WO2008071073A1 - Raccord de tuyau extrudé doté d'un collier de serrage solidaire simple et double - Google Patents

Raccord de tuyau extrudé doté d'un collier de serrage solidaire simple et double Download PDF

Info

Publication number
WO2008071073A1
WO2008071073A1 PCT/CN2007/003486 CN2007003486W WO2008071073A1 WO 2008071073 A1 WO2008071073 A1 WO 2008071073A1 CN 2007003486 W CN2007003486 W CN 2007003486W WO 2008071073 A1 WO2008071073 A1 WO 2008071073A1
Authority
WO
WIPO (PCT)
Prior art keywords
hoop
connecting body
sealing
clamping ring
pipe
Prior art date
Application number
PCT/CN2007/003486
Other languages
English (en)
French (fr)
Inventor
Changxiang Xu
Original Assignee
Zhejiang China Valve Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang China Valve Co., Ltd. filed Critical Zhejiang China Valve Co., Ltd.
Priority to EP07845844A priority Critical patent/EP2101096A1/en
Priority to US12/518,564 priority patent/US20100102554A1/en
Publication of WO2008071073A1 publication Critical patent/WO2008071073A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts
    • F16L19/08Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts with metal rings which bite into the wall of the pipe
    • F16L19/10Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts with metal rings which bite into the wall of the pipe the profile of the ring being altered
    • F16L19/103Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts with metal rings which bite into the wall of the pipe the profile of the ring being altered with more than one ring per pipe end being used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts
    • F16L19/08Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts with metal rings which bite into the wall of the pipe
    • F16L19/10Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts with metal rings which bite into the wall of the pipe the profile of the ring being altered

Definitions

  • the invention belongs to the field of mechanical engineering, and relates to a squeeze connection pipe joint of a fluid power transmission and a medium conveying pipeline, which is a continuation and deepening of the clamp pipe connection method in the patent application CN0 2 128376. Background technique
  • the pipe extrusion connection is formed by squeezing the hoop or the ferrule into the fluid transfer pipe between the pipe and the connecting member thereof, and is developed relative to the front flared pipe joint. Therefore, it is called no in the early years. Flared tube connection.
  • extruded connecting fittings such as ISO 8434-1 single hoop and American Swage lok double hoop.
  • China's national standard GB 3733-83—GB 3765-83 ferrule fittings are ISO 8434-1 single hoop structure, derived from German standards.
  • the extruded connection For fluid transfer pipes, the extruded connection, like other connections, must be sealed and fastened to ensure that the sealed connection remains constant under fluid pressure and external forces. Due to the sealing of the hoop to the connecting body, the sealing between the two precision machined surfaces is much easier to achieve than the hoop-to-tube sealing. Therefore, the tube pressing connection is mainly to achieve the sealing connection and the fastening connection of the hoop to the tube.
  • the sealing is better, especially the flatter, lighter and shallower, and the better the circumferential consistency of the joint is, of course,
  • the tightness of the repeated disassembly of the connection is better; the deeper and deeper the hoop is squeezed by the joint surface, the better the tightness of the joint; the deeper the squeeze, the uniform circumferential depth of the joint.
  • the worse the sex is, of course, the worse the tightness of the repeated disassembly of the joint; therefore, the squeeze joint should have two separate and different squeezing joints or squeezing joint movements, one is to squeeze the joint or Squeeze and combine the movement 'The second is the combination of the concave and concave or the combination of the concave and concave.
  • the rotating joint surface is scratched or has a bitten and unsmooth surface
  • the non-rotating squeeze joint surface is a scratch-free bright surface, that is, the ideal flattening motion should be without any Pure axial movement of the rotating hoop.
  • the ideal non-rotating squeezing combination effectively tolerates large variations in the ellipticity, unevenness, and mounting of different axialities of the joined faces.
  • the squeezing motion and the squeezing movement of the hoop are generated by the same nut, they should be separated and successive; if they are not separated in space, they cannot produce different squeezing combinations; if not in time Successively or not in tandem, the early completion of the splicing joint will terminate the squeezing motion early without completing the sealing connection, and the lag-to-concave joint will delay the squeezing motion and cause the completed sealing connection to fail.
  • the flat seal joint portion should be sufficiently isolated from the squeezing and fastening portion. This is the design principle of the new tube extrusion joint structure extracted from hundreds of foreign tube extrusion joint patents in 100 years. It is the theoretical basis of the present invention, and the inventor is implementing the national standard card sleeve type tube. The guiding ideology of the joint revision task.
  • the Erme to single hoop structure and the Swagelok double hoop structure are two mutually incompatible structural systems, that is, each has its own matching ferrule receiving body, or the squeezing ferrules cannot be replaced in the same connection body. Installation, extremely unfavorable to the simultaneous manufacture and use of the same unit, severely restricts the development of pipe extrusion technology.
  • the first technical problem to be solved by the present invention is to propose a two-coordinated flat motion to implement a sealed connection according to a new structural principle, and to use a tube to squeeze four movements.
  • the second technical problem is to propose a pipe extrusion connection structure with a clear installation and tightening operation "stopper" and tolerate over-tightening according to the new structural principle.
  • the three technical problems to be solved by this patent are to propose a single-double-hoop compatible single-and double-cuffed tube extrusion connection structure that can be interchangeably installed in the same body.
  • the first solution of the present invention is to solve the three technical problems of the tube extrusion connection, which is a single-clamp type extrusion connection pipe joint, as shown in FIG. 1 and FIG. 5, by the connecting body (1) and the pressing hoop (2).
  • the outer diameter of the connecting pipe is slightly larger, and the taper of the connecting body is used for receiving the pressing hoop, and the connected pipe set in the driving nut and the pressing hoop is inserted into the set of holes, or against the step or not against the step.
  • the pressing hoop (such as Figure 2) is a DIN 3861-200 2 standard A-type extrusion hoop (as shown in Figure 3), the outer tapered surface of the head is steepened, and the tail driven surface is changed from a tapered surface to a circular arc.
  • the pressure hoop in its entirety, consists of a round table top and a cylindrical surface, and uses the large edge of the round table 4 For the inner edge of the hoop, the small edge of the round table is used as the hoop head edge, and the diameters of the two blades are equal.
  • the outer part of the outer blade is tapered from the head to the tail by a taper surface which is larger than the taper of the inner body and has the same taper as the taper of the inner body.
  • the driving nut is a drive cone of ISO 8434-1 standard drive nut by 90. Change to be greater than 90.
  • the outside is a hexagonal wrench driving surface, and the inside thereof is a cylindrical driving thread, a pressing hoop driving taper surface and a cylindrical through hole;
  • the pressing hoop material may be the same material as the connected pipe, but the driving nut The material should be harder than the material of the extrusion hoop.
  • Figure 3 is a DIN double-edged extrusion hoop for the prior ISO 8434-1 tube extrusion structure
  • Figure 4 is a single-blade extrusion hoop for the earlier ISO 843 4 -1 tube extrusion structure.
  • the double-edged squeezing tong of Fig. 3 has the same distance from the 2/8 surface of the connected tube when the finger is tightened, but when it is driven by the wrench, the first is The head with a thin wall and a large force is shrunk, and then the wall is thick and the tail with a small force is reduced. Therefore, the hoop head and the inner edge of the hoop are sequentially squeezed toward the connected pipe.
  • the ferrule head of the ferrule shown in Figure 4 is much higher than the inner edge of the ferrule, so that only the inner edge of the ferrule is driven into the tube when driven.
  • the hoop head of Fig. 4 mainly presses the connecting body taper wall through a circumferential line, and the hoop head of Fig. 3 presses the connecting body taper wall through a kneading surface. Therefore, the hoop head of Fig. 4 is more than that of Fig. 3.
  • the hoop head is easier to seal with the conical wall of the connecting body, but it is also easier to break the conical wall of the connecting body.
  • the prior art hoop head outer cone shown in Fig. 3 is partially steepened to become the hoop head outer cone structure of the present invention shown in Fig. 2.
  • the hoop head of the present invention which is partially steeped or partially suspended during operation is mainly pressed by the two circumferential lines B and C to press the connecting body cone wall, mainly through the hoop head of the prior art.
  • D, E two circumferential line extrusion is connected.
  • the circle B is the blade back circle of the blade circle E; since the C circle is the fulcrum of the sealing cantilever, it is called the fulcrum circle .
  • the hoop head of the present invention can always provide the sealing line contact with the connecting body and provide the force surface contact with the connecting body. No matter how the driving is carried out, the connecting body cone wall can be squeezed without being able to maintain the wire sealing state at all times. This is a completely idealized tube-seal connection body seal structure that is sealed and wired.
  • the hoop head D of the present invention is also squeezed prior to the hoop inner edge E as the hoop head is first shrunk, however, the hoop head edge D of the present invention is passed through a cantilever
  • the DC is extruded, so that as long as the length and the degree of the cantilever are appropriate, the hoop head of the present invention will only continuously squeeze the tube and will not be squeezed or squeezed. tube. This is the extruded flat cantilever or flattened sealing structure of the present invention.
  • This thin and flexible hoop head seal cantilever although it is not concavely connected, it can be flattened and connected with the ellipse of the tube, rounded with the tube, effectively adapting to the surface changes of the connected pipe. Since the sealing cantilever is trapped in the transmission medium, the sealing structure has a strong self-sealing property, that is, the higher the medium pressure, the better the sealing property. Since the joint surface is smooth and self-sealing, the sealing cantilever is thin and flexible, so that it can adapt to the change in orientation in repeated disassembly. Such a sealed cantilever is a completely ideal tube extrusion connection tube seal structure that does not require any A non-metallic sealed real tube extrusion joint seal structure.
  • Figure 8 shows the finger tightening state
  • Figure 9 shows the final tightening state with a wrench. If the final tightening of the wrench is used as a reference, then the hoop head D should complete the sealed connection to the pipe when the wrench is screwed to a total of 1 / 2 of the total number of turns. Whether this is the case, it can be observed and confirmed through stress experiments. If the wrench is not tightened to 1 /2 of the total number of turns, the head seal cannot complete the sealing of the tube. It should be strengthened by increasing the thickness of the head cutting edge or shortening the sealing cantilever; on the contrary, if the wrench is screwed to the final state, it is removed. Observe that the hoop head blade has visible traces of the crushed W being connected, which can be attenuated by thinning the hoop blade or lengthening the cantilever.
  • the driven squeezing squeezing corresponds to the two wedge joints of the ferrule head and the ferrule.
  • the hoop head wedge under the driving of the nut, presses the connecting body and the tube, and the wedge angle is ⁇ ;
  • the hoop tail wedge which is driven by the reduced resistance of the hoop tail, presses the connecting body and the driving nut, and the wedge angle is ⁇ .
  • P b in the figure is the reaction force of the connecting body to the hoop
  • ⁇ ⁇ is the driving force of the nut to the hoop. According to the principle that the force and the reaction force are equal, it is known that ⁇ . ⁇
  • the ⁇ angle can be reduced, the rotational resistance of the hoop head relative to the body can be increased, and the nut can be reduced. Relative to the rotational resistance of the hoop, it is ensured that the nut does not drive the squeezing hoop to rotate.
  • increasing the taper angle of the driving surface of the nut is to reduce the ⁇ angle, which is equivalent to increasing the axial driving component of the nut and reducing the radial driving component of the nut, so as to further enlarge the axial driving component by the hoop head wedge.
  • the ratio of the compressive deformation force of the hoop head and the hoop tail ensures that the hoop head to the hoop tail are sequentially reduced to ensure that the joint is first sealed and then tightened, and that the rotational friction resistance of the hoop head relative to the body is sufficiently larger than the drive nut.
  • the driven squeeze V 8 pressure clamp does not rotate relative to the rotational frictional resistance of the hoop.
  • the ISO 8434-1 standard drive nut has a drive surface taper angle, such as by 90. Change to 120. Then, the angle ⁇ is changed from 45° to 30°, and the amplification factor l/s inp of the resistance of the hoop tail wedge to the hoop tail is changed from 1. 4142 to 2 . If the inner cylindrical surface of the hoop can be contracted in parallel, the force receiving area of the tube can be increased, the deformation pressure of the tube can be reduced, the contraction resistance of the tube to the hoop end can be improved, and even when the hoop is held, the hoop tail wedge is closed.
  • the resistance is soaring; if the driving of the hoop is not improved, and the effect of the radial outer warping of the middle of the hoop is not improved, the hoop tail is bound to start to hold the pipe with the edge of the tail edge, and even when the hoop is holding the pipe, the pipe pair
  • the contraction resistance of the hoop tail will only gradually increase without a sudden increase.
  • the invention eliminates the means for starting the holding of the tube by the line contact, and firstly, the driving of the end portion of the hoop tail is released, so that the hoop tail has no concentrated stress, especially the radial stress is not concentrated, and the second is that the pressing hoop is driven by the high beam power.
  • the hoop is prevented from trailing outward in the middle of the hoop and is outwardly tilted. As shown in Fig. 8 and Fig.
  • the end face of the hoop tail is a ring face H that is not accessible to the driving surface of the small ring nut, and the driving face of the hoop tail is a circular arc surface that concentrates the driving force on the top A of the arc, therefore, the squeeze
  • the hoop-tailed arc after providing the "stopper" of the hoop-tail wedge, is no longer a radial outward tilt of the hoop trailing hoop in the forced over-drive, but a trailing hoop trailing the middle of the hoop. Externally tilting to strengthen the "outer tilt, the isolation of the drive.
  • the hoop arc is to reduce the friction coefficient between the drive surface and the driven surface, reduce the installation tightening torque, It highlights the momentary resistance of the hoop tail to the tube, but with the "stop feeling, the increase of the driving pressure after the supply” is caused by the contact between the driving surface and the driven surface to relieve the stress concentration from the line to the surface. The bite of death.
  • the town pressure P' which is the resistance of the hoop to the rotation of the drive nut is synthesized by the axial forward resistance P' M of the hoop and the radial contraction resistance of the hoop; as shown in Fig. 12b, Only when ? and these two components increase simultaneously, the resistance of the nut will increase. In fact, it is conceivable that the hoop head hinders the hour and only pushes the hoop head in the axial direction without compressing the hoop in the radial direction.
  • the hoop tail When the hoop tail obstructs the hour, the hoop tail will only be compressed in the radial direction without pushing the hoop head in the axial direction; that is, the axial resistance of the hoop head and the radial resistance of the hoop tail will not increase separately, and the rotation resistance of the nut It does not increase with the increase of a certain component force.
  • the blade back circle B is coplanar with the inner edge circle E of the hoop, the inner blade E is squeezed as the hoop head is reduced.
  • the outer cylinder surface close to the back circle of the blade must be enlarged relative to the shrinking of the back taper surface of the blade. As shown in Fig.
  • the inner edge of the hoop is only as the radial direction of the inner surface of the hoop is expanded. Bladed back angle; only the inner edge E of the hoop with the back angle is the edge, it is possible to cut into the surface of the tube.
  • the back edge of the E-blade formed by the cylindrical outer surface will be more favorable for the E-blade to be fully cut into the connected pipe.
  • the contact area of the hoop with the connecting body is bound to increase continuously, and the contact pressure is bound to be contained.
  • the hoop head can withstand greater over-squeezing force without reducing the squeeze tube, thereby effectively compensating for the continued cutting of the E-blade with a larger relief angle and sharper edge.
  • the inner edge of the hoop head E can only be fully squeezed or cut into the connected pipe, and once the inner edge E of the hoop head is fully squeezed into the pipe, the fastening of the pipe is completed, and any over-crowding is squeezed, and the hoop can only be squeezed.
  • the outer whirling is a sign of the squeezed hoop head, but the middle portion of the hoop shown in Fig. 9b is radially outwardly warped, only the radial back of the blade back surface of the present invention. In the middle of the hoop, the outer portion of the hoop is not over-driven.
  • the diameter of the two outer cylindrical step faces of the original ISO 8434-1 squeezing hoop is still unchanged, that is, the hoop tail
  • the outer cylinder diameter is larger than the outer cylinder diameter in the middle of the hoop, and the radial shrinkage of the hoop head in the second aspect
  • the small deformation pressure is more than 8 times the radial reduction deformation pressure of the hoop tail.
  • the single-clamp extruded structure of the present invention can withstand the forced over-spinning operation is to take a harder or higher-strength drive surface (or nut) and take a softer or weaker strength drive surface ( Or squeezing the hoop), effectively avoiding the overdrive of the driving surface and the driven surface, completely eliminating the final destructive rotation of the squeezing hoop caused by the seizure.
  • the selection of ISO 843 4 - 1 connector The material is a very soft Q235 steel (when the material with higher strength than Q235 is used, the rated pressure value is not increased but decreased). Therefore, take the hard drive nut with the drive surface and press the relevant fastening.
  • the standard stipulates that it will be beneficial to drive the thread to fit in the installation and assembly. If it occurs, it will first occur in the easily found external thread damage instead of the hard-to-find internal thread damage, eliminating the hidden danger and ensuring the squeeze connection. Safety.
  • the hoop head edge D is first squeezed to perform a main sealing connection, and then the inner end of the hoop head E is squeezed to perform a sub-sealing.
  • the connection and the main fastening connection, and finally the hoop tube maintains and isolates the fastening connection to the front completed sealing and fastening, and at the same time issues a "tightening" of the mounting tightening operation.
  • the hoop head D Since the hoop head D is extruded through a cantilever with moderate strength, no matter how the rear part is pushed or how to push it later, it can only squeeze and flatten the tube, and can not force the tube to be concave, and can only provide the flattening motion. Or squeeze together. Since the inner edge E of the hoop head is abutted against the wall of the conical fender of the connecting body, it can only be pushed into the connected pipe with the driving of the nut to provide a concave or concave movement.
  • the inner edge E of the hoop head has a sealing effect combined with the squeezing of the tube, it is not the seal of the entire joint, but it is not without it, and it is harmless; especially in repeated installation, it is not expected to reset the seal;
  • the cutting edge D squeezes the sealing part very flat, very light and very shallow. Therefore, in repeated installations, it is not expected to restore the original mounting orientation, but it can be expected to return to the original compactness; because the sealing cantilever is trapped in the transmission medium Therefore, the sealing of the connection can be enhanced with the increase of the pressure of the medium; since the sealing joint is suspended, it can resist the external shock/vibration, and the external shock/vibration is difficult to pass through the H-face of the hoop and the E-edge.
  • connection seal is particularly shock-resistant/vibration; since the fulcrum and the point of action of the sealing cantilever are two lines on the contact surface of the hoop with the connecting body, the sealing of the connecting body is in contact with the line and the force is supported by the surface. Contact, perfect. Therefore, the sealed cantilever of the present invention provides and optimizes other connection properties in addition to providing an excellent squeezing seal.
  • the wall of the hoop head of the bridge is thin and the wall of the hoop is thick, the crushing force and the hoop head are small. Therefore, with the driving of the nut, the hoop head to the hoop must be gradually reduced, resulting in the hoop head.
  • the sealing blade D is first squeezed to perform sealing, and the inner edge of the tightening blade E is tightened.
  • the blade back circle B first induces the outer middle of the squeezing squeezing to make the inner edge of the ferrule E fully cut into the connected pipe (to ensure the joint quality) and the reinforcing hoop in the same body (to be squeezed) Preparation), and then the hoop-tailed arc arrow makes the middle of the squeezing hoop double-external, completely eliminating the influence of over-driving. Therefore, the seal provided by the sealing cantilever is not affected by any over-driving at all. It can be said that any over-driving is It does not affect the completed sealing and fastening. It can be seen that the single-clamp extrusion connection of the present invention is accomplished entirely by two coordinated separate and squeezing movements that are mutually independent and non-interfering.
  • the single hoop type extrusion pipe joint of the present invention fully achieves the aforementioned object of the invention.
  • the second proposal of the present invention to solve the three technical problems of the tube extrusion connection is a double hoop type extrusion connection pipe joint, as shown in FIG. 13 and FIG. 15, by the connecting body (1) and the sealing hoop (2a). , the holding hoop (2b) and the driving nut (3); the connecting body has a driving nut engaging thread, the connecting body is a through hole, a stepped hole and a taper in turn, and the through hole diameter in the connecting body is substantially equal to the inner diameter of the connected pipe (4)
  • the stepped hole in the connecting body is slightly larger than the outer diameter of the connecting pipe, and the connecting body is used for receiving the sealing hoop, and the connected pipe set in the driving nut, the holding hoop and the sealing hoop is inserted into the set of holes, or Abutting the step or not against the step, the drive nut is engaged with the thread of the connecting body, and the sealing hoop and the holding hoop are driven between the connecting body and the connected pipe to complete the sealing of the pipe and
  • the sealing band (as shown in FIG. 14) is a portion of the outer tapered surface of the head of the DIN 3861-2002 standard type A compression band (shown in FIG. 3)
  • the central cylindrical surface is changed to a tapered surface
  • the tail driven outer tapered surface is changed from 90s to more than 90
  • the squeezing hoop of the driven inner taper is added to the tail, and the inner part is composed of two round slabs of the common bottom of the hoop head, the cylindrical surface of the hoop and the inner taper surface of the hoop.
  • the low-edge edge is used as the inner edge of the hoop
  • the high-edge edge is used as the hoop head edge
  • the hoop tail taper surface is used to receive the hoop hoop drive, and the diameters of the two blades are equal, and the outer portion is from the hoop head to the hoop tail by the inner body taper.
  • the outer tapered surface can be driven by a driving nut;
  • the holding hoop is a circular open-section steel wire which is hardened and hardened than the tube;
  • the driving nut is an ISO 8434-1 standard driving nut.
  • the drive cone is changed from 90° to greater than 90.
  • the drive nut in its entirety, is a hexagonal wrench drive surface, the interior of which is a cylindrical drive thread, a hoop drive cone and a cylindrical through hole; the seal collar material may be the same as the connected pipe Material, but the material of the drive nut should not be softer than the material of the clamp.
  • the single-type extrusion hoop (2) of the invention can replace the double-clamp type extrusion ferrule (sealing hoop (2a) plus holding hoop (2b)) of the invention of the same specification, so that the double hoop type single hoop type tube is squeezed Press the connection and vice versa. That is to say, the double hoop type extrusion connecting pipe joint of the present invention is identical to the single hoop type extruded joint pipe joint of the present invention except that the extrusion hoop is different.
  • the structure and function of the parts or parts marked with the same code are identical or substantially identical.
  • the double hoop type seal hoop of the present invention has a hoop inner edge angle E (as shown in FIG. 17), which is far more than a single hoop type hoop inner blade tip angle E ( « 90., as shown in Figure 8b) is large, therefore,
  • the V-shaped tip E extruded into the tube can be disassembled by the V-shaped groove surface extruded on the tube; otherwise, the rest of the hoop head structure and function are exactly the same and will not be repeated.
  • the middle portion of the pressing hoop is radially outwardly warped so as to provide the blade back angle first, and then provide overdrive isolation
  • the double jaw structure of the present invention does not require the outer portion of the sealing hoop.
  • the back rake angle is provided, and the outer warping does not need to provide overdrive isolation. Therefore, the middle outer surface of the double hoop type sealing hoop can be a better kneading surface than the single hoop cylindrical surface.
  • the outer surface of the middle portion of the ferrule is preferably a wedge angle smaller than the sealing ferrule (a small cone of about 7°, the height and position of the outer cylindrical surface of the single hoop type can be Fully corresponding.
  • the outer end of the sealing hoop with the taper of the nut driving surface is as shown in Fig. 16. It is used for the direct receiving nut (3) in the pre-assembly, and the diameter of the cutting head is adjusted to the outer diameter of the connecting tube. Unify the number of installation tightening rings of different outer diameter tolerance pipes, and the second is as shown in Fig. 17, which is used to allow the nut (3) to have space to fully squeeze the holding hoop (2b) to the connected pipe to adapt to the large change of the outer diameter of the pipe. .
  • the sealing band (2a) and the holding band (2b) driven by the nut (3) can only slide along the surface of the pipe joint before the sealing band is sufficiently hindered. Only when the sealing cuff is pushed, the nut will squeeze the hoop into the tube; when the hoop is more or less trapped inside the tube, the trapped tube table recessed groove, no matter how shallow, is bound to be the same
  • the sealing ferrules together prevent the holding hoop from sliding forward; at this time, if the hoop is to be pushed a little more forward, the driven surface of the sealing hoop, as the guiding surface of the hoop, will be more
  • the grounding guide hoop is pushed into the surface of the pipe; if the hoop is clamped into the pipe, it is completely possible to instantaneously disengage from the sealing face of the sealing hoop.
  • the moment when the hoop is caught in the tube is the moment when the sealing hoop begins to "stop."
  • the hugs that are squeezed in the "slots" that are connected to the tube can not cross the limit of the grooves in any way, and the reflected ones must be squeezed.
  • any back pulse from the sealing hoop to the holding hoop is destined to be amplified dozens of times and then fed back to counteract the impact of the pulse, maintaining the original sealed state.
  • This is the double wedge drive and shockproof structure of the present invention.
  • the driven sealing ferrule is a multi-axial axial power amplifying wedge with a wedge angle of ⁇ with respect to its axial power, and its radial power is a fulcrum with ⁇ as its fulcrum.
  • Double radial power amplification lever The sealing hoop, as a lever, is constrained by the hoop tail, and is macroscopically equivalent to giving the hoop tail a very high rigidity, that is, the reaction force of the tube to the hoop head is almost impossible to reduce the hoop tail, or a small hoop tail.
  • the radial force can support the hoop tail to provide a back angle to the inner edge of the hoop, which is beneficial to The intrusion of the tube. Since the squeeze force of the seal hoops through the edges D and E is the output of the power wedge amplifier, the squeeze force of the hoop through the arc K is only the reaction force of the smaller radial power of the two original powers, far than the wedge The output force of the bar amplifier is small, therefore, the driven sealing band and the holding hoop, firstly the sealing head edge D of the extruded pipe, then the inner edge E of the sealing hoop, and finally the holding hoop K; Before the E is not fully squeezed into the surface of the pipe joint, the hoop K is not pushed into the pipe; when the hoop is pushed into the pipe through the arc K, the seal head D must be fully completed. A flattened connection to the tube.
  • Figure 17 shows the finger tightening state
  • Figure 18 shows the final state with a wrench. If the total number of turns of the wrench is finally tightened, the hoop head should be sealed to the tube when the wrench is screwed to a total of 1 / 2 of the total number of turns. Is it so, you can pass the pressure 6/8
  • the wrench is not screwed to the total number of I / 2 , the head cutting edge can not complete the sealing of the tube, it should be strengthened by increasing the thickness of the head cutting edge D or shortening the sealing cantilever; on the contrary, if the wrench is screwed to the final state Under the observation, the hoop head blade has visible traces of the concave and convex joints, which can be weakened by thinning the hoop head or lengthening the sealing cantilever.
  • the double hoop type sealing hoop and the ⁇ bag holding hoop of the present invention are firstly sealed by the sealing hoop head edge D when driven by the nut, and then sealed inside the sealing hoop head.
  • the blade E is squeezed and subjected to a transitional sealing connection and a fastening connection.
  • the holding collar is pushed into the connected pipe to perform the final fastening connection, and at the same time, the mounting tightening operation "stop feeling" is issued.
  • the double hoop type is the same as the single hoop type. Since the hoop head edge D is extruded by a moderately strong cantilever, it can only squeeze the tube, squeeze it, no matter how the rear hoop is pushed or how the hoop is pushed later. Squeeze the tube and only provide a flattening or flattening combination. Since the double-clamped sealing head edge D and the inner edge of the hoop E have a much larger squeezing force than the squeezing force of the holding hoop K, the blade D and E can only be sealed with the nut. The squeeze tube is sealed, and the arc of the hoop is held after the hoop is held.
  • the single-clamp squeezing connection of the present invention is accomplished by two coordinated separate and successive squeezing movements and squeezing movements that do not interfere with one another.
  • the double hoop type cantilever Since the double hoop type is the same as the single hoop type, the hoop head D is squeezed by the cantilever. Therefore, the double hoop type cantilever has the same sealing effect as the single hoop type, but the double hoop type cantilever seal
  • the fastening of the hoop and the hoop inner edge E provide a smooth transition and sufficient isolation of the seal and fastening of the inner edge E, so that the sealing and fastening of the double hoop connection becomes safer and more reliable.
  • the single-clamp structure and the loop-on structure of the present invention both provide a clear "tight feel" of the mounting tightening operation and can withstand the overdrive
  • the single hoop structure of the present invention is due to the isolation of the overdrive. Relying on the radial outward tilt of the middle of the squeeze hoop, the isolation is the overdrive "movement" of the hoop tail instead of the overdrive "power”, while the double hoop structure of the present invention relies on the hoop clamped into the connected The groove of the tube is isolated from the overdrive "power".
  • the double hoop structure of the present invention can be more tolerated than the single hoop structure, and the "tightness" of the installation tightening operation is also more clear, after being driven Sealing hoop and holding hoop Without any bad deformation, it can be removed from the connected pipe and then installed.
  • the extruded hoop of the single hoop structure of the present invention can only be repeatedly disassembled with the pipe after being driven, and can not be damaged from being connected. Remove it and install it.
  • the double hoop type of the present invention achieves the above-described inventive purpose better than the single hoop type extruded joint pipe joint.
  • Figure 1 is a single-clamp type extrusion connecting pipe joint of the present invention for completing the connection of a threaded port to a pipe, wherein the piece 1 is a connecting body, the piece 2 is a pressing hoop, and the piece 3 is a driving nut, the piece 4 It is connected, and part 5 is a 0-type seal.
  • Fig. 2 is a half cross-sectional structural view of the ferrule of Fig. 1
  • Figs. 3 and 4 are half cross-sectional structural views of the prior art squeezing ferrule.
  • Figure 5 is an exploded perspective view of Figure 1 with the 0-ring removed.
  • Figure 6 is an assembled partial view of the prior art single-clamp type extrusion joint structure in a finger-tight state
  • Figure 6a is a partial half-sectional view of the assembly structure
  • Figure 6b is a partial enlarged view of Figure 6a, wherein the pieces 2 and 3 are Previous technical structure.
  • Figure 7 is an assembled partial view of the prior art single-clamp type extrusion joint structure in which the wrench is finally tightened
  • Figure 7a is a partial half-sectional view of the assembly structure
  • Figure 7b is a partial enlarged view of Figure 7a, wherein the pieces 2 and 3 It was the previous technical structure. '
  • Figure 8 is an assembled partial view of the single-clamp type extrusion joint structure of the present invention in a finger-tight state
  • Figure 8a is a partial half-sectional view of the assembly structure
  • Figure 8b is a partial enlarged view of Figure 8a, wherein the pieces 2 and 3 are The structure of the invention.
  • Figure 9 is an assembled partial view of the single-clamp type extrusion joint structure of the present invention in a final tightened state of the wrench
  • Figure 9a is a partial half-sectional view of the assembly structure
  • Figure 9b is a partial enlarged view of Figure 9a, wherein the part 2 and the piece 3 is the structure of the present invention.
  • Figure 10 is a further enlarged view of Figure 8b to illustrate the single hoop squeeze head wedge ( ⁇ ) and hoop tail wedge ( ⁇ ) of the present invention.
  • Fig. 11a is a force analysis diagram of the single hoop type extrusion ferrule of the present invention in a finger tightening state
  • Fig. l b is a reaction force analysis diagram of the single hoop type squeezing squeezing of the present invention on the driving nut when the finger is tightened.
  • Figure 12a is a force analysis diagram of the single hoop type extrusion hoop of the present invention in the final tightening state of the wrench
  • Fig. 12b is an analysis of the reaction force of the single hoop type extrusion hoop of the present invention on the drive nut when the wrench is finally tightened.
  • Figure 13 is a double-clamp type extrusion connecting pipe joint of the present invention for completing the connection of the threaded port to the pipe, wherein the piece 1 is a connecting body, the piece 2a is a sealing hoop, and the piece 2b is a hoop, the piece 3 Is the drive nut, Piece 4 is connected, and piece 5 is a 0-ring.
  • Figure 14 is a half cross-sectional structural view of the sealing band of Figure 13, and Figure 15 is an exploded perspective view of Figure 13 with the 0-ring removed.
  • Figure 16 is a pre-installed partial cross-sectional view of the sealing ferrule of the present invention and the outer diameter of the tube "0" without the hoop.
  • Figure 17 is an assembled partial view of the double hoop squeeze connection structure of the present invention in a finger tightened state.
  • Figure 18 is an assembled partial view of the double hoop extrusion joint structure of the present invention in the final tightened state of the wrench.
  • Figure 19 is a double wedge drive and shockproof structure formed by the Han hoop type extrusion joint structure of the present invention when the wrench is tightened. The best way to implement the invention
  • the single hoop and double hoop extrusion joints of the present invention are all joints that connect a smooth tube to other line ports.
  • the pipe joint in addition to the pipe press joint end, there are other joint ends, such as threads, welding and the like. If all the smooth tubes are connected, all the tube joints are squeezed.
  • the single hoop squeeze connection pipe joint of the present invention shown in Figs. 1 and 5 and the double hoop squeeze connection pipe joint of the present invention shown in Figs. 13 and 15 are a smooth pipe connection. Pipe fittings at other internally threaded ports.
  • the single hoop extrusion connecting pipe joint of the present invention is composed of a connecting body (1), a pressing hoop (2) and a driving nut (3); the silent hooping of the present invention
  • the pressure connection pipe joint as shown in Figs. 13 and 15, is composed of a joint body (1), a seal hoop (2a), a hoop (2b) and a drive nut.
  • the single hoop type extrusion hoop (2) is selected as a single hoop type, and the double hoop type extrusion hoop is selected.
  • the holding hoop (2b) is a double hoop type, or the single squeezing hoop and the double squeezing hoop are interchangeably co-located in one system or, more specifically, are mutually interchangeable
  • the structure is identical to the ISO 8434-1 structure except for the structure of the extrusion hoop and the drive cone angle of the drive nut.
  • Both the single hoop type extrusion hoop and the double hoop type sealing hoop of the present invention can be adapted from the prior art W ⁇ 3861-2002 standard ⁇ type squeezing hoop (shown in Figure 3).
  • the outer structure of the hoop head of the single hoop type and the double hoop type seal hoop can be exactly the same.
  • the half angle of the cone between the B and the C is the hoop head angle ⁇ , which is 12° as in the prior art.
  • the outer diameter of the circle is approximately the same as the diameter of the taper in the connecting body.
  • the axial distance between the ⁇ and D circles is approximately 1/2 of the depth of the taper in the connecting body.
  • the axial distance between the C and D circles is approximately the axial distance between the ⁇ and D circles.
  • the thickness of the hoop head edge D is approximately 0.015 times the nominal outer diameter of the connecting pipe;
  • the second is the single hoop type extrusion hoop and the double-twisted sealing hoop. It is consistent with the BC cone surface of the outer circular table, and the inner edge of the hoop is coplanar with the circle of the ⁇ ⁇ ,, but the angle of the inner edge of the hoop is 90°, and the angle of the inner edge of the double hoop is 120.
  • the diameter and step position of the two cylindrical step faces outside the single hoop type hoop can be the same as in the prior art.
  • the double hoop type seal hoop has a half angle of the outer half of the taper face of 5°, the position and height of the truncated cone.
  • the height and position of the outer middle cylinder of the single hoop type extrusion hoop are the same.
  • the outer cylindrical surface of the silent hoop type is larger than the single hoop type, but not so large as to interfere with the threaded bottom hole of the nut;
  • the chord of the circular hoop of the single-hook type is parallel to the driving surface, and the arcuate arch height and the end of the hoop end drive release ring ⁇ are both the nominal outer diameter of the connecting pipe.
  • the position and the taper angle (120.) of the auxiliary outer tapered surface of the Han hoop type seal hoop are coordinated with the driving surface of the drive nut, and the taper angle of the hoop tail taper is 120.
  • the size of the hoop tail should be adapted to the full driving of the hoop.
  • the inner diameter of the holding hoop is the maximum outer diameter of the connected pipe, and the diameter of the entire driving diameter of the holding hoop is the diameter of the steel wire, that is, the size of the outer diameter of the connecting pipe which can be adapted by the double hoop type squeeze connecting pipe joint. Therefore, the cross-section diameter of the steel wire holding the hoop can be selected with reference to the market common steel pipe tolerance.
  • the sealing function of the inner edge of the hoop can be separately released and the sealing function of the hoop head D can be tested; according to the test results and needs, the head D can be adjusted
  • the thickness or the length of the cantilever CD is sealed to adjust the sealing or squeezing force of the ferrule D.
  • Appropriate adjustment of the diameter of the B-round and the diameter of the cylindrical surface of the outer step of the hoop can adjust the rigidity of the extrusion connection and the maximum installation tightening torque.
  • Appropriately adjusting the angle of the driven taper of the double hoop seal hoop can change the size of the tightening operation torque and adjust the switching timing of the sealing and fastening action one by one or advance or delay the tightening action.
  • the taper angle 120 of the double hoop type sealing cuff (front hoop) tail of the present invention. 90 than the prior art. Large, the cone angle of this connector. ( ⁇ 12) is 40 more than the existing one. small.
  • the smaller connector taper angle allows the hoop head wedge to have a larger front hoop axial thrust amplification capability, and the front hoop tail with a larger hoop tail taper angle has greater axial thrust and less radial thrust.
  • the larger front axial thrust of the front hoop is larger, and the squeezed force of the hoop head is larger, so that the installation operation torque can be effectively reduced, and the smaller front hoop radial thrust can eliminate the unnecessary deformation of the hoop tail. The torque is installed.
  • the double hoop structure of the present invention breaks through the technical bottleneck of the existing Swagelok double hoop type.
  • the Swagel ok double hoop structure is not allowed to be used, such as surface hardening, because the installation tightening operation torque is too large.
  • the squeezing hoop' thus does not meet the deeper squeezing requirements required for high pressure applications.

Description

单双箍共体式挤压连接管接件 技术领域
本发明属机械工程领域, 涉及一种流体动力传输与介质输送管路的挤压 连接管接件, 是 CN02128376. 1专利申请中的卡箍管接方法的继续和深入。 背景技术
管挤压连接, 是通过把箍或卡套挤在被连管及其连接件间实现的流体传 输管道的连接, 是相对在前的扩口式管连接发展起来的, 因此, 早年又叫无 扩口管连接。 目前, 全球市面上广泛流通的挤压连接管接件有 ISO 8434- 1单 箍式和美国 Swage lok双箍式两种结构。 我国的国标 GB 3733-83— GB 3765-83 卡套式管接头属 ISO 8434- 1单箍式结构, 源自德国标准。
德国人 Kreidel于 1932年在美国专利 US 2139413中提出的单箍式结构 是 ISO 8434-1结构原型, 并在 1940年代的 US 2414995等他方专利中呼之为 Ermeto结构。 Ermeto是德国 Ermeto管件有限公司的商号。现在的德国 Erme to 管件有限公司在其 4100-7-UK 产品目录中宣布, 用他们 1990 年在美国 US 5351998中提出的多箍式专利结构淘汰现有 ISO 8434 - 1单箍式结构, 而 ISO 8434-1标准直到其 2005年的更新版结构还仍然是 Ermeto原型结构。
美国人 Crawford于 1947年在美国专利 US 2484815中提出的双箍式结构 是 Swagelok 结构原型, 并一直被 Swage l ok 公司不断创新维持着。 虽然 Swage lok公司至今仍然坚持其双箍式结构, 但其 Swage lok双箍式结.构当今 更新发明人 Wi l l iams却于 2002年在 US 2004/0066040, US 20060049632和 US 2006/0012169专利申请中提出了新的单箍式结构。
对流体传输管道而言, 挤压连接同其它连接一样, 必须完成密封和紧固 两种连接, 紧固连接在于保证密封连接在流体压力和外力作用下维持不变。 由于箍对连接体的密封, 是两个精密机械加工面间的密封, 比箍对管的密封 容易实现得多, 因此, 管挤压连接主要在于实现箍对管的密封连接和紧固连 接。 箍把被连管结合面挤得越平越光, 连接的密封性就越好, 特别是挤得越 平、 越光、 越浅, 挤就结合面的周向一致性就越好, 当然, 连接的反复拆装 的密封性也就越好; 箍把被连管结合面挤得越凹越深,连接的紧固性就越好; 挤得越深, 挤就结合面的周向深度一致性就越差, 当然, 连接的反复拆装的 密封性也就越差; 因此, 挤压连接应该有两种分离的而又不同的挤就结合或 挤就结合运动, 一是挤平结合或挤平结合运动' 二是挤凹结合或挤凹结合运 动。 实践证明, 有转动的挤就结合面是有划伤或者是有咬撕的不平滑表面, 无转动的挤就结合面是无划痕的光亮表面, 即理想的挤平运动应当是无任何 转动的箍的纯轴向运动。 理想的无转动的挤平结合可有效地容忍被连接面的 椭圆度、 不平度和安装不同轴度的大变化。 由于箍的挤平运动和挤凹运动是 在同一螺母驱动下产生的, 因此, 他们应当是相隔又相继的; 如果空间上不 相隔,他们就不可能产生不同的挤就结合;如果时间上不相继或不一前一后, 则提早完成挤凹结合的连接将提早终止挤平运动而完不成密封连接, 滞后完 成挤凹结合的连接将滞后终止挤平运动而导致已完成的密封连接失效。 为了 挤压连接的抗震性或抗振性, 挤平密封结合部位应当得到挤凹紧固部位的充 分隔离。 这就是从 100年的数百项国外管挤压连接专利中, 提炼出的新的管 挤压连接结构的设计原理, 是本发明的理论基础, 也是本发明人在执行国家 标准卡套式管接头修订任务时的指导思想。
然而, 管挤压连接结构, 从美国人 Kur tz 1899年最早提出的 US 650330 专利结构, 到德国人 Kre idel I9 32年提出的 US 2Π9413 Ermeto单箍式专利 结构, 再到德国 Ermeto公司 1990年提出的替代 Ermeto单箍式结构的 US 5351998多箍式专利结构, 再从美国人 Crawford 1947年提出的 Swage lok双 箍式结构,到 Swagelok结构的当今更新发明人 Wi 11 iams 2002年提出的替代 Swage lok 双箍式结构的 US 2004/0066040 , US 20060049632 和 US 2006/ GQ12169单箍式专利申请结构, 从 1899年到现在的 100多年的数百项 管挤压连接专利中, 没有一项 1 /8管挤压连接专利结构涉及挤平密封结合和 挤凹紧固结合概念, 全是一味地强调往管里切、 咬或是挤。
我们的实践证明, 管挤压连接最好实现的是密封, 最难实现的是紧固, 因为平滑的被连管必须承受 4倍额定工作压力而不压飞出来。 一味笼统强调 往管里挤的结果就是导致管挤压连接的密封性能下降, 因此, 后来又不得不 用 DE 4041677、 DE 4103266、 DE 4426445、 US 6073976等一系列附加非金属 密封专利结构来弥补密封受到损失的单箍式挤压连接的密封。 实际上, 增加 附加密封的管挤压连接结构就等于枉为管挤压连接结构。
无论是单箍式还是双箍式管挤压连接结构, 其可靠安装问题几乎一直就 是所有后续专利关注的焦点, 或者说, 几乎所有后续专利一直都在致力于解 决先密封后紧固的问题和提供安装拧紧操作"尽头"或"止感, '。象 US 3075793、 US 3103373, US 5882050、 US 6131963和 US 6629708专利虽然能够为双箍 式结构适当提供有限的安装拧紧操感觉和适当提供先密封后紧固保证, 但最 终还是不能忍受过拧操作, 还是不得不通过严格限制手指拧紧后的扳手拧紧 圈数来确保安装可靠性。 象 DE 4426445、 US 6073976和 US 5351998专利提 供的单箍式安装拧紧操作限制, 显然不能适应被连管的大小变化, 因此, 不 得不增设附加非金属密封结构来弥补管大时出现的过驱动和管小时出现的欠 驱动的密封, 乃至失去了挤压连接的优势。 在一定程度上, 安装拧紧操作力矩越大, 人对力矩的变化感觉越迟钝; 当安装力矩大到某种程度时, 安装者艮本感觉不到什么力矩变化。 只有在大 幅降低安装力矩的基础上, 才谈得上提供安装拧紧操作 "止感"。 事实上, 现 有所有单双箍式挤压连接结构的安装力矩都太大,特别是 Swagelok双箍式大 到不容许使用高压应用所需的如表面淬火而稍硬的挤压箍。
目前, Erme to单箍式结构和 Swagelok双箍式结构是两个互不兼容的结 构体系, 即各自有各自的配套挤箍接纳体, 或者说, 挤压箍不能相互替代地 在同一个连接体内安装, 极度不利于同单位同时制造和使用, 严重制约管挤 压连接技术的发展。
此外, 现有技术使用相同机械强度的驱动螺紋配合, 是违反紧固标准规 定的, 是危险的。 发明的公开
本发明要解决的第一个技术问题是按新的结构原理提出一种有两个协调 平运动实施密封连接, 用管挤四运动
Figure imgf000005_0001
的第二个 技术问题是按新的结构原理提出一种有明确安装拧紧操作 "止感" 而又容忍 过拧的管挤压连接结构。 本专利要解决的笫三个技术问题是提出一种单双箍 兼容的即单、 双箍可在同一体内互换安装的管挤压连接结构。 通过解决这三 个技术问题达到提高管挤压连接的可靠性和广泛应用性的目的。
本发明提出解决管挤压连接三个技术问题的第一方案是一种单箍式挤压 连接管接件,如图 1和图 5所示,由连接体(1)、挤压箍(2)和驱动螺母(3)组成; 连接体外有驱动螺母啮合螺紋, 连接体内依次是通孔、 台阶孔和锥口, 连接 体内通孔直径大致等于被连管(4)内径, 连接体内台阶孔比被连管外径稍大, 连接体内锥口用于接纳挤压箍, 套装在驱动螺母和挤压箍中的被连管就插装 在这组孔内,或抵着台阶或不抵着台阶,驱动螺母通过同连接体的螺纹啮合, 把挤压箍驱挤在连接体和被连管间, 完成对管和体的密封和紧固连接; 其特 征是:所述的挤压箍(如图 2所示),是一个把 DIN 3861- 2002标准 A型挤压箍(如 图 3所示)的头部外锥面部分改陡的、 尾部受驱面由锥面改圆弧的挤压箍, 完 整地说, 其内部由一个圆台面和一个圆柱面组成, 并用圓台的大棱边 4故箍内 刃, 用圆台的小棱边做箍头刃, 而且两刃的口径相等, 其外部从头至尾依次 由比体内锥口锥度更大的锥面、 与体内锥口锥度相同的锥面、 与箍内柱面平 行的两个圓柱台阶面、 箍尾部圆弧受驱面和箍尾口驱动解除端面组成, 受驱 圆弧所对的弦与驱动螺母的驱动面平行; 所述的驱动螺母, 是一个把 ISO 8434- 1标准驱动螺母的驱动锥面由 90。改成大于 90。的驱动螺母, 完整地说, 其外部是一个六方扳手驱动面, 其内部依次是圆柱驱动螺紋、 挤压箍驱动锥 面和圆柱通孔; 所述挤压箍的材料可以是与被连管相同的材料, 但所述驱动 螺母的材质应比所述挤压箍的材质硬。
图 3是现有 ISO 8434- 1管挤压结构用的 DIN双刃挤压箍, 图 4是早期 ISO 8434-1管挤压结构用的单刃挤压箍。如图 6和图 7所示, 图 3的双刃挤压箍在手 指拧紧时,其双刃相对被连管表 2 /8面的距离是一样的,但当它受到扳手驱动 时,首先是壁薄而受力大的头部缩小,然后才是壁厚而受力小的尾部缩小, 因 此,箍头刃和箍内刃将先后依次挤向被连管。 图 4所示的挤压箍的箍头刃远高 于箍内刃, 因此, 受到驱动时, 只有箍内刃驱入被连管。 图 4的箍头主要是通 过一条圆周线挤压连接体锥口壁,而图 3的箍头则是通过一雉面挤压连接体锥 口壁, 因此, 图 4的箍头比图 3的箍头更容易实现同连接体锥口壁的密封, 但 也更容易挤破连接体的锥口壁。
把图 3所示的此前技术的箍头外锥, 部分切陡就变成图 2所示的本发明的 箍头外锥结构。 如图 8和图 9所示, 相对此前技术的箍头, 部分切陡的或工作 时部分悬挂的本发明的箍头主要是通过 B、 C两条圆周线挤压连接体锥壁, 主 要通过 D、 E两条圆周线挤压被连管。 由于特別使箍内刃圆 E与外部箍头和箍中 交界圆 B共面, 因此, 称圆 B为刃圆 E的刃背圆; 由于 C圓是密封悬臂的支点, 因此, 称为支点圆。 随着驱挤力的加大, 箍同连接体的 B和 C圓线接触将逐渐 向面接触发展——驱挤力越大, 接触面积也就越大, 但无 "^接触面积怎样加 大, 作为紧固刃的背圆 B和杠杆的支点圓 C对体雉口壁的接触压应力还是始终 大于面的接触压应力, 这就是线接触后面有面接触, 面接触里有线接触, 因 此, 本发明的箍头始终既能提供同连接体的密封线接触又能提供同连接体的 受力面接触一一无论怎样驱挤, 既挤不破连接体锥壁而又能始终保持线密封 态势。 这就是一个完全理想化的管挤压连接的体密封结构一一密封有线, 受 力有面。
同图 3的此前技术的箍头刃一样, 本发明的箍头刃 D随着箍头的先缩小, 也是先于箍内刃 E挤管, 但是, 本发明的箍头刃 D是通过一个悬臂 DC挤管的, 因此, 只要悬臂长度和钢度适当, 随着箍头的轴向移动和缩小, 本发明的箍 头刃就只会不断地挤管而又挤不进或挤不凹被连管。 这就是本发明的挤平密 封悬臂或挤平密封结构。 这个薄而富有弹性的箍头密封悬臂, 虽然挤不凹被 连管, 但它可挤平被连管地随管椭而椭, 随管圓而圓, 有效地适应被连管材 表面变化。 由于密封悬臂露宿在传输介质中, 因此, 本密封结构有很强的自 密封性, 即介质压力越高, 密封性越好。 由于挤就结合面平滑而自密封, 密 封悬臂薄而富有弹性, 因此, 可适应反复拆装中的方位变化。 这样的密封悬 臂就是一个完全理想化的管挤压连接的管密封结构 个完全不需要任何 附加非金属密封的真正的管挤压连接的密封结构。
图 8是手指拧紧状态, 图 9是用扳手最终拧紧状态。 如果以扳手最终拧紧 圈数为参照, 那么, 箍头刃 D应在扳手拧到 1 /2总圈数左右时完成对管的密封 连接。 是否如此, 可以通过压力实验来观察和确认。 如果扳手拧到 1 /2总圈数 时, 箍头刃还不能完成对管的密封, 则应该通过增加箍头刃处厚度或缩短密 封悬臂来加强; 相反, 如果扳手拧到最终状态后拆下观察, 箍头刃有肉眼可 见的挤 W被连管的痕迹, 则可通过调薄箍头刃或调长密封悬臂来减弱。
如图 10—图 12所示, 受到驱动的挤压箍, 实际上, 相当于箍头和箍尾两 个斜楔联合体。 箍头楔, 在螺母的驱动下挤压连接体和管, 楔角为 α; 箍尾 楔, 在箍尾的缩小抗力的驱动下挤压连接体和驱动螺母, 楔角为 β。 图中的 Pb 是连接体对箍的反作用力, Ρπ是螺母对箍的驱动力。 根据作用力和反作用力 相等的原则, 可知 Ρ^。Ρη的分力间有如下关系: p 1 ny =Ρ' ny
由于箍头和箍尾受到的镇压力之比:
Pb/Pn= (P„x/s ina) / (Pnx/cosp) =cos p/s ina, 因此,在 a和摩擦系数一定时, 要保证挤压箍在受驱过程中不转动, 即保证密封悬臂的挤平运动是无任何转 动的纯轴向运动,就必须取较小的 β角以保证箍头受到较大的镇压力即受到较 大的转动摩擦阻力, 保证螺母驱动面受到较小的镇压力即受到较小的转动摩 擦阻力。 如果增大 ISO 8434-1标准驱动螺母的驱动面锥角, 则可减小 β角、 增 加箍头相对体的转动阻力、 减少螺母相对箍尾的转动阻力, 保证螺母不会带 动挤压箍转动。
由于箍头和箍尾受到的径向压力之比:
Figure imgf000007_0001
/tgatg , 因此, 在 a—定时, 要保证挤压箍 在受驱过程中先实施密封后实施紧固, 即保证箍头先缩小箍尾后缩小, 就必 须取较小的楔角 β以保证箍头受到较大的径向分力 Pby, 保证箍尾受到较小的 径向分力 Pny。 如果不改变 ISO 8434- 1标准驱动螺母的驱动面锥角(90。), 则 β=45°, tg =l , 不利于受驱挤压箍先实施密封后实施紧固。
实际上,加大螺母的驱动面锥角即减小 β角,等于提高螺母的轴向驱动分 量, 减少螺母的径向驱动分量, 以利用箍头楔对轴向驱动分量的放大能力, 进一步扩大箍头和箍尾的受挤压变形作用力的大小比, 既确保箍头至箍尾依 次缩小而确保连接先实施密封后实施紧固, 又确保箍头相对体的转动摩擦阻 力足够大于驱动螺母相对箍尾的转动摩擦阻力而使受到驱动的挤 V8压箍不 转动。 由于螺母驱动面的转动阻力: F=fP' n=fP'„y/s inp, 其中 Ρ' η是螺母驱动面 受到的来自挤压箍尾的反作用镇压力, f是螺母的驱动面和箍的受驱面间的摩 擦系数, 因此, 在 f一定的前提下,要使箍尾在抱压被连管表面瞬间对螺母的 转动突然呈现一个强大的阻力即提供一个 "止感" , 则必须:
①取较小的 β角即取较大的螺母驱动锥角, 加强箍尾楔对其缩小的抗力 的放大能力;
② 增加管对箍尾缩小的抵抗力(或者说增加箍尾楔的操作动力) Ρ 的突 变性和大小。
如果把 ISO 8434- 1标准驱动螺母的驱动面锥角, 比如由 90。改为 120。, 则 角 β就由 45°变为 30°,箍尾楔对箍尾缩小的抗力的放大系数 l/s inp就由 1. 4142 变为 2。 如果能让箍尾内圆柱面平行地收缩抱管, 则可增加管的受力面积、 降 低管的变形压强、 提高管对箍尾的收缩抵抗能力, 乃至箍尾抱管时, 箍尾楔 收到的抵抗力是猛增的; 如果不改进箍尾的驱动, 不改进箍中部径向外翘的 影响, 则箍尾势必以尾口棱边线接触开始抱管, 乃至箍尾抱管时, 管对箍尾 的收缩抵抗力只会逐渐增加而不会突然增加。
本发明解除箍尾以线接触开始抱管的手段,一是解除箍尾口端部的驱动, 使箍尾口无集中应力, 特别是径向无集中应力, 二是挤压箍采用高位束动力 驱动, 阻止箍尾随箍中部的径向外翘而外翘。 如图 8和图 9所示, 箍尾口端面 是一小圈螺母驱动面触及不到的圓环面 H,箍尾受驱面是把驱动力集中于弧顶 A的圆弧面, 因此, 挤压箍在受驱过程中, 不仅不可能有径向分力通过箍尾口 棱边 G压管, 而且过点 A的高位束动力产生的转矩, 在抵消箍中部径向外翘的 影响同时,还使箍尾口棱边有外翻趋势,确保了箍尾以面 F接触开始抱管而不 是以线 G接触开始抱管。 箍尾楔角 β越小, 轴向驱动分力就越大, 抵消箍尾径 向随中部外翘而外翘的力矩也就越大, 越使箍尾趋于以更大的 F面开始抱管。 箍尾抱管时的接触面积越大, 管单位面积上的压力即压强就越低, 管越不易 被箍尾压缩, 即箍尾抱管时收到的抗力就越大。箍尾抱管时突然收到的抗力, 经箍尾楔成倍放大后, 陡变为螺母的转动阻力。 这就是单箍式管挤压连接自 1932年诞生以来所一直寻求而又一直未寻到的安装拧紧操作 "止感"。
其实, 箍尾圆弧, 在帮助箍尾楔提供 "止感"后, 在受到强制过驱动时, 就不再是遏制箍尾随箍中部一道径向外翘, 而是助长箍尾随箍中部一道径向 外翘地强化 "外翘,, 对过驱动的隔离。 同样, 在 "止感', 提供前, 箍尾圆弧 是减少驱动面同受驱面间的摩擦系数、 降低安装拧紧操作力矩、 突显箍尾以 面开始抱管瞬间的阻力, 但随着 "止感,, 提供后的驱动压力的增加' 却是使 驱动面和受驱面间的接触由线到面地去解除应力集中引起的咬死。
综上所述可知, 在不改变 ISO 8434- 1基本体制即不改变其箍头楔角 α前 提下,增大其螺母的驱动锥面角度即减小其箍尾楔角 β,就可彻底改善其连管 性能。
从图 11 b可以看出, 箍尾对驱动螺母转动产生阻力的镇压力 P '„是由箍头 轴向前进阻力 P' M和箍尾径向收缩抗力? 合成的; 如图 12b所示, 只有? 和 这两个分力同时增加时, 螺母的转动阻力才会增加。 实际上, 可想而知, 箍头阻碍小时, 只会沿轴向推动箍头而不会沿径向压缩箍尾,箍尾阻碍小时, 只会沿径向压缩箍尾而不会沿轴向推动箍头; 也就是说, 箍头的轴向阻力和 箍尾的径向抗力不会单独增加, 螺母的转动阻力也不会单独随某个分力的增 加而增加。 如图 8b所示, 由于刃背圆 B与箍内刃圓 E共面, 因此, 随着箍头缩 小而使其内刃 E挤管,紧靠刃背圆的外柱面势必相对和紧跟刃背锥面的缩小而 扩大。 如图 9b所示, 随着箍内刃背柱面的径向扩大即外翘, 箍内刃 E才有刃后 角; 只有有后角的箍内刃 E才是刃, 才有可能切入管表面。 也就是说, 刃背柱 面外翘所形成的 E刃后角, 将更加有利 E刃充分切入被连管。 随着外翘的不断 继续, 箍同连接体的接触面积势必不断加大,'接触压强势必受到遏制, 致使 箍头可承受更大的过挤压力而又不缩小挤管, 进而有效补偿有更大后角而更 锋利的 E刃对管的继续切入。 或者说, 随着驱动, 箍头内刃 E只能被充分地挤 入或切入被连管, 而一旦箍头内刃 E充分挤入被连管, 即完成对管的紧固, 任 何过挤, 都挤不动箍头, 只能挤得箍中部进一步外翘。 实际上, 箍中部外翘 是挤不动箍头的标志, 但图 9b所示的箍中部径向外翘, 仅仅是本发明的刃背 柱面径向外翘, 不是过驱动下的箍中部径向外翘。 由于按本发明的挤压箍, 一方面仍然保持原有 ISO 8434- 1标准用挤压箍的两个外圆柱台阶面直径不 变, 即箍尾外圆柱直径大于箍中部外圆柱直径, 二方面箍头的径向縮小变形 压力是箍尾的径向缩小变形压力的 8倍多, 因此, 在箍尾以 F面抱管而突然遇 到不可再缩小的阻力的时刻, 肯定是箍头内刃 E充分挤入被 4 /8连管后而不可 再前挤的时刻, 箍头的轴向挤进阻力绝对可随箍尾缩小阻力的增加而增加, 绝对是安装拧紧操作的 "尽头" 。 实验证明, 用标准扳手普通力气拧到力矩 大增的时刻, 就是基本接近用标准扳手拧不动的时刻, 也就是安装拧紧操作 到 "尽头" 的时刻, 操作 "止感" 十分明确; 强制过拧, 只能把箍尾拧着沿 被连管表面滑动, 使箍中部隆起地挤压在体锥口端面, 根本不可能把箍头过 驱入连接体锥口内; 强制过拧后, 所有挤压结合面都完好无损, 无咬死, 无 撕裂, 还可反复拆装通过压力测试。
本发明的单箍式挤压结构能够承受强制过拧安装操作的另一个重要原因 就是,取较硬或较高强度的驱动面(或螺母),取较软或较弱强度的受驱面(或 挤压箍),有效地避免了驱动面和受驱面间的过驱动咬死,彻底解除了咬死引 起的挤压箍的最后破坏性转动。 按照标准规定, ISO 8434- 1连接体的正选用 材是正火的很软的 Q235钢(当使用强度高于 Q235的材料时,其额定压力值不是 提高反而是下降), 因此, 随驱动面取硬而取较硬的驱动螺母, 按相关紧固标 准规定, 将有利于驱动螺紋配合在安装装配中的破坏, 如果发生的话, 则首 先发生于容易发现的外螺紋破坏而不是不易发现的内螺紋破坏, 排除了事故 隐患, 确保了挤压连接的安全。
综上所述不难看出, 本发明的挤压箍在受到螺母驱动时, 首先是箍头刃 D 挤管而对其实施主密封连接,然后是箍头内刃 E挤管而对其实施副密封连接和 主紧固连接, 最后是箍尾抱管对前面完成的密封和紧固实施保持和隔离紧固 连接, 并同时发出安装拧紧操作 "止感" 。
由于箍头刃 D是通过强度适度的悬臂挤管的, 因此, 无论后部怎样推或后 续如何推, 它只能把管挤光、 挤平, 无力把管挤凹, 只能提供挤平运动或挤 平结合。 由于箍头内刃 E是背靠连接体锥口壁的, 因此, 它只能随着螺母的驱 动而别无选择地挤入被连管而提供挤凹结合或挤凹运动。虽然箍头内刃 E同管 的挤凹结合有密封作用, 但不是整个连接的密封依靠, 而是无它不少, 有它 无害; 特别是重复安装中, 不指望它复位密封; 由于箍头刃 D把密封部位挤得 很平、 很光、 很浅, 因此, 重复安装中, 指望不到恢复原安装方位但却可指 望恢复到原来的致密性; 由于密封悬臂是露宿在传输介质中的, 因此, 连接 的密封性可随介质压力升高而增强; 由于密封结合部位悬空本身就能抵御外 来震 /振动, 而外来震 /振动又很难通过箍尾 F面和紧固 E刃的双重紧固隔离, 因此, 连接密封特别抗震 /振; 由于密封悬臂的支点和作用点是箍同连接体的 接触面上的两条线, 因此, 连接体的密封靠线接触、 受力靠面接触, 十分完 美。 所以说, 本发明的密封悬臂除提供出色的挤平密封外, 还附带提供和优 化其它连接性能。
由于本桥压箍的箍头壁薄、 箍尾壁厚, 而挤压受力又箍头大箍尾小, 因 此, 随着螺母的驱动, 箍头至箍尾必然先后逐步缩小, 致使箍头密封刃 D先挤 管实施密封, 箍内紧固刃 E后挤管实施紧固。 随着紧固的进行, 首先是刃背圓 B诱使挤压箍中部一次外翘, 促使箍内刃 E充分切入被连管(确保连接质量)和 加强箍同体的接触(做好受过挤压的准备) , 然后是箍尾圆弧箭使挤压箍中部 二次外翘, 充分免除过驱动影响, 因此, 加之密封悬臂提供的密封根本不受 任何过驱动影响, 可以说, 任何过驱动都影响不到已完成的密封和紧固。 可 见 , 本发明的单箍式挤压连接完全是由两个协调的相隔又相继的互不干涉的 完全不同的挤平和挤凹运动完成的。
由于改大螺母驱动锥角或缩小箍尾楔角 β、加大螺母轴向驱动分量、利用 箍头楔大幅降低箍头挤压变形所需的安装力矩, 有效地提高了操作者对箍尾 楔输出的 "止感" 的感受灵敏度, 由于受驱箍尾取圓弧的同时, 驱动螺母取 硬, 有效地排除了螺母驱动面的转动咬死干扰, 因此, 可以说, 本单箍式挤 压连接是在有效降低安装操作力矩的基础上, 通过箍尾楔, 把箍尾抱管抗力 放大为安装拧紧操作 "止感" 的, 因而使其提供的 "止感', 十分明确。
解除箍尾驱动面和受驱面间的最后阶段驱动咬死, 也就解除了螺母最终 带动挤压箍转动而撕裂重压下的密封配合面的可能, 加之前述解除的最后阶 段箍头移动, 就等于本单籀式挤压连接可彻底忍受过驱动。
所以, 本发明的单箍式挤压连接管接件完全实现了前述发明目的。
本发明提出解决管挤压连接三个技术问题的第二方案是一种双箍式挤压 连接管接件, 如图 13和图 15所示, 由连接体(1)、 密封箍(2a)、 抱持箍(2b) 和驱动螺母(3)组成; 连接体外有驱动螺母啮合螺紋, 连接体内依次是通孔、 台阶孔和锥口,连接体内通孔直径大致等于被连管(4)内径,连接体内台阶孔 比被连管外径稍大, 连接体内锥口用于接纳密封箍, 套装在驱动螺母、 抱持 箍和密封箍中的被连管就插装在这组孔内, 或抵着台阶或不抵着台阶, 驱动 螺母通过同连接体的螺纹啮合,把密封箍和抱持箍驱挤在连接体和被连管间, 完成对管和体的密封 5/8和紧固连接;其特征是:所述的密封箍(如图 14所示), 是一个把 DIN 3861-2002标准 A型挤压箍(如图 3所示)的头部外锥面部分改陡 的、 中部圓柱面改成锥面的、 尾部受驱外锥面由 90s改成大于 90。的、 尾部增 设受驱内锥口的挤压箍, 完整地说, 其内部由箍头两个高度不等的共大底的 圆台面、 箍中圓柱面和箍尾内锥口面组成, 并用低台棱边做箍内刃, 用高台 棱边做箍头刃, 用箍尾锥口面接受抱持箍驱动, 而且两刃的口径相等, 其外 部从箍头至箍尾依次由比体内锥口锥度更大的锥面、 与体内锥口锥度相同的 锥面、 比体内锥口锥度更小的锥面、 与箍内柱面平行的圓柱台阶面和箍尾部 辅助外锥面组成, 箍尾部辅助外锥面可以接受驱动螺母的驱动; 所述的抱持 箍是一圈开口圆截面钢丝, 冷作硬化处理得比管硬; 所述的驱动螺母, 是一 个把 ISO 8434-1标准驱动螺母的驱动锥面由 90°改成大于 90。的驱动螺母, 完 整地说, 其外部是一个六方扳手驱动面, 其内部依次是圓柱驱动螺紋、 抱持 箍驱动锥面和圆柱通孔; 所述密封箍的材料可以是与被连管相同的材料, 但 所述驱动螺母的材质不应比所述^ ^持箍的材质软。
本发明的单式挤压箍(2)可以置换同规格的本发明的双箍式挤压箍(密封 箍(2a)加抱持箍(2b) ) ,使双箍式变单箍式管挤压连接,反之亦然。也就是说, 本发明的双箍式挤压连接管接件同本发明的单箍式挤压连接管接件, 除挤压 箍不一样外, 其余的结构及其功能完全一样。 在各自结构图中, 标注相同代 号的零件或部位的结构和功能完全一致或基本一致。
同前述的单箍式挤压箍相比, 本发明的双箍式密封箍的箍内刃尖角 E (如 图 17所示), 远比单箍式的挤压箍内刃尖角 E ( « 90。, 如图 8b所示)大, 因此, 挤入管内的 V形尖 E可利用其在管上挤出的 V形槽面撑开拆卸; 除此之外,其余 的箍头结构和功能完全一样, 不再重述。
在前述的单箍式结构中, 需要挤压箍中部沿径向外翘, 以便首先提供刃 后角, 然后提供过驱动隔离, 而本发明的双籀式结构, 既不需要密封箍中部 外翘提供刃后角, 也不需要外翘提供过驱动隔离, 因此, 双箍式的密封箍中 部外表面可以是比单箍式的圆柱面刚性更好的雉面。 为了同时兼顾箍头的挤 入特性和箍中部的刚性,箍中部外表面最好是比密封箍头楔角(小7°左右的锥 面, 其高矮和位置与单箍式的外圆柱面可完全对应。
与螺母驱动面锥度一致的密封箍尾外锥, 一是如图16所示, 用于预装中 直接接受螺母(3)的驱动,把箍头刃口直径调整到被连管外径大小以统一不同 外径公差管的安装拧紧圈数,二是如图 17所示, 用于让螺母(3)有空间把抱持 箍(2b)充分挤向被连管以适应管外径的大变化。
如图 I7和图 18所示, 受螺母(3)驱动的密封箍(2a)和抱持箍(2b) , 在密封 箍未受到足够阻碍前, 抱持箍只能沿被连管表面滑动, 只有当推不动密封箍 时, 螺母才会把抱持箍往管内挤; 当抱持箍往管内或多或少地一陷, 陷出的 管表凹陷槽, 无论多浅, 都势必同密封箍一道共同阻止抱持箍再向前滑动; 此时, 如果抱持箍要想往前再挤动一点, 则密封箍尾的受驱雉面, 作为抱持 箍的引导面, 将更多地引导抱持箍挤入管表面; 如果抱持箍再往管内一挤, 则完全有可能瞬间脱离密封箍受驱面。这就是说,抱持箍往管内一陷的时刻, 就是密封箍开始 "止步不前" 的时刻。 实际上, 可想而知, 挤在被连管 "槽" 中的抱持箍, 无论如何挤都跨越不了槽的限制, 反射出来的必定是挤不动的 感觉。
科学地说, 如图 19所示, 一旦抱持箍(2b)挤入被连管而在其下面的管表 面上形成一个相当于左右两个小斜楔的凹陷槽,任何来自驱动螺母(3)对抱持 箍的驱动增力 都会 )起被连管对抱持箍的一个反作用力 ; 这个反作用力 被两级斜楔放大后而变成比驱动增力 大十多倍的阻力: F=AF/ tgptgy, 交付操作者明确 "止感" , 其中 β是抱持箍反挤螺母的楔角, γ是管凹槽反挤 抱持箍的楔角。 同样, 任何来自密封箍对抱持箍的后退脉冲也注定被数十倍 地放大后反馈回去抵消脉冲的冲击, 维持原有密封状态不变。 这就是本发明 的双楔止驱与防震结构。
结合图 17和图 18不难理解, 受到驱动的密封箍, 相对其轴向动力是一个 以 α为楔角的多倍轴向动力放大楔, 相对其径向动力是一个以 Β为支点的多倍 径向动力放大杠杆。 密封箍, 作为杠杆, 因受箍尾约束, 宏观上主要是相当 于赋予箍尾极高的刚性, 即管对箍头的反作用力几乎不可能使箍尾縮小, 或 者说,很小的箍尾径向作用力都可撑起箍尾给箍内刃 Ε提供一个后角,有利其 对管的挤入。 由于密封箍经刃 D和 E的挤管力是动力楔杠放大器的输出, 保持 箍经圆弧 K的挤管力仅仅是两个原始动力中较小的径向动力的反作用力,远比 楔杠放大器的输出力小, 因此, 受到驱动的密封箍和抱持箍, 首先挤管的密 封箍头刃 D, 然后是密封箍内刃 E , 最后是抱持箍圆弧 K; 在箍内刃 E没有充分 挤入被连管表面前, 抱持箍圆弧 K 是不会挤入被连管的; 当抱持箍经圆弧 K 开始挤入管内时, 密封箍头刃 D肯定已经充分完成对管的挤平连接。
图 17是手指拧紧状态, 图 18是用扳手拧紧最终状态。 如果以扳手最终拧 紧总圈数为参照,那么,箍头刃应在扳手拧到 1 /2总圈数左右时完成对管的密 封连接。 是否如此, 可以通过压力 6/8
实验来观察和确认。如果扳手拧到 I /2总圈数时, 箍头刃还不能完成对管 的密封, 则应该通过增加箍头刃 D处厚度或缩短密封悬臂来加强; 相反, 如果 扳手拧到最终状态后拆下观察, 箍头刃有肉眼可见的挤凹被连管的痕迹, 则 可通过调薄箍头刃或调长密封悬臂来减弱。
综上所述不难看出, 本发明的双箍式密封箍和 ^包持箍, 在受到螺母驱动 时, 首先是密封箍头刃 D挤管而对其实施密封连接, 然后是密封箍头内刃 E挤 管而对其实施过渡密封连接和紧固连接, 最后是抱持箍挤入被连管实施最终 紧固连接, 并同时发出安装拧紧操作 "止感" 。
双箍式同单箍式一样,由于箍头刃 D是通过强度适度的悬臂挤管的,因此, 无论后部箍怎样推或箍后续如何推, 它只能把管挤光、挤平, 无力把管挤凹, 只能提供挤平运动或挤平结合。 由于双箍式的密封箍头刃 D和箍内刃 E的挤管 力远大于抱持箍圆弧 K的挤管力, 因此, 随着螺母的驱动, 只能密封箍的刃 D 和 E先挤管实施密封, 抱持箍的弧 K后挤管实施紧固。 当抱持箍挤 W管达到一 定程度时, 抱持箍再也不可能从凹槽中 "跳" 出来挤密封箍。 所以说, 本发 明的单箍式挤压连接是由两个协调的相隔又相继的互不干涉的完全不同的挤 平运动和挤凹运动完成的。
由于双箍式同单箍式一样, 箍头刃 D都是通过悬臂挤管的, 因此, 双箍式 的密封悬臂的密封效果同单箍式的一样优秀, 但双箍式的密封悬臂的密封和 抱持箍的紧固, 有箍内刃 E的密封和紧固的从容过渡和充分隔离, 因此, 双箍 式的连接的密封和紧固变得更安全可靠。
虽然本发明的单箍式结构和欢箍式结构 , 都既能提供明确的安装拧紧操 作 "止感" 又能忍受过驱动, 但由于对过驱动的隔离而言, 本发明的单箍式 结构靠的是挤压箍中部的径向外翘, 隔离的是箍尾的过驱 "运动" 而不是过 驱 "动力" , 而本发明的双箍式结构靠的是抱持箍挤入被连管的凹槽, 隔离 的是过驱 "动力" , 因此, 本发明的双箍式结构比单箍式结构更能忍受过驱 动, 提供的安装拧紧操作 "止感" 也更明确, 受过驱动后的密封箍和抱持箍 无任何不良变形, 可从被连管上拆下再安装, 而本发明的单箍式结构的挤压 箍, 在受到过驱动后, 只能随管反复拆装, 不能无损地从被连管上拆下再安 装。
可以说, 本发明的双箍式比单箍式挤压连接管接件更好地实现了前述发 明目的。
附图的筒要说明
图 1是本发明的一种单箍式挤压连接管接件, 用于完成螺紋口到管的连 接, 其中件 1是连接体, 件 2是挤压箍, 件 3是驱动螺母, 件 4是被连管, 件 5是 0型密封圈。
图 2是图 1中的挤压箍的半剖视结构图, 图 3和图 4是此前技术的挤压 箍的半剖视结构图。
图 5是去掉 0型密封圈的图 1的分解透视图。
图 6 是手指拧紧状态的此前技术的单箍式挤压连接结构的装配局部视 图, 图 6a是局部半剖视装配结构图, 图 6b是图 6a的局部放大图, 其中件 2 和件 3是此前技术结构。
图 7是扳手最终拧紧状态的此前技术的单箍式挤压连接结构的装配局部 视图, 图 7a是局部半剖视装配结构图, 图 7b是图 7a的局部放大图, 其中件 2和件 3是此前技术结构。 '
图 8是手指拧紧状态的本发明的单箍式挤压连接结构的装配局部视图, 图 8a是局部半剖视装配结构图, 图 8b是图 8a的局部放大图,其中件 2和件 3是本发明结构。
图 9是扳手最终拧紧状态的本发明的单箍式挤压连接结构的装配局部视 图, 图 9a是局部半剖视装配结构图, 图 9b是图 9 a的局部放大图, 其中件 2 和件 3是本发明结构。
图 10是图 8b的进一步放大视图,以展示本发明的单箍式挤压箍头楔(α) 和箍尾楔 (β)。
图 11a是本发明的单箍式挤压箍在手指拧紧状态时的受力分析图,图 l i b 是本发明的单箍式挤压箍在手指拧紧状态时对驱动螺母的反作用力分析图。
图 12 a是本发明的单箍式挤压箍在扳手最终拧紧状态时的受力分析图, 图 12b是本发明的单箍式挤压箍在扳手最终拧紧状态时对驱动螺母的反作用 力分析图。
图 13是本发明的一种双箍式挤压连接管接件,用于完成螺纹口到管的连 接, 其中件 1是连接体, 件 2a是密封箍, 件 2b是抱持箍, 件 3是驱动螺母, 件 4是被连管, 件 5是 0型密封圈。
图 14是图 13中的密封箍的半剖视结构图,图 15是去掉 0型密封圈的图 13的分解透视图。
图 16是无抱持箍地把本发明的密封箍与管外径复 "0" 的预安装局部剖 视图。
图 17是手指拧紧状态的本发明的双箍式挤压连接结构的装配局部视图。 图 18 是扳手最终拧紧状态的本发明的双箍式挤压连接结构的装配局部 视图。
图 19 是本发明的汉箍式挤压连接结构在扳手拧紧时形成的双楔止驱与 防震御振结构。 实现本发明的最佳方式
本发明的单箍式和双箍式挤压连接管接件都是一种把平滑管连接在其它 管路口的管接件。 为了把平滑管连接在其它管路口, 当然在管接件中, 除了 管挤压连接端外, 还有其它连接端, 如螺紋、 焊接等连接端。 如果连接的都 是平滑管, 则管接件中全是管挤压连接端。 图 1和图 5所示的本发明的单箍 式挤压连接管接件以及图 13和图 I 5所示的本发明的双箍式挤压连接管接件, 都是一个把平滑管连接在其它内螺紋口的管接件。
本发明的单箍式挤压连接管接件, 如图 1和图 5所示, 由连接体(1)、 挤 压箍(2)和驱动螺母(3)组成;本发明的默箍式挤压连接管接件,如图 13和图 15所示, 由连接体(1)、 密封箍(2a)、 抱持箍(2b)和驱动螺母 )组成。 在这 两个实施例中, 除了其中的挤压箍外, 其它结构完全一样, 选择安装单箍式 的挤压箍(2)就是单箍式, 选择安装双箍式的挤压箍(密封箍(2a)加抱持箍 (2b) )就是双箍式,或者说,其中的单挤压箍和双挤压箍是可互换地共在一个 体系中, 或者更确切地说, 是可互换地共在 ISO 8434- 1体系中, 除了他们的 挤压箍的结构和驱动螺母的驱动锥角外,其它结构与 ISO 8434-1结构一模一 样。
如图 6和图 7所示, 现有技术的 ISO 8434-1标准驱动螺母(3)的驱动雉 面半角是 45。, 相应的箍尾楔角或箍反挤螺母的楔角 β=90。-45°=45°; 如图 8 和图 9所示, 本发明的驱动螺母(3)的驱动锥面半角是 60。, 相应的箍尾楔角 或箍反挤螺母的楔角 β=90。-60。=30°。 实际上, 无论是单箍式还是双箍式, 箍反挤螺母的楔角 β小于现有技术的 45°时, 就可取得降低安装拧紧操作力 矩、 增加安装拧紧操作 "止感 " '等效果。
本发明的单箍式的挤压箍和双箍式的密封箍都可由现有技术的 W Ν 3861- 2002标准 Α型挤压箍(如图 3所示)改编而成。 如图 2和图 14所示, 首 先是单箍式的挤压箍和双箍式的密封箍的箍头外部结构可完全一样, B 和 C 圆间锥面半角即箍头楔角 α, 与现有技术一样, 为 12°, Β圆外径大致与连接 体内锥口直径一样, Β和 D圓间轴向距离大致是连接体内锥口深度的 1/2 , C 和 D圆间轴向距离大致是 Β和 D圆间轴向距离的 1/3 , 箍头刃 D处的厚度大 致是连接管公称外径的 0. 015倍; 其次是单箍式的挤压箍和双籀式的密封箍 的箍头内圆台锥面锥度可与外圓台 B-C锥面一致, 而且其箍内刃 Ε圆与夕卜 Β 圓共面, 只是单箍式的箍内刃尖角 Ε为 90° , 双箍式的箍内刃尖角 Ε为 120。; 再其次是单箍式的挤压箍外两个圆柱台阶面的直径和台阶位置可与与现有技 术一样, 双箍式的密封箍外中部圆台锥面半角为 5°, 圆台位置和高度与单箍 式的挤压箍外中部圓柱高度和位置一致, 默箍式的密封箍外台阶圓柱面直径 比单箍式的大, 但不得大到同螺母的螺紋底孔有干涉; 再其次是单箍式的箍 尾受驱圓弧面的圆弧所对的弦与驱动面平行, 圆弧弓形高度和箍尾端部驱动 解除圆环 Η的宽度均为连接管公称外径的 0. 01倍;最后是汉箍式的密封箍尾 部辅助外锥面的位置和锥角(120。)与驱动螺母的驱动面协调一致, 箍尾锥口 锥角为 120。, 箍尾锥口大小应正好适应抱持箍的全程驱挤。 抱持箍的内径为 被连管最大外径, 抱持箍的全程驱挤直径缩小量就是钢丝直径, 也就是双箍 式挤压连接管接件可适应的被连管外径变化的大小, 因此, 抱持箍的钢丝截 面直径可参照市场普通钢管公差选定。
通过在箍内刃 Ε的挤压表面上适当开槽, 可单独解除箍内刃 Ε的密封功 能而可测试箍头刃 D的密封功能; 根据测试结果和需要, 可通过调整箍头刃 D处的厚度或密封悬臂 CD的长度来调整箍头刃 D的密封或挤管力度。适当调 取箍头 B圆直径和箍尾外台阶圓柱面的直径可以调整挤压连接的刚性和最大 安装拧紧操作力矩等。 适当调取双箍式密封箍尾的受驱锥口角度可改变安装 拧紧操作力矩的大小及调整密封和紧固动作的转换时刻一一或提前或推迟紧 固动作。
本发明的双箍式的密封箍(前箍)尾的锥口角 120。比现有技术的 90。大, 本连接体的锥口角 24。(α=12。)比现有的 40。小。 较小的连接体锥口角使箍头 楔有较大的前箍轴向推力放大能力, 有较大箍尾锥口角的前箍尾有较大的轴 向推力和较小的径向推力。 较大的前箍轴向推力经较大地放大后的箍头的挤 管力就更大, 因而可有效减少安装操作力矩, 较小的前箍尾径向推力可以免 除箍尾多余变形所需的安装力矩, 所以, 本发明的双箍式结构突破了现有 Swagelok双箍式的技术瓶颈一一 Swagel ok双箍式结构,因安装拧紧操作力矩 过大而不容许使用如表面淬火的强度稍高的挤压箍' 因而不能满足高压应用 下所需的更深的挤管要求。
上述赋值仅仅是实施本发明的一个实例。 由于影响管挤压连接性能的参 数多, 因此, 适当改变局部或全部赋值都有可能实现本发明。 也就是说, 实 施本发明的赋值方案很多, 或者说, 本发明的单挤压箍和双挤压箍还可共在 一个非 ISO 8434-1体系中。

Claims

权 利 要 求 、 一种单箍式挤压连接管接件, 由连接体、 挤压箍和驱动螺母组成, 连接体 外有驱动螺母啮合螺紋, 连接体内依次是通孔、 台阶孔和锥口, 连接体内 通孔直径大致等于被连管内径,连接体内台阶孔比被连管外径稍大, 连接 体内锥口用于接纳挤压箍,套装在驱动螺母和挤压箍中的被连管就插装在 这組孔内,或抵着台阶或不抵着台阶,驱动螺母通过同连接体的螺纹啮合, 把挤压箍驱挤在连接体和被连管间, 完成对管和体的密封和紧固连接, 其 特征是所述挤压箍是靠着连接体内锥口面通过预制的密封悬臂头实施挤 管密封的。
、 一种单箍式挤压连接管接件, 由连接体、 挤压箍和驱动螺母组成, 连接体 外有驱动螺母啮合螺纹, 连接体内依次是通孔、 台阶孔和锥口, 连接体内 通孔直径大致等于被连管内径,连接体内台阶孔比被连管外径稍大,连接 体内锥口用于接纳挤压箍,套装在驱动螺母和挤压箍中的被连管就插装在 这组孔内,或抵着台阶或不抵着台阶,驱动螺母通过同连接体的螺紋啮合, 把挤压箍驱挤在连接体和被连管间, 完成对管和体的密封和紧固连接, 其 特征是所述挤压箍的箍尾楔角 β小于 45。,所述挤压箍的尾口局部端面不触 及所述驱动螺母的驱动面, 所述驱动螺母通过点接触开始驱动箍尾,通过 所述点接触的束动力的径向分力在所述挤压箍内。
、一种分别按权利要求 1和权利要求 2的单箍式挤压连接管接件,其特征是所 迷挤压箍的箍头楔角 α=12。, 所述挤压箍的箍尾楔角 β不小于 15。又不大于 30。, 即 15°≤β≤30°。
、 一种按权利要求 2的单箍式挤压连接管接件, 其特征是所述的点接触是由 锥面和弧形面配合提供的。
、一种双箍式挤压连接管接件, 由连接体、密封箍、 4包持箍和驱动螺母組成, 连接体外有驱动螺母啮合螺紋, 连接体内依次是通孔、 台阶孔和锥口, 连 接体内通孔直径大致等于被连管内径,连接体内台阶孔比被连管外径稍大, 连接体内锥口用于接纳密封箍, 套装在驱动螺母、 抱持箍和密封箍中的被 连管就插装在这组孔内, 或抵着'台阶或不抵着台阶, 驱动螺母通过同连接 体的螺紋啮合, 把密封箍和抱持箍驱挤在连接体和被连管间, 完成对管和 体的密和紧固连接, 其特征是所述密封箍是靠着连接体内锥口面通过预制 的密封悬臂头实施挤管密封的。 、 一种按权利要求 5的默箍式挤压连接管接件, 其特征是所述抱持箍是一圈 开口圆截面钢丝。
、 一种按权利要求 5的双箍式挤压连接管接件, 其特征是所述抱持箍是一圈 开口的非圆截面钢圈, 所述非圆截面的挤管段是圓弧, 其驱动段和受驱段 可以是直线或非圆弧曲线。
、 一种分别按权利要求 5、 6和 7的双箍式挤压连接管接件, 其特征是所述密 封箍的箍头楔角 α=12。, 所述抱持箍反挤所述驱动螺母的楔角 β不小于 15。 又不大于 30°, 即 15°≤β≤30°。
、一种分别按权利要求 1和 5的挤压连接管接件,其特征是所述挤压箍和密封 箍的箍内刃圆与箍外的箍头和箍中交界圓共面, 正好使所述交界圆为箍内 刃的背圆。 0、 一种挤压连接管接件, 由连接体、 挤压箍和驱动螺母组成, 连接体外有 驱动螺母啮合螺纹, 连接体内依次是通孔、 台阶孔和锥口, 连接体内通孔 直径大致等于被连管内径, 连接体内台阶孔比被连管外径稍大, 连接体内 锥口用于接纳挤压箍, 套装在驱动螺母和挤压箍中的被连管就插装在这组 孔内, 或抵着台阶或不抵着台阶, 驱动螺母通过同连接体的螺纹啮合, 把 挤压箍驱挤在连接体和被连管间, 完成对管和体的密和紧固连接, 其中的 挤压箍可以是单箍, 也可以是双箍, 其特征是所述驱动螺母的机械强度高 于连接体的机械强度。
PCT/CN2007/003486 2006-12-11 2007-12-07 Raccord de tuyau extrudé doté d'un collier de serrage solidaire simple et double WO2008071073A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07845844A EP2101096A1 (en) 2006-12-11 2007-12-07 Extrude pipe connecting part with integrated single and double clamping ring
US12/518,564 US20100102554A1 (en) 2006-12-11 2007-12-07 Tube Fitting with either Single or Double Ferrule Swage Design Common to One System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006101643507A CN1987187B (zh) 2006-12-11 2006-12-11 单双箍共体式挤压连接管接件
CN200610164350.7 2006-12-11

Publications (1)

Publication Number Publication Date
WO2008071073A1 true WO2008071073A1 (fr) 2008-06-19

Family

ID=38184082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003486 WO2008071073A1 (fr) 2006-12-11 2007-12-07 Raccord de tuyau extrudé doté d'un collier de serrage solidaire simple et double

Country Status (4)

Country Link
US (1) US20100102554A1 (zh)
EP (1) EP2101096A1 (zh)
CN (1) CN1987187B (zh)
WO (1) WO2008071073A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020508415A (ja) * 2017-02-20 2020-03-19 ヴァルター シュタウフェンベアク ゲー・エム・ベー・ハー ウント コー. カー・ゲーWalter Stauffenberg GmbH & Co. KG パイプラインを接続する接続装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8857860B2 (en) 2011-03-29 2014-10-14 Composite Lining Systems, LP Coupling assembly with corrosion barrier for GRE-lined premium threaded pipe
US20130161021A1 (en) * 2011-12-23 2013-06-27 Stephen J. Makosey Compression coupling for pipes subjected to tension loads and associated methods
US20150069753A1 (en) * 2013-09-10 2015-03-12 Maroko Limited Advancements in mechanical sealing apparatus
KR20180112824A (ko) 2016-02-09 2018-10-12 스와겔로크 컴패니 도관 피팅용 페룰
WO2019210016A1 (en) 2018-04-27 2019-10-31 Swagelok Company Ferrule assembly for conduit fitting
CN109869549A (zh) * 2019-04-23 2019-06-11 中国工程物理研究院总体工程研究所 一种可拆卸抱管密封连接结构

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US650330A (en) 1899-09-27 1900-05-22 John C Kurtz Pipe-coupling.
US2139413A (en) 1932-11-26 1938-12-06 Patex Sa Joint for pipes
US2414995A (en) 1944-09-27 1947-01-28 Paul D Wurzburger Pipe coupling
US2484815A (en) 1947-08-15 1949-10-18 Crawford Fitting Co Tube coupling
US3075793A (en) 1959-06-03 1963-01-29 Crawford Fitting Co Packed wedge type coupling having positioning means
US3103373A (en) 1961-06-29 1963-09-10 Crawford Fitting Co Controlled phase sequential gripping device
DE4041677A1 (de) 1990-12-22 1992-06-25 Voss Armaturen Rohrverschraubung mit schneidring
DE4103266A1 (de) 1991-02-04 1992-08-13 Ingbuero Busch Gmbh Dichthilfe fuer rohrverschraubungen
CN2128376Y (zh) 1992-04-28 1993-03-17 张思忠 方圆煤气表防护罩
US5351998A (en) 1990-12-03 1994-10-04 Parker Ermeto Gmbh Coupling device
DE4426445A1 (de) 1993-07-28 1995-02-09 Bell Hermetic Armaturen Schneidring sowie mit einem Schneidring versehene Rohrverschraubung
US5882050A (en) 1997-04-15 1999-03-16 Williams; Peter C. Ferrule with relief to reduce galling
US6073976A (en) 1997-03-07 2000-06-13 Armaturenfabrik Hermann Voss Gmbh & Co. Screwed pipe joint with cutting ring for metal tubes
US6629708B2 (en) 1997-04-15 2003-10-07 Swagelok Company Ferrule with relief to reduce galling
US20040066040A1 (en) 2001-02-06 2004-04-08 Bennett Mark A. Tube fitting with separable tube gripping ring
WO2005043023A1 (en) * 2003-11-03 2005-05-12 Swagelok Company Fitting for metal pipe and tubing
US20060012169A1 (en) 2002-09-18 2006-01-19 Williams Peter C Tube fitting with tube gripping ring and sealant
US20060049632A1 (en) 2001-02-06 2006-03-09 Williams Peter C Tube fitting for stainless steel tubing
WO2006088668A1 (en) * 2005-02-14 2006-08-24 Swagelok Company Fitting with lubricated ferrule
CN1826490A (zh) * 2003-07-18 2006-08-30 伊原科技株式会社 管接头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1826490A (en) * 1928-05-28 1931-10-06 Elwell Parker Electric Co Industrial truck
US2791452A (en) * 1952-04-16 1957-05-07 Foremost Fittings Company Wedge type of compression tube coupling
GB2071799A (en) * 1980-03-11 1981-09-23 Hepworth Plastics Ltd Pipe couplings
DE3610427A1 (de) * 1986-03-27 1987-10-01 Walterscheid Gmbh Jean Verfahren und vorrichtung zur vormontage und endmontage einer schneidringverbindung
CN2220001Y (zh) * 1995-04-12 1996-02-14 北京远辽实业发展公司 钢丝夹紧式快捷管接头

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US650330A (en) 1899-09-27 1900-05-22 John C Kurtz Pipe-coupling.
US2139413A (en) 1932-11-26 1938-12-06 Patex Sa Joint for pipes
US2414995A (en) 1944-09-27 1947-01-28 Paul D Wurzburger Pipe coupling
US2484815A (en) 1947-08-15 1949-10-18 Crawford Fitting Co Tube coupling
US3075793A (en) 1959-06-03 1963-01-29 Crawford Fitting Co Packed wedge type coupling having positioning means
US3103373A (en) 1961-06-29 1963-09-10 Crawford Fitting Co Controlled phase sequential gripping device
US5351998A (en) 1990-12-03 1994-10-04 Parker Ermeto Gmbh Coupling device
DE4041677A1 (de) 1990-12-22 1992-06-25 Voss Armaturen Rohrverschraubung mit schneidring
DE4103266A1 (de) 1991-02-04 1992-08-13 Ingbuero Busch Gmbh Dichthilfe fuer rohrverschraubungen
CN2128376Y (zh) 1992-04-28 1993-03-17 张思忠 方圆煤气表防护罩
DE4426445A1 (de) 1993-07-28 1995-02-09 Bell Hermetic Armaturen Schneidring sowie mit einem Schneidring versehene Rohrverschraubung
US6073976A (en) 1997-03-07 2000-06-13 Armaturenfabrik Hermann Voss Gmbh & Co. Screwed pipe joint with cutting ring for metal tubes
US5882050A (en) 1997-04-15 1999-03-16 Williams; Peter C. Ferrule with relief to reduce galling
US6131963A (en) 1997-04-15 2000-10-17 Swagelok Company Ferrule with relief to reduce galling
US6629708B2 (en) 1997-04-15 2003-10-07 Swagelok Company Ferrule with relief to reduce galling
US20040066040A1 (en) 2001-02-06 2004-04-08 Bennett Mark A. Tube fitting with separable tube gripping ring
US20060049632A1 (en) 2001-02-06 2006-03-09 Williams Peter C Tube fitting for stainless steel tubing
US20060012169A1 (en) 2002-09-18 2006-01-19 Williams Peter C Tube fitting with tube gripping ring and sealant
CN1826490A (zh) * 2003-07-18 2006-08-30 伊原科技株式会社 管接头
WO2005043023A1 (en) * 2003-11-03 2005-05-12 Swagelok Company Fitting for metal pipe and tubing
WO2006088668A1 (en) * 2005-02-14 2006-08-24 Swagelok Company Fitting with lubricated ferrule

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CRAWFORD'S SWAGELOK DOUBLE FERRULE DESIGN, 1947
WILLIAMS'S SINGLE FERRULE DESIGN, 2002

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020508415A (ja) * 2017-02-20 2020-03-19 ヴァルター シュタウフェンベアク ゲー・エム・ベー・ハー ウント コー. カー・ゲーWalter Stauffenberg GmbH & Co. KG パイプラインを接続する接続装置
JP7014730B2 (ja) 2017-02-20 2022-02-01 ヴァルター シュタウフェンベアク ゲー・エム・ベー・ハー ウント コー. カー・ゲー パイプラインを接続する接続装置

Also Published As

Publication number Publication date
US20100102554A1 (en) 2010-04-29
CN1987187B (zh) 2010-04-14
EP2101096A1 (en) 2009-09-16
CN1987187A (zh) 2007-06-27

Similar Documents

Publication Publication Date Title
WO2008071073A1 (fr) Raccord de tuyau extrudé doté d'un collier de serrage solidaire simple et double
US10648596B2 (en) Method of assembling a conduit fitting
US10344898B2 (en) Pull-up by torque fitting with female threaded nut and integral dynamic wedge
US8876170B2 (en) Tapered drive nut for conduit fitting
JP5993487B2 (ja) 適合された係合面を有する継手
US3889989A (en) Pipe couplings
US20100140932A1 (en) Tapered nut for tube or pipe fitting
US11519531B2 (en) Ferrule for a conduit fitting
JP2003529032A (ja) かじり傷を低減するための逃げを持つはめ輪
US20100244436A1 (en) Fitting for connecting a pipe
JPS63290631A (ja) 管材の接合方法
WO2014180179A1 (zh) 一种管路连接管件
US3433508A (en) Pipe coupling
KR101568178B1 (ko) 파이프 연결용 압착공구
TWI231347B (en) Hydraulic hose fitting and method
US20100194107A1 (en) Tube fitting
KR101641369B1 (ko) 조임가압구
JP2009522525A (ja) 金属のパイプおよび管の継手
US3092405A (en) Pipe coupling
FR2465941A1 (fr) Joint evase
NO137163B (no) R¦rkobling.
JP2537578B2 (ja) 管継手
JP2006250341A (ja) 管接続方法および管接続構造
CA1147132A (fr) Procede de raccordement de tubes par sertissage et raccord par sertissage
US11274776B2 (en) Connector device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07845844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007845844

Country of ref document: EP