WO2008072593A1 - Heat exchanger and air conditioner having heat exchanger - Google Patents

Heat exchanger and air conditioner having heat exchanger Download PDF

Info

Publication number
WO2008072593A1
WO2008072593A1 PCT/JP2007/073771 JP2007073771W WO2008072593A1 WO 2008072593 A1 WO2008072593 A1 WO 2008072593A1 JP 2007073771 W JP2007073771 W JP 2007073771W WO 2008072593 A1 WO2008072593 A1 WO 2008072593A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air conditioner
elution
control
antibacterial
Prior art date
Application number
PCT/JP2007/073771
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Doi
Atsushi Nojiri
Sachiko Yamaguchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2008072593A1 publication Critical patent/WO2008072593A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1687Use of special additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/20Safety or protection arrangements; Arrangements for preventing malfunction for preventing development of microorganisms

Definitions

  • the present invention relates to a heat exchanger and an air conditioner including the heat exchanger.
  • heat exchangers of air conditioners have had problems such as unpleasant odors during operation and invisible bacteria scattered in the air due to the adhesion of molds and other bacteria to the surface.
  • the indoor unit functions as a refrigerant evaporator
  • the operation is stopped with water adhering to the heat exchanger or immediately before the heat exchanger dries, and the operation is not resumed for a long time.
  • mold, etc. are likely to propagate on the fin surface of the heat exchanger.
  • Patent Document 1 the growth of fungi is suppressed by applying an antibacterial agent to the fins of the heat exchanger.
  • the antibacterial agent applied to the fin is carefully selected to have a particle size of a predetermined size or less, and an antibacterial agent having low solubility in water is used.
  • the anti-bacterial agent dissolves gradually to lower the elution rate, and the anti-bacterial / anti-fungal effect can be obtained continuously for a long time.
  • the antibacterial agent is provided in the lower corrosion-resistant layer rather than being provided in the hydrophilic layer that is the surface of the fin of the heat exchanger, By reducing the degree of direct contact with water and adjusting the amount of elution, the antibacterial and antifungal effect can be obtained continuously over a long period of time.
  • the problems described above are improved by improving the surface of the fins of the heat exchanger.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-1852
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-78134
  • the present invention has been made in view of the above-described points, and an object of the present invention is to provide a heat exchanger capable of maintaining the effect of suppressing the generation of mold bacteria for a long period of time and an air equipped with the heat exchanger. It is to provide a harmony device.
  • the heat exchanger of the air conditioner according to the first invention includes a fin substrate and a coating layer.
  • the coating layer is formed on the surface layer side of the fin substrate and contains an eluent.
  • the eluent has temperature dependence on the amount of elution with respect to water, and is at least one of an antibacterial agent, an antifungal agent and an antibacterial and antifungal agent.
  • the heat exchanger of the air conditioner according to the second invention is the heat exchanger of the air conditioner according to the first invention, wherein the eluent is 40 ° more than the elution amount for water at 20 ° C.
  • the amount of elution from C in water is 1.5 times greater.
  • the amount of elution can be changed within the temperature range of the heat exchanger that changes when the air conditioner is operated.
  • the heat exchanger of the air conditioner according to the third invention is the heat exchanger of the air conditioner according to the first invention or the second invention, wherein the coating layer has a hydrophilic agent.
  • the eluent is supported on the fin substrate via at least a hydrophilic agent.
  • the eluent may be supported on the fin substrate via another substance other than the hydrophilic agent. This eluent is 20 ° C
  • the amount of elution from the coating layer into water at 40 ° C is 1.5 times greater than that from the coating layer in water.
  • the eluent is carried on the hydrophilic agent of the coating layer, and the vicinity of the surface of the coating layer can be kept water-retained by the property of the hydrophilic agent. And the eluent currently carry
  • the temperature range of 20 ° C to 40 ° C can be easily included in the temperature change range of the heat exchanger when operating the air conditioner. Change more than 5 times.
  • the effect of the eluent itself on the elution amount with respect to the temperature depends not only on the temperature dependence, but also the selection of the eluent agent and the fine particle size while adjusting the coating layer on which the eluent is supported. It is also possible to synergize the effect of increasing the amount of elution using the fact that the pores of the swell expand with increasing temperature. This makes it possible to further improve the elution amount of the eluent.
  • a heat exchanger for an air conditioner according to a fourth invention is a heat exchanger for an air conditioner according to any of the first to third inventions, wherein the eluent contains at least zinc pyrithione. .
  • An air conditioner according to a fifth aspect of the present invention includes a heat exchanger of the air conditioner according to any of the first to fourth aspects of the invention, and an elution that increases the temperature of the heat exchanger by operating control of the refrigeration cycle.
  • the temperature of the heat exchanger can be increased by increasing the temperature of the refrigerant flowing through the heat exchanger.
  • elution control for increasing the temperature of the heat exchanger, it becomes possible to control the elution amount of the eluent.
  • An air conditioner according to a sixth aspect of the present invention is the air conditioner according to the fifth aspect of the present invention, wherein the controller is As the integrated operation time for elution control becomes longer, the time taken for elution control is lengthened.
  • the elution agent in the coating layer gradually decreases by each elution control, and the elution amount per unit time decreases.
  • the control unit performs control to increase the time required for elution control as the accumulated operation time becomes longer.
  • An air conditioner according to a seventh aspect is the air conditioner according to the fifth aspect or the sixth aspect, wherein the control unit performs the elution control for the elution control as the integrated operation time for the elution control becomes longer. Increase the temperature range of the heat exchanger to be raised.
  • the elution agent in the coating layer gradually decreases by each elution control, and the elution amount per unit time decreases.
  • the control unit performs control to increase the temperature rise of the heat exchanger in the elution control as the accumulated operation time becomes longer.
  • the control for increasing the temperature rise of the heat exchanger in the elution control is performed while increasing the time required for the elution control as the accumulated operation time becomes longer. And more stable elution can be performed for a long time.
  • An air conditioner according to an eighth aspect of the present invention is the air conditioner according to any of the fifth aspect to the seventh aspect of the present invention, further comprising a receiving unit that receives a predetermined signal.
  • the control unit performs elution control when the reception unit receives a predetermined signal.
  • receiving the predetermined signal by the receiving unit includes, for example, receiving the predetermined signal by pressing a predetermined button of a controller serving as the receiving unit by the user.
  • the elution control can be automatically started only by allowing the reception unit to receive a predetermined signal.
  • An air conditioner according to a ninth invention is the air conditioner according to any one of the fifth to seventh inventions, wherein the control unit performs elution control after the cooling operation of the refrigeration cycle.
  • control unit performs control so that the elution control is performed after the cooling operation in which the condensed water is held in the fins of the heat exchanger.
  • the temperature of the heat exchanger is raised while the condensed water is held in the heat exchanger, so that effective elution can be performed.
  • An air conditioner according to a tenth aspect of the present invention is the air conditioner according to any of the fifth to seventh aspects of the present invention, wherein the control unit performs the melting after the accumulated operation time of the refrigeration cycle exceeds a predetermined time. Performs output control.
  • control unit performs elution control in a state where the accumulated operation time of the refrigeration cycle exceeds a predetermined time and bacteria and mold are expected to increase to some extent on the fins of the heat exchanger.
  • elution control may be performed when, for example, the accumulated operation time related to the cooling operation exceeds a predetermined time.
  • An air conditioner according to an eleventh aspect of the present invention is the air conditioner according to any of the fifth to tenth aspects of the present invention, further comprising a blower fan that blows air to the heat exchanger.
  • the control unit performs air blowing control by the air blowing fan after the elution control.
  • the concentration of the eluted eluent can be increased by evaporating and drying the condensed water.
  • An air conditioner according to a twelfth aspect of the present invention is the air conditioner according to any of the fifth to eleventh aspects of the invention, wherein the control unit causes the heat exchanger to evaporate the refrigerant immediately before the elution control is performed. If it is operated as a heat exchanger! /, !, in some cases, the heat exchanger is operated as a refrigerant evaporator before performing elution control.
  • the heat exchanger is operated as a refrigerant condenser.
  • the fins of the heat exchanger do not hold water, and the eluent is eluted.
  • control unit performs control to operate the heat exchanger as a refrigerant evaporator before performing elution control.
  • ⁇ Refrigerant flowing inside heat exchanger The temperature is low and the state can be obtained.
  • An air conditioner according to a thirteenth aspect of the present invention is the air conditioner according to the twelfth aspect of the present invention, wherein the controller is operated immediately before the elution control is performed!
  • the heat exchanger operates as a refrigerant condenser. If this happens, the heat exchanger is made to function as a refrigerant evaporator before the elution control is performed while the air flow to the room is interrupted.
  • the heat exchanger is caused to function as a refrigerant evaporator during the heating operation, if air is blown, cold air is sent out to the room.
  • the ventilation to the room is interrupted.
  • the heat exchanger of the air conditioner of the third invention it becomes possible to effectively control the elution amount of the eluent by utilizing the change in the temperature of the heat exchanger when operating the air conditioner.
  • the heat exchanger of the air conditioner of the present invention even when zinc pyrithione is used as the eluent, it is possible to suppress the generation of fungus bacteria over a long period of time.
  • the elution amount of the eluent can be controlled by performing elution control for increasing the temperature of the heat exchanger.
  • stable elution can be performed for a long time.
  • stable elution can be performed for a long time.
  • a predetermined signal is received.
  • Elution control can be started automatically just by accepting it from the attachment.
  • the air conditioner according to the tenth aspect of the present invention it is possible to effectively suppress the growth of bacteria, mold, etc. on the surface of the fins of the heat exchanger by repeating the elution control every accumulated operation time.
  • the heat exchanger can create a state in which condensed water is retained, and the eluent can be eluted.
  • the air conditioner according to the thirteenth aspect of the present invention it is possible to create a state in which the heat exchanger that does not cause discomfort to the user holds condensed water.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a refrigerant circuit diagram of the air conditioner.
  • FIG. 3 is a side sectional view of the indoor unit.
  • FIG. 4 is a control block diagram of the air conditioner.
  • FIG. 5 is a view showing a fin configuration of a heat exchanger.
  • FIG. 6 is a graph showing the difference in the amount of antibacterial and antifungal agent eluted from the fins of the heat exchanger.
  • FIG. 7 is a diagram showing the flow of antibacterial treatment control.
  • FIG. 8 (a) A graph showing the temperature change of the heat exchanger. (B) A graph showing changes in the amount of condensed water on the fin surface. (c) is a graph showing changes in the concentration of the antibacterial and antifungal agent on the fin surface.
  • FIG. 9 is a graph showing the secular change of the remaining amount of antibacterial and antifungal agent.
  • FIG. 10 Graph showing the relationship between the remaining amount of antibacterial and antifungal agent and the amount of dissolution at different temperatures.
  • FIG. 11 is a view showing a fin configuration of a heat exchanger according to Modification (B).
  • FIG. 12 (a) is a diagram showing a configuration of a resinous hydrophilic layer of a fin of a conventional heat exchanger.
  • an air conditioner 100 in which an embodiment of the present invention is employed includes an indoor unit 1 installed on an indoor wall surface and an outdoor unit 2 installed outdoors.
  • the main controller 30 can transmit signals to the control board part (not shown) of the indoor unit 1.
  • the indoor unit 1 and the outdoor unit 2 contain heat exchangers, respectively.
  • a refrigerant circuit is configured by connecting the exchangers through the refrigerant pipe 5.
  • the configuration of the refrigerant circuit of the air conditioner 100 is shown in FIG.
  • This refrigerant circuit mainly includes an indoor heat exchanger 10, an accumulator 21, a compressor 22, a four-way switching valve 23, an outdoor heat exchanger 20, and an expansion valve 24.
  • the indoor heat exchanger 10 provided in the indoor unit 1 exchanges heat with the air in contact therewith.
  • the indoor heat exchanger 10 has fins as shown in FIG. 3 which is a side view of the indoor unit 1. It is an and tube type, and is configured by a front heat exchanger 10f disposed in front of the indoor unit 1 and a rear heat exchanger 10b disposed in the rear.
  • the indoor unit 1 is provided with a cross flow fan 11 for sucking indoor air and passing the air through the indoor heat exchanger 10 to discharge the air into the room.
  • the cross flow fan 11 is driven to rotate by one indoor fan motor 12 provided in the indoor unit 1.
  • the indoor heat exchanger 10, the cross flow fan 11, and the like are arranged in the indoor unit casing 4.
  • the indoor unit casing 4 is provided with a suction port 42 at the front and upper sides and a blow-out port 49 at the lower side.
  • the air outlet 49 is provided with a flap 47 whose electric opening can be electrically controlled.
  • the indoor unit casing 4 is provided with a front panel 41 on the front side and an installation plate 43 on the back side. Inside the installation plate 43, a rear frame 44 that supports the rear heat exchanger 10b, the rotating shaft portion of the cross flow fan 11, and the like is disposed!
  • the front heat exchanger 10f and the rear heat exchanger 10b of the indoor heat exchanger 10 are positioned between the suction port in the indoor unit casing 4 and are bent at multiple stages so as to surround the cross flow fan 11. Arranged!
  • the indoor air (V floating in the air, part of the floating pollutant is not shown in the figure, removed by a pre-filter) is moved forward and upward.
  • the conditioned air that has been taken in through the indoor heat exchanger 10 through 42 and exchanged heat is returned to the room to air-condition the target space.
  • a front drain pan 45 that captures condensed water in the air generated in the front heat exchanger 1 Of is provided.
  • a rear drain pan 46 is provided below the rear lower end of the rear heat exchanger 10b to capture condensed water in the air generated in the rear heat exchanger 10b.
  • the outdoor unit 2 includes a compressor 22, a four-way switching valve 23 connected to the discharge side of the compressor 22, and a pressure An accumulator 21 connected to the suction side of the compressor 22, a fin-and-tube outdoor heat exchanger 20 connected to the four-way selector valve 23, and an expansion valve 24 connected to the outdoor heat exchanger 20 Is provided.
