WO2008066060A1 - Method for producing polymer, composition for forming insulating film, and silica insulating film and method for producing the same - Google Patents

Method for producing polymer, composition for forming insulating film, and silica insulating film and method for producing the same Download PDF

Info

Publication number
WO2008066060A1
WO2008066060A1 PCT/JP2007/072902 JP2007072902W WO2008066060A1 WO 2008066060 A1 WO2008066060 A1 WO 2008066060A1 JP 2007072902 W JP2007072902 W JP 2007072902W WO 2008066060 A1 WO2008066060 A1 WO 2008066060A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
insulating film
polymer
composition
atom
Prior art date
Application number
PCT/JP2007/072902
Other languages
French (fr)
Japanese (ja)
Inventor
Youhei Nobe
Hisashi Nakagawa
Seitarou Hattori
Masahiro Akiyama
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to JP2008547003A priority Critical patent/JPWO2008066060A1/en
Publication of WO2008066060A1 publication Critical patent/WO2008066060A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for producing a polymer, a composition for forming an insulating film, a silica-based insulating film, and a method for producing the same, and more specifically, an insulating film that can be suitably used as an interlayer insulating film in a semiconductor element.
  • the present invention relates to a composition for forming, a method for producing a polymer, a silicic force insulating film, and a method for producing the same.
  • silica (SiO 2) film formed by a vacuum process such as a CVD (Chemical Vapor Deposition) method has been widely used as an interlayer insulating film in a semiconductor element or the like. So, a silica (SiO 2) film formed by a vacuum process such as a CVD (Chemical Vapor Deposition) method has been widely used as an interlayer insulating film in a semiconductor element or the like. So, a silica (SiO 2) film formed by a vacuum process such as a CVD (Chemical Vapor Deposition) method has been widely used as an interlayer insulating film in a semiconductor element or the like. So, a CVD (Chemical Vapor Deposition) method has been widely used as an interlayer insulating film in a semiconductor element or the like. So, a CVD (Chemical Vapor Deposition) method has been widely used as an interlayer insulating film in a semiconductor element or the like. So
  • a coating type insulating film called a SOG (Spin on Glass) film mainly containing a hydrolysis product of tetraalkoxylane has been used. It has become.
  • a low dielectric constant interlayer insulating film called polyorganosiloxane, which is called organic SOG has been developed.
  • a composition comprising a mixture of fine particles obtained by condensing alkoxysilane in the presence of ammonia and a basic partial hydrolyzate of alkoxysilane (JP-A-5-263045). And a coating solution obtained by condensing a basic hydrolyzate of polyalkoxysilane in the presence of ammonia (Japanese Patent Laid-Open Nos. 11-340219 and 11). — No. 340220) has been proposed.
  • a polycarbosilane component in the film-forming composition.
  • a polycarbosilane solution and a polysiloxane solution can be mixed by mixing.
  • a method for preparing a cloth liquid and forming a low dielectric constant insulating film Japanese Patent Laid-Open No. 2001-127152 has been proposed. However, this method has a problem that carbosilane and siloxane domains are dispersed in the coating film in a non-uniform state.
  • the object of the present invention can be suitably used in a semiconductor device or the like for which high integration and multilayering are desired, has a low relative dielectric constant with little variation in molecular weight, mechanical strength, and storage.
  • An object of the present invention is to provide an insulating film forming composition capable of forming an insulating film excellent in stability and chemical solution resistance, and a method for producing a polymer usable in the composition.
  • Another object of the present invention is to provide a silica-based insulating film having a low relative dielectric constant and excellent in mechanical strength, storage stability and chemical solution resistance, and a method for producing the same.
  • a method for producing a polymer according to an aspect of the present invention includes:
  • R 1 is selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, an alkyl group, an aryl group, an aryl group, and a glycidyl group.
  • R 2 is selected from the group consisting of a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, an alkyl group, an aryl group, an aryl group, and a glycidyl group.
  • R 3 and R 4 are the same or different and are a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, an alkyl group having 2 to 6 carbon atoms, an aryl A group selected from the group consisting of a group, an aryl group and a glycidyl group, R 5 ⁇ R 7 are the same or different and each represents a substituted or unsubstituted methylene group, alkylene group, alkenylene group, alkynylene group, arylene group, and X, y, z each represents a number of 0 to; 10,000 And 5 ⁇ x + y + z ⁇ 10,000 conditions.)
  • R 8 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group or an aryl group, Z represents a halogen atom or an alkoxy group, and a represents an integer of 0 to 3.
  • the metal chelate compound is represented by (C) a force S represented by the following general formula (3).
  • R 9 represents a chelating agent
  • M represents a metal atom
  • R 1 () represents an alkyl group or an aryl group
  • b represents the valence of metal M
  • c represents l to b Represents an integer.
  • the basic catalyst (D) can be a nitrogen-containing compound represented by the following general formula (4).
  • X 1 , X 2 , X 3 and X 4 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group, an aryl group, or an aryl alkyl group, and Y represents a halogen atom. Or a 1 to 4 valent anionic group, and g represents an integer of 1 to 4.
  • the composition for forming an insulating film which is one aspect of the present invention, includes a polymer produced by the above production method and an organic solvent.
  • the Mw / Mn of the polymer is 1.5 to 4.0.
  • the polymer has a carbon atom content of 8 to 4.
  • the composition for forming an insulating film according to one embodiment of the present invention contains a hydrolysis condensate of a carbosilane oligomer and an alkoxysilane monomer, and an organic solvent, and contains the carbon atom of the hydrolysis condensate.
  • the content is 8-40 atomic%, and the hydrolysis-condensation product
  • Mw / Mn is 1 ⁇ 5 to 4 ⁇ 0.
  • the content of Si—— bonds in the hydrolysis condensate may be 20% or less based on the total amount of Si—O bonds.
  • a method for producing a silica-based insulating film according to one embodiment of the present invention includes applying the insulating film-forming composition to a substrate and heating to 30 to 450 ° C.
  • a method for producing a silica-based insulating film according to one embodiment of the present invention includes applying the insulating film-forming composition to a substrate and irradiating a high energy beam.
  • the silica-based insulating film according to one embodiment of the present invention is obtained by the method for producing a silica-based insulating film.
  • composition for forming an insulating film (A) at least one polycarbosilane compound represented by the following general formula (1), and (B) represented by the following general formula (2) After reacting at least one hydrolyzable silane compound in the presence of (C) a metal chelate compound and an acidic catalyst or one of them, the intermediate is obtained by (D) basic Includes polymers obtained by reaction in the presence of a catalyst. This polymer is obtained by the effective progress of the hydrolytic condensation reaction between (A) a polycarbosilane compound and (B) a hydrolyzable silane compound. Therefore, the polymer is uniform with little variation in molecular weight. Due to the tertiary structure, gelation is suppressed and the relative dielectric constant is low.
  • the composition for forming an insulating film includes a polymer containing carbon atoms at a predetermined ratio and having a small variation in molecular weight, an insulating film is formed using the composition for forming an insulating film.
  • an insulating film having excellent process resistance such as chemical resistance and etching resistance, and having a low relative dielectric constant due to layer separation in the film.
  • the silica-based insulating film has a low relative dielectric constant, excellent mechanical strength, adhesion, and process resistance such as chemical resistance and etching resistance, and does not cause phase separation in the film.
  • film forming composition an insulating film forming composition (hereinafter, also simply referred to as "film forming composition”), a silica-based insulating film, and a method for producing the same according to an embodiment of the present invention.
  • film forming composition an insulating film forming composition
  • silica-based insulating film a silica-based insulating film
  • Method for producing polymer includes (A) at least one polycarbosilane compound (hereinafter also referred to as “component (A)”) represented by the following general formula (1): (B) at least one hydrolyzable silane compound represented by the following general formula (2) (hereinafter also referred to as “component (B)”), (C) a metal chelate compound and an acidic catalyst or any
  • component (A) polycarbosilane compound represented by the following general formula (1)
  • component (B) at least one hydrolyzable silane compound represented by the following general formula (2)
  • component (C) a metal chelate compound and an acidic catalyst or any
  • an intermediate is obtained by reaction (hydrolysis condensation) in the presence of “(C) component”), and then the intermediate is treated in the presence of (D) a basic catalyst. Including the step of By this treatment, the hydrolysis condensation reaction of the intermediate proceeds.
  • the method for producing a polymer according to an embodiment of the present invention comprises (A) component and (B) component.
