitch filter 309 calculates the second combined signal X.
  • P (0) P (-1) is stored in the second filter coefficient calculation unit 307, and the portion past the subframe length of the decoded speech signal y is stored as the state fs of the pitch filter of the next subframe ( ST410, ST 411).
  • the filter of the pitch period of the current subframe is operated with gradually increasing strength, and the filter of the pitch period of the previous subframe is also gradually attenuated.
  • the filter of the pitch period of the previous subframe is also gradually attenuated.
  • the force S for changing the pitch filter coefficient for each sample by multiplying by a constant S is not limited to this, and the same effect can be obtained by using a window function.
  • Power to get fruit S for example, an array W J having a superposition characteristic as shown in FIG. 5 is prepared in advance, and the following equation (5) is used without performing calculation using the attenuation coefficient.
  • the g update stores g
  • the pitch period P (0) and the long-term prediction coefficient ⁇ are obtained by pitch analysis.
  • the Power Explained in Case of Obtaining The present invention is not limited to this, and the same effect can be obtained by substituting these two values with the lag of the adaptive sound source codebook 203 and the gain of the adaptive sound source vector.
  • the adaptive excitation vector gain is combined with the fixed excitation vector gain! /, So there is a difference from the long-term prediction coefficient itself, but this substitution does not require the computational complexity of pitch analysis.
  • Another method is to use the lag of the adaptive excitation codebook as it is as the pitch and recalculate only the long-term prediction coefficient. According to this method, the influence of the gain of the fixed sound source vector can be eliminated, and a more accurate pitch filter can be realized with the force S.
  • the present invention is effective even when the force sampling frequency or subframe length in which a constant or the like is set based on a sampling frequency of 8 kHz and a subframe length of 5 ms is other than that. .
  • the attenuation coefficient (constant) is set to a value of 0 ⁇ 95-0.97 when used in a wideband codec (7 kHz band, 16 kHz sampling) used in recent years. ing.
  • the force with the pitch filter as an AR filter can be realized in the same manner even if it is an MA filter.
  • the state of the pitch filter in the algorithm flow of Fig. 4 is stored in the past part of the second synthesized signal X, the filter operation of the pitch filter coefficient calculation and the filter operation part is made MA type, and the filter state after the filter is updated
  • the pitch filter of the present invention can be realized even with the MA type.
  • the power for generating a fixed excitation vector by multiplying a pulse excitation vector by a diffusion vector in the fixed excitation codebook is not limited to this, and the Norse excitation vector itself is used as a fixed excitation. It can be a vector.
  • the power described for the case of using for CELP is not limited to this, and the present invention is also effective for other codecs.
  • the post filter is a post process of the decoder process and does not depend on the type of codec.
  • the signal according to the present invention may be an audio signal that is not only an audio signal.
  • the speech decoding apparatus including the post filter according to the present invention can be mounted on a communication terminal apparatus and a base station apparatus in a mobile communication system, and thus, the same as described above. It is possible to provide a communication terminal device, a base station device, and a mobile communication system having operational effects.
  • the power described by taking the case where the present invention is configured by hardware as an example can be realized by software.
  • the ability to realize the same function as the speech decoding apparatus according to the present invention by describing the algorithm according to the present invention in a programming language, storing the program in a memory, and causing the information processing means to execute the algorithm. it can.
  • Each functional block used in the description of the above embodiment is typically an integrated circuit. Realized as an LSI. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • FPGA Field Programmable Gate Array
  • the present invention is suitable for use in an audio decoding device that decodes an encoded audio signal or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

 サブフレーム長の合成信号に対してピッチフィルタをかけて復号音声信号を得る場合にサブフレームの境目において復号音声信号を連続的に変化させるポストフィルタ。このポストフィルタでは、第1フィルタ係数計算部(306)は、初期値を0とし、漸近的にピッチフィルタの強度gに近づくように現サブフレームのピッチフィルタ係数gP(0)をサンプル毎に求める。第2フィルタ係数計算部(307)は、初期値を第1フィルタ係数計算部(306)が求めたピッチフィルタ係数の値とし、漸近的に0に近づくように前サブフレームのピッチフィルタ係数gP(-1)をサンプル毎に求める。フィルタ状態設定部(308)は、サブフレーム毎にピッチフィルタの状態fsiを設定する。ピッチフィルタ(309)は、合成信号xiに対してピッチフィルタ係数gP(-1)、gP(0)、過去の復号音声信号yi-P(-1)、yi-P(0)を用いてピッチフィルタをかけ、復号音声信号yiを得る。