  • the expansion valve 24 is connected to a pipe via a liquid closing valve 26, and is connected to one end of the indoor heat exchanger 10 via this pipe.
  • the four-way selector valve 23 is connected to a pipe via a gas closing valve 27 and is connected to the other end of the indoor heat exchanger 10 via this pipe.
  • the outdoor unit 2 is provided with a propeller fan 28 for discharging the air after heat exchange in the outdoor heat exchanger 20 to the outside.
  • the propeller fan 28 is rotationally driven by an outdoor fan motor 29.
  • the controller 30 relates to various operation modes and the like with respect to the control board (not shown) of the indoor unit 1 constituting a part of the control unit 8. It is provided to transmit a signal to be transmitted.
  • the control board of the indoor unit 1 is provided with a CPU, ROM, RAM, etc. (not shown), and similarly the CPU, ROM, and RAM are provided to control the outdoor unit 2 that constitutes a part of the control unit 8. It is connected to a substrate (not shown).
  • the control unit 8 is configured by the control board of the indoor unit 1 and the control board of the outdoor unit 2.
  • the controller 30 controls each component device that sends out the refrigerant flowing through the refrigerant circuit described above so as to perform cooling operation, heating operation, and air blowing operation, and performs various controls such as antibacterial treatment control described later.
  • an input button 31 for receiving a command from the user is provided.
  • control unit 8 determines the number of rotations of the indoor fan motor 12, the opening degree of the flap 47, the connection state of the four-way switching valve 22, the outdoor fan, according to various operation modes.
  • the number of rotations of the motor 29 and the driving state of the compressor 22 can be controlled.
  • FIG. 5 shows a schematic configuration of the fin F of the indoor heat exchanger 10 that is the fin-and-tube type of the present embodiment.
  • the fin F is configured by laminating a chromate corrosion-resistant layer 60, a resin-based hydrophilic layer 70, and an antifouling layer 80 in this order on the aluminum material 50. Yes.
  • the resin-based hydrophilic layer 70 of the fin F is made of an acrylic resin or the like as a resin-based hydrophilic agent. It is made.
  • the acrylic resin of the resin-based hydrophilic layer 70 carries a drug containing zinc pyridione as the antibacterial and antifungal agent 71.
  • the resin-based hydrophilic layer 70 is formed to have a thickness of about 1.0 micrometers.
  • the resin-based hydrophilic agent is not limited to an acrylic resin, and may be, for example, zeolite, polybulal alcohol, nylon, or the like.
  • the antibacterial and antifungal agent 71 is prepared so as not to be secondary agglomerated (so as not to agglomerate tertiary) and is supported in an acrylic resin or the like.
  • the antibacterial and antifungal agent 71 is not limited to a drug containing zinc pyrithione.
  • a drug containing sodium zinc pyrithione may be used, and alcohol, phenol, aldehyde, carboxylic acid, Ester, ether, nitrile, peroxide, 'epoxy, halogen, pyridine' quinoline, triazine, isothiazolone, imidazole thiazole, anilide, hyguanide, dysnoureido, thiocarbonate
  • Drugs containing carbohydrates, trobolones, surfactants, organometallics, etc. may be used.
  • the chromate layer 60 is provided to fix the resin-based hydrophilic layer 70 carrying the antibacterial and antifungal agent 71 to the aluminum material 50.
  • the antifouling layer 80 is provided on the surface layer side of the resin-based hydrophilic layer 70, and has the property of being able to be washed / washed with water even if dirt that is difficult to adhere is attached.
  • the fin F of the present embodiment is selected so that the amount of the antibacterial and antifungal agent 71 dissolved in water has temperature dependency. Furthermore, for the fin F of the present embodiment, a drug that minimizes the amount of elution at 20 ° C. or lower and minimizes the amount of elution at 40 ° C. or higher is selected.
  • Fig. 6 shows the amount (g / 1) of the antibacterial / antifungal agent 71 dissolved in water according to the temperature. The difference is shown.
  • the antibacterial and antifungal agent 71 of the present embodiment has an elution amount at 20 ° C and a dissolution at 40 ° C. In terms of output, it is a local increase of approximately 1.5 to 1.7 times.
  • the antibacterial and antifungal agent 71 of this embodiment keeps the elution amount lower than before. That power S. Furthermore, when the elution amount of the conventional antibacterial and antifungal agent at 40 ° C is compared with the elution amount of the antibacterial and antifungal agent of this embodiment, the antibacterial and antifungal agent 71 of this embodiment shows a difference at 20 ° C. It has shrunk significantly.
  • the antibacterial and antifungal agent 71 has a unique synergistic effect with the increase in the amount of elution based on the properties of the resinous aquatic layer 70, which is not only due to the temperature dependency, but also the amount of elution at 20 ° C and 40 ° C. Each is selected and prepared so that there is a clear difference in the amount of elution in C.
  • the user can start the antibacterial treatment control by pressing the input button 31 of the controller 30 described above. That is, when receiving an instruction to perform antibacterial treatment control via the controller 30, the control unit 8 starts the antibacterial treatment control by controlling the indoor unit 1 and the outdoor unit 2.
  • Fig. 7 shows the flow of antibacterial treatment control (the state of the surface of the fin F and the time change of the state of various components).
  • a graph showing the temperature change of the heat exchanger corresponding to the time change is shown in Fig. 8 (a), a graph showing the change in the amount of condensed water on the surface of Fin F, and Fig. 8 (b), the antibacterial surface on Fin F surface.
  • the graphs showing changes in the concentration of the fungicide 71 are shown in Fig. 8 (c).
  • the cooling operation is performed so that the indoor heat exchanger 10 functions as a refrigerant evaporator in the refrigeration cycle and starts from a state in which condensed water is attached to the surface of the indoor heat exchanger 10.
  • the indoor heat exchanger 10 immediately before the antibacterial treatment control is not functioning as a refrigerant evaporator, there is insufficient moisture on the fin F, If the fungicide 71 cannot be eluted, the indoor fan 11 is stopped and the indoor heat exchanger 10 is once functioned as a refrigerant evaporator to condense the fin F surface. You can control the operation so that it gets wet with water!
  • control unit 8 first performs the air blowing operation to stop the operation of the compressor 22 while controlling the air volume of the indoor fan 11 to be W2.
  • the control unit 8 stops the operation of the indoor fan 11, starts the operation of the compressor 22, and performs the heating operation so that the temperature of the indoor heat exchanger 10 becomes about 43 to 45 ° C.
  • the operation of the indoor fan 11 was stopped in an environment where the cooling operation was performed until the antibacterial treatment control was performed, and it was assumed that the user wanted to cool the room. This is because it is not necessary to send warm air into the room.
  • the temperature of the indoor heat exchanger 10 increased to S43 ⁇ 45 ° C
  • the amount of condensed water on the surface of the fin F decreased rapidly as shown in Fig. 8 (b), and Fig. 8 (c)
  • the dissolution amount of the antibacterial and antifungal agent 71 increases rapidly, and the dissolution concentration increases rapidly.
  • control unit 8 performs control to stop the operation of the indoor fan 13 and the operation of the compressor 22 and maintain the stopped state.
  • the control unit 8 When the stop control is finished, the control unit 8 performs the heating operation again, stops the operation of the indoor fan 11, and operates the compressor 22, so that the temperature of the indoor heat exchanger 10 becomes 43 to 45 ° C. Control so that Again, as the temperature of the indoor heat exchanger 10 rose to 43-45 ° C, the amount of condensed water on the surface of the fin F rapidly decreased again as shown in Fig. 8 (b), and Fig. 8 (c As shown in (), the dissolution amount of the antibacterial and antifungal agent 71 increases rapidly, and the dissolution concentration rapidly increases and exceeds the MIC value (minimum growth element concentration). With this, the force S kills bacteria and mold on the surface of Fin F.
  • the control unit 8 stops the operation of the indoor fan 11 and the compressor 22 again, and performs stop control.
  • the condensed water on the surface of the fin F evaporates and the elution concentration gradually increases.
  • the control unit 8 operates the compressor 22 to perform the heating operation so that the temperature of the indoor heat exchanger 10 is 5; Drive at a weak level of M.
  • the condensed water on the surface of Fin F evaporates all at once, the elution concentration further increases, and there is almost no bacteria and mold on the surface of Fin F.
  • the indoor fan 11 is operated and warm air is sent out indoors, the room temperature rises. 1S
  • the air blowing operation is stopped by increasing the time of the second air blowing operation, etc. May be.
  • a conventional heat exchanger when an antibacterial and anti-bacterial agent is provided, primary aggregation, secondary aggregation, tertiary aggregation, etc. occur, and are supported with an average particle size increased. For this reason, the antifungal agent has a large surface area exposed on the surface layer, and when it adheres to condensed water isostatic S fins, most of it has been dissolved out in a relatively short period of time. . For this reason, it is difficult to stably maintain elution over a long period of time, and it is impossible to stably maintain the antibacterial and antifungal function.
  • the antibacterial and antifungal agent 971 is configured to be concentrated and supported on the lower layer side of the resin-based hydrophilic layer 970.
  • the antibacterial and antifungal agent 971 is configured to be concentrated and supported on the lower layer side of the resin-based hydrophilic layer 970.
  • water penetrates into the inside of the resin-based hydrophilic layer 970 through a portion having a hygroscopic function such as a sponge, All of the antibacterial and antifungal agent 971 carried on the soaked part elutes in a short period of time.
  • FIG. 12 (c) only the antibacterial and antifungal agent 971 present in the portion having no hygroscopic function remains, and the antibacterial and antifungal function can be exhibited in the long term. Can not.
  • the fin F of the indoor heat exchanger 10 of the air conditioner 100 of the above embodiment can control the amount of the antibacterial / antifungal agent 71 dissolved in the condensed water so that the antibacterial / antifungal agent 71 can be controlled.
  • the particles are supported in a well-balanced state without being collected on the lower layer side of the resinous lyophilic agent while maintaining a state where the average particle size is small. For this reason, it is necessary only to kill bacteria and mold (beyond the minimum inhibitory concentration).
  • the amount of the antibacterial / antifungal agent 71 can be adjusted as much as necessary, and the antibacterial / antifungal agent 71 can be prevented from flowing out. As a result, the effect of suppressing the generation of fungi can be stably maintained for a long time.
  • the resin-based hydrophilic layer on which the antibacterial / antifungal agent 71 is supported simply by utilizing the elution temperature characteristics of the antibacterial / antifungal agent 71 itself.
  • the elution amount of the antibacterial and antifungal agent 71 can be controlled by utilizing the degree of expansion of the pore size of the resinous hydrophilic agent 70 due to the temperature.
  • only using the temperature change of the indoor heat exchanger 10 by the existing operation control of the air conditioner 100 such as the cooling operation or the air blowing operation such as the cooling operation can be performed between 20 ° C and 40 ° C.
  • the force S is used.
  • the configuration of the fin F in the indoor heat exchanger 10 provided in the indoor unit 1 of the air conditioner 100 has been described with an example.
  • the present invention is not limited to this, and the configuration of the heat exchanger described above may be applied to, for example, the fins F of the outdoor heat exchanger 20 of the outdoor unit 2.
  • the fin F of the indoor heat exchanger 10 of the air conditioner 100 of the above embodiment as shown in FIG. 5, the fin F having a configuration in which the antibacterial and antifungal agent 71 is contained only in the resin-based hydrophilic layer 70 is taken as an example.
  • the fin F having a configuration in which the antibacterial and antifungal agent 71 is contained only in the resin-based hydrophilic layer 70 is taken as an example.
  • the antibacterial and antifungal agent 71 is not only the resin hydrophilic layer 70 but also the resin lubricant 90 provided on the surface layer. It is good also as the structure contained.
  • This layer containing the resin-based lubricant 90 ensures slippage in the state where the two fins F are in contact with each other, thereby improving the manufacturability of the heat exchanger.
  • force S The resin-based lubricant 90 flows down along with the drain water by obtaining condensed water in the first cooling operation.
  • the indoor heat exchanger 10 provided in the indoor unit 1 of the air conditioner 100 performs operation control that causes the indoor heat exchanger 10 to function as a refrigerant evaporator while stopping the driving of the indoor fan 11.
  • operation control that causes the indoor heat exchanger 10 to function as a refrigerant evaporator while stopping the driving of the indoor fan 11.
  • a water supply source is provided in advance. It also includes an air conditioner that can be configured to perform processing such as spraying or dripping on the fin F when necessary.
  • the water supply source for example, it may be configured like a tank in which water is put in advance! /, Or it may be configured such that tap water is guided! /.
  • the drain water generated in the operation of the air conditioner 100 may be received by a drain pan, and the water obtained by receiving the drain pan may be used as a supply source.
  • the indoor heat exchanger 10 provided in the indoor unit 1 of the air conditioner 100 has been described by taking as an example a configuration that carries the antibacterial and anti-bacterial agent 71.
  • the present invention is not limited to this, and the antibacterial / antifungal agent 71 may be replenished by spraying a solution in which the antibacterial / antifungal agent is dissolved from the outside.
  • the antibacterial treatment control is repeatedly performed, it is carried on the resin-based hydrophilic layer 70 as shown in FIG.
  • the amount of antibacterial and antifungal agent 71 decreases. And in this way antibacterial strength Even if the loading amount of the bi-agent 71 decreases, the antibacterial treatment control is performed when the accumulated operating time of the cooling operation exceeds the predetermined time to maintain the elution amount stably!
  • the inner heat exchanger 10 is caused to function as a refrigerant condenser, the temperature of the indoor heat exchanger 10 may be controlled to be further increased, and control for securing an elution amount may be performed.
  • the indoor heat exchanger 10 it will be necessary to heat.
  • the present invention If the present invention is used, the effect of suppressing the occurrence of mold bacteria can be maintained for a long time, and therefore, it can be applied particularly to the surface configuration of the fins of the heat exchanger of the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Paints Or Removers (AREA)

Abstract

Disclosed is a heat exchanger which can maintain an effect of inhibiting the proliferation of a bacterium over a prolonged period. The heat exchanger comprises an aluminum material (50), a corrosion-resistant chromate layer (60) and a hydrophilic resin layer (70). The aluminum material (50) is a base material for a fin (F) which is a constituent of the heat exchanger. The corrosion-resistant chromate layer (60) is formed on a surface layer of the aluminum material (50). The hydrophilic resin layer (70) is formed above the surface layer of the aluminum material (50) and directly on a surface layer of the corrosion-resistant chromate layer (60) and has an antibacterial and antifungal agent (71) carried therein. The amount of the antibacterial and antifungal agent (71) dissolved in water retained on the surface of the hydrophilic resin layer (70) varies in a temperature-dependent manner.