  • the intermediate after obtaining the intermediate, it is preferable to treat the intermediate in the presence of (D) a basic catalyst without purification. That is, the reaction is carried out in a reaction solution containing the component (A), the component (B), and the component (C) to obtain an intermediate, and then the component (C) is not removed in the reaction solution ( D) It is preferred to obtain a polymer by treating the intermediate in the presence of a basic catalyst.
  • this reaction solution may be added to the solvent containing (D) the basic catalyst, or (D) the basic catalyst may be added to this reaction solution.
  • R 1 is selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, an alkyl group, an aryl group, an aryl group, and a glycidyl group.
  • R 2 represents a halogen atom, hydroxy group, alkoxy group, acyloxy group, sulfone group, methanesulfone group, trifluoro group.
  • R 8 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group or an aryl group, Z represents a halogen atom or an alkoxy group, and a represents an integer of 0 to 3.
  • the component (A) is at least one polycarbosilane represented by the general formula (1) (hereinafter also referred to as “compound 1”), which is condensed with the component (B) described later to form Si—O. — Si bond can be formed.
  • compound 1 polycarbosilane represented by the general formula (1)
  • component (B) described later to form Si—O. — Si bond can be formed.
  • component (A) includes the case where compound 1 is dissolved in an organic solvent.
  • the halogen atom represented by I ⁇ to R 4 there may be mentioned a fluorine atom, a chlorine atom, a bromine atom, represented by I ⁇ to R 4
  • the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butoxy group.
  • the acyloxy group represented by I ⁇ to R 4 include an acetyloxy group and a propionyloxy group.
  • the alkyl group represented by Ri ⁇ R 4 for example a methyl group, Echiru group, propyl group, butyl group, etc.
  • hexyl group, cyclohexyl group can be exemplified to Table in I ⁇ to R 4
  • aryl groups that can be used include phenyl group, naphthyl group, methylphenyl group, ethenylphenyl group, chlorophenyl group, bromophenyl group, and fluorophenyl group. It can be.
  • examples of the alkylene group represented by R 5 to R 7 include an ethylene group, a propylene group, a butylene group, a hexylene group, and a decylene group.
  • the alkylene group has 2 to 6 carbon atoms, and these alkylene groups may be chain-like or branched or may form a ring, and the hydrogen atom may be a fluorine atom, a chlorine atom, a bromine atom, It may be substituted with halogen atoms such as iodine atoms!
  • alkenylene group represented by R 5 to R 7 examples include linear or branched alkenylene groups having 2 to 6 carbon atoms (preferably 1 to 4), such as vinylene groups, propenylene groups, Butenylene group, Pentenylene group, 1-Methylbinylene group, 1 Methylpropenylene group, 2-Methylpropenylene group, 1-Methylpentenylene group, 3-Methylpentenylene group, 1-Ethylbinylene group, 1-Ethinole group Examples thereof include a propenylene group, a 1-ethylbutenylene group, and a 3-ethylbutenylene group.
  • the hydrogen atoms in these alkenylene groups may be substituted with halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.
  • alkynylene group represented by R 5 to R 7 include linear or branched alkynylene groups having 2 to 6 carbon atoms (preferably 1 to 4), such as ethynylene group, 1 propynylene group, 1 List butynylene group, 1 pentynylene group, 1-hexylene group, 2-butynylene group, 2-pentynylene group, 1-methylethynylene group, 3-methyl-1 propynylene group, 3-methyl-1 butynylene group, etc. Power S can be.
  • the hydrogen atom in these alkynylene groups may be substituted with a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • R 5 to R 7 examples include a phenylene group and a naphthylene group.
  • a hydrogen atom is substituted with a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom. It may be.
  • X, y, ⁇ is a number from 0 to 10,000, and 5 ⁇ x + y + z ⁇ l 0,000.
  • the storage stability of the polymer may be inferior, and in the case of 10,000 + x + y + z, it causes layer separation with the component (B), resulting in a uniform membrane
  • X, y, and z are 0 ⁇ x ⁇ 800, 0 ⁇ y ⁇ 500, 0 ⁇ z ⁇ 1, 000, and more preferably 0 ⁇ x ⁇ 500, 0 ⁇ y ⁇ 300, 0 ⁇ z ⁇ 500, more preferably (or 0 ⁇ x ⁇ 100, 0 ⁇ y ⁇ 50, 0 ⁇ z ⁇ 100.
  • the mixing ratio of the component (A) and the component (B) is such that the component (A) is 1 to 1000 parts by weight with respect to 100 parts by weight of the completely hydrolyzed condensate of the component (B). It is particularly preferably 5 to 200 parts by weight, more preferably 5 to 100 parts by weight. If component (A) is less than 1 part by weight, sufficient chemical resistance may not be achieved after film formation, and if it exceeds 1000 parts by weight, the dielectric constant of the film cannot be reduced. There is a case.
  • the polystyrene equivalent weight average molecular weight of component (A) is preferably 400 to 50,000, more preferably 500 to 10,000, and more preferably 500 to 3,000. I like it. If the polystyrene equivalent weight average molecular weight of component (A) exceeds 50,000, layer separation may occur with component (B) and a uniform film may not be formed.
  • the component (B) is a hydrolyzable silane compound (hereinafter also referred to as “compound 2”) represented by the general formula (2).
  • the “hydrolyzable silane compound” refers to a silane compound having a group that can be hydrolyzed during the production of the polymer according to this embodiment.
  • the hydrolyzable group include a neurogen atom and an alkoxy group.
  • examples of the alkyl group and aryl group represented by R 8 are the alkyl group and aryl group represented by I ⁇ to R 4 in the general formula (1).
  • the ability to name Examples of the alkenyl group represented by R 8 include straight-chain or branched alkenyl groups having 2 to 6 (preferably 1 to 4) carbon atoms, such as a bur group, 1 propenyl group, 2— Propenyl group, isopropenyl group, 2-methyl-1 propenyl group, 3-methyl-1 propenyl group, 2-methyl-2-propenyl group, 3-methynole 2-propenyl group, 1 Buteyuru group, 2-Buteyuru group, and a 3-Buteyuru group, a hydrogen atom is a fluorine atom, a chlorine atom, a bromine atom, is represented by Yogu R 8 may be substituted with halogen atom such as iodine atom Examples of the alkynyl group include straight
  • Compound 2 examples include methyltrimethoxysilane, methyltriethoxysilane, methylenotri npropoxysilane, methyltriisopropoxysilane, methyltri nbutoxysilane, methylinoretrie sec butoxysilane, methinoretrie tert butoxysilane, methinoretriphenoxy.
  • the compounds are methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, butyltri Methoxy silane, butyl triethoxy silane, phenyl trimethoxy silane, phenyl triethoxy silane, dimethyl dimethoxy silane, dimethino letoxy silane, gethinoresi methoxy silane, jetino lesoxy silane, diphenyl sino methoxy silane, di Phenylo-Letoxysilane, Tetramethoxysilane, Tetraethoxy
  • the component (C) is a metal chelate compound and / or an acidic catalyst. That is, as the component (C), either a metal chelate compound or an acidic catalyst may be used! /, Or both may be used.
  • the metal chelate compound that can be used as the component (C) is represented by the following general formula (3).
  • R 9 is a chelating agent
  • M is a metal atom
  • R 1 () is an alkyl group or an aryl group.
  • B represents the valence of metal M
  • c represents an integer of 1 to b.
  • the metal M is at least one metal selected from a group IIIB metal (aluminum, gallium, indium, thallium) and a group IVA metal (titanium, zirconium, hafnium). S preferably titanium, aluminum Zircoyuum is more preferred.
  • group IIIB metal aluminum, gallium, indium, thallium
  • group IVA metal titanium, aluminum Zircoyuum is more preferred.
  • R 1 () include the alkyl group or aryl group represented by I ⁇ to R 4 in the general formula (1).
  • metal chelate compounds include triethoxy 'mono (acetylethylacetonate) titanium, tri-n-propoxy' mono (acetylethylacetonate) titanium, triisopropoxy 'mono (acetylethylacetonate) titanium.
  • Chelate compounds triethoxy 'mono (acetylethylacetonate) zirconium, tri-n-propyloxymono (acetylethylacetonate) zirconium, triisopropoxy mono- (acetylylacetonate) zirconium, tri-n-butoxy'mono (acetyl) Acetate) Zircoum, Toly sec Butoxy 'mono (acetylacetylacetonate) zirconium, Tory tert Butoxy' mono (acetylacetylacetonate) zirconium, diethoxy 'bis (acetylethylacetonate) zirconium, di n —Propoxy 'bis (acetylethylacetonate) zirconium, diisopropoxy'bis (acetylethylacetonate) zirconium, di-n-butoxy'bis (acetylacetonate) zirconium, di-sec-but
  • metal chelate compounds are preferred as the metal chelate compounds used.