Description

^方法 技術分野
[0001] 本発明は、符号化された音声信号を復号化する音声復号化装置に使用されるボス
Figure imgf000003_0001
背景技術
[0002] 移動体通信におレ、ては、電波などの伝送路容量や記憶媒体の有効利用を図るた 明
め、音声や画像のディジタル情報に対して圧縮符号化を行うことが必須であり、これ までに多くの符号化/複号化方式が開発されてきた。
[0003] その中で、音声符号化技術は、音声の発声機構をモデル化してベクトル量子化を 巧みに応用した基本方式「CELP」 (Code Excited Linear Prediction)によって性能が 大きく向上した。また、オーディオ符号化等の楽音符号化技術は、変換符号化技術( MPEG標準 ACCや MP3等)により性能が大きく向上した。
[0004] ここで、低ビットレートの復号器の後処理として、合成音に対して出力前にポストフィ ルタを掛けるのが一般的である。携帯電話用の標準コーデックの殆どでこのポストフ ィルタが使用されている。
[0005] CELPのポストフィルタでは、 LPCパラメータを用いた極零型 (ARMA型)の極強調 フィルタ、高周波数帯域強調フィルタ、ピッチフィルタが使用される。中でもピッチフィ ルタは、合成音に含まれる周期性を更に強調することによってノイズ感を聴感的に低 減することができる重要なポストフィルタである。
[0006] 特許文献 1には、 CELP等の低レートのコーデックがフレーム単位の圧縮符号化で あることを課題とし、ピッチ周期やピッチ周期性の特性がフレーム内で変化しているよ うな過渡的な特性の部分でも良好な品質の合成音が得られるくし型フィルタ(ピッチ フィルタと同等)のアルゴリズムが開示されている。
特許文献 1:特開 2001— 147700号公報
発明の開示 発明が解決しょうとする課題 [0007] しかしながら、従来のポストフィルタでは、サブフレームの境目でピッチフィルタが不 連続に変化するため、復号音声信号が不連続となり、異音感ゃ音質の劣化が生じる という問題がある。
[0008] 本発明は力、かる点に鑑みてなされたものであり、サブフレーム長の合成信号に対し てピッチフィルタをかけて復号音声信号を得る場合に、サブフレームの境目において 復号音声信号を連続的に変化させることができるポストフィルタおよびフィルタリング 方法を提供することを目的とする。
課題を解決するための手段
[0009] 本発明のポストフィルタは、サブフレーム長の信号に対して所定のサンプルタイミン グ間隔でピッチフィルタをかけるポストフィルタであって、初期値を 0とし、漸近的に所 定値に近づくように現サブフレームのピッチフィルタ係数をサンプル毎に求める第 1フ ィルタ係数計算手段と、初期値を前記第 1フィルタ係数計算手段が求めたピッチフィ ルタ係数の値とし、漸近的に 0に近づくように前サブフレームのピッチフィルタ係数を サンプル毎に求める第 2フィルタ係数計算手段と、前記前サブフレームのピッチフィ ルタ係数と前記現サブフレームのピッチフィルタ係数を用いて前記信号に対してサン プル毎にピッチフィルタをかけるフィルタ演算手段と、を具備する構成を採る。
[0010] 本発明のフィルタリング方法は、サブフレーム長の信号に対して所定のサンプルタ イミング間隔でピッチフィルタをかけるフィルタリング方法であって、初期値を 0とし、漸 近的に所定値に近づくように現サブフレームのピッチフィルタ係数をサンプル毎に求 める第 1フィルタ係数計算工程と、初期値を前記第 1フィルタ係数計算工程で求めら れたピッチフィルタ係数の値とし、漸近的に 0に近づくように前サブフレームのピッチ フィルタ係数をサンプル毎に求める第 2フィルタ係数計算工程と、前記前サブフレー ムのピッチフィルタ係数と前記現サブフレームのピッチフィルタ係数を用いて前記信 号に対してサンプル毎にピッチフィルタをかけるフィルタ演算工程と、を具備する方法 を採る。
発明の効果
[0011] 本発明によれば、現サブフレームのピッチ周期のフィルタを徐々に強さを上げて動 作させ、また、前サブフレームのピッチ周期のフィルタも徐々に減衰させながら併用 することにより、サブフレームの境目でも連続的に変化するピッチフィルタを実現する ことができ、異音感ゃ音質の劣化が生じることを防ぐことができる。
図面の簡単な説明
[0012] [図 1]本発明の一実施の形態に係るポストフィルタを具備する音声復号化装置に符 号化データを送信する音声符号化装置の構成を示すブロック図
[図 2]本発明の一実施の形態に係るポストフィルタを具備する音声復号化装置の構 成を示すブロック図
[図 3]本発明の一実施の形態に係るポストフィルタの内部構成を示すブロック図
[図 4]本発明の一実施の形態に係るポストフィルタ内のピッチフィルタのアルゴリズム を説明するフロー図
[図 5]本発明の一実施の形態に係るポストフィルタにおいて窓関数を用いた場合のピ ツチフィルタ係数の変化の一例を示す図
発明を実施するための最良の形態
[0013] 以下、本発明の一実施の形態について、図面を用いて説明する。
[0014] 図 1は、本実施の形態に係るポストフィルタを具備する音声復号化装置に符号化デ ータを送信する音声符号化装置の構成を示すブロック図である。
[0015] 前処理部 101は、入力音声信号に対し、 DC成分を取り除くハイパスフィルタ処理 や後続する符号化処理の性能改善につながるような波形整形処理やプリェンファシ ス処理を行い、これらの処理後の信号 (Xin)を LPC分析部 102および加算部 105に 出力する。
[0016] LPC分析部 102は、 Xinを用いて線形予測分析を行い、分析結果 (線形予測係数) を LPC量子化部 103に出力する。 LPC量子化部 103は、 LPC分析部 102から出力 された線形予測係数(LPC)の量子化処理を行い、量子化 LPCを合成フィルタ 104 に出力するとともに量子化 LPCを表す符号 (Uを多重化部 114に出力する。
[0017] 合成フィルタ 104は、量子化 LPCに基づくフィルタ係数を用いて後述する加算部 1 11から出力される駆動音源に対してフィルタ合成を行うことにより合成信号を生成し 、合成信号を加算部 105に出力する。
[0018] 加算部 105は、合成信号の極性を反転させて Xinに加算することにより誤差信号を 算出し、誤差信号を聴覚重み付け部 112に出力する。
[0019] 適応音源符号帳 106は、過去に加算部 111によって出力された駆動音源をバッフ ァに記憶し、ノ ラメータ決定部 113から出力された信号により特定される過去の駆動 音源から、 1フレーム分のサンプルを適応音源ベクトルとして切り出して乗算部 109に 出力する。
[0020] ゲイン符号帳 107は、ノ ラメータ決定部 113から出力された信号によって特定され る適応音源ベクトルのゲインと固定音源ベクトルのゲインとをそれぞれ乗算部 109と 乗算部 110とに出力する。