Description

明 細 書  Specification
熱交換器および熱交換器を備えた空気調和装置  Heat exchanger and air conditioner equipped with heat exchanger
技術分野  Technical field
[0001] 本発明は、熱交換器および熱交換器を備えた空気調和装置に関する。  [0001] The present invention relates to a heat exchanger and an air conditioner including the heat exchanger.
背景技術  Background art
[0002] 従来、空気調和装置の熱交換器では、表面にカビゃ細菌等が付着することにより、 運転時に不快な臭いや、 目に見えない細菌が空気中に散乱するという不具合が生じ ている。特に、室内機が冷媒の蒸発器として機能する場合には、熱交換器に水分が 付着しやすぐ熱交換器が乾く前に水滴が付着した状態で運転が停止され、長期間 運転が再開されない場合には、熱交換器のフィンの表面において、カビゃ細菌等が 繁殖しやすい。  Conventionally, heat exchangers of air conditioners have had problems such as unpleasant odors during operation and invisible bacteria scattered in the air due to the adhesion of molds and other bacteria to the surface. . In particular, when the indoor unit functions as a refrigerant evaporator, the operation is stopped with water adhering to the heat exchanger or immediately before the heat exchanger dries, and the operation is not resumed for a long time. In some cases, mold, etc. are likely to propagate on the fin surface of the heat exchanger.
これに対して、例えば、以下に示す特許文献 1では、熱交換器のフィンに抗菌剤を 塗布することで、カビゃ細菌の繁殖を抑えている。また、この特許文献 1に記載の熱 交換器では、フィンに塗布される抗菌剤の粒径を所定の大きさ以下のものに厳選し つつ、水への溶解性が低い抗菌剤を用いることで、抗菌剤が徐々に溶け出すように して溶出速度を低くし、長期に渡る抗菌 ·抗カビ効果を持続的に得ることができるよう に構成している。  On the other hand, for example, in Patent Document 1 shown below, the growth of fungi is suppressed by applying an antibacterial agent to the fins of the heat exchanger. In addition, in the heat exchanger described in Patent Document 1, the antibacterial agent applied to the fin is carefully selected to have a particle size of a predetermined size or less, and an antibacterial agent having low solubility in water is used. The anti-bacterial agent dissolves gradually to lower the elution rate, and the anti-bacterial / anti-fungal effect can be obtained continuously for a long time.
[0003] また、例えば、以下に示す特許文献 2に記載の熱交換器では、抗菌剤を、熱交換 器のフィンの表面である親水層に設けるのではなぐ下層の耐食層に設けることで、 水に対して直接的に接触する度合いを低減させて、溶出量を調節して、抗菌 '抗カビ 効果を持続的に長期間得ることができるように構成している。  [0003] Further, for example, in the heat exchanger described in Patent Document 2 shown below, the antibacterial agent is provided in the lower corrosion-resistant layer rather than being provided in the hydrophilic layer that is the surface of the fin of the heat exchanger, By reducing the degree of direct contact with water and adjusting the amount of elution, the antibacterial and antifungal effect can be obtained continuously over a long period of time.
以上のように、熱交換器のフィンの表面を改良することで、上述した問題を改善させ ている。  As described above, the problems described above are improved by improving the surface of the fins of the heat exchanger.
特許文献 1:特開 2006— 1852号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2006-1852
特許文献 2:特開 2006— 78134号公報  Patent Document 2: Japanese Patent Laid-Open No. 2006-78134
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0004] しかし、上記特許文献 1や特許文献 2に記載の空気調和装置の熱交換器では、運 転時間に伴って抗菌剤が出ていってしまい、表面近傍に設けられた抗菌剤を、空気 調和装置の利用開始から早期に使い切ってしまうという問題がある。このように、早期 に抗菌剤を使い切ってしまうと、再度抗菌剤を塗ったり、熱交換器を交換したり等、頻 繁にメンテナンスを繰り返す必要が生じて煩雑である。 Problems to be solved by the invention [0004] However, in the heat exchanger of the air conditioner described in Patent Document 1 and Patent Document 2, the antibacterial agent comes out with the operation time, and the antibacterial agent provided near the surface is There is a problem that the air conditioner is used up quickly after the start of use. In this way, if the antibacterial agent is used up at an early stage, it will be complicated because it will be necessary to repeat maintenance frequently, such as reapplying the antibacterial agent or replacing the heat exchanger.
本発明は、上述した点に鑑みてなされたものであり、本発明の課題は、カビゃ細菌 の発生の抑制効果を長期間保持することが可能な熱交換器および熱交換器を備え た空気調和装置を提供することにある。  The present invention has been made in view of the above-described points, and an object of the present invention is to provide a heat exchanger capable of maintaining the effect of suppressing the generation of mold bacteria for a long period of time and an air equipped with the heat exchanger. It is to provide a harmony device.
課題を解決するための手段  Means for solving the problem
[0005] 第 1発明に係る空気調和装置の熱交換器は、フィン基板と、塗膜層とを備えている 。塗膜層は、フィン基板の表層側に形成され、溶出剤を含んでいる。溶出剤は、水に 対する溶出量に温度依存性を有しており、抗菌剤、防カビ剤および抗菌防カビ剤の 少なくともいずれか 1つである。  [0005] The heat exchanger of the air conditioner according to the first invention includes a fin substrate and a coating layer. The coating layer is formed on the surface layer side of the fin substrate and contains an eluent. The eluent has temperature dependence on the amount of elution with respect to water, and is at least one of an antibacterial agent, an antifungal agent and an antibacterial and antifungal agent.
ここでは、空気調和装置の運転に対応して変化する熱交換器の温度変化に応じて 、溶出剤の溶出量を制御することが可能になる。  Here, it becomes possible to control the elution amount of the eluent according to the temperature change of the heat exchanger that changes corresponding to the operation of the air conditioner.
これにより、溶出剤の溶出量を制御することで、菌の発生の抑制効果を安定的に長 期間保持することが可能になる。  Thereby, by controlling the elution amount of the eluent, it becomes possible to stably maintain the effect of suppressing the generation of bacteria for a long period of time.
[0006] 第 2発明に係る空気調和装置の熱交換器は、第 1発明に係る空気調和装置の熱交 換器であって、溶出剤は、 20°Cにおける水に対する溶出量よりも 40°Cにおける水に 対する溶出量のほうが 1. 5倍以上大きい。  [0006] The heat exchanger of the air conditioner according to the second invention is the heat exchanger of the air conditioner according to the first invention, wherein the eluent is 40 ° more than the elution amount for water at 20 ° C. The amount of elution from C in water is 1.5 times greater.
ここでは、特に、空気調和装置を運転する際に変化する熱交換器の温度幅におい て、溶出量が変化させることができる。  Here, in particular, the amount of elution can be changed within the temperature range of the heat exchanger that changes when the air conditioner is operated.
これにより、既存の空調運転制御を利用しつつ溶出剤の溶出量を制御することが 可能になる。  This makes it possible to control the elution amount of the eluent while using the existing air conditioning operation control.
[0007] 第 3発明に係る空気調和装置の熱交換器は、第 1発明または第 2発明に係る空気 調和装置の熱交換器であって、塗膜層は、親水性剤を有している。溶出剤は、少なく とも親水性剤を介してフィン基板に担持されている。なお、溶出剤は、親水性剤以外 の他の物質をさらに介してフィン基板に担持されていてもよい。この溶出剤は、 20°C において塗膜層から水に溶出する溶出量よりも 40°Cにおいて塗膜層から水に溶出 する溶出量のほうが 1. 5倍以上大きい。 [0007] The heat exchanger of the air conditioner according to the third invention is the heat exchanger of the air conditioner according to the first invention or the second invention, wherein the coating layer has a hydrophilic agent. . The eluent is supported on the fin substrate via at least a hydrophilic agent. The eluent may be supported on the fin substrate via another substance other than the hydrophilic agent. This eluent is 20 ° C The amount of elution from the coating layer into water at 40 ° C is 1.5 times greater than that from the coating layer in water.
ここでは、溶出剤が塗膜層の親水性剤に担持されており、親水性剤の性質により塗 膜層の表面近傍を保水状態にすることができる。そして、塗膜層に担持されている溶 出剤は、保水状態となっている部分から溶出させることができる。また、 20°C〜40°C の温度範囲は、空気調和装置を運転する際における熱交換器の温度変化の範囲に 容易に含めることができ、この温度範囲において、溶出剤の溶出量が 1. 5倍以上変 化する。  Here, the eluent is carried on the hydrophilic agent of the coating layer, and the vicinity of the surface of the coating layer can be kept water-retained by the property of the hydrophilic agent. And the eluent currently carry | supported by the coating-film layer can be eluted from the part which is in a water retention state. In addition, the temperature range of 20 ° C to 40 ° C can be easily included in the temperature change range of the heat exchanger when operating the air conditioner. Change more than 5 times.
これにより、空気調和装置を運転する際の熱交換器の温度を変化を利用して、溶 出剤の溶出量を効果的に制御することが可能になる。  This makes it possible to effectively control the elution amount of the eluent by using the change in the temperature of the heat exchanger when operating the air conditioner.
また、溶出剤自体の水に対する溶出量の温度依存性による効果だけでなぐ例え ば、溶出剤の薬剤の選定および細粒径の大きさを調製しつつ、溶出剤が担持されて いる塗膜層の孔が温度上昇によって膨張すること等を利用した溶出量の上昇効果も 相乗させることが可能になる。これにより、溶出剤の溶出量をより向上させることが可 能になる。  In addition, for example, the effect of the eluent itself on the elution amount with respect to the temperature depends not only on the temperature dependence, but also the selection of the eluent agent and the fine particle size while adjusting the coating layer on which the eluent is supported. It is also possible to synergize the effect of increasing the amount of elution using the fact that the pores of the swell expand with increasing temperature. This makes it possible to further improve the elution amount of the eluent.
[0008] 第 4発明に係る空気調和装置の熱交換器は、第 1発明から第 3発明のいずれかに 係る空気調和装置の熱交換器であって、溶出剤は、少なくともジンクピリチオンを含 んでいる。  [0008] A heat exchanger for an air conditioner according to a fourth invention is a heat exchanger for an air conditioner according to any of the first to third inventions, wherein the eluent contains at least zinc pyrithione. .
ここでは、溶出剤としてジンクピリチオンを含んだ薬剤を用いた場合であっても、力 ビゃ細菌の発生を長期に渡って抑制することが可能になる。  Here, even when a drug containing zinc pyrithione is used as an eluent, it is possible to suppress the generation of bacteria over a long period of time.
[0009] 第 5発明に係る空気調和装置は、第 1発明から第 4発明のいずれかの空気調和装 置の熱交換器と、冷凍サイクルの運転制御によって熱交換器の温度を上昇させる溶 出制御を行う制御部と、を備えている。 [0009] An air conditioner according to a fifth aspect of the present invention includes a heat exchanger of the air conditioner according to any of the first to fourth aspects of the invention, and an elution that increases the temperature of the heat exchanger by operating control of the refrigeration cycle. A control unit that performs control.
ここでは、制御部による溶出制御によって、冷凍サイクルの運転制御が行われるこ とで、熱交換器を流れる冷媒温度を上げて、熱交換器の温度を上昇させることが可 能になる。このようにして、熱交換器の温度を上昇させる溶出制御を行うことで、溶出 剤の溶出量を制御することが可能になる。  Here, by controlling the operation of the refrigeration cycle by the elution control by the control unit, the temperature of the heat exchanger can be increased by increasing the temperature of the refrigerant flowing through the heat exchanger. Thus, by performing elution control for increasing the temperature of the heat exchanger, it becomes possible to control the elution amount of the eluent.
[0010] 第 6発明に係る空気調和装置は、第 5発明の空気調和装置であって、制御部は、 溶出制御に関する積算運転時間が長くなるにつれて、溶出制御に掛ける時間を長く する。 [0010] An air conditioner according to a sixth aspect of the present invention is the air conditioner according to the fifth aspect of the present invention, wherein the controller is As the integrated operation time for elution control becomes longer, the time taken for elution control is lengthened.
ここでは、毎回の溶出制御によって塗膜層の溶出剤が次第に減少していき、単位 時間当たりの溶出量が減少してくる。しかし、制御部は、積算運転時間が長くなるに つれて溶出制御に掛ける時間を増やす制御を行う。  Here, the elution agent in the coating layer gradually decreases by each elution control, and the elution amount per unit time decreases. However, the control unit performs control to increase the time required for elution control as the accumulated operation time becomes longer.
これにより、安定的な溶出を長期間行うことが可能になる。  Thereby, stable elution can be performed for a long time.
[0011] 第 7発明に係る空気調和装置は、第 5発明または第 6発明の空気調和装置であつ て、制御部は、溶出制御に関する積算運転時間が長くなるにつれて、溶出制御にお V、て上昇させる熱交換器の温度幅を増大させる。 [0011] An air conditioner according to a seventh aspect is the air conditioner according to the fifth aspect or the sixth aspect, wherein the control unit performs the elution control for the elution control as the integrated operation time for the elution control becomes longer. Increase the temperature range of the heat exchanger to be raised.
