WO2008072426A1 - Press machine, controller and control method of press machine - Google Patents

Press machine, controller and control method of press machine Download PDF

Info

Publication number
WO2008072426A1
WO2008072426A1 PCT/JP2007/071200 JP2007071200W WO2008072426A1 WO 2008072426 A1 WO2008072426 A1 WO 2008072426A1 JP 2007071200 W JP2007071200 W JP 2007071200W WO 2008072426 A1 WO2008072426 A1 WO 2008072426A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
speed
press
value
command speed
Prior art date
Application number
PCT/JP2007/071200
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Takahashi
Dai Onishi
Kazumichi Okajima
Original Assignee
Ihi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihi Corporation filed Critical Ihi Corporation
Publication of WO2008072426A1 publication Critical patent/WO2008072426A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/14Control arrangements for mechanically-driven presses
    • B30B15/148Electrical control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/26Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by cams, eccentrics, or cranks
    • B30B1/266Drive systems for the cam, eccentric or crank axis

Definitions

  • the present invention relates to a press machine having a mechanism for converting a rotary motion into a reciprocating motion, and a control device and control method thereof.
  • Press machines include a hydraulic press that drives a slide by hydraulic pressure and a mechanical press that drives a slide by a mechanical mechanism.
  • a crank press is a type of mechanical press, and is a press that rotates a crankshaft by a motor.
  • the slide is moved up and down by the rotation of the crankshaft, and the rotational motion of the crankshaft is converted into the reciprocating motion of the slide.
  • An upper mold is fixed to the lower surface of the slide, and when the slide is lowered, the workpiece is sandwiched between the upper mold and the lower mold placed below the slide to form the workpiece. (Press).
  • the mechanical press uses a mechanical press that uses a flywheel in which rotational energy is stored, and a machine that uses a servo motor that can freely adjust forward rotation, reverse rotation, and speed change without using a flyhole.
  • a press uses a mechanical press that uses a flywheel in which rotational energy is stored, and a machine that uses a servo motor that can freely adjust forward rotation, reverse rotation, and speed change without using a flyhole.
  • a press machine using a flywheel transmits the rotational driving force of a motor 41 to a flywheel 47 via a pulley 43 and a transmission belt 45, for example, as shown in FIG. clutch
  • the main gear 51 is fixed to one end of the crankshaft 53, and the crankshaft 53 is
  • One end of a connecting member 55 is connected to the eccentric part of the crankshaft 53, and a slide 57 is connected to the other end of the connecting member 55. Thereby, the rotational motion of the crankshaft 53 is converted into the reciprocating linear motion of the slide 57, and the slide 57 is moved up and down.
  • an electric energy storage capacitor is connected to an AC power supply facility, and accumulated in the capacitor in the rotation angle region of the crankshaft that presses the workpiece. Electric energy is supplied to the servo motor.
  • the AC power supply equipment is miniaturized, and energy required for pressing is ensured.
  • the required motor torque is determined for each rotation angle of the rotating body (crankshaft, etc.) according to the characteristics of the press machine, and this required motor torque is determined from a predetermined motor torque reference value. If the rotation angle of the rotating body is smaller, the rotation command speed of the motor is increased than the constant command speed, and if the rotation angle of the rotation body is greater than the motor torque reference value, the rotation command speed of the motor is greater than the constant command speed. Has also decreased. This effectively reduces the maximum motor torque value. As a result, the motor and the motor drive circuit can be reduced in size and the power consumption can be reduced.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-344946 “Press Machine”
  • Patent Document 2 Japanese Patent Application 2006-105575 "Press machine, press machine control device and control Method"
  • Patent Document 2 the required motor torque described above varies depending not only on the rotation angle of the rotating body but also on the fluctuation of the press operation speed or the press load energy.
  • the press operating speed corresponds to the speed of the reciprocating motion of the slide force.
  • the press load energy can be expressed by the average rotational speed of the motor 41 over the period in which the slide reciprocates for the press. This corresponds to the amount of work performed by the press machine or the energy consumed by the press machine during this period, and is determined by, for example, the type of press mold and the cushion set pressure.
  • an object of the present invention is to improve the invention of Patent Document 2 and, when the press operation speed or the press load energy fluctuates, the required motor torque for each value of the press operation speed or the press load energy. This makes it possible to save the labor required in advance and to enable optimum control even when the press operation speed or press load energy fluctuates, and to reduce the motor power under a wide range of operation conditions.
  • a motor In order to achieve the above object, according to the present invention, a motor, a rotating mechanism that is rotationally driven by the motor, a converting mechanism that converts the rotating motion into a reciprocating motion, and the converting mechanism are connected.
  • a reciprocating slide and when the motor is rotated at a constant command speed, the required motor torque varies according to the rotation angle of the rotating body.
  • An angle detection device for detecting the torque, a torque determination device for determining a required motor torque in accordance with the characteristics of the press machine based on the value of the rotation angle to which the force is also input, and the required motor torque is predetermined.
  • a correction device that corrects the motor according to the movement, and the maximum amount of power consumption of the motor is determined by both the amount by which the speed adjustment device increases the rotation command speed and the amount by which the correction device corrects the increase amount.
  • the speed adjustment device causes the motor rotation at the rotation angle of the rotating body where the required motor torque is smaller than a predetermined motor torque reference value.
  • the command speed is increased from the constant command speed, and in addition to this, the correction device corrects the increased amount according to the change in the press operation speed or the press load energy.
  • the motor is operated at a rotation command speed that reflects both the amount by which the speed adjustment device increases the rotation command speed and the amount by which the correction device corrects the increase command so as to reduce the maximum power consumption of the motor. Rotation drive.
  • a motor a conversion mechanism that has a rotating body that is rotationally driven by the motor, converts the rotational motion into a reciprocating motion
  • the conversion mechanism includes: A control device for a press machine, wherein a required motor torque varies according to a rotation angle of the rotating body when the motor is rotated at a constant command speed.
  • An angle detection device that detects the rotation angle of the machine, a torque determination device that determines a required motor torque according to the characteristics of the press machine based on the value of the rotation angle input from the angle detection device, and the required motor torque
  • a speed adjusting device that reduces the rotation command speed of the motor below the constant command speed at a rotation angle of the rotating body that is greater than a predetermined motor torque reference value
  • a correction device that corrects the amount by which the speed adjustment device decreases the rotation command speed in accordance with a change in press operation speed or press load energy, and the amount by which the speed adjustment device decreases the rotation command speed;
  • the motor rotates the motor at a rotation command speed that reflects both the amount of correction by the correction device to reduce the maximum power consumption of the motor.
  • the speed adjustment device causes the motor rotation at the rotation angle of the rotating body where the necessary motor torque is larger than a predetermined motor torque reference value. Force to reduce command speed below constant command speed In addition to this, corrector force This amount of reduction is corrected according to changes in press operation speed or press load energy. Furthermore, the rotation command speed reflecting both the amount by which the speed adjustment device decreases the rotation command speed and the amount by which the correction device corrects the decrease by the rotation command speed to reduce the maximum power consumption of the motor. Is driven to rotate.
  • a motor a conversion mechanism that has a rotating body that is rotationally driven by the motor, converts the rotational motion into a reciprocating motion
  • the conversion mechanism includes: A control device for a press machine, wherein a required motor torque varies according to a rotation angle of the rotating body when the motor is rotated at a constant command speed.
  • An angle detection device that detects the rotation angle of the machine, a torque determination device that determines a required motor torque according to the characteristics of the press machine based on the value of the rotation angle input from the angle detection device, and the required motor torque At the rotation angle of the rotating body that is smaller than a predetermined motor torque reference value, the rotation command speed of the motor is increased above the constant command speed, and the required motor torque is determined in advance.
  • a speed adjustment device that reduces a rotation command speed of the motor below the constant command speed at a rotation angle of the rotating body that is greater than a reference value of the motor torque, and further, the speed adjustment device is configured to rotate the rotation.
  • a correction device that corrects the amount by which the command speed is increased or decreased according to a change in press operation speed or press load energy, the amount by which the speed adjustment device increases or decreases the rotation command speed, and the correction device.
  • the motor is driven to rotate at a rotation command speed that reflects both the amount that increases or decreases the amount that increases or decreases so as to reduce the maximum power consumption of the motor.
  • Control equipment A device is provided.
  • the speed adjustment device causes the motor rotation at the rotation angle of the rotating body where the required motor torque is smaller than a predetermined motor torque reference value. If the rotational speed of the rotating body is such that the command speed is increased above the constant command speed and the required motor torque is greater than the predetermined motor torque reference value, the motor rotation command speed is reduced below the constant command speed.
  • a correction device corrects this increase or decrease in response to changes in press operating speed or press load energy.
  • a rotation command that reflects both the amount by which the speed adjustment device increases or decreases the rotation command speed and the amount by which the correction device corrects the increase or decrease by reducing the maximum power consumption of the motor. The motor is driven to rotate at speed.
  • the correction device increases the amount by which the speed adjustment device increases or decreases the rotation command speed as the press operation speed is lower or as the press load energy is higher. Make corrections.
  • the motor power can be effectively reduced by increasing the amount by which the rotation command speed is increased or decreased as the press operation speed is reduced or as the press load energy is increased.
  • the correction device has an input unit for inputting a value of a press operation speed or a press load energy.
  • the correction device can correct the amount by which the speed adjustment device increases or decreases the rotation command speed.
  • the speed adjustment device sets the motor rotation command speed by the magnitude of a value obtained by multiplying a difference between the required motor torque and the motor torque reference value by a certain gain. Increase or decrease from the constant command speed. As described above, since the rotation command speed of the motor is increased or decreased by an amount proportional to the torque fluctuation amount, rotational energy can be given to the rotation system more efficiently. Further, the speed adjusting device can reduce the rotation command speed of the motor. The amount of increase and the amount of decrease of the motor rotation command speed may be equal in time integration value over a predetermined time.
  • the amount by which the rotation command speed is increased and the amount by which the rotation command speed is decreased are equal to the time integration value over a predetermined time, so that the press operation time over a predetermined time is rotated at a constant command speed. It is possible to match the press operation time over a predetermined time, and it is not necessary to reduce the press production speed.
  • the control device further includes a measurement calculation device for determining the press load energy, and the measurement calculation device is a kinetic energy force of a press movement mechanism driven by the motor.
  • a first measurement unit that measures an amount of change in one reciprocation period of the slide, a second measurement unit that measures an energy value given to the press motion mechanism by the motor in the one reciprocation period, and a first measurement unit,
  • a calculating unit that calculates the press load energy based on the amount of change of the kinetic energy and the energy value measured by the second measuring unit.
  • a press load energy is used to correct the amount by which the rotation command speed is increased or decreased.
  • a motor a conversion mechanism that has a rotating body that is rotationally driven by the motor, and converts the rotational motion into a reciprocating motion, and a slide that is connected to the converting mechanism and reciprocates.
  • a method for controlling a press machine in which the required motor torque varies according to the rotation angle of the rotating body when the motor is rotated at a constant command speed comprising: detecting the rotation angle of the rotating body; And a press machine based on the detected rotation angle value. Determining the required motor torque in accordance with the characteristics of the motor, and at the rotation angle of the rotating body where the required motor torque is smaller than a predetermined motor torque reference value, the rotation command speed of the motor is set to the constant command.
  • the step of increasing the rotation command speed and the amount by which the rotation command speed is increased are corrected according to the change in the press operation speed or press load energy, and the amount by which the rotation command speed is increased. And a step of rotationally driving the motor at a rotation command speed reflecting both the amount for correcting the amount and reducing the maximum power consumption of the motor.
  • This control method can also achieve the above object in the same manner as the control device for the press machine described above.
  • the necessary motor torque may be determined based on the motor torque of the variable element due to the reciprocating motion of the slide and the motor torque of the variable element due to the rotational motion of the rotating body.
  • the motor rotation speed can be controlled in consideration of the motor torque of the variable element due to the reciprocating motion of the slide and the rotating motion of the rotating body.
  • a motor a rotating mechanism that is driven to rotate by the motor, a conversion mechanism that converts this rotational motion into a reciprocating motion, and a slide that is connected to the converting mechanism and reciprocates.
  • a control method for a press machine in which the required motor torque varies according to the rotation angle of the rotating body when the motor is rotated at a constant command speed.
  • the rotation angle of the rotating body becomes a step in which the rotation command speed of the motor is increased from the constant command speed, and the amount by which the rotation command speed is increased depends on the change in the press operation speed or the press load energy.
  • the correction command, the amount by which the rotation command speed is increased, and the amount by which the increase command is corrected are reflected at the rotation command speed reflecting the maximum power consumption of the motor. And a step of rotating the press.
  • a method of controlling the machine is provided.
  • This control method can also achieve the above-mentioned object, similarly to the control device for the press machine described above.
  • the necessary motor torque can be determined simply by applying the detected rotation angle to the relationship obtained by the trial operation.
  • the correction is performed by the correction device, so that it is not necessary to perform a trial run again to determine the necessary motor torque.
  • a press machine often operates at a low speed at the start of operation, and gradually increases the speed while checking the production quality of the panel.
  • the correction device can cope with fluctuations in the press operation speed while continuing the press operation without performing the test operation again.
  • FIG. 1 is a diagram showing a configuration of a conventional press machine using a flywheel.
  • FIG. 2 is a diagram showing a configuration of a press machine according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing crankshaft rotation angle, command speed value, and required motor torque fluctuation with respect to time when the motor is rotated at a constant speed.
  • FIG. 4 is a diagram showing a flow of processing of a calculation unit according to the first embodiment of the present invention.
  • FIG. 5 is a graph showing fluctuations in necessary motor torque over one cycle of crankshaft rotation.
  • FIG. 6 is a diagram showing the rotation angle of the crankshaft and the adjusted command speed value and torque fluctuation when the speed is adjusted.
  • FIG. 7 Shows correction gains for two variables: press operation speed and press load energy.
  • FIG. 8 is a diagram showing a configuration example for measuring press load energy.
  • FIG. 9 is a diagram showing a configuration of a press machine according to a second embodiment of the present invention.
  • FIG. 10 is a diagram showing a flow of processing of a calculation unit according to the second embodiment of the present invention.
  • FIG. 11 is a diagram showing a configuration of a press machine according to a third embodiment of the present invention.
  • the portion for calculating the necessary motor torque based on the input rotation angle of the crankshaft 7 constitutes the “torque determination device” of the present invention.
  • the portion for calculating the adjusted command speed straight based on the calculated required motor torque is the “speed adjustment device” of the present invention.
  • the “correction device” of the present invention includes a correction unit 27a and a correction unit 27b.
  • FIG. 2 is a diagram showing a configuration of the press machine 10 of the present invention.
  • the press machine 10 includes a motor 1, a pulley 3 and a transmission belt 5 that are rotated by the rotational driving force of the motor 1, and a driving force of the motor 1 is transmitted via the pulley 3 and the transmission belt 5.
  • the rotating flywheel 6 and the crankshaft 7 to which the rotational driving force is transmitted from the flywheel 6 are connected to the flywheel 6 and the crankshaft 7 in the ON state (connected state), and the crankshaft is in the OFF state (disconnected state).
  • the clutch 9 that separates 7 from the flywheel 6, the slide 11 that moves up and down as the crankshaft 7 rotates, and one end connected to the eccentric part of the crankshaft 7 and the other end connected to the slide 11 And a connecting member 12 that moves up and down.
  • the press machine 10 incorporates a speed control device 15 that controls the rotational speed of the motor 1.
  • the speed control device 15 includes, for example, a speed command unit 17 that outputs a rotation command speed value of the motor 1 (hereinafter referred to as a command speed value) according to a press condition of the workpiece input from the outside, and a speed command unit
  • the command speed value from 17 is received via the command adjuster 19,
  • a motor drive unit 21 for example, a drive circuit for supplying a current corresponding to the motor 1 to the motor 1;
  • the command speed value from the speed command unit 17 is input to the command adjustment unit 19 via the limiter 18a.
  • the motor drive unit 21 supplies current to the motor 1 based on the input command speed value.
  • the motor drive unit 21 receives a detection value from an angular speed sensor 23 such as a tachometer that detects the rotation speed of the motor 1, determines whether the detected rotation speed of the motor 1 is the command speed value, and the speed is different. If so, adjust the current to motor 1. As a result, the detected rotational speed of the motor 1 is controlled to be a constant command speed value.
  • an angular speed sensor 23 such as a tachometer that detects the rotation speed of the motor 1
  • FIG. 3 is a graph showing the required torque fluctuation of the motor 1 when the press machine 10 is operated with the motor 1 rotated at a constant command speed (ie, constant speed) as described above.
  • the required motor torque refers to the required torque of the motor 1 determined by the characteristics of the press machine, the workpiece to be pressed, the desired constant rotational speed of the crankshaft 7, and the like.
  • the horizontal axis indicates time
  • the vertical axis indicates the rotation angle of the crankshaft 7. Since the rotation angle of the crankshaft 7 is displaced from 0 to 360 degrees every press cycle, the same waveform is repeated every press cycle in FIG. 3 (A).
  • the horizontal axis represents time
  • the vertical axis represents the commanded speed value output by the speed command unit 17.
  • the command speed value is constant.
  • FIG. 3C shows the required torque fluctuation of the motor 1 when the press machine 10 is operated with the motor 1 rotated at a constant command speed.
  • the required torque of the motor 1 is increased according to time by various mechanical elements coupled to the crankshaft 7. Fluctuates. That is, the required motor torque of the press machine varies according to the rotation angle of the crankshaft 7.
  • the press machine 10 includes an angle sensor such as a rotary encoder that detects the rotation angle of the main gear 29 coupled to one end of the crankshaft 7. S 25 is further provided.
  • an angle sensor such as a rotary encoder that detects the rotation angle of the main gear 29 coupled to one end of the crankshaft 7. S 25 is further provided.
  • the speed control device 15 is a motor that has a required torque force S when the motor 1 is rotated at a constant command speed, and is smaller than the motor torque reference value shown in FIG. 3 (C).
  • the rotation command speed of the motor 1 is controlled to be higher than the constant command speed in Fig. 3 (B).
  • the motor torque reference value is, for example, the average value over one cycle of the fluctuating required motor torque indicated by the solid line in FIG. 3 (C) or the average value over a predetermined time of the required motor torque.
  • the present invention is not limited to this, and is larger than the minimum value of the required motor torque indicated by the solid line in FIG. 3 (C) and smaller than the maximum value of the required motor torque shown by the solid line in FIG. 3 (C). ! / Is a constant value.
  • the speed control device 15 is required when the motor 1 is rotated at the constant command speed. At the rotation angle of the crankshaft 7 at which the motor torque is larger than the motor torque reference value, the speed control device 15 The rotation command speed is decreased from the constant command speed. As a result, the maximum motor norekuy can be further reduced.
  • the speed control device 15 of the press machine 10 includes a calculation unit 26 that outputs a speed adjustment value of the motor 1 according to an output value from the angle sensor 25, and a calculation. And a command adjusting unit 19 that increases or decreases the command speed value input from the speed command unit 17 by the amount of the speed adjustment value input from the unit 26.
  • the command adjusting unit 19 outputs the command speed value thus increased / decreased to the motor driving unit 21.
  • the speed adjustment value from the calculation unit 26 is input to the command adjustment unit 19 via the limiter 18b.
  • the speed control device 15 further includes a correction device described later.
  • the correction device includes a correction unit 27a (see FIG. 2) and a correction unit 27b.
  • the angle sensor 25 detects the rotation angle of the main gear 29 coupled to the crankshaft 7, thereby detecting the rotation angle of the crankshaft 7 and continuously outputting the detected value.
  • the calculation unit 26 functions as a speed adjustment function that calculates a speed adjustment value for increasing or decreasing the rotation command speed of the motor 1 in accordance with the input rotation angle value of the crankshaft 7.
  • FIG. 4 is a diagram showing a flow from the input to the speed adjustment function to the output in the calculation unit 26.
  • die cushion force S-slide is determined from the set cushion force. Also in this case, die cushion force S slide The force used varies according to the rotation angle of the crankshaft.
  • the press is modeled as a spring, and only when this panel is contracted (that is, only when the upper and lower molds are in contact), the generated press force is calculated as the product of the panel constant and the amount of contraction.
  • the press pressure changes according to the rotation angle of the crankshaft.