[0021] 固定音源符号帳 108は、所定形状のノ ルス音源ベクトルをバッファに複数記憶し、 ノ ラメータ決定部 113から出力された信号によって特定される形状を有するパルス音 源ベクトルに拡散ベクトルを乗算して得られた固定音源ベクトルを乗算部 110に出力 する。
[0022] 乗算部 109は、ゲイン符号帳 107から出力されたゲインを、適応音源符号帳 106か ら出力された適応音源ベクトルに乗じて、加算部 111に出力する。乗算部 110は、ゲ イン符号帳 107から出力されたゲインを、固定音源符号帳 108から出力された固定 音源ベクトルに乗じて、加算部 111に出力する。
[0023] 加算部 111は、利得乗算後の適応音源ベクトルと固定音源ベクトルとをそれぞれ乗 算部 109と乗算部 110とから入力し、これらをベクトル加算し、加算結果である駆動 音源を合成フィルタ 104および適応音源符号帳 106に出力する。なお、適応音源符 号帳 106に入力された駆動音源は、バッファに記憶される。
[0024] 聴覚重み付け部 112は、加算部 105から出力された誤差信号に対して聴覚的な重 み付けをおこない符号化歪みとしてパラメータ決定部 113に出力する。
[0025] ノ ラメータ決定部 113は、聴覚重み付け部 112から出力された符号化歪みを最小 とする適応音源ベクトル、固定音源べ外ル及び量子化利得の符号を探索し、探索さ れた適応音源ベクトルを表す符号 (A)、固定音源ベクトルを表す符号 (F)及び量子 化利得を表す符号 (G)を多重化部 114に出力する。
[0026] 多重化部 114は、 LPC量子化部 103から量子化 LPCを表す符号 (L)を入力し、パ ラメータ決定部 113から適応音源ベクトルを表す符号 (A)、固定音源ベクトルを表す 符号 (F)および量子化利得を表す符号 (G)を入力し、これらの情報を多重化して符 号化情報として出力する。
[0027] 図 2は、本実施の形態に係るポストフィルタを具備する音声復号化装置の構成を示 すブロック図である。図 2において、符号化情報は、多重化分離部 201によって個々 の符号 (L、 A、 G、 F)に分離される。量子化 LPCを表す符号 (L)は LPC復号化部 2 02に出力され、適応音源ベクトルを表す符号 (A)は適応音源符号帳 203に出力さ れ、量子化利得を表す符号 (G)はゲイン符号帳 204に出力され、固定音源べクトノレ を表す符号 (F)は固定音源符号帳 205に出力される。
[0028] LPC復号化部 202は、量子化 LPCを表す符号 (L)から量子化 LSPパラメータを復 号化し、得られた量子化 LSPパラメータを量子化 LPCパラメータに再変換し、合成フ イノレ夕 209〖こ出力する。
[0029] 適応音源符号帳 203は、合成フィルタ 209で使用された過去の駆動音源を記憶し 、適応音源ベクトルを表す符号 (A)に対応する適応音源符号帳ラグで指定される過 去の駆動音源から 1フレーム分のサンプルを適応音源ベクトルとして取り出して乗算 部 206に出力する。また、適応音源符号帳 203は、加算部 208から出力された駆動 音源により、記憶されて!/、る駆動音源を更新する。
[0030] ゲイン符号帳 204は、量子化利得を表す符号 (G)で指定される適応音源べクトノレ のゲインと固定音源ベクトルのゲインを復号化し、適応音源ベクトルのゲインを乗算 部 206に出力し、固定音源ベクトルのゲインを乗算部 207に出力する。
[0031] 固定音源符号帳 205は、所定形状のノ ルス音源ベクトルをバッファに複数記憶し、 固定音源ベクトルを表す符号 (F)で指定される形状を有するパルス音源ベクトルに 拡散ベクトルを乗算して固定音源ベクトルを生成し、乗算部 207に出力する。
[0032] 乗算部 206は、適応音源ベクトルにゲインを乗算して、加算部 208に出力する。乗 算部 207は、固定音源ベクトルにゲインを乗算して、加算部 208に出力する。
[0033] 加算部 208は、乗算部 206、 207から出力された利得乗算後の適応音源ベクトルと 固定音源ベクトルとの加算を行って駆動音源を生成し、これを合成フィルタ 209及び 適応音源符号帳 203に出力する。
[0034] 合成フィルタ 209は、 LPC復号化部 202によって復号化されたフィルタ係数を用い て、加算部 208から出力された駆動音源のフィルタ合成を行い、得られた信号 (以下 、「第 1合成信号」という)と量子化 LPCパラメータをポストフィルタ 210に出力する。
[0035] ポストフィルタ 210は、量子化 LPCパラメータを用いて第 1合成信号に対して極強 調のフィルタをかける。さらに、ポストフィルタ 210は、第 1合成信号のピッチ分析を行 い、ピッチ分析により得られる最も相関の高いピッチ周期と長期相関係数を用いて極 強調のフィルタをかけた後の合成信号 (以下、「第 2合成信号」という)に対してピッチ フィルタをかけ、復号音声信号を得る。
[0036] なお、ポストフィルタ 210では、計算量を下げるために、ピッチ分析を省略し、適応 音源符号帳 203の適応音源符号帳ラグと適応音源ベクトルのゲインでフィルタをかけ る場合あある。
[0037] 次に、ポストフィルタ 210の内部構成について、図 3のブロック図を用いて説明する 。なお、図 3に示すポストフィルタ 210の各部の処理に用いられる値を、以下の記号 により表す。
G 、G :減衰係数 (前者は前サブフレーム用、後者は現フレーム用)
P(- 1) P(0)
I :サブフレーム長
R :強度係数
P :ピツチ周期の最大値
MAX
g 、 g :ピッチフィルタ係数 (前者は前サブフレーム用、後者は現サブフレー
P(- 1) P(0)
ム用)
p(-i)、 p(o) :ピッチ周期(前者は前サブフレーム用、後者は現サブフレーム用) fs :ピッチフィルタの状態(過去の復号音声信号)
X :第 2合成信号
7 :長期相関係数
P(0)
i :サンプノレイ直
y :復号音声信号
g :ピッチフィルタの強度
[0038] ポストフィルタ 210は、極強調フィルタ 301と、ピッチ分析部 302と、 ROM (Read Onl y Memory) 303と、カウンタ 304と、ゲイン算出咅 305と、第 1フイノレタ係数計算咅 306 と、第 2フィルタ係数計算部 307と、フィルタ状態設定部 308と、ピッチフィルタ 309と 、を具備する。
[0039] 極強調フィルタ 301は、サブフレーム毎に量子化 LPCパラメータを用いて第 1合成 信号に対して極強調のフィルタをかけ、その結果得られる第 2合成信号 Xをピッチフィ ルタ 309に出力する。また、極強調フイノレタ 301は、ピッチフィルタ 309によるフィルタ 演算の開始を示す制御信号を ROM303に出力する。