ここでは、毎回の溶出制御によって塗膜層の溶出剤が次第に減少していき、単位 時間当たりの溶出量が減少してくる。しかし、制御部は、積算運転時間が長くなるに つれて溶出制御における熱交換器の温度上昇幅を増大させる制御を行う。  Here, the elution agent in the coating layer gradually decreases by each elution control, and the elution amount per unit time decreases. However, the control unit performs control to increase the temperature rise of the heat exchanger in the elution control as the accumulated operation time becomes longer.
これにより、安定的な溶出を長期間行うことが可能になる。  Thereby, stable elution can be performed for a long time.
なお、第 6発明と第 7発明とを両立させることで、積算運転時間が長くなるにつれて 、溶出制御に掛ける時間を増やしつつ、溶出制御における熱交換器の温度上昇幅 を増大させる制御を行うことができ、より安定的な溶出を長期間行うことが可能になる  By making both the sixth invention and the seventh invention compatible, the control for increasing the temperature rise of the heat exchanger in the elution control is performed while increasing the time required for the elution control as the accumulated operation time becomes longer. And more stable elution can be performed for a long time.
[0012] 第 8発明に係る空気調和装置は、第 5発明から第 7発明のいずれかの空気調和装 置であって、所定信号を受付ける受付部をさらに備えている。制御部は、受付部が所 定信号を受付けた場合に、溶出制御を行う。ここでの受付部が所定信号を受付ける こと、としては、例えば、受付部としてのコントローラの所定ボタンがユーザによって押 されることで所定信号を受付けること、が含まれる。 [0012] An air conditioner according to an eighth aspect of the present invention is the air conditioner according to any of the fifth aspect to the seventh aspect of the present invention, further comprising a receiving unit that receives a predetermined signal. The control unit performs elution control when the reception unit receives a predetermined signal. Here, receiving the predetermined signal by the receiving unit includes, for example, receiving the predetermined signal by pressing a predetermined button of a controller serving as the receiving unit by the user.
ここでは、ユーザが溶出制御を望む場合に、所定信号を受付部に受付させるだけ で、 自動的に溶出制御を開始することが可能になる。  Here, when the user desires the elution control, the elution control can be automatically started only by allowing the reception unit to receive a predetermined signal.
[0013] 第 9発明に係る空気調和装置は、第 5発明から第 7発明のいずれかの空気調和装 置であって、制御部は、冷凍サイクルを冷房運転させた後に、溶出制御を行う。  [0013] An air conditioner according to a ninth invention is the air conditioner according to any one of the fifth to seventh inventions, wherein the control unit performs elution control after the cooling operation of the refrigeration cycle.
ここでは、制御部は、凝縮水が熱交換器のフィンに保持された状態となる冷房運転 を行った後に、溶出制御を行うように制御する。 これにより、凝縮水が熱交換器に保持された状態で熱交換器の温度が上げられる ため、効果的な溶出を行うことが可能になる。 Here, the control unit performs control so that the elution control is performed after the cooling operation in which the condensed water is held in the fins of the heat exchanger. As a result, the temperature of the heat exchanger is raised while the condensed water is held in the heat exchanger, so that effective elution can be performed.
[0014] 第 10発明に係る空気調和装置は、第 5発明から第 7発明のいずれかの空気調和 装置であって、制御部は、冷凍サイクルの積算運転時間が所定時間を超えた後、溶 出制御を行う。 [0014] An air conditioner according to a tenth aspect of the present invention is the air conditioner according to any of the fifth to seventh aspects of the present invention, wherein the control unit performs the melting after the accumulated operation time of the refrigeration cycle exceeds a predetermined time. Performs output control.
ここでは、制御部は、冷凍サイクルの積算運転時間が所定時間を超えて、熱交換 器のフィン上に細菌やカビがある程度増大していると予想される状態において、溶出 制御を行う。  Here, the control unit performs elution control in a state where the accumulated operation time of the refrigeration cycle exceeds a predetermined time and bacteria and mold are expected to increase to some extent on the fins of the heat exchanger.
これにより、積算運転時間毎に溶出制御を繰り返すことで、熱交換器のフィンの表 面における細菌ゃカビ等の増殖を効果的に抑制することが可能になる。  This makes it possible to effectively suppress the growth of bacteria, mold, and the like on the surface of the fins of the heat exchanger by repeating the elution control every accumulated operation time.
なお、第 9発明と第 10発明と両立させることで、例えば、冷房運転に関する積算運 転時間が所定時間を超えた場合に、溶出制御を行うようにしてもよい。  In addition, by making the ninth invention and the tenth invention compatible, elution control may be performed when, for example, the accumulated operation time related to the cooling operation exceeds a predetermined time.
[0015] 第 11発明に係る空気調和装置は、第 5発明から第 10発明のいずれかの空気調和 装置であって、熱交換器に送風する送風ファンをさらに備えている。制御部は、溶出 制御後に、送風ファンによる送風制御を行う。 [0015] An air conditioner according to an eleventh aspect of the present invention is the air conditioner according to any of the fifth to tenth aspects of the present invention, further comprising a blower fan that blows air to the heat exchanger. The control unit performs air blowing control by the air blowing fan after the elution control.
ここでは、凝縮水を蒸発させて、乾燥させ、溶出した溶出剤の濃度を上げることがで きる。  Here, the concentration of the eluted eluent can be increased by evaporating and drying the condensed water.
これにより、細菌やカビを死滅させるための最小発育阻止濃度を超える溶出濃度の 状況を積極的に作り出すことが可能になる。  This makes it possible to actively create a situation with an elution concentration that exceeds the minimum inhibitory concentration for killing bacteria and fungi.
[0016] 第 12発明に係る空気調和装置は、第 5発明から第 11発明のいずれかの空気調和 装置であって、制御部は、溶出制御を行う直前の運転において熱交換器が冷媒の 蒸発器として運転されて!/、な!/、場合には、溶出制御を行う前に熱交換器を冷媒の蒸 発器として運転させる。 [0016] An air conditioner according to a twelfth aspect of the present invention is the air conditioner according to any of the fifth to eleventh aspects of the invention, wherein the control unit causes the heat exchanger to evaporate the refrigerant immediately before the elution control is performed. If it is operated as a heat exchanger! /, !!, in some cases, the heat exchanger is operated as a refrigerant evaporator before performing elution control.
ここでは、溶出制御を行う直前に熱交換器が冷媒の凝縮器として運転されてレ、なレ、 場合には、熱交換器のフィンは水を保持していないおそれがあり、溶出剤が溶出す ること力 Sできな!/ヽおそれがある。  Here, just before the elution control is performed, the heat exchanger is operated as a refrigerant condenser. In this case, there is a possibility that the fins of the heat exchanger do not hold water, and the eluent is eluted. Ability to do S Can't!
これに対して、第 12発明の空気調和装置では、制御部は、溶出制御を行う前に熱 交換器を冷媒の蒸発器として運転させる制御を行レ \熱交換器の内部を流れる冷媒 温度が低レ、状態とすることができる。 On the other hand, in the air conditioner of the twelfth aspect of the invention, the control unit performs control to operate the heat exchanger as a refrigerant evaporator before performing elution control. \ Refrigerant flowing inside heat exchanger The temperature is low and the state can be obtained.
これにより、熱交換器が凝縮水を保持している状態を作り出すことができ、溶出剤を 溶出させることが可能になる。  As a result, a state in which the heat exchanger holds the condensed water can be created, and the eluent can be eluted.
[0017] 第 13発明に係る空気調和装置は、第 12発明の空気調和装置であって、制御部は 、溶出制御を行う直前の運転にお!、て熱交換器が冷媒の凝縮器として運転されてレ、 る場合には、室内に対する送風を途絶えさせつつ、溶出制御を行う前に熱交換器を 冷媒の蒸発器として機能させる。 [0017] An air conditioner according to a thirteenth aspect of the present invention is the air conditioner according to the twelfth aspect of the present invention, wherein the controller is operated immediately before the elution control is performed! The heat exchanger operates as a refrigerant condenser. If this happens, the heat exchanger is made to function as a refrigerant evaporator before the elution control is performed while the air flow to the room is interrupted.
暖房運転が行われる時期において、熱交換器を冷媒の蒸発器として機能させる場 合には、送風してしまうと、室内に対して冷たい空気が送り出されてしまう。  If the heat exchanger is caused to function as a refrigerant evaporator during the heating operation, if air is blown, cold air is sent out to the room.
これに対して第 13発明の空気調和装置では、熱交換器を冷媒の蒸発器として運 転させる場合に、室内に対する送風を途絶えさせている。  On the other hand, in the air conditioner of the thirteenth aspect of the invention, when the heat exchanger is operated as a refrigerant evaporator, the ventilation to the room is interrupted.
これにより、ユーザに不快感を与えることなぐ熱交換器が凝縮水を保持している状 態を作り出すことが可能になる。  This makes it possible to create a state in which the heat exchanger that does not give the user discomfort holds the condensed water.
発明の効果  The invention's effect
[0018] 第 1発明の空気調和装置の熱交換器では、溶出剤の溶出量を制御することで、菌 の発生の抑制効果を安定的に長期間保持することが可能になる。  [0018] In the heat exchanger of the air conditioner of the first invention, it is possible to stably maintain the effect of suppressing the generation of bacteria by controlling the elution amount of the eluent.
第 2発明の空気調和装置の熱交換器では、既存の空調運転制御を利用しつつ溶 出剤の溶出量を制御することが可能になる。  In the heat exchanger of the air conditioner of the second invention, it becomes possible to control the elution amount of the eluent while utilizing the existing air conditioning operation control.
第 3発明の空気調和装置の熱交換器では、空気調和装置を運転する際の熱交換 器の温度を変化を利用して、溶出剤の溶出量を効果的に制御することが可能になる 第 4発明の空気調和装置の熱交換器では、溶出剤としてジンクピリチオンを用いた 場合であっても、カビゃ細菌の発生を長期に渡って抑制することが可能になる。 第 5発明の空気調和装置では、熱交換器の温度を上昇させる溶出制御を行うこと で、溶出剤の溶出量を制御することが可能になる。  In the heat exchanger of the air conditioner of the third invention, it becomes possible to effectively control the elution amount of the eluent by utilizing the change in the temperature of the heat exchanger when operating the air conditioner. In the heat exchanger of the air conditioner of the present invention, even when zinc pyrithione is used as the eluent, it is possible to suppress the generation of fungus bacteria over a long period of time. In the air conditioner according to the fifth aspect of the present invention, the elution amount of the eluent can be controlled by performing elution control for increasing the temperature of the heat exchanger.
[0019] 第 6発明の空気調和装置では、安定的な溶出を長期間行うことが可能になる。 In the air conditioner of the sixth aspect of the invention, stable elution can be performed for a long time.
第 7発明の空気調和装置では、安定的な溶出を長期間行うことが可能になる。 第 8発明の空気調和装置では、ユーザが溶出制御を望む場合に、所定信号を受 付部に受付させるだけで、 自動的に溶出制御を開始することが可能になる。 In the air conditioner of the seventh aspect, stable elution can be performed for a long time. In the air conditioner of the eighth aspect of the invention, when the user desires elution control, a predetermined signal is received. Elution control can be started automatically just by accepting it from the attachment.
第 9発明の空気調和装置では、凝縮水が熱交換器に保持された状態で熱交換器 の温度が上げられるため、効果的な溶出を行うことが可能になる。  In the air conditioner according to the ninth aspect of the invention, since the temperature of the heat exchanger is raised while the condensed water is held in the heat exchanger, effective elution can be performed.
第 10発明の空気調和装置では、積算運転時間毎に溶出制御を繰り返すことで、熱 交換器のフィンの表面における細菌ゃカビ等の増殖を効果的に抑制することが可能 になる。  In the air conditioner according to the tenth aspect of the present invention, it is possible to effectively suppress the growth of bacteria, mold, etc. on the surface of the fins of the heat exchanger by repeating the elution control every accumulated operation time.
第 11発明の空気調和装置では、細菌やカビを死滅させるための最小発育阻止濃 度を超える溶出濃度の状況を積極的に作り出すことが可能になる。  In the air conditioner according to the eleventh aspect of the present invention, it is possible to actively create a situation with an elution concentration exceeding the minimum growth inhibition concentration for killing bacteria and mold.
[0020] 第 12発明の空気調和装置では、熱交換器が凝縮水を保持している状態を作り出 すことができ、溶出剤を溶出させることが可能になる。  [0020] In the air conditioner of the twelfth aspect of the invention, the heat exchanger can create a state in which condensed water is retained, and the eluent can be eluted.
第 13発明の空気調和装置では、ユーザに不快感を与えることなぐ熱交換器が凝 縮水を保持している状態を作り出すことが可能になる。  In the air conditioner according to the thirteenth aspect of the present invention, it is possible to create a state in which the heat exchanger that does not cause discomfort to the user holds condensed water.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の一実施形態にかかる空気調和装置の概略構成図である。  FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
[図 2]空気調和装置の冷媒回路図である。  FIG. 2 is a refrigerant circuit diagram of the air conditioner.
[図 3]室内機の側断面図である。  FIG. 3 is a side sectional view of the indoor unit.
