WO2008069274A1 - Organic polymer bearing plural organic ring structures and a chain structute passing through the ring structures, and process for the production thereof - Google Patents

Organic polymer bearing plural organic ring structures and a chain structute passing through the ring structures, and process for the production thereof Download PDF

Info

Publication number
WO2008069274A1
WO2008069274A1 PCT/JP2007/073599 JP2007073599W WO2008069274A1 WO 2008069274 A1 WO2008069274 A1 WO 2008069274A1 JP 2007073599 W JP2007073599 W JP 2007073599W WO 2008069274 A1 WO2008069274 A1 WO 2008069274A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
chain
monomer
cyclic structure
organic polymer
Prior art date
Application number
PCT/JP2007/073599
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Takeuchi
Norihisa Mino
Nobuaki Kambe
Jun Terao
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2008548332A priority Critical patent/JP4377446B2/en
Priority to US12/516,049 priority patent/US8507629B2/en
Publication of WO2008069274A1 publication Critical patent/WO2008069274A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type

Definitions

  • Organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the organic cyclic structure, and a method for producing the same
  • the present invention relates to an organic polymer having a plurality of organic cyclic structures and a chain structure penetrating the organic cyclic structure, and a method for producing the same.
  • An organic molecule composed of an organic cyclic structure and a chain structure penetrating the organic cyclic structure can have an independent function in the organic cyclic structure and the chain structure.
  • polyrotaxane having a plurality of oral taxane structures in one molecule is known.
  • Polymouth taxanes are expected to have a wide range of applications in fields such as medicine, medicine and electronics.
  • a method for synthesizing a poly (oral) taxane a method utilizing the hydrophobicity inside the cyclic structure of cyclodextrin and the hydrophilicity outside is known.
  • cyclodextrin and a chain organic molecule having low water solubility are mixed in an aqueous solvent.
  • a method of end-capping by modifying or replacing both ends of the guest molecule with a bulky molecule so that cyclodextrin does not fall off is known (A. Harada, J. Li, M. Kam achi). Nature, 356, 325, 1992).
  • the polycapped taxane that is not end-capped may be referred to as a pseudopolyrotaxane.
  • a first organic polymer of the present invention is an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures,
  • the organic polymer is composed of at least one structural unit, the at least one structural unit does not contain an ionic functional group that releases a metal ion, and the organic cyclic structure does not move. In a limited state, each of the at least one structural unit is arranged for each predetermined structural unit.
  • polymer includes a polymer (for example, oligomer) having a low degree of polymerization.
  • polymer can be read as an organic molecule or a macromolecule.
  • the second organic polymer of the present invention is an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures, wherein the chain structure is It is composed of at least one type of structural unit, and the organic cyclic structure is arranged for each predetermined structural unit of the at least one structural unit of the chain structure with limited movement.
  • the chain structure includes a force composed only of the main chain, or the chain structure includes all the functions bonded to the main chain including the main chain and a functional group bonded to the main chain.
  • the group is hydrophobic.
  • the first production method of the present invention is a method for producing an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures, wherein metal ions are produced.
  • the at least one monomer includes a monomer (M) containing the organic cyclic structure and a chain portion penetrating the organic cyclic structure.
  • the second production method of the present invention is a method for producing an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures, wherein the organic cyclic structure A monomer forming step for forming a monomer (M) including a structure and a chain portion penetrating the organic cyclic structure, and polymerizing at least one monomer including the monomer (M) in a non-aqueous solvent.
  • the organic cyclic structure for each predetermined structural unit in a state where movement is restricted A polymerization step of forming the organic polymer in which is disposed.
  • the monomer formation step includes (A) a step of replacing a hydroxyl group bonded to the organic cyclic structure with a hydrophobic group, and (B) the organic cyclic structure so that the chain portion can penetrate the organic cyclic structure. And a step of chemically bonding the chain portion.
  • the step (B) is performed before the step (A), simultaneously with the step (A), or after the step (A).
  • the organic polymer of the present invention a cyclic structure is regularly arranged for each constant repeating unit of the structural units of the chain structure. Therefore, according to the present invention, an organic polymer having stable performance with little variation in characteristics can be realized.
  • the first organic polymer of the present invention does not have an ionic functional group that releases a metal ion in the main part of the main chain, and therefore can be easily hydrophobized at the monomer stage.
  • the second organic polymer of the present invention since the second organic polymer of the present invention has no hydrophilic group bonded to the main chain, it can be synthesized by polymerizing the monomer in a non-aqueous solvent. By synthesizing in a non-aqueous solvent, water contamination at the molecular level can be eliminated. Therefore, according to the present invention, it is possible to obtain a highly reliable organic polymer even in applications where the adverse effects of water and ions are concerned.
  • FIG. 1A and FIG. 1B are diagrams showing examples of the inclusion phenomenon of monomers used in the production method of the present invention.
  • FIG. 2 shows the chemical formula of cyclodextrin.
  • FIG. 3 is a diagram showing an example of the production method of the present invention.
  • FIG. 4 is a diagram showing a part of an example of a synthesis method for the monomer used in Example 1.
  • FIG. 5A is a diagram showing a reaction following FIG. 4.
  • FIG. 5B is a diagram showing an example of a method for synthesizing an organic polymer using the monomer formed by the reaction of FIG. 5A.
  • FIG. 6A is a diagram showing another reaction following FIG. 4.
  • FIG. 6B is a diagram showing an example of a method of synthesizing an organic polymer using the monomer formed by the reaction of FIG. 6A.
  • FIG. 7 shows a part of an example of a synthesis method for other monomers used in Example 1.
  • FIG. 8 is a diagram showing the reaction following FIG. 7.
  • FIGS. 9A to 9D are diagrams showing another example of a method for synthesizing monomers used in the production method of the present invention.
  • FIG. 10A is a diagram showing a part of the monomer synthesis method in Example 2.
  • FIG. 10B is a diagram showing a reaction following FIG. 10A.
  • FIG. 11 is a diagram showing a monomer polymerization method in Example 2.
  • FIG. 12 is a diagram showing the NMR measurement results for the polymer synthesized in Example 2.
  • FIG. 13 is a diagram showing the measurement results of length and height for the polymer synthesized in Example 2.
  • FIGS. 14A to 14C are diagrams showing another example of a method for synthesizing monomers used in the production method of the present invention.
  • FIG. 15 is a diagram showing a part of the reaction scheme of Example 3.
  • FIG. 16 shows a part of the reaction scheme of Example 3.
  • FIG. 17 is a diagram showing a part of the reaction scheme of Example 3.
  • the first organic polymer of the present invention comprises a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures.
  • the first organic polymer is composed of at least one structural unit. None of the at least one structural unit contains an ionic functional group that releases a metal ion! /.
  • the structural unit force is of a type
  • the structural unit is repeated to form an organic polymer.
  • these structural units are regularly arranged. Or it repeats irregularly and an organic polymer is comprised.
  • An ionic functional group that releases a metal ion is a functional group that releases a metal ion (a cation) in a solvent and becomes an anionic group itself, such as a metal salt of a hydroxyl group or a carboxyl group. And metal salts of sulfonic acid groups.
  • a metal ion is represented by “M + ”
  • the basic metal ion such as —0—M + — COO—M + — SO—M + is released.
  • the at least one structural unit preferably does not contain an ionic functional group.
  • the ionic functional group is a functional group that ionizes in water. Examples of the ionic functional group include a hydroxyl group, a carboxyl group, an amino group, and a sulfonic acid group.
  • the organic cyclic structure is arranged for each predetermined constituent unit of the at least one constituent unit in a state where movement is restricted.
  • an organic cyclic structure is arranged for each structural unit.
  • an organic cyclic structure may be disposed in a specific structural unit among them, or an organic cyclic structure is disposed in all the structural units. Also good.
  • the organic polymer is composed of alternately arranged first structural unit and second structural unit, the organic cyclic structure may be disposed only in the first structural unit. Okay, an organic ring structure is placed in the first and second structural units.
  • the organic cyclic structure is regularly arranged for every certain repeating unit.
  • the chain structure is formed by a polymerization reaction.
  • an organic polymer having functionality By using a chain structure having functionality, an organic polymer having functionality can be obtained.
  • an organic polymer having conductivity can be obtained.
  • the organic polymer having conductivity can be applied to various uses such as the electronics field.
  • As the chain structure having conductivity a 71-electron conjugated chain (71-conjugated chain) is preferable. Specifically, those having a structure in which one or more aromatic rings, aromatic condensed polycycles, CH ⁇ CH groups, C ⁇ C single groups and the like are connected may be used.
  • the organic cyclic structure is a cyclic structure through which a chain structure can penetrate.
  • the organic cyclic structure may be, for example, a cyclic structure formed of only carbon, or a cyclic structure formed of at least one element selected from oxygen and nitrogen and carbon. Examples of such an organic cyclic structure include a cyclic structure of cyclodextrin (cyclodextrin skeleton) and a macrocycle cyclic structure (skeleton) described later.
  • the movement of the organic cyclic structure is restricted. Specifically, the organic cyclic structure is restrained from the force S that moves from the structural unit in which it is arranged to the adjacent structural unit. Examples of methods for limiting the movement of the organic ring structure include the following.
  • the chain structure and the organic cyclic structure are chemically bonded.
  • the chemical bond between the two limits the movement of the organic ring structure.
  • the chain structure contains a side chain, and movement of the organic cyclic structure is restricted by the side chain.
  • the side chain has the size necessary to limit the movement of the organic ring structure.
  • the chain structure of the first organic polymer of the present invention preferably does not contain a hydrophilic functional group.
  • hydrophilic functional groups include a hydroxyl group, a carboxyl group, and a sulfonic acid group.
  • the number of hydrophobic functional groups bonded to one organic cyclic structure is the same as the number of hydrophilic functional groups bonded to one organic cyclic structure. More than the number is preferred. In this case, it is preferable that the chain structure does not contain a hydrophilic functional group.
  • the hydrophobic functional group include a hydrocarbon group such as an alkyl group and a trialkylsilyl group such as a trimethylsilyl group.
  • all functional groups bonded to the organic cyclic structure may be hydrophobic.
  • the chain structure does not contain a hydrophilic functional group.
  • the organic cyclic structure may be a cyclodextrin cyclic structure, and all functional groups bonded to the organic cyclic structure may be hydrophobic.
  • cyclodexterin in which all hydroxyl groups are substituted with hydrophobic groups (for example, alkoxy groups such as methoxy groups). Can use trin.
  • the organic cyclic structure may contain an ether bond.
  • the first organic polymer of the present invention is preferably dissolved in a non-aqueous solvent.
  • a polymer that dissolves in a non-aqueous solvent exhibits hydrophobicity and hardly takes up water molecules.
  • the non-aqueous solvent include organic solvents such as methanol, methylene chloride, toluene, and chloroform.
  • the second organic polymer of the present invention comprises a plurality of organic cyclic structures and a chain structure penetrating through the plurality of organic cyclic structures.
  • the second organic polymer is composed of at least one structural unit. Similar to the first organic polymer, the organic cyclic structure is arranged for each predetermined constituent unit among the at least one constituent unit of the chain structure in a state where movement is limited.
  • the chain structure of the second organic polymer is one of the following two examples.
  • the chain structure is composed only of the main chain.
  • the chain structure includes a main chain and a functional group bonded to the main chain, and all the functional groups bonded to the main chain are hydrophobic. That is, a hydrophilic functional group is not bonded to the main chain of the chain structure of the organic polymer.
  • the hydrophilic functional group include a hydroxyl group, a carboxyl group, and a sulfonic acid group.
  • the hydrophobic functional group include hydrocarbon groups such as alkyl groups and trialkylsilyl groups such as trimethylsilyl groups.
  • the second organic polymer of the present invention is an example of the first organic polymer of the present invention. Since the parts other than the above-mentioned features described for the second organic polymer are the same as those for the first organic polymer, the duplicate description is omitted.
  • the first method of the present invention for producing an organic polymer is a method for producing an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures. According to the first production method, the first organic polymer of the present invention is obtained. Note that the description overlapping the description of the first organic polymer of the present invention may be omitted. [0036] In the first production method, at least one monomer that does not contain an ionic functional group that releases metal ions is polymerized to form an organic cyclic structure for each predetermined structural unit in a state where movement is limited. Including a polymerization step to form the disposed organic polymer.
  • the production method of the present invention is a method in which at least one monomer dissolved in a non-aqueous solvent is polymerized in the non-aqueous solvent, whereby a predetermined transfer is performed in a state where movement is limited.
  • the monomer to be polymerized may be one kind or plural kinds, but these monomers do not contain ionic functional groups that release metal ions.
  • the monomer to be polymerized includes a monomer containing an organic cyclic structure and a chain portion penetrating the organic cyclic structure. Hereinafter, this monomer may be referred to as “monomer (M)”.
  • the monomer to be polymerized may be only the monomer (M)! /, And may include the monomer (M) and other monomers! /.
  • a monomer that does not contain an ionic functional group is used. That is, the at least one monomer may be a monomer that does not contain an ionic functional group. Since “ionic functional groups” and “ionic functional groups that release metal ions” have been described above, the description thereof will be omitted.
  • the chain portion of the monomer (M) includes a portion for suppressing the movement of the organic cyclic structure, such as a side chain, a bulky portion, a bent portion, and a cyclic structure. You may go out. Further, the chain portion and the organic cyclic structure may be chemically bonded.
  • the chain portion of the monomer (M) is a molecular chain that forms the above-described chain structure (for example, a chain structure having conductivity) by being polymerized.
  • the organic cyclic structure may be a cyclic structure of cyclodextrin.
  • all the functional groups bonded to the organic cyclic structure may be hydrophobic. That is, all the hydroxyl groups of cyclodextrin are replaced with hydrophobic groups!
  • an organic polymer by polymerizing monomers in a non-aqueous solvent.
  • non-aqueous solvents include organic solvents such as methanol and methylene chloride. A solvent is mentioned.
  • the monomer (M) is a monomer that dissolves in a non-aqueous solvent.
  • the production method of the present invention may include a monomer forming step for forming the monomer (M) before the polymerization step.
  • a monomer forming step for forming the monomer (M) before the polymerization step An example of the monomer formation process is given below.
  • step (i) the hydroxyl group of cyclodextrin is substituted with a hydrophobic group.
  • step (i) the substituted cyclodextrin and the chain portion are chemically bonded so that the chain portion can penetrate the substituted cyclodextrin.
  • appropriate conditions eg solvent
  • a chain part (1) is passed through cyclodextrin, and this chain part (1) and the chain part (2) having a side chain are chemically treated. Combine.
  • the organic cyclic structure is a macrocycle cyclic structure.
  • This forming step includes a step of forming a chain portion penetrating the macrocycle by reacting two organic molecules having sites that suppress the macrocycle drop-off from both sides of the macrocycle. Two organic molecules can be reacted via a catalyst. By placing the catalytic metal in the center of the macrocycle, it is possible to form a chain portion that penetrates the macrocycle.
  • the second method of the present invention for producing an organic polymer is a method for producing an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures.
  • organic polymer (P2) the organic polymer produced by the second production method.
  • the second production method includes a monomer forming step and a polymerization step.
  • a monomer (M) including an organic cyclic structure and a chain portion penetrating the organic cyclic structure is formed.
  • at least one monomer containing monomer (M) is polymerized in a non-aqueous solvent, whereby organic cyclic structures are arranged for each predetermined structural unit in a state where movement is restricted.
  • An organic polymer (P2) is formed.
  • the monomer forming step includes the following steps (A) and (B).
  • step (A) the hydroxyl group bonded to the organic cyclic structure is substituted with a hydrophobic group.
  • the organic cyclic structure is, for example, a cyclic structure of cyclodextrin.
  • step (B) the chain portion has an organic cyclic structure. The organic cyclic structure and the chain portion are chemically bonded so that they can penetrate. Step (B) is performed before step (A), simultaneously with step (A), or after step (A).
  • the second production method of the organic polymer is an example of the first production method. Therefore, the explanation overlapping with the explanation relating to the first manufacturing method is omitted.
  • Embodiment 1 an example of an organic polymer in which a chain structure and an organic cyclic structure are chemically bonded will be described.
  • a molecule containing a chain portion to which a cyclodextrin derivative is bound is prepared.
  • one of —CH 2 OH shown in FIG. 2 is bonded to the chain portion in the form of —CH 2 O 3, and all other OH groups are substituted with OCH groups.
  • the chain portion is not limited to the chain portion shown in FIGS. 1A and 1B. Specifically, those having a structure in which one or more aromatic rings, aromatic condensed polycycles, CH ⁇ CH groups, C ⁇ C single groups and the like are connected may be used. This molecule also has reactive groups G, G ′, and G ′′ that serve as reaction points when overlapping at both ends or extending the chain portion to maintain the inclusion state.
  • cyclodextrin is a cyclic oligomer of glucose, and the size of the cyclic structure changes depending on the number of dalcoses. Therefore, it is possible to select and use a cyclodextrin having a suitable glucose number in accordance with the size of the hydrophobic monomer to be included.
  • the circular structure of the molecules on the left side of Fig. 1 ⁇ and 1B can move with a considerable degree of freedom in the branch part connected to the chain part. Therefore, by adjusting predetermined conditions (for example, solvent conditions), the chain portion can be included in the ring structure as shown on the right side of FIGS. 1A and 1B. In the state on the right side of Figs. 1A and 1B, it may return to the state on the left side of Figs. For this reason, as shown in the schematic diagrams of Fig. 3 (a) and (c), the chain-like portion is extended, or as shown in the schematic diagram of Fig. It is preferable to bind two molecules in an inclusion state to each other. According to these reactions, the chain portion is stably included and a monomer (M) is obtained.
  • predetermined conditions for example, solvent conditions
  • the obtained monomer (M) can stably exist in a non-aqueous solvent.
  • a polymer in which an organic cyclic structure regularly encloses a chain structure for each repeating unit is obtained. Mouth taxanes can be synthesized.
  • Monomer 1 is synthesized by the reactions of FIGS. 4 and 5A.
  • Monomer 2 is synthesized by the reactions of FIGS. 4 and 6A.
  • Monomer 3 is synthesized by the reactions of Fig. 7 and Fig. 8.
  • the starting material that constitutes the organic ring structure is that one hydroxyl group of ⁇ -cyclodextrin is substituted with a tosyl group (CH 1 -CH 2 -SO 1), and all the other
  • (M) is synthesized.
  • Monomers 1, 2 and 3 are polymerized by Eglinton Coupling using Cu (ii) catalyst in the presence of pyridine in an organic solvent. In this way, the organic polymer of the present invention is synthesized.
  • An example of the polymerization reaction of monomer 1 is shown in FIG. 5B, and an example of the polymerization reaction of monomer 2 is shown in FIG. 6B.
  • Embodiment 2 an example of an organic polymer in which the chain structure has side chains and the movement of the organic cyclic structure is restricted by the side chains will be described.
  • a hydrophobic monomer shown in FIG. 9A and a cyclodextrin are prepared. They are then reacted in an aqueous solvent.
  • the chain structure (chain part) is not limited to the chain structure shown in FIG. 9A, and the chain structure described in Embodiment 1 can be applied. As described in Embodiment 1, there are reactive groups G at both ends of the chain structure.
  • the cyclodextrin having a suitable glucose number can be selected and used according to the size of the hydrophobic monomer to be included. Since the above-mentioned hydrophobic monomers are poorly water-soluble, they are taken into cyclodextrins in an aqueous solvent, Included like 9B.
  • a molecule having a hydrophilic functional group as a side chain such as the molecule in FIG. 9C
  • the molecule in Figure 9C has a reaction that reacts with the reactive group G.
  • the addition of the molecule in Figure 9C yields the molecule in Figure 9D.
  • the functional group of the molecule that reacts with both ends of the molecule in FIG. 9B is not limited to the carboxyl group, and may be another functional group.
  • the structure of the molecule reacted at both ends of the molecule in FIG. 9B is not limited to the thiophene ring, but may be a pyrrole ring or the like.
  • the monomer (M) having an oral taxane structure thus obtained is isolated from an aqueous solvent. Next, the monomer (M) is polymerized in a non-aqueous solvent. In this way, an organic polymer having no ionic functional group that releases metal ions can be obtained.
  • This organic polymer is a polyrotaxane. In this organic polymer, the organic cyclic structure is regularly included according to a certain repeating unit of a chain structure.
  • ferro coupling can be used as the polymerization reaction of the monomer (M).
  • the hydrophilic group (hydroxyl group) of the cyclodextrin and the hydrophilic group (carboxyl group) of the chain portion may be substituted with a hydrophobic group.
  • FIG. 10A An example of a scheme for synthesizing the organic polymer of Embodiment 2 is shown in FIG. 10A, FIG. 10B, and FIG.
  • the monomer (M) is polymerized in a non-aqueous solvent (specifically, methanol).
  • a non-aqueous solvent specifically, methanol.
  • the organic polymer of Embodiment 2 is synthesized.
  • Polymers were produced by the synthesis methods shown in Fig. 10A, Fig. 1OB and Fig. 11, and their characteristics were evaluated.
  • Fig. 12 shows the results of 1 H-NMR. From the results in FIG. 12, it was shown that the synthesized polymer had the structure of the polymer shown in FIG.
  • the length and height of the synthesized polymers were measured with an atomic force microscope. The measurement results are shown in FIG.
  • the average length of the polymer was 27.3 nm. This proved that the average degree of polymerization was about 9.
  • the average height of the polymer was about 0.6 nm. This is almost the same as the diameter of one cyclodextrin molecule.
  • Embodiment 3 an example of using a macrocycle as an organic cyclic structure will be described.
  • a macro cycle as shown in FIG. 14A is prepared.
  • Macrocycles are not limited to the molecules in Figure 14A.
  • the macrocycle preferably forms three or more coordination bonds with the metal incorporated inside the annular structure so that the planarity is maintained.
  • the macrocycle is preferably a soft base that is expected to have a relatively strong interaction with Pd, which is a soft acid. Examples of the soft base include a nitrogen-containing cyclic compound as shown in FIG. 14A.
  • the macrocycle of FIG. 14A is schematically shown as a ring in FIGS. 14B and 14C.
  • Pd is coordinated to the macrocycle in an organic solvent.
  • the molecule having iodine as the reaction point ("Ar-1" in the figure) and the molecule having boron compound as the reaction point ("(OR) B-Ar '" in the figure) For example by a Suzuki copolymerization reaction.
  • a monomer having a mouth taxane structure is obtained as shown in FIG. 14C.
  • the portion indicated by Ar or Ar 'does not contain a hydrophilic group. In addition, they preferably form a ⁇ -electron conjugated chain when Ar and Ar ′ are bonded.
  • the part shown as Ar or Ar ′ may have a side chain, a bulky part, or a part where the chain axis is bent.
  • the portions formed as Ar and Ar ′ have the same plane formed by each cyclic structure. A plurality of cyclic structures that do not lie on one plane may be provided.
  • Ar or Ar ′ has a structure in which a hydrophobic group is bonded to an aromatic ring such as a benzene ring.
  • a polymouth taxane By subjecting the mouth taxane monomer to a polymerization reaction in an organic solvent, a polymouth taxane can be obtained. According to this method, it is possible to synthesize polytaxane taxa in which both the chain structure and the organic cyclic structure do not have a hydrophilic group, and the organic cyclic structure is regularly arranged according to a certain repeating unit. .
  • Embodiment 3 An example in which an organic polymer can be implemented will be described.
  • An example of a scheme for synthesizing the organic polymer of Embodiment 3 is shown in FIG.
  • FIG. 15 By the reaction shown in FIG. 15, a macrocycle having palladium incorporated therein is synthesized. Further, by the reaction shown in FIG. 15, a molecule containing an iodine group as a reaction point and a molecule containing a group containing boron as a reaction point are synthesized.
  • Figure 16 shows the synthesis scheme of the material molecules shown in Fig. 15. Note that “BPin” in FIG. 15 means the following groups.
  • the organic polymer of the present invention can be applied as a new material such as a functional material in the fields of medicine, medicine and electronics.
  • a new material such as a functional material in the fields of medicine, medicine and electronics.
  • the chain structure has conductivity, it can be applied to an electronic device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