[0040] ピッチ分析部 302は、サブフレーム毎に第 1合成信号のピッチ分析を行い、その結 果得られる最も相関の高いピッチ周期 P(0)をフィルタ状態設定部 308に出力し、長期 相関係数 γ をゲイン算出部 305に出力する。
Ρ(0)
[0041] ROM303は、減衰係数 G 、 G 、サブフレーム長 I、強度係数 R、ピッチ周期の
P(- 1) P(0)
最大値 P 、ピッチフィルタ係数 g の初期値、ピッチ周期 ρ(-ι)の初期値、ピッチフ
MAX P(- 1)
ィルタの状態 fsの初期値を格納する。そして、 ROM303は、極強調フィルタ 301から 制御信号を入力した時点で、減衰係数 G およびピッチフィルタ係数 g の初期値
P(- 1) P(- 1) を第 2フィルタ係数計算部 307に出力し、減衰係数 G を第 1フィルタ係数計算部 30
P(0)
6に出力し、サブフレーム長 Iをカウンタ 304に出力し、強度係数 Rをゲイン算出部 30 5に出力し、ピッチ周期の最大値 P 、ピッチ周期 P(-l)の初期値およびピッチフィノレ
MAX
タの状態 fsの初期値をフィルタ状態設定部 308に出力する。
[0042] カウンタ 304は、ピッチフィルタ 309からサンプル毎のフィルタ演算の完了を示す制 御信号を入力する度にサンプル値 iをインクリメントさせる。そして、カウンタ 304は、サ ンプル値 iがサブフレーム長 Iと等しくなつた時点でサンプル値 iをリセットし、サブフレ ーム毎のフィルタ演算の終了を示す制御信号をゲイン算出部 305、第 1フィルタ係数 計算部 306、フィルタ状態設定部 308およびピッチフィルタ 309に出力する。
[0043] ゲイン算出部 305は、サブフレーム毎に長期相関係数 γ と強度係数 Rを用いて
Ρ(0)
下記式(1)によりピッチフィルタの強度 gを求め、これを第 1フィルタ係数計算部 306 に出力する。なお、長期相関係数 γ 力 以上であればピッチフィルタの強度 gを
P(0)
強度係数 Rと等しい値とし、長期相関係数 γ一が 0.0以下であれば 0とする。これは、 極端な値を取らない
g= y R
P(0) ただし、 γ ≥ 1.0の時、 g = R
P(0)
γ ≤0.0の時、 g = 0 ••• ( 1 )
P(0)
[0044] 第 1フィルタ係数計算部 306は、サ: z毎に、減衰係数 G 、前サ:
P(0)
チフィルタ係数 g 〉強度 g用いて下記式(2)により現サ: のピッチフィルタ係数 g を求め、これをピッチフィルタ 309に出力する。下記式(2)を
P(0)
繰り返すことにより、ピッチフィルタ係数 g は漸近的に所定値ピッチフィルタの強度 g
P(0)
に近づく。また、第 1フィルタ係数計算部 306は、 1つのサブフレームについてフィル タ演算が終了した時点で第 2フィルタ係数計算部 307にピッチフィルタ係数 g を出
P(0) 力し、自己が保持するピッチフィルタ係数 g を初期化する c
= g X G - ( 1 - G ) ••• (2)
P(0) P(0) P(0)
[0045] 第 2フィルタ係数計算部 307は、サ: z毎に、減衰係数 G と前サ:
チフィルタ係数 g を用いて下記式(3)により現サ: を
P(- 1) P(- 1) 求め、これをピッチフィルタ 309に出力する。下記式(3)を繰り返すことにより、ピッチ フィルタ係数 g は漸近的に 0に近づく。また、第 2フィルタ係数計算部 307は、第 1
P(- 1)
フィルタ係数計算部 306からピッチフィルタ係数 g を入力し、これを新たなピッチフ
P(0)
ィルタ係数 g とする。
I X G ••• (3)
P(- 1) P(- 1) P(- 1)
[0046] 7状態設定部 308は、サブフレーム毎にピッチフィルタの状態 fsの初期値あ るいは過去にピッチフィルタをかけて得られた復号音声信号 yを用いてピッチフィノレ タの状態 fsを設定し、現サンプルから P(-l)サンプル前の復号音声信号 y および
-p(-i) 現サンプルから P(0)サ 復号音声信号 y をピッチフィルタ 309に出力す
- P(0)
る。また、フィルタ状態設定部 308は、サンプル毎にピッチフィルタ 309から復号音声 信号 yを入力し、 1つのサブフレームについてフィルタ演算が終了した時点でフィルタ 状態を更新し、ピッチ周期 P(0)を新たなピッチ周期 P(-l)とする。
[0047] ピッチフィルタ 309は、ピッチフィルタ係数 g 、g 、過去の復号音声信号 y 、
P(- 1) P(0) i-P(-l) y を用いて下記式 (4)により第 2合成信号 Xに対してピッチフィルタをかけるフィノレ i-P(O) i
タ演算を実行し、復号音声信号 yを得る。また、ピッチフィルタ 309は、フィルタ演算 の完了を示す制御信号をカウンタ 304、第 1フィルタ係数計算部 306、第 2フィルタ係 数計算部 307およびフィルタ状態設定部 308に出力する。ピッチフィルタ 309は、 1 つのサブフレームについてフィルタ演算が終了した時点で、次のサブフレームの第 2 合成信号 Xに対してフィルタ演算を実行する。
Figure imgf000011_0001
[0048] 本実施の形態によれば、フィルタ演算において g Xy の項があるために、サ
P(- 1) i-P(-l)
ブフレームの境目において復号音声信号 yを連続的に変化させることができる。また 、g Xy の項はサンプル毎のフィルタ演算の実行する度に 0に収束していく。
P(- 1) i-P(-l)
[0049] 次に、本実施の形態に係るポストフィルタ 210のアルゴリズムについて図 4を用いて 説明する。なお、図 4では、 ROM303に格納される定数の数値を、一般的な電話用 低ビットレートコ一デックで用いられる単位であるサンプリングレート: 8kHz、サブフレ ーム長: 5msのものとして!/、る。
[0050] ROM303には、予め、ポストフィルタ 210の定数(減衰係数 G 、G 、サブフレー
P(- 1) P(0)
ム長 I、強度係数 R、ピッチ周期の最大値 P )および各パラメータや配列(ピッチフィ
MAX
ルタ係数 g 、ピッチ周期 P(-l)、ピッチフィルタの状態 fs )の初期値が格納される。
P(- 1) i
[0051] まず、ピッチフィルタ 309の起動前に各パラメータや配列の初期化を行う(ST401 , ST402)。
[0052] 次に、極強調フィルタ 301にて第 2合成信号 Xを算出し(ST403)、ピッチ分析部 30 2にてピッチ分析を行って最も相関の高いピッチ周期 P(0)および長期相関係数 γ
Ρ(0) を得る(ST404)。
[0053] 次に、カウンタ 304のサンプル値 iと第 1フィルタ係数計算部 306の現フレームのピッ チフィルタ係数 g を初期化する。また、フィルタ状態設定部 308にてピッチフィルタ
P(0)
の状態 fsを復号音声信号 yの配列の過去のエリアに代入する。また、ゲイン算出部 3 05にて現サブフレームのピッチフィルタの強度 gを計算する(ST405)。