  • a counter balancer that urges slide 11 upward or downward to press machine 10 in order to balance the weight of slide 11 and the force acting on slide 11 due to the weight of the machine element connected to slide 11! May be provided.
  • the counter balancer is constituted by a pneumatic cylinder or the like, and the magnitude of the force that the counter balancer acts on the slide 11 varies depending on the position of the slide 11, that is, the rotation angle of the crankshaft 7.
  • each force acting on the slide 11 is obtained in advance as a function of the rotation angle of the crankshaft.
  • calculation of the required motor torque of the variable element due to the rotational movement of the crankshaft (indicated by S2 in Fig. 4) is also performed.
  • the required motor torque generated by converting the rotary motion into the reciprocating motion of the slide is obtained as a function of the rotation angle of the crankshaft.
  • the required motor torque generated by the eccentricity of the crankshaft is obtained as a function of the crankshaft rotation angle.
  • This necessary motor torque is also obtained in advance as a function of the rotation angle of the crankshaft, and the value of the necessary motor torque is calculated according to the rotation angle input by this function.
  • Fig. 5 (A) shows an example of this required motor torque.
  • the horizontal axis indicates the rotation angle of the crankshaft, and the vertical axis indicates the torque fluctuation ratio without having a unit.
  • the required motor torque that is the sum of the required motor torque of the variable element due to the reciprocating motion of the slide 11 and the required motor torque of the variable element due to the rotational motion of the crankshaft, and the motor torque reference
  • the difference from the value is calculated as a torque fluctuation value.
  • FIG. 5 (B) shows the torque fluctuation value thus extracted.
  • the horizontal axis represents the rotation angle of the crankshaft
  • the vertical axis represents the torque fluctuation ratio without having a unit.
  • the value obtained by integrating the necessary motor torque expressed by the function shown in FIG. 5A with the rotation angle over one cycle (0 to 360 degrees) of the rotation angle of the crankshaft 7 becomes zero.
  • the position of the horizontal axis that is, the motor torque reference value
  • the position of the horizontal axis is determined so that the average value of the necessary motor torque over one rotation of the crankshaft 7 becomes zero.
  • the torque fluctuation value which is the difference between the necessary motor torque and the motor torque reference value, is multiplied by a constant gain (magnification), and this is output as a speed adjustment value.
  • the required motor torque corresponding to the characteristics of the press machine 10 is calculated, and the speed adjustment value is calculated according to the required motor torque.
  • the speed adjustment value is calculated so that the rotation command speed is increased from the constant command speed. Also, when the motor 1 is rotated at the constant command speed, the required motor torque becomes larger than the motor torque reference value. At the rotation angle of the crankshaft 7, the speed adjustment value is calculated so that the rotation command speed of the motor 1 is reduced below the above-mentioned constant command speed.
  • the above-described speed adjustment function is composed of, for example, a force S formed by an electronic circuit incorporated in the calculation unit 26.
  • the calculation unit 26 functioning as a speed adjustment function applies the rotation angle to the speed adjustment function and responds to the rotation angle. Calculate the speed adjustment value.
  • the speed adjustment value calculated by the calculation unit 26 is output to the command adjustment unit 19.
  • the command adjustment unit 19 outputs a command speed value that is increased or decreased by adding the speed adjustment value from the calculation unit 26 to the constant command speed value from the speed command unit 17.
  • This command speed value is input to the motor drive unit 21, and the motor drive unit 21 adjusts the current supplied to the motor 1 so that the rotation speed of the motor 1 becomes the input command speed value.
  • This adjustment can be performed using the speed sensor 23 as described above.
  • the rotation command speed of the motor 1 is increased at the rotation angle of the crankshaft 7 where the required motor torque is smaller than the motor torque reference value in FIG. At the rotation angle of the crankshaft 7 where the required motor torque is larger than the motor torque reference value, the rotation command speed of the motor 1 is reduced.
  • FIG. 6 (B) shows the change over time of the command speed value adjusted in this way.
  • FIG. 6C shows the motor torque fluctuation in this case.
  • the broken line in Fig. 6 (B) shows the constant command speed value in Fig. 3 (B) for comparison, and the broken line in Fig. 6 (C) shows the necessary motor in Fig. 3 (C) for comparison. Torque fluctuation is shown.
  • FIG. 6 (A) shows the time change of the rotation angle of the crankshaft 7 corresponding to FIG. 3 (A).
  • the maximum motor torque value can be reduced, the electric capacities of the motor and the motor drive unit can be reduced, and the motor and the motor drive unit can be reduced in size.
  • the amount by which the motor rotation command speed is increased from the constant command speed and the amount by which the motor rotation command speed is decreased from the constant command speed by the speed adjustment function are the crankshaft 7
  • the time integral over one period (0 to 360 degrees) of the rotation angle is equal. Therefore, the amount of increase in rotation command speed is the same as the amount of decrease in time integration value over one rotation angle period, so the press operation time over one rotation angle period is the same as rotating the motor at a constant command speed. In this case, it is possible to match the press operation time over one cycle of the rotation angle, and it is not necessary to reduce the press production speed.
  • a correction device having a correction unit 27a and a correction unit 27b is further incorporated in the speed control device 15.
  • the correction unit 27a the correction unit 27b will be described.
  • the correction unit 27a performs correction to increase the absolute value of the speed adjustment value output from the calculation unit 26 as the press operation speed decreases or the press load energy increases. As a result, when the press operation speed or press load energy fluctuates, the required motor torque is calculated in advance for each value of the press operation speed or press load energy. In addition to saving power, optimal control is possible even when the press operating speed or press load energy fluctuates, and motor power can be reduced over a wide range of operating conditions.
  • the force correction unit 27a and the calculation unit 26 in which the correction unit 27a and the calculation unit 26 are separate blocks may be integrated into one block.
  • correction unit 27a will be described in detail.
  • This correction gain is determined with respect to the press operation speed or the press load energy as shown in FIG.
  • the origin corresponds to the press operation speed and the press load energy when the calculation unit 26 is set. That is, in FIG. 7, the press operation speed and the press load energy indicate values relative to the press operation speed and the press load energy when the calculation unit 26 is set!
  • the correction gain is determined so that the value increases when the press operation speed decreases and when the press load energy increases.
  • the gain table is set in the correction unit 27a as a function that outputs the correction gain for the two-dimensional variables of the press operation speed and the press load energy.
  • Press operation speed or press load energy fluctuates by correcting the speed adjustment value by multiplying the speed adjustment value output from the calculation unit 26 based on the rotation angle of the crankshaft 7 by the correction gain shown in FIG.
  • the motor torque fluctuation can be kept small, and the power consumption of the motor can be kept low.
  • press machines often operate at a low speed at the start of operation, and gradually increase the speed while checking the production quality of the panel.
  • Part 27a can keep the power consumption of the press equipment low.
  • the load energy E of the press largely depends on the mold and the cushion set pressure. Basically, the force that needs to be set for each mold can be determined as follows.
  • equation (2) is treated as an approximate value.
  • Die trie is a test operation after installing the press machine or after changing the mold.
  • the press load energy can be obtained by performing one cycle operation during such a die try.
  • the kinetic energy of the press motion mechanism driven by the motor 1 changes during one reciprocation period of the slide (the amount of decrease), and the motor 1 moves during one reciprocation period of the slide.
  • the sum of energy values given to the press motion mechanism is obtained as press load energy.
  • the press movement mechanism is as follows: (in the order in which the driving force is transmitted from the motor 1), the pulley 3, the transmission benore 5, the fly hoist 6, the gear, the main gear 29, the crank wheel 7, Includes 12 years old and 11 slides.
  • the press load energy is obtained by measuring the motor speed and motor torque at the time of die-try before continuous production.
  • the press load energy is obtained by approximating the press motion mechanism as a flywheel.
  • the integration interval [t, t] is the time from immediately after the clutch is connected to just before the clutch is disconnected.
  • the first term is the difference between the kinetic energy of the flywheel 6 immediately after the start of operation and the kinetic energy of the flywheel 6 immediately after the end of operation
  • the second term is the flywheel during one cycle of the motor.
  • the energy supplied to 6. In other words, the amount of decrease in kinetic energy at the end of one cycle and the total amount of energy supplied are the press load energy consumed in one cycle.
  • inertia I that considers the entire force press motion mechanism that approximates inertia I of flywheel 6 may be inertia 1 of woman 1].
  • the inertia that takes into account the pulley 3, the transmission belt 5, the flywheel 6, the gear, the main gear 29, the crankshaft 7, the connecting member 12, and the slide 11 included in the press motion mechanism is the female 1] inertia. I may also be used.
  • the speed control device 15 includes a measurement calculation device that obtains press load energy by performing one-cycle operation during die try.
  • the measurement / calculation device 30 includes a first measurement unit 31 that measures the amount of change in one reciprocation period of the kinetic energy slide 11 of the press movement mechanism of the press machine 10, and one reciprocation period.
  • the second measuring unit 32 that measures the energy value given to the press movement mechanism by the motor 1 and the amount of change in the kinetic energy measured by the first measuring unit 31 and the second measuring unit 32 A calculating unit 33 for calculating press load energy based on the energy value.
  • the first measurement unit 31 includes an angular velocity sensor 23, data latches 31a and 31b, and a calculator 31c.
  • the data latch 31a operates when receiving a clutch connection command signal output from the clutch control unit, receives the speed value n from the angular velocity sensor 23, and outputs the speed value n.
  • the data latch 31a may be configured to operate immediately after the connection of the clutch 9 is completed after receiving the clutch connection command signal.
  • the data latch 31b is activated when an inverter receives a clutch disengagement command signal (this signal force indicates the end of one reciprocating motion of the slide 1 1) from the clutch control unit via the inverter.
  • the speed value n is output.
  • the data latch 31b has the clutch 9 disengaged.
  • the speed value n received from the angular velocity sensor 23 and stored immediately before receiving the clutch disengagement command signal may be output so that the clutch disengagement command signal is received.
  • the arithmetic unit 31c receives the speed from the data latches 31a and 31b.
  • the second measuring unit 32 includes a torque detector (not shown) incorporated in the motor driving unit 21, an angular velocity sensor 23, a multiplier 32a, and an integrator 32b.
  • the torque detector measures and outputs the torque value ⁇ of the motor 1.
  • the angular velocity sensor 23 measures and outputs the velocity value ⁇ .
  • the multiplier 32a receives the torque value ⁇ from the torque detector and the speed value ⁇ from the angular velocity sensor 23, multiplies them, and outputs a value ⁇ ⁇ ⁇ .
  • the integrator 32b receives the value ⁇ ⁇ ⁇ from the multiplier 32a, calculates the value of the second item of the woman 1] based on the input value ⁇ ⁇ ⁇ , and outputs it.
  • the calculation unit 33 adds the value input from the calculator 31c and the value input from the integrator 32b, and outputs the value of the above-mentioned woman 1] as the press load energy value.
  • the value of the correction gain by the correction unit 27a is determined by the press speed and the press load energy, which are input values to the correction unit 27a.
  • the press operation speed and press load energy shown in FIG. 7 may be input to the correction unit 27a automatically or by an operator.
  • the rotation speed value from the angular velocity sensor 23 or the command adjustment unit 19 is averaged over one reciprocating movement period of the slide, and this average value is input to the correction unit 27a as the press operating speed.
  • a calculation unit may be provided.
  • the input unit force correction unit 27a that receives the average value from the average value calculation unit may be provided.
  • the output of the press load energy measuring device described above may be input to the correction unit 27a.
  • it may be provided in the input unit force correcting unit 27a that receives the press load energy output from the measuring device of FIG. In this way, the press operation speed and the press load energy may be automatically input to the correction unit 27a.
  • the input unit that receives the press operation speed or the press load energy calculated or measured by other appropriate means is used as another appropriate method. You may comprise in steps.
  • the press operation speed and the press load energy may be input to the correction unit 27a by the operator operating a predetermined operation button.
  • this operation button is another appropriate force that constitutes the input unit to the correction unit 27a, and is an input that inputs the press operation speed or the press load energy to the correction unit 27a when operated by the operator. You can configure the part.
  • the correction unit 27b includes a gain multiplication unit that multiplies the linear force value output from “(1) sliding friction” by a correction gain, (2) A gain multiplier that multiplies the linear force value output from “sliding inertia” by the correction gain, and a gain multiplier that multiplies the linear force value output from “(3) Cushion” by the correction gain. Section, a gain multiplier that multiplies the linear force value output from the “(4) press pressurizing” force by the correction gain, and a linear force value output from the “(5) counter balancer”. A gain multiplier that multiplies the correction gain, and a gain multiplier that multiplies the linear force value output from “(6) Other elements” by the correction gain.
  • the correction gains by these gain multipliers can be set independently of each other.
  • the method of setting the correction gain of each gain multiplication unit may be the same as the correction gain of the correction unit 27a. That is, from the values of the press operation speed and the press load energy when the calculation unit 26 is set, each gain multiplication unit is set so that the press load energy becomes larger as the press operation speed becomes smaller. Determine the correction gain.
  • Each gain multiplication unit is provided with an input unit for inputting a press operation speed and press load energy. This input unit may have the same configuration as the input unit of the correction unit 27a.
  • correction unit 27b By providing the correction unit 27b, it is possible to set the correction gain for each of the variable elements (1) to (6) in FIG. 4, so that it is possible to achieve a more optimal reduction in power consumption.
  • FIG. 9 shows a second embodiment of the present invention.
  • the portion for calculating the necessary motor torque based on the input rotation angle of the crankshaft 7 constitutes the “torque determination device” of the present invention.
  • the adjusted command speed value is calculated based on the calculated required motor torque.
  • the part which comprises comprises the "speed control apparatus" of this invention.
  • FIG. 9 is a configuration diagram of a press machine 10 ′ according to the second embodiment of the present invention.
  • the press machine 10 ′ of the second embodiment is configured such that the value of the command torque is input from the motor drive unit 21 to the calculation unit 26, and the configuration of the calculation unit 26 is different from that of the first embodiment.
  • the other configuration of the press machine 10 ′ of the second embodiment is the same as that of the first embodiment.
  • the motor drive unit 21 receives the command speed value directly from the speed command unit 17 or via the command adjustment unit 19, and supplies a current having a value corresponding to the command speed value to the motor 1.
  • the value of the actual speed of the motor 1 is input from the speed sensor 23 to the motor drive unit 21, and in response to this, the actual speed of the motor 1 is set to the commanded speed value.
  • the current value is feedback controlled.
  • FIG. 10 shows a configuration of the calculation unit 26 according to the second embodiment.
  • a constant command speed value is input to the motor drive unit 21 from the speed command unit 17 without going through the command adjustment unit 19, and the press machine 10 ′ is tested.
  • the workpiece is actually pressed.
  • the test run may be carried out over one or several cycles at the beginning of the press production operation.
  • a command torque value is input from the motor drive unit 21 to the calculation unit 26, and a rotation angle of the crankshaft 7 is input from the angle sensor 25.
  • the command torque value input from the motor drive unit 21 to the calculation unit 26 is a necessary motor torque value according to the current value supplied to the motor 1 by the motor drive unit 21, and is a value proportional to this current value. Therefore, it is calculated from the value of the current supplied to the motor 1.
  • the relationship between the rotation angle of the crankshaft 7 and the command torque value is obtained and created as a table.
  • the command torque value for each rotation angle of the crankshaft 7 can be obtained by referring to the created table.
  • the relationship between the rotation angle of the crankshaft 7 and the command torque value can be obtained over an arbitrary cycle and created as a table, or the data on the above relationship obtained over several cycles can be obtained for each angle. On average, the data for one cycle may be created as a table.
  • the press may be trial run until the command torque value stabilizes, and after the command torque value stabilizes, data for one cycle may be obtained to create a table.
  • the data in this table which represents the above relationship at the time of stability, may be applied repeatedly in each cycle from the start of the actual operation!
  • the calculation unit 26 During operation, if the rotation angle of the crankshaft 7 is input from the angle sensor 25 to the calculation unit 26, the calculation unit 26 must apply the input rotation angle to the table to correspond to the input rotation angle. Calculate the motor torque value.
  • the calculation unit 26 calculates the difference between the required motor torque and the motor torque reference value, and then multiplies the difference by a certain gain, and performs this multiplication.
  • the adjusted value is output as a speed adjustment value.
  • the subsequent operation is the same as in the first embodiment. The description is omitted. In the actual operation of the press machine 10 ′, the command torque value does not have to be input from the motor drive unit 21 to the calculation unit 26.
  • the required motor torque can be determined simply by applying the detected rotation angle to the table obtained by the trial operation, and the motor rotation can be achieved with a simple configuration and processing.
  • the command speed can be adjusted.
  • the correction unit 27 can cope with fluctuations in the press operation speed while continuing the press operation without performing the test operation again.
  • FIG. 11 is a configuration diagram of a press machine 10 ′ ′ according to the third embodiment of the present invention.
  • an integrator 34 is used instead of the angle sensor 25 of FIG. 2 described in the first embodiment or the second embodiment.
  • the other configuration is the same as the press machine 10 of the first embodiment, and the force corresponding to the first embodiment is described in FIG. It is configured so that the command torque is input from the motor drive unit 21 to the calculation unit 26 during the test run.
  • the adjusted command speed value from the command adjusting unit 19 is input to the integrator 34, and the integrator 34 integrates the input command speed value with time.
  • the force S for obtaining the current rotation angle of motor 1 can be obtained.
  • the current value of the rotation angle of the motor 1 obtained by the integrator 34 in this way is input to the calculation unit 26. Similar to the first embodiment, the calculation unit 26 outputs a speed adjustment value based on the rotation angle value input from the integrator 34. Other configurations and operations are the same as those in the first embodiment.
  • the angle for detecting the rotation angle of the main gear 29 as in the first embodiment can be detected by integrating the command speed value with the integrator 34 over time.
  • the angle sensor 25 can be omitted, the configuration is simplified.
  • the calculation unit 26 outputs the speed adjustment value added to the command speed value from the speed command unit 17, but in the fourth embodiment, the calculation unit 26 The adjustment gain value (magnification) multiplied by the command speed value from the speed command section 19 is output.
  • the command adjustment unit 19 outputs a command speed value adjusted by multiplying the command speed value input from the speed command unit 17 by the adjustment gain input from the calculation unit 26 via the correction unit 27. .
  • the adjustment gain calculated by the calculation unit 26 changes depending on the value of the rotation angle input to the calculation unit 26, and the value of the necessary motor torque shown in FIG. 3C at the input rotation angle.
  • the angle sensor 25 that detects the rotational speed of the main gear 29 described above and the integrator 34 that integrates the command speed value that is input to the motor drive unit 21 over time.
  • the force is configured by other appropriate means. You can also.
  • the angle detection device may be constituted by an angular velocity detection device or a device that detects the position or velocity of the slide 11.
  • the portion for calculating the necessary motor torque based on the input rotation angle of the crankshaft 7 constitutes a torque determination device.
  • the part for calculating the adjusted command speed value based on the calculated required motor torque constitutes a torque determination device.
  • the torque determination device is not limited to the configuration of the above-described embodiment, and an input rotation angle. As long as it determines the required motor torque according to the characteristics of the press machine based on the value of, it should be configured with appropriate means such as an electronic circuit so that this function can be realized.
  • the speed adjusting device is not limited to the configuration of the above-described embodiment, and at the rotation angle of the rotating body (for example, the crankshaft 7) in which the necessary motor torque is smaller than a predetermined motor torque reference value, At the rotation angle of the rotating body where the rotation command speed is increased above the constant command speed or the required motor torque is greater than the predetermined motor torque reference value, the motor rotation command speed is set higher than the constant command speed. If it can be reduced, it may be configured by appropriate means such as an electronic circuit so that the function can be realized.
  • the correction unit 27a multiplies the output from the calculation unit 26 by the correction gain.
  • the correction unit 27a is configured so as to obtain the same effect as the correction unit 27a of the above embodiment.
  • the value may be changed to be added to the output from the calculation unit 26.
  • the configuration of the correction unit 27b is changed so that the correction value is added to the output value from (1) to 1 ⁇ 2) of FIG. 4 so that the same effect as the correction unit 27b of the above embodiment is obtained. May be.
  • the corrector 27a and the corrector 27b may be configured with one of the!
  • the motor rotation command speed is increased from the constant command speed, and the motor rotation command speed is decreased from the constant command speed.
  • the command speed value may be adjusted so that these time integrals over an appropriate predetermined time (for example, 1 minute) are equal depending on various conditions and situations.
  • crankshaft 7 described above is a rotating body, and the crankshaft 7 and the connecting member 12 connected thereto constitute a conversion mechanism that converts the rotational motion of the motor 1 into the reciprocating motion of the slide 11.
  • the conversion mechanism may be configured by a cam or other appropriate member that is rotationally driven by the motor 1.
  • the present invention is a press that is operated by a servo motor without using the flywheel. It can also be applied to machines.
  • the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made within the scope of V and scope without departing from the gist of the present invention.