[図 4]空気調和装置の制御ブロック図である。  FIG. 4 is a control block diagram of the air conditioner.
[図 5]熱交換器のフィン構成を示す図である。  FIG. 5 is a view showing a fin configuration of a heat exchanger.
[図 6]熱交換器のフィンの抗菌防カビ剤の溶出量の違いを示すグラフである。  FIG. 6 is a graph showing the difference in the amount of antibacterial and antifungal agent eluted from the fins of the heat exchanger.
[図 7]抗菌処理制御の流れを示す図である。  FIG. 7 is a diagram showing the flow of antibacterial treatment control.
[図 8] (a) 熱交換器の温度変化を示すグラフである。 (b)フィン表面の凝縮水量の変 化を示すグラフである。 (c)フィン表面の抗菌防カビ剤の濃度変化を示すグラフであ  [FIG. 8] (a) A graph showing the temperature change of the heat exchanger. (B) A graph showing changes in the amount of condensed water on the fin surface. (c) is a graph showing changes in the concentration of the antibacterial and antifungal agent on the fin surface.
[図 9]抗菌防カビ剤の残量の経年変化を示すグラフである。 FIG. 9 is a graph showing the secular change of the remaining amount of antibacterial and antifungal agent.
[図 10]抗菌防カビ剤の残量%と溶出量との関係を異なる温度で計測したグラフであ  [Fig. 10] Graph showing the relationship between the remaining amount of antibacterial and antifungal agent and the amount of dissolution at different temperatures.
[図 11]変形例(B)に係る熱交換器のフィン構成を示す図である。 FIG. 11 is a view showing a fin configuration of a heat exchanger according to Modification (B).
[図 12] (a)従来の熱交換器のフィンの樹脂系親水層の構成を示す図である。 (b)従 来の熱交換器のフィンの樹脂系親水層における初期状態を示す図である。 (c)従来 の熱交換器のフィンの樹脂系親水層の中期以降の構成を示す図である。 FIG. 12 (a) is a diagram showing a configuration of a resinous hydrophilic layer of a fin of a conventional heat exchanger. (b) Subordinate It is a figure which shows the initial state in the resin-type hydrophilic layer of the fin of the conventional heat exchanger. (C) It is a figure which shows the structure after the middle period of the resin-type hydrophilic layer of the fin of the conventional heat exchanger.
符号の説明  Explanation of symbols
[0022] 1 室内機 [0022] 1 Indoor unit
2 室外機  2 Outdoor unit
5 冷媒連絡配管  5 Refrigerant communication piping
8 制御部  8 Control unit
10 室内熱交換器  10 Indoor heat exchanger
11 室内ファン(送風ファン)  11 Indoor fan (fan)
20 室外熱交換器  20 Outdoor heat exchanger
100 空気調和装置  100 air conditioner
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、図面に基づいて、本発明に係る空気調和装置の実施形態について説明す Hereinafter, embodiments of an air conditioner according to the present invention will be described with reference to the drawings.
<空気調和装置の概略構成〉 <Schematic configuration of air conditioner>
本発明の一実施形態が採用された空気調和装置 100は、図 1に示すように、室内 の壁面に設置される室内機 1と、室外に設置される室外機 2とを備えており、コント口 ーラ 30が室内機 1の制御基板部分(図示せず)に信号を送信できるようになつている 室内機 1内および室外機 2内にはそれぞれ熱交換器が収納されており、各熱交換 器が冷媒配管 5により接続されることにより冷媒回路を構成している。  As shown in FIG. 1, an air conditioner 100 in which an embodiment of the present invention is employed includes an indoor unit 1 installed on an indoor wall surface and an outdoor unit 2 installed outdoors. The main controller 30 can transmit signals to the control board part (not shown) of the indoor unit 1. The indoor unit 1 and the outdoor unit 2 contain heat exchangers, respectively. A refrigerant circuit is configured by connecting the exchangers through the refrigerant pipe 5.
<空気調和装置 100の冷媒回路の構成概略〉  <Outline of refrigerant circuit configuration of air conditioner 100>
空気調和装置 100の冷媒回路の構成を、図 2に示す。  The configuration of the refrigerant circuit of the air conditioner 100 is shown in FIG.
この冷媒回路は、主として室内熱交換器 10、アキュムレータ 21、圧縮機 22、四路 切換弁 23、室外熱交換器 20および膨張弁 24で構成される。  This refrigerant circuit mainly includes an indoor heat exchanger 10, an accumulator 21, a compressor 22, a four-way switching valve 23, an outdoor heat exchanger 20, and an expansion valve 24.
[0024] (室内機 1) [0024] (Indoor unit 1)
室内機 1に設けられている室内熱交換器 10は、接触する空気との間で熱交換を行 う。ここでは、室内熱交換器 10は、室内機 1の側面図である図 3に示すように、フィン アンドチューブ型であって、室内機 1の前方に配置される前方熱交換器 10fと、後方 に配置される後方熱交換器 10bによって構成されている。 The indoor heat exchanger 10 provided in the indoor unit 1 exchanges heat with the air in contact therewith. Here, the indoor heat exchanger 10 has fins as shown in FIG. 3 which is a side view of the indoor unit 1. It is an and tube type, and is configured by a front heat exchanger 10f disposed in front of the indoor unit 1 and a rear heat exchanger 10b disposed in the rear.
また、室内機 1には、室内空気を吸い込んで室内熱交換器 10に通し熱交換が行わ れた後の空気を室内に排出するためのクロスフローファン 11が設けられている。クロ スフローファン 11は、室内機 1内に設けられる 1つの室内ファンモータ 12によって回 転駆動される。図 3に示すように、室内熱交換器 10やクロスフローファン 11等は、室 内機ケーシング 4内に配置されている。  Further, the indoor unit 1 is provided with a cross flow fan 11 for sucking indoor air and passing the air through the indoor heat exchanger 10 to discharge the air into the room. The cross flow fan 11 is driven to rotate by one indoor fan motor 12 provided in the indoor unit 1. As shown in FIG. 3, the indoor heat exchanger 10, the cross flow fan 11, and the like are arranged in the indoor unit casing 4.
[0025] この室内機ケーシング 4には、前方、上方に吸込口 42が設けられ、下方に吹出口 4 9が設けられている。この吹出口 49には、開度を電動制御可能なフラップ 47が設け られている。また、この室内機ケーシング 4には、図 3に示すように、前面側において フロントパネル 41が、背面側において据付板 43が、それぞれ設けられている。この 据付板 43の内側には、後方熱交換器 10bやクロスフローファン 11の回転軸部等を 支持する背面フレーム 44が配置されて!/、る。 [0025] The indoor unit casing 4 is provided with a suction port 42 at the front and upper sides and a blow-out port 49 at the lower side. The air outlet 49 is provided with a flap 47 whose electric opening can be electrically controlled. Further, as shown in FIG. 3, the indoor unit casing 4 is provided with a front panel 41 on the front side and an installation plate 43 on the back side. Inside the installation plate 43, a rear frame 44 that supports the rear heat exchanger 10b, the rotating shaft portion of the cross flow fan 11, and the like is disposed!
室内熱交換器 10の前方熱交換器 10fと後方熱交換器 10bとは、室内機ケーシング 4内において、吸込口との間に位置し、クロスフローファン 11を取り囲むように、互い に多段曲げされて配置されて!/、る。  The front heat exchanger 10f and the rear heat exchanger 10b of the indoor heat exchanger 10 are positioned between the suction port in the indoor unit casing 4 and are bent at multiple stages so as to surround the cross flow fan 11. Arranged!
室内機 1は、クロスフローファン 11が回転駆動すると、室内空気(空気中に浮遊して V、る浮遊汚染物質の一部は図示しなレ、プレフィルタで除去)が前方、上方の吸込口 42を介して室内熱交換器 10を通過するように取り込まれ、熱交換された調和空気を 再び室内に戻すことにより、対象となる空間を空調する。  In the indoor unit 1, when the crossflow fan 11 is driven to rotate, the indoor air (V floating in the air, part of the floating pollutant is not shown in the figure, removed by a pre-filter) is moved forward and upward. The conditioned air that has been taken in through the indoor heat exchanger 10 through 42 and exchanged heat is returned to the room to air-condition the target space.
[0026] なお、前方熱交換器 10fの前方下端部の下方には、室内熱交換器 10が冷凍サイ クルにおいて冷媒の蒸発器として機能する場合に、表面に空気中の水分が冷却され て凝縮水が付着するため、前方熱交換器 1 Ofにおいて生じた空気中の水分の凝縮 水を捕らえる前方ドレンパン 45が設けられている。また、後方熱交換器 10bの後方下 端部の下方には、後方熱交換器 10bにおいて生じた空気中の水分の凝縮水を捕ら える後方ドレンパン 46が設けられて!/、る。 [0026] Below the front lower end of the front heat exchanger 10f, when the indoor heat exchanger 10 functions as a refrigerant evaporator in the refrigeration cycle, moisture in the air is cooled and condensed on the surface. Since water adheres, a front drain pan 45 that captures condensed water in the air generated in the front heat exchanger 1 Of is provided. In addition, a rear drain pan 46 is provided below the rear lower end of the rear heat exchanger 10b to capture condensed water in the air generated in the rear heat exchanger 10b.
(室外機 2)  (Outdoor unit 2)
室外機 2には、圧縮機 22と、圧縮機 22の吐出側に接続される四路切換弁 23と、圧 縮機 22の吸入側に接続されるアキュムレータ 21と、四路切換弁 23に接続されたフィ ンアンドチューブ型の室外熱交換器 20と、室外熱交換器 20に接続された膨張弁 24 とが設けられている。膨張弁 24は、液閉鎖弁 26を介して配管に接続されており、この 配管を介して室内熱交換器 10の一端と接続される。また、四路切換弁 23は、ガス閉 鎖弁 27を介して配管に接続されており、この配管を介して室内熱交換器 10の他端と 接続されている。また、室外機 2には、室外熱交換器 20での熱交換後の空気を外部 に排出するためのプロペラファン 28が設けられている。このプロペラファン 28は、室 外ファンモータ 29によって回転駆動される。 The outdoor unit 2 includes a compressor 22, a four-way switching valve 23 connected to the discharge side of the compressor 22, and a pressure An accumulator 21 connected to the suction side of the compressor 22, a fin-and-tube outdoor heat exchanger 20 connected to the four-way selector valve 23, and an expansion valve 24 connected to the outdoor heat exchanger 20 Is provided. The expansion valve 24 is connected to a pipe via a liquid closing valve 26, and is connected to one end of the indoor heat exchanger 10 via this pipe. The four-way selector valve 23 is connected to a pipe via a gas closing valve 27 and is connected to the other end of the indoor heat exchanger 10 via this pipe. Further, the outdoor unit 2 is provided with a propeller fan 28 for discharging the air after heat exchange in the outdoor heat exchanger 20 to the outside. The propeller fan 28 is rotationally driven by an outdoor fan motor 29.
[0027] <コントローラ 30〉  [0027] <Controller 30>
コントローラ 30は、図 1、および制御ブロック図である図 4に示すように、制御部 8の 一部を構成する室内機 1の制御基板(図示せず)に対して、各種運転モード等に関 する信号を送信するように設けられている。この室内機 1の制御基板には CPU、 RO M、 RAM等が設けられ(図示せず)、同様に CPU、 ROM, RAMが設けられて制御 部 8の一部を構成する室外機 2の制御基板(図示せず)に対して接続されている。こ のように、室内機 1の制御基板と室外機 2の制御基板とによって、制御部 8が構成さ れている。このコントローラ 30は、上述した冷媒回路を流れる冷媒を送出する各構成 機器を制御することで冷房運転、暖房運転や送風運転を行うように、また、後述する 抗菌処理制御等の各種制御を行うように、ユーザからの指令を受け付けるための入 力ボタン 31が設けられている。  As shown in FIG. 1 and FIG. 4 which is a control block diagram, the controller 30 relates to various operation modes and the like with respect to the control board (not shown) of the indoor unit 1 constituting a part of the control unit 8. It is provided to transmit a signal to be transmitted. The control board of the indoor unit 1 is provided with a CPU, ROM, RAM, etc. (not shown), and similarly the CPU, ROM, and RAM are provided to control the outdoor unit 2 that constitutes a part of the control unit 8. It is connected to a substrate (not shown). In this way, the control unit 8 is configured by the control board of the indoor unit 1 and the control board of the outdoor unit 2. The controller 30 controls each component device that sends out the refrigerant flowing through the refrigerant circuit described above so as to perform cooling operation, heating operation, and air blowing operation, and performs various controls such as antibacterial treatment control described later. In addition, an input button 31 for receiving a command from the user is provided.
[0028] また、制御部 8は、図 4に示すように、各種運転モードに応じて、室内ファンモータ 1 2の回転数、フラップ 47の開度、四路切換弁 22の接続状態、室外ファンモータ 29の 回転数、および、圧縮機 22の駆動状態等を制御することができる。  In addition, as shown in FIG. 4, the control unit 8 determines the number of rotations of the indoor fan motor 12, the opening degree of the flap 47, the connection state of the four-way switching valve 22, the outdoor fan, according to various operation modes. The number of rotations of the motor 29 and the driving state of the compressor 22 can be controlled.
<熱交換器のフィン〉  <Heat exchanger fins>
本実施形態のフィンアンドチューブ型である室内熱交換器 10のフィン Fの概略構 成を図 5に示す。フィン Fは、図 5の概略断面図に示すように、アルミ素材 50に対して 、クロメート耐食層 60、樹脂系親水層 70、防汚加工層 80の順で積層されることで構 成されている。  FIG. 5 shows a schematic configuration of the fin F of the indoor heat exchanger 10 that is the fin-and-tube type of the present embodiment. As shown in the schematic cross-sectional view of FIG. 5, the fin F is configured by laminating a chromate corrosion-resistant layer 60, a resin-based hydrophilic layer 70, and an antifouling layer 80 in this order on the aluminum material 50. Yes.
フィン Fの樹脂系親水層 70は、樹脂系親水剤としてアクリル系の樹脂等を用いて構 成されている。そして、この樹脂系親水層 70のアクリル系の樹脂等には、抗菌防カビ 剤 71としてのジンクピリジオンを含有する薬剤が担持されている。なお、樹脂系親水 層 70の膜厚は、約 1. 0マイクロメートルとなるように形成されている。 The resin-based hydrophilic layer 70 of the fin F is made of an acrylic resin or the like as a resin-based hydrophilic agent. It is made. The acrylic resin of the resin-based hydrophilic layer 70 carries a drug containing zinc pyridione as the antibacterial and antifungal agent 71. The resin-based hydrophilic layer 70 is formed to have a thickness of about 1.0 micrometers.