[0054] 次に、第 1フィルタ係数計算部 306および第 2フィルタ係数計算部 307にてサンプ ル毎にピッチフィルタ係数 g 、 g を計算し、ピッチフィルタ 309にて第 2合成信号 X
P(- 1) P(0)
に対してその両方のピッチフィルタ係数 g 、g を用いて 2つのピッチ周期のピッチ i P(- 1) P(0)
フイノレタを力、ける(ST406、 ST407、 ST408)。なお、本実施の形 のピッチフイノレタ 演算の結果がそのまま再帰的に用いられる。 [0055] ST407の処理を 1サブフレームに渡って行い、カウンタ 304にてサブフレームの終 わりを検知すると(ST406: YES)、得られた復号音声信号 yを出力し(ST409)、次 のサブフレームのフィルタリングのために状態のアップデートを行う。具体的には、ピ ツチ周期 P(0)を次のサブフレームのピッチ周期 P(-l)としてフィルタ状態設定部 308 に格納し、ピッチフィルタ係数 g を次のサブフレームのピッチフィルタ係数 g とし
P(0) P(- 1) て第 2フィルタ係数計算部 307に格納し、復号音声信号 yのサブフレーム長よりも過 去の部分を次のサブフレームのピッチフィルタの状態 fsとして格納する(ST410、 ST 411)。
[0056] このように、本実施の形態によれば、現サブフレームのピッチ周期のフィルタを徐々 に強さを上げて動作させ、また、前サブフレームのピッチ周期のフィルタも徐々に減 衰させながら併用することにより、サブフレームの境目でも連続的に変化するピッチフ ィルタを実現することができ、異音感ゃ音質の劣化が生じることを防ぐことができる。
[0057] なお、本実施の形態では、定数を掛けていくことによってピッチフィルタ係数をサン プル毎に変化させている力 S、本発明はこれに限られず、窓関数を用いても同様の効 果を得ること力 Sできる。この場合、例えば、図 5の様に重ね合わせるような特性を持つ 配列 、 WJ を予め用意し、減衰係数による演算を行わずに、以下の式(5)のよ
P(- 1) P(0)
うにフィルタリングを行えばよい。ただし、この場合、 g のアップデートは gを格納す
P(- 1)
ることによって fiう。
Figure imgf000012_0001
[0058] また、本実施の形態では、ピッチ周期 P(0)と長期予測係数 γ をピッチ分析により
Ρ(0)
求める場合について説明した力 本発明はこれに限られず、この 2つの値を適応音 源符号帳 203のラグと適応音源ベクトルのゲインで代用しても同様の効果を得ること ができる。この場合、適応音源ベクトルのゲインは固定音源ベクトルのゲインとの兼ね 合!/、で符号化されるので長期予測係数そのものと違レ、が生じるが、この代用によりピ ツチ分析の計算量が不要になるというメリットがある。また、適応音源符号帳のラグは そのままピッチとして使用し、長期予測係数だけを求め直すという方法もある。この方 法によれば固定音源ベクトルのゲインの影響を排除でき、より的確なピッチフィルタを 実現すること力 Sでさる。 [0059] また、本実施の形態では、サンプリング周波数 8kHz、サブフレーム長 5msを基準と して定数などを設定した力 サンプリング周波数やサブフレーム長が他の場合であつ ても本発明は有効である。ちなみに、近年用いられている広帯域コーデック(7kHz 帯域、 16kHzサンプリング)に用いた場合では減衰係数(定数)を 0· 95-0. 97の 値に設定すると良好な性能を得ることができることが確認されている。
[0060] また、本実施の形態では、ピッチフィルタを ARフィルタとした力 これは MAフィルタ であっても同様に実現することができる。図 4のアルゴリズムフローのピッチフィルタの 状態を第 2合成信号 Xの過去の部分に格納し、ピッチフィルタ係数の計算とフィルタ 演算の部分のフィルタ演算を MA型にし、フィルタ後のフィルタの状態のアップデート におレ、て、第 2合成信号 Xのサブフレーム長よりも過去の部分をフィルタの状態として 格納することにより、 MA型でも本発明のピッチフィルタを実現することができる。
[0061] また、本実施の形態では、固定音源符号帳においてパルス音源ベクトルに拡散べ タトルを乗算して固定音源ベクトルを生成した力 本発明はこれに限られず、ノ ルス 音源ベクトルそのものを固定音源ベクトルとしても良い。
[0062] また、本実施の形態では、 CELPに対して用いる場合について説明した力 本発明 はこれに限られず、他のコーデックであっても有効である。これは、ポストフィルタがデ コーダ処理の後処理であり、コーデックの種類に依存しないからである。
[0063] また、本発明に係る信号は、音声信号だけでなぐオーディオ信号でも良い。
[0064] また、本発明に係るポストフィルタを具備する音声復号化装置は、移動体通信シス テムにおける通信端末装置および基地局装置に搭載することが可能であり、これによ り上記と同様の作用効果を有する通信端末装置、基地局装置、および移動体通信シ ステムを提供することができる。
[0065] また、ここでは、本発明をハードウェアで構成する場合を例にとって説明した力 本 発明をソフトウェアで実現することも可能である。例えば、本発明に係るアルゴリズム をプログラミング言語によって記述し、このプログラムをメモリに記憶しておいて情報 処理手段によって実行させることにより、本発明に係る音声復号化装置と同様の機能 を実現すること力できる。
[0066] また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路で ある LSIとして実現される。これらは個別に 1チップ化されても良いし、一部または全 てを含むように 1チップ化されても良い。
[0067] また、ここでは LSIとしたが、集積度の違いによって、 IC、システム LSI、スーパー L
SI、ウノレ卜ラ LSI等と呼称されることもある。
[0068] また、集積回路化の手法は LSIに限るものではなぐ専用回路または汎用プロセッ サで実現しても良い。 LSI製造後に、プログラム化することが可能な FPGA (Field Pro grammable Gate Array)や、 LSI内部の回路セルの接続もしくは設定を再構成可能な リコンフィギユラブル .プロセッサを利用しても良!/、。
[0069] さらに、半導体技術の進歩または派生する別技術により、 LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行って も良い。バイオ技術への適用等が可能性としてあり得る。
[0070] 2006年 12月 13曰出願の特願 2006— 336271の曰本出願に含まれる明細書、図 面および要約書の開示内容は、すべて本願に援用される。
産業上の利用可能性
[0071] 本発明は、符号化された音声信号等を復号化する音声復号化装置等に用いるに 好適である。