  • the amount of the metal chelate compound used is 0.0001 to 10 parts by weight, preferably 0.00; based on 100 parts by weight of the total amount of the component (A) and the component (B) (in terms of complete hydrolysis condensate). ⁇ 5 parts by weight.
  • the proportion of the metal chelate compound used is less than 0.0001 parts by weight, In some cases, the coating property of the polymer is inferior, and if it exceeds 10 parts by weight, the polymer growth cannot be controlled and gelation may occur.
  • the metal chelate compound may be added in advance to the organic solvent together with the component (D) at the time of hydrolysis condensation, or dissolved or dispersed in water when water is added. Moyore.
  • Examples of the acidic catalyst that can be used as the component (C) include organic acids and inorganic acids, and organic acids are preferable.
  • Examples of the organic acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacic acid, Gallic acid, butyric acid, melicic acid, arachidonic acid, shikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, Benzene sulphonic acid, monochlorodiacetic acid, dichloroacetic acid,
  • inorganic acids examples include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, and the like. Of these, organic acids are preferred because they are less likely to cause polymer precipitation or gelation during hydrolysis and condensation reactions. Of these, compounds having a carboxyl group are preferred. Among them, acetic acid, oxalic acid, maleic acid are preferred.
  • Organic acids such as hydrolysates of acids, formic acid, malonic acid, phthalic acid, fumaroleic acid, itaconic acid, succinic acid, mesaconic acid, citraconic acid, malic acid, malonic acid, gnolelic acid, maleic anhydride Particularly preferred. There is one of these Or you can use two or more at the same time.
  • the amount of the acidic catalyst used is from 0.0001 to 10 parts by weight, preferably 0.000, based on 100 parts by weight of the total amount of component (A) and component (B) (in terms of complete hydrolysis condensate). ; To 5 parts by weight.
  • the use ratio of the acidic catalyst is less than 0.0001 parts by weight, the coating property of the coating film may be inferior, and when it exceeds 10 parts by weight, the hydrolysis condensation reaction may proceed rapidly and gelation may occur.
  • the acidic catalyst may be added in advance to the organic solvent together with the components (A) and (B) at the time of the hydrolysis condensation, or may be dissolved or dispersed in water at the time of addition of water. Good.
  • Examples of basic catalysts include methanolamine, ethanolamine, propanolanolamine, butanolamine, N-methylmethanolamine, N-ethylmethanolamine, N-propylmethanolamine, N— Butylmethanolamine, N-methylethanolamine, N-ethylethanolamine, N-propylethanolamine, N-butylethanolamine, N-methylpropanolamine, N-ethylpropanolamine, N- Propinopropanolamine, N-butylpropanolamine, N-methylbutanolamine, N-ethylbutanolamine, N-propylbutanolamine, N-butylbutanolamine, N, N-dimethylmethanolamine , N, N-Detylmethanolamine, N, N-dipropylmethanolamine, N, N-dibutylmethanolamine, N, N-dimethylethanolanolamine, N, N-jetylethanol
  • the basic catalyst is particularly a nitrogen-containing compound represented by the following general formula (4) (hereinafter, also referred to as Compound 3! /, U).
  • X 1 , X 2 , X 3 and X 4 are the same or different and each is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms (preferably a methyl group, an ethyl group, a propyl group or a butyl group). Hexyl group, etc.), hydroxyalkyl group (preferably hydroxyethyl group etc.), aryl group (preferably phenyl group etc.), arylalkyl group (preferably phenylmethyl group etc.), Y represents halogen atom ( Preferably a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.);! To a tetravalent anionic group (preferably a hydroxy group, etc.), and g represents an integer of 1 to 4.
  • compound 3 include tetramethyl ammonium hydroxide, tetraethyl ammonium hydroxide, tetra-n-propyl ammonium hydroxide, tetra-hydroxy isopropylene ammonium, tetra-n-butyl ammonium hydroxide, Hydroxy tetra isobutyl ammonium, tetra tert butyl ammonium, tetrapentyl ammonium hydroxide, tetrahexyl ammonium hydroxide, tetraheptyl ammonium hydroxide, tetraoctyl ammonium hydroxide, water Tetranonyl ammonium oxide, tetradecyl ammonium hydroxide, tetraundecyl ammonium hydroxide, tetradodecyl ammonium hydroxide, tetramethylammonium bromide, tetramethylammonium chloride,
  • S The power to be listed as S.
  • tetramethylammonium hydroxide tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetra-n-butylammonium hydroxide, tetramethylammonium hydroxide, Tetramethylammonium chloride, tetraethylammonium bromide, tetraethylammonium chloride, tetra-n-propylammonium bromide, and tetra-n-propylammonium chloride.
  • the compound 3 may be used alone or in combination of two or more.
  • the amount of the above-mentioned basic catalyst (D) used is generally the total amount of hydrolyzable groups in the compounds;! 0. 00005 to 5 mono.
  • the intermediate and the component (E) may be treated! /.
  • component (E) the compounds exemplified as the component (B) can be used.
  • component (E) methyltrimethoxysilane, methyltriethoxysilane, methyltrin propoxysilane, tetramethoxysilane, tetraethoxysilane, tetran
  • the amount of component (E) used is preferably 50 mol% or less when the total amount of component (A) and component (B) used for the production of the intermediate is 100 mol%. . When the total amount of component (A) and component (B) used for the production of the intermediate is 100 mol%, if the component (A) in the intermediate is less than 10 mol%, acid treatment However, it is not very effective. [0062] 1. 6. Organic solvent
  • the (A) component and the (B) component can be reacted in a state dissolved in an organic solvent. Further, in the production of the above-described polymer, the reaction can be performed in a state where the intermediate (and the component (E)) is dissolved in an organic solvent.
  • organic solvents examples include alcohol solvents such as methanol, ethanol, n-prono-norole, i-prono-norole, n-butanol, i-butanol, sec-butanol and t-butanol; ethylene Glycol, 1,2-propylene glycolol, 1,3 butylene glycolanol, 2,4 pentanediol, 2 methyl-2,4 pentanediol, 2,5 hexanediol, 2,4 heptanediol, 2 ethyl-1,3 Polyhydric alcohol solvents such as hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol; ethylene glycol monomethino ethenore, ethylene glycol monomethino enoenore, ethylene glyconoremo Nopropyl ether
  • the concentration of the total amount of the component (A) and the component (B) in the organic solvent is preferably 1 to 30% by weight.
  • the concentration of the intermediate in the organic solvent (when the intermediate and (E) component are reacted, the total amount of the intermediate and (E) component) is 1 to 30% by weight.
  • the reaction temperature in the hydrolytic condensation is 0 to 100 ° C, preferably 20 to 80 ° C, the reaction time is 30 to 1000 minutes, and preferably ⁇ is 30 to 180 minutes.
  • each component is not particularly limited.
  • (D) a basic catalyst is added to an organic solvent, and (A) component and (B) component are added to the organic solvent. It is preferable to add them one after another!
  • the weight average molecular weight in terms of polystyrene of the obtained specific hydrolyzed condensate is usually preferably 1, 000 to 500,000 ⁇ , more preferably 20,000 to 300,000. More preferably, 30,000-100,000. If the specific hydrolysis-condensation product has a polystyrene equivalent weight average molecular weight of less than 10,000, the target relative dielectric constant may not be obtained. On the other hand, if it exceeds 500,000, the in-plane uniformity of the coating will be uniform. May be inferior.
  • compound 1 is used as component (A) and (A) component and (B) component are reacted in the presence of component (C) ( Hydrolysis condensation) to obtain an intermediate, (D) by treating the intermediate (and component (E)) in the presence of a basic catalyst, it has a predetermined carbon content with little variation in molecular weight
  • component (C) Hydrolysis condensation
  • component (D) Hydrolysis condensation
  • the resulting polymer has a structure in which a polymer having (A) component (polycarbosilane) as a nucleus is incorporated into the tertiary structure of a polysiloxane derived from (B) component (hydrolyzable group-containing silane monomer).
  • the composition for forming an insulating film containing the polymer is very excellent in mechanical strength and adhesion with a small relative dielectric constant, and process resistance such as etching resistance and chemical resistance, and uses the composition. Can obtain an insulating film without phase separation in the film.