[0029] なお、この樹脂系親水剤は、アクリル系の樹脂に限られるものではなぐ例えば、ゼ オライト、ポリビュルアルコールもしくはナイロン等であってもよい。また、抗菌防カビ 剤 71は、二次凝集しないように(3次凝集 · · ·しないように)調製されて、アクリル系の 樹脂等の中に担持された状態となっている。  [0029] The resin-based hydrophilic agent is not limited to an acrylic resin, and may be, for example, zeolite, polybulal alcohol, nylon, or the like. Further, the antibacterial and antifungal agent 71 is prepared so as not to be secondary agglomerated (so as not to agglomerate tertiary) and is supported in an acrylic resin or the like.
また、抗菌防カビ剤 71は、ジンクピリチオンを含有する薬剤に限られるものではなく 、例えば、ナトリウムジンクピリチオンを含有する薬剤等を用いてもよいし、アルコール 系、フエノール系、アルデヒド系、カルボン酸系、エステル系、エーテル系、二トリル系 、過酸化物、 'エポキシ系、ハロゲン系、ピリジン'キノリン系、トリアジン系、イソチアゾ ロン系、イミダゾーノレ'チアゾール系、ァニリド系、ヒグアナイド系、ジスノレフイド系、チ ォカーバネート系、糖質系、トロボロン系、界面活性剤系および有機金属系等を含有 する薬剤を用いてもよい。  Further, the antibacterial and antifungal agent 71 is not limited to a drug containing zinc pyrithione. For example, a drug containing sodium zinc pyrithione may be used, and alcohol, phenol, aldehyde, carboxylic acid, Ester, ether, nitrile, peroxide, 'epoxy, halogen, pyridine' quinoline, triazine, isothiazolone, imidazole thiazole, anilide, hyguanide, dysnoureido, thiocarbonate Drugs containing carbohydrates, trobolones, surfactants, organometallics, etc. may be used.
[0030] なお、クロメート層 60は、抗菌防カビ剤 71が担持されている樹脂系親水層 70を、ァ ルミ素材 50に対して定着させるために設けられている。  Note that the chromate layer 60 is provided to fix the resin-based hydrophilic layer 70 carrying the antibacterial and antifungal agent 71 to the aluminum material 50.
防汚加工層 80は、樹脂系親水層 70の表層側に設けられ、汚れが付着しにくぐ汚 れが付着しても水によって洗!/、流せる性質を有して!/、る。  The antifouling layer 80 is provided on the surface layer side of the resin-based hydrophilic layer 70, and has the property of being able to be washed / washed with water even if dirt that is difficult to adhere is attached.
(フィン Fの温度特性)  (Temperature characteristics of fin F)
また、本実施形態のフィン Fは、抗菌防カビ剤 71の水に対する溶出量について、温 度依存性を有するものを選定している。さらに、本実施形態のフィン Fは、 20°C以下 における溶出量ができるだけ少なぐ 40°C以上における溶出量ができるだけ多くなる 薬剤を選定している。  In addition, the fin F of the present embodiment is selected so that the amount of the antibacterial and antifungal agent 71 dissolved in water has temperature dependency. Furthermore, for the fin F of the present embodiment, a drug that minimizes the amount of elution at 20 ° C. or lower and minimizes the amount of elution at 40 ° C. or higher is selected.
図 6に、温度による抗菌防カビ剤 71の水に対する溶出量 (g/1)について、従来の 抗菌防カビ剤(点線で示す)と本実施形態の抗菌防カビ剤 71 (実線で示す)との相違 を示す。  Fig. 6 shows the amount (g / 1) of the antibacterial / antifungal agent 71 dissolved in water according to the temperature. The difference is shown.
[0031] 従来の抗菌防カビ剤は、水溶液の温度が違っても、溶出量がほとんど変化しない。  [0031] Conventional antibacterial and antifungal agents have little change in the amount of elution even when the temperature of the aqueous solution is different.
これに対して、本実施形態の抗菌防カビ剤 71は、 20°Cでの溶出量と、 40°Cでの溶 出量とでは、約 1. 5〜; 1. 7倍の局所的な増加となっている。 In contrast, the antibacterial and antifungal agent 71 of the present embodiment has an elution amount at 20 ° C and a dissolution at 40 ° C. In terms of output, it is a local increase of approximately 1.5 to 1.7 times.
また、 20°Cにおける従来の抗菌防カビ剤の溶出量と本実施形態の抗菌防カビ剤の 溶出量とを比較すると、本実施形態の抗菌防カビ剤 71では、従来より溶出量を低く 抑えること力 Sできている。さらに、 40°Cにおける、従来の抗菌防カビ剤の溶出量と本 実施形態の抗菌防カビ剤の溶出量とを比較すると、本実施形態の抗菌防カビ剤 71 では、 20°Cにおける差が大幅に縮まっている。  In addition, comparing the elution amount of the conventional antibacterial and antifungal agent at 20 ° C and the elution amount of the antibacterial and antifungal agent of this embodiment, the antibacterial and antifungal agent 71 of this embodiment keeps the elution amount lower than before. That power S. Furthermore, when the elution amount of the conventional antibacterial and antifungal agent at 40 ° C is compared with the elution amount of the antibacterial and antifungal agent of this embodiment, the antibacterial and antifungal agent 71 of this embodiment shows a difference at 20 ° C. It has shrunk significantly.
さらに、上述した樹脂系親水層 70では、 20°Cから 40°Cに温度上昇した場合に、抗 菌防カビ剤 71を担持している樹脂系親水剤の孔の大きさが膨張して大きくなる。この ため、抗菌防カビ剤 71独自の温度依存性による溶出量の増加だけでなぐ樹脂系親 水層 70の性質に基づく溶出量の増加との相乗効果によって、 20°Cにおける溶出量 と 40°Cにおける溶出量とに明白な差が設けられるように、それぞれ選定および調製 している。  Further, in the above-described resin-based hydrophilic layer 70, when the temperature rises from 20 ° C. to 40 ° C., the pore size of the resin-based hydrophilic agent carrying the antibacterial / antifungal agent 71 expands and becomes large. Become. For this reason, the antibacterial and antifungal agent 71 has a unique synergistic effect with the increase in the amount of elution based on the properties of the resinous aquatic layer 70, which is not only due to the temperature dependency, but also the amount of elution at 20 ° C and 40 ° C. Each is selected and prepared so that there is a clear difference in the amount of elution in C.
[0032] 以下、フィン F上における抗菌防カビ剤 71の溶出濃度の制御(抗菌処理制御)につ いて説明する。  [0032] Hereinafter, control of the elution concentration of the antibacterial / antifungal agent 71 on the fin F (antibacterial treatment control) will be described.
<抗菌処理制御〉  <Antimicrobial treatment control>
ユーザは、上述したコントローラ 30の入力ボタン 31を押すことで、抗菌処理制御を 開始させること力 Sできる。すなわち、制御部 8は、コントローラ 30を介して抗菌処理制 御を行うという指示を受け取ると、室内機 1および室外機 2を制御することで、抗菌処 理制御を開始する。  The user can start the antibacterial treatment control by pressing the input button 31 of the controller 30 described above. That is, when receiving an instruction to perform antibacterial treatment control via the controller 30, the control unit 8 starts the antibacterial treatment control by controlling the indoor unit 1 and the outdoor unit 2.
ここで、抗菌処理制御の流れ (フィン Fの表面における状態や、各種構成機器の状 態の時間変化)を、図 7に示す。また、時間変化に対応した熱交換器の温度変化を 示すグラフを、図 8 (a)に、フィン F表面の凝縮水量の変化を示すグラフを、図 8 (b)に 、フィン F表面の抗菌防カビ剤 71の濃度変化を示すグラフを、図 8 (c)に、それぞれ 示す。  Fig. 7 shows the flow of antibacterial treatment control (the state of the surface of the fin F and the time change of the state of various components). In addition, a graph showing the temperature change of the heat exchanger corresponding to the time change is shown in Fig. 8 (a), a graph showing the change in the amount of condensed water on the surface of Fin F, and Fig. 8 (b), the antibacterial surface on Fin F surface. The graphs showing changes in the concentration of the fungicide 71 are shown in Fig. 8 (c).
[0033] ここでは、冷房運転を行うことで室内熱交換器 10が冷凍サイクルにおける冷媒の蒸 発器として機能し、室内熱交換器 10の表面に凝縮水が付着している状態から開始 する場合について説明する。なお、抗菌処理制御を行う直前の室内熱交換器 10が 冷媒の蒸発器として機能していない場合等、フィン F上に水分が不足しており、抗菌 防カビ剤 71を溶出させることができない状態である場合には、室内ファン 11の駆動 を止めた状態にして、一度、室内熱交換器 10を冷媒の蒸発器として機能させ、フィン F表面が凝縮水で濡れた状態となるように運転制御をしてもよ!/、。 [0033] Here, the cooling operation is performed so that the indoor heat exchanger 10 functions as a refrigerant evaporator in the refrigeration cycle and starts from a state in which condensed water is attached to the surface of the indoor heat exchanger 10. Will be described. In addition, when the indoor heat exchanger 10 immediately before the antibacterial treatment control is not functioning as a refrigerant evaporator, there is insufficient moisture on the fin F, If the fungicide 71 cannot be eluted, the indoor fan 11 is stopped and the indoor heat exchanger 10 is once functioned as a refrigerant evaporator to condense the fin F surface. You can control the operation so that it gets wet with water!
この抗菌処理制御のスタートでは、凝縮水に対して溶出した抗菌防カビ剤 71の多く は、凝縮水として洗い流されてしまい、図 8 (c)に示すように、フィン Fの表面の濃度が 低い状態となっている。  At the start of this antibacterial treatment control, most of the antibacterial and antifungal agent 71 eluted to the condensed water is washed away as condensed water, and the concentration of the surface of the fin F is low as shown in Fig. 8 (c). It is in a state.
[0034] そして、抗菌処理制御では、制御部 8は、まず、送風運転を行うことで、室内ファン 1 1の風量が W2となるように制御しつつ、圧縮機 22の運転は停止させる。  [0034] In the antibacterial treatment control, the control unit 8 first performs the air blowing operation to stop the operation of the compressor 22 while controlling the air volume of the indoor fan 11 to be W2.
次に、制御部 8は、室内ファン 11の運転を停止し、圧縮機 22の運転を始めて、室 内熱交換器 10の温度が 43〜45°C程度になるように暖房運転を行う。ここで、室内フ アン 11の運転を止めるのは、抗菌処理制御を行うまで冷房運転をしていたような環境 であり、ユーザは室内が冷えることを望んでいたと推測され、送風することで暖かい空 気を室内に送り出す必要がないからである。なお、ここで、室内熱交換器 10の温度 力 S43〜45°Cに上昇したことで、図 8 (b)に示すようにフィン F表面の凝縮水量が急速 に減少し、図 8 (c)に示すように抗菌防カビ剤 71の溶出量が急速に増大し、溶出濃 度が急速に高まる。  Next, the control unit 8 stops the operation of the indoor fan 11, starts the operation of the compressor 22, and performs the heating operation so that the temperature of the indoor heat exchanger 10 becomes about 43 to 45 ° C. Here, the operation of the indoor fan 11 was stopped in an environment where the cooling operation was performed until the antibacterial treatment control was performed, and it was assumed that the user wanted to cool the room. This is because it is not necessary to send warm air into the room. Here, as the temperature of the indoor heat exchanger 10 increased to S43 ~ 45 ° C, the amount of condensed water on the surface of the fin F decreased rapidly as shown in Fig. 8 (b), and Fig. 8 (c) As shown in Fig. 5, the dissolution amount of the antibacterial and antifungal agent 71 increases rapidly, and the dissolution concentration increases rapidly.
[0035] そして、制御部 8は、室内ファン 13の運転および圧縮機 22の運転を停止し、停止 状態を保つ制御を行う。  [0035] Then, the control unit 8 performs control to stop the operation of the indoor fan 13 and the operation of the compressor 22 and maintain the stopped state.
停止制御を終えると、制御部 8は、再度暖房運転を行い、室内ファン 11の運転を停 止しつつ、圧縮機 22を運転させて、室内熱交換器 10の温度が 43〜45°Cになるよう に制御する。ここでも、室内熱交換器 10の温度が 43〜45°Cに上昇したことで、再度 、図 8 (b)に示すようにフィン Fの表面の凝縮水量が急速に減少し、図 8 (c)に示すよう に抗菌防カビ剤 71の溶出量が急速に増大し、溶出濃度が急速に高まり MIC値 (最 小発育素子濃度)を超える。これによつて、フィン F表面における細菌やカビを死滅さ せること力 Sでさる。  When the stop control is finished, the control unit 8 performs the heating operation again, stops the operation of the indoor fan 11, and operates the compressor 22, so that the temperature of the indoor heat exchanger 10 becomes 43 to 45 ° C. Control so that Again, as the temperature of the indoor heat exchanger 10 rose to 43-45 ° C, the amount of condensed water on the surface of the fin F rapidly decreased again as shown in Fig. 8 (b), and Fig. 8 (c As shown in (), the dissolution amount of the antibacterial and antifungal agent 71 increases rapidly, and the dissolution concentration rapidly increases and exceeds the MIC value (minimum growth element concentration). With this, the force S kills bacteria and mold on the surface of Fin F.
そして、制御部 8は、再度室内ファン 11および圧縮機 22の運転を止めて、停止制 御を行う。これにより、フィン Fの表面における凝縮水が蒸発していき、溶出濃度が少 しずつ上昇していく。 [0036] ここで、制御部 8は、圧縮機 22を運転して、室内熱交換器 10の温度が 5;!〜 58°Cと なるように暖房運転にしつつ、室内ファン 11を風量 L〜Mの弱いレベルで運転する。 これにより、フィン F表面の凝縮水は一気に蒸発し、溶出濃度はさらに上がり、フィン F 表面における細菌およびカビはほとんど存在しない状態となる。なお、ここでは、室内 ファン 11を運転して暖かい空気を室内に送出するため、室内温度が上昇してしまう 1S 二度目の送風運転の時間を長くする等によって、暖房空気送出運転を止めるよう にしてもよい。 Then, the control unit 8 stops the operation of the indoor fan 11 and the compressor 22 again, and performs stop control. As a result, the condensed water on the surface of the fin F evaporates and the elution concentration gradually increases. [0036] Here, the control unit 8 operates the compressor 22 to perform the heating operation so that the temperature of the indoor heat exchanger 10 is 5; Drive at a weak level of M. As a result, the condensed water on the surface of Fin F evaporates all at once, the elution concentration further increases, and there is almost no bacteria and mold on the surface of Fin F. Here, since the indoor fan 11 is operated and warm air is sent out indoors, the room temperature rises. 1S The air blowing operation is stopped by increasing the time of the second air blowing operation, etc. May be.