Abstract

[PROBLEMS] To reduce motor power under wide operational conditions with an optimal control enabled even when a press operation speed or a press load energy changes. [MEANS FOR SOLVING PROBLEMS] The press machine comprises an angle detector (25) for detecting the rotation angle of a body of rotation (7), a device for determining a required motor torque dependent on the characteristics of the press machine based on the value of a rotation angle inputted from the angle detector, and a speed regulator for increasing the rotation command speed of a motor (1) over the above fixed command speed for such an rotation angle of the body of rotation that the required motor torque becomes smaller than a predetermined motor torque reference value. The press machine is further provided with a device (27) for correcting the amount of rotation command speed being increased by the speed regulator depending on variation in press operation speed or press load energy. The motor is rotary driven at such a rotation command speed as reflecting both the amount of rotation command speed being increased by the speed regulator and the amount being corrected by the correction device to correct the increased amount so as to reduce maximum power consumption of the motor.

Description

明 細 書  Specification
プレス機械とその制御装置及び制御方法  Press machine, control device and control method thereof
発明の背景  Background of the Invention
[0001] 本発明は、回転運動を往復運動に変換する機構を有するプレス機械とその制御装 置及び制御方法に関する。  [0001] The present invention relates to a press machine having a mechanism for converting a rotary motion into a reciprocating motion, and a control device and control method thereof.
[0002] プレス機械には、スライドを液圧によって駆動する液圧プレスと、スライドを機械式機 構によって駆動する機械プレスとがある。  [0002] Press machines include a hydraulic press that drives a slide by hydraulic pressure and a mechanical press that drives a slide by a mechanical mechanism.
クランクプレスは、機械プレスの一種であり、クランク軸をモータにより回転駆動する プレスである。かかるクランクプレスでは、クランク軸の回転によりスライドを昇降させ、 クランク軸の回転運動をスライドの往復運動に変換する。スライドの下面には上金型 が固定されており、スライドの下降時に、この上金型と、スライドの下方に配置された 下金型との間で被加工物を挟み込んで被加工物を成形(プレス)する。  A crank press is a type of mechanical press, and is a press that rotates a crankshaft by a motor. In such a crank press, the slide is moved up and down by the rotation of the crankshaft, and the rotational motion of the crankshaft is converted into the reciprocating motion of the slide. An upper mold is fixed to the lower surface of the slide, and when the slide is lowered, the workpiece is sandwiched between the upper mold and the lower mold placed below the slide to form the workpiece. (Press).
[0003] また、機械プレスには、回転エネルギが蓄積されるフライホイールを用いる機械プレ スと、フライホールを用いずに、正転、逆転及び速度変化を自由に調節できるサーボ モータを用いた機械プレスとがある。 [0003] In addition, the mechanical press uses a mechanical press that uses a flywheel in which rotational energy is stored, and a machine that uses a servo motor that can freely adjust forward rotation, reverse rotation, and speed change without using a flyhole. There is a press.
[0004] フライホイールを用いたプレス機械は、例えば、図 1に示すように、モータ 41の回転 駆動力をプーリ 43及び伝達ベルト 45を介してフライホイール 47に伝達する。クラッチA press machine using a flywheel transmits the rotational driving force of a motor 41 to a flywheel 47 via a pulley 43 and a transmission belt 45, for example, as shown in FIG. clutch
49は、接続状態でフライホイール 47をメインギヤ 51に連結し、切断状態でフライホイ ール 47をメインギヤ 51から分離する。 49 connects the flywheel 47 to the main gear 51 in the connected state, and separates the flywheel 47 from the main gear 51 in the disconnected state.
メインギヤ 51はクランク軸 53の一端部に固定されており、クランク軸 53はメインギヤ The main gear 51 is fixed to one end of the crankshaft 53, and the crankshaft 53 is
51と共に回転駆動される。 Rotating drive with 51.
クランク軸 53の偏心部には連結部材 55の一端部が連結され、連結部材 55の他端 部にはスライド 57が連結される。これにより、クランク軸 53の回転運動がスライド 57の 往復直線運動に変換され、スライド 57が昇降される。  One end of a connecting member 55 is connected to the eccentric part of the crankshaft 53, and a slide 57 is connected to the other end of the connecting member 55. Thereby, the rotational motion of the crankshaft 53 is converted into the reciprocating linear motion of the slide 57, and the slide 57 is moved up and down.
[0005] この構成では、フライホイール 47に蓄積された回転エネルギは、クランク軸 53の被 加工物をプレスする回転角領域で放出され、その他の回転角領域で再びフライホイ ール 47に蓄積される。 [0005] In this configuration, the rotational energy accumulated in the flywheel 47 is released in the rotation angle region where the workpiece of the crankshaft 53 is pressed, and is accumulated in the flywheel 47 again in the other rotation angle regions. .
[0006] フライホイールを用いたプレス機械の場合には、フライホイール、クラッチを用いるた めその分だけ装置が大型化する。 [0006] In the case of a press machine using a flywheel, a flywheel and a clutch are used. Therefore, the device becomes larger by that amount.
その一方、フライホイールを用いずサーボモータを用いたプレス機械の場合には、 フライホイールやクラッチを省略できる利点がある。  On the other hand, in the case of a press machine using a servo motor without using a flywheel, there is an advantage that a flywheel and a clutch can be omitted.
[0007] し力、し、サーボモータを用いたプレス機械の場合には、フライホイールに回転エネ ルギを蓄積することができないので、サーボモータとモータ駆動用の電源設備を大容 量にしなければならない。 [0007] In the case of a press machine using a servomotor and a servomotor, rotational energy cannot be stored in the flywheel, so the power supply equipment for driving the servomotor and the motor must be large. Don't be.
[0008] この点を考慮して下記特許文献 1では、電気工ネルギ蓄積用のコンデンサを交流 電源設備に接続し、被加工物をプレスするクランク軸の回転角領域において、コンデ ンサに蓄積された電気工ネルギをサーボモータに供給している。 [0008] In consideration of this point, in Patent Document 1 below, an electric energy storage capacitor is connected to an AC power supply facility, and accumulated in the capacitor in the rotation angle region of the crankshaft that presses the workpiece. Electric energy is supplied to the servo motor.
これにより、交流電源設備を小型化し、プレス時に必要なエネルギを確保している。  As a result, the AC power supply equipment is miniaturized, and energy required for pressing is ensured.
[0009] しかし、特許文献 1の場合には、交流電源設備を小型化できても、加工物をプレス するクランク軸の回転角領域において大電流をサーボモータに供給するので、サー ボモータを直接駆動する駆動回路は、その分、大型化してしまう。 [0009] However, in the case of Patent Document 1, even if the AC power supply equipment can be reduced in size, a large current is supplied to the servomotor in the rotation angle region of the crankshaft that presses the workpiece, so the servomotor is driven directly. The driving circuit to be increased in size accordingly.
一方、フライホイールを用いたプレス機械においてもモータ及びモータの駆動回路 をさらに小型化することが望まれる。  On the other hand, in press machines using flywheels, it is desirable to further reduce the size of motors and motor drive circuits.
また、プレス機械におレ、て消費電力を低減することも望まれる。  It is also desirable to reduce power consumption in press machines.
[0010] そこで、本出願人は、モータ及びモータの駆動回路を小型化でき、かつ、消費電力 を低減できるプレス機械、プレス機械の制御装置及び制御方法を、既に下記特許文 献 2 (未公開)として出願している。 [0010] Therefore, the present applicant has already described a press machine, a control apparatus and a control method for a press machine that can reduce the size of the motor and the motor drive circuit and reduce power consumption. ).
この未公開の特許文献 2では、プレス機械の特性に応じた、回転体(クランク軸など )の回転角ごとに必要モータトルクを決定し、この必要モータトルクが予め定められた モータトルク基準値よりも小さくなる回転体の回転角では、モータの回転指令速度を 一定指令速度よりも増加させ、モータトルク基準値よりも大きくなる回転体の回転角で は、モータの回転指令速度を一定指令速度よりも減少させている。これにより、最大 モータトルク値を効果的に低減している。その結果、モータ及びモータの駆動回路を 小型化でき、かつ、消費電力を低減できる。  In this unpublished Patent Document 2, the required motor torque is determined for each rotation angle of the rotating body (crankshaft, etc.) according to the characteristics of the press machine, and this required motor torque is determined from a predetermined motor torque reference value. If the rotation angle of the rotating body is smaller, the rotation command speed of the motor is increased than the constant command speed, and if the rotation angle of the rotation body is greater than the motor torque reference value, the rotation command speed of the motor is greater than the constant command speed. Has also decreased. This effectively reduces the maximum motor torque value. As a result, the motor and the motor drive circuit can be reduced in size and the power consumption can be reduced.
特許文献 1:特開 2004— 344946号公報 「プレス機械」  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-344946 “Press Machine”
特許文献 2:特願 2006 - 105575 「プレス機械、プレス機械の制御装置及び制御 方法」 Patent Document 2: Japanese Patent Application 2006-105575 "Press machine, press machine control device and control Method"
[0011] し力、し、特許文献 2において、上述の必要モータトルクは、回転体の回転角だけで なぐプレス運転速度またはプレス負荷エネルギの変動によっても変化する。  [0011] In Patent Document 2, the required motor torque described above varies depending not only on the rotation angle of the rotating body but also on the fluctuation of the press operation speed or the press load energy.
プレス運転速度は、スライド力 往復運動する速さに相当し、例えば、プレスのため スライドが 1往復する期間にわたるモータ 41の平均回転速度により表わすことができ プレス負荷エネルギは、プレスのためスライド力 往復する期間に、プレス機械が行 う仕事量またはプレス機械が消費するエネルギに相当し、例えば、プレス金型の種類 やクッション設定圧などにより定まるものである。  The press operating speed corresponds to the speed of the reciprocating motion of the slide force. For example, the press load energy can be expressed by the average rotational speed of the motor 41 over the period in which the slide reciprocates for the press. This corresponds to the amount of work performed by the press machine or the energy consumed by the press machine during this period, and is determined by, for example, the type of press mold and the cushion set pressure.
[0012] このように、プレス運転速度またはプレス負荷エネルギが変動する場合に、プレス 運転速度またはプレス負荷エネルギの各値ごとに、上記必要モータトルクを予め求 めておくことは非常に労力を要する。  [0012] As described above, when the press operation speed or the press load energy fluctuates, it is very laborious to obtain the necessary motor torque in advance for each value of the press operation speed or the press load energy. .
発明の要約  Summary of invention
[0013] そこで、本発明の目的は、特許文献 2の発明を改良し、プレス運転速度またはプレ ス負荷エネルギが変動する場合に、プレス運転速度またはプレス負荷エネルギの各 値ごとに、必要モータトルクを予め求める労力を省くことができるとともに、プレス運転 速度またはプレス負荷エネルギが変動した場合でも、最適な制御を可能にし、広い 運転条件でモータ電力の低減を可能にすることにある。  [0013] Therefore, an object of the present invention is to improve the invention of Patent Document 2 and, when the press operation speed or the press load energy fluctuates, the required motor torque for each value of the press operation speed or the press load energy. This makes it possible to save the labor required in advance and to enable optimum control even when the press operation speed or press load energy fluctuates, and to reduce the motor power under a wide range of operation conditions.
[0014] 上記目的を達成するため、本発明によると、モータと、該モータにより回転駆動され る回転体を有しこの回転運動を往復運動に変換する変換機構と、該変換機構に連 結されて往復運動するスライドと、を備え、前記モータを一定指令速度で回転させた 場合に前記回転体の回転角に従って必要モータトルクが変動するプレス機械の制御 装置であって、前記回転体の回転角を検知する角度検知装置と、該角度検知装置 力も入力される回転角の値に基づき、プレス機械の特性に応じた必要モータトルクを 決定するトルク決定装置と、前記必要モータトルクが予め定められたモータトルク基 準値よりも小さくなる前記回転体の回転角では、モータの回転指令速度を前記一定 指令速度よりも増加させる速度調節装置と、を備え、さらに、前記速度調節装置が前 記回転指令速度を増加させる量を、プレス運転速度またはプレス負荷エネルギの変 動に応じて、補正する補正装置を備え、前記速度調節装置が回転指令速度を増加 させる量と、前記補正装置が当該増加させる量を補正する量との両方を、前記モータ の最大消費電力を低減するように反映した回転指令速度で、前記モータを回転駆動 する、ことを特徴とするプレス機械の制御装置が提供される。 [0014] In order to achieve the above object, according to the present invention, a motor, a rotating mechanism that is rotationally driven by the motor, a converting mechanism that converts the rotating motion into a reciprocating motion, and the converting mechanism are connected. A reciprocating slide, and when the motor is rotated at a constant command speed, the required motor torque varies according to the rotation angle of the rotating body. An angle detection device for detecting the torque, a torque determination device for determining a required motor torque in accordance with the characteristics of the press machine based on the value of the rotation angle to which the force is also input, and the required motor torque is predetermined. A speed adjusting device for increasing a rotation command speed of the motor to be higher than the constant command speed at a rotation angle of the rotating body smaller than a motor torque reference value, and The amount of degree adjusting device increases the pre-Symbol rotation command speed, varying the press operation speed or press load energy A correction device that corrects the motor according to the movement, and the maximum amount of power consumption of the motor is determined by both the amount by which the speed adjustment device increases the rotation command speed and the amount by which the correction device corrects the increase amount. There is provided a control device for a press machine, wherein the motor is driven to rotate at a rotation command speed reflected so as to be reduced.
[0015] 上記プレス機械の制御装置では、特許文献 2と同様に、速度調節装置が、必要モ 一タトルクが予め定められたモータトルク基準値よりも小さくなる回転体の回転角では 、モータの回転指令速度を前記一定指令速度よりも増加させるが、これに加え、補正 装置が、この増加させる量を、プレス運転速度またはプレス負荷エネルギの変動に応 じて補正する。さらに、速度調節装置が回転指令速度を増加させる量と、補正装置が 当該増加させる量を補正する量との両方を、モータの最大消費電力を低減するよう に反映した回転指令速度で、モータを回転駆動する。  [0015] In the control device for the press machine, similarly to Patent Document 2, the speed adjustment device causes the motor rotation at the rotation angle of the rotating body where the required motor torque is smaller than a predetermined motor torque reference value. The command speed is increased from the constant command speed, and in addition to this, the correction device corrects the increased amount according to the change in the press operation speed or the press load energy. Furthermore, the motor is operated at a rotation command speed that reflects both the amount by which the speed adjustment device increases the rotation command speed and the amount by which the correction device corrects the increase command so as to reduce the maximum power consumption of the motor. Rotation drive.
従って、プレス運転速度またはプレス負荷エネルギが変動する場合に、プレス運転 速度またはプレス負荷エネルギの各値ごとに、必要モータトルクを予め求める労力を 省くことができるとともに、プレス運転速度またはプレス負荷エネルギが変動した場合 でも、最適な制御が可能になり、広い運転条件でモータ電力の低減できる。  Therefore, when the press operation speed or the press load energy fluctuates, it is possible to save labor for obtaining the required motor torque in advance for each value of the press operation speed or the press load energy, and the press operation speed or the press load energy is reduced. Even if it fluctuates, optimal control is possible, and motor power can be reduced over a wide range of operating conditions.
[0016] また、上記目的を達成するため、本発明によると、モータと、該モータにより回転駆 動される回転体を有しこの回転運動を往復運動に変換する変換機構と、該変換機構 に連結されて往復運動するスライドと、を備え、前記モータを一定指令速度で回転さ せた場合に前記回転体の回転角に従って必要モータトルクが変動するプレス機械の 制御装置であって、前記回転体の回転角を検知する角度検知装置と、該角度検知 装置から入力される回転角の値に基づき、プレス機械の特性に応じた必要モータト ルクを決定するトルク決定装置と、前記必要モータトルクが予め定められたモータトル ク基準値よりも大きくなる前記回転体の回転角では、モータの回転指令速度を前記 一定指令速度よりも減少させる速度調節装置と、を備え、さらに、前記速度調節装置 が前記回転指令速度を減少させる量を、プレス運転速度またはプレス負荷エネルギ の変動に応じて、補正する補正装置を備え、前記速度調節装置が回転指令速度を 減少させる量と、前記補正装置が当該減少させる量を補正する量との両方を、前記 モータの最大消費電力を低減するように反映した回転指令速度で、前記モータを回 転駆動する、ことを特徴とするプレス機械の制御装置が提供される。 [0016] In order to achieve the above object, according to the present invention, a motor, a conversion mechanism that has a rotating body that is rotationally driven by the motor, converts the rotational motion into a reciprocating motion, and the conversion mechanism includes: A control device for a press machine, wherein a required motor torque varies according to a rotation angle of the rotating body when the motor is rotated at a constant command speed. An angle detection device that detects the rotation angle of the machine, a torque determination device that determines a required motor torque according to the characteristics of the press machine based on the value of the rotation angle input from the angle detection device, and the required motor torque A speed adjusting device that reduces the rotation command speed of the motor below the constant command speed at a rotation angle of the rotating body that is greater than a predetermined motor torque reference value; A correction device that corrects the amount by which the speed adjustment device decreases the rotation command speed in accordance with a change in press operation speed or press load energy, and the amount by which the speed adjustment device decreases the rotation command speed; The motor rotates the motor at a rotation command speed that reflects both the amount of correction by the correction device to reduce the maximum power consumption of the motor. There is provided a control device for a press machine, characterized by being driven by rolling.
[0017] 上記プレス機械の制御装置では、特許文献 2と同様に、速度調節装置が、必要モ 一タトルクが予め定められたモータトルク基準値よりも大きくなる回転体の回転角では 、モータの回転指令速度を一定指令速度よりも減少させる力 これに加え、補正装置 力 この減少させる量を、プレス運転速度またはプレス負荷エネルギの変動に応じて 補正する。さらに、速度調節装置が回転指令速度を減少させる量と、補正装置が当 該減少させる量を補正する量との両方を、モータの最大消費電力を低減するように 反映した回転指令速度で、モータを回転駆動する。 [0017] In the control device for the press machine, similarly to Patent Document 2, the speed adjustment device causes the motor rotation at the rotation angle of the rotating body where the necessary motor torque is larger than a predetermined motor torque reference value. Force to reduce command speed below constant command speed In addition to this, corrector force This amount of reduction is corrected according to changes in press operation speed or press load energy. Furthermore, the rotation command speed reflecting both the amount by which the speed adjustment device decreases the rotation command speed and the amount by which the correction device corrects the decrease by the rotation command speed to reduce the maximum power consumption of the motor. Is driven to rotate.
従って、プレス運転速度またはプレス負荷エネルギが変動する場合に、プレス運転 速度またはプレス負荷エネルギの各値ごとに、必要モータトルクを予め求める労力を 省くことができるとともに、プレス運転速度またはプレス負荷エネルギが変動した場合 でも、最適な制御が可能になり、広い運転条件でモータ電力の低減できる。  Therefore, when the press operation speed or the press load energy fluctuates, it is possible to save labor for obtaining the required motor torque in advance for each value of the press operation speed or the press load energy, and the press operation speed or the press load energy is reduced. Even if it fluctuates, optimal control is possible, and motor power can be reduced over a wide range of operating conditions.
[0018] また、上記目的を達成するため、本発明によると、モータと、該モータにより回転駆 動される回転体を有しこの回転運動を往復運動に変換する変換機構と、該変換機構 に連結されて往復運動するスライドと、を備え、前記モータを一定指令速度で回転さ せた場合に前記回転体の回転角に従って必要モータトルクが変動するプレス機械の 制御装置であって、前記回転体の回転角を検知する角度検知装置と、該角度検知 装置から入力される回転角の値に基づき、プレス機械の特性に応じた必要モータト ルクを決定するトルク決定装置と、前記必要モータトルクが予め定められたモータトル ク基準値よりも小さくなる前記回転体の回転角では、モータの回転指令速度を前記 一定指令速度よりも増加させ、前記必要モータトルクが予め定められたモータトルク 基準値よりも大きくなる前記回転体の回転角では、モータの回転指令速度を前記一 定指令速度よりも減少させる速度調節装置と、を備え、さらに、前記速度調節装置が 前記回転指令速度を増加または減少させる量を、プレス運転速度またはプレス負荷 エネルギの変動に応じて、補正する補正装置を備え、前記速度調節装置が回転指 令速度を増加または減少させる量と、前記補正装置が当該増加または減少させる量 を補正する量との両方を、前記モータの最大消費電力を低減するように反映した回 転指令速度で、前記モータを回転駆動する、ことを特徴とするプレス機械の制御装 置が提供される。 [0018] In order to achieve the above object, according to the present invention, a motor, a conversion mechanism that has a rotating body that is rotationally driven by the motor, converts the rotational motion into a reciprocating motion, and the conversion mechanism includes: A control device for a press machine, wherein a required motor torque varies according to a rotation angle of the rotating body when the motor is rotated at a constant command speed. An angle detection device that detects the rotation angle of the machine, a torque determination device that determines a required motor torque according to the characteristics of the press machine based on the value of the rotation angle input from the angle detection device, and the required motor torque At the rotation angle of the rotating body that is smaller than a predetermined motor torque reference value, the rotation command speed of the motor is increased above the constant command speed, and the required motor torque is determined in advance. A speed adjustment device that reduces a rotation command speed of the motor below the constant command speed at a rotation angle of the rotating body that is greater than a reference value of the motor torque, and further, the speed adjustment device is configured to rotate the rotation. A correction device that corrects the amount by which the command speed is increased or decreased according to a change in press operation speed or press load energy, the amount by which the speed adjustment device increases or decreases the rotation command speed, and the correction device. The motor is driven to rotate at a rotation command speed that reflects both the amount that increases or decreases the amount that increases or decreases so as to reduce the maximum power consumption of the motor. Control equipment A device is provided.