A process for the production of an organic polymer bearing plural organic ring structures and a chain structure passing through the ring structures, which comprises the polymerization step of polymerizing a monomer component consisting of at least one monomer free from ionic functional groups releasing metal ions to form an organic polymer bearing organic ring structures arranged in a state restricted in mobility every prescribed constituent unit. The above monomer component contains a monomer (M) which has both an organic ring structure and a chain moiety passing through the organic ring structure.

Description

複数の有機環状構造とその有機環状構造を貫通する鎖状構造とを備え る有機重合体およびその製造方法
Figure imgf000003_0001
Organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the organic cyclic structure, and a method for producing the same
Figure imgf000003_0001
本発明は、複数の有機環状構造とその有機環状構造を貫通する鎖状構造とを備え る有機重合体、およびその製造方法に関する。  The present invention relates to an organic polymer having a plurality of organic cyclic structures and a chain structure penetrating the organic cyclic structure, and a method for producing the same.
背景技術  Background art
 Light
[0002] 有機環状構造とその有機環状構造を貫通する鎖状構造とによって構成される有機 分子は、有機環状構造と鎖状構造とに独立の機能を持たせることが可能である。そ 書  An organic molecule composed of an organic cyclic structure and a chain structure penetrating the organic cyclic structure can have an independent function in the organic cyclic structure and the chain structure. Book
のような有機分子として、 1つの分子内に複数の口タキサン構造を有するポリロタキサ ンが知られている。ポリ口タキサンは、医療、薬品、エレクトロニクスなどの分野への幅 広い応用が期待されている。  As such an organic molecule, polyrotaxane having a plurality of oral taxane structures in one molecule is known. Polymouth taxanes are expected to have a wide range of applications in fields such as medicine, medicine and electronics.
[0003] ポリ口タキサンの合成方法としては、シクロデキストリンの環状構造の内側の疎水性 と外側の親水性とを利用する方法が知られている。この方法の一例では、シクロデキ ストリンと、水溶性が低い鎖状の有機分子とが、水溶媒中で混合される。また、シクロ デキストリンが抜け落ちないように、ゲスト分子の両端を、嵩高い分子で修飾または置 換することによって、エンドキャップする方法が知られている(A. Harada, J.Li, M.Kam achi,ネイチヤー(Nature), 356, 325、 1992年)。なお、エンドキャップされていない ポリ口タキサンは、擬ポリロタキサンと呼ばれる場合もある。  [0003] As a method for synthesizing a poly (oral) taxane, a method utilizing the hydrophobicity inside the cyclic structure of cyclodextrin and the hydrophilicity outside is known. In an example of this method, cyclodextrin and a chain organic molecule having low water solubility are mixed in an aqueous solvent. In addition, a method of end-capping by modifying or replacing both ends of the guest molecule with a bulky molecule so that cyclodextrin does not fall off is known (A. Harada, J. Li, M. Kam achi). Nature, 356, 325, 1992). Note that the polycapped taxane that is not end-capped may be referred to as a pseudopolyrotaxane.
[0004] 上記のような合成方法では、口タキサン構造を形成するシクロデキストリンの量の制 御が困難であった。そのため、シクロデキストリンの量が多くなるに従って、隣接する シクロデキストリン同士の水酸基の水素結合によってポリマーの溶解度が低下し、溶 媒中における反応の進行が妨げられるという問題があった。このような問題に対応す るために、親水性モノマと、シクロデキストリンに包接された疎水性モノマとを、鈴木共 重合反応を用いて交互に重合する方法が提案されている。 (Harryし Anderson, et a
Figure imgf000003_0002
[0004] In the synthesis method as described above, it is difficult to control the amount of cyclodextrin forming the oral taxane structure. For this reason, as the amount of cyclodextrin increases, the solubility of the polymer decreases due to the hydrogen bonding of the hydroxyl groups of adjacent cyclodextrins, which hinders the progress of the reaction in the solvent. In order to deal with such problems, a method has been proposed in which a hydrophilic monomer and a hydrophobic monomer encapsulated in cyclodextrin are alternately polymerized using a Suzuki copolymerization reaction. (Harry and Anderson, et a
Figure imgf000003_0002
39, 3456-3460、 2000年)。 [0005] 上述の合成方法はいずれも、シクロデキストリンを用いて水溶媒中で行われる反応 である。一方、シクロデキストリンの水酸基をメトキシ基で置換したパーメチルシクロデ キストリンを用いて有機溶媒中で擬ポリロタキサンを合成する方法が提案されている( M. Okada, M. amachi, A. Harada,マクロモレキューノレズ (Macromolecules), 32, 72 02、 1999年)。また、エンドキャップ剤と擬ポリロタキサンとを、加圧しながら混合する ことによって固相反応でポリ口タキサンを合成する方法が提案されている(特開 2005 — 75979号公報)。 39, 3456-3460, 2000). [0005] All the synthesis methods described above are reactions carried out in an aqueous solvent using cyclodextrin. On the other hand, a method of synthesizing a pseudopolyrotaxane in an organic solvent using permethylcyclodextrin in which the hydroxyl group of cyclodextrin is substituted with a methoxy group has been proposed (M. Okada, M. amachi, A. Harada, Macro Molecule). (Macromolecules, 32, 72 02, 1999). In addition, a method for synthesizing a poly (oral) taxane by a solid phase reaction by mixing an end cap agent and a pseudopolyrotaxane under pressure has been proposed (Japanese Patent Laid-Open No. 2005-75979).
[0006] しかしながら、前述の Haradaら、 Okadaら、および特開 2005— 75979号公報に記 載のポリ口タキサンの合成方法では、事前に合成された鎖状のポリマーに、シクロデ キストリンまたはパーメチルシクロデキストリンを包接させていくため、包接量を制御で きないという問題があった。さらに、 Okadaらの方法によってゲスト分子として包接させ ること力 Sできる分子は、 Okadaらの文献に開示されているポリプロピレングリコールや ポリテトラヒドロフランなどの分子に限られる。そのため、導電性高分子として利用でき る共役ポリマーなどはゲスト分子として用いることができないという問題があった。  [0006] However, in the method for synthesizing polypolytaxanes described in the aforementioned Harada et al., Okada et al. And JP-A-2005-75979, cyclodextrin or permethylcyclohexane is added to a chain polymer synthesized in advance. Since the dextrin is included, there is a problem that the amount of inclusion cannot be controlled. Furthermore, molecules that can be included as guest molecules by the method of Okada et al. Are limited to molecules such as polypropylene glycol and polytetrahydrofuran disclosed in Okada et al. Therefore, a conjugated polymer that can be used as a conductive polymer cannot be used as a guest molecule.
[0007] また、シクロデキストリンを用いる Haradaらおよび Andersonらの方法は水溶媒中で行 われるため、この方法では、親水性の官能基であるシクロデキストリンの水酸基や主 鎖のイオン性の官能基に水分子が引き寄せられ、反応生成物に分子レベルで水が 混入する。その水分子の排除は難しいため、この方法で合成されるポリ口タキサンは 、水やイオンが悪影響を及ぼす用途、例えばエレクトロニクス分野の用途などへの利 用が難し力 た。この課題の解決方法としては、合成されたポリ口タキサンの親水性 の官能基を疎水性の官能基に置換する方法が考えられる。しかし、ポリマーの状態 ですベての親水性の官能基を疎水性の官能基に置換する方法は、反応効率が悪く 現実的でない。  [0007] In addition, since the method of Harada et al. And Anderson et al. Using cyclodextrin is carried out in an aqueous solvent, in this method, the hydroxyl group of cyclodextrin, which is a hydrophilic functional group, or the ionic functional group of the main chain is used. Water molecules are attracted and water is mixed into the reaction product at the molecular level. Since it is difficult to eliminate the water molecules, the poly (taxane) taxane synthesized by this method has been difficult to use for applications in which water and ions are adversely affected, for example, applications in the electronics field. As a method for solving this problem, a method of replacing the hydrophilic functional group of the synthesized poly (taxane) taxane with a hydrophobic functional group is conceivable. However, the method of replacing all hydrophilic functional groups in the polymer state with hydrophobic functional groups is not practical because of poor reaction efficiency.
発明の開示  Disclosure of the invention
[0008] このような状況を考慮し、本発明は、複数の有機環状構造と有機環状構造を貫通 する鎖状構造とを備える有機重合体であって高い特性が期待できる有機重合体を提 供することを目的の 1つとする。また、本発明は、そのような有機重合体の製造方法を 提供することを目的の 1つとする。 [0009] 上記目的を達成するため、本発明の第 1の有機重合体は、複数の有機環状構造と 前記複数の有機環状構造を貫通する鎖状構造とを備える有機重合体であって、前 記有機重合体は、少なくとも 1種の構成単位によって構成されており、前記少なくとも 1種の構成単位は、金属イオンを放出するイオン性官能基を含有せず、前記有機環 状構造は、移動が制限された状態で、前記少なくとも 1種の構成単位のうちの所定の 構成単位ごとに配置されている。 [0008] In consideration of such a situation, the present invention provides an organic polymer having a plurality of organic cyclic structures and a chain structure penetrating the organic cyclic structure, which can be expected to have high properties. This is one of the purposes. Another object of the present invention is to provide a method for producing such an organic polymer. In order to achieve the above object, a first organic polymer of the present invention is an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures, The organic polymer is composed of at least one structural unit, the at least one structural unit does not contain an ionic functional group that releases a metal ion, and the organic cyclic structure does not move. In a limited state, each of the at least one structural unit is arranged for each predetermined structural unit.
[0010] なお、この明細書において、「重合体」は重合度が低い重合体 (たとえばオリゴマー )を含む。この明細書において、「重合体」は、有機分子または高分子(macromolec ule)に読み替えることが可能である。  In this specification, “polymer” includes a polymer (for example, oligomer) having a low degree of polymerization. In this specification, “polymer” can be read as an organic molecule or a macromolecule.
[0011] また、本発明の第 2の有機重合体は、複数の有機環状構造と前記複数の有機環状 構造を貫通する鎖状構造とを備える有機重合体であって、前記鎖状構造は、少なく とも 1種の構成単位によって構成されており、前記有機環状構造は、移動が制限され た状態で、前記鎖状構造の前記少なくとも 1種の構成単位のうちの所定の構成単位 ごとに配置されており、前記鎖状構造は主鎖のみで構成されている力、、または、前記 鎖状構造は主鎖と主鎖に結合した官能基とを含み前記主鎖に結合しているすべて の官能基が疎水性である。  [0011] Further, the second organic polymer of the present invention is an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures, wherein the chain structure is It is composed of at least one type of structural unit, and the organic cyclic structure is arranged for each predetermined structural unit of the at least one structural unit of the chain structure with limited movement. The chain structure includes a force composed only of the main chain, or the chain structure includes all the functions bonded to the main chain including the main chain and a functional group bonded to the main chain. The group is hydrophobic.
[0012] また、本発明の第 1の製造方法は、複数の有機環状構造と前記複数の有機環状構 造を貫通する鎖状構造とを備える有機重合体の製造方法であって、金属イオンを放 出するイオン性官能基を含有しない少なくとも 1種のモノマを重合させることによって 、移動が制限された状態で所定の構成単位ごとに前記有機環状構造が配置された 前記有機重合体を形成する重合工程を含む。前記少なくとも 1種のモノマは、前記有 機環状構造と前記有機環状構造を貫通する鎖状部分とを含有するモノマ (M)を含 む。  [0012] The first production method of the present invention is a method for producing an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures, wherein metal ions are produced. Polymerization that forms the organic polymer in which the organic cyclic structure is arranged for each predetermined structural unit in a state where movement is restricted by polymerizing at least one monomer that does not contain the ionic functional group to be released. Process. The at least one monomer includes a monomer (M) containing the organic cyclic structure and a chain portion penetrating the organic cyclic structure.
[0013] また、本発明の第 2の製造方法は、複数の有機環状構造と前記複数の有機環状構 造を貫通する鎖状構造とを備える有機重合体の製造方法であって、前記有機環状 構造と前記有機環状構造を貫通する鎖状部分とを含むモノマ (M)を形成するモノマ 形成工程と、前記モノマ (M)を含む少なくとも 1種のモノマを非水溶媒中で重合させ ることによって、移動が制限された状態で所定の構成単位ごとに前記有機環状構造 が配置された前記有機重合体を形成する重合工程とを含む。前記モノマ形成工程 は、(A)前記有機環状構造に結合している水酸基を疎水基に置換する工程と、 (B) 前記鎖状部分が前記有機環状構造を貫通可能なように前記有機環状構造と前記鎖 状部分とを化学結合させる工程とを含む。前記工程 (B)は、前記工程 (A)の前、前 記工程 (A)と同時、または前記工程 (A)の後に行われる。 [0013] The second production method of the present invention is a method for producing an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures, wherein the organic cyclic structure A monomer forming step for forming a monomer (M) including a structure and a chain portion penetrating the organic cyclic structure, and polymerizing at least one monomer including the monomer (M) in a non-aqueous solvent. The organic cyclic structure for each predetermined structural unit in a state where movement is restricted A polymerization step of forming the organic polymer in which is disposed. The monomer formation step includes (A) a step of replacing a hydroxyl group bonded to the organic cyclic structure with a hydrophobic group, and (B) the organic cyclic structure so that the chain portion can penetrate the organic cyclic structure. And a step of chemically bonding the chain portion. The step (B) is performed before the step (A), simultaneously with the step (A), or after the step (A).
[0014] 本発明の有機重合体では、鎖状構造の構成単位の一定の繰り返し単位毎に環状 構造が規則正しく配置されている。そのため、本発明によれば、特性のばらつきの少 ない安定した性能を有する有機重合体を実現できる。また、本発明の第 1の有機重 合体は、主鎖の主要部分に、金属イオンを放出するイオン性の官能基をもたないた め、モノマの段階における疎水化が容易である。また、本発明の第 2の有機重合体は 、主鎖に親水基が結合していないため、非水溶媒中でモノマを重合することによって 合成できる。非水溶媒中で合成することによって、分子レベルでの水の混入を排除 できる。そのため、本発明によれば、水やイオンの悪影響が懸念される用途において も信頼性が高い有機重合体を得ることが可能である。 [0014] In the organic polymer of the present invention, a cyclic structure is regularly arranged for each constant repeating unit of the structural units of the chain structure. Therefore, according to the present invention, an organic polymer having stable performance with little variation in characteristics can be realized. In addition, the first organic polymer of the present invention does not have an ionic functional group that releases a metal ion in the main part of the main chain, and therefore can be easily hydrophobized at the monomer stage. In addition, since the second organic polymer of the present invention has no hydrophilic group bonded to the main chain, it can be synthesized by polymerizing the monomer in a non-aqueous solvent. By synthesizing in a non-aqueous solvent, water contamination at the molecular level can be eliminated. Therefore, according to the present invention, it is possible to obtain a highly reliable organic polymer even in applications where the adverse effects of water and ions are concerned.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]図 1Aおよび 1Bは、本発明の製造方法で用いられるモノマの包接現象の例を 示す図である。  FIG. 1A and FIG. 1B are diagrams showing examples of the inclusion phenomenon of monomers used in the production method of the present invention.
[図 2]図 2は、シクロデキストリンの化学式を示す図である。  FIG. 2 shows the chemical formula of cyclodextrin.
[図 3]図 3は、本発明の製造方法の例を示す図である。  FIG. 3 is a diagram showing an example of the production method of the present invention.
[図 4]図 4は、実施例 1で用いられるモノマについて、合成方法の一例の一部を示す 図である。  FIG. 4 is a diagram showing a part of an example of a synthesis method for the monomer used in Example 1.
[図 5A]図 5Aは、図 4に続く反応を示す図である。  FIG. 5A is a diagram showing a reaction following FIG. 4.
[図 5B]図 5Bは、図 5Aの反応で形成されたモノマを用いて有機重合体を合成する方 法の一例を示す図である。  FIG. 5B is a diagram showing an example of a method for synthesizing an organic polymer using the monomer formed by the reaction of FIG. 5A.
[図 6A]図 6Aは、図 4に続く他の反応を示す図である。  FIG. 6A is a diagram showing another reaction following FIG. 4.
[図 6B]図 6Bは、図 6 Aの反応で形成されたモノマを用レ、て有機重合体を合成する方 法の一例を示す図である。  FIG. 6B is a diagram showing an example of a method of synthesizing an organic polymer using the monomer formed by the reaction of FIG. 6A.
[図 7]図 7は、実施例 1で用いられる他のモノマについて、合成方法の一例の一部を 示す図である。 [FIG. 7] FIG. 7 shows a part of an example of a synthesis method for other monomers used in Example 1. FIG.
[図 8]図 8は、図 7に続く反応を示す図である。  FIG. 8 is a diagram showing the reaction following FIG. 7.
[図 9]図 9A〜9Dは、本発明の製造法で用いられるモノマの合成方法の他の一例を 示す図である。  FIGS. 9A to 9D are diagrams showing another example of a method for synthesizing monomers used in the production method of the present invention.
[図 10A]図 10Aは、実施例 2におけるモノマの合成方法の一部を示す図である。  FIG. 10A is a diagram showing a part of the monomer synthesis method in Example 2.
[図 10B]図 10Bは、図 10Aに続く反応を示す図である。  FIG. 10B is a diagram showing a reaction following FIG. 10A.
[図 11]図 11は、実施例 2におけるモノマの重合方法を示す図である。  FIG. 11 is a diagram showing a monomer polymerization method in Example 2.
[図 12]図 12は、実施例 2で合成された重合体について、 NMRの測定結果を示 す図である。  FIG. 12 is a diagram showing the NMR measurement results for the polymer synthesized in Example 2.
[図 13]図 13は、実施例 2で合成された重合体について、長さおよび高さの測定結果 を示す図である。  FIG. 13 is a diagram showing the measurement results of length and height for the polymer synthesized in Example 2.
[図 14]図 14A〜; 14Cは、本発明の製造方法で用いられるモノマの合成方法の他の 一例を示す図である。  [FIG. 14] FIGS. 14A to 14C are diagrams showing another example of a method for synthesizing monomers used in the production method of the present invention.
[図 15]図 15は、実施例 3の反応スキームの一部を示す図である。  FIG. 15 is a diagram showing a part of the reaction scheme of Example 3.
[図 16]図 16は、実施例 3の反応スキームの一部を示す図である。  FIG. 16 shows a part of the reaction scheme of Example 3.
[図 17]図 17は、実施例 3の反応スキームの一部を示す図である。  FIG. 17 is a diagram showing a part of the reaction scheme of Example 3.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下に、本発明の実施の形態について説明する。なお、本発明は、以下の実施形 態および実施例の説明に限定されない。以下の説明では、特定の数値や特定の材 料を例示する場合があるが、本発明の効果が得られる限り、他の数値や他の材料を 適用してもよい。 [0016] Embodiments of the present invention will be described below. Note that the present invention is not limited to the description of the following embodiments and examples. In the following description, specific numerical values and specific materials may be exemplified, but other numerical values and other materials may be applied as long as the effects of the present invention are obtained.
[0017] [本発明の第 1の有機重合体] [First organic polymer of the present invention]
本発明の第 1の有機重合体は、複数の有機環状構造と、それら複数の有機環状構 造を貫通する鎖状構造とを備える。第 1の有機重合体は、少なくとも 1種の構成単位 によって構成されている。その少なくとも 1種の構成単位は、いずれも、金属イオンを 放出するイオン性官能基を含有しな!/、。  The first organic polymer of the present invention comprises a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures. The first organic polymer is composed of at least one structural unit. None of the at least one structural unit contains an ionic functional group that releases a metal ion! /.
[0018] 構成単位力 種類である場合には、その構成単位が繰り返されて有機重合体が構 成される。構成単位が複数種類である場合には、それらの構成単位が規則的に、ま たは不規則に繰り返されて有機重合体が構成される。 [0018] If the structural unit force is of a type, the structural unit is repeated to form an organic polymer. When there are multiple types of structural units, these structural units are regularly arranged. Or it repeats irregularly and an organic polymer is comprised.
[0019] 金属イオンを放出するイオン性官能基とは、溶媒中で金属イオン(陽イオン)を放出 して自らは陰イオン性の基となる官能基であり、水酸基の金属塩や、カルボキシル基 の金属塩や、スルホン酸基の金属塩などが挙げられる。たとえば、金属イオンを「M+」 で表すと、—0—M+ — COO—M+ — SO—M+といった基力 金属イオンを放出する [0019] An ionic functional group that releases a metal ion is a functional group that releases a metal ion (a cation) in a solvent and becomes an anionic group itself, such as a metal salt of a hydroxyl group or a carboxyl group. And metal salts of sulfonic acid groups. For example, if a metal ion is represented by “M + ”, the basic metal ion such as —0—M + — COO—M + — SO—M + is released.
3  Three
イオン性官能基である。  It is an ionic functional group.
[0020] 上記少なくとも 1種の構成単位は、イオン性の官能基を含まないことが好ましい。ィ オン性の官能基は、水中でイオン化する官能基である。イオン性の官能基としては、 水酸基、カルボキシル基、アミノ基、スルホン酸基が挙げられる。  [0020] The at least one structural unit preferably does not contain an ionic functional group. The ionic functional group is a functional group that ionizes in water. Examples of the ionic functional group include a hydroxyl group, a carboxyl group, an amino group, and a sulfonic acid group.
[0021] 有機環状構造は、移動が制限された状態で、上記少なくとも 1種の構成単位のうち の所定の構成単位ごとに配置されている。たとえば、有機重合体が 1つの構成単位 のみによって構成されている場合には、その構成単位ごとに有機環状構造が配置さ れている。また、有機重合体が複数種の構成単位によって構成されている場合には 、そのうちの特定の構成単位に有機環状構造が配置されてもよいし、すべての構成 単位に有機環状構造が配置されてもよい。たとえば、有機重合体が、交互に配置さ れた第 1の構成単位と第 2の構成単位とによって構成されている場合には、第 1の構 成単位のみに有機環状構造が配置されてもよいし、第 1および第 2の構成単位に有 機環状構造が配置されてもょレ、。  [0021] The organic cyclic structure is arranged for each predetermined constituent unit of the at least one constituent unit in a state where movement is restricted. For example, when an organic polymer is composed of only one structural unit, an organic cyclic structure is arranged for each structural unit. Further, when the organic polymer is composed of plural kinds of structural units, an organic cyclic structure may be disposed in a specific structural unit among them, or an organic cyclic structure is disposed in all the structural units. Also good. For example, when the organic polymer is composed of alternately arranged first structural unit and second structural unit, the organic cyclic structure may be disposed only in the first structural unit. Okay, an organic ring structure is placed in the first and second structural units.
[0022] 構成単位が 1種類のみである場合や、複数種の構成単位が規則的に配置されてい る場合には、有機環状構造は、一定の繰り返し単位ごとに規則的に配置される。  [0022] When there is only one type of structural unit, or when multiple types of structural units are regularly arranged, the organic cyclic structure is regularly arranged for every certain repeating unit.
[0023] 鎖状構造は、重合反応によって形成される。機能性を有する鎖状構造を用いること によって、機能性を有する有機重合体が得られる。たとえば、導電性を有する鎖状構 造を用いることによって、導電性を有する有機重合体が得られる。導電性を有する有 機重合体は、エレクトロニクス分野などの様々な用途に適用できる。導電性を有する 鎖状構造としては、 71電子共役鎖(71共役鎖)が好ましい。具体的には、芳香環、芳 香族縮合多環、 CH = CH 基、 C≡C一基などが、 1種または複数種連結され た構造を有するものを用いてもよい。導電性を有する鎖状構造は、芳香環、芳香族 縮合多環、 CH = CH 基、および C≡C一基から選ばれる少なくとも 1種の基が 複数個、鎖状に連結されることによって形成されてもよい。 [0023] The chain structure is formed by a polymerization reaction. By using a chain structure having functionality, an organic polymer having functionality can be obtained. For example, by using a chain structure having conductivity, an organic polymer having conductivity can be obtained. The organic polymer having conductivity can be applied to various uses such as the electronics field. As the chain structure having conductivity, a 71-electron conjugated chain (71-conjugated chain) is preferable. Specifically, those having a structure in which one or more aromatic rings, aromatic condensed polycycles, CH═CH groups, C≡C single groups and the like are connected may be used. The chain structure having conductivity includes at least one group selected from an aromatic ring, an aromatic condensed polycycle, a CH = CH group, and a C≡C group. A plurality may be formed by being connected in a chain.
[0024] 有機環状構造は、鎖状構造が貫通可能な環状構造である。有機環状構造は、たと えば、炭素のみで形成された環状構造や、または酸素および窒素から選ばれる少な くとも 1つの元素と炭素とによって形成された環状構造であってもよい。そのような有 機環状構造としては、シクロデキストリンの環状構造 (シクロデキストリンの骨格)や後 述するマクロサイクルの環状構造 (骨格)が挙げられる。 [0024] The organic cyclic structure is a cyclic structure through which a chain structure can penetrate. The organic cyclic structure may be, for example, a cyclic structure formed of only carbon, or a cyclic structure formed of at least one element selected from oxygen and nitrogen and carbon. Examples of such an organic cyclic structure include a cyclic structure of cyclodextrin (cyclodextrin skeleton) and a macrocycle cyclic structure (skeleton) described later.