Claims

請求の範囲
[1] サブフレーム長の信号に対して所定のサンプルタイミング間隔でピッチフィルタをか けるポストフィルタであって、
初期値を 0とし、漸近的に所定値に近づくように現サブフレームのピッチフィルタ係 数をサンプル毎に求める第 1フィルタ係数計算手段と、
初期値を前記第 1フィルタ係数計算手段が求めたピッチフィルタ係数の値とし、漸 近的に 0に近づくように前サブフレームのピッチフィルタ係数をサンプル毎に求める 第 2フィルタ係数計算手段と、
前記前サブフレームのピッチフィルタ係数と前記現サブフレームのピッチフィルタ係 数を用いて前記信号に対してサンプル毎にピッチフィルタをかけるフィルタ演算手段 と、
を具備するポストフィルタ。
[2] 前記第 1フィルタ係数計算手段は、サンプル毎に前記現サブフレームのピッチフィ ルタ係数に重みパラメータを乗じて前記現サブフレームのピッチフィルタ係数を増加 させ、
前記第 2フィルタ係数計算手段は、サンプル毎に前記前サブフレームのピッチフィ ルタ係数に重みパラメータを乗じて前記前サブフレームのピッチフィルタ係数を減衰 させる請求項 1記載のポストフィルタ。
[3] 請求項 1に記載のポストフィルタを具備する音声復号化装置。
[4] サブフレーム長の信号に対して所定のサンプルタイミング間隔でピッチフィルタをか けるフィルタリング方法であって、
初期値を 0とし、漸近的に所定値に近づくように現サブフレームのピッチフィルタ係 数をサンプル毎に求める第 1フィルタ係数計算工程と、
初期値を前記第 1フィルタ係数計算工程で求められたピッチフィルタ係数の値とし、 漸近的に 0に近づくように前サブフレームのピッチフィルタ係数をサンプル毎に求め る第 2フィルタ係数計算工程と、
前記前サブフレームのピッチフィルタ係数と前記現サブフレームのピッチフィルタ係 数を用いて前記信号に対してサンプル毎にピッチフィルタをかけるフィルタ演算工程 と、
を具備するフィルタリング方法。
PCT/JP2007/074044 2006-12-13 2007-12-13 ポストフィルタおよびフィルタリング方法 WO2008072701A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800445944A CN101548319B (zh) 2006-12-13 2007-12-13 后置滤波器以及滤波方法
JP2008549360A JPWO2008072701A1 (ja) 2006-12-13 2007-12-13 ポストフィルタおよびフィルタリング方法
EP07850564A EP2099026A4 (en) 2006-12-13 2007-12-13 POST-FILTER AND FILTERING METHOD
US12/518,741 US20100010810A1 (en) 2006-12-13 2007-12-13 Post filter and filtering method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006336271 2006-12-13
JP2006-336271 2006-12-13