[0019] 上記プレス機械の制御装置では、特許文献 2と同様に、速度調節装置が、必要モ 一タトルクが予め定められたモータトルク基準値よりも小さくなる回転体の回転角では 、モータの回転指令速度を一定指令速度よりも増加させ、必要モータトルクが予め定 められたモータトルク基準値よりも大きくなる回転体の回転角では、モータの回転指 令速度を一定指令速度よりも減少させるが、これに加え、補正装置が、この増加また は減少させる量を、プレス運転速度またはプレス負荷エネルギの変動に応じて補正 する。さらに、速度調節装置が回転指令速度を増加または減少させる量と、補正装 置が当該増加または減少させる量を補正する量との両方を、モータの最大消費電力 を低減するように反映した回転指令速度で、モータを回転駆動する。  [0019] In the control device for the press machine, similarly to Patent Document 2, the speed adjustment device causes the motor rotation at the rotation angle of the rotating body where the required motor torque is smaller than a predetermined motor torque reference value. If the rotational speed of the rotating body is such that the command speed is increased above the constant command speed and the required motor torque is greater than the predetermined motor torque reference value, the motor rotation command speed is reduced below the constant command speed. In addition, a correction device corrects this increase or decrease in response to changes in press operating speed or press load energy. Furthermore, a rotation command that reflects both the amount by which the speed adjustment device increases or decreases the rotation command speed and the amount by which the correction device corrects the increase or decrease by reducing the maximum power consumption of the motor. The motor is driven to rotate at speed.
従って、プレス運転速度またはプレス負荷エネルギが変動する場合に、プレス運転 速度またはプレス負荷エネルギの各値ごとに、必要モータトルクを予め求める労力を 省くことができるとともに、プレス運転速度またはプレス負荷エネルギが変動した場合 でも、最適な制御が可能になり、広い運転条件でモータ電力の低減できる。  Therefore, when the press operation speed or the press load energy fluctuates, it is possible to save labor for obtaining the required motor torque in advance for each value of the press operation speed or the press load energy, and the press operation speed or the press load energy is reduced. Even if it fluctuates, optimal control is possible, and motor power can be reduced over a wide range of operating conditions.
[0020] 本発明の好ましい実施形態によると、前記補正装置は、プレス運転速度が小さいほ ど、又は、プレス負荷エネルギが大きいほど、速度調節装置が前記回転指令速度を 増加または減少させる量を大きくする補正をする。  According to a preferred embodiment of the present invention, the correction device increases the amount by which the speed adjustment device increases or decreases the rotation command speed as the press operation speed is lower or as the press load energy is higher. Make corrections.
[0021] プレス運転速度が小さいほど、又は、プレス負荷エネルギが大きいほど、回転体の 角度に対する必要モータトルクの振幅は大きくなる。従って、プレス運転速度が小さ いほど、又は、プレス負荷エネルギが大きいほど、回転指令速度を増加または減少さ せる量を大きくすることで、モータ電力を効果的に低減できる。  [0021] The smaller the press operation speed or the greater the press load energy, the greater the amplitude of the required motor torque with respect to the angle of the rotating body. Accordingly, the motor power can be effectively reduced by increasing the amount by which the rotation command speed is increased or decreased as the press operation speed is reduced or as the press load energy is increased.
[0022] また、本発明の好ましい実施形態によると、前記補正装置は、プレス運転速度また はプレス負荷エネルギの値が入力される入力部を有する。  [0022] According to a preferred embodiment of the present invention, the correction device has an input unit for inputting a value of a press operation speed or a press load energy.
[0023] これにより、入力部から入力されたプレス運転速度またはプレス負荷エネルギの値 に基づいて、補正装置は、速度調節装置が前記回転指令速度を増加または減少さ せる量の補正を行える。  Thus, based on the value of the press operation speed or the press load energy input from the input unit, the correction device can correct the amount by which the speed adjustment device increases or decreases the rotation command speed.
[0024] 好ましくは、前記速度調節装置は、前記必要モータトルクと、前記モータトルク基準 値との差に、一定のゲインを乗じた値の大きさだけ、モータの回転指令速度を前記一 定指令速度から増減させる。このように、トルク変動量に比例する量だけモータの回 転指令速度を増減するので、より効率的に回転エネルギを回転系に与えることができ また、前記速度調節装置がモータの回転指令速度を増加させる量と、モータの回 転指令速度を減少させる量とは、所定時間にわたる時間積分値が等しくしてよい。こ のように、回転指令速度を増加させる量と、減少させる量とは、所定時間にわたる時 間積分値が等しくすることで、所定時間にわたるプレス動作時間を、一定指令速度で モータを回転させた場合の所定時間にわたるプレス動作時間と合わせることができ、 プレス生産速度を低下させずに済む。 [0024] Preferably, the speed adjustment device sets the motor rotation command speed by the magnitude of a value obtained by multiplying a difference between the required motor torque and the motor torque reference value by a certain gain. Increase or decrease from the constant command speed. As described above, since the rotation command speed of the motor is increased or decreased by an amount proportional to the torque fluctuation amount, rotational energy can be given to the rotation system more efficiently. Further, the speed adjusting device can reduce the rotation command speed of the motor. The amount of increase and the amount of decrease of the motor rotation command speed may be equal in time integration value over a predetermined time. In this way, the amount by which the rotation command speed is increased and the amount by which the rotation command speed is decreased are equal to the time integration value over a predetermined time, so that the press operation time over a predetermined time is rotated at a constant command speed. It is possible to match the press operation time over a predetermined time, and it is not necessary to reduce the press production speed.
[0025] 本発明の好ましい実施形態によると、上記制御装置は、前記プレス負荷エネルギを 求める計測算出装置をさらに備え、該計測算出装置は、前記モータにより駆動される プレス運動機構の運動エネルギー力 前記スライドの 1往復期間において変化する 量を計測する第 1計測部と、前記 1往復期間において前記モータがプレス運動機構 に与えるエネルギ値を計測する第 2計測部と、第 1計測部が計測した、前記運動エネ ルギが変化する量と、第 2計測部が計測した前記エネルギ値とに基づ!/、て、前記プレ ス負荷エネルギを算出する算出部と、を備え、前記補正装置は、該プレス負荷エネ ルギを用いて、前記回転指令速度を増加または減少させる量を補正する。  [0025] According to a preferred embodiment of the present invention, the control device further includes a measurement calculation device for determining the press load energy, and the measurement calculation device is a kinetic energy force of a press movement mechanism driven by the motor. A first measurement unit that measures an amount of change in one reciprocation period of the slide, a second measurement unit that measures an energy value given to the press motion mechanism by the motor in the one reciprocation period, and a first measurement unit, A calculating unit that calculates the press load energy based on the amount of change of the kinetic energy and the energy value measured by the second measuring unit. A press load energy is used to correct the amount by which the rotation command speed is increased or decreased.
[0026] プレス運動機構の運動エネルギーが、スライドの 1往復期間において変化する量( 減少する量の大きさ)と、モータがプレス運動機構に与えるエネルギ値との和力 S、プレ ス負荷エネルギとなる。従って、第 1計測部が計測した、運動エネルギが変化する量 と、第 2計測部が計測したエネルギ値とに基づいて、プレス負荷エネルギを算出する こと力 Sでさる。  [0026] The sum S of the amount of change in the kinetic energy of the press movement mechanism during one reciprocation period of the slide (the amount of decrease) and the energy value given to the press movement mechanism by the motor, the press load energy, Become. Therefore, the force S for calculating the press load energy is calculated based on the amount of change in kinetic energy measured by the first measuring unit and the energy value measured by the second measuring unit.
[0027] 本発明によると、上述した制御装置を有するプレス機械が提供される。  [0027] According to the present invention, there is provided a press machine having the control device described above.
[0028] また、本発明によると、モータと、該モータにより回転駆動される回転体を有しこの 回転運動を往復運動に変換する変換機構と、前記変換機構に連結されて往復運動 するスライドと、を備え、前記モータを一定指令速度で回転させた場合に前記回転体 の回転角に従って必要モータトルクが変動するプレス機械の制御方法であって、前 記回転体の回転角を検知する段階と、該検知した回転角の値に基づき、プレス機械 の特性に応じた必要モータトルクを決定する段階と、前記必要モータトルクが予め定 められたモータトルク基準値よりも小さくなる前記回転体の回転角では、モータの回 転指令速度を前記一定指令速度よりも増加させる段階と、前記回転指令速度を増加 させる量を、プレス運転速度またはプレス負荷エネルギの変動に応じて、補正する段 階と、前記回転指令速度を増加させる量と、当該増加させる量を補正する量との両 方を、前記モータの最大消費電力を低減するように反映した回転指令速度で、前記 モータを回転駆動する段階と、を有する、ことを特徴とするプレス機械の制御方法が 提供される。 [0028] Further, according to the present invention, a motor, a conversion mechanism that has a rotating body that is rotationally driven by the motor, and converts the rotational motion into a reciprocating motion, and a slide that is connected to the converting mechanism and reciprocates. And a method for controlling a press machine in which the required motor torque varies according to the rotation angle of the rotating body when the motor is rotated at a constant command speed, the method comprising: detecting the rotation angle of the rotating body; And a press machine based on the detected rotation angle value. Determining the required motor torque in accordance with the characteristics of the motor, and at the rotation angle of the rotating body where the required motor torque is smaller than a predetermined motor torque reference value, the rotation command speed of the motor is set to the constant command. The step of increasing the rotation command speed and the amount by which the rotation command speed is increased are corrected according to the change in the press operation speed or press load energy, and the amount by which the rotation command speed is increased. And a step of rotationally driving the motor at a rotation command speed reflecting both the amount for correcting the amount and reducing the maximum power consumption of the motor. A method is provided.
[0029] この制御方法でも、上述のプレス機械の制御装置と同様に、上記目的を達成できる [0029] This control method can also achieve the above object in the same manner as the control device for the press machine described above.
Yes
[0030] なお、この制御方法において、スライドの往復運動による変動要素のモータトルクと 、回転体の回転運動による変動要素のモータトルクとに基づいて、前記必要モータト ルクを決定してよい。これにより、スライドの往復運動と回転体の回転運動による変動 要素のモータトルクを考慮したモータ回転速度の制御を行うことができる。  [0030] In this control method, the necessary motor torque may be determined based on the motor torque of the variable element due to the reciprocating motion of the slide and the motor torque of the variable element due to the rotational motion of the rotating body. As a result, the motor rotation speed can be controlled in consideration of the motor torque of the variable element due to the reciprocating motion of the slide and the rotating motion of the rotating body.
[0031] さらに、本発明によると、モータと、該モータにより回転駆動される回転体を有しこの 回転運動を往復運動に変換する変換機構と、該変換機構に連結されて往復運動す るスライドと、を備え、前記モータを一定指令速度で回転させた場合に前記回転体の 回転角に従って必要モータトルクが変動するプレス機械の制御方法であって、プレス 機械の試運転を行うことにより、モータへ供給する電流から求められる、プレス機械の 特性に応じた必要モータトルク値と、クランク軸の回転角の値との関係を作成する段 階と、前記回転体の回転角を検知する段階と、該検知した回転角の値と前記関係に 基づき、該回転角の値に対応する必要モータトルクを決定する段階と、前記必要モ 一タトルクが予め定められたモータトルク基準値よりも小さくなる前記回転体の回転角 では、モータの回転指令速度を前記一定指令速度よりも増加させる段階と、前記回 転指令速度を増加させる量を、プレス運転速度またはプレス負荷エネルギの変動に 応じて、補正する段階と、前記回転指令速度を増加させる量と、当該増加させる量を 補正する量との両方を、前記モータの最大消費電力を低減するように反映した回転 指令速度で、前記モータを回転駆動する段階と、を有することを特徴とするプレス機 械の制御方法が提供される。 [0031] Further, according to the present invention, a motor, a rotating mechanism that is driven to rotate by the motor, a conversion mechanism that converts this rotational motion into a reciprocating motion, and a slide that is connected to the converting mechanism and reciprocates. And a control method for a press machine in which the required motor torque varies according to the rotation angle of the rotating body when the motor is rotated at a constant command speed. A step of creating a relationship between a required motor torque value corresponding to the characteristics of the press machine and a rotation angle value of the crankshaft, which is obtained from the supplied current, a step of detecting the rotation angle of the rotating body, Based on the detected rotation angle value and the relationship, a step of determining a required motor torque corresponding to the rotation angle value and the required motor torque is smaller than a predetermined motor torque reference value. The rotation angle of the rotating body becomes a step in which the rotation command speed of the motor is increased from the constant command speed, and the amount by which the rotation command speed is increased depends on the change in the press operation speed or the press load energy. The correction command, the amount by which the rotation command speed is increased, and the amount by which the increase command is corrected are reflected at the rotation command speed reflecting the maximum power consumption of the motor. And a step of rotating the press. A method of controlling the machine is provided.
[0032] この制御方法でも、上述のプレス機械の制御装置と同様に、上記目的を達成できる [0032] This control method can also achieve the above-mentioned object, similarly to the control device for the press machine described above.
[0033] なお、この制御方法では、試運転により得られた関係に、検知された回転角を当て はめるだけで、必要モータトルクを決定することができる。この場合、プレス運転速度 またはプレス負荷エネルギが変動しても、この変動に対する補正が補正装置により行 われるので、再度、試運転を行って必要モータトルクを決定する必要がなくなる。例 えば、プレス機械では運転開始時は低速で運転し、パネルの生産品質をチェックし ながら、次第に速度を増速していくという運転方法がとられる場合が多いが、このよう な場合にも、再度、試運転を行うことなぐプレス運転を継続しながら補正装置により プレス運転速度の変動に対応できる。 [0033] In this control method, the necessary motor torque can be determined simply by applying the detected rotation angle to the relationship obtained by the trial operation. In this case, even if the press operation speed or the press load energy fluctuates, the correction is performed by the correction device, so that it is not necessary to perform a trial run again to determine the necessary motor torque. For example, a press machine often operates at a low speed at the start of operation, and gradually increases the speed while checking the production quality of the panel. The correction device can cope with fluctuations in the press operation speed while continuing the press operation without performing the test operation again.
[0034] 上述した本発明によると、プレス運転速度またはプレス負荷エネルギが変動する場 合に、プレス運転速度またはプレス負荷エネルギの各値ごとに、必要モータトルクを 予め求める労力を省くことができるとともに、プレス運転速度またはプレス負荷エネル ギが変動した場合でも、最適な制御が可能になり、広い運転条件でモータ電力の低 減できる。  [0034] According to the present invention described above, when the press operation speed or the press load energy fluctuates, it is possible to save labor for obtaining the necessary motor torque in advance for each value of the press operation speed or the press load energy. Even when the press operation speed or press load energy fluctuates, optimal control becomes possible, and motor power can be reduced under a wide range of operating conditions.
図面の簡単な説明  Brief Description of Drawings
[0035] [図 1]フライホイールを用いた従来のプレス機械の構成を示す図である。  FIG. 1 is a diagram showing a configuration of a conventional press machine using a flywheel.
[図 2]本発明の第 1実施形態によるプレス機械の構成を示す図である。  FIG. 2 is a diagram showing a configuration of a press machine according to the first embodiment of the present invention.
[図 3]モータを定速回転させた場合の、時間に対するクランク軸の回転角、指令速度 値及び必要モータトルク変動を示す図である。  FIG. 3 is a diagram showing crankshaft rotation angle, command speed value, and required motor torque fluctuation with respect to time when the motor is rotated at a constant speed.
[図 4]本発明の第 1実施形態による演算部の処理の流れを示す図である。  FIG. 4 is a diagram showing a flow of processing of a calculation unit according to the first embodiment of the present invention.
[図 5]クランク軸回転の 1周期にわたる必要モータトルク変動を示す図である。  FIG. 5 is a graph showing fluctuations in necessary motor torque over one cycle of crankshaft rotation.
[図 6]クランク軸の回転角と、速度調節をした場合の、調節した指令速度値及びトルク 変動を示す図である。  FIG. 6 is a diagram showing the rotation angle of the crankshaft and the adjusted command speed value and torque fluctuation when the speed is adjusted.
[図 7]プレス運転速度とプレス負荷エネルギの 2変数に対する補正ゲインを表わして いる。  [Fig. 7] Shows correction gains for two variables: press operation speed and press load energy.
[図 8]プレス負荷エネルギを計測する構成例を示す図である。 [図 9]本発明の第 2実施形態によるプレス機械の構成を示す図である。 FIG. 8 is a diagram showing a configuration example for measuring press load energy. FIG. 9 is a diagram showing a configuration of a press machine according to a second embodiment of the present invention.
[図 10]本発明の第 2実施形態による演算部の処理の流れを示す図である。  FIG. 10 is a diagram showing a flow of processing of a calculation unit according to the second embodiment of the present invention.
[図 11]本発明の第 3実施形態によるプレス機械の構成を示す図である。  FIG. 11 is a diagram showing a configuration of a press machine according to a third embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通 する部分には同一の符号を付し、重複した説明を省略する。  A preferred embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the duplicate description is abbreviate | omitted.
[0037] [第 1実施形態]  [0037] [First embodiment]
図 2〜図 7に本発明の第 1実施形態を示す。この第 1実施形態の演算部 26におい て、入力されたクランク軸 7の回転角に基づいて必要モータトルクを算出する部分は 、本発明の「トルク決定装置」を構成する。また、第 1実施形態の演算部 26と指令調 節部 19において、算出された必要モータトルクに基づいて、調節された指令速度ィ直 を算出する部分は、本発明の「速度調節装置」を構成する。さらに、本発明の「補正 装置」は、補正部 27aと補正部 27bとを有する。  2 to 7 show a first embodiment of the present invention. In the calculation unit 26 of the first embodiment, the portion for calculating the necessary motor torque based on the input rotation angle of the crankshaft 7 constitutes the “torque determination device” of the present invention. Further, in the calculation unit 26 and the command adjustment unit 19 of the first embodiment, the portion for calculating the adjusted command speed straight based on the calculated required motor torque is the “speed adjustment device” of the present invention. Constitute. Furthermore, the “correction device” of the present invention includes a correction unit 27a and a correction unit 27b.
[0038] 図 2は、本発明のプレス機械 10の構成を示す図である。図 2に示すように、プレス 機械 10は、モータ 1と、モータ 1の回転駆動力により回転するプーリ 3及び伝達ベルト 5と、モータ 1の駆動力がプーリ 3及び伝達ベルト 5を介して伝達され回転するフライホ ィール 6と、フライホイール 6から回転駆動力が伝達されるクランク軸 7と、 ON状態 (接 続状態)でフライホイール 6とクランク軸 7を連結し OFF状態(切断状態)でクランク軸 7をフライホイール 6から分離するクラッチ 9と、クランク軸 7の回転により昇降するスラ イド 11と、一端部がクランク軸 7の偏心部に連結され他端部がスライド 11に連結され てスライド 11を昇降させる連結部材 12と、を備える。  FIG. 2 is a diagram showing a configuration of the press machine 10 of the present invention. As shown in FIG. 2, the press machine 10 includes a motor 1, a pulley 3 and a transmission belt 5 that are rotated by the rotational driving force of the motor 1, and a driving force of the motor 1 is transmitted via the pulley 3 and the transmission belt 5. The rotating flywheel 6 and the crankshaft 7 to which the rotational driving force is transmitted from the flywheel 6 are connected to the flywheel 6 and the crankshaft 7 in the ON state (connected state), and the crankshaft is in the OFF state (disconnected state). The clutch 9 that separates 7 from the flywheel 6, the slide 11 that moves up and down as the crankshaft 7 rotates, and one end connected to the eccentric part of the crankshaft 7 and the other end connected to the slide 11 And a connecting member 12 that moves up and down.
スライド 11の下面にはプレス用の上金型が固定されており、スライド 11が下降する と、上金型とスライド 11の下方に設けられている下金型との間で被加工物をプレスす  An upper mold for pressing is fixed to the lower surface of the slide 11, and when the slide 11 is lowered, the workpiece is pressed between the upper mold and the lower mold provided below the slide 11. You
[0039] また、プレス機械 10には、モータ 1の回転速度を制御する速度制御装置 15が組み 込まれている。速度制御装置 15は、例えば、外部から入力された被加工物のプレス 条件などに応じてモータ 1の回転指令速度値 (以下、指令速度値という)を出力する 速度指令部 17と、速度指令部 17からの指令速度値を指令調節部 19を介して受け、 これに応じた電流をモータ 1に供給するモータ駆動部 21 (例えば、駆動回路)と、を 有する。なお、図 2の例では、速度指令部 17からの指令速度値はリミッタ 18aを介し て指令調節部 19へ入力される。 In addition, the press machine 10 incorporates a speed control device 15 that controls the rotational speed of the motor 1. The speed control device 15 includes, for example, a speed command unit 17 that outputs a rotation command speed value of the motor 1 (hereinafter referred to as a command speed value) according to a press condition of the workpiece input from the outside, and a speed command unit The command speed value from 17 is received via the command adjuster 19, A motor drive unit 21 (for example, a drive circuit) for supplying a current corresponding to the motor 1 to the motor 1; In the example of FIG. 2, the command speed value from the speed command unit 17 is input to the command adjustment unit 19 via the limiter 18a.
[0040] まず、速度指令部 17から一定の指令速度値が指令調節部 19を介さずにモータ駆 動部 21に直接入力される場合について説明する。 First, a case where a constant command speed value is directly input from the speed command unit 17 to the motor drive unit 21 without passing through the command adjustment unit 19 will be described.
この場合、モータ駆動部 21は入力される指令速度値に基づいてモータ 1へ電流を 供給する。  In this case, the motor drive unit 21 supplies current to the motor 1 based on the input command speed value.
さらに、モータ駆動部 21は、モータ 1の回転速度を検出するタコジェネレータなどの 角速度センサ 23からの検出値を受け、モータ 1の検出回転速度が指令速度値となつ ているか判断し、速度が異なっていれば、モータ 1への電流を調節する。これにより、 モータ 1の検出回転速度が一定指令速度値になるように制御される。  Furthermore, the motor drive unit 21 receives a detection value from an angular speed sensor 23 such as a tachometer that detects the rotation speed of the motor 1, determines whether the detected rotation speed of the motor 1 is the command speed value, and the speed is different. If so, adjust the current to motor 1. As a result, the detected rotational speed of the motor 1 is controlled to be a constant command speed value.
[0041] 図 3は、上述のように、モータ 1を一定指令速度(即ち、定速度)で回転させてプレス 機械 10を運転した場合におけるモータ 1の必要トルク変動を示すグラフである。なお 、本明細書と特許請求の範囲において、必要モータトルクとは、プレス機械の特性、 プレスの被加工物及びクランク軸 7の所望の一定回転速度などによって定まるモータ 1の必要トルクを言う。 FIG. 3 is a graph showing the required torque fluctuation of the motor 1 when the press machine 10 is operated with the motor 1 rotated at a constant command speed (ie, constant speed) as described above. In the present specification and claims, the required motor torque refers to the required torque of the motor 1 determined by the characteristics of the press machine, the workpiece to be pressed, the desired constant rotational speed of the crankshaft 7, and the like.