  • the polymer obtained by the production method according to this embodiment was obtained by reacting (i) (A) component and (B) component in the presence of (C) component. Thereafter, the intermediate may be obtained by treating in the presence of a basic catalyst (D), or (ii) reacting the component (A) and the component (B) in the presence of the component (C). After obtaining an intermediate, the intermediate and component (E) may be obtained by treatment in the presence of a basic catalyst (D)! /.
  • the polymer obtained by the production method according to the present embodiment is obtained by hydrolytic condensation of a carbosilane oligomer and an alkoxysilane monomer, and has a carbon atom content of up to 40 atom% (preferably 8 to 20 atom).
  • Mw / Mn can be 1 ⁇ 5 to 4 ⁇ 0 (preferably 1 ⁇ 5 to 3.5).
  • examples of the carbosilane oligomer include the above-described component (ii)
  • examples of the alkoxysilane monomer include the above-described component (ii).
  • the carbon atom content is more preferably 8 to 40 atom% (more preferably 8 to 20 atom%, particularly preferably 10 to 18 atom%), and Mw / Mn is 1 More preferably, it is 5 to 4.0 (more preferably 1.5 to 3.5).
  • the carbon atom content (atomic%) of the polymer is determined based on the components used for polymer preparation (( ⁇ ⁇ ⁇ ⁇ ) component and ( ⁇ ) component (( ⁇ ) component in the case of using ( ⁇ ) component)).
  • Hydrolyzable groups are completely hydrolyzed to form silanol groups, and the generated silanol groups are completely condensed to form siloxane bonds. Specifically, from the following formula: Desired.
  • Carbon atom content (atomic%) (number of carbon atoms in organic silica sol) / (total number of atoms in organic silica sol) X I 00
  • the content of the Si- ⁇ bond is preferably 20% or less, more preferably 15% or less, for example, 0.1 to 20% (preferably 1 to 15%).
  • the total amount of Si—O bonds refers to the total amount of Si—O bonds and Si—OH bonds contained in Si—O—Si. If Si—OH bonds are present in the polymer in excess of the above ratio, the water absorption may be increased.
  • the content of Si—OH bond can be determined from the integrated value of peaks in the 29 Si—NMR spectrum measured for the polymer. Specifically, in the 29 Si—NMR spectrum, the Si—OH bond content can be determined.
  • the total content the integrated value of the peaks indicating the Si OH bonds / (the integrated value of the peaks indicating the Si OH bonds + the integrated value of the peaks indicating the Si 2 O bonds).
  • the weight average molecular weight (Mw) of the polymer is preferably 10,000 to 200,000,
  • the weight average molecular weight of the polymer is larger than 200,000, gelation is likely to occur, and the pores in the resulting silica-based film are too large, which is not preferable. On the other hand, if the weight average molecular weight of the polymer is less than 10,000, problems with coating properties and storage stability are likely to occur! In addition, the holes for reducing the dielectric constant are too small.
  • the film forming composition according to this embodiment includes the polymer and an organic solvent.
  • the composition for forming an insulating film according to an embodiment of the present invention comprises a polymer (hydrolyzed condensate) obtained by hydrolytic condensation of a carbosilane oligomer and an alkoxysilane monomer, and an organic solvent.
  • the polymer has a carbon atom content of 8 to 40 atomic%, and the polymer has an Mw / Mn of 1.5 to 4.0.
  • examples of the carbosilane oligomer include the aforementioned component (A), and examples of the alkoxysilane monomer include the aforementioned component (B).
  • the carbon atom content of the polymer is preferably 8 to 20 atom% (particularly preferably 10 to 18 atom%), and the polymer Mw / Mn is preferably 1 ⁇ 5 to 3.5 ⁇ 5. Power S can be.
  • Examples of the organic solvent contained in the composition for forming an insulating film according to this embodiment include alcohol solvents, ketone solvents, amide solvents, ether solvents, ester solvents, aliphatic hydrocarbon solvents, and aromatic solvents.
  • Group power of solvent and halogen-containing solvent At least one kind selected.
  • Examples of the alcohol solvent include methanol, ethanol, ⁇ -propanol, i-propano monoole, n butanomonore, i-butanomonore, sec butanomonore, t-butanomonore, n pentanomonore, i pentano 1-noreth, 2-methylol-butanol, sec-pentanol-nor, t-pentanol-nor, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol , N Octano Nole, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, 2, 6-dimethylo-l-heptanol, n-decanol, sec-undecyl alcohol,
  • Ethylene glycol 1,2-propylene glycol, 1,3-butylene glycol, 2,4 pentanole, 2 methylolene 2,4 pentane nore, 2,5 hexane di nore, 2, Polyhydric alcohol solvents such as 4 heptanediol, 2 ethyl 1,3 hexanediol, diethylene glycolone, dipropylene glycolanol, triethyleneglycolanol, tripropylene glycolol;
  • Ethylene glycol monomethino ethenore ethylene glycol monomono chineno ethenore, ethylene glyco mono mono chineno ethenore, ethylene glyco mono butino enoate, ethylene glyco mono mono hexino ree Monophenylenoateolene, Ethylene glycol mono-2-ethylbutyl ether, Diethylene glycol monomethyl ether, Diethylene glycol monoethyl ether, Diethylene glycol monopropinoreethenole, Diethyleneglycolenobutinoreethenore, Diethyleneglycolole monohexenore Ethenore, Propylene Glycole Monomethinore Ete Nore, Propylene Glyco Monorechinore Ete Nore, Propylene Glico Monore Monopro Polyhydric alcohol partial ethers such as Noleyatenore, Propylene Glycol Nole Monobutenoleete Nore,
  • the ketone solvents include acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n butyl ketone, jetyl ketone, methyl i-butyl ketone, methyl n n-pentyl ketone, ethyl n-butyl ketone, methyl n-hexyl ketone, ji i-butyl ketone, and trimethyl.
  • amide solvents include N, N dimethylimidazolidinone, N methylformamide, N, N dimethylformamide, N, N jetylformamide, acetoamide, N methylacetamide, N, N dimethylacetamide, N methyl And nitrogen-containing solvents such as propionamide and N-methylpyrrolidone. These amide solvents may be used alone or in combination of two or more.
  • Ether solvent systems include ethyl ether, i-propyl ether, n-butyl ether, n-hexyl ether, 2-ethyl hexyl ether, ethylene oxide, 1,2 propylene oxide, dioxolane, 4-methyldio Xoxolane, dioxane, dimethyl dioxane, ethylene glycol monomethyl ether, ethylene glycol dimethyl etherol, ethylene glycol nole chineno ethenore, ethylene glycono lesino chineno ethenore, ethylene glycono leneno enore n- butino enotenole, ethylene Glyco-mono-mono-hexenoyl etherenole, ethylene-glycol-monomonoethanolate, ethylene-glycol-monomono-2-ethylbutyl ether, ethylene glycol dibutyl ether,
  • ester solvents include jetyl carbonate, propylene carbonate, and acetic acid.
  • Tinole Ethyl acetate, ⁇ -Butyloratonone, ⁇ -Valerolataton, ⁇ -propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, acetic acid 2-ethyl butyl, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, n- noyl acetate, methyl acetate, acetate ethyl acetate, ethylene glycolenolemonomethineateol, Ethyl a
  • Aliphatic hydrocarbon solvents include n-pentane, i-pentane, n-hexane, ⁇ -hexane, n-heptane, i-heptane, 2, 2, 4 trimethylpentane, n-octane, i-octane And aliphatic hydrocarbon solvents such as cyclohexane and methylcyclohexane. These aliphatic hydrocarbon solvents may be used alone or in combination of two or more.
  • Aromatic hydrocarbon solvents include benzene, toluene, xylene, ethylbenzene, trimethylolenebenzene, methinoleethinobenzene, n-propinorebencene, i-propinolebencene, jetinolebenzene, i-butyl Examples include aromatic hydrocarbon solvents such as norebenzene, trietinolebenzene, zi-propinolebencene, n-amylnaphthalene, and trimethylbenzene. These aromatic hydrocarbon solvents may be used alone or in combination of two or more.
  • halogen-containing solvent examples include halogen-containing solvents such as dichloromethane, black mouth form, chlorofluorocarbon, black mouth benzene, and dichlorobenzene.
  • halogen-containing solvents such as dichloromethane, black mouth form, chlorofluorocarbon, black mouth benzene, and dichlorobenzene.
  • organic solvent having a boiling point of less than 150 ° C.