Publications (1)

Publication Number Publication Date
WO2008072701A1 true WO2008072701A1 (ja) 2008-06-19

Family

ID=39511717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074044 WO2008072701A1 (ja) 2006-12-13 2007-12-13 ポストフィルタおよびフィルタリング方法

Country Status (5)

Country Link
US (1) US20100010810A1 (ja)
EP (1) EP2099026A4 (ja)
JP (1) JPWO2008072701A1 (ja)
CN (1) CN101548319B (ja)
WO (1) WO2008072701A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150069919A (ko) * 2013-12-16 2015-06-24 삼성전자주식회사 오디오 신호의 부호화, 복호화 방법 및 장치
JP2016194711A (ja) * 2010-07-02 2016-11-17 ドルビー・インターナショナル・アーベー ピッチフィルタ及び関連する方法
JP2017521714A (ja) * 2014-07-11 2017-08-03 オランジュ フレームに基づく可変サンプリング周波数による後処理状態の更新
JP2021502609A (ja) * 2017-11-10 2021-01-28 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 信号フィルタリング
US11562754B2 (en) 2017-11-10 2023-01-24 Fraunhofer-Gesellschaft Zur F Rderung Der Angewandten Forschung E.V. Analysis/synthesis windowing function for modulated lapped transformation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9082416B2 (en) * 2010-09-16 2015-07-14 Qualcomm Incorporated Estimating a pitch lag
MY172712A (en) 2013-01-29 2019-12-11 Fraunhofer Ges Forschung Apparatus and method for processing an encoded signal and encoder and method for generating an encoded signal
US9418671B2 (en) * 2013-08-15 2016-08-16 Huawei Technologies Co., Ltd. Adaptive high-pass post-filter
EP2980798A1 (en) * 2014-07-28 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Harmonicity-dependent controlling of a harmonic filter tool
EP3483886A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Selecting pitch lag
EP3483880A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Temporal noise shaping
WO2019091573A1 (en) 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding and decoding an audio signal using downsampling or interpolation of scale parameters
WO2019091576A1 (en) 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoders, audio decoders, methods and computer programs adapting an encoding and decoding of least significant bits
EP3483883A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio coding and decoding with selective postfiltering
EP3483882A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Controlling bandwidth in encoders and/or decoders
EP3483878A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio decoder supporting a set of different loss concealment tools
JP6911939B2 (ja) * 2017-12-01 2021-07-28 日本電信電話株式会社 ピッチ強調装置、その方法、およびプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06202698A (ja) * 1993-01-07 1994-07-22 Toshiba Corp 適応ポストフィルタ
JPH0981191A (ja) * 1995-09-08 1997-03-28 Sharp Corp 音声符号化復号化装置及び音声復号化装置
JPH09127998A (ja) * 1995-10-26 1997-05-16 Sony Corp 信号量子化方法及び信号符号化装置
JPH11272297A (ja) * 1998-01-26 1999-10-08 Matsushita Electric Ind Co Ltd ピッチ強調方法及びその装置
JP2001147700A (ja) 1999-11-22 2001-05-29 Nippon Telegr & Teleph Corp <Ntt> 音声信号の後処理方法および装置並びにプログラムを記録した記録媒体
JP2006336271A (ja) 2005-06-01 2006-12-14 Yokohama Rubber Co Ltd:The ゴム堰およびゴム堰の補修方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479559A (en) * 1993-05-28 1995-12-26 Motorola, Inc. Excitation synchronous time encoding vocoder and method
US5539861A (en) * 1993-12-22 1996-07-23 At&T Corp. Speech recognition using bio-signals
US5553014A (en) * 1994-10-31 1996-09-03 Lucent Technologies Inc. Adaptive finite impulse response filtering method and apparatus
US5864798A (en) * 1995-09-18 1999-01-26 Kabushiki Kaisha Toshiba Method and apparatus for adjusting a spectrum shape of a speech signal
US5694474A (en) * 1995-09-18 1997-12-02 Interval Research Corporation Adaptive filter for signal processing and method therefor
EP0788091A3 (en) * 1996-01-31 1999-02-24 Kabushiki Kaisha Toshiba Speech encoding and decoding method and apparatus therefor
JP2856185B2 (ja) * 1997-01-21 1999-02-10 日本電気株式会社 音声符号化復号化システム
FI980132A (fi) * 1998-01-21 1999-07-22 Nokia Mobile Phones Ltd Adaptoituva jälkisuodatin
CA2283202A1 (en) * 1998-01-26 1999-07-29 Matsushita Electric Industrial Co., Ltd. Method and apparatus for enhancing pitch
WO1999065017A1 (en) * 1998-06-09 1999-12-16 Matsushita Electric Industrial Co., Ltd. Speech coding apparatus and speech decoding apparatus
EP1959435B1 (en) * 1999-08-23 2009-12-23 Panasonic Corporation Speech encoder
US6731682B1 (en) * 2000-04-07 2004-05-04 Zenith Electronics Corporation Multipath ghost eliminating equalizer with optimum noise enhancement
US20040204935A1 (en) * 2001-02-21 2004-10-14 Krishnasamy Anandakumar Adaptive voice playout in VOP
US7512535B2 (en) * 2001-10-03 2009-03-31 Broadcom Corporation Adaptive postfiltering methods and systems for decoding speech
CN101615396B (zh) * 2003-04-30 2012-05-09 松下电器产业株式会社 语音编码设备、以及语音解码设备
US7478040B2 (en) * 2003-10-24 2009-01-13 Broadcom Corporation Method for adaptive filtering
US7613607B2 (en) * 2003-12-18 2009-11-03 Nokia Corporation Audio enhancement in coded domain
US7482951B1 (en) * 2006-05-08 2009-01-27 The United States Of America As Represented By The Secretary Of The Air Force Auditory attitude indicator with pilot-selected audio signals