図 3 (A)において、横軸は時間を示し、縦軸はクランク軸 7の回転角を示している。 クランク軸 7の回転角は、プレスの 1周期ごとに 0〜360度まで変位するので、図 3 (A )では、プレスの 1周期ごとに同じ波形が繰り返される。  In FIG. 3A, the horizontal axis indicates time, and the vertical axis indicates the rotation angle of the crankshaft 7. Since the rotation angle of the crankshaft 7 is displaced from 0 to 360 degrees every press cycle, the same waveform is repeated every press cycle in FIG. 3 (A).
図 3 (B)において、横軸は時間を示し、縦軸は速度指令部 17が出力する指令速度 値を示している。この例の場合、指令速度値は一定である。  In FIG. 3 (B), the horizontal axis represents time, and the vertical axis represents the commanded speed value output by the speed command unit 17. In this example, the command speed value is constant.
図 3 (C)は、モータ 1を一定指令速度で回転させてプレス機械 10を運転した場合に 、モータ 1の必要トルク変動を示している。この図に示すように、モータ 1によりクランク 軸 7を図 3 (B)の一定指令速度で回転させると、クランク軸 7に結合されている様々な 機械的要素によって、時間に従ってモータ 1の必要トルクが変動する。即ち、プレス 機械の必要モータトルクは、クランク軸 7の回転角に従って変動する。  FIG. 3C shows the required torque fluctuation of the motor 1 when the press machine 10 is operated with the motor 1 rotated at a constant command speed. As shown in this figure, when the crankshaft 7 is rotated by the motor 1 at the constant command speed shown in Fig. 3 (B), the required torque of the motor 1 is increased according to time by various mechanical elements coupled to the crankshaft 7. Fluctuates. That is, the required motor torque of the press machine varies according to the rotation angle of the crankshaft 7.
[0042] 第 1実施形態によるプレス機械 10は、図 2に示すように、クランク軸 7の一端部に結 合されているメインギヤ 29の回転角を検出するロータリーエンコーダなどの角度セン サ 25をさらに備える。 [0042] As shown in FIG. 2, the press machine 10 according to the first embodiment includes an angle sensor such as a rotary encoder that detects the rotation angle of the main gear 29 coupled to one end of the crankshaft 7. S 25 is further provided.
速度制御装置 15は、図 3 (B)に示すように一定指令速度でモータ 1を回転させた 場合にモータの必要トルク力 S、図 3 (C)に示すモータトルク基準値よりも小さくなるクラ ンク軸 7の回転角では、モータ 1の回転指令速度を図 3 (B)の一定指令速度よりも増 加させる制御を行う。これにより、回転系に回転エネルギを効率よく与えることができ るので、最大モータトルク値を効果的に下げることができる。従って、最大モータトル ク値を低減できるので、モータ 1及びモータ駆動部 21の電気容量を小さくすることが でき、モータ 1及びモータ駆動部 21を小型化できる。また、回転系に回転エネルギを 効率よく与えることができるので、消費電力を低減することもできる。  As shown in FIG. 3 (B), the speed control device 15 is a motor that has a required torque force S when the motor 1 is rotated at a constant command speed, and is smaller than the motor torque reference value shown in FIG. 3 (C). At the rotation angle of the link shaft 7, the rotation command speed of the motor 1 is controlled to be higher than the constant command speed in Fig. 3 (B). As a result, rotational energy can be efficiently applied to the rotating system, so that the maximum motor torque value can be effectively reduced. Therefore, since the maximum motor torque value can be reduced, the electric capacities of the motor 1 and the motor drive unit 21 can be reduced, and the motor 1 and the motor drive unit 21 can be reduced in size. In addition, since rotational energy can be efficiently applied to the rotating system, power consumption can be reduced.
なお、本明細書、特許請求の範囲において、モータトルク基準値は、例えば、図 3 ( C)の実線で示す変動する必要モータトルクの一周期にわたる平均値又は必要モー タトルクの所定時間にわたる平均値であってもよいが、これに限定されず、図 3 (C)の 実線で示す必要モータトルクの最小値よりも大きぐ図 3 (C)の実線で示す必要モー タトノレクの最大値よりも小さ!/、一定値である。  In this specification and claims, the motor torque reference value is, for example, the average value over one cycle of the fluctuating required motor torque indicated by the solid line in FIG. 3 (C) or the average value over a predetermined time of the required motor torque. However, the present invention is not limited to this, and is larger than the minimum value of the required motor torque indicated by the solid line in FIG. 3 (C) and smaller than the maximum value of the required motor torque shown by the solid line in FIG. 3 (C). ! / Is a constant value.
[0043] また、速度制御装置 15は、上記一定指令速度でモータ 1を回転させた場合に必要 モータトルクが上記モータトルク基準値よりも大きくなるクランク軸 7の回転角では、モ ータ 1の回転指令速度を上記一定指令速度よりも減少させる。これにより、最大モー タトノレクイ直をさらに低減することカできる。  [0043] Further, the speed control device 15 is required when the motor 1 is rotated at the constant command speed. At the rotation angle of the crankshaft 7 at which the motor torque is larger than the motor torque reference value, the speed control device 15 The rotation command speed is decreased from the constant command speed. As a result, the maximum motor norekuy can be further reduced.
以下において、このような制御を行うプレス機械 10を詳細に説明する。  Hereinafter, the press machine 10 that performs such control will be described in detail.
[0044] 図 2に示すように、第 1実施形態によるプレス機械 10の速度制御装置 15は、角度 センサ 25からの出力値に応じてモータ 1の速度調節値を出力する演算部 26と、演算 部 26からの入力された速度調節値の分だけ、速度指令部 17から入力された指令速 度値を増減させる指令調節部 19と、をさらに備える。指令調節部 19は、このように増 減調節された指令速度値をモータ駆動部 21に出力する。なお、図 2の例では、演算 部 26からの速度調節値はリミッタ 18bを介して指令調節部 19へ入力される。  As shown in FIG. 2, the speed control device 15 of the press machine 10 according to the first embodiment includes a calculation unit 26 that outputs a speed adjustment value of the motor 1 according to an output value from the angle sensor 25, and a calculation. And a command adjusting unit 19 that increases or decreases the command speed value input from the speed command unit 17 by the amount of the speed adjustment value input from the unit 26. The command adjusting unit 19 outputs the command speed value thus increased / decreased to the motor driving unit 21. In the example of FIG. 2, the speed adjustment value from the calculation unit 26 is input to the command adjustment unit 19 via the limiter 18b.
[0045] 速度制御装置 15は、さらに後述の補正装置を有する。補正装置は、補正部 27a ( 図 2参照)と補正部 27bとを有する。  [0045] The speed control device 15 further includes a correction device described later. The correction device includes a correction unit 27a (see FIG. 2) and a correction unit 27b.
以下においては、便宜上、まず、補正装置を用いない場合について説明し、その 後、補正装置を速度制御装置 15に組み込んだ場合について説明する。 In the following, for the sake of convenience, first, a case where the correction device is not used will be described. The case where the correction device is incorporated in the speed control device 15 will be described later.
[0046] 角度センサ 25は、クランク軸 7に結合されたメインギヤ 29の回転角を検出すること で、クランク軸 7の回転角を検出して、連続的に検出値を出力する。 [0046] The angle sensor 25 detects the rotation angle of the main gear 29 coupled to the crankshaft 7, thereby detecting the rotation angle of the crankshaft 7 and continuously outputting the detected value.
演算部 26は、入力されるクランク軸 7の回転角の値に応じてモータ 1の回転指令速 度を増減するための速度調節値を算出する速度調節関数として機能する。  The calculation unit 26 functions as a speed adjustment function that calculates a speed adjustment value for increasing or decreasing the rotation command speed of the motor 1 in accordance with the input rotation angle value of the crankshaft 7.
[0047] 図 4は、演算部 26における、速度調節関数への入力からその出力までの流れを示 す図である。 FIG. 4 is a diagram showing a flow from the input to the speed adjustment function to the output in the calculation unit 26.
演算部 26、即ち、速度調節関数へ角度センサ 25から回転角の値が入力されると、 まず、この入力に基づいて、スライドの往復運動による変動要素の必要モータトルクと 、クランク軸の回転運動による変動要素の必要モータトルクの計算が行われる。  When the value of the rotation angle is input from the angle sensor 25 to the calculation unit 26, that is, the speed adjustment function, first, based on this input, the necessary motor torque of the variable element due to the reciprocating motion of the slide and the rotational motion of the crankshaft The required motor torque of the variable element is calculated.
[0048] 1.スライドの往復運動による変動要素の必要モータトルクの計算 [0048] 1. Calculation of required motor torque of variable element due to reciprocating motion of slide
スライドの往復運動による変動要素の必要モータトルクの計算(図 4の S 1で示す)の ために、回転角の値が入力されると、 S11においてこの回転角をスライド 11の位置に 変換する。  When the value of the rotation angle is input to calculate the required motor torque of the variable element due to the reciprocating motion of the slide (indicated by S1 in Fig. 4), the rotation angle is converted to the position of the slide 11 in S11.
そして、このスライド位置の情報に基づいて、スライドの往復運動による変動要素の 必要モータトルクが計算される。  Based on the information on the slide position, the necessary motor torque of the variable element due to the reciprocating motion of the slide is calculated.
このトルク計算は、 S12に示す次の各変動要素(1)〜(6)について行われる。  This torque calculation is performed for the following variable elements (1) to (6) shown in S12.
[0049] (1)スライド摩擦 [0049] (1) Slide friction
スライドの動摩擦係数とスライドの速度との積として求める。この場合、スライドの速 度はクランク軸の回転角に従って変化するので、スライドの摩擦力もクランク軸の回転 角に従って変化する。  Obtained as the product of the slide friction coefficient and the slide speed. In this case, since the slide speed changes according to the rotation angle of the crankshaft, the frictional force of the slide also changes according to the rotation angle of the crankshaft.
(2)スライドの慣性  (2) Slide inertia
スライドの重量と、スライドの加速度の積として求める。この場合、スライドの加速度 はクランク軸の回転角に従って変化するので、スライドの慣性もクランク軸の回転角に 従って変化する。  Obtained as the product of slide weight and slide acceleration. In this case, since the acceleration of the slide changes according to the rotation angle of the crankshaft, the inertia of the slide also changes according to the rotation angle of the crankshaft.
(3)クッション  (3) Cushion
ダイクッションがプレス時に動作している間のみ、設定されたクッション力から、ダイ クッション力 Sスライドに作用する力を求める。この場合も、ダイクッション力 Sスライドに作 用する力は、クランク軸の回転角に従って変化する。 Only while the die cushion is operating during pressing, the force acting on the die cushion force S-slide is determined from the set cushion force. Also in this case, die cushion force S slide The force used varies according to the rotation angle of the crankshaft.
(4)プレス加圧力  (4) Pressing force
プレスをバネとしてモデル化し、このパネが縮んでいる間のみ(即ち、上金型と下金 型が接触している間のみ)、発生するプレス加圧力をパネ定数と縮み量の積として求 める。この場合も、プレス加圧力は、クランク軸の回転角に従って変化する。  The press is modeled as a spring, and only when this panel is contracted (that is, only when the upper and lower molds are in contact), the generated press force is calculated as the product of the panel constant and the amount of contraction. The Also in this case, the press pressure changes according to the rotation angle of the crankshaft.
(5)カウンタバランサ  (5) Counter balancer
スライド 11の自重やスライド 11に連結されて!/、る機械要素の自重からスライド 11に 作用する力との釣り合いをとるため、スライド 11を上方又は下方に付勢するカウンタ バランサがプレス機械 10に設けられる場合がある。  A counter balancer that urges slide 11 upward or downward to press machine 10 in order to balance the weight of slide 11 and the force acting on slide 11 due to the weight of the machine element connected to slide 11! May be provided.
このカウンタバランサは空圧シリンダなどにより構成され、カウンタバランサがスライド 11に作用させる力の大きさは、スライド 11の位置、即ち、クランク軸 7の回転角によつ て変動する。  The counter balancer is constituted by a pneumatic cylinder or the like, and the magnitude of the force that the counter balancer acts on the slide 11 varies depending on the position of the slide 11, that is, the rotation angle of the crankshaft 7.
(6)その他の要素  (6) Other elements
上記以外に、往復運動するスライド 11に力を及ぼすその他の要素がある場合には 、これについても考慮する。  In addition to the above, if there are other factors that exert a force on the reciprocating slide 11, this is also taken into consideration.
[0050] 上記(1)〜(6)について、スライド 11に作用する各力をクランク軸の回転角の関数 として予め求めておく。 [0050] For the above (1) to (6), each force acting on the slide 11 is obtained in advance as a function of the rotation angle of the crankshaft.
[0051] 上記(1)〜(6)について、入力された回転角に応じてスライド 11に作用する直線的 な力を求めたら、図 4に示すように、加算器 S13においてこれらの直線的な力を加算 する。続いて、 S 14において加算された直線的な力をモータの必要トルクに変換する 。なお、図 4において、符号 a〜fが示す補正ゲインが(1)〜(6)からの出力に乗算さ れているが、これら補正ゲインは、補正部 27bによるものなので、後述する。  [0051] With respect to the above (1) to (6), when the linear force acting on the slide 11 according to the input rotation angle is obtained, as shown in FIG. Add power. Subsequently, the linear force added in S14 is converted into the required torque of the motor. In FIG. 4, the correction gains indicated by symbols a to f are multiplied by the outputs from (1) to (6). These correction gains are generated by the correction unit 27b and will be described later.
[0052] 2.クランク軸の回転運動による変動要素の必要モータトルクの計算  [0052] 2. Calculation of required motor torque of variable factors due to rotational movement of crankshaft
一方、クランク軸の回転運動による変動要素の必要モータトルクの計算(図 4の S2 で示す)も行う。この計算は、回転運動をスライドの往復運動に変換することにより発 生する必要モータトルクをクランク軸の回転角の関数として求める。本実施形態の場 合には、クランク軸の偏心により発生する必要モータトルクを、クランク軸の回転角の 関数として求める。 この必要モータトルクも、クランク軸の回転角の関数として予め求めておき、この関 数により入力された回転角に応じて必要モータトルクの値が算出される。 On the other hand, calculation of the required motor torque of the variable element due to the rotational movement of the crankshaft (indicated by S2 in Fig. 4) is also performed. In this calculation, the required motor torque generated by converting the rotary motion into the reciprocating motion of the slide is obtained as a function of the rotation angle of the crankshaft. In the case of this embodiment, the required motor torque generated by the eccentricity of the crankshaft is obtained as a function of the crankshaft rotation angle. This necessary motor torque is also obtained in advance as a function of the rotation angle of the crankshaft, and the value of the necessary motor torque is calculated according to the rotation angle input by this function.
[0053] このように、入力された回転角に応じて、スライド 11の往復運動による変動要素の 必要モータトルクと、クランク軸の回転運動による変動要素の必要モータトルクとが算 出されたら、図 4に示すように、加算器 S 15においてこれらを加算して必要モータトル クを算出する。 [0053] Thus, when the necessary motor torque of the variable element due to the reciprocating motion of the slide 11 and the required motor torque of the variable element due to the rotational motion of the crankshaft are calculated according to the input rotation angle, As shown in 4, adder S15 adds these to calculate the required motor torque.
図 5 (A)は、この必要モータトルクの例を示している。なお、この図において、横軸 はクランク軸の回転角を示し、縦軸は単位を持たせずにトルク変動割合を示している Fig. 5 (A) shows an example of this required motor torque. In this figure, the horizontal axis indicates the rotation angle of the crankshaft, and the vertical axis indicates the torque fluctuation ratio without having a unit.
Yes
[0054] 続いて、減算器 S16において、スライド 11の往復運動による変動要素の必要モー タトルクと、クランク軸の回転運動による変動要素の必要モータトルクとの総和である 必要モータトルクと、モータトルク基準値との差をトルク変動値として算出する。  [0054] Subsequently, in the subtractor S16, the required motor torque that is the sum of the required motor torque of the variable element due to the reciprocating motion of the slide 11 and the required motor torque of the variable element due to the rotational motion of the crankshaft, and the motor torque reference The difference from the value is calculated as a torque fluctuation value.
図 5 (B)は、このようにして取り出したトルク変動値を表している。なお、この図にお いて、横軸はクランク軸の回転角を示し、縦軸は単位を持たせずにトルク変動割合を 示している。  FIG. 5 (B) shows the torque fluctuation value thus extracted. In this figure, the horizontal axis represents the rotation angle of the crankshaft, and the vertical axis represents the torque fluctuation ratio without having a unit.
[0055] 好ましくは、図 5 (A)に示す関数で表された必要モータトルクをクランク軸 7の回転 角の 1周期(0〜360度)にわたつて回転角で積分した値がゼロとなるように、横軸の 位置(即ち、モータトルク基準値)が図 5 (B)のように定められている。従って、この場 合には、クランク軸 7の回転 1周期にわたる必要モータトルクの平均値がゼロになるよ うに、横軸の位置を定める。  [0055] Preferably, the value obtained by integrating the necessary motor torque expressed by the function shown in FIG. 5A with the rotation angle over one cycle (0 to 360 degrees) of the rotation angle of the crankshaft 7 becomes zero. Thus, the position of the horizontal axis (that is, the motor torque reference value) is determined as shown in Fig. 5 (B). Therefore, in this case, the position of the horizontal axis is determined so that the average value of the necessary motor torque over one rotation of the crankshaft 7 becomes zero.
[0056] 次に、必要モータトルクとモータトルク基準値との差であるトルク変動値に、一定の ゲイン (倍率)を乗算し、これを速度調節値として出力する。  Next, the torque fluctuation value, which is the difference between the necessary motor torque and the motor torque reference value, is multiplied by a constant gain (magnification), and this is output as a speed adjustment value.
[0057] 図 4に示すように、上述の手順に従って、演算部 26にクランク軸 7の回転角が入力 されると、演算部 26から速度調節値が出力される。  As shown in FIG. 4, when the rotation angle of the crankshaft 7 is input to the calculation unit 26 in accordance with the above-described procedure, the speed adjustment value is output from the calculation unit 26.
[0058] 上述のように、本発明では、プレス機械 10の特性に応じた必要モータトルクを算出 し、この必要モータトルクに応じて速度調節値が算出される。  [0058] As described above, in the present invention, the required motor torque corresponding to the characteristics of the press machine 10 is calculated, and the speed adjustment value is calculated according to the required motor torque.
本実施形態では、上記一定指令速度でモータ 1を回転させた場合に必要モータト ルクが上記モータトルク基準値よりも小さくなるクランク軸 7の回転角では、モータ 1の 回転指令速度を上記一定指令速度よりも増加させるように、速度調節値が算出され また、上記一定指令速度でモータ 1を回転させた場合に必要モータトルクが上記モ 一タトルク基準値よりも大きくなるクランク軸 7の回転角では、モータ 1の回転指令速 度を上記一定指令速度よりも減少させるように速度調節値が算出される。 In the present embodiment, when the motor 1 is rotated at the constant command speed, the required motor torque becomes smaller than the motor torque reference value at the rotation angle of the crankshaft 7, and the motor 1 The speed adjustment value is calculated so that the rotation command speed is increased from the constant command speed. Also, when the motor 1 is rotated at the constant command speed, the required motor torque becomes larger than the motor torque reference value. At the rotation angle of the crankshaft 7, the speed adjustment value is calculated so that the rotation command speed of the motor 1 is reduced below the above-mentioned constant command speed.
[0059] 図 4の例では、クランク軸 7の回転角が入力されると、図 5 (B)に示す、入力された回 転角でのトルク変動値に一定のゲインを乗じた値の大きさとなる速度調節値が出力さ れるように演算部 26の速度調節関数を作成する。なお、上記一定指令速度でモータ 1を回転させた場合に必要モータトルクが上記モータトルク基準値よりも小さくなる回 転角に対する速度調節関数の出力値は正である。一方、上記一定指令速度でモー タ 1を回転させた場合に必要モータトルクが上記モータトルク基準値よりも大きくなる 回転角に対する速度調節関数の出力値は負である。また、ゲインを一定の正値にす ることで、図 3 (C)又は図 5に示す必要モータトルクがモータトルク基準値よりも小さい ほど、又は、大きいほど、その回転角での速度調節関数の出力値の絶対値は大きく なる。 In the example of FIG. 4, when the rotation angle of the crankshaft 7 is input, the magnitude of the value obtained by multiplying the torque fluctuation value at the input rotation angle shown in FIG. The speed adjustment function of the calculation unit 26 is created so that the speed adjustment value is output. Note that when the motor 1 is rotated at the constant command speed, the output value of the speed adjustment function with respect to the rotation angle at which the required motor torque becomes smaller than the motor torque reference value is positive. On the other hand, when the motor 1 is rotated at the constant command speed, the required motor torque becomes larger than the motor torque reference value. The output value of the speed adjustment function with respect to the rotation angle is negative. In addition, by setting the gain to a constant positive value, the speed adjustment function at the rotation angle becomes smaller as the required motor torque shown in FIG. 3 (C) or FIG. 5 is smaller or larger than the motor torque reference value. The absolute value of the output value of becomes larger.
上述の速度調節関数は、例えば、演算部 26に組み込まれる電子回路によって構 成すること力 Sでさる。  The above-described speed adjustment function is composed of, for example, a force S formed by an electronic circuit incorporated in the calculation unit 26.
[0060] 速度調節関数として機能する演算部 26は、角度センサ 25が検出したクランク軸 7 の回転角が入力されると、この回転角を速度調節関数に適用して、この回転角に対 応する速度調節値を算出する。演算部 26により算出された速度調節値は、指令調 節部 19に出力される。  [0060] When the rotation angle of the crankshaft 7 detected by the angle sensor 25 is input, the calculation unit 26 functioning as a speed adjustment function applies the rotation angle to the speed adjustment function and responds to the rotation angle. Calculate the speed adjustment value. The speed adjustment value calculated by the calculation unit 26 is output to the command adjustment unit 19.
[0061] 指令調節部 19は、速度指令部 17からの一定の指令速度値に、演算部 26からの速 度調節値を加算して増減調節した指令速度値を出力する。  The command adjustment unit 19 outputs a command speed value that is increased or decreased by adding the speed adjustment value from the calculation unit 26 to the constant command speed value from the speed command unit 17.
この指令速度値はモータ駆動部 21に入力され、モータ駆動部 21は、モータ 1の回 転速度が入力された指令速度値になるようにモータ 1へ供給する電流を調節する。こ の調節は、上述したように速度センサ 23を用いて行うことができる。  This command speed value is input to the motor drive unit 21, and the motor drive unit 21 adjusts the current supplied to the motor 1 so that the rotation speed of the motor 1 becomes the input command speed value. This adjustment can be performed using the speed sensor 23 as described above.
[0062] 上述の制御により、図 3 (C)において必要モータトルクがモータトルク基準値よりも 小さいクランク軸 7の回転角では、モータ 1の回転指令速度が増加させられ、図 3 (C) において必要モータトルクがモータトルク基準値よりも大きいクランク軸 7の回転角で は、モータ 1の回転指令速度が減少させられる。 [0062] By the above control, the rotation command speed of the motor 1 is increased at the rotation angle of the crankshaft 7 where the required motor torque is smaller than the motor torque reference value in FIG. At the rotation angle of the crankshaft 7 where the required motor torque is larger than the motor torque reference value, the rotation command speed of the motor 1 is reduced.