  • Alcohol solvents, ketone solvents, esters These solvents are particularly desirable, and it is desirable to use one or more of them at the same time.
  • organic solvents may be the same as those used in the synthesis of the intermediate and / or polymer, or the solvent may be used after the synthesis of the intermediate and / or polymer is completed. Can also be substituted.
  • the total solid concentration of the film-forming composition according to one embodiment of the present invention is preferably 0.1 to 20% by weight, and is appropriately adjusted according to the purpose of use.
  • the total solid concentration of the film-forming composition according to one embodiment of the present invention is 0.;! To 20% by weight, the film thickness of the coating film falls within an appropriate range, and thus excellent storage stability is achieved. It will have.
  • This total solid concentration is adjusted by concentration and dilution with an organic solvent, if necessary.
  • Components such as organic polymers and surfactants may be further added to the composition for forming an insulating film according to this embodiment.
  • organic polymer examples include a polymer having a sugar chain structure, a buramide polymer, a (meth) acrylic polymer, an aromatic bur compound polymer, a dendrimer, a polyimide, a polyamic acid, a polyarylene, a polyamide, a poly Examples include quinoxaline, polyoxadiazonole, fluorine-based polymers, and polymers having a polyalkylene oxide structure.
  • Examples of the polymer having a polyalkylene oxide structure include a polymethylene oxide structure, a polyethylene oxide structure, a polypropylene oxide structure, a polytetramethylene oxide structure, and a polybutylene oxide structure.
  • polyoxymethylene alkyl ether polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl etherol, polyoxyethylene sterol ether, polyoxyethylene lanolin derivative, alkylphenol formalin condensate Ethylene oxide derivatives, polyoxyethylene polyoxypropylene block copoly , Ether type compounds such as polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene glycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene fatty acid alkanol amide sulfate and other ether ester type Compounds, polyethylene glycol fatty acid esters, ethylene glycol fatty acid esters, fatty acid monoglycerides, polyglycerin fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, sucrose fatty acid esters, etc. .
  • Examples of the polyoxyethylene polyoxypropylene block copolymer include compounds having the following block structure.
  • X ′ is a group represented by 1 CH 2 CH 2 O—
  • Y ′ is represented by 1 CH 2 CH (CH 2)
  • 2 represents a group to be formed, 1 represents;! To 90, m represents 10 to 99, and n represents a number from 0 to 90. )
  • polyoxyethylene alkyl ethers polyoxyethylene polyoxypropylene block copolymers, polyoxyethylene polyoxypropylene anolenoyl ether, polyoxyethylene glycerin fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene
  • An ether type compound such as oxyethylene sorbitol fatty acid ester can be cited as a more preferable example.
  • One or two or more of the aforementioned organic polymers may be used at the same time.
  • a noion surfactant for example, a noion surfactant, a cation surfactant, a cationic surfactant, an amphoteric surfactant, and the like can be mentioned.
  • a fluorine surfactant, a silicone surfactant examples include polyalkylene oxide surfactants and poly (meth) acrylate surfactants, preferably fluorine surfactants and silicone surfactants.
  • the amount of the surfactant used is usually from 0.0001 to 1 part by weight based on 100 parts by weight of the resulting polymer. These may be used alone or in combination of two or more. [0096] 3. Method of manufacturing insulating film
  • a method for producing an insulating film (silica-based insulating film) according to an embodiment of the present invention includes a step of applying the insulating film-forming composition to a substrate and performing a curing process.
  • Examples of the substrate on which the composition for forming an insulating film is applied include Si, SiO, SiN, SiC, SiCN, etc.
  • Si-containing layer As a method of applying the insulating film forming composition to the substrate, a coating means such as spin coating, dipping method, roll coating method, spray method or the like is used. After the film-forming composition is applied to the substrate, the solvent is removed to form a coating film.
  • the film thickness at this time is a dry film thickness of 0.05 to 2.5 mm when applied once, and a thickness of 0.;! To 5. O ⁇ m when applied twice. be able to. Then, a silica-type film
  • Examples of the curing treatment include heating, irradiation with high energy rays such as electron beams and ultraviolet rays, plasma treatment, and combinations thereof. Heat treatment or irradiation with high energy rays is preferable.
  • the coating film is 80 to 80 in an inert atmosphere or under reduced pressure.
  • Heat to 450 ° C (preferably 300 ° C to 450 ° C).
  • a hot plate, an oven, a furnace, or the like can be used, and the heating atmosphere can be an inert atmosphere or a reduced pressure.
  • a silica-based film (silica-based insulating film) according to an embodiment of the present invention has a low dielectric constant and excellent surface flatness, so that LSI, system LSI, DRAM, SDRAM, RDRAM, D-RDRAM, etc. It is particularly excellent as an interlayer insulating film for semiconductor elements, and is an etching stopper film, a protective film such as a surface coating film for semiconductor elements, an intermediate layer in a semiconductor manufacturing process using a multilayer resist, and an interlayer insulating film for a multilayer wiring board It can be suitably used as a protective film or an insulating film for liquid crystal display elements.
  • the silica-based film according to an embodiment of the present invention is useful for a semiconductor device including a copper damascene process.
  • the silica-based film according to one embodiment of the present invention has a relative dielectric constant of preferably 1.5 to 3.5, more preferably 1.8 to 3.0, and still more preferably 1.8 to 2.5, and its elastic modulus is preferably (2.5 to 15.0 GPa, more preferably (3.0 to 12 OGPa, and its film density force is preferably 0.7 to; ⁇ 3 g / cm 3 , more preferably 0.8 to • • 27 g / cm 3 From these facts, the organic silica-based film according to one embodiment of the present invention has mechanical properties and relative permittivity. It is extremely excellent in insulating film properties such as.
  • a polymer film (silica film) formed by the following method was used for the hardness, elastic modulus, chemical resistance, and membrane separation. That is, the composition obtained in each example and comparative example was applied onto a silicon wafer by spin coating, and then the substrate was heated on a hot plate at 90 ° C. for 3 minutes and at 200 ° C. in a nitrogen atmosphere for 3 minutes. The substrate was further dried, and the substrate was baked on a hot plate for 60 minutes under a nitrogen atmosphere of 400 ° C. to obtain a polymer film having a thickness of 500 m. This polymer film was used for the various evaluations described above.
  • a film-forming composition is applied onto an 8-inch silicon wafer by spin coating, dried on a hot plate at 90 ° C for 3 minutes, then in a nitrogen atmosphere at 200 ° C for 3 minutes, and further 50 mTorr. Baked in a vertical furnace at 420 ° C for 1 hour under reduced pressure (vacuum atmosphere).
  • An aluminum electrode pattern was formed on the obtained film by vapor deposition to prepare a sample for measuring relative permittivity. For this sample, the ratio of the membrane at room temperature (24 ° C) and 200 ° C was measured by the CV method using the HP16451B electrode and HP4284A Precision LCR meter manufactured by Yokogawa Hewlett-Packard Co., Ltd. at a frequency of 100 kHz. The dielectric constant was measured.
  • the force S can mainly be used to evaluate the increase in relative permittivity due to moisture absorption of the film.
  • Ak is 0.25 or more, it can be said that the organic silica film has high water absorption.
  • a Barcobit type indenter was attached to an ultra-small hardness meter (Nanoindentator XP) manufactured by MTS, and the universal hardness of the resulting polymer film was determined.
  • the elastic modulus was measured by a continuous stiffness measurement method.
  • the film-forming composition stored at 40 ° C for 30 days is applied to the substrate using a spin coating method, and the substrate is applied on a hot plate at 90 ° C for 3 minutes and then at 200 ° C for 3 minutes in a nitrogen atmosphere. It was dried and further baked in a vertical furnace at 420 ° C. for 1 hour under a reduced pressure of 50 mTorr.
  • the thickness of the resulting coating film in the optical film thickness meter (Rudolph Technologies, Inc., S pectra La Se r200) were measured 50 points by coating the surface with.
  • the film thickness of the obtained film was measured, and the storage stability was evaluated by the film thickness increase rate obtained by the following formula.
  • Thickness increase rate (%) ((film thickness after storage) (film thickness before storage)) ⁇ (film thickness before storage) X 10 0
  • the film thickness increase rate is 4% or less.
  • the 8-inch wafer on which the polymer film was formed was immersed in a 0.2% dilute hydrofluoric acid aqueous solution for 1 minute at room temperature, and the change in film thickness of the silica-based film before and after immersion was observed. If the remaining film rate defined below is S 99% or more, it is judged that the chemical resistance is good.