<室内熱交換器 10のフィン Fの特徴〉  <Features of Fin F of Indoor Heat Exchanger 10>
(1)  (1)
従来の熱交換器では、抗菌防力ビ剤を設ける場合に、一次凝集、二次凝集、三次 凝集…を起こしてしまい、平均粒径が増大した状態で担持されている。このため、抗 菌防カビ剤は、表層において大きな表面積が露出した状態となっており、凝縮水等 力 Sフィンに付着すると、比較的短期間のうちに大部分が溶出しきつてしまっている。こ のため、長期的に溶出を安定的に維持させることが困難であり、抗菌防カビ機能の 発揮を長期間安定的に維持させることができない。  In a conventional heat exchanger, when an antibacterial and anti-bacterial agent is provided, primary aggregation, secondary aggregation, tertiary aggregation, etc. occur, and are supported with an average particle size increased. For this reason, the antifungal agent has a large surface area exposed on the surface layer, and when it adheres to condensed water isostatic S fins, most of it has been dissolved out in a relatively short period of time. . For this reason, it is difficult to stably maintain elution over a long period of time, and it is impossible to stably maintain the antibacterial and antifungal function.
[0037] 従来の熱交換器では、例えば、図 12 (a)に示すように、抗菌防カビ剤 971が樹脂 系親水層 970の下層側に集中して担持されるように構成しているものがある。しかし、 このような従来の熱交換器では、図 12 (b)に示すように樹脂系親水層 970のうち、ス ポンジのような吸湿性の機能を有する部分を介して水が内部まで染み込み、染み込 んだ部分に担持されている抗菌防カビ剤 971が短期間で全て溶出してしまう。これに より、図 12 (c)に示すように、吸湿性の機能を有しない部分に存在する抗菌防カビ剤 971のみが残ってしまい、やはり、長期的に抗菌防カビ機能を発揮させることができ ない。 [0037] In the conventional heat exchanger, for example, as shown in Fig. 12 (a), the antibacterial and antifungal agent 971 is configured to be concentrated and supported on the lower layer side of the resin-based hydrophilic layer 970. There is. However, in such a conventional heat exchanger, as shown in FIG. 12 (b), water penetrates into the inside of the resin-based hydrophilic layer 970 through a portion having a hygroscopic function such as a sponge, All of the antibacterial and antifungal agent 971 carried on the soaked part elutes in a short period of time. As a result, as shown in FIG. 12 (c), only the antibacterial and antifungal agent 971 present in the portion having no hygroscopic function remains, and the antibacterial and antifungal function can be exhibited in the long term. Can not.
これに対して、上記実施形態の空気調和装置 100の室内熱交換器 10のフィン Fで は、抗菌防カビ剤 71の凝縮水に対する溶出量を制御することができように、抗菌防 カビ剤 71が二次凝集等しないように平均粒径が小さい状態を維持しつつ、樹脂系親 水剤の下層側に集めることなくバランス良く散らばらせた状態で担持させている。この ため、細菌やカビを死滅させるのに必要なだけの(最小発育阻止濃度を超えるのに 必要なだけの)抗菌防カビ剤 71の溶出量を調整することができ、余分に抗菌防カビ 剤 71が流出することを抑えることができる。これにより、カビゃ細菌の発生の抑制効 果を安定的に長期間保持することができる。 On the other hand, the fin F of the indoor heat exchanger 10 of the air conditioner 100 of the above embodiment can control the amount of the antibacterial / antifungal agent 71 dissolved in the condensed water so that the antibacterial / antifungal agent 71 can be controlled. In order to prevent secondary agglomeration, etc., the particles are supported in a well-balanced state without being collected on the lower layer side of the resinous lyophilic agent while maintaining a state where the average particle size is small. For this reason, it is necessary only to kill bacteria and mold (beyond the minimum inhibitory concentration). The amount of the antibacterial / antifungal agent 71 can be adjusted as much as necessary, and the antibacterial / antifungal agent 71 can be prevented from flowing out. As a result, the effect of suppressing the generation of fungi can be stably maintained for a long time.
[0038] (2) [0038] (2)
上記実施形態の空気調和装置 100の室内熱交換器 10のフィン Fでは、抗菌防力 ビ剤 71自体の溶出温度特性を利用するだけでなぐ抗菌防カビ剤 71が担持されて いる樹脂系親水層 70の樹脂系親水剤の孔の大きさの温度による膨張度合いも利用 して、抗菌防カビ剤 71の溶出量を制御することができる。これにより、冷房運転ゃ暖 房運転や送風運転等の空気調和装置 100の既存の運転制御による室内熱交換器 1 0の温度変化を利用するだけで、 20°Cと 40°Cとの間で、溶出量が 1. 7倍も異なる構 成を得ること力 Sでさる。  In the fin F of the indoor heat exchanger 10 of the air conditioner 100 of the above embodiment, the resin-based hydrophilic layer on which the antibacterial / antifungal agent 71 is supported simply by utilizing the elution temperature characteristics of the antibacterial / antifungal agent 71 itself. The elution amount of the antibacterial and antifungal agent 71 can be controlled by utilizing the degree of expansion of the pore size of the resinous hydrophilic agent 70 due to the temperature. As a result, only using the temperature change of the indoor heat exchanger 10 by the existing operation control of the air conditioner 100 such as the cooling operation or the air blowing operation such as the cooling operation can be performed between 20 ° C and 40 ° C. In order to obtain a composition in which the amount of elution is 1.7 times different, the force S is used.
<変形例〉  <Modification>
以上、本発明の実施形態について図面に基づいて説明した力 具体的な構成は、 これらの実施形態に限られるものではなぐ以下のように、発明の要旨を逸脱しない 範囲で変更可能である。  As described above, the specific configurations of the embodiments of the present invention based on the drawings are not limited to these embodiments, and can be changed without departing from the gist of the present invention as follows.
[0039] (A) [0039] (A)
上記実施形態では、空気調和装置 100の室内機 1に設けられた室内熱交換器 10 におけるフィン Fの構成について、例を挙げて説明した。  In the above embodiment, the configuration of the fin F in the indoor heat exchanger 10 provided in the indoor unit 1 of the air conditioner 100 has been described with an example.
しかし、本発明はこれに限定されるものではなぐ上述した熱交換器の構成は、例 えば、室外機 2の室外熱交換器 20のフィン Fについても適用するようにしてもよい。  However, the present invention is not limited to this, and the configuration of the heat exchanger described above may be applied to, for example, the fins F of the outdoor heat exchanger 20 of the outdoor unit 2.
(B)  (B)
上記実施形態の空気調和装置 100の室内熱交換器 10のフィン Fでは、図 5に示す ように、抗菌防カビ剤 71を樹脂系親水層 70においてのみ含有させた構成のフィン F を例に挙げて説明した。  In the fin F of the indoor heat exchanger 10 of the air conditioner 100 of the above embodiment, as shown in FIG. 5, the fin F having a configuration in which the antibacterial and antifungal agent 71 is contained only in the resin-based hydrophilic layer 70 is taken as an example. Explained.
しかし、本発明はこれに限られるものではなぐ例えば、図 11に示すように、抗菌防 カビ剤 71は、樹脂系親水層 70だけでなぐより表層に設けられる樹脂系潤滑剤 90の 層においても含有された構成としてもよい。この樹脂系潤滑剤 90を含んだ層は、 2枚 のフィン Fが互いに接触した状態での滑りを確保して、熱交換器の製造性を高めるこ と力 Sできる。なお、この樹脂系潤滑剤 90は、最初の冷房運転において凝縮水を得る ことでドレン水と伴に流れ落ちる。 However, the present invention is not limited to this. For example, as shown in FIG. 11, the antibacterial and antifungal agent 71 is not only the resin hydrophilic layer 70 but also the resin lubricant 90 provided on the surface layer. It is good also as the structure contained. This layer containing the resin-based lubricant 90 ensures slippage in the state where the two fins F are in contact with each other, thereby improving the manufacturability of the heat exchanger. And force S. The resin-based lubricant 90 flows down along with the drain water by obtaining condensed water in the first cooling operation.
[0040] (C) [0040] (C)
上記実施形態では、空気調和装置 100の室内機 1に設けられた室内熱交換器 10 では、室内ファン 11の駆動を停止させつつ、室内熱交換器 10を冷媒の蒸発器として 機能させる運転制御を行うことで、空気中の水分が凝縮してフィン Fの表面が凝縮水 で濡れた状態をつくりだす場合について、例に挙げて説明した。  In the above-described embodiment, the indoor heat exchanger 10 provided in the indoor unit 1 of the air conditioner 100 performs operation control that causes the indoor heat exchanger 10 to function as a refrigerant evaporator while stopping the driving of the indoor fan 11. As an example, the case where the moisture in the air is condensed and the surface of the fin F is wetted by the condensed water is explained.
しかし、本発明はこれに限られるものではなぐ抗菌防カビ剤 71を溶出させるため にフィン Fの表面が水で濡れた状態をつくり出す方法としては、例えば、水の供給源 を予め有している構成にしておき、必要な時にフィン Fに対して散布したり滴下させる 等の処理を行うことが可能な空気調和装置も含まれる。  However, the present invention is not limited to this. As a method for creating a state in which the surface of the fin F is wet with water in order to elute the antibacterial and antifungal agent 71, for example, a water supply source is provided in advance. It also includes an air conditioner that can be configured to perform processing such as spraying or dripping on the fin F when necessary.
ここで、水の供給源としては、例えば、予め水を入れておくタンクのような構成であ つてもよ!/、し、水道水が導かれた構成であってもよ!/、。  Here, as the water supply source, for example, it may be configured like a tank in which water is put in advance! /, Or it may be configured such that tap water is guided! /.
[0041] さらに、空気調和装置 100の運転において生じるドレン水をドレンパンで受けて、ド レンパンで受けて得られる水を供給源として利用する構成としてもよい。 [0041] Furthermore, the drain water generated in the operation of the air conditioner 100 may be received by a drain pan, and the water obtained by receiving the drain pan may be used as a supply source.
(D)  (D)
上記実施形態では、空気調和装置 100の室内機 1に設けられた室内熱交換器 10 は、抗菌防力ビ剤 71を担持して!/、る構成のものを例に挙げて説明した。  In the above-described embodiment, the indoor heat exchanger 10 provided in the indoor unit 1 of the air conditioner 100 has been described by taking as an example a configuration that carries the antibacterial and anti-bacterial agent 71.
しかし、本発明は、これに限定されるものではなぐ途中で外部から抗菌防カビ剤が 溶かし込まれた溶液を吹き付けるようにして、抗菌防カビ剤 71を補給するようにしても よい。  However, the present invention is not limited to this, and the antibacterial / antifungal agent 71 may be replenished by spraying a solution in which the antibacterial / antifungal agent is dissolved from the outside.
また、始めから抗菌防カビ剤 71を備えていない熱交換器に対して、抗菌防カビ剤 7 1が溶力も込まれた溶液を吹き付けるようにして、熱交換器表面の菌の繁殖を抑える ようにしてもよい。  In addition, to prevent the growth of bacteria on the surface of the heat exchanger, spray a solution containing the antibacterial and antifungal agent 71 on the heat exchanger that does not have the antibacterial and antifungal agent 71 from the beginning. It may be.
[0042] (E) [0042] (E)
上記実施形態では、空気調和装置 100の室内機 1に設けられた室内熱交換器 10 では、抗菌処理制御が繰り返し行われるにつれて、図 9に示すように、樹脂系親水層 70に担持されている抗菌防カビ剤 71の量が減っていく。そして、このように抗菌防力 ビ剤 71の担持量が減少してきた場合であつても溶出量を安定的に維持するために、 冷房運転の積算運転時間が所定時間を超えた場合に、抗菌処理制御にお!、て室 内熱交換器 10を冷媒の凝縮器として機能させる場合の、室内熱交換器 10の温度を より上昇させるように制御し、溶出量を確保させる制御を行うようにしてもよい。 In the above embodiment, in the indoor heat exchanger 10 provided in the indoor unit 1 of the air conditioner 100, as the antibacterial treatment control is repeatedly performed, it is carried on the resin-based hydrophilic layer 70 as shown in FIG. The amount of antibacterial and antifungal agent 71 decreases. And in this way antibacterial strength Even if the loading amount of the bi-agent 71 decreases, the antibacterial treatment control is performed when the accumulated operating time of the cooling operation exceeds the predetermined time to maintain the elution amount stably! When the inner heat exchanger 10 is caused to function as a refrigerant condenser, the temperature of the indoor heat exchanger 10 may be controlled to be further increased, and control for securing an elution amount may be performed.
具体的には、図 10に示すように、抗菌防カビ剤 71の残存量が 30%未満である場 合に、 MIC値を超えるだけの溶出量を得るためには、室内熱交換器 10の加熱を行う 必要が生じてくる。  Specifically, as shown in FIG. 10, when the remaining amount of the antibacterial and antifungal agent 71 is less than 30%, in order to obtain an elution amount that exceeds the MIC value, the indoor heat exchanger 10 It will be necessary to heat.
[0043] なお、室内熱交換器 10の加熱を行う代わりに、溶出時間を長めに設けるようにして あよい。  [0043] Instead of heating the indoor heat exchanger 10, a longer elution time may be provided.
産業上の利用可能性  Industrial applicability
[0044] 本発明を利用すれば、カビゃ細菌の発生の抑制効果を長期間保持することができ るため、特に、空気調和装置の熱交換器のフィンの表面構成に適用することができる [0044] If the present invention is used, the effect of suppressing the occurrence of mold bacteria can be maintained for a long time, and therefore, it can be applied particularly to the surface configuration of the fins of the heat exchanger of the air conditioner.