図 6 (B)は、このように調節された指令速度値の時間変化を示している。また、図 6 ( C)は、この場合のモータトルク変動を示している。図 6 (B)の破線は、比較のため、図 3 (B)の一定の指令速度値を示しており、図 6 (C)の破線は、比較のため、図 3 (C)の 必要モータトルク変動を示している。なお、図 6 (A)は、図 3 (A)に対応するクランク軸 7の回転角の時間変化を示している。  Fig. 6 (B) shows the change over time of the command speed value adjusted in this way. FIG. 6C shows the motor torque fluctuation in this case. The broken line in Fig. 6 (B) shows the constant command speed value in Fig. 3 (B) for comparison, and the broken line in Fig. 6 (C) shows the necessary motor in Fig. 3 (C) for comparison. Torque fluctuation is shown. FIG. 6 (A) shows the time change of the rotation angle of the crankshaft 7 corresponding to FIG. 3 (A).
図 6 (B)のように速度調節することにより、回転エネルギを回転系に効率よく与える こと力 Sでき、図 6 (C)に示すように、最大モータトルク値を下げることができ、モータトル クの変動も低減することができる。  By adjusting the speed as shown in Fig. 6 (B), it is possible to efficiently apply rotational energy to the rotating system S, and as shown in Fig. 6 (C), the maximum motor torque value can be reduced and the motor torque can be reduced. The fluctuations of can also be reduced.
このように、最大モータトルク値を低減できるので、モータ及びモータ駆動部の電気 容量を小さくでき、モータ及びモータ駆動部を小型化できる。  Thus, since the maximum motor torque value can be reduced, the electric capacities of the motor and the motor drive unit can be reduced, and the motor and the motor drive unit can be reduced in size.
また、回転系に回転エネルギを効率よく与えることができるので、消費電力を低減 することあでさる。  In addition, since rotational energy can be efficiently applied to the rotating system, power consumption can be reduced.
[0063] また、好ましくは、上記速度調節関数によって、モータの回転指令速度を上記一定 指令速度から増加させる量と、モータの回転指令速度を上記一定指令速度から減少 させる量とは、クランク軸 7の回転角の 1周期(0〜360度)にわたる時間積分値が等し い。従って、回転指令速度を増加させる量と、減少させる量とは、回転角の 1周期に わたる時間積分値が等しいので、回転角の 1周期にわたるプレス動作時間を、一定 指令速度でモータを回転させた場合の回転角の 1周期にわたるプレス動作時間と合 わせることができ、プレス生産速度を低下させずに済む。  [0063] Preferably, the amount by which the motor rotation command speed is increased from the constant command speed and the amount by which the motor rotation command speed is decreased from the constant command speed by the speed adjustment function are the crankshaft 7 The time integral over one period (0 to 360 degrees) of the rotation angle is equal. Therefore, the amount of increase in rotation command speed is the same as the amount of decrease in time integration value over one rotation angle period, so the press operation time over one rotation angle period is the same as rotating the motor at a constant command speed. In this case, it is possible to match the press operation time over one cycle of the rotation angle, and it is not necessary to reduce the press production speed.
[0064] 第 1実施形態では、さらに、補正部 27aと補正部 27bとを有する補正装置が速度制 御装置 15に組み込まれる。以下において、補正部 27aを説明した後、補正部 27bを 説明する。  In the first embodiment, a correction device having a correction unit 27a and a correction unit 27b is further incorporated in the speed control device 15. In the following, after describing the correction unit 27a, the correction unit 27b will be described.
[0065] 補正部 27aは、プレス運転速度が小さくなるほど、又は、プレス負荷エネルギが大き くなるほど、演算部 26から出力させる速度調節値の絶対値を大きくする補正をする。 これにより、プレス運転速度またはプレス負荷エネルギが変動する場合に、プレス 運転速度またはプレス負荷エネルギの各値ごとに、必要モータトルクを予め求める労 力を省くことができるとともに、プレス運転速度またはプレス負荷エネルギが変動した 場合でも、最適な制御が可能になり、広い運転条件でモータ電力の低減できる。 なお、図 2では、補正部 27aと演算部 26とが別個のブロックとなっている力 補正部 27aと演算部 26を統合して 1つのブロックとしてもよい。 The correction unit 27a performs correction to increase the absolute value of the speed adjustment value output from the calculation unit 26 as the press operation speed decreases or the press load energy increases. As a result, when the press operation speed or press load energy fluctuates, the required motor torque is calculated in advance for each value of the press operation speed or press load energy. In addition to saving power, optimal control is possible even when the press operating speed or press load energy fluctuates, and motor power can be reduced over a wide range of operating conditions. In FIG. 2, the force correction unit 27a and the calculation unit 26 in which the correction unit 27a and the calculation unit 26 are separate blocks may be integrated into one block.
[0066] 補正部 27aについて、詳細に説明する。 [0066] The correction unit 27a will be described in detail.
[0067] 補正部 27aには、プレス運転速度またはプレス負荷エネルギの様々な値に対する 補正ゲインが設定されてレ、る。  [0067] Correction gains for various values of press operation speed or press load energy are set in the correction unit 27a.
[0068] この補正ゲインは、図 7のように、プレス運転速度またはプレス負荷エネルギに対し て定められる。 [0068] This correction gain is determined with respect to the press operation speed or the press load energy as shown in FIG.
図 7において、原点は、演算部 26を設定したときのプレス運転速度およびプレス負 荷エネルギの値に相当する。すなわち、図 7において、プレス運転速度およびプレス 負荷エネルギは、演算部 26を設定したときのプレス運転速度およびプレス負荷エネ ルギの値に対する相対的な値を示して!/、る。  In FIG. 7, the origin corresponds to the press operation speed and the press load energy when the calculation unit 26 is set. That is, in FIG. 7, the press operation speed and the press load energy indicate values relative to the press operation speed and the press load energy when the calculation unit 26 is set!
[0069] 図 7のように、プレス運転速度が小さくなつた場合、及び、プレス負荷エネルギが大 きくなつた場合に、値が大きくなるように補正ゲインが定められる。  [0069] As shown in FIG. 7, the correction gain is determined so that the value increases when the press operation speed decreases and when the press load energy increases.
このように、プレス運転速度とプレス負荷エネルギの 2次元変数に対して補正ゲイン を出力する関数として、ゲインテーブルが補正部 27aに設定される。  In this way, the gain table is set in the correction unit 27a as a function that outputs the correction gain for the two-dimensional variables of the press operation speed and the press load energy.
[0070] クランク軸 7の回転角に基づき演算部 26から出力される速度調節値に、図 7の補正 ゲインを乗じて速度調節値を補正することで、プレス運転速度またはプレス負荷エネ ルギが変動した場合にも、モータトルク変動を小さく抑えることが可能で、モータの消 費電力を低く抑えることができる。  [0070] Press operation speed or press load energy fluctuates by correcting the speed adjustment value by multiplying the speed adjustment value output from the calculation unit 26 based on the rotation angle of the crankshaft 7 by the correction gain shown in FIG. In this case, the motor torque fluctuation can be kept small, and the power consumption of the motor can be kept low.
また、プレス機械では運転開始時は低速で運転し、パネルの生産品質をチェックし ながら、次第に速度を増速していくという運転方法がとられる場合が多いが、このよう な場合にも、補正部 27aにより、プレス設備の消費電力を低く抑えることができる。  Also, press machines often operate at a low speed at the start of operation, and gradually increase the speed while checking the production quality of the panel. Part 27a can keep the power consumption of the press equipment low.
[0071] プレスの負荷エネルギ Eについては、金型やクッション設定圧に依存する部分が大 きぐ基本的に金型ごとに設定する必要がある力 以下のように決定することが可能 である。  [0071] The load energy E of the press largely depends on the mold and the cushion set pressure. Basically, the force that needs to be set for each mold can be determined as follows.
[0072] (1)クッション設定 から近似 クッションの設定圧力からクッション力を F [N]を求め、クッションの押し込み量を L [ m]とすると、プレスがクッションに対して行う仕事 Wは、式(1)で求まる。 [0072] (1) Approximate from cushion setting When the cushion force F [N] is obtained from the set pressure of the cushion, and the cushion push-in amount is L [m], the work W performed by the press on the cushion is obtained by equation (1).
W [J] = F X L …ひ)  W [J] = F X L… hi)
この Wをプレス 2負荷エネルギ Eとほぼ等しいとして、式(2)を近似値として扱う。  Assuming that W is approximately equal to press 2 load energy E, equation (2) is treated as an approximate value.
 丄
E = W · · · (2)  E = W (2)
[0073] (2)ダイトライ時に 1サイクル運転を行って計測 [0073] (2) Measured by one-cycle operation during die try
ダイトライとは、プレス機械の据付け後や金型交換後の試験運転のことである。ダイ トライにより、主に、被加工物 (パネル)と加工物(金型)を投入して試し成型し、成型 性を操作員が判定しながらプレス機械の微調整を行う。このようなダイトライ時に 1サ イタル運転を行ってプレス負荷エネルギを求めることができる。具体的には、ダイトラ ィ時に、モータ 1に駆動されるプレス運動機構の運動エネルギカ スライドの 1往復期 間において変化する量 (減少する量の大きさ)と、スライドの 1往復期間にモータ 1が プレス運動機構に与えるエネルギ値との和を、プレス負荷エネルギとして求める。な お、プレス運動機構は、図 2の例では、(モータ 1から駆動力が伝達される順に)ブー リ 3、伝達べノレト 5、フライホイ一ノレ 6、ギヤ、メインギヤ 29、クランク車由 7、連結 才 12、 スライド 11を含む。  Die trie is a test operation after installing the press machine or after changing the mold. By die try, the workpiece (panel) and workpiece (die) are mainly put in and trial molding is performed, and the press machine is finely adjusted while the operator determines the moldability. The press load energy can be obtained by performing one cycle operation during such a die try. Specifically, during die trip, the kinetic energy of the press motion mechanism driven by the motor 1 changes during one reciprocation period of the slide (the amount of decrease), and the motor 1 moves during one reciprocation period of the slide. The sum of energy values given to the press motion mechanism is obtained as press load energy. In the example of Fig. 2, the press movement mechanism is as follows: (in the order in which the driving force is transmitted from the motor 1), the pulley 3, the transmission benore 5, the fly hoist 6, the gear, the main gear 29, the crank wheel 7, Includes 12 years old and 11 slides.
[0074] その 1つの例について具体的に説明する。連続生産を行う前のダイトライ時に、モ ータ回転数とモータトルクを計測することによって、プレス負荷エネルギを求める。ここ では、プレス運動機構をフライホイールであるとして近似しプレス負荷エネルギを求 める。  [0074] One example will be specifically described. The press load energy is obtained by measuring the motor speed and motor torque at the time of die-try before continuous production. Here, the press load energy is obtained by approximating the press motion mechanism as a flywheel.
[0075] スライドの上死点でクラッチをつないだ時から、 1サイクル運転して、スライドが下死 点に至り、次の上死点に至るまでのモータ回転数 n[rad/s]とモータトルク τ [Nm] を時系列で計測する。クラッチをつないだ直後のモータ回転数を n、次の上死点に 至る(クラッチを切る)直前のモータ回転数を n、モータ軸換算のフライホイール 6のィ  [0075] From the time the clutch is engaged at the top dead center of the slide, run for one cycle, the motor speed n [rad / s] and the motor from the slide to the bottom dead center until the next top dead center Torque τ [Nm] is measured in time series. The motor speed immediately after engaging the clutch is n, the motor speed immediately before reaching the next top dead center (disengaging the clutch) is n, and the motor shaft equivalent flywheel 6
f  f
ナーシャを Iとすると、プレス負荷エネルギ Eは次のほ女 1]の式で求まる。  If Nasha is I, the press load energy E can be calculated by the following equation 1].
[0076] [数 1] [0076] [Equation 1]
E =E =
Figure imgf000021_0001
[0077] ただし、積分区間 [t、 t ]はクラッチを接続した直後から、クラッチを切り離す直前ま での時間である。
Figure imgf000021_0001
[0077] However, the integration interval [t, t] is the time from immediately after the clutch is connected to just before the clutch is disconnected.
上式は、第 1項が運転開始直後のフライホイール 6の運動エネルギと、運転終了直 後のフライホイール 6の運動エネルギとの差であり、第 2項はモータが 1サイクルの間 にフライホイール 6に供給したエネルギである。つまり、 1サイクル終了時の運動エネ ルギの減少量と、供給エネルギの合計値が 1サイクルで消費されるプレス負荷エネル ギということになる。  In the above equation, the first term is the difference between the kinetic energy of the flywheel 6 immediately after the start of operation and the kinetic energy of the flywheel 6 immediately after the end of operation, and the second term is the flywheel during one cycle of the motor. The energy supplied to 6. In other words, the amount of decrease in kinetic energy at the end of one cycle and the total amount of energy supplied are the press load energy consumed in one cycle.
クラッチ接続時のエネルギロスの影響を除外するためには、 tはクラッチ接続後、 0 To exclude the effect of energy loss when the clutch is engaged, t is 0 after the clutch is engaged.
. 5秒程度経過してから計測を開始する必要がある。 It is necessary to start measurement after about 5 seconds.
また、ほ女 1]において、イナーシャ Iを、フライホイール 6のイナーシャとして近似した 力 プレス運動機構全体を考慮したイナ一シャをほ女 1]のイナーシャ Iとしてもよい。例 えば、プレス運動機構に含まれる、プーリ 3、伝達ベルト 5、フライホイール 6、ギヤ、メ インギヤ 29、クランク軸 7、連結部材 12、スライド 11を考慮したイナ一シャをほ女 1]の イナーシャ Iとしてもよい。  In addition, in inertia 1], inertia I that considers the entire force press motion mechanism that approximates inertia I of flywheel 6 may be inertia 1 of woman 1]. For example, the inertia that takes into account the pulley 3, the transmission belt 5, the flywheel 6, the gear, the main gear 29, the crankshaft 7, the connecting member 12, and the slide 11 included in the press motion mechanism is the female 1] inertia. I may also be used.
[0078] 速度制御装置 15は、ダイトライ時に 1サイクル運転が行われることで、プレス負荷ェ ネルギを求める計測算出装置を備える。この計測算出装置 30は、図 8に示すように、 プレス機械 10のプレス運動機構の運動エネルギカ スライド 11の 1往復期間におい て変化する量を計測する第 1計測部 31と、 1往復期間におレ、てモータ 1がプレス運動 機構に与えるエネルギ値を計測する第 2計測部 32と、第 1計測部 31が計測した、上 記運動エネルギが変化する量と、第 2計測部 32が計測した上記エネルギ値とに基づ いて、プレス負荷エネルギを算出する算出部 33と、を備える。  The speed control device 15 includes a measurement calculation device that obtains press load energy by performing one-cycle operation during die try. As shown in FIG. 8, the measurement / calculation device 30 includes a first measurement unit 31 that measures the amount of change in one reciprocation period of the kinetic energy slide 11 of the press movement mechanism of the press machine 10, and one reciprocation period. The second measuring unit 32 that measures the energy value given to the press movement mechanism by the motor 1 and the amount of change in the kinetic energy measured by the first measuring unit 31 and the second measuring unit 32 A calculating unit 33 for calculating press load energy based on the energy value.
[0079] 第 1計測部 31は、角速度センサ 23と、データラッチ 31a, 31bと、演算器 31cとを有 する。データラッチ 31aは、クラッチ制御部から出力されるクラッチ接続指令信号を受 けると作動して角速度センサ 23からの上記速度値 nを受け、この速度値 nを出力す る。なお、安定した速度値 nを得るために、データラッチ 31aは、クラッチ接続指令信 号を受けた後、クラッチ 9の接続が完了した直後に作動するように構成されてよい。デ 一タラツチ 31bは、クラッチ制御部からのクラッチ切断指令信号 (この信号力 Sスライド 1 1の上記 1往復運動の終了を示す)をインバータを介して受けると作動して、角速度 センサ 23からの上記速度値 nを受け、この速度値 n出力する。 [0079] The first measurement unit 31 includes an angular velocity sensor 23, data latches 31a and 31b, and a calculator 31c. The data latch 31a operates when receiving a clutch connection command signal output from the clutch control unit, receives the speed value n from the angular velocity sensor 23, and outputs the speed value n. In order to obtain a stable speed value n, the data latch 31a may be configured to operate immediately after the connection of the clutch 9 is completed after receiving the clutch connection command signal. The data latch 31b is activated when an inverter receives a clutch disengagement command signal (this signal force indicates the end of one reciprocating motion of the slide 1 1) from the clutch control unit via the inverter. Upon receiving the speed value n from the sensor 23, the speed value n is output.
f f  f f
なお、安定した速度値 nを得るために、データラッチ 31bは、クラッチ 9の切断が開  In order to obtain a stable speed value n, the data latch 31b has the clutch 9 disengaged.
f  f
始される直前の、角速度センサ 23からの速度値 nを受けて、この速度値 nを出力で It receives the speed value n from the angular velocity sensor 23 just before it is started and outputs this speed value n as an output.
f f  f f
きるように、クラッチ切断指令信号を受ける直前に角速度センサ 23から受けて記憶し た速度値 nを、出力してもよい。演算器 31cは、これらデータラッチ 31a, 31bから速 The speed value n received from the angular velocity sensor 23 and stored immediately before receiving the clutch disengagement command signal may be output so that the clutch disengagement command signal is received. The arithmetic unit 31c receives the speed from the data latches 31a and 31b.
f  f
度値 nと速度値 nを受け、これらを 2乗し、 n 2から n 2を引いた値に、上記イナーシャ I s f s f Take the degree value n and the speed value n, square them, and subtract n 2 from n 2 to get the inertia I sfsf
と 1/2を乗算して、ほ女 1]の第 1項目の値を出力する。 Multiply by 1/2 to output the value of the first item of Woman 1].
第 2計測部 32は、モータ駆動部 21に組み込まれているトルク検知器(図示せず)と 、角速度センサ 23と、乗算器 32aと、積分器 32bとを有する。トルク検知器は、モータ 1のトルク値 τを計測して出力する。角速度センサ 23は、上記速度値 ηを計測して出 力する。乗算器 32aは、トルク検知器からのトルク値 τと、角速度センサ 23からの速 度値 ηを受け、これらを乗算して値 η· τを出力する。積分器 32bは、乗算器 32aから 値 η · τを受け、入力値 η· τに基づいてほ女 1]の第 2項目の値を算出して出力する。 算出部 33は、演算器 31cから入力される値と、積分器 32bから入力される値とを加 算して、上記ほ女 1]の値をプレス負荷エネルギ値として出力する。  The second measuring unit 32 includes a torque detector (not shown) incorporated in the motor driving unit 21, an angular velocity sensor 23, a multiplier 32a, and an integrator 32b. The torque detector measures and outputs the torque value τ of the motor 1. The angular velocity sensor 23 measures and outputs the velocity value η. The multiplier 32a receives the torque value τ from the torque detector and the speed value η from the angular velocity sensor 23, multiplies them, and outputs a value η · τ. The integrator 32b receives the value η · τ from the multiplier 32a, calculates the value of the second item of the woman 1] based on the input value η · τ, and outputs it. The calculation unit 33 adds the value input from the calculator 31c and the value input from the integrator 32b, and outputs the value of the above-mentioned woman 1] as the press load energy value.
また、上述のように、補正部 27aによる補正ゲインの値は、補正部 27aへの入力値 であるプレス速度とプレス負荷エネルギにより定まる。  Further, as described above, the value of the correction gain by the correction unit 27a is determined by the press speed and the press load energy, which are input values to the correction unit 27a.
図 7に示すプレス運転速度とプレス負荷エネルギの、補正部 27aへの入力は、自動 入力、又は、オペレータによる入力であってよい。  The press operation speed and press load energy shown in FIG. 7 may be input to the correction unit 27a automatically or by an operator.
自動入力の場合には、角速度センサ 23又は指令調節部 19からの回転速度値をス ライドの 1往復運動期間にわたって平均し、この平均値をプレス運転速度として、補 正部 27aへ入力する平均値算出部を設けてよい。この場合、平均値算出部から上記 平均値を受ける入力部力 補正部 27aに設けられていてよい。また、上述したプレス 負荷エネルギの計測装置の出力が補正部 27aへ入力されるようになっていてよい。こ の場合、図 8の計測装置から出力されるプレス負荷エネルギを受ける入力部力 補正 部 27aに設けられていてよい。このようにして、プレス運転速度とプレス負荷エネルギ が自動的に補正部 27aへ入力されてよい。なお、他の適切な手段で算出または計測 されたプレス運転速度またはプレス負荷エネルギを受ける入力部を、他の適切な手 段で構成してもよい。 In the case of automatic input, the rotation speed value from the angular velocity sensor 23 or the command adjustment unit 19 is averaged over one reciprocating movement period of the slide, and this average value is input to the correction unit 27a as the press operating speed. A calculation unit may be provided. In this case, the input unit force correction unit 27a that receives the average value from the average value calculation unit may be provided. Further, the output of the press load energy measuring device described above may be input to the correction unit 27a. In this case, it may be provided in the input unit force correcting unit 27a that receives the press load energy output from the measuring device of FIG. In this way, the press operation speed and the press load energy may be automatically input to the correction unit 27a. It should be noted that the input unit that receives the press operation speed or the press load energy calculated or measured by other appropriate means is used as another appropriate method. You may comprise in steps.
オペレータによる入力の場合には、オペレータが所定の操作ボタンを操作すること で、プレス運転速度とプレス負荷エネルギが補正部 27aに入力されてよい。この場合 、この操作ボタンは補正部 27aへの入力部を構成する力 他の適切なもので、ォペレ ータに操作されることでプレス運転速度またはプレス負荷エネルギを補正部 27aへ入 力する入力部を構成してもよレ、。  In the case of input by the operator, the press operation speed and the press load energy may be input to the correction unit 27a by the operator operating a predetermined operation button. In this case, this operation button is another appropriate force that constitutes the input unit to the correction unit 27a, and is an input that inputs the press operation speed or the press load energy to the correction unit 27a when operated by the operator. You can configure the part.
[0081] 一方、補正部 27bは、図 4の符号 a〜fが示すように、「(1)スライド摩擦」から出力さ れる直線的な力の値に補正ゲインを乗じるゲイン乗算部と、「(2)スライド慣性」から出 力される直線的な力の値に補正ゲインを乗じるゲイン乗算部と、「(3)クッション」から 出力される直線的な力の値に補正ゲインを乗じるゲイン乗算部と、「(4)プレス加圧」 力から出力される直線的な力の値に補正ゲインを乗じるゲイン乗算部と、「(5)カウン タパランサ」から出力される直線的な力の値に補正ゲインを乗じるゲイン乗算部と、「( 6)その他の要素」から出力される直線的な力の値に補正ゲインを乗じるゲイン乗算 部と、を有する。 On the other hand, as indicated by reference symbols a to f in FIG. 4, the correction unit 27b includes a gain multiplication unit that multiplies the linear force value output from “(1) sliding friction” by a correction gain, (2) A gain multiplier that multiplies the linear force value output from “sliding inertia” by the correction gain, and a gain multiplier that multiplies the linear force value output from “(3) Cushion” by the correction gain. Section, a gain multiplier that multiplies the linear force value output from the “(4) press pressurizing” force by the correction gain, and a linear force value output from the “(5) counter balancer”. A gain multiplier that multiplies the correction gain, and a gain multiplier that multiplies the linear force value output from “(6) Other elements” by the correction gain.
これらゲイン乗算部による補正ゲインは互いに独立して設定可能である。各ゲイン 乗算部の補正ゲインの設定方法は、補正部 27aの補正ゲインと同様であってよい。 即ち、演算部 26を設定したときのプレス運転速度およびプレス負荷エネルギの値か ら、プレス運転速度が小さくなるにつれ、プレス負荷エネルギが大きくなるにつれ、そ の値が大きくなるように各ゲイン乗算部の補正ゲインを定める。なお、各ゲイン乗算部 には、プレス運転速度およびプレス負荷エネルギが入力される入力部が設けられる。 この入力部は、上記補正部 27aの入力部と同様の構成であってよい。  The correction gains by these gain multipliers can be set independently of each other. The method of setting the correction gain of each gain multiplication unit may be the same as the correction gain of the correction unit 27a. That is, from the values of the press operation speed and the press load energy when the calculation unit 26 is set, each gain multiplication unit is set so that the press load energy becomes larger as the press operation speed becomes smaller. Determine the correction gain. Each gain multiplication unit is provided with an input unit for inputting a press operation speed and press load energy. This input unit may have the same configuration as the input unit of the correction unit 27a.