  • Remaining film ratio (%) (film thickness after immersion) ⁇ (film thickness before immersion) X 100
  • the remaining film rate is 99% or more.
  • B Remaining film ratio is less than 99%.
  • Sample Prepared by using tetrahydrofuran as a solvent and dissolving polymer (hydrolysis condensate) lg in 100 cc of tetrahydrofuran.
  • Standard polystyrene Standard polystyrene manufactured by US Pressure Chemical Company was used.
  • Apparatus High-temperature, high-speed gel permeation chromatogram (Model 150-C, manufactured by Waters, USA)
  • the 29 Si-NMR spectrum of the polymer was measured using deuterated benzene as a solvent.
  • composition A carbon atom content of polymer in composition: 10 atom%).
  • the content of Si—OH bond in the obtained polymer was 10% with respect to the total amount of Si—O bond.
  • composition C carbon atom content of polymer in composition: 17 atom%).
  • the content of Si—OH bond in the obtained polymer was 14% based on the total amount of Si—O bond.
  • composition F carbon atom content of polymer in composition: 17 atom%).
  • the content of Si—OH bond in the obtained polymer was 18% with respect to the total amount of Si—O bond.
  • compositions D, E, and F obtained in Comparative Examples 1 to 3 some of the compositions (5 mL, 3 mL, and 1 mL, respectively) passed through the 0.2 ⁇ 11 111 I got clogged. The reason for this is that in Comparative Examples;! To 3, since the reaction in the presence of the chelate catalyst or acidic catalyst was not performed before the treatment with (D) the basic catalyst, the compositions D, E, F It is considered that coarse particles were generated during the reaction for preparing the compound, and the molecular weight was increased.
  • the silica-based film obtained by the present invention has excellent mechanical strength, a low relative dielectric constant, and excellent process resistance such as chemical resistance and storage stability. It is suitable as an interlayer insulating film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicon Polymers (AREA)
  • Formation Of Insulating Films (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a method for producing a polymer, which comprises a step wherein an intermediate is obtained by reacting (A) at least one polycarbosilane compound represented by the general formula (1) below with (B) at least one silane compound selected from hydrolyzable silane compounds represented by the general formula (2) below in the presence of (C) one or both of a metal chelate compound and an acidic catalyst, and then the thus-obtained intermediate is processed in the presence of (D) a basic catalyst.

Description

明 細 書  Specification
ポリマーの製造方法、絶縁膜形成用組成物、ならびにシリカ系絶縁膜お よびその製造方法  Method for producing polymer, composition for forming insulating film, silica-based insulating film and method for producing the same
技術分野  Technical field
[0001] 本発明は、ポリマーの製造方法、絶縁膜形成用組成物、ならびにシリカ系絶縁膜 およびその製造方法に関し、さらに詳しくは、半導体素子における層間絶縁膜などに 好適に用いることができる絶縁膜形成用組成物、ポリマーの製造方法、ならびにシリ 力系絶縁膜およびその製造方法に関する。  The present invention relates to a method for producing a polymer, a composition for forming an insulating film, a silica-based insulating film, and a method for producing the same, and more specifically, an insulating film that can be suitably used as an interlayer insulating film in a semiconductor element. The present invention relates to a composition for forming, a method for producing a polymer, a silicic force insulating film, and a method for producing the same.
背景技術  Background art
[0002] 従来、半導体素子などにおける層間絶縁膜として、 CVD (Chemical Vapor Dep osition)法などの真空プロセスで形成されたシリカ(SiO )膜が多用されている。そし  Conventionally, a silica (SiO 2) film formed by a vacuum process such as a CVD (Chemical Vapor Deposition) method has been widely used as an interlayer insulating film in a semiconductor element or the like. So
2  2
て、近年、より均一な層間絶縁膜を形成することを目的として、 SOG (Spin on Glass )膜と呼ばれるテトラアルコキシランの加水分解生成物を主成分とする塗布型の絶縁 膜が使用されるようになっている。また、半導体素子などの高集積化に伴い、有機 S OGと呼ばれるポリオルガノシロキサンを主成分とする低比誘電率の層間絶縁膜が開 発されている。  In recent years, for the purpose of forming a more uniform interlayer insulating film, a coating type insulating film called a SOG (Spin on Glass) film mainly containing a hydrolysis product of tetraalkoxylane has been used. It has become. In addition, with the high integration of semiconductor elements and the like, a low dielectric constant interlayer insulating film called polyorganosiloxane, which is called organic SOG, has been developed.
[0003] 特に、半導体素子などのさらなる高集積化や多層化に伴い、より優れた導体間の 電気絶縁性が要求されており、したがって、より低比誘電率でかつクラック耐性、機械 的強度および密着性に優れた層間絶縁膜材料が求められるようになつている。  [0003] In particular, along with further higher integration and multilayering of semiconductor elements and the like, better electrical insulation between conductors is required, and therefore, it has a lower relative dielectric constant, crack resistance, mechanical strength and An interlayer insulating film material having excellent adhesion has been demanded.
[0004] 低比誘電率の材料としては、アンモニアの存在下でアルコキシシランを縮合して得 られる微粒子と、アルコキシシランの塩基性部分加水分解物との混合物からなる組成 物(特開平 5— 263045号公報、特開平 5— 315319号公報)や、ポリアルコキシシラ ンの塩基性加水分解物をアンモニアの存在下で縮合することにより得られた塗布液( 特開平 11— 340219号公報、特開平 11— 340220号公報)が提案されている。  [0004] As a material having a low relative dielectric constant, a composition comprising a mixture of fine particles obtained by condensing alkoxysilane in the presence of ammonia and a basic partial hydrolyzate of alkoxysilane (JP-A-5-263045). And a coating solution obtained by condensing a basic hydrolyzate of polyalkoxysilane in the presence of ammonia (Japanese Patent Laid-Open Nos. 11-340219 and 11). — No. 340220) has been proposed.
[0005] 絶縁膜中の炭素含有量を高めて各種プロセスに対する耐性を向上させるには、膜 形成組成物中にポリカルボシラン成分を含めることが有効な方法の一つである。その 一例として、ポリカルボシラン溶液およびポリシロキサン溶液を混合することにより塗 布液を調製し、低誘電率絶縁膜を形成する方法 (特開 2001— 127152号公報)が 提案されている。し力もながら、この方法ではカルボシランとシロキサンのドメインがそ れぞれ不均一な状態で塗膜中に分散してしまうという問題があった。 In order to increase the carbon content in the insulating film and improve the resistance to various processes, it is an effective method to include a polycarbosilane component in the film-forming composition. As an example, a polycarbosilane solution and a polysiloxane solution can be mixed by mixing. A method for preparing a cloth liquid and forming a low dielectric constant insulating film (Japanese Patent Laid-Open No. 2001-127152) has been proposed. However, this method has a problem that carbosilane and siloxane domains are dispersed in the coating film in a non-uniform state.
[0006] また、ポリカルボシランの存在下で加水分解性基含有シランモノマーを反応させる ことにより、加水分解性基含有シランモノマーに由来するポリシロキサンとポリカルボ シランとの共縮合物を得て、そのポリマーを含有する膜形成用組成物を用いる方法 を本出願人は提案してレ、る(国際公開番号 WO2005/068540)。  [0006] Further, by reacting a hydrolyzable group-containing silane monomer in the presence of polycarbosilane, a co-condensate of polysiloxane and polycarbosilane derived from the hydrolyzable group-containing silane monomer is obtained, The present applicant proposes a method using a film-forming composition containing a polymer (International Publication No. WO2005 / 068540).
[0007] しかしな力 Sら、国際公開番号 WO2005/068540に記載されている方法を用いて 、さらに炭素含有量を上げるために単純にポリカルボシランの成分比を高めると、ポリ カルボシランと加水分解性シランモノマーとの共縮合が十分に起こらず、結果的に未 反応のシラノール基がポリマー中に多く残り、得られたポリマーの吸湿性が高くなる場 合がある。さらに、得られたポリマーの吸湿性が大きいと、エッチングや洗浄薬液など に対する耐性 (プロセス耐性)が悪化することが知られており、炭素含有量を高めたこ とによるプロセス耐性の向上効果を相殺してしまうことがある。  [0007] However, when the component ratio of polycarbosilane is simply increased in order to further increase the carbon content using the method described in International Publication No. WO2005 / 068540, hydrolysis of polycarbosilane and Co-condensation with the functional silane monomer does not occur sufficiently, and as a result, a large number of unreacted silanol groups remain in the polymer, and the resulting polymer may have high hygroscopicity. Furthermore, it is known that if the resulting polymer has a high hygroscopic property, the resistance to etching and cleaning chemicals (process resistance) will deteriorate, which offsets the effect of increasing the process resistance due to the increased carbon content. May end up.