Claims

請求の範囲 The scope of the claims
[1] 空気調和装置の熱交換器(10、 20)であって、  [1] A heat exchanger (10, 20) for an air conditioner,
フィン基板(50)と、  The fin substrate (50);
前記フィン基板(50)の表層側に形成され、抗菌剤、防カビ剤および抗菌防カビ剤 (71)の少なくともいずれ力、 1つの水に対する溶出量に温度依存性を有する溶出剤を 含む塗膜層(70)と、  A coating film formed on the surface layer side of the fin substrate (50) and including an eluent having at least one of an antibacterial agent, an antifungal agent, and an antibacterial and antifungal agent (71), and an eluent having a temperature dependency on an elution amount with respect to one water Layer (70),
を備えた空気調和装置の熱交換器 (10、 20)。  Air conditioner heat exchanger with (10, 20).
[2] 前記溶出剤(71)は、 20°Cにおける水に対する溶出量よりも 40°Cにおける水に対 する溶出量のほうが 1. 5倍以上大きい、 [2] The eluent (71) has an elution amount for water at 40 ° C that is 1.5 times greater than that for water at 20 ° C.
請求項 1に記載の空気調和装置の熱交換器(10、 20)。  The heat exchanger (10, 20) of the air conditioner according to claim 1.
[3] 前記塗膜層(70)は、親水性剤を有しており、 [3] The coating layer (70) has a hydrophilic agent,
前記溶出剤は、少なくとも前記親水性剤を介して前記フィン基板(50)に担持され ており、 20°Cにおいて前記塗膜層(70)から水に溶出する溶出量よりも 40°Cにおい て前記塗膜層(70)から水に溶出する溶出量のほうが 1. 5倍以上大きい、 請求項 1または 2に記載の空気調和装置の熱交換器(10、 20)。  The eluent is supported on the fin substrate (50) through at least the hydrophilic agent, and at 20 ° C., the elution amount at 40 ° C. is higher than the elution amount eluted from the coating layer (70) into water. The heat exchanger (10, 20) for an air conditioner according to claim 1 or 2, wherein the amount of elution from the coating layer (70) into water is 1.5 times or more larger.
[4] 前記溶出剤は、少なくともジンクピリチオンを含んでいる、 [4] The eluent contains at least zinc pyrithione.
請求項 1から 3のいずれ力、 1項に記載の空気調和装置の熱交換器(10、 20)。  The heat exchanger (10, 20) of any one of claims 1 to 3, the air conditioner according to claim 1.
[5] 請求項 1から 4のいずれ力、 1項に記載の空気調和装置の熱交換器(10, 20)と、 冷凍サイクルの運転制御によって前記熱交換器の温度を上昇させる溶出制御を行 う制御部(8)と、 [5] The power of any one of claims 1 to 4, the heat exchanger (10, 20) of the air conditioner according to claim 1, and elution control for increasing the temperature of the heat exchanger by operating control of the refrigeration cycle. Control unit (8),
を備えた空気調和装置(100)。  An air conditioner (100) comprising:
[6] 前記制御部(8)は、前記溶出制御に関する積算運転時間が長くなるにつれて、前 記溶出制御に掛ける時間を長くする、 [6] The control unit (8) increases the time taken for the elution control as the integrated operation time for the elution control becomes longer.
請求項 5に記載の空気調和装置(100)。  The air conditioner (100) according to claim 5.
[7] 前記制御部(8)は、前記溶出制御に関する積算運転時間が長くなるにつれて、前 記溶出制御において上昇させる前記熱交換器の温度幅を増大させる、 [7] The control unit (8) increases the temperature range of the heat exchanger to be increased in the elution control as the integrated operation time for the elution control becomes longer.
請求項 5または 6に記載の空気調和装置(100)。  The air conditioner (100) according to claim 5 or 6.
[8] 所定信号を受付ける受付部 (31)をさらに備え、 前記制御部(8)は、前記受付部(31)が前記所定信号を受付けた場合に、前記溶 出制御を行う、 [8] A reception unit (31) for receiving a predetermined signal is further provided, The control unit (8) performs the melting control when the receiving unit (31) receives the predetermined signal.
請求項 5から 7のいずれ力、 1項に記載の空気調和装置(100)。 The air conditioner (100) according to any one of claims 5 to 7, wherein the air conditioner (100).
前記制御部(8)は、冷凍サイクルを冷房運転させた後に、前記溶出制御を行う、 請求項 5から 7のいずれ力、 1項に記載の空気調和装置(100)。  The air conditioner (100) according to any one of claims 5 to 7, wherein the control unit (8) performs the elution control after cooling operation of the refrigeration cycle.
前記制御部(8)は、冷凍サイクルの積算運転時間が所定時間を超えた後、前記溶 出制御を行う、  The controller (8) performs the elution control after the accumulated operation time of the refrigeration cycle exceeds a predetermined time.
請求項 5から 9のいずれ力、 1項に記載の空気調和装置(100)。 The air conditioner (100) according to any one of claims 5 to 9, wherein the air conditioner (100).
前記熱交換器に送風する送風ファン(11)をさらに備え、  A fan (11) for blowing air to the heat exchanger,
前記制御部(8)は、前記溶出制御後に、前記送風ファンによる送風制御を行う、 請求項 5から 10のいずれか 1項に記載の空気調和装置。  The air conditioner according to any one of claims 5 to 10, wherein the control unit (8) performs air blowing control by the air blowing fan after the elution control.
前記制御部(8)は、前記溶出制御を行う直前の運転において前記熱交換器が冷 媒の蒸発器として運転されて!/、な!/、場合には、前記溶出制御を行う前に前記熱交換 器を冷媒の蒸発器として運転させる、  In the operation immediately before performing the elution control, the control unit (8) is operated as a refrigerant evaporator! /, NA! /, In the case where the heat exchanger is operated before performing the elution control. Operating the heat exchanger as a refrigerant evaporator,
請求項 5から 11のいずれ力、 1項に記載の空気調和装置(100)。 The air conditioning apparatus (100) according to any one of claims 5 to 11, wherein the air conditioning apparatus (100).
前記制御部(8)は、前記溶出制御を行う直前の運転において前記熱交換器が冷 媒の凝縮器として運転されている場合には、室内に対する送風を途絶えさせつつ、 前記溶出制御を行う前に前記熱交換器を冷媒の蒸発器として機能させる、 請求項 12に記載の空気調和装置。  When the heat exchanger is operated as a refrigerant condenser in the operation immediately before performing the elution control, the control unit (8) is configured to stop the air blowing to the room and perform the elution control. 13. The air conditioner according to claim 12, wherein the heat exchanger functions as a refrigerant evaporator.
PCT/JP2007/073771 2006-12-11 2007-12-10 Heat exchanger and air conditioner having heat exchanger WO2008072593A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-333682 2006-12-11
JP2006333682A JP2008145063A (en) 2006-12-11 2006-12-11 Heat exchanger, and air conditioner comprising the same

Publications (1)

Publication Number Publication Date
WO2008072593A1 true WO2008072593A1 (en) 2008-06-19

Family

ID=39511613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073771 WO2008072593A1 (en) 2006-12-11 2007-12-10 Heat exchanger and air conditioner having heat exchanger

Country Status (3)

Country Link
JP (1) JP2008145063A (en)
TW (1) TW200840987A (en)
WO (1) WO2008072593A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392371B2 (en) * 2011-05-31 2014-01-22 ダイキン工業株式会社 Heat exchanger fins, heat exchanger and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061995A (en) * 2000-08-16 2002-02-28 Fujitsu General Ltd Method and apparatus for controlling air conditioner
JP2006001852A (en) * 2004-06-16 2006-01-05 Matsushita Electric Ind Co Ltd Antibacterial antifungal resin shaped article and air conditioner using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061995A (en) * 2000-08-16 2002-02-28 Fujitsu General Ltd Method and apparatus for controlling air conditioner
JP2006001852A (en) * 2004-06-16 2006-01-05 Matsushita Electric Ind Co Ltd Antibacterial antifungal resin shaped article and air conditioner using the same

Also Published As

Publication number Publication date
JP2008145063A (en) 2008-06-26
TW200840987A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
EP3591305B1 (en) Mold prevention method for air conditioner
JP5092647B2 (en) Ventilation air conditioner
JP2002286278A (en) Air conditioner
JP2009058175A (en) Ventilation air-conditioning device
CN112254219A (en) Self-cleaning control method for indoor unit of air conditioner
JP2008138913A (en) Air conditioner
JP5392371B2 (en) Heat exchanger fins, heat exchanger and air conditioner
JP2009236381A (en) Indoor unit for air conditioner
JP2008190789A (en) Air conditioner
JP5272360B2 (en) Ventilation air conditioner
JP2002323250A (en) Air conditioner
JP5104494B2 (en) Air conditioner
WO2008072593A1 (en) Heat exchanger and air conditioner having heat exchanger
JPH1163632A (en) Air conditioner
JP2008202931A5 (en)
JP2010276240A (en) Air conditioner
JP2003014334A (en) Air conditioner and drying operation method of indoor unit thereof
JP4259572B2 (en) Heat exchanger
JP2008057861A (en) Air conditioner
KR200346607Y1 (en) Evaporator of air conditioner
JP4623337B2 (en) Air conditioner
JP2006322677A (en) Antibacterial material and device comprising the same
JP5910007B2 (en) Air conditioning system
JP6994599B1 (en) Air conditioner
JP7034338B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850345

Country of ref document: EP

Kind code of ref document: A1