補正部 27bを設けることで、図 4の各変動要素(1)〜(6)ごとに補正ゲインを設定で きるので、より最適な消費電力の低減を実現することが可能となる。  By providing the correction unit 27b, it is possible to set the correction gain for each of the variable elements (1) to (6) in FIG. 4, so that it is possible to achieve a more optimal reduction in power consumption.
[0082] [第 2実施形態] [0082] [Second Embodiment]
図 9に本発明の第 2実施形態を示す。この第 2実施形態の演算部 26において、入 力されたクランク軸 7の回転角に基づいて必要モータトルクを算出する部分は、本発 明の「トルク決定装置」を構成する。また、第 2実施形態の演算部 26と指令調節部 19 において、算出された必要モータトルクに基づいて、調節された指令速度値を算出 する部分は、本発明の「速度調節装置」を構成する。 FIG. 9 shows a second embodiment of the present invention. In the calculation unit 26 of the second embodiment, the portion for calculating the necessary motor torque based on the input rotation angle of the crankshaft 7 constitutes the “torque determination device” of the present invention. Further, in the calculation unit 26 and the command adjustment unit 19 of the second embodiment, the adjusted command speed value is calculated based on the calculated required motor torque. The part which comprises comprises the "speed control apparatus" of this invention.
[0083] 図 9は、本発明の第 2実施形態によるプレス機械 10'の構成図である。第 2実施形 態のプレス機械 10'では、モータ駆動部 21から演算部 26へ指令トルクの値が入力さ れるように構成されており、演算部 26の構成が第 1実施形態の場合と異なる。第 2実 施形態のプレス機械 10'の他の構成は、第 1実施形態の場合と同じである。  FIG. 9 is a configuration diagram of a press machine 10 ′ according to the second embodiment of the present invention. The press machine 10 ′ of the second embodiment is configured such that the value of the command torque is input from the motor drive unit 21 to the calculation unit 26, and the configuration of the calculation unit 26 is different from that of the first embodiment. . The other configuration of the press machine 10 ′ of the second embodiment is the same as that of the first embodiment.
[0084] 上述と同様に、モータ駆動部 21は、速度指令部 17から直接又は指令調節部 19を 介して指令速度値を受け、これに応じた値の電流をモータ 1へ供給する。この時、速 度センサ 23からモータ駆動部 21へモータ 1の実際の速度の値が入力され、これに応 じて、モータ 1の実際の速度が指令速度値となるように、モータ 1への電流値がフィー ドバック制御される。  Similarly to the above, the motor drive unit 21 receives the command speed value directly from the speed command unit 17 or via the command adjustment unit 19, and supplies a current having a value corresponding to the command speed value to the motor 1. At this time, the value of the actual speed of the motor 1 is input from the speed sensor 23 to the motor drive unit 21, and in response to this, the actual speed of the motor 1 is set to the commanded speed value. The current value is feedback controlled.
[0085] 図 10は、第 2実施形態による演算部 26の構成を示している。  FIG. 10 shows a configuration of the calculation unit 26 according to the second embodiment.
第 2実施形態によると、速度指令部 17から指令調節部 19を介さずに、一定の指令 速度値をモータ駆動部 21へ入力して、プレス機械 10'の試運転を行う。この試運転 では、実際に被加工物をプレスする。試運転は、プレス生産運転の始めの 1周期又 は数周期にわたって実施してよい。  According to the second embodiment, a constant command speed value is input to the motor drive unit 21 from the speed command unit 17 without going through the command adjustment unit 19, and the press machine 10 ′ is tested. In this trial run, the workpiece is actually pressed. The test run may be carried out over one or several cycles at the beginning of the press production operation.
この試運転の時に、演算部 26へ、モータ駆動部 21からは指令トルク値が入力され 、角度センサ 25からはクランク軸 7の回転角が入力される。  At the time of this trial operation, a command torque value is input from the motor drive unit 21 to the calculation unit 26, and a rotation angle of the crankshaft 7 is input from the angle sensor 25.
モータ駆動部 21から演算部 26へ入力される指令トルク値は、モータ駆動部 21が、 モータ 1へ供給する電流の値に応じた必要モータトルクの値であり、この電流の値に 比例する値であってよぐモータ 1へ供給される電流の値から算出される。  The command torque value input from the motor drive unit 21 to the calculation unit 26 is a necessary motor torque value according to the current value supplied to the motor 1 by the motor drive unit 21, and is a value proportional to this current value. Therefore, it is calculated from the value of the current supplied to the motor 1.
プレス機械 10'の試運転により、クランク軸 7の回転角と指令トルク値との関係を得 てこれをテーブルとして作成しておく。これにより、作成されたテーブルを参照するこ とで、クランク軸 7の各回転角に対する指令トルク値を得ることができる。  By trial operation of the press machine 10 ', the relationship between the rotation angle of the crankshaft 7 and the command torque value is obtained and created as a table. Thereby, the command torque value for each rotation angle of the crankshaft 7 can be obtained by referring to the created table.
[0086] プレスを毎回上死点で停止させて運転を行う操業方法の場合のテーブル作成につ いて説明する。  [0086] The table creation in the case of the operation method in which the press is stopped and stopped at each top dead center will be described.
この操業方法では、スライド 11が上死点で停止している状態から運転を開始し再び 上死点に戻って停止するまでを 1周期とし、この動作を繰り返す。この場合、 1周期ご とにクラッチ 9を入/切するので、各周期ごとのクラッチ 9の影響が同じであり、周期ご との指令トルク値が等しい。 In this operation method, the operation is repeated from the state where the slide 11 is stopped at the top dead center until it returns to the top dead center and stops again, and this operation is repeated. In this case, since the clutch 9 is turned on / off every cycle, the influence of the clutch 9 in each cycle is the same, and every cycle. Is equal to the command torque value.
従って、任意の 1周期にわたってクランク軸 7の回転角と指令トルク値との関係を得 て、これをテーブルとして作成してもよいし、数周期にわたって得られた上記関係に 関するデータを各角度ごとに平均して 1周期分のデータとし、これをテーブルとして作 成してもよい。  Therefore, the relationship between the rotation angle of the crankshaft 7 and the command torque value can be obtained over an arbitrary cycle and created as a table, or the data on the above relationship obtained over several cycles can be obtained for each angle. On average, the data for one cycle may be created as a table.
[0087] プレスを上死点で停止させずに連続して運転を行う操業方法の場合のテーブル作 成について説明する。  [0087] Table creation in the case of an operation method in which the press is continuously operated without stopping at the top dead center will be described.
この操業方法では、運転開始後は、上死点でスライド 1 1を停止させずに連続して 運転を行い、 1周期ごとにスライド 1 1を上死点で停止させることはしない。この場合、 運転開始時に、クラッチ 9をつないだ後は、クラッチ 9を切らないため、最初の 1周期と それ以降の周期とで指令トルク値が異なる。  In this operation method, after starting operation, slide 11 is not continuously stopped at top dead center, but slide 11 is not stopped at top dead center every cycle. In this case, since the clutch 9 is not disengaged after the clutch 9 is engaged at the start of operation, the command torque value differs between the first period and the subsequent periods.
従って、指令トルク値が安定するまでの数周期(例えば、 n周期分)のデータを試運 転により得て、これら数周期にわたる指令トルク変動を表わす上記テーブルを作成し ておく。このテーブルの各周期のデータは、実際の運転時における対応する周期に 適用される。そして、このテーブルの最後の周期(n周期目 )のデータは、実際の運転 時において n周期目以降の周期に反復して適用される。  Therefore, data of several cycles (for example, n cycles) until the command torque value is stabilized is obtained by trial operation, and the above table representing the command torque fluctuation over these several cycles is created. The data for each period in this table is applied to the corresponding period in actual operation. The data of the last period (nth period) in this table is repeatedly applied to the period after the nth period in actual operation.
また、代わりに、指令トルク値が安定するまでプレスを試運転し、指令トルク値が安 定した後に、 1周期分のデータを得てテーブルを作成してもよい。安定時における上 記関係を表わすこのテーブルのデータは、実際の運転にお!/、て始動時からの各周 期に反復して適用されてよい。  Alternatively, the press may be trial run until the command torque value stabilizes, and after the command torque value stabilizes, data for one cycle may be obtained to create a table. The data in this table, which represents the above relationship at the time of stability, may be applied repeatedly in each cycle from the start of the actual operation!
[0088] 上述のように、プレス機械 10 'の試運転によりテーブルを作成したら、これを演算部 26に記憶しておき、プレス機械 10 'の実際の運転を次のようにして行う。 [0088] As described above, when the table is created by the trial operation of the press machine 10 ', the table is stored in the calculation unit 26, and the actual operation of the press machine 10' is performed as follows.
運転時に、演算部 26に角度センサ 25からクランク軸 7の回転角が入力されると、演 算部 26は、入力された回転角をテーブルに適用して、入力された回転角に対応する 必要モータトルク値を算出する。  During operation, if the rotation angle of the crankshaft 7 is input from the angle sensor 25 to the calculation unit 26, the calculation unit 26 must apply the input rotation angle to the table to correspond to the input rotation angle. Calculate the motor torque value.
続いて、第 1実施形態の場合と同様に、演算部 26は、この必要モータトルクと、モ 一タトルク基準値との差を算出し、その後、この差に一定のゲインを乗算し、この乗算 された値を速度調節値として出力する。その後の動作は、第 1実施形態と同じなので 、説明を省略する。なお、プレス機械 10'の実際の運転時には、モータ駆動部 21か ら演算部 26へ指令トルク値は入力されなくてよい。 Subsequently, as in the case of the first embodiment, the calculation unit 26 calculates the difference between the required motor torque and the motor torque reference value, and then multiplies the difference by a certain gain, and performs this multiplication. The adjusted value is output as a speed adjustment value. The subsequent operation is the same as in the first embodiment. The description is omitted. In the actual operation of the press machine 10 ′, the command torque value does not have to be input from the motor drive unit 21 to the calculation unit 26.
[0089] 第 2実施形態では、試運転により得られた上記テーブルに、検知された回転角を当 てはめるだけで、必要モータトルクを決定することができ、簡単な構成及び処理で、 モータの回転指令速度を調節することができる。  In the second embodiment, the required motor torque can be determined simply by applying the detected rotation angle to the table obtained by the trial operation, and the motor rotation can be achieved with a simple configuration and processing. The command speed can be adjusted.
[0090] また、第 2実施形態の場合、プレス運転速度またはプレス負荷エネルギが変動して も、この変動に対する補正が上述の補正部 27により行われるので、再度、試運転を 行って必要モータトルクを決定する必要がなくなる。例えば、プレス機械では運転開 始時は低速で運転し、パネルの生産品質をチェックしながら、次第に速度を増速して いくという運転方法がとられる場合が多いが、このような場合にも、再度、試運転を行 うことなく、プレス運転を継続しながら補正部 27によりプレス運転速度の変動に対応 できる。  Further, in the case of the second embodiment, even if the press operation speed or the press load energy fluctuates, the correction for the fluctuation is performed by the correction unit 27 described above, so that a trial operation is performed again to obtain the necessary motor torque. No need to decide. For example, a press machine often operates at a low speed at the start of operation, and gradually increases the speed while checking the production quality of the panel. The correction unit 27 can cope with fluctuations in the press operation speed while continuing the press operation without performing the test operation again.
[0091] [第 3実施形態]  [0091] [Third embodiment]
図 11は、本発明の第 3実施形態によるプレス機械 10' 'の構成図である。第 3実施 形態では、第 1実施形態又は第 2実施形態で説明した図 2の角度センサ 25の代わり に積分器 34を用いたものである。その他の構成は、第 1実施形態のプレス機械 10と 同じであり、図 11には第 1実施形態に対応する構成が記載されている力 第 2実施 形態に対応する構成とする場合には、試運転時にモータ駆動部 21から演算部 26へ 指令トルクが入力されるように構成される。  FIG. 11 is a configuration diagram of a press machine 10 ′ ′ according to the third embodiment of the present invention. In the third embodiment, an integrator 34 is used instead of the angle sensor 25 of FIG. 2 described in the first embodiment or the second embodiment. The other configuration is the same as the press machine 10 of the first embodiment, and the force corresponding to the first embodiment is described in FIG. It is configured so that the command torque is input from the motor drive unit 21 to the calculation unit 26 during the test run.
[0092] 図 11に示すように、積分器 34には指令調節部 19からの調節された指令速度値が 入力され、積分器 34は入力されてくる指令速度値を時間で積分する。  As shown in FIG. 11, the adjusted command speed value from the command adjusting unit 19 is input to the integrator 34, and the integrator 34 integrates the input command speed value with time.
モータ駆動開始時から指令速度値を時間で積分していくと、現時点のモータ 1の回 転角を得ること力 Sできる。  If the command speed value is integrated over time from the start of motor drive, the force S for obtaining the current rotation angle of motor 1 can be obtained.
[0093] このように積分器 34で得られた現時点のモータ 1の回転角の値は、演算部 26に入 力される。演算部 26は、第 1実施形態と同様に、積分器 34から入力されてくる回転 角の値に基づいて、速度調節値を出力する。その他の構成及び動作は第 1実施形 態の場合と同様である。  The current value of the rotation angle of the motor 1 obtained by the integrator 34 in this way is input to the calculation unit 26. Similar to the first embodiment, the calculation unit 26 outputs a speed adjustment value based on the rotation angle value input from the integrator 34. Other configurations and operations are the same as those in the first embodiment.
[0094] 第 3実施形態によると、第 1実施形態のようにメインギヤ 29の回転角を検出する角 度センサ 25を設けなくとも、積分器 34で指令速度値を時間積分することで、モータ 1 の回転角を検知することができる。 [0094] According to the third embodiment, the angle for detecting the rotation angle of the main gear 29 as in the first embodiment. Even if the degree sensor 25 is not provided, the rotation angle of the motor 1 can be detected by integrating the command speed value with the integrator 34 over time.
従って、角度センサ 25を省略できるので、構成が簡単になる。  Accordingly, since the angle sensor 25 can be omitted, the configuration is simplified.
[0095] [第 4実施形態] [0095] [Fourth Embodiment]
第 1実施形態又は第 2実施形態では、演算部 26は、速度指令部 17からの指令速 度値に加算される速度調節値を出力していたが、第 4実施形態では、演算部 26は、 速度指令部 19からの指令速度値に乗算される調節ゲイン値 (倍率)を出力する。  In the first embodiment or the second embodiment, the calculation unit 26 outputs the speed adjustment value added to the command speed value from the speed command unit 17, but in the fourth embodiment, the calculation unit 26 The adjustment gain value (magnification) multiplied by the command speed value from the speed command section 19 is output.
[0096] 指令調節部 19は、速度指令部 17から入力された指令速度値に、演算部 26から補 正部 27を介して入力される調節ゲインを乗じて調節された指令速度値を出力する。 The command adjustment unit 19 outputs a command speed value adjusted by multiplying the command speed value input from the speed command unit 17 by the adjustment gain input from the calculation unit 26 via the correction unit 27. .
[0097] 演算部 26が算出する調節ゲインは、これを速度指令部 17からの指令速度値に乗 算すると、図 6 (B)に示す第 1実施形態又は第 2実施形態の場合と同じ調節された指 令速度ィ直が得られるように定めること力でさる。 [0097] When the adjustment gain calculated by the calculation unit 26 is multiplied by the command speed value from the speed command unit 17, the same adjustment as in the first embodiment or the second embodiment shown in FIG. It is necessary to determine that the specified command speed can be obtained.
すなわち、演算部 26が算出する調節ゲインは、演算部 26に入力される回転角に値 によって変化するものであり、入力回転角での図 3 (C)に示す必要モータトルクの値 That is, the adjustment gain calculated by the calculation unit 26 changes depending on the value of the rotation angle input to the calculation unit 26, and the value of the necessary motor torque shown in FIG. 3C at the input rotation angle.
1S 基準モータトルク値よりも大きいほど、小さい値をとり、入力回転角度での図 3 (C) に示す必要モータトルクの値が基準モータトルク値よりも小さレ、ほど、大きレ、値をとる 1S The larger the value is, the smaller the reference motor torque value is, and the smaller the required motor torque value shown in Fig. 3 (C) at the input rotation angle is, the larger the value is, the smaller the value is.
[0098] [その他の実施形態] [0098] [Other Embodiments]
上述のメインギヤ 29の回転速度を検出する角度センサ 25や、モータ駆動部 21 入力される指令速度値を時間積分する積分器 34により角度検知装置が構成される 力 他の適切な手段により構成することもできる。例えば、角度検知装置を、角速度 検出装置やスライド 11の位置又は速度を検出する装置により構成してもよい。  The angle sensor 25 that detects the rotational speed of the main gear 29 described above and the integrator 34 that integrates the command speed value that is input to the motor drive unit 21 over time. The force is configured by other appropriate means. You can also. For example, the angle detection device may be constituted by an angular velocity detection device or a device that detects the position or velocity of the slide 11.
[0099] 上述したように、第 1実施形態や第 2実施形態の演算部 26において、入力されたク ランク軸 7の回転角に基づいて必要モータトルクを算出する部分は、トルク決定装置 を構成する。また、第 1実施形態や第 2実施形態の演算部 26と指令調節部 19にお いて、算出された必要モータトルクに基づいて、調節された指令速度値を算出する 部分は、速度調節装置を構成する。  [0099] As described above, in the calculation unit 26 of the first embodiment and the second embodiment, the portion for calculating the necessary motor torque based on the input rotation angle of the crankshaft 7 constitutes a torque determination device. To do. Further, in the calculation unit 26 and the command adjustment unit 19 of the first embodiment and the second embodiment, the part for calculating the adjusted command speed value based on the calculated required motor torque Constitute.
しかし、トルク決定装置は、上述の実施形態の構成に限定されず、入力される回転角 の値に基づき、プレス機械の特性に応じた必要モータトルクを決定するものであれば よぐこの機能を実現できるように電子回路などの適切な手段で構成されていればよ い。 However, the torque determination device is not limited to the configuration of the above-described embodiment, and an input rotation angle. As long as it determines the required motor torque according to the characteristics of the press machine based on the value of, it should be configured with appropriate means such as an electronic circuit so that this function can be realized.
また、速度調節装置は、上述の実施形態の構成に限定されず、必要モータトルクが 予め定められたモータトルク基準値よりも小さくなる回転体 (例えば、クランク軸 7)の 回転角では、モータの回転指令速度を一定指令速度よりも増加させるか、又は、必 要モータトルクが予め定められたモータトルク基準値よりも大きくなる回転体の回転角 では、モータの回転指令速度を一定指令速度よりも減少させるものであればよぐこ の機能を実現できるように電子回路などの適切な手段で構成されていればよい。  Further, the speed adjusting device is not limited to the configuration of the above-described embodiment, and at the rotation angle of the rotating body (for example, the crankshaft 7) in which the necessary motor torque is smaller than a predetermined motor torque reference value, At the rotation angle of the rotating body where the rotation command speed is increased above the constant command speed or the required motor torque is greater than the predetermined motor torque reference value, the motor rotation command speed is set higher than the constant command speed. If it can be reduced, it may be configured by appropriate means such as an electronic circuit so that the function can be realized.
[0100] 上記実施形態では、補正部 27aは補正ゲインを演算部 26からの出力に乗算したが 、補正部 27aの構成を、上記実施形態の補正部 27aと同様の効果が得られるような 補正値を演算部 26からの出力に加算するように、変更してもよい。同様に、補正部 2 7bの構成を、上記実施形態の補正部 27bと同様の効果が得られるように、図 4の(1) 〜½)からの出力値に補正値を加算するように変更してもよい。なお、補正部 27aと 補正部 27bの!/、ずれか一方により補正装置を構成してもよ!/、。  [0100] In the above embodiment, the correction unit 27a multiplies the output from the calculation unit 26 by the correction gain. However, the correction unit 27a is configured so as to obtain the same effect as the correction unit 27a of the above embodiment. The value may be changed to be added to the output from the calculation unit 26. Similarly, the configuration of the correction unit 27b is changed so that the correction value is added to the output value from (1) to ½) of FIG. 4 so that the same effect as the correction unit 27b of the above embodiment is obtained. May be. Note that the corrector 27a and the corrector 27b may be configured with one of the!
[0101] また、上述では、クランク軸回転の 1周期当たりの動作時間を合わせるため、モータ の回転指令速度を上記一定指令速度から増加させる量と、モータの回転指令速度を 上記一定指令速度から減少させる量とは、クランク軸 7の回転角の 1周期(0〜360度 )にわたる時間積分値が等しくなるようにした。しかし、種々の条件、状況に応じて、適 切な所定時間(例えば、 1分間)にわたるこれらの時間積分が等しくなるように指令速 度値を調節してもよい。  [0101] In addition, in the above, in order to match the operation time per cycle of crankshaft rotation, the motor rotation command speed is increased from the constant command speed, and the motor rotation command speed is decreased from the constant command speed. The amount to be made to be equal to the time integral value over one cycle (0 to 360 degrees) of the rotation angle of the crankshaft 7. However, the command speed value may be adjusted so that these time integrals over an appropriate predetermined time (for example, 1 minute) are equal depending on various conditions and situations.
[0102] 上述のクランク軸 7は、回転体であり、クランク軸 7と、これに連結された連結部材 12 などは、モータ 1の回転運動をスライド 11の往復運動に変換する変換機構を構成す る力 モータ 1により回転駆動されるカムや他の適切な部材などにより変換機構を構 成してもよい。  [0102] The crankshaft 7 described above is a rotating body, and the crankshaft 7 and the connecting member 12 connected thereto constitute a conversion mechanism that converts the rotational motion of the motor 1 into the reciprocating motion of the slide 11. The conversion mechanism may be configured by a cam or other appropriate member that is rotationally driven by the motor 1.
[0103] また、上述の実施形態ではフライホイールを用いたプレス機械 10、 10 '、 10 ' 'につ いて説明したが、本発明は、フライホイールを用いずにサーボモータにより運転を行 うプレス機械にも適用できる。 このように、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しな V、範囲で種々変更を加え得ることは勿論である。 [0103] Although the press machines 10, 10 ', 10''using the flywheel have been described in the above embodiment, the present invention is a press that is operated by a servo motor without using the flywheel. It can also be applied to machines. As described above, the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made within the scope of V and scope without departing from the gist of the present invention.

Claims

請求の範囲 The scope of the claims
[1] モータと、該モータにより回転駆動される回転体を有しこの回転運動を往復運動に 変換する変換機構と、該変換機構に連結されて往復運動するスライドと、を備え、前 記モータを一定指令速度で回転させた場合に前記回転体の回転角に従って必要モ 一タトルクが変動するプレス機械の制御装置であって、  [1] A motor including a motor, a conversion mechanism that has a rotating body that is rotationally driven by the motor, and converts the rotational movement into a reciprocating movement, and a slide that is connected to the conversion mechanism and reciprocates. When the motor is rotated at a constant command speed, the required motor torque varies according to the rotation angle of the rotating body,
前記回転体の回転角を検知する角度検知装置と、  An angle detection device for detecting a rotation angle of the rotating body;
該角度検知装置から入力される回転角の値に基づき、プレス機械の特性に応じた 必要モータトルクを決定するトルク決定装置と、  A torque determination device that determines a necessary motor torque according to the characteristics of the press machine based on the value of the rotation angle input from the angle detection device;
前記必要モータトルクが予め定められたモータトルク基準値よりも小さくなる前記回 転体の回転角では、モータの回転指令速度を前記一定指令速度よりも増加させる速 度調節装置と、を備え、  A speed adjusting device for increasing the rotation command speed of the motor to be higher than the constant command speed at a rotation angle of the rotating body where the required motor torque is smaller than a predetermined motor torque reference value;
さらに、前記速度調節装置は、前記回転指令速度を増加させる量を、プレス運転速 度またはプレス負荷エネルギの変動に応じて、補正する補正装置を備え、 前記速度調節装置が回転指令速度を増加させる量と、前記補正装置が当該増加さ せる量を補正する量との両方を、前記モータの最大消費電力を低減するように反映 した回転指令速度で、前記モータを回転駆動する、ことを特徴とするプレス機械の制 御装置。  Further, the speed adjustment device includes a correction device that corrects an amount by which the rotation command speed is increased according to a change in press operation speed or press load energy, and the speed adjustment device increases the rotation command speed. The motor is driven to rotate at a rotation command speed reflecting both the amount and the amount that the correction device corrects the increase amount so as to reduce the maximum power consumption of the motor. Control device for press machine.
[2] モータと、該モータにより回転駆動される回転体を有しこの回転運動を往復運動に 変換する変換機構と、該変換機構に連結されて往復運動するスライドと、を備え、前 記モータを一定指令速度で回転させた場合に前記回転体の回転角に従って必要モ 一タトルクが変動するプレス機械の制御装置であって、  [2] A motor, including a motor, a conversion mechanism that has a rotating body that is rotationally driven by the motor, and converts the rotational movement into a reciprocating movement, and a slide that is connected to the conversion mechanism and reciprocates. When the motor is rotated at a constant command speed, the required motor torque varies according to the rotation angle of the rotating body,
前記回転体の回転角を検知する角度検知装置と、  An angle detection device for detecting a rotation angle of the rotating body;
該角度検知装置から入力される回転角の値に基づき、プレス機械の特性に応じた 必要モータトルクを決定するトルク決定装置と、  A torque determination device that determines a necessary motor torque according to the characteristics of the press machine based on the value of the rotation angle input from the angle detection device;
前記必要モータトルクが予め定められたモータトルク基準値よりも大きくなる前記回 転体の回転角では、モータの回転指令速度を前記一定指令速度よりも減少させる速 度調節装置と、を備え、  A speed adjusting device that reduces the rotation command speed of the motor below the constant command speed at a rotation angle of the rotating body at which the required motor torque is greater than a predetermined motor torque reference value;
さらに、前記速度調節装置が前記回転指令速度を減少させる量を、プレス運転速 度またはプレス負荷エネルギの変動に応じて、補正する補正装置を備え、 前記速度調節装置が回転指令速度を減少させる量と、前記補正装置が当該減少 させる量を補正する量との両方を、前記モータの最大消費電力を低減するように反 映した回転指令速度で、前記モータを回転駆動する、ことを特徴とするプレス機械の 制御装置。 Further, the amount by which the speed adjusting device decreases the rotation command speed is set to the press operation speed. And a correction device that corrects according to fluctuations in degree or press load energy, both the amount by which the speed adjustment device decreases the rotation command speed and the amount by which the correction device corrects the decrease amount. A control apparatus for a press machine, wherein the motor is driven to rotate at a rotation command speed reflected so as to reduce the maximum power consumption of the motor.
[3] 前記補正装置は、プレス運転速度が小さ!/、ほど、又は、プレス負荷エネルギが大き V、ほど、速度調節装置が前記回転指令速度を増加または減少させる量を大きくする 補正をする、ことを特徴とする請求項 1又は 2に記載のプレス機械の制御装置。  [3] The correction device performs correction to increase the amount by which the speed adjustment device increases or decreases the rotation command speed as the press operation speed is lower! /, Or as the press load energy is V. 3. The control device for a press machine according to claim 1, wherein the control device is a press machine.
[4] 前記補正装置は、プレス運転速度またはプレス負荷エネルギの値が入力される入 力部を有する、ことを特徴とする請求項 1乃至 3のいずれかに記載のプレス機械の制 御装置。  4. The control device for a press machine according to any one of claims 1 to 3, wherein the correction device has an input unit to which a value of a press operation speed or press load energy is input.
[5] 前記プレス負荷エネルギを求める計測算出装置をさらに備え、  [5] It further comprises a measurement calculation device for obtaining the press load energy,
該計測算出装置は、  The measurement calculation device
前記モータにより駆動されるプレス運動機構の運動エネルギカ 前記スライドの 1往 復期間において変化する量を計測する第 1計測部と、  A kinetic energy of a press movement mechanism driven by the motor; a first measurement unit that measures an amount of change in one reciprocation period of the slide;
前記 1往復期間において前記モータがプレス運動機構に与えるエネルギ値を計測 する第 2計測部と、  A second measuring unit for measuring an energy value given to the press motion mechanism by the motor in the one reciprocating period;
第 1計測部が計測した、前記運動エネルギが変化する量と、第 2計測部が計測した 前記エネルギ値とに基づいて、前記プレス負荷エネルギを算出する算出部と、を備 え、  A calculation unit for calculating the press load energy based on the amount of change in the kinetic energy measured by the first measurement unit and the energy value measured by the second measurement unit;
前記補正装置は、該プレス負荷エネルギを用いて、前記回転指令速度を増加また は減少させる量を補正する、ことを特徴とする請求項 1乃至 4のいずれかに記載のプ レス機械の制御装置。  5. The control device for a press machine according to claim 1, wherein the correction device corrects an amount by which the rotation command speed is increased or decreased by using the press load energy. .
[6] 請求項 1乃至 5のいずれかに記載の制御装置を有するプレス機械。 6. A press machine having the control device according to any one of claims 1 to 5.
[7] モータと、該モータにより回転駆動される回転体を有しこの回転運動を往復運動に 変換する変換機構と、前記変換機構に連結されて往復運動するスライドと、を備え、 前記モータを一定指令速度で回転させた場合に前記回転体の回転角に従って必要 モータトルクが変動するプレス機械の制御方法であって、 前記回転体の回転角を検知する段階と、 [7] A motor, a rotating mechanism that is driven to rotate by the motor, a conversion mechanism that converts the rotational motion into a reciprocating motion, and a slide that is connected to the converting mechanism and reciprocates. A control method for a press machine in which the required motor torque varies according to the rotation angle of the rotating body when rotated at a constant command speed, Detecting a rotation angle of the rotating body;
該検知した回転角の値に基づき、プレス機械の特性に応じた必要モータトルクを決 定する段階と、  Determining a necessary motor torque in accordance with the characteristics of the press machine based on the detected rotation angle value;
前記必要モータトルクが予め定められたモータトルク基準値よりも小さくなる前記回 転体の回転角では、モータの回転指令速度を前記一定指令速度よりも増加させる段 階と、  At a rotation angle of the rotating body where the required motor torque is smaller than a predetermined motor torque reference value, a step of increasing the rotation command speed of the motor beyond the constant command speed;
前記回転指令速度を増加させる量を、プレス運転速度またはプレス負荷エネルギ の変動に応じて、補正する段階と、  Correcting the amount by which the rotation command speed is increased according to a change in press operation speed or press load energy;
前記回転指令速度を増加させる量と、当該増加させる量を補正する量との両方を、 前記モータの最大消費電力を低減するように反映した回転指令速度で、前記モータ を回転駆動する段階と、を有する、ことを特徴とするプレス機械の制御方法。  Rotationally driving the motor at a rotation command speed reflecting both the amount by which the rotation command speed is increased and the amount by which the increase is corrected so as to reduce the maximum power consumption of the motor; A control method for a press machine, comprising:
モータと、該モータにより回転駆動される回転体を有しこの回転運動を往復運動に 変換する変換機構と、該変換機構に連結されて往復運動するスライドと、を備え、前 記モータを一定指令速度で回転させた場合に前記回転体の回転角に従って必要モ 一タトルクが変動するプレス機械の制御方法であって、  A motor, a conversion mechanism that has a rotating body that is rotationally driven by the motor, and converts the rotational motion into a reciprocating motion; and a slide that is connected to the converting mechanism and reciprocates, A control method of a press machine in which a necessary motor torque varies according to a rotation angle of the rotating body when rotated at a speed,
プレス機械の試運転を行うことにより、モータへ供給する電流から求められる、プレ ス機械の特性に応じた必要モータトルク値と、クランク軸の回転角の値との関係を作 成する段階と、  Creating a relationship between the required motor torque value according to the characteristics of the press machine and the value of the rotation angle of the crankshaft obtained from the current supplied to the motor by performing a trial operation of the press machine;
前記回転体の回転角を検知する段階と、  Detecting a rotation angle of the rotating body;
該検知した回転角の値と前記関係に基づき、該回転角の値に対応する必要モータ トルクを決定する段階と、  Determining a required motor torque corresponding to the rotation angle value based on the detected rotation angle value and the relationship;
前記必要モータトルクが予め定められたモータトルク基準値よりも小さくなる前記回 転体の回転角では、モータの回転指令速度を前記一定指令速度よりも増加させる段 階と、  At a rotation angle of the rotating body where the required motor torque is smaller than a predetermined motor torque reference value, a step of increasing the rotation command speed of the motor beyond the constant command speed;
前記回転指令速度を増加させる量を、プレス運転速度またはプレス負荷エネルギ の変動に応じて、補正する段階と、  Correcting the amount by which the rotation command speed is increased according to a change in press operation speed or press load energy;
前記回転指令速度を増加させる量と、当該増加させる量を補正する量との両方を、 前記モータの最大消費電力を低減するように反映した回転指令速度で、前記モータ を回転駆動する段階と、を有する、ことを特徴とするプレス機械の制御方法。 The rotation command speed that reflects both the amount by which the rotation command speed is increased and the amount by which the amount to be increased is corrected so as to reduce the maximum power consumption of the motor, A method of controlling the press machine.
PCT/JP2007/071200 2006-12-15 2007-10-31 Press machine, controller and control method of press machine WO2008072426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-338150 2006-12-15
JP2006338150A JP2008149336A (en) 2006-12-15 2006-12-15 Press machine, controller and control method of press machine

Publications (1)

Publication Number Publication Date
WO2008072426A1 true WO2008072426A1 (en) 2008-06-19

Family

ID=39511455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071200 WO2008072426A1 (en) 2006-12-15 2007-10-31 Press machine, controller and control method of press machine

Country Status (3)

Country Link
JP (1) JP2008149336A (en)
TW (1) TW200902302A (en)
WO (1) WO2008072426A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2002969A2 (en) * 2006-04-06 2008-12-17 IHI Corporation Press machine, and device and method for controlling press machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139703A (en) * 2010-12-28 2012-07-26 Toshiba Industrial Products Manufacturing Corp Press machine
CN102303419B (en) * 2011-08-23 2013-12-18 山东理工大学 Numerical control method for process curve of crank press
JP5713092B2 (en) * 2013-12-06 2015-05-07 新日鐵住金株式会社 Method and apparatus for producing drawn products made of galvannealed steel sheet
JP6959903B2 (en) * 2018-10-31 2021-11-05 アイダエンジニアリング株式会社 Command generator
TWI763528B (en) * 2021-06-09 2022-05-01 國立中興大學 Pre-acceleration parameter design method and pre-acceleration control method of applying servo motor to stamping die pad

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691682A (en) * 1979-12-26 1981-07-24 Aida Eng Ltd Electromotor operation control device of apparatus provided with flywheel
JPS57127600A (en) * 1981-01-30 1982-08-07 Aida Eng Ltd Controlling device for driving press machine or the like
JPH08126366A (en) * 1994-10-26 1996-05-17 Toshiba Corp Inverter
JP2001300794A (en) * 2000-04-24 2001-10-30 Aida Eng Ltd Synchronous drive control method of press, and press used therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691682A (en) * 1979-12-26 1981-07-24 Aida Eng Ltd Electromotor operation control device of apparatus provided with flywheel
JPS57127600A (en) * 1981-01-30 1982-08-07 Aida Eng Ltd Controlling device for driving press machine or the like
JPH08126366A (en) * 1994-10-26 1996-05-17 Toshiba Corp Inverter
JP2001300794A (en) * 2000-04-24 2001-10-30 Aida Eng Ltd Synchronous drive control method of press, and press used therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2002969A2 (en) * 2006-04-06 2008-12-17 IHI Corporation Press machine, and device and method for controlling press machine
EP2002969A4 (en) * 2006-04-06 2013-04-10 Ihi Corp Press machine, and device and method for controlling press machine

Also Published As

Publication number Publication date
JP2008149336A (en) 2008-07-03
TW200902302A (en) 2009-01-16

Similar Documents

Publication Publication Date Title
JP5115899B2 (en) Press machine, control apparatus and control method for press machine
WO2008072426A1 (en) Press machine, controller and control method of press machine
JP5383193B2 (en) Method and apparatus for controlling and adjusting force in an electric servo press
CN110959071B (en) Method for regulating the output pressure of a hydraulic drive system, use of the method and hydraulic drive system
JP4916121B2 (en) Hydraulic processing machine, hydraulic press brake and control method thereof
US7845205B2 (en) Die cushion controller
US20040084179A1 (en) Reciprocating pump control system
JPH10505891A (en) Device with at least one hydraulic shaft
US7918120B2 (en) Die cushion control device
WO2012008222A1 (en) Motor control device
TWI389793B (en) Press angle control device, press machine facility, and press angle control method
US7248014B2 (en) Motor control system
JP5115175B2 (en) Control device and control method of die cushion device
JP5995918B2 (en) Equipment for increasing the lateral rigidity of press machines
JP5598744B2 (en) Die cushion device and cushion force control method thereof
JP2011147201A (en) Electric motor control apparatus
JP3929344B2 (en) Control device and control method of hybrid control servo press
JP4693618B2 (en) Control device for die cushion mechanism
WO2007122904A1 (en) Motor control device, and control parameter adjusting method
JP4922954B2 (en) Position control device
JP4698250B2 (en) Press control device
WO2022254708A1 (en) Die-cushion control device, die-cushion control method, and die-cushion control program
US20190219070A1 (en) Motor control device
JP2009214159A (en) Press machine, and control device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830934

Country of ref document: EP

Kind code of ref document: A1