[0008] また、低誘電率化を進めるにあたり、空孔を大きくするためにシロキサンポリマー 1 分子当たりの分子量を大きくする必要がある。し力もながら、ポリカルボシランとシロキ サンモノマーとの反応性の違いによって、生成物のポリマー分子量分布が広がり、結 果的に比誘電率が上昇することがある。加えて、ポリマーが高分子量となるため、粗 大粒子が発生しやすく、発生した粗大粒子による濾過性の悪化を引き起こすこと力 Sあ る。特に、配線ピッチが細いほど、異物(粗大粒子)の発生を抑える必要性が高い。 発明の開示  [0008] Further, in order to reduce the dielectric constant, it is necessary to increase the molecular weight per molecule of the siloxane polymer in order to increase the pores. However, due to the difference in reactivity between polycarbosilane and siloxane monomer, the molecular weight distribution of the product may be broadened, resulting in an increase in the dielectric constant. In addition, since the polymer has a high molecular weight, coarse particles are likely to be generated, and the generated coarse particles may cause deterioration of filterability. In particular, the thinner the wiring pitch, the higher the need to suppress the generation of foreign matter (coarse particles). Disclosure of the invention
[0009] 本発明の目的は、高集積化および多層化が望まれている半導体素子などにおい て好適に用いることができ、分子量のばらつきが少なぐ低比誘電率であり、機械的 強度、保存安定性および薬液耐性などにも優れた絶縁膜を形成することができる絶 縁膜形成用組成物および該組成物に使用可能なポリマーの製造方法を提供するこ とにある。  The object of the present invention can be suitably used in a semiconductor device or the like for which high integration and multilayering are desired, has a low relative dielectric constant with little variation in molecular weight, mechanical strength, and storage. An object of the present invention is to provide an insulating film forming composition capable of forming an insulating film excellent in stability and chemical solution resistance, and a method for producing a polymer usable in the composition.
[0010] 本発明の他の目的は、低比誘電率であり、機械的強度、保存安定性および薬液耐 性などにも優れたシリカ系絶縁膜およびその製造方法を提供することにある。 [0011] 本発明の一態様に係るポリマーの製造方法は、 Another object of the present invention is to provide a silica-based insulating film having a low relative dielectric constant and excellent in mechanical strength, storage stability and chemical solution resistance, and a method for producing the same. [0011] A method for producing a polymer according to an aspect of the present invention includes:
(A)下記一般式(1)で表される少なくとも 1種のポリカルボシラン化合物と、(B)下 記一般式(2)で表される加水分解性シラン化合物で表される化合物から選ばれた少 なくとも 1種のシラン化合物とを、(C)金属キレート化合物および酸性触媒もしくはい ずれか一方の存在下で反応させて中間体を得た後、該中間体を (D)塩基性触媒の 存在下で処理する工程を含む。  (A) at least one polycarbosilane compound represented by the following general formula (1) and (B) a compound represented by the hydrolyzable silane compound represented by the following general formula (2) After reacting at least one silane compound in the presence of (C) a metal chelate compound and / or an acidic catalyst, an intermediate is obtained, and then the intermediate is converted into (D) a basic catalyst. A process in the presence of.
[0012] [化 1]  [0012] [Chemical 1]
Figure imgf000004_0001
Figure imgf000004_0001
· · · · · (1) (1)
(式中、 R1は水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基、 スルホン基、メタンスルホン基、トリフルォロメタンスルホン基、アルキル基、ァリール基 、ァリル基およびグリシジル基からなる群より選ばれる基を示し、 R2はハロゲン原子、 ヒドロキシ基、アルコキシ基、ァシロキシ基、スルホン基、メタンスルホン基、トリフルォ ロメタンスルホン基、アルキル基、ァリール基、ァリル基およびグリシジル基からなる群 より選ばれる基を示し、 R3, R4は同一または異なり、ハロゲン原子、ヒドロキシ基、アル コキシ基、ァシロキシ基、スルホン基、メタンスルホン基、トリフルォロメタンスルホン基 、炭素数 2〜6のアルキル基、ァリール基、ァリル基およびグリシジル基からなる群より 選ばれる基を示し、 R5〜R7は同一または異なり、置換または非置換のメチレン基、ァ ルキレン基、アルケニレン基、アルキニレン基、ァリーレン基を示し、 X, y, zは、それ ぞれ 0〜; 10, 000の数を示し、 5< x + y+ z< 10, 000の条件を満たす。 ) (Wherein R 1 is selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, an alkyl group, an aryl group, an aryl group, and a glycidyl group. R 2 is selected from the group consisting of a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, an alkyl group, an aryl group, an aryl group, and a glycidyl group. R 3 and R 4 are the same or different and are a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, an alkyl group having 2 to 6 carbon atoms, an aryl A group selected from the group consisting of a group, an aryl group and a glycidyl group, R 5 ˜R 7 are the same or different and each represents a substituted or unsubstituted methylene group, alkylene group, alkenylene group, alkynylene group, arylene group, and X, y, z each represents a number of 0 to; 10,000 And 5 <x + y + z <10,000 conditions.)
R8 SiZ (2) R 8 SiZ (2)
(式中、 R8は水素原子、アルキル基、アルケニル基、アルキニル基またはァリール 基、 Zはハロゲン原子あるいはアルコキシ基、 aは 0〜3の整数を示す。 ) (In the formula, R 8 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group or an aryl group, Z represents a halogen atom or an alkoxy group, and a represents an integer of 0 to 3.)
本発明の一態様に係るポリマーの製造方法は、  A method for producing a polymer according to one embodiment of the present invention includes:
(A)上記一般式(1)で表される少なくとも 1種のポリカルボシラン化合物と、(B)上 記一般式(2)で表される加水分解性シラン化合物で表される化合物から選ばれた少 なくとも 1種のシラン化合物とを、(C)金属キレート化合物および酸性触媒もしくはい ずれか一方の存在下で反応させて中間体を得た後、該中間体および (E)上記一般 式(2)で表される少なくとも 1種の加水分解性シラン化合物を (D)塩基性触媒の存在 下で処理する工程を含む。 (A) at least one polycarbosilane compound represented by the above general formula (1), and (B) At least one silane compound selected from the compounds represented by the hydrolyzable silane compound represented by the general formula (2) is combined with (C) a metal chelate compound and an acidic catalyst or one of them. After the reaction in the presence of an intermediate, the intermediate and (E) at least one hydrolyzable silane compound represented by the general formula (2) are combined in the presence of (D) a basic catalyst. Processing step.
[0013] 上記ポリマーの製造方法において、前記金属キレート化合物は(C)下記一般式(3 )で表されること力 Sでさる。  [0013] In the method for producing a polymer, the metal chelate compound is represented by (C) a force S represented by the following general formula (3).
[0014] R9 M (OR10) (3) [0014] R 9 M (OR 10 ) (3)
c b_c  c b_c
(式中、 R9はキレート剤を示し、 Mは金属原子を示し、 R1()はアルキル基またはァリ 一ル基を示し、 bは金属 Mの原子価を示し、 cは l〜bの整数を表す。 ) (Wherein R 9 represents a chelating agent, M represents a metal atom, R 1 () represents an alkyl group or an aryl group, b represents the valence of metal M, and c represents l to b Represents an integer.)
上記ポリマーの製造方法において、前記 (D)塩基性触媒は下記一般式 (4)で表さ れる含窒素化合物であることができる。  In the polymer production method, the basic catalyst (D) can be a nitrogen-containing compound represented by the following general formula (4).
[0015] (ΧΧΧ2Χ"Χ4Ν) Υ (4) [0015] (Χ Χ Χ 2 Χ "Χ 4 Ν) Υ (4)
g  g
(式中、 X1, X2, X3, X4は同一または異なり、水素原子、炭素数 1〜20のアルキル 基、ヒドロキシアルキル基、ァリール基、またはァリールアルキル基を示し、 Yはハロゲ ン原子または 1〜4価のァニオン性基を示し、 gは 1〜4の整数を表す。 ) (In the formula, X 1 , X 2 , X 3 and X 4 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group, an aryl group, or an aryl alkyl group, and Y represents a halogen atom. Or a 1 to 4 valent anionic group, and g represents an integer of 1 to 4.)
本発明の一態様に力、かる絶縁膜形成用組成物は、上記製造方法によって製造さ れるポリマーと、有機溶剤とを含む。  The composition for forming an insulating film, which is one aspect of the present invention, includes a polymer produced by the above production method and an organic solvent.
[0016] 上記絶縁膜形成用組成物において、前記ポリマーの Mw/Mnが 1. 5〜4. 0であ ること力 Sでさる。 [0016] In the composition for forming an insulating film, the Mw / Mn of the polymer is 1.5 to 4.0.
[0017] 上記絶縁膜形成用組成物において、前記ポリマーは、炭素原子の含有率が 8〜4 [0017] In the composition for forming an insulating film, the polymer has a carbon atom content of 8 to 4.
0原子%であることができる。 It can be 0 atomic%.
[0018] 本発明の一態様に係る絶縁膜形成用組成物は、カルボシランオリゴマーおよびァ ルコキシシランモノマーの加水分解縮合物と、有機溶剤とを含有し、前記加水分解 縮合物の炭素原子の含有率が 8〜40原子%であり、かつ、前記加水分解縮合物の[0018] The composition for forming an insulating film according to one embodiment of the present invention contains a hydrolysis condensate of a carbosilane oligomer and an alkoxysilane monomer, and an organic solvent, and contains the carbon atom of the hydrolysis condensate. The content is 8-40 atomic%, and the hydrolysis-condensation product
Mw/Mnが 1 · 5〜4· 0である。 Mw / Mn is 1 · 5 to 4 · 0.
[0019] 上記絶縁膜形成用組成物において、前記加水分解縮合物の Si— ΟΗ結合の含量 は Si— O結合の総量に対して 20%以下であることができる。 [0020] 本発明の一態様に係るシリカ系絶縁膜の製造方法は、上記絶縁膜形成用組成物 を基板に塗布し、 30〜450°Cに加熱することを含む。 [0019] In the composition for forming an insulating film, the content of Si—— bonds in the hydrolysis condensate may be 20% or less based on the total amount of Si—O bonds. [0020] A method for producing a silica-based insulating film according to one embodiment of the present invention includes applying the insulating film-forming composition to a substrate and heating to 30 to 450 ° C.
[0021] 本発明の一態様に係るシリカ系絶縁膜の製造方法は、上記絶縁膜形成用組成物 を基板に塗布し、高エネルギー線を照射することを含む。 [0021] A method for producing a silica-based insulating film according to one embodiment of the present invention includes applying the insulating film-forming composition to a substrate and irradiating a high energy beam.
[0022] 本発明の一態様に係るシリカ系絶縁膜は、上記シリカ系絶縁膜の製造方法により 得られる。 [0022] The silica-based insulating film according to one embodiment of the present invention is obtained by the method for producing a silica-based insulating film.
[0023] 上記ポリマーの製造方法によれば、効率的な加水分解縮合反応により、炭素原子 を所定の割合で含み、分子量のバラつきが少なぐゲル化が抑制されたポリマーを得 ること力 Sでさる。  [0023] According to the polymer production method described above, it is possible to obtain a polymer containing carbon atoms at a predetermined ratio and having a small molecular weight variation and suppressed gelation by an efficient hydrolytic condensation reaction. Monkey.
[0024] 上記絶縁膜形成用組成物によれば、(A)下記一般式(1)で表される少なくとも 1種 のポリカルボシラン化合物と、 (B)下記一般式(2)で表される少なくとも 1種の加水分 解性シラン化合物とを、(C)金属キレート化合物および酸性触媒もしくはいずれか一 方の存在下で反応させて中間体を得た後、該中間体を (D)塩基性触媒の存在下で 反応させて得られたポリマーを含む。このポリマーは、(A)ポリカルボシラン化合物と( B)加水分解性シラン化合物との加水分解縮合反応が効果的に進行することにより得 られたものであるため、分子量のバラつきが少なぐ均一な三次構造を有するため、 ゲル化が抑制されておりかつ比誘電率が低い。また、上記絶縁膜形成用組成物は、 炭素原子を所定の割合で含み、かつ、分子量のバラつきが少ないポリマーを含むた め、上記絶縁膜形成用組成物を用いて絶縁膜を形成することにより、薬液耐性ゃェ ツチング耐性などのプロセス耐性に優れ、膜中の層分離がなぐ比誘電率が低い絶 縁膜を得ること力できる。  According to the composition for forming an insulating film, (A) at least one polycarbosilane compound represented by the following general formula (1), and (B) represented by the following general formula (2) After reacting at least one hydrolyzable silane compound in the presence of (C) a metal chelate compound and an acidic catalyst or one of them, the intermediate is obtained by (D) basic Includes polymers obtained by reaction in the presence of a catalyst. This polymer is obtained by the effective progress of the hydrolytic condensation reaction between (A) a polycarbosilane compound and (B) a hydrolyzable silane compound. Therefore, the polymer is uniform with little variation in molecular weight. Due to the tertiary structure, gelation is suppressed and the relative dielectric constant is low. In addition, since the composition for forming an insulating film includes a polymer containing carbon atoms at a predetermined ratio and having a small variation in molecular weight, an insulating film is formed using the composition for forming an insulating film. In addition, it is possible to obtain an insulating film having excellent process resistance such as chemical resistance and etching resistance, and having a low relative dielectric constant due to layer separation in the film.
[0025] 上記シリカ系絶縁膜は比誘電率が小さぐ機械的強度、密着性、および薬液耐性 やエッチング耐性などのプロセス耐性に優れ、かつ膜中の相分離がなレ、。  [0025] The silica-based insulating film has a low relative dielectric constant, excellent mechanical strength, adhesion, and process resistance such as chemical resistance and etching resistance, and does not cause phase separation in the film.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明の一実施形態に係るポリマーの製造方法、絶縁膜形成用組成物(以 下、単に「膜形成用組成物」ともいう。)、ならびにシリカ系絶縁膜およびその製造方 法について具体的に説明する。 [0026] Hereinafter, a polymer production method, an insulating film forming composition (hereinafter, also simply referred to as "film forming composition"), a silica-based insulating film, and a method for producing the same according to an embodiment of the present invention. The law will be described specifically.
[0027] 1.ポリマーの製造方法 本発明の一実施形態に係るポリマーの製造方法は、(A)下記一般式(1)で表され る少なくとも 1種のポリカルボシラン化合物(以下、「(A)成分」ともいう。)と、(B)下記 一般式 (2)で表される少なくとも 1種の加水分解性シラン化合物(以下、「(B)成分」と もいう。)とを、(C)金属キレート化合物および酸性触媒もしくはいずれか一方(以下、 「(C)成分」ともいう。)の存在下で反応 (加水分解縮合)させて中間体を得た後、該中 間体を (D)塩基性触媒の存在下で処理させる工程を含む。該処理により、中間体の 加水分解縮合反応が進行する。 [0027] 1. Method for producing polymer A method for producing a polymer according to an embodiment of the present invention includes (A) at least one polycarbosilane compound (hereinafter also referred to as “component (A)”) represented by the following general formula (1): (B) at least one hydrolyzable silane compound represented by the following general formula (2) (hereinafter also referred to as “component (B)”), (C) a metal chelate compound and an acidic catalyst or any On the other hand, an intermediate is obtained by reaction (hydrolysis condensation) in the presence of “(C) component”), and then the intermediate is treated in the presence of (D) a basic catalyst. Including the step of By this treatment, the hydrolysis condensation reaction of the intermediate proceeds.
[0028] また、本発明の一実施形態に係るポリマーの製造方法は、(A)成分と (B)成分とを  [0028] In addition, the method for producing a polymer according to an embodiment of the present invention comprises (A) component and (B) component.
(C)成分の存在下で反応 (加水分解縮合)させて中間体を得た後、該中間体および (E)下記一般式 (2)で表される少なくとも 1種の加水分解性シラン化合物(以下、「(E )成分」ともいう。)を (D)塩基性触媒の存在下で処理させる工程を含む。該処理によ り、中間体の加水分解縮合反応が進行する。  (C) After reaction (hydrolytic condensation) in the presence of component to obtain an intermediate, the intermediate and (E) at least one hydrolyzable silane compound represented by the following general formula (2) ( Hereinafter, it includes a step of treating (“E component”) in the presence of a basic catalyst (D). By this treatment, the hydrolysis condensation reaction of the intermediate proceeds.
[0029] ここで、中間体を得た後、中間体を精製せずに (D)塩基性触媒の存在下で処理さ せることが好ましい。すなわち、(A)