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06202698A (ja) * 1993-01-07 1994-07-22 Toshiba Corp 適応ポストフィルタ
JPH0981191A (ja) * 1995-09-08 1997-03-28 Sharp Corp 音声符号化復号化装置及び音声復号化装置
JPH09127998A (ja) * 1995-10-26 1997-05-16 Sony Corp 信号量子化方法及び信号符号化装置
JPH11272297A (ja) * 1998-01-26 1999-10-08 Matsushita Electric Ind Co Ltd ピッチ強調方法及びその装置
JP2001147700A (ja) 1999-11-22 2001-05-29 Nippon Telegr & Teleph Corp <Ntt> 音声信号の後処理方法および装置並びにプログラムを記録した記録媒体
JP2006336271A (ja) 2005-06-01 2006-12-14 Yokohama Rubber Co Ltd:The ゴム堰およびゴム堰の補修方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2099026A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11610595B2 (en) 2010-07-02 2023-03-21 Dolby International Ab Post filter for audio signals
JP2016194711A (ja) * 2010-07-02 2016-11-17 ドルビー・インターナショナル・アーベー ピッチフィルタ及び関連する方法
US9595270B2 (en) 2010-07-02 2017-03-14 Dolby International Ab Selective post filter
US9830923B2 (en) 2010-07-02 2017-11-28 Dolby International Ab Selective bass post filter
US9858940B2 (en) 2010-07-02 2018-01-02 Dolby International Ab Pitch filter for audio signals
US10236010B2 (en) 2010-07-02 2019-03-19 Dolby International Ab Pitch filter for audio signals
US10811024B2 (en) 2010-07-02 2020-10-20 Dolby International Ab Post filter for audio signals
US11183200B2 (en) 2010-07-02 2021-11-23 Dolby International Ab Post filter for audio signals
US11996111B2 (en) 2010-07-02 2024-05-28 Dolby International Ab Post filter for audio signals
KR20150069919A (ko) * 2013-12-16 2015-06-24 삼성전자주식회사 오디오 신호의 부호화, 복호화 방법 및 장치
KR102251833B1 (ko) * 2013-12-16 2021-05-13 삼성전자주식회사 오디오 신호의 부호화, 복호화 방법 및 장치
JP2017521714A (ja) * 2014-07-11 2017-08-03 オランジュ フレームに基づく可変サンプリング周波数による後処理状態の更新
JP2021502609A (ja) * 2017-11-10 2021-01-28 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 信号フィルタリング
US11562754B2 (en) 2017-11-10 2023-01-24 Fraunhofer-Gesellschaft Zur F Rderung Der Angewandten Forschung E.V. Analysis/synthesis windowing function for modulated lapped transformation
US11545167B2 (en) 2017-11-10 2023-01-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Signal filtering
JP7179060B2 (ja) 2017-11-10 2022-11-28 フラウンホーファー-ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 信号フィルタリング
US12033646B2 (en) 2017-11-10 2024-07-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Analysis/synthesis windowing function for modulated lapped transformation

Also Published As

Publication number Publication date
CN101548319A (zh) 2009-09-30
EP2099026A1 (en) 2009-09-09
CN101548319B (zh) 2012-06-20
US20100010810A1 (en) 2010-01-14
EP2099026A4 (en) 2011-02-23
JPWO2008072701A1 (ja) 2010-04-02

Similar Documents

Publication Publication Date Title
WO2008072701A1 (ja) ポストフィルタおよびフィルタリング方法
CN101180676B (zh) 用于谱包络表示的向量量化的方法和设备
CN101023470A (zh) 语音编码装置、语音解码装置、通信装置及语音编码方法
WO2007088853A1 (ja) 音声符号化装置、音声復号装置、音声符号化システム、音声符号化方法及び音声復号方法
JPWO2008072671A1 (ja) 音声復号化装置およびパワ調整方法
JP3357795B2 (ja) 音声符号化方法および装置
JP5687706B2 (ja) 量子化装置及び量子化方法
US11114106B2 (en) Vector quantization of algebraic codebook with high-pass characteristic for polarity selection
JPWO2010103854A1 (ja) 音声符号化装置、音声復号装置、音声符号化方法及び音声復号方法
JPWO2007037359A1 (ja) 音声符号化装置および音声符号化方法
JPWO2008018464A1 (ja) 音声符号化装置および音声符号化方法
JPWO2008072732A1 (ja) 音声符号化装置および音声符号化方法
JPWO2007066771A1 (ja) 固定符号帳探索装置および固定符号帳探索方法
WO2011048810A1 (ja) ベクトル量子化装置及びベクトル量子化方法
JP2013101212A (ja) ピッチ分析装置、音声符号化装置、ピッチ分析方法および音声符号化方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780044594.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549360

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007850564

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12518741

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE