WO2008071722A1 - Messvorrichtung zur messung eines elektrischen stromes - Google Patents

Messvorrichtung zur messung eines elektrischen stromes Download PDF

Info

Publication number
WO2008071722A1
WO2008071722A1 PCT/EP2007/063752 EP2007063752W WO2008071722A1 WO 2008071722 A1 WO2008071722 A1 WO 2008071722A1 EP 2007063752 W EP2007063752 W EP 2007063752W WO 2008071722 A1 WO2008071722 A1 WO 2008071722A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
measuring device
current
network
voltage
Prior art date
Application number
PCT/EP2007/063752
Other languages
English (en)
French (fr)
Inventor
Reinhard Maier
Heinz Mitlehner
Jürgen RUPP
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2008071722A1 publication Critical patent/WO2008071722A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Definitions

  • the invention relates to a measuring device for measuring an electric current.
  • a current flowing in an electrical conductor of electric current I can be determined for example by measuring the voltage U via a so-called shunt resistor R S h u n t, where the shunt resistor is connected to the conductor in series and is thus flowed through by the current to be measured I.
  • the influence of contact voltages on the terminals of the shunt resistor leading to the current I to be measured in the so-called four-point measurement is avoided by tapping the voltage U at two further, almost no-current terminals.
  • thermal influences are reduced by suitable dimensioning of the shunt resistor Rshunt specifically for the measuring range I meS s.
  • a Shuntwi ⁇ resistor R shunt for current measurement can therefore be assumed hereinafter for the operation principle of the power measurement to be constant and thus as a linear component.
  • the current I can also be measured with current clamps via a magnetic coupling of the magnetic flux generated by the current to be measured and conducted and detected by means of a permeable core to form a sensor circuit.
  • Alternating currents can be measured by means of a coil wound around the core, eg a ferrite core.
  • a current clamp with a Hall be equipped sensor. The current measuring range of such current clamps depends inter alia on the technical data (in particular the saturation induction) of the permeable core.
  • the power loss P v should not exceed an upper limit P V m a ⁇ .
  • the measurable voltage U is superimposed on a noise as noise voltage U N and can reduce the measuring accuracy for low currents I.
  • the lower limit I min of the current measuring range is therefore predetermined at least by a minimum required measuring accuracy and the upper limit I ma ⁇ approximately by a maximum tolerable electrical power loss Pv.
  • the object of the invention is to specify an improved measuring device for measuring an electric current I.
  • the object is achieved according to claim 1 by a measuring device for measuring an electric current (I), which is flowed through by the current to be measured via two connection nodes. Between the connection nodes a measuring network is interconnected. This is at least passed through by a partial flow (Ii) of the stream (I). The proportion (Ii) of (I) is known here, so that the unknown current is known when (Ii) is determined.
  • an element (10) which has a total resistance (R) dependent on the partial flow (Ii), flows through it.
  • the measuring network comprises two measuring nodes (13, 14) for tapping a measuring voltage (U) dependent on the current to be measured (I). This dependence is at least in a measuring range, for example, the above-mentioned I me ss, unique and known.
  • the measuring voltage is thus dependent on the current I in a different way than the known current measuring method, namely, virtually any desired current-measuring voltage characteristic can be realized by the nonlinear element. As a result, for example, signal compression, power loss reduction, etc. possible.
  • the measuring device according to the invention is thus versatile. It is particularly advantageous, for example, for use in contactors, which can carry high peak currents I pea k, but sometimes have to be switched even with comparatively small currents I min , wherein these limit values can exceed, for example, a peak ratio of 1000: 1 NEN.
  • the measuring device then has a measuring range including the limit values with consistently high accuracy, and works non-destructively and reliably in the measuring range and possibly consumes only a small power loss P v .
  • the measurement network can have several non-linear elements. By suitable interconnection, these may be considered in their entirety as a single non-linear element.
  • the partial flow (Ii) may be the total current to be measured (I), so that the nonlinear element is traversed by the total current to be measured (I).
  • One or two of the measuring network measuring terminals may be short-circuited to one terminal each of the non-linear element.
  • the non-linear element may have a decreasing total resistance (R) as the partial current (Ii) increases. In this way, an extension of the measuring range can be achieved compared to an ordinary measuring device with constant shunt resistor (R S h u n t).
  • the non-linear element may have an increasing total resistance (R) with increasing partial current (I 1 ).
  • R total resistance
  • I 1 partial current
  • a nonlinear element may contain a diode or, in the simplest case, consist of only a single diode.
  • the non-linear element consists of a parallel connection of a diode and an ohmic resistor.
  • the measuring range can be extended by anti-parallel connection of an additional diode by, for example, both the anode of the first diode with the cathode of the second diode is short-circuited at a first terminal of the non-linear element as well as at the second terminal of the non- linear element, the anode of the second diode to the cathode of the first diode.
  • the two terminals of the element can also be connected to each other via an ohmic resistance, which is thus connected in parallel to the two diodes.
  • the non-linear element includes a transistor, wherein also an anti-parallel connection of a plurality of transistors can be used. For example, at a first terminal of the element the source terminal of a first MOS-FET is short-circuited to the drain terminal of a second MOS-FET and at a second terminal of the element the drain terminal of the first MOS-FET is connected to the source terminal Connection of the second MOS-FET short-circuited.
  • the gate terminal of the MOS FETs may be fed back to one of the terminals of the nonlinear element via a suitable element.
  • the measuring network can be an active electrical network to which electrical energy is supplied via a further connection.
  • the measurement network may include an amplifier or a regulator.
  • the controller can be connected in particular for controlling the total resistance (R) of the non-linear element in the measurement network.
  • the non-linear characteristic of the total resistance (R) can thus be dimensioned accordingly for complex applications.
  • the measuring device can be equipped with a computing device which detects and processes the measuring voltage (U).
  • This can be a digital computer with a microcontroller.
  • the measuring device contains a sensor which detects the temperature in the region of the measuring device.
  • a suitable compensation means may be provided. be present, for example in the form of interconnected in the measurement network components or a suitable, including the temperature detecting equipment of the computing device.
  • the computing device for determining the value of the current to be measured (I) from the measurement voltage (U) may be equipped in such a way that the current (I) from the measurement voltage (U) is actually calculated for each measurement or a table for this calculation is used.
  • a table for this calculation is used.
  • Temperature dependence can be considered or compensated
  • Fig. 1 is an electrical network, with current to be measured
  • FIG. 7 shows an element with MOS FETs
  • FIG. 8 shows an alternative element with MOS FETs
  • FIG. 7 shows an element with MOS FETs
  • FIG. 8 shows an alternative element with MOS FETs
  • FIG 9 shows a measuring network with a controller.
  • FIG. 1 shows an arbitrary electrical network (1), which may be part of a device or a machine, not shown here.
  • a single path (2) of the electrical network (1) carries an electrical current (I), which is to be detected metrologically.
  • the path (2) can in this case be any electrical conductor, for example a conductor track on a circuit board or a cable, and extends through two nodes (3) and (4), which in FIG. 1 have a direct connection (5) and both flows through the current to be measured (I).
  • the direct connection (5) between the nodes (3) and (4) of the path (2) in the network (1) of Figure 1 is separated and by a measuring device (6) according to Figure 2 in series connection replaced.
  • the measuring device (6) is connected to a connection node (7) to the node (3) of the path (2) and to a further connection node (8) to the node (4) of the path (2).
  • an electrical measuring network (9) with its at least two terminals (11) and (12) connected, which in Figure 2 from only a single nonlinear element (10) according to the invention.
  • the element (10) may contain, for example, a hot or a cold conductor (negative temperature coefficient resistor, NTC resistor, positive temperature coefficient resistor, PTC resistor).
  • the element (10) can also be a passive or active electrical network from the interconnection of individual components. As is usual in electrical block diagrams, supply lines of a possibly configured as an active network element (10) are not shown for the functioning principle of the current measurement irrelevant, only required for power supply.
  • the measuring network (9) has two measuring nodes (13) and (14), which are electrically conductively connected to the terminals (7) and (8) of the measuring device (6).
  • the measuring node (13) is connected via an electrical short circuit (15) to the terminal (7) and the measuring node (14) in the same way to the terminal (8).
  • a measuring voltage (U) which can be measured with a detection device, not shown, for example, a voltmeter, oscilloscope or similar.
  • the measuring voltage (U) is at least in a measuring range, for example (I mess ) / so, in a clear relationship with the current to be measured in the path (2) current (I).
  • Figure 3 shows an alternative measuring device (6), wherein between a measuring node (13) and a terminal (7) of the measuring device (6) instead of a short-circuit connection (15), the element (10) is connected. Furthermore, in the measuring device (6) shown, although the entire current (I) to be measured flows through the measuring network (9), but not entirely through the element (10). The element (10) is traversed only by a partial flow (Ii), whose connection to the current (I) to be measured is impressed by the current divider circuit formed by the components (Ri, R 2 ), so that the
  • FIGS. 4 to 8 show embodiments of electrical networks for implementing a respective non-linear element (10).
  • the element (10) in FIG. 4 consists of the parallel connection of a diode (Di) and an ohmic resistor (Ri) and can be used primarily for positive currents flowing in the direction from the node (11) to the node (12).
  • the element can also be used for negative currents or alternating currents.
  • FIG. 6 shows an element (10) which comprises a self-blocking n-channel metal oxide layer field-effect transistor (MOS-FET) (Ti). Its drain terminal (16) is connected to the terminal (11) and the source terminal (17) to the terminal (12). The voltage (U G s) between the gate (18) and the source terminal (17) of the MOS-FET (T x ) is set via an element (20) which here on the one hand to gate terminal (18) and on the other hand connected to the terminal (12).
  • the element (20) may be a passive or an active element or a regulator and possibly further, not shown connections for supplying electrical energy, but which have no indirect, functional influence on the current measuring principle of the device according to the invention.
  • the element shown in Figure 6 (10) is usable for positive currents flowing in the direction from the node (11) to the node (12).
  • the antiparallel circuit shown in FIG. 7 of two elements designed according to FIG. 6 with two MOS FETs (Ti) and (T 2 ) produces an alternative element (10) which can also be used for negative or alternating currents.
  • a series circuit of self-conducting n-channel MOS-FETs (T 3 ) and (T 4 ) oriented in the opposite direction to FIG. 8 can also be integrated into the measuring device 6 according to the invention to form an alternative element (10).
  • Figure 9 shows an embodiment of a measuring device (6) with an alternative element (10) between the terminals (11, 12).
  • the electrical network (1) Between the current flowing through the measuring node (7) and (8) of the measuring network to the electrical network (1) are antiparallel to each other two MOS-FETs (Ti) and (T 2 ) connected so that the source terminal (17 ) of (Ti) and drain terminal (16) of (T 2 ) to terminal node (7) and drain terminal (16) of (Ti) and source terminal (17) of (T 2 ) to terminal node (8) connected to the measurement network.
  • a voltage (U A ) which is coupled to two inputs (21) and (22) of a controller (23).
  • the gate terminals (18) of both MOS-FETs (Ti) and (T 2 ) are also connected to the regulator (23), for example to its terminal (24).
  • a measuring node (13) is connected to the connection (24) of the controller (23) and the other measuring node (14) is short-circuited directly to the connection node (8) of the measuring device.
  • the voltage (U A ) between the connection nodes (7) and (8) is determined by the appropriately designed regulator (23) setting an electrical potential at its terminal (24) or the gate terminals (18) of the MOS FETs ( Ti), (T 2 ) regulated in the manner so that between the measuring node (13) and (14) the voltage to be measured (U) drops, which in the measuring range (I meSs ) clearly assignable to a current to be measured (I) ,
  • This also corresponds to a regulation of the total Stand (R) of the illustrated element (10), which is connected with its terminals (11, 12) to the terminals (7, 8) of the measuring network (9).
  • a particularly advantageously dimensioned controller (23) adjusts a reciprocal ratio of the voltage (U A ) to the current (I) in the measuring range: U A ⁇ 1 / I. This corresponds to the regulation of a total resistance (R) of the element (10), which is reciprocal to the square of the current (I) according to Rl / I 2 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

Eine Messvorrichtung zum Messen eines elektrischen Stromes (I) umfasst: zwei Anschlussknoten (7, 8) zum Einspeisen und Ausleiten des Stromes (I), ein zwischen den Anschlussknoten (7, 8) angeordnetes Messnetzwerk (9), das ein von zumindest einem bekannten Teilstrom (I1) des Stromes (I) durchströmbares Element (10) mit einem vom Teilstrom (I1) abhängigen Gesamtwiderstand (R), und zwei Messknoten (13, 14) zum Abgriff einer Messspannung (U), wobei diese eine durch Gestaltung des Messnetzwerks (9) vorgebbare Abhängigkeit vom Strom (I) aufweist, enthält.

Description

Beschreibung
Messvorrichtung zur Messung eines elektrischen Stromes
Die Erfindung betrifft eine Messvorrichtung zur Messung eines elektrischen Stromes.
Ein in einem elektrischen Leiter fließender elektrischer Strom I kann beispielsweise durch Messung der Spannung U über einem sogenannten Shuntwiderstand RShunt ermittelt werden, wobei der Shuntwiderstand dem Leiter in Reihe geschaltet wird und somit vom zu messenden Strom I durchflössen wird. Der Strom Iv, der ein dem Shuntwiderstand RShunt parallel geschal¬ tetes Spannungsmessgerät durchfließt, wird als vernachlässig- bar klein (Iv<< I) und der Shuntwiderstand RShunt im Messbe¬ reich (ImeSs: Imin≤I≤Imaχ) als konstant angenommen, so dass die gemessene Spannung U gemäß dem Ohmschen Gesetz proportional zu dem zu messenden Strom I ist: U= RShunt I- Shuntwiderstände werden speziell für die Strommessung so hergestellt, dass diese Proportionalität gemäß dem Ohmschen Gesetz sehr gut erfüllt ist. So wird beispielsweise der Einfluss von Kontaktspannungen an den, den zu messenden Strom I führenden Anschlüssen des Shuntwiderstands bei der sogenannten Vierpunktmessung durch Abgriff der Spannung U an zwei weiteren, nahezu unbestromten Klemmen vermieden. Auch thermische Einflüsse werden durch geeignete Dimensionierung des Shuntwiderstands Rshunt gezielt für den Messbereich ImeSs reduziert. Ein Shuntwi¬ derstand Rshunt zur Strommessung kann daher nachfolgend für das Funktionsprinzip der Strommessung als konstant und damit als ein lineares Bauelement angenommen werden.
Alternativ kann der Strom I auch mit einer Stromzange über eine magnetische Kopplung des vom zu messenden Strom erzeugten und mittels eines permeablen Kerns zu einer Sensorschal- tung geführten und detektierten magnetischen Flusses gemessen werden. Wechselströme können mittels einer um den Kern, z.B. einen Ferritkern gewickelten Spule gemessen werden. Zur Messung von Gleichströmen kann eine Stromzange mit einem Hall- sensor ausgestattet sein. Der Strommessbereich solcher Stromzangen ist u.a. abhängig von den technischen Daten (insbesondere der Sättigungsinduktion) des permeablen Kerns.
Bei der Strommessung mit Shunt steigt für hohe Ströme I die elektrische Verlustleistung Pv in der Messvorrichtung, insbesondere im Shuntwiderstand RShunt und beträgt Pv= Rstumt I2. Um die Wärmeentwicklung im Messshunt gering zu halten, sollte die Verlustleistung Pv einen oberen Grenzwert PVmaχ nicht überschreiten. Abgesehen davon führt eine übermäßige Erwärmung des Shuntwiderstands RShunt durch die Verlustleistung gegebenenfalls zur Zerstörung des Shuntwiderstands. Des Weiteren ist der messbaren Spannung U ein Rauschen als Rauschspannung UN überlagert und kann für geringe Ströme I die Messge- nauigkeit verringern.
Neben weiteren Einflüssen durch verwendete Signalverstärker und Sensoren ist für eine Strommessung die untere Grenze Imin des Strommessbereichs folglich zumindest durch eine minimale geforderte Messgenauigkeit und die obere Grenze Imaχ etwa durch eine maximal tolerierbare elektrische Verlustleistung Pv vorgegeben.
Aufgabe der Erfindung ist es, eine verbesserte Messvorrich- tung zur Messung eines elektrischen Stroms I anzugeben.
Die Aufgabe wird gemäß dem Anspruch 1 gelöst durch eine Messvorrichtung zum Messen eines elektrischen Stromes (I), welcher vom zu messenden Strom über zwei Anschlussknoten durch- strömt wird. Zwischen den Anschlussknoten ist ein Messnetzwerk verschaltet. Dieses wird zumindest von einem Teilstrom (Ii) des Stromes (I) durchströmt. Der Anteil (Ii) von (I) ist hierbei bekannt, so dass der unbekannte Strom dann bekannt ist, wenn (Ii) bestimmt ist. Im Messnetzwerk wird ein Element (10), das einen vom Teilstrom (Ii) abhängigen Gesamtwiderstand (R) aufweist, von diesem durchströmt. Des Weiteren um- fasst das Messnetzwerk zwei Messknoten (13, 14) zum Abgriff einer vom zu messenden Strom (I) abhängigen Messspannung (U) . Diese Abhängigkeit ist zumindest in einem Messbereich, beispielsweise dem o.g. Imess, eindeutig und bekannt.
Die Messspannung ist damit gegenüber dem bekannten Strommess- verfahren in anderer Weise vom Strom I abhängig, nämlich lassen sich durch das nichtlineare Element nahezu beliebige Strom-Messspannungskennlinien realisieren. Hierdurch ist z.B, Signalkompression, Verlustleistungsreduktion etc. möglich.
Die erfindungsgemäße Messvorrichtung ist dadurch vielseitig einsetzbar. Besonders vorteilhaft ist sie z.B. für den Einsatz in Schützen, welche hohe Spitzenströme Ipeak führen können, mitunter aber bereits bei vergleichsweise kleinen Strömen Imin geschaltet werden müssen, wobei diese Grenzwerte bei- spielsweise ein Verhältnis peak von 1000:1 übersteigen kön- mm nen. Die Messvorrichtung weist dann einen die Grenzwerte einschließenden Messbereich mit durchgehend hoher Genauigkeit auf, und arbeitet im Messbereich zerstörungsfrei und zuverlässig und verbraucht ggf. nur geringe Verlustleistung Pv.
Das Messnetzwerk kann mehrere nichtlineare Elemente aufweisen. Durch geeignete Verschaltung können diese in ihrer Gesamtheit etwa als ein einzelnes nichtlineares Element betrachtet werden.
Der Teilstrom (Ii) kann der gesamt zu messende Strom (I) sein, so dass das nichtlineare Element vom gesamten zu messenden Strom (I) durchströmt wird.
Eine oder zwei der Messklemmen des Messnetzwerks können zu jeweils einer Klemme des nichtlinearen Elements kurzgeschlossen sein. So kann beispielsweise die Messspannung (U) in einem dem Ohmschen Gesetz entsprechenden Zusammenhang U=R Ii mit dem Teilstrom (Ii) und dem Gesamtwiderstand (R) des nichtlinearen Elements stehen. Das nichtlineare Element kann einen mit zunehmendem Teilstrom (Ii) abnehmenden Gesamtwiderstand (R) aufweisen. Hierdurch kann im Vergleich zu einer gewöhnlichen Messvorrichtung mit konstantem Shuntwiderstand (RShunt) eine Erweiterung des Mess- bereichs erreicht werden. Dies beruht insbesondere auch darauf, dass die Verlustleistung der erfindungsgemäßen Messvorrichtung für steigenden Strombetrag | I | aufgrund des sinkenden Gesamtwiderstandes (R) schwächer als mit dem Quadrat I2 des Stromes ansteigt PV=R I2, wie etwa die Verlustleistung
Figure imgf000006_0001
einer Messvorrichtung mit konstantem Shuntwider¬ stand Rshunt • Besonders vorteilhaft ist ein Messnetzwerk aus¬ gelegt, dessen elektrische Verlustleistung zumindest abschnittsweise keine Abhängigkeit vom zu messenden Strom aufweist. Auf diese Weise können thermische Einflüsse auf das Messergebnis bzw. die Messspannung (U) dadurch reduziert werden, dass die Temperatur im Bereich des Messnetzwerks sehr konstant bleibt. Dies kann beispielsweise durch Verschaltung eines nichtlinearen Elements mit einem Gesamtwiderstand (R) erfolgen, welcher sich zumindest abschnittsweise reziprok zum Quadrat des Teilstroms (Ii) verhält gemäß R —- .
Alternativ kann das nichtlineare Element einen mit zunehmendem Teilstrom (I1) zunehmenden Gesamtwiderstand (R) aufweisen. Auf diese Weise kann die Verlustleistung in der Messvor- richtung zwar nicht verringert werden, jedoch für geringe Ströme (I) eine Verbesserung der Messgenauigkeit erreicht werden .
Ein nichtlineares Element kann eine Diode enthalten oder im einfachsten Fall aus nur einer einzigen Diode bestehen. In einer Ausführung besteht das nichtlineare Element aus einer Parallelschaltung einer Diode und eines ohmschen Widerstandes. Der Messbereich kann durch Antiparallelschaltung einer zusätzlichen Diode erweitert werden, indem an einem ersten Anschluss des nichtlinearen Elements beispielsweise sowohl die Anode der ersten Diode mit der Kathode der zweiten Diode kurzgeschlossen ist als auch am zweiten Anschluss des nicht- linearen Elements die Anode der zweiten Diode mit der Kathode der ersten Diode. Die beiden Anschlüsse des Elements können zusätzlich über einen ohmschen Widerstand miteinander verbunden sein, der somit den beiden Dioden parallel geschaltet ist .
In einer weiteren Ausführung enthält das nichtlineare Element einen Transistor, wobei auch eine Antiparallelschaltung mehrerer Transistoren einsetzbar ist. Beispielsweise ist an ei- nem ersten Anschluss des Elements der Source-Anschluss eines ersten MOS-FET mit dem Drain-Anschluss eines zweiten MOS-FET kurzgeschlossen und an einem zweiten Anschluss des Elements der Drain-Anschluss des ersten MOS-FET mit dem Source-Anschluss des zweiten MOS-FET kurzgeschlossen. Der Gate-An- Schluss der MOS-FETs kann über ein geeignetes Element zu einem der Anschlüsse des nichtlinearen Elements rückgekoppelt sein .
Das Messnetzwerk kann ein aktives elektrisches Netzwerk sein, dem über einen weiteren Anschluss elektrische Energie zugeführt wird.
Das Messnetzwerk kann einen Verstärker oder einen Regler enthalten. Der Regler kann insbesondere zur Regelung des Gesamt- Widerstands (R) des nichtlinearen Elements im Messnetzwerk verschaltet sein. Die nichtlineare Charakteristik des Gesamtwiderstands (R) ist somit komplexen Anwendungen entsprechend dimensionierbar .
Die Messvorrichtung kann mit einer die Messspannung (U) erfassenden und verarbeitenden Rechenvorrichtung ausgestattet sein. Dies kann ein digitaler Rechner mit einem Microcontroller sein.
In einer weiteren Ausführungsform enthält die Messvorrichtung einen die Temperatur im Bereich der Messvorrichtung erfassenden Sensor. Zur Reduktion der Temperaturabhängigkeit der Messspannung (U) kann ein geeignetes Kompensationsmittel vor- handen sein, etwa in Form im Messnetzwerk verschalteter Bauelemente oder auch einer geeigneten, auch die Temperatur erfassenden Ausstattung der Rechenvorrichtung.
Die Rechenvorrichtung zur Ermittlung des Wertes des zu messenden Stromes (I) aus der Messspannung (U) kann in der Art ausgestattet sein, dass der Strom (I) aus der Messspannung (U) tatsächlich bei jeder Messung berechnet wird oder für diese Berechnung eine Tabelle verwendet wird. Hierbei kann z.B. Temperaturabhängigkeit berücksichtigt bzw. kompensiert werden
Die Erfindung wird nun unter Bezugnahme auf die beigefügten
Zeichnungen näher erläutert. Es zeigen
Fig. 1 ein elektrisches Netzwerk, mit zu messenden Strom
Fig. 2 ein Messnetzwerk mit einem einzigen, nichtlinearen elektrischen Bauelement,
Fig. 3 ein Messnetzwerk mit einem nichtlinearen elektri- sehen Bauelement,
Fig. 4 ein Element mit Diode,
Fig. 5 ein Element mit Dioden,
Fig. 6 ein Element mit MOS-FET,
Fig. 7 ein Element mit MOS-FETs, Fig. 8 ein alternatives Element mit MOS-FETs,
Fig. 9 ein Messnetzwerk mit einem Regler.
In Figur 1 ist ein beliebiges elektrisches Netzwerk (1) dargestellt, welches Bestandteil eines hier nicht dargestellten Gerätes bzw. einer Maschine sein kann. Ein einzelner Pfad (2) des elektrischen Netzwerks (1) führt einen elektrischen Strom (I), welcher messtechnisch erfasst werden soll. Der Pfad (2) kann hierbei ein beliebiger elektrischer Leiter sein, beispielsweise eine Leiterbahn auf einer Platine oder ein Kabel, und erstreckt sich durch zwei Knoten (3) und (4), welche in Figur 1 eine direkte Verbindung (5) aufweisen und beide vom zu messenden Strom (I) durchflössen werden. Zur Messung des Stromes (I) wird die direkte Verbindung (5) zwischen den Knoten (3) und (4) des Pfades (2) im Netzwerk (1) der Figur 1 aufgetrennt und durch eine Messvorrichtung (6) gemäß Figur 2 in Serienverschaltung ersetzt. Die Messvor- richtung (6) ist hierbei mit einem Anschlussknoten (7) zum Knoten (3) des Pfades (2) und mit einem weiteren Anschlussknoten (8) zum Knoten (4) des Pfades (2) verbunden.
Zwischen den Knoten (7) und (8) der Messvorrichtung ist e- lektrisch leitfähig ein elektrisches Messnetzwerk (9) mit seinen zumindest zwei Anschlüssen (11) und (12) verbunden, welches in Figur 2 aus nur einem einzigen nichtlinearen Element (10) gemäß der Erfindung besteht. Das Element (10) kann beispielsweise einen Heiß- oder ein Kaltleiter enthalten (ne- gative temperature coefficient resistor, NTC-Widerstand, positive temperature coefficient resistor, PTC-Widerstand) . Das Element (10) kann auch ein passives oder aktives elektrisches Netzwerk aus der Verschaltung einzelner Bauelemente sein. Wie in elektrischen Prinzipschaltbildern üblich, sind für das Funktionsprinzip der Strommessung irrelevante, lediglich zur Energieversorgung erforderliche Zuleitungen eines evtl. als aktives Netzwerk ausgeführten Elements (10) nicht dargestellt.
Das Messnetzwerk (9) weist zwei Messknoten (13) und (14) auf, welche elektrisch leitfähig zu den Anschlüssen (7) und (8) der Messvorrichtung (6) verbunden sind. Im vorliegenden Fall ist der Messknoten (13) über einen elektrischen Kurzschluss (15) mit dem Anschluss (7) verbunden und der Messknoten (14) auf gleiche Weise mit dem Anschluss (8) . Zwischen den Messknoten (13) und (14) fällt eine Messspannung (U) ab, welche mit einer nicht dargestellten Erfassungsvorrichtung, z.B. einem Voltmeter, Oszilloskop o.a. gemessen werden kann. Die Messspannung (U) steht zumindest in einem Messbereich, bei- spielsweise (Imess)/ s.o., in einem eindeutigen Zusammenhang mit dem zu messenden, im Pfad (2) fließenden Strom (I) . Figur 3 zeigt eine alternative Messvorrichtung (6), wobei zwischen einem Messknoten (13) und einem Anschluss (7) der Messvorrichtung (6) anstelle einer Kurzschlussverbindung (15) das Element (10) verschaltet ist. Desweiteren fließt in der gezeigten Messvorrichtung (6) zwar der gesamte zu messende Strom (I) durch das Messnetzwerk (9), aber nicht gänzlich durch das Element (10) . Das Element (10) wird nur von einem Teilstrom (Ii) durchströmt, dessen Zusammenhang zum zu messenden Strom (I) durch die mit den Bauelementen (Ri, R2) ge- bildete Stromteilerschaltung eingeprägt ist, so dass die
Spannung (U) und der zu messende Strom (I) wie oben beschrieben zumindest in einem Messbereich (Imess) in einem eindeutigen Zusammenhang stehen.
Die Figuren 4 bis 8 zeigen Ausführungsformen von elektrischen Netzwerken zur Realisierung jeweils eines nichtlinearen Elements (10) . Das Element (10) in Figur 4 besteht aus der Parallelschaltung einer Diode (Di) und eines ohmschen Widerstands (Ri) und ist vornehmlich für positive, in Richtung vom Knoten (11) zum Knoten (12) fließende Ströme einsetzbar.
Durch Antiparallelschaltung einer weiteren Diode (D2) , wie in Figur 5 gezeigt, ist das Element auch für negative Ströme bzw. Wechselströme einsetzbar.
In Figur 6 ist ein Element (10) dargestellt, welches einen selbstsperrenden n-Kanal Metalloxydschicht-Feldeffekttransistor (MOS-FET) (Ti) umfasst. Sein Drain-Anschluss (16) ist zum Anschluss (11) und der Source-Anschluss (17) zum Anschluss (12) verbunden. Die Spannung (UGs) zwischen dem Gate (18) und dem Source-Anschluss (17) des MOS-FET (Tx) wird über ein Element (20) eingestellt, welches hier einerseits zum Ga- te-Anschluss (18) und andererseits zum Anschluss (12) verbunden ist. Das Element (20) kann ein passives oder auch ein aktives Element oder ein Regler sein und eventuell weitere, nicht dargestellte Anschlüsse zur Versorgung mit elektrischer Energie aufweisen, welche jedoch keinen mittelbaren, funktionellen Einfluss auf das Strommessprinzip der erfindungsgemäßen Vorrichtung haben. Das in Figur 6 dargestellte Element (10) ist für positive, in Richtung vom Knoten (11) zum Knoten (12) fließende Ströme einsetzbar. Durch die in Figur 7 dargestellte Antiparallelschaltung zweier gemäß Figur 6 entworfener Elemente mit zwei MOS-FETs (Ti) und (T2) entsteht ein al- ternatives Element (10), welches auch für negative bzw. Wechselströme einsetzbar ist.
Entsprechend ist auch eine gemäß Figur 8 entgegengesetzt orientierte Serienschaltung von selbstleitenden n-Kanal MOS-FETs (T3) und (T4) zu einem alternativen Element (10) in die erfindungsgemäße Messvorrichtung 6 integrierbar.
Figur 9 zeigt eine Ausführung einer Messvorrichtung (6) mit einem alternativen Element (10) zwischen den Anschlüssen (11, 12) . Zwischen den vom zu messenden Strom (I) durchflossenen Anschlussknoten (7) und (8) des Messnetzwerks zum elektrischen Netzwerk (1) sind antiparallel zueinander zwei MOS-FETs (Ti) und (T2) so verschaltet, dass Source-Anschluss (17) von (Ti) und Drain-Anschluss (16) von (T2) zum Anschlussknoten (7) sowie Drain-Anschluss (16) von (Ti) und Source-Anschluss (17) von (T2) zum Anschlussknoten (8) des Messnetzwerks verbunden sind. Zwischen den Anschlussklemmen (7) und (8) fällt eine Spannung (UA) ab, welche auf zwei Eingänge (21) und (22) eines Reglers (23) gekoppelt wird. Die Gate-Anschlüsse (18) beider MOS-FETs (Ti) und (T2) sind ebenfalls zum Regler (23) verbunden, beispielsweise an dessen Anschluss (24) . Ein Messknoten (13) ist zum Anschluss (24) des Reglers (23) verbunden und der andere Messknoten (14) ist direkt zum Anschlussknoten (8) der Messvorrichtung kurzgeschlossen.
Die Spannung (UA) zwischen den Anschlussknoten (7) und (8) wird durch den geeignet ausgelegten Regler (23) unter Einstellung eines elektrischen Potentials an seinem Anschluss (24) bzw. den Gate-Anschlüssen (18) der MOS-FETs (Ti), (T2) in der Art geregelt, so dass zwischen den Messknoten (13) und (14) die zu messende Spannung (U) abfällt, welche im Messbereich (ImeSs) eindeutig einem zu messenden Strom (I) zuweisbar ist. Dies entspricht auch einer Regelung des Gesamtwider- Stands (R) des gezeigten Elements (10), welches mit seinen Klemmen (11, 12) zu den Anschlussklemmen (7, 8) des Messnetzwerks (9) verbunden ist. Ein besonders vorteilhaft dimensionierter Regler (23) stellt im Messbereich ein reziprokes Ver- hältnis der Spannung (UA) zum Strom (I) ein: UA~1/I. Dies entspricht der Regelung eines Gesamtwiderstands (R) des Elements (10), der sich reziprok zum Quadrat des Stromes (I) verhält gemäß R-l/I2.
Alternativ kann auch so geregelt werden, dass die Spannung zwischen den Knoten 7 und 8 stets konstant bleibt.

Claims

Patentansprüche
1. Messvorrichtung zum Messen eines elektrischen Stromes (I), umfassend: - zwei Anschlussknoten (7, 8) zum Einspeisen und Ausleiten des Stromes (I) ,
- ein zwischen den Anschlussknoten (7, 8) angeordnetes Messnetzwerk ( 9) , das
- ein von zumindest einem bekannten Teilstrom (Ii) des Stro- mes (I) durchströmbares Element (10) mit einem vom Teilstrom
(Ii) abhängigen Gesamtwiderstand (R) , und
- zwei Messknoten (13, 14) zum Abgriff einer Messspannung (U), wobei diese eine durch Gestaltung des Messnetzwerks (9) vorgebbare Abhängigkeit vom Strom (I) aufweist, enthält.
2. Messvorrichtung nach Anspruch 1, bei dem der Teilstrom (Ii) der zu messende Strom (I) ist.
3. Messvorrichtung nach Anspruch 1 oder 2, bei dem die Messknoten (13,14) zu jeweils einem Knoten eines nichtlinearen Bauteils des Elements kurzgeschlossen sind.
4. Messvorrichtung nach einem der Ansprüche 1 bis 3, bei dem die elektrische Verlustleistung (Pv) des Messnetzwerks (9) zumindest abschnittsweise vom Strom (I) unabhängig ist.
5. Messvorrichtung nach einem der Ansprüche 1 bis 4, bei der das nichtlineare Element (10) einen mit zunehmendem Teilstrom (Ii) abnehmenden Gesamtwiderstand (R) aufweist.
6. Messvorrichtung nach Anspruch 5, bei der das nichtlineare Element (10) einen zumindest abschnittsweise gemäß R —- ab-
nehmenden Gesamtwiderstand (R) aufweist
7. Messvorrichtung nach einem der Ansprüche 1 bis 4, bei der das nichtlineare Element (10) einen mit zunehmendem Teilstrom (Ii) zunehmenden Gesamtwiderstand (R) aufweist.
8. Messvorrichtung nach einem der Ansprüche 1 bis 7, bei der das Element (10) eine Diode und/oder einen Transistor enthält.
9. Messvorrichtung nach Anspruch 8, bei der das Element (10) eine Parallelschaltung einer Diode und eines ohmschen Wider- Standes enthält.
10. Messvorrichtung nach einem der Ansprüche 1 bis 9, bei der das Element (10) einen rückgekoppelten MOS-FET enthält.
11. Messvorrichtung nach einem der Ansprüche 1 bis 10, bei der das Messnetzwerk einen Verstärker und/oder einen Regler enthält .
12. Messvorrichtung nach Anspruch 11, mit einem den Gesamtwi- derstand (R) des Elements (10) regelnden Regler.
13. Messvorrichtung nach einem der Ansprüche 1 bis 12, mit einer Rechenvorrichtung zur Weiterverarbeitung der Messspannung (U) .
14. Messvorrichtung nach einem der Ansprüche 1 bis 13, mit einem die Temperatur der Messvorrichtung erfassenden Sensor.
15. Messvorrichtung nach einem der Ansprüche 1 bis 14, mit einem Kompensationsmittel zur Reduktion der Temperaturabhängigkeit der Messspannung (U) .
PCT/EP2007/063752 2006-12-13 2007-12-12 Messvorrichtung zur messung eines elektrischen stromes WO2008071722A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006058879.7 2006-12-13
DE200610058879 DE102006058879A1 (de) 2006-12-13 2006-12-13 Messvorrichtung zur Messung eines elektrischen Stromes

Publications (1)

Publication Number Publication Date
WO2008071722A1 true WO2008071722A1 (de) 2008-06-19

Family

ID=39339128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/063752 WO2008071722A1 (de) 2006-12-13 2007-12-12 Messvorrichtung zur messung eines elektrischen stromes

Country Status (2)

Country Link
DE (1) DE102006058879A1 (de)
WO (1) WO2008071722A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001157A1 (de) * 2010-07-01 2012-01-05 Continental Teves Ag & Co. Ohg Stromsensor
WO2012130995A1 (de) * 2011-03-29 2012-10-04 Continental Teves Ag & Co. Ohg Stromsensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797615B (zh) * 2011-07-14 2016-12-07 大陆-特韦斯贸易合伙股份公司及两合公司 用于引导电流的装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057719A (en) * 1990-06-27 1991-10-15 Sverdrup Technology, Inc. Passively forced current sharing among transistors
JPH0427877A (ja) * 1990-04-20 1992-01-30 Koji Yatsuhashi 電流チェッカー
EP0581993A1 (de) * 1992-08-07 1994-02-09 Siemens Aktiengesellschaft Schaltungsanordnung zum Steuern einer Last und zum Erkennen einer Leitungsunterbrechung
DE19604041C1 (de) * 1996-02-05 1997-04-10 Siemens Ag Schaltungsanordnung zur Erkennung eines durch eine Last fließenden Laststroms
US5845275A (en) * 1996-01-11 1998-12-01 Sgs-Thomson Microelectronics S.A. Current measurement circuit
DE10041879A1 (de) * 2000-08-25 2002-03-14 Hella Kg Hueck & Co Verfahren und Vorrichtung zur Strommessung
WO2005024444A1 (en) * 2003-09-08 2005-03-17 Texas Instruments Korea Limited Ac current sensor using triac and method thereof
DE102004062655A1 (de) * 2004-12-24 2006-07-06 Leopold Kostal Gmbh & Co. Kg Verfahren zum Korrigieren einer durch eine elektrische Spannungsmessung indirekt durchgeführten elektrischen Strommessung
WO2006087342A1 (de) * 2005-02-16 2006-08-24 Continental Teves Ag & Co. Ohg Einrichtung zur erfassung elektrischer ströme

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2104336A (en) * 1932-07-30 1938-01-04 Gen Radio Co Electric system
DE3824526A1 (de) * 1988-07-20 1990-01-25 Vdo Schindling Schaltungsanordnung zur regelung eines pulsierenden stroms
DE19838974A1 (de) * 1998-08-27 2000-03-02 Bosch Gmbh Robert Elektrische Schaltung mit einer Vorrichtung zur Erfassung einer Stromgröße

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427877A (ja) * 1990-04-20 1992-01-30 Koji Yatsuhashi 電流チェッカー
US5057719A (en) * 1990-06-27 1991-10-15 Sverdrup Technology, Inc. Passively forced current sharing among transistors
EP0581993A1 (de) * 1992-08-07 1994-02-09 Siemens Aktiengesellschaft Schaltungsanordnung zum Steuern einer Last und zum Erkennen einer Leitungsunterbrechung
US5845275A (en) * 1996-01-11 1998-12-01 Sgs-Thomson Microelectronics S.A. Current measurement circuit
DE19604041C1 (de) * 1996-02-05 1997-04-10 Siemens Ag Schaltungsanordnung zur Erkennung eines durch eine Last fließenden Laststroms
DE10041879A1 (de) * 2000-08-25 2002-03-14 Hella Kg Hueck & Co Verfahren und Vorrichtung zur Strommessung
WO2005024444A1 (en) * 2003-09-08 2005-03-17 Texas Instruments Korea Limited Ac current sensor using triac and method thereof
DE102004062655A1 (de) * 2004-12-24 2006-07-06 Leopold Kostal Gmbh & Co. Kg Verfahren zum Korrigieren einer durch eine elektrische Spannungsmessung indirekt durchgeführten elektrischen Strommessung
WO2006087342A1 (de) * 2005-02-16 2006-08-24 Continental Teves Ag & Co. Ohg Einrichtung zur erfassung elektrischer ströme

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001157A1 (de) * 2010-07-01 2012-01-05 Continental Teves Ag & Co. Ohg Stromsensor
KR101921765B1 (ko) 2010-07-01 2019-02-13 콘티넨탈 테베스 아게 운트 코. 오하게 전류 센서
WO2012130995A1 (de) * 2011-03-29 2012-10-04 Continental Teves Ag & Co. Ohg Stromsensor

Also Published As

Publication number Publication date
DE102006058879A1 (de) 2008-06-26

Similar Documents

Publication Publication Date Title
DE102008059853B4 (de) Schaltungsanordnung mit einem Lasttransistor und einem Messtransistor
DE10120524B4 (de) Vorrichtung zur Ermittlung des Stromes durch ein Leistungs-Halbleiterbauelement
DE10331883B4 (de) Messverfahren und Messanordnung zum Messen von Strömen mit grossem Dynamikbereich
DE102006008292B4 (de) Überlastschutz für steuerbare Stromverbraucher
DE19821195A1 (de) Schaltungsanordnung zur Symmetrierung der stationären Ströme von Schaltvorrichtungen in einem elektrischen Stromrichter
DE102015108410A1 (de) Strom- oder spannungsmessung
DE112009000503T5 (de) Linearer Sensor mit zwei Anschlüssen
DE2139999A1 (de) Zustandsfuhlerschaltung in Brücken anordnung
DE102006030594A1 (de) Verfahren und Vorrichtung zum Erkennen eines Kurzschlusses an einer Schaltungsanordnung
DE102011076651B4 (de) Stromregelung mit thermisch gepaarten Widerständen
DE2835075A1 (de) Einrichtung zur nachbildung grosser elektrischer lasten in wechselstromsystemen
DE102017111410A1 (de) Messungen in Schaltvorrichtungen
DE102021212704A1 (de) Motorsteuervorrichtung und -verfahren
EP3170010B1 (de) Vorrichtung und verfahren zur strommessung
WO2008071722A1 (de) Messvorrichtung zur messung eines elektrischen stromes
DE10013345B4 (de) Einrichtung zum Messen eines durch eine Leiterbahn fließenden elektrischen Stroms und deren Anwendung
DE19838657B4 (de) Schaltungsanordnung zum Erfassen des Laststromes eines Leistungs-Feldeffekt-Halbleiterbauelementes
DE102015015479B3 (de) Schaltungsanordnung zum Ermitteln einer Stromstärke eines elektrischen Stroms
DE2651050A1 (de) Schaltung zur ueberwachung der temperatur von kontakten einer elektrischen schalteinrichtung
DE102020132400A1 (de) Mehrfachbereichsstromsensortechniken
DE3242316C2 (de)
DE102015222570A1 (de) Schaltung und verfahren zur stromerfassung mit hoher genauigkeit
DE102019210652A1 (de) Verfahen und Vorrichtung zur Stromerfassung unter Verwendung eines Operationsverstärkers
DE102013210298A1 (de) Anordnung zur Ermittlung von Kenngrößen eines elektrochemischen Energiespeichers
DE102022117871B4 (de) Stromsensor, system mit einem stromsensor und verfahren zum messen eines zu messenden stroms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07857429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07857429

Country of ref document: EP

Kind code of ref document: A1