[0025] 本発明の有機重合体では、有機環状構造の移動が制限されている。具体的には、 有機環状構造は、それが配置されて!/、る構成単位から隣接する構成単位へ移動す ること力 S抑制されている。有機環状構造の移動を制限する方法としては、以下の例が 挙げられる。  [0025] In the organic polymer of the present invention, the movement of the organic cyclic structure is restricted. Specifically, the organic cyclic structure is restrained from the force S that moves from the structural unit in which it is arranged to the adjacent structural unit. Examples of methods for limiting the movement of the organic ring structure include the following.
[0026] 第 1の例では、鎖状構造と有機環状構造とが化学結合している。両者が化学結合 することによって、有機環状構造の移動が制限される。  [0026] In the first example, the chain structure and the organic cyclic structure are chemically bonded. The chemical bond between the two limits the movement of the organic ring structure.
[0027] 第 2の例では、鎖状構造が側鎖を含有しており、有機環状構造の移動がその側鎖 によって制限されている。側鎖は、有機環状構造の移動を制限するために必要な大 きさを有する。 [0027] In the second example, the chain structure contains a side chain, and movement of the organic cyclic structure is restricted by the side chain. The side chain has the size necessary to limit the movement of the organic ring structure.
[0028] 本発明の第 1の有機重合体の鎖状構造は、親水性の官能基を含有しないことが好 ましい。親水性の官能基としては、水酸基、カルボキシル基、スルホン酸基などが挙 げられる。  [0028] The chain structure of the first organic polymer of the present invention preferably does not contain a hydrophilic functional group. Examples of hydrophilic functional groups include a hydroxyl group, a carboxyl group, and a sulfonic acid group.
[0029] 本発明の第 1の有機重合体では、 1つの有機環状構造に結合している疎水性の官 能基の数が、 1つの有機環状構造に結合している親水性の官能基の数よりも多いこ とが好ましい。この場合、鎖状構造が親水性の官能基を含有しないことが好ましい。 疎水性の官能基としては、アルキル基などの炭化水素基、トリメチルシリル基などのト リアルキルシリル基などが挙げられる。  [0029] In the first organic polymer of the present invention, the number of hydrophobic functional groups bonded to one organic cyclic structure is the same as the number of hydrophilic functional groups bonded to one organic cyclic structure. More than the number is preferred. In this case, it is preferable that the chain structure does not contain a hydrophilic functional group. Examples of the hydrophobic functional group include a hydrocarbon group such as an alkyl group and a trialkylsilyl group such as a trimethylsilyl group.
[0030] 本発明の第 1の有機重合体では、有機環状構造に結合しているすべての官能基が 疎水性であってもよい。この場合、鎖状構造が親水性の官能基を含有しないことが好 ましい。たとえば、有機環状構造がシクロデキストリンの環状構造であり、有機環状構 造に結合しているすべての官能基が疎水性であってもよい。具体的には、すべての 水酸基が疎水基(たとえばメトキシ基などのアルコキシ基)に置換されたシクロデキス トリンを用いること力できる。なお、有機環状構造にエーテル結合が含有されていても よい。 [0030] In the first organic polymer of the present invention, all functional groups bonded to the organic cyclic structure may be hydrophobic. In this case, it is preferable that the chain structure does not contain a hydrophilic functional group. For example, the organic cyclic structure may be a cyclodextrin cyclic structure, and all functional groups bonded to the organic cyclic structure may be hydrophobic. Specifically, cyclodexterin in which all hydroxyl groups are substituted with hydrophobic groups (for example, alkoxy groups such as methoxy groups). Can use trin. The organic cyclic structure may contain an ether bond.
[0031] 本発明の第 1の有機重合体は、非水溶媒に溶解することが好ましい。非水溶媒に 溶解する重合体は、疎水性を示し、水分子を取り込みにくい。非水溶媒としては、た とえば、メタノールや塩化メチレン、トルエン、クロ口ホルムといった有機溶媒が挙げら れる。  [0031] The first organic polymer of the present invention is preferably dissolved in a non-aqueous solvent. A polymer that dissolves in a non-aqueous solvent exhibits hydrophobicity and hardly takes up water molecules. Examples of the non-aqueous solvent include organic solvents such as methanol, methylene chloride, toluene, and chloroform.
[0032] [本発明の第 2の有機重合体]  [Second organic polymer of the present invention]
本発明の第 2の有機重合体は、複数の有機環状構造と、それら複数の有機環状構 造を貫通する鎖状構造とを備える。第 2の有機重合体は、少なくとも 1種の構成単位 によって構成されている。第 1の有機重合体と同様に、有機環状構造は、移動が制 限された状態で、鎖状構造の前記少なくとも 1種の構成単位のうちの所定の構成単 位ごとに配置されている。  The second organic polymer of the present invention comprises a plurality of organic cyclic structures and a chain structure penetrating through the plurality of organic cyclic structures. The second organic polymer is composed of at least one structural unit. Similar to the first organic polymer, the organic cyclic structure is arranged for each predetermined constituent unit among the at least one constituent unit of the chain structure in a state where movement is limited.
[0033] 第 2の有機重合体の鎖状構造は、以下の 2つの例のいずれかである。第 1の例では 、鎖状構造は主鎖のみで構成されている。第 2の例では、鎖状構造は主鎖と主鎖に 結合した官能基とを含み、主鎖に結合しているすべての官能基が疎水性である。す なわち、有機重合体の鎖状構造の主鎖には、親水性の官能基が結合していない。親 水性の官能基としては、水酸基、カルボキシル基、スルホン酸基などが挙げられる。 また、疎水性の官能基としては、アルキル基などの炭化水素基、トリメチルシリル基な どのトリアルキルシリル基などが挙げられる。  [0033] The chain structure of the second organic polymer is one of the following two examples. In the first example, the chain structure is composed only of the main chain. In the second example, the chain structure includes a main chain and a functional group bonded to the main chain, and all the functional groups bonded to the main chain are hydrophobic. That is, a hydrophilic functional group is not bonded to the main chain of the chain structure of the organic polymer. Examples of the hydrophilic functional group include a hydroxyl group, a carboxyl group, and a sulfonic acid group. Examples of the hydrophobic functional group include hydrocarbon groups such as alkyl groups and trialkylsilyl groups such as trimethylsilyl groups.
[0034] 本発明の第 2の有機重合体は、本発明の第 1の有機重合体の一例である。第 2の 有機重合体について述べた上記特徴以外の部分については、第 1の有機重合体と 同じであるため、重複する説明を省略する。  [0034] The second organic polymer of the present invention is an example of the first organic polymer of the present invention. Since the parts other than the above-mentioned features described for the second organic polymer are the same as those for the first organic polymer, the duplicate description is omitted.
[0035] [有機重合体の第 1の製造方法]  [0035] [First production method of organic polymer]
有機重合体を製造するための本発明の第 1の方法は、複数の有機環状構造とそれ ら複数の有機環状構造を貫通する鎖状構造とを備える有機重合体の製造方法であ る。第 1の製造方法によれば、本発明の第 1の有機重合体が得られる。なお、本発明 の第 1の有機重合体に関する説明と重複する説明については、省略する場合がある [0036] 第 1の製造方法は、金属イオンを放出するイオン性官能基を含有しない少なくとも 1 種のモノマを重合させることによって、移動が制限された状態で所定の構成単位ごと に有機環状構造が配置された有機重合体を形成する重合工程を含む。 The first method of the present invention for producing an organic polymer is a method for producing an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures. According to the first production method, the first organic polymer of the present invention is obtained. Note that the description overlapping the description of the first organic polymer of the present invention may be omitted. [0036] In the first production method, at least one monomer that does not contain an ionic functional group that releases metal ions is polymerized to form an organic cyclic structure for each predetermined structural unit in a state where movement is limited. Including a polymerization step to form the disposed organic polymer.
[0037] 別の観点では、本発明の製造方法は、非水溶媒に溶解している少なくとも 1種のモ ノマを当該非水溶媒中で重合させることによって、移動が制限された状態で所定の 構成単位ごとに有機環状構造が配置された有機重合体を形成する重合工程を含む  [0037] In another aspect, the production method of the present invention is a method in which at least one monomer dissolved in a non-aqueous solvent is polymerized in the non-aqueous solvent, whereby a predetermined transfer is performed in a state where movement is limited. Includes a polymerization step for forming an organic polymer in which an organic cyclic structure is arranged for each structural unit
[0038] 重合されるモノマは、 1種類であってもよいし複数種であってもよいが、それらのモノ マは、金属イオンを放出するイオン性官能基を含有しない。また、重合されるモノマ は、有機環状構造と有機環状構造を貫通する鎖状部分とを含有するモノマを含む。 以下、このモノマを「モノマ (M)」という場合がある。重合されるモノマは、モノマ (M) のみであってもよ!/、し、モノマ(M)と他のモノマとを含んでもよ!/、。 [0038] The monomer to be polymerized may be one kind or plural kinds, but these monomers do not contain ionic functional groups that release metal ions. The monomer to be polymerized includes a monomer containing an organic cyclic structure and a chain portion penetrating the organic cyclic structure. Hereinafter, this monomer may be referred to as “monomer (M)”. The monomer to be polymerized may be only the monomer (M)! /, And may include the monomer (M) and other monomers! /.
[0039] 一例では、イオン性官能基を含有しないモノマが用いられる。すなわち、上記少なく とも 1種のモノマは、イオン性官能基を含有しないモノマであってもよい。「イオン性官 能基」および「金属イオンを放出するイオン性官能基」については上述したため、説 明を省略する。  [0039] In one example, a monomer that does not contain an ionic functional group is used. That is, the at least one monomer may be a monomer that does not contain an ionic functional group. Since “ionic functional groups” and “ionic functional groups that release metal ions” have been described above, the description thereof will be omitted.
[0040] 上述したように、モノマ (M)の鎖状部分は、有機環状構造の移動を抑制するための 部分、たとえば、側鎖や、嵩高い部分や、屈曲部や、環式構造を含んでいてもよい。 また、鎖状部分と有機環状構造とが化学結合していてもよい。モノマ (M)の鎖状部分 は、重合されることによって、上述した鎖状構造 (たとえば導電性を有する鎖状構造) を構成するような分子鎖である。  [0040] As described above, the chain portion of the monomer (M) includes a portion for suppressing the movement of the organic cyclic structure, such as a side chain, a bulky portion, a bent portion, and a cyclic structure. You may go out. Further, the chain portion and the organic cyclic structure may be chemically bonded. The chain portion of the monomer (M) is a molecular chain that forms the above-described chain structure (for example, a chain structure having conductivity) by being polymerized.
[0041] 有機環状構造には、上述した有機環状構造が用いられる。たとえば、有機環状構 造は、シクロデキストリンの環状構造であってもよい。この場合、有機環状構造に結合 しているすべての官能基が疎水性であってもよい。すなわち、シクロデキストリンのす ベての水酸基が疎水基に置換されて!/、てもよレ、。  [0041] As the organic cyclic structure, the organic cyclic structure described above is used. For example, the organic cyclic structure may be a cyclic structure of cyclodextrin. In this case, all the functional groups bonded to the organic cyclic structure may be hydrophobic. That is, all the hydroxyl groups of cyclodextrin are replaced with hydrophobic groups!
[0042] 本発明の製造方法では、非水溶媒中において、モノマを重合させて有機重合体を 形成することが好ましい。この構成によれば、水分子やイオンが重合体中に残留する ことを防止できる。非水溶媒としては、たとえば、メタノールや塩化メチレンなどの有機 溶媒が挙げられる。この場合、モノマ(M)は、非水溶媒に溶解するモノマである。 [0042] In the production method of the present invention, it is preferable to form an organic polymer by polymerizing monomers in a non-aqueous solvent. According to this configuration, water molecules and ions can be prevented from remaining in the polymer. Examples of non-aqueous solvents include organic solvents such as methanol and methylene chloride. A solvent is mentioned. In this case, the monomer (M) is a monomer that dissolves in a non-aqueous solvent.
[0043] 本発明の製造方法は、重合工程の前に、モノマ (M)を形成するためのモノマ形成 工程を含んでもよい。モノマ形成工程の例を、以下に挙げる。  [0043] The production method of the present invention may include a monomer forming step for forming the monomer (M) before the polymerization step. An example of the monomer formation process is given below.
[0044] モノマ形成工程の第 1の例では、まず、シクロデキストリンの水酸基を疎水基に置換 する(工程 (i) )。次に、置換されたシクロデキストリンを鎖状部分が貫通可能なように、 置換されたシクロデキストリンと鎖状部分とを化学結合させる(工程 (ii) )。適切な条件 (たとえば溶媒)を選択することによって、鎖状部分がシクロデキストリンを貫通するよ うにすることが可能である。  [0044] In the first example of the monomer formation step, first, the hydroxyl group of cyclodextrin is substituted with a hydrophobic group (step (i)). Next, the substituted cyclodextrin and the chain portion are chemically bonded so that the chain portion can penetrate the substituted cyclodextrin (step (ii)). By choosing appropriate conditions (eg solvent), it is possible for the chain moiety to penetrate the cyclodextrin.
[0045] モノマ形成工程の第 2の例では、まず、シクロデキストリンに鎖状部分(1)を貫通さ せ、この鎖状部分(1)と側鎖を有する鎖状部分(2)とを化学結合させる。  [0045] In the second example of the monomer formation step, first, a chain part (1) is passed through cyclodextrin, and this chain part (1) and the chain part (2) having a side chain are chemically treated. Combine.
[0046] モノマ形成工程の第 3の例では、有機環状構造がマクロサイクルの環状構造である 。この形成工程は、マクロサイクルの両側から、マクロサイクルの脱落を抑制する部位 を備えた 2つの有機分子を反応させることによって、マクロサイクルを貫通する鎖状部 分を形成する工程を含む。 2つの有機分子は触媒を介して反応させることができる。 マクロサイクルの中心に触媒金属を配置することによって、マクロサイクルを貫通する 鎖状部分を形成することが可能である。  [0046] In the third example of the monomer formation step, the organic cyclic structure is a macrocycle cyclic structure. This forming step includes a step of forming a chain portion penetrating the macrocycle by reacting two organic molecules having sites that suppress the macrocycle drop-off from both sides of the macrocycle. Two organic molecules can be reacted via a catalyst. By placing the catalytic metal in the center of the macrocycle, it is possible to form a chain portion that penetrates the macrocycle.
[0047] [有機重合体の第 2の製造方法] [0047] [Second production method of organic polymer]
有機重合体を製造するための本発明の第 2の方法は、複数の有機環状構造とそれ ら複数の有機環状構造を貫通する鎖状構造とを備える有機重合体の製造方法であ る。以下、第 2の製造方法で製造される有機重合体を「有機重合体 (P2)」という場合 力 る。第 2の製造方法は、モノマ形成工程と、重合工程とを含む。  The second method of the present invention for producing an organic polymer is a method for producing an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures. Hereinafter, the organic polymer produced by the second production method is referred to as “organic polymer (P2)”. The second production method includes a monomer forming step and a polymerization step.
[0048] モノマ形成工程では、有機環状構造と有機環状構造を貫通する鎖状部分とを含む モノマ(M)が形成される。次に、重合工程では、モノマ(M)を含む少なくとも 1種のモ ノマを非水溶媒中で重合させることによって、移動が制限された状態で所定の構成 単位ごとに有機環状構造が配置された有機重合体 (P2)が形成される。  [0048] In the monomer formation step, a monomer (M) including an organic cyclic structure and a chain portion penetrating the organic cyclic structure is formed. Next, in the polymerization process, at least one monomer containing monomer (M) is polymerized in a non-aqueous solvent, whereby organic cyclic structures are arranged for each predetermined structural unit in a state where movement is restricted. An organic polymer (P2) is formed.
[0049] 上記モノマ形成工程は、以下の工程 (A)および (B)を含む。工程 (A)では、有機 環状構造に結合している水酸基が疎水基に置換される。有機環状構造は、たとえば 、シクロデキストリンの環状構造である。工程 (B)では、鎖状部分が有機環状構造を 貫通可能なように、有機環状構造と上記鎖状部分とが化学結合させられる。工程 (B) は、工程 (A)の前、工程 (A)と同時、または工程 (A)の後に行われる。 [0049] The monomer forming step includes the following steps (A) and (B). In step (A), the hydroxyl group bonded to the organic cyclic structure is substituted with a hydrophobic group. The organic cyclic structure is, for example, a cyclic structure of cyclodextrin. In step (B), the chain portion has an organic cyclic structure. The organic cyclic structure and the chain portion are chemically bonded so that they can penetrate. Step (B) is performed before step (A), simultaneously with step (A), or after step (A).
[0050] 有機重合体の第 2の製造方法は、第 1の製造方法の一例である。したがって、第 1 の製造方法に関する説明と重複する説明につレ、ては、省略する。 [0050] The second production method of the organic polymer is an example of the first production method. Therefore, the explanation overlapping with the explanation relating to the first manufacturing method is omitted.
[0051] 以下、本発明の実施形態について例を挙げて説明する。 Hereinafter, embodiments of the present invention will be described with examples.
[0052] [実施形態 1] [0052] [Embodiment 1]
実施形態 1では、鎖状構造と有機環状構造とが化学結合している有機重合体の一 例について説明する。  In Embodiment 1, an example of an organic polymer in which a chain structure and an organic cyclic structure are chemically bonded will be described.
[0053] まず、図 1 Aおよび 1Bに示すように、シクロデキストリン誘導体が結合した鎖状部分 を含む分子を準備する。この分子では、図 2に示す—CH OHの 1つが—CH O の 形で鎖状部分と結合しており、他の OH基はすべて OCH基に置換されている。  [0053] First, as shown in FIGS. 1A and 1B, a molecule containing a chain portion to which a cyclodextrin derivative is bound is prepared. In this molecule, one of —CH 2 OH shown in FIG. 2 is bonded to the chain portion in the form of —CH 2 O 3, and all other OH groups are substituted with OCH groups.
[0054] 鎖状部分は、図 1Aおよび 1Bに示した鎖状部分に限定されない。具体的には、芳 香環、芳香族縮合多環、 CH = CH 基、 C≡C一基などが、 1種類または複数 種連結された構造を有するものを用いてもよい。また、この分子には、その両端に重 合させるとき、または包接状態を保っために鎖状部分を延長させるときに反応点とな る反応基 G、 G'および G"が存在する。  [0054] The chain portion is not limited to the chain portion shown in FIGS. 1A and 1B. Specifically, those having a structure in which one or more aromatic rings, aromatic condensed polycycles, CH═CH groups, C≡C single groups and the like are connected may be used. This molecule also has reactive groups G, G ′, and G ″ that serve as reaction points when overlapping at both ends or extending the chain portion to maintain the inclusion state.
[0055] 図 2に示すように、シクロデキストリンはグルコースの環状オリゴマーであり、ダルコ ースの数によって環状構造の大きさが変化する。そのため、それが包接する疎水性 モノマの大きさに合わせて、好適なグルコース数のシクロデキストリンを選択して用い ること力 Sできる。なお、図 2において、 n = 4の場合には α—シクロデキストリンと呼ば れ、 η= 5の場合には /3—シクロデキストリンと呼ばれ、 η = 6の場合には γ—シクロキ ストリンと呼ばれる。  [0055] As shown in FIG. 2, cyclodextrin is a cyclic oligomer of glucose, and the size of the cyclic structure changes depending on the number of dalcoses. Therefore, it is possible to select and use a cyclodextrin having a suitable glucose number in accordance with the size of the hydrophobic monomer to be included. In Fig. 2, when n = 4, it is called α-cyclodextrin, when η = 5, it is called / 3-cyclodextrin, and when η = 6, it is called γ-cyclodextrin. .
[0056] 図 1 Αおよび 1Bの左側の分子の環状構造は、鎖状部分と結合している枝の部分に おいて、かなりの自由度を持って動ける。そのため、所定の条件 (例えば溶媒の条件 )を調整することによって、図 1 Aおよび 1Bの右側のように、鎖状部分を環状構造に 包接させることが可能である。図 1 Aおよび 1Bの右側の状態では、条件によって再び 図 1Aおよび 1Bの左側の状態に戻ることがあり、安定ではない。そのため、図 3 (a)お よび (c)の模式図に示すように鎖状部分を延長させたり、図 3 (b)の模式図に示すよう に包接状態の分子 2個を結合させたりすることが好ましい。これらの反応によれば、鎖 状部分が安定に包接されてレ、るモノマ (M)が得られる。 [0056] The circular structure of the molecules on the left side of Fig. 1 Α and 1B can move with a considerable degree of freedom in the branch part connected to the chain part. Therefore, by adjusting predetermined conditions (for example, solvent conditions), the chain portion can be included in the ring structure as shown on the right side of FIGS. 1A and 1B. In the state on the right side of Figs. 1A and 1B, it may return to the state on the left side of Figs. For this reason, as shown in the schematic diagrams of Fig. 3 (a) and (c), the chain-like portion is extended, or as shown in the schematic diagram of Fig. It is preferable to bind two molecules in an inclusion state to each other. According to these reactions, the chain portion is stably included and a monomer (M) is obtained.
[0057] 得られたモノマ(M)は、非水溶媒中において安定に存在できるので、これを重合す ることによって、一定の繰り返し単位ごとに規則正しく有機環状構造が鎖状構造を包 接したポリ口タキサンを合成することができる。 [0057] The obtained monomer (M) can stably exist in a non-aqueous solvent. By polymerizing the monomer (M), a polymer in which an organic cyclic structure regularly encloses a chain structure for each repeating unit is obtained. Mouth taxanes can be synthesized.
[0058] [実施例 1] [Example 1]
以下に、実施形態 1の例について説明する。実施例 1で用いられるモノマ (M)の合 成スキームを、図 4〜図 8に示す。  Hereinafter, an example of the first embodiment will be described. The synthesis scheme of the monomer (M) used in Example 1 is shown in FIGS.
[0059] 図 4および図 5Aの反応によって、モノマ 1が合成される。図 4および図 6Aの反応に よって、モノマ 2が合成される。図 7および図 8の反応によって、モノマ 3が合成される[0059] Monomer 1 is synthesized by the reactions of FIGS. 4 and 5A. Monomer 2 is synthesized by the reactions of FIGS. 4 and 6A. Monomer 3 is synthesized by the reactions of Fig. 7 and Fig. 8.
。図 4および図 7において、有機環状構造を構成する出発材料には、 α—シクロデキ ストリンの 1つの水酸基がトシル基(CH -C H - SO一)に置換され、他のすべての . In Fig. 4 and Fig. 7, the starting material that constitutes the organic ring structure is that one hydroxyl group of α-cyclodextrin is substituted with a tosyl group (CH 1 -CH 2 -SO 1), and all the other
3 6 4 2  3 6 4 2
水酸基がメチル基に置換されることによって得られる化合物を用いた。  A compound obtained by replacing the hydroxyl group with a methyl group was used.
[0060] 図 4、 5A、 6A、 7および 8の例では、両端の重合反応点がェチュル基であるモノマ  [0060] In the examples of FIGS. 4, 5A, 6A, 7 and 8, monomers having polymerization reaction points at both ends are ethur groups.
(M)を合成している。モノマ 1、 2および 3は、有機溶媒中、ピリジン存在下で、 Cu (ii) 触媒を用いたエグリントン反応(Eglinton Coupling)によって重合される。このよう にして、本発明の有機重合体が合成される。モノマ 1の重合反応の一例を図 5Bに示 し、モノマ 2の重合反応の一例を図 6Bに示す。  (M) is synthesized. Monomers 1, 2 and 3 are polymerized by Eglinton Coupling using Cu (ii) catalyst in the presence of pyridine in an organic solvent. In this way, the organic polymer of the present invention is synthesized. An example of the polymerization reaction of monomer 1 is shown in FIG. 5B, and an example of the polymerization reaction of monomer 2 is shown in FIG. 6B.
[0061] [実施形態 2]  [0061] [Embodiment 2]
実施形態 2では、鎖状構造が側鎖を備え、その側鎖によって有機環状構造の移動 が制限される有機重合体の一例について説明する。  In Embodiment 2, an example of an organic polymer in which the chain structure has side chains and the movement of the organic cyclic structure is restricted by the side chains will be described.
[0062] まず、図 9Aに示す疎水性のモノマと、シクロデキストリンとを準備する。そして、それ らを、水溶媒中で反応させる。鎖状構造 (鎖状部分)は、図 9Aに示した鎖状構造に 限定されず、実施形態 1で説明したような鎖状構造を適用できる。実施形態 1で説明 したように、鎖状構造の両端には、反応基 Gが存在する。  First, a hydrophobic monomer shown in FIG. 9A and a cyclodextrin are prepared. They are then reacted in an aqueous solvent. The chain structure (chain part) is not limited to the chain structure shown in FIG. 9A, and the chain structure described in Embodiment 1 can be applied. As described in Embodiment 1, there are reactive groups G at both ends of the chain structure.
[0063] シクロデキストリンは、実施形態 1と同様に、包接する疎水性モノマの大きさに合わ せて好適なグルコース数のシクロデキストリンを選択して用いることができる。上述の 疎水性モノマは難水溶性であるため、水溶媒中でシクロデキストリンに取り込まれ、図 9Bのように包接される。 [0063] As in the first embodiment, the cyclodextrin having a suitable glucose number can be selected and used according to the size of the hydrophobic monomer to be included. Since the above-mentioned hydrophobic monomers are poorly water-soluble, they are taken into cyclodextrins in an aqueous solvent, Included like 9B.
[0064] 次に、図 9Cの分子のように親水性の官能基を側鎖として有する分子を、図 9Bの分 子の両端に反応させる。図 9Cの分子は、反応基 Gと反応する反応 を有する。図 9 Cの分子の付加によって、図 9Dの分子が得られる。ここで、図 9Bの分子の両端に反 応させる分子の官能基は、カルボキシル基に限定されず、他の官能基であってもよ い。また、図 9Bの分子の両端に反応させる分子の構造は、チォフェン環に限らず、ピ ロール環などであってもよい。  Next, a molecule having a hydrophilic functional group as a side chain, such as the molecule in FIG. 9C, is reacted at both ends of the molecule in FIG. 9B. The molecule in Figure 9C has a reaction that reacts with the reactive group G. The addition of the molecule in Figure 9C yields the molecule in Figure 9D. Here, the functional group of the molecule that reacts with both ends of the molecule in FIG. 9B is not limited to the carboxyl group, and may be another functional group. Further, the structure of the molecule reacted at both ends of the molecule in FIG. 9B is not limited to the thiophene ring, but may be a pyrrole ring or the like.
[0065] このようにして得られる、口タキサン構造を有するモノマ(M)を、水溶媒中から単離 する。次に、モノマ (M)を非水溶媒中で重合させる。このようにして、金属イオンを放 出するイオン性官能基を持たない有機重合体が得られる。この有機重合体はポリロタ キサンである。この有機重合体では、有機環状構造が、鎖状構造の一定の繰り返し 単位に応じて規則正しく包接されている。モノマ(M)の重合反応としては、たとえば、 フエリックカップリングを用いることができる。  [0065] The monomer (M) having an oral taxane structure thus obtained is isolated from an aqueous solvent. Next, the monomer (M) is polymerized in a non-aqueous solvent. In this way, an organic polymer having no ionic functional group that releases metal ions can be obtained. This organic polymer is a polyrotaxane. In this organic polymer, the organic cyclic structure is regularly included according to a certain repeating unit of a chain structure. As the polymerization reaction of the monomer (M), for example, ferro coupling can be used.
[0066] なお、重合前に、シクロデキストリンの親水基 (水酸基)および鎖状部分の親水基( カルボキシル基)を、疎水基に置換してもよい。  [0066] Prior to polymerization, the hydrophilic group (hydroxyl group) of the cyclodextrin and the hydrophilic group (carboxyl group) of the chain portion may be substituted with a hydrophobic group.
[0067] [実施例 2]  [0067] [Example 2]
以下に、実施形態 2の一例について説明する。実施形態 2の有機重合体を合成す るためのスキームの一例を、図 10A、図 10Bおよび図 11に示す。  Hereinafter, an example of Embodiment 2 will be described. An example of a scheme for synthesizing the organic polymer of Embodiment 2 is shown in FIG. 10A, FIG. 10B, and FIG.
[0068] まず、図 10Aに示す反応によって、鎖状構造を有する 2種類の有機分子を合成す る。次に、これら 2種類の有機分子を、図 10Bに示すように、シクロデキストリンが存在 する液体中で反応させ、モノマ(M)を合成する。モノマ(M)は、シクロデキストリンお よびパラジウム触媒の存在下において、図 10Aの反応によって合成した 2つの分子 を 2対 1の割合で鈴木共重合反応させることによって合成する。このとき、一方の有機 分子は、シクロデキストリン内部に取り込まれた状態で反応する。図 10 (B)のモノマ( M)では、鎖状構造に結合している側鎖によって、シクロデキストリンの移動が抑制さ れる。  [0068] First, two types of organic molecules having a chain structure are synthesized by the reaction shown in FIG. 10A. Next, these two kinds of organic molecules are reacted in a liquid containing cyclodextrin as shown in FIG. 10B to synthesize a monomer (M). Monomer (M) is synthesized by the Suzuki copolymerization reaction of the two molecules synthesized by the reaction of Fig. 10A in a ratio of 2 to 1 in the presence of cyclodextrin and palladium catalyst. At this time, one of the organic molecules reacts in a state of being incorporated into the cyclodextrin. In the monomer (M) in Fig. 10 (B), the movement of cyclodextrin is suppressed by the side chain bonded to the chain structure.
[0069] 次に、図 11に示すように、非水溶媒(具体的にはメタノール)中において、モノマ( M)を重合させる。このようにして、実施形態 2の有機重合体が合成される。 [0070] 図 10A、図 1 OBおよび図 11に示した合成方法で重合体を作製し、特性を評価した 。図 12に1 H— NMRの結果を示す。図 12の結果から、合成された重合体は、図 11 に示す重合体の構造を有することが示された。 Next, as shown in FIG. 11, the monomer (M) is polymerized in a non-aqueous solvent (specifically, methanol). In this way, the organic polymer of Embodiment 2 is synthesized. [0070] Polymers were produced by the synthesis methods shown in Fig. 10A, Fig. 1OB and Fig. 11, and their characteristics were evaluated. Fig. 12 shows the results of 1 H-NMR. From the results in FIG. 12, it was shown that the synthesized polymer had the structure of the polymer shown in FIG.
[0071] また、合成された複数の重合体について、その長さと高さとを原子間力顕微鏡で測 定した。それらの測定結果を図 13に示す。重合体の平均長さは 27. 3nmであった。 このこと力、ら、平均重合度が約 9であることが分かった。また、重合体の平均高さは約 0. 6nmであった。これは、シクロデキストリン 1分子の直径とほぼ同じである。  [0071] Further, the length and height of the synthesized polymers were measured with an atomic force microscope. The measurement results are shown in FIG. The average length of the polymer was 27.3 nm. This proved that the average degree of polymerization was about 9. The average height of the polymer was about 0.6 nm. This is almost the same as the diameter of one cyclodextrin molecule.
[0072] [実施形態 3]  [0072] [Embodiment 3]
実施形態 3では、有機環状構造としてマクロサイクルを用いる一例について説明す  In Embodiment 3, an example of using a macrocycle as an organic cyclic structure will be described.
[0073] まず、図 14Aに示すようなマクロサイクルを準備する。マクロサイクルは、図 14Aの 分子に限定されない。ただし、マクロサイクルは、その平面性が保たれるように、環状 構造の内側に取り込んだ金属と、 3つ以上の配位結合を形成していることが好ましい 。さらに、内側に取り込む金属が Pdである場合、マクロサイクルは、ソフトな酸である P dとの相互作用が比較的強いと予想されるソフトな塩基であることが好ましい。ソフトな 塩基としては、たとえば、図 14Aに示すような窒素を含む環式化合物が挙げられる。 図 14Aのマクロサイクルは、図 14Bおよび 14Cにおいて、模式的に輪で示す。 First, a macro cycle as shown in FIG. 14A is prepared. Macrocycles are not limited to the molecules in Figure 14A. However, the macrocycle preferably forms three or more coordination bonds with the metal incorporated inside the annular structure so that the planarity is maintained. Further, when the metal incorporated inside is Pd, the macrocycle is preferably a soft base that is expected to have a relatively strong interaction with Pd, which is a soft acid. Examples of the soft base include a nitrogen-containing cyclic compound as shown in FIG. 14A. The macrocycle of FIG. 14A is schematically shown as a ring in FIGS. 14B and 14C.
[0074] 有機溶媒中において、上記マクロサイクルに Pdを配位させる。そして、図 14Bのよう に、反応点としてヨウ素を有する分子(図中の「Ar— 1」)と、反応点としてホウ素化合 物を有する分子(図中の「(OR) B— Ar'」)とを、たとえば鈴木共重合反応によって 反応させる。この反応によって、図 14Cのように、口タキサン構造を有するモノマが得 られる。  [0074] Pd is coordinated to the macrocycle in an organic solvent. Then, as shown in Fig. 14B, the molecule having iodine as the reaction point ("Ar-1" in the figure) and the molecule having boron compound as the reaction point ("(OR) B-Ar '" in the figure) For example by a Suzuki copolymerization reaction. By this reaction, a monomer having a mouth taxane structure is obtained as shown in FIG. 14C.
[0075] Arや Ar'で示した部分は、親水基を含有しない。また、これらは、 Arと Ar'とが結合 する際に、 π電子共役鎖を形成することが好ましい。反応する 2つの分子は、たとえ ば、芳香環、芳香族縮合多環、 CH = CH 基、 C≡C一基などが、 1種または 複数種連結された構造であるものが好ましい。さらに、 Arや Ar'として示した部分は、 側鎖を備えたり、嵩高い部分を備えたり、鎖軸が屈曲している部分を備えたりしてもよ い。また、 Arや Ar'として示した部分は、それぞれの環式構造で形成される平面が同 一平面上にないような複数の環式構造を備えてもよい。これらの構成によれば、マク 口サイクルの移動が制限され、モノマが重合されたのちも口タキサン構造が維持され る。 Arや Ar'の一例は、ベンゼン環などの芳香環に疎水基が結合した構造を有する [0075] The portion indicated by Ar or Ar 'does not contain a hydrophilic group. In addition, they preferably form a π-electron conjugated chain when Ar and Ar ′ are bonded. The two molecules that react are preferably, for example, those having a structure in which one or more aromatic rings, aromatic condensed polycycles, CH = CH groups, C≡C single groups and the like are connected. Furthermore, the part shown as Ar or Ar ′ may have a side chain, a bulky part, or a part where the chain axis is bent. In addition, the portions formed as Ar and Ar ′ have the same plane formed by each cyclic structure. A plurality of cyclic structures that do not lie on one plane may be provided. According to these structures, the movement of the macro-mouth cycle is restricted, and the mouth taxane structure is maintained after the monomer is polymerized. An example of Ar or Ar ′ has a structure in which a hydrophobic group is bonded to an aromatic ring such as a benzene ring.
[0076] 上記口タキサンモノマを有機溶媒中で重合反応させることによって、ポリ口タキサン が得られる。この方法によれば、鎖状構造と有機環状構造とがともに親水基を持たず 、一定の繰り返し単位に応じて規則正しく有機環状構造が配置されているポリ口タキ サンを合成することが可能である。 [0076] By subjecting the mouth taxane monomer to a polymerization reaction in an organic solvent, a polymouth taxane can be obtained. According to this method, it is possible to synthesize polytaxane taxa in which both the chain structure and the organic cyclic structure do not have a hydrophilic group, and the organic cyclic structure is regularly arranged according to a certain repeating unit. .
[0077] [実施例 3]  [0077] [Example 3]
以下に、実施形態 3の一例として、有機重合体の実施可能な例について説明する 。実施形態 3の有機重合体を合成するためのスキームの一例を、図 15に示す。  Hereinafter, as an example of Embodiment 3, an example in which an organic polymer can be implemented will be described. An example of a scheme for synthesizing the organic polymer of Embodiment 3 is shown in FIG.
[0078] 図 15に示す反応によって、内部にパラジウムを取り込んだマクロサイクルが合成さ れる。また、図 15に示す反応によって、反応点としてヨウ素基を含む分子と、反応点 としてホウ素を含有する基を含む分子とが合成される。図 15に示す反応の材料分子 の合成スキームを図 16に示す。なお、図 15の「BPin」は、以下の基を意味する。  [0078] By the reaction shown in FIG. 15, a macrocycle having palladium incorporated therein is synthesized. Further, by the reaction shown in FIG. 15, a molecule containing an iodine group as a reaction point and a molecule containing a group containing boron as a reaction point are synthesized. Figure 16 shows the synthesis scheme of the material molecules shown in Fig. 15. Note that “BPin” in FIG. 15 means the following groups.
[0079] [化 1]  [0079] [Chemical 1]
Figure imgf000017_0001
Figure imgf000017_0001
[0080] 図 15の反応で得られた 2種類の分子を、マクロサイクルに取り込まれたパラジウムを 触媒として、 DMSO (ジメチルスルホキシド)中で鈴木共重合反応によって反応させ る。この反応によって、図 17に示すように、口タキサンが合成される。なお、図 17では 、図 15の反応で合成されたマクロサイクルを、模式的に輪で示している。 [0080] The two types of molecules obtained in the reaction of Fig. 15 are reacted by a Suzuki copolymerization reaction in DMSO (dimethyl sulfoxide) using palladium incorporated into the macrocycle as a catalyst. By this reaction, a mouth taxane is synthesized as shown in FIG. In FIG. 17, the macrocycle synthesized by the reaction of FIG. 15 is schematically shown as a circle.
[0081] 次に、得られた口タキサンに、図 17に示す反応によって、 2種類の反応点を付加す る。一方はヨウ素基であり、他方は、ホウ素を含有する基である。これらを、図 17に示 すように、 DMSO中において Pd触媒を用いた鈴木共重合反応によって重合する。こ のようにして、ポリ口タキサンが合成される。  Next, two types of reaction points are added to the obtained mouth taxane by the reaction shown in FIG. One is an iodine group and the other is a group containing boron. These are polymerized by a Suzuki copolymerization reaction using a Pd catalyst in DMSO as shown in FIG. In this way, a polymouth taxane is synthesized.
[0082] 以上のように、本発明の有機重合体の製造方法の例について説明した力 上記合 成過程における各反応は、他の公知の条件で行ってもよい。 As described above, the force described in the example of the method for producing the organic polymer of the present invention Each reaction in the formation process may be performed under other known conditions.
産業上の利用可能性 Industrial applicability
本発明の有機重合体は、医療、薬品、エレクトロニクスの分野で機能性材料などの 新素材として適用できる。特に、鎖状構造が導電性を有する場合には、電子デバイス に適用できる。  The organic polymer of the present invention can be applied as a new material such as a functional material in the fields of medicine, medicine and electronics. In particular, when the chain structure has conductivity, it can be applied to an electronic device.

Claims

請求の範囲 The scope of the claims
[1] 複数の有機環状構造と前記複数の有機環状構造を貫通する鎖状構造とを備える 有機重合体であって、  [1] An organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures,
前記有機重合体は、少なくとも 1種の構成単位によって構成されており、 前記少なくとも 1種の構成単位は、金属イオンを放出するイオン性官能基を含有せ ず、  The organic polymer is composed of at least one structural unit, and the at least one structural unit does not contain an ionic functional group that releases a metal ion,
前記有機環状構造は、移動が制限された状態で、前記少なくとも 1種の構成単位 のうちの所定の構成単位ごとに配置されている有機重合体。  The organic cyclic structure is an organic polymer arranged for each predetermined structural unit of the at least one structural unit in a state where movement is restricted.
[2] 前記少なくとも 1種の構成単位が、イオン性官能基を含有しない請求項 1に記載の 有機重合体。  [2] The organic polymer according to [1], wherein the at least one structural unit does not contain an ionic functional group.
[3] 前記鎖状構造と前記有機環状構造とが化学結合して!/、る請求項 1に記載の有機 重合体。  [3] The organic polymer according to [1], wherein the chain structure and the organic cyclic structure are chemically bonded.
[4] 前記鎖状構造が側鎖を含有しており、  [4] The chain structure contains a side chain,
前記有機環状構造の移動が前記側鎖によって制限されてレ、る請求項 1に記載の有 機重合体。  2. The organic polymer according to claim 1, wherein movement of the organic cyclic structure is restricted by the side chain.
[5] 前記鎖状構造は親水性の官能基を含有しな!/、請求項 1に記載の有機重合体。  5. The organic polymer according to claim 1, wherein the chain structure does not contain a hydrophilic functional group! /.
[6] 前記有機環状構造に結合している疎水性の官能基の数が、前記有機環状構造に 結合して!/、る親水性の官能基の数よりも多!/、請求項 1に記載の有機重合体。 [6] The number of hydrophobic functional groups bonded to the organic cyclic structure is larger than the number of hydrophilic functional groups bonded to the organic cyclic structure! /, The organic polymer as described.
[7] 前記有機環状構造に結合して!/、るすべての官能基が疎水性である請求項 1に記 載の有機重合体。 7. The organic polymer according to claim 1, wherein all functional groups bonded to the organic cyclic structure are hydrophobic.
[8] 前記有機環状構造がシクロデキストリンの環状構造であり、 [8] The organic cyclic structure is a cyclodextrin cyclic structure,
前記有機環状構造に結合してレ、るすべての官能基が疎水性である請求項 1に記 載の有機重合体。  2. The organic polymer according to claim 1, wherein all functional groups bonded to the organic cyclic structure are hydrophobic.
[9] 前記鎖状構造が導電性を有する請求項 1に記載の有機重合体。  9. The organic polymer according to claim 1, wherein the chain structure has conductivity.
[10] 複数の有機環状構造と前記複数の有機環状構造を貫通する鎖状構造とを備える 有機重合体であって、 [10] An organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures,
前記鎖状構造は、少なくとも 1種の構成単位によって構成されており、  The chain structure is composed of at least one structural unit,
前記有機環状構造は、移動が制限された状態で、前記鎖状構造の前記少なくとも 1種の構成単位のうちの所定の構成単位ごとに配置されており、 The organic cyclic structure has at least the chain structure with the movement restricted. It is arranged for each predetermined structural unit of one kind of structural unit,
前記鎖状構造は主鎖のみで構成されているか、または、前記鎖状構造は主鎖と主 鎖に結合した官能基とを含み前記主鎖に結合しているすべての官能基が疎水性で ある有機重合体。  The chain structure is composed of only the main chain, or the chain structure includes a main chain and a functional group bonded to the main chain, and all the functional groups bonded to the main chain are hydrophobic. An organic polymer.
[11] 複数の有機環状構造と前記複数の有機環状構造を貫通する鎖状構造とを備える 有機重合体の製造方法であって、  [11] A method for producing an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures,
金属イオンを放出するイオン性官能基を含有しない少なくとも 1種のモノマを重合さ せることによって、移動が制限された状態で所定の構成単位ごとに前記有機環状構 造が配置された前記有機重合体を形成する重合工程を含み、  The organic polymer in which the organic cyclic structure is arranged for each predetermined structural unit in a state where movement is restricted by polymerizing at least one monomer that does not contain an ionic functional group that releases a metal ion. Comprising a polymerization step to form
前記少なくとも 1種のモノマは、前記有機環状構造と前記有機環状構造を貫通する 鎖状部分とを含有するモノマ (M)を含む、有機重合体の製造方法。  The method for producing an organic polymer, wherein the at least one monomer includes a monomer (M) containing the organic cyclic structure and a chain portion penetrating the organic cyclic structure.
[12] 前記少なくとも 1種のモノマが、イオン性官能基を含有しない請求項 11に記載の製 造方法。 12. The production method according to claim 11, wherein the at least one monomer does not contain an ionic functional group.
[13] 前記有機環状構造がシクロデキストリンの環状構造であり、  [13] The organic cyclic structure is a cyclodextrin cyclic structure,
前記有機環状構造に結合してレ、るすべての官能基が疎水性である請求項 11に記 載の製造方法。  12. The production method according to claim 11, wherein all functional groups bonded to the organic cyclic structure are hydrophobic.
[14] 非水溶媒中にぉレ、て前記少なくとも 1種のモノマを重合させる請求項 11に記載の 製造方法。  14. The production method according to claim 11, wherein the at least one monomer is polymerized in a non-aqueous solvent.
[15] 前記重合工程の前に、前記モノマ (M)を形成するモノマ形成工程を含み、  [15] Before the polymerization step, including a monomer forming step of forming the monomer (M),
前記モノマ形成工程は、  The monomer forming step includes
(i)シクロデキストリンの水酸基を疎水基に置換する工程と、  (i) substituting the hydroxyl group of cyclodextrin with a hydrophobic group;
(ii)置換された前記シクロデキストリンを前記鎖状部分が貫通可能なように、置換さ れた前記シクロデキストリンと前記鎖状部分とを化学結合させる工程とを含む請求項 11に記載の製造方法。  The method according to claim 11, further comprising the step of (ii) chemically bonding the substituted cyclodextrin and the chain portion so that the chain portion can penetrate the substituted cyclodextrin. .
[16] 前記重合工程の前に、前記モノマ(M)を形成するモノマ形成工程を含み、  [16] including a monomer forming step of forming the monomer (M) before the polymerization step;
前記モノマ形成工程は、マクロサイクルの両側から、前記マクロサイクルの脱落を抑 制する部位を備えた 2つの有機分子を反応させることによって、前記マクロサイクルを 貫通する前記鎖状部分を形成する工程を含む請求項 11に記載の製造方法。 The monomer formation step includes a step of forming the chain portion penetrating the macrocycle by reacting two organic molecules having sites that suppress the macrocycle drop-off from both sides of the macrocycle. The manufacturing method of Claim 11 containing.
[17] 複数の有機環状構造と前記複数の有機環状構造を貫通する鎖状構造とを備える 有機重合体の製造方法であって、 [17] A method for producing an organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the plurality of organic cyclic structures,
前記有機環状構造と前記有機環状構造を貫通する鎖状部分とを含むモノマ (M) を形成するモノマ形成工程と、  A monomer forming step of forming a monomer (M) including the organic cyclic structure and a chain-like portion penetrating the organic cyclic structure;
前記モノマ (M)を含む少なくとも 1種のモノマを非水溶媒中で重合させることによつ て、移動が制限された状態で所定の構成単位ごとに前記有機環状構造が配置され た前記有機重合体を形成する重合工程とを含み、  By polymerizing at least one monomer containing the monomer (M) in a non-aqueous solvent, the organic polymer in which the organic cyclic structure is arranged for each predetermined structural unit in a state where movement is restricted. Polymerization step to form a coalescence,
前記モノマ形成工程は、  The monomer forming step includes
(A)前記有機環状構造に結合して!/、る水酸基を疎水基に置換する工程と、 (A) a step of binding to the organic cyclic structure! /, Replacing the hydroxyl group with a hydrophobic group;
(B)前記鎖状部分が前記有機環状構造を貫通可能なように前記有機環状構造と 前記鎖状部分とを化学結合させる工程とを含み、 (B) chemically bonding the organic cyclic structure and the chain portion so that the chain portion can penetrate the organic cyclic structure,
前記工程 (B)は、前記工程 (A)の前、前記工程 (A)と同時、または前記工程 (A) の後に行われる、有機重合体の製造方法。  The method for producing an organic polymer, wherein the step (B) is performed before the step (A), simultaneously with the step (A), or after the step (A).
[18] 前記有機環状構造が、シクロデキストリンの環状構造である請求項 17に記載の製 造方法。 18. The production method according to claim 17, wherein the organic cyclic structure is a cyclic structure of cyclodextrin.
PCT/JP2007/073599 2006-12-08 2007-12-06 Organic polymer bearing plural organic ring structures and a chain structute passing through the ring structures, and process for the production thereof WO2008069274A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008548332A JP4377446B2 (en) 2006-12-08 2007-12-06 Organic polymer comprising a plurality of organic cyclic structures and a chain structure penetrating the organic cyclic structure, and a method for producing the same
US12/516,049 US8507629B2 (en) 2006-12-08 2007-12-06 Organic polymer containing two or more organic ring structures and a chain structure threading through the organic ring structures, and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-332048 2006-12-08
JP2006332048 2006-12-08

Publications (1)

Publication Number Publication Date
WO2008069274A1 true WO2008069274A1 (en) 2008-06-12

Family

ID=39492152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073599 WO2008069274A1 (en) 2006-12-08 2007-12-06 Organic polymer bearing plural organic ring structures and a chain structute passing through the ring structures, and process for the production thereof

Country Status (3)

Country Link
US (1) US8507629B2 (en)
JP (2) JP4377446B2 (en)
WO (1) WO2008069274A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123079A1 (en) * 2009-04-23 2010-10-28 独立行政法人物質・材料研究機構 Electrically conductive polyrotaxane
JP2013091738A (en) * 2011-10-26 2013-05-16 Kri Inc Conductive covered conjugated polymer and production method of the same
JP2015199679A (en) * 2014-04-04 2015-11-12 三菱化学株式会社 Production method of oligofluorene diaryl ester
WO2019168128A1 (en) * 2018-03-01 2019-09-06 国立大学法人大阪大学 Polymer material and method for manufacturing same
WO2020213470A1 (en) * 2019-04-17 2020-10-22 大阪ガスケミカル株式会社 Dicarboxylic acids, and production method and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011242A1 (en) * 2011-07-21 2013-01-24 Ecole Normale Superieure De Lyon Novel water-soluble chromophore

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075979A (en) * 2003-09-02 2005-03-24 Bridgestone Corp Method for producing polyrotaxane
JP2006028103A (en) * 2004-07-16 2006-02-02 Tokyo Institute Of Technology Rotaxane having two or more ring components, method for producing the same and crosslinking agent comprising the same
JP2006233007A (en) * 2005-02-24 2006-09-07 Kaneka Corp Polyrotaxane and its preparation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438023B2 (en) * 2000-03-14 2003-08-18 独立行政法人産業技術総合研究所 Rotaxane spherical aggregate and method for producing the same, and rotaxane spherical polymer and method for producing the same
JP4081536B2 (en) * 2001-05-30 2008-04-30 独立行政法人産業技術総合研究所 [2] A monomer based on a rotaxane structure, a method for producing the monomer, a polymer, and a method for producing the polymer.
JP3950953B2 (en) * 2001-05-30 2007-08-01 独立行政法人産業技術総合研究所 [3] A monomer based on a rotaxane structure, a method for producing the monomer, a polymer, and a method for producing the polymer.
JP3632083B2 (en) * 2001-12-20 2005-03-23 独立行政法人産業技術総合研究所 Tegs knot structure polymer and method for producing the same
JP3692401B2 (en) * 2002-08-27 2005-09-07 独立行政法人産業技術総合研究所 Non-covalent polymer using metal porphyrin complex having two crown ethers as linking molecule and method for producing non-covalent polymer
JP2007211060A (en) 2006-02-07 2007-08-23 Japan Advanced Institute Of Science & Technology Hokuriku Supermolecule polymer and its synthetic method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075979A (en) * 2003-09-02 2005-03-24 Bridgestone Corp Method for producing polyrotaxane
JP2006028103A (en) * 2004-07-16 2006-02-02 Tokyo Institute Of Technology Rotaxane having two or more ring components, method for producing the same and crosslinking agent comprising the same
JP2006233007A (en) * 2005-02-24 2006-09-07 Kaneka Corp Polyrotaxane and its preparation method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MICHELS J.J. ET AL.: "Synthesis of Conjugated Polyrotaxanes", CHEMISTRY - A EUROPEAN JOURNAL, vol. 9, no. 24, 15 December 2003 (2003-12-15), pages 6167 - 6176, XP009060485, DOI: doi:10.1002/chem.200305245 *
PARK J.S. ET AL.: "Reduced Fluorescence Quenching of Cyclodextrin-Acetylene Dye Rotaxanes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, no. 24, 21 June 2006 (2006-06-21), pages 7714 - 7715 *
SUGIYAMA J. ET AL.: "Oligocarbyne to Cyclodextrin tono Rotaxane no Gosei to Sono Kagaku Shushoku ni yoru Kinoka", CSJ: THE CHEMICAL SOCIETY OF JAPAN DAI 86 SHUNKI NENKAI KOEN YOSHISHU II, 13 March 2006 (2006-03-13), pages 805 *
TAYLOR P.N. ET AL.: "Insulated Moleculare Wires: Synthesis of Conjugated Polyrotaxanes by Suzuki Coupling in Water", ANGEWANDTE CHEMIE. INTERNATIONAL EDITION, vol. 39, no. 19, 2 October 2000 (2000-10-02), pages 3456 - 3460 *
TERAO J. ET AL.: "Synthesis of poly(para-phenylenevinylene) rotaxanes by aqueous Suzuki coupling", CHEMICAL COMMUNICATIONS, no. 1, 7 January 2004 (2004-01-07), pages 56 - 57 *
YAMAGUCHI I. ET AL.: "beta-Cyclodextrin Pseudopolyrotaxanes with pi-Conjugated Polymer Axles", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 25, 21 June 2004 (2004-06-21), pages 1163 - 1166 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123079A1 (en) * 2009-04-23 2010-10-28 独立行政法人物質・材料研究機構 Electrically conductive polyrotaxane
US8613611B2 (en) 2009-04-23 2013-12-24 National Institute For Materials Science Electrically conductive polyrotaxane
JP2013091738A (en) * 2011-10-26 2013-05-16 Kri Inc Conductive covered conjugated polymer and production method of the same
JP2015199679A (en) * 2014-04-04 2015-11-12 三菱化学株式会社 Production method of oligofluorene diaryl ester
WO2019168128A1 (en) * 2018-03-01 2019-09-06 国立大学法人大阪大学 Polymer material and method for manufacturing same
JPWO2019168128A1 (en) * 2018-03-01 2021-02-04 国立大学法人大阪大学 Polymer material and its manufacturing method
JP7074375B2 (en) 2018-03-01 2022-05-24 国立大学法人大阪大学 Polymer material and its manufacturing method
WO2020213470A1 (en) * 2019-04-17 2020-10-22 大阪ガスケミカル株式会社 Dicarboxylic acids, and production method and use thereof

Also Published As

Publication number Publication date
US20100022737A1 (en) 2010-01-28
US8507629B2 (en) 2013-08-13
JPWO2008069274A1 (en) 2010-03-25
JP4377446B2 (en) 2009-12-02
JP2009108333A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
Chen et al. Mechanically interlocked polymers based on rotaxanes
Huang et al. Polypseudorotaxanes and polyrotaxanes
Arunachalam et al. Recent developments in polypseudorotaxanes and polyrotaxanes
Harada et al. Polymeric rotaxanes
Sugai et al. Effective click construction of bridged-and spiro-multicyclic polymer topologies with tailored cyclic prepolymers (kyklo-telechelics)
Xiao et al. Recent advances of functional gels controlled by pillar [n] arene-based host–guest interactions
Liu et al. Syntheses and applications of dendronized polymers
US6423811B1 (en) Low dielectric constant materials with polymeric networks
Nakazono et al. High-yield one-pot synthesis of permethylated α-cyclodextrin-based polyrotaxane in hydrocarbon solvent through an efficient heterogeneous reaction
WO2008069274A1 (en) Organic polymer bearing plural organic ring structures and a chain structute passing through the ring structures, and process for the production thereof
Wu et al. β-Cyclodextrin-capped polyrotaxanes: one-pot facile synthesis via click chemistry and use as templates for platinum nanowires
Panova et al. Rotaxanes and polyrotaxanes. Their synthesis and the supramolecular devices based on them
Tomalia Dendrimeric supramolecular and supramacromolecular assemblies
Wang et al. Novel triblock copolymers comprising a polyrotaxane middle block flanked by PNIPAAm blocks showing both thermo-and solvent-response
Arai et al. One-pot synthesis of native and permethylated α-cyclodextrin-containing polyrotaxanes in water
JP6286362B2 (en) Novel polyrotaxane and method for producing the same
Ikai et al. Helix-sense-selective encapsulation of helical poly (lactic acid) s within a helical cavity of syndiotactic poly (methyl methacrylate) with helicity memory
Lim et al. Effect of molecular architecture on micellization, drug loading and releasing of multi-armed poly (ethylene glycol)-b-poly (ε-caprolactone) star polymers
Tezuka et al. Self‐Assembly and Covalent Fixation for Topological Polymer Chemistry
Han et al. Sequence‐controlled synthesis of rotaxanes
Wang et al. Organic–Inorganic Polyimides with POSS Cages in the Main Chains: An Impact of POSS R Groups on Morphologies and Properties
Altintas et al. Synthetic Methods Toward Single‐Chain Polymer Nanoparticles
JPWO2006051627A1 (en) Core / shell nano particles
KR100779150B1 (en) Method for producing aliphatic polymer having ketone group in main chain and method for producing composition aliphatic polymer having ketone group in main chain
Agrawal et al. Supramolecular assemblies and their applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850208

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548332

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12516049

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850208

Country of ref document: EP

Kind code of ref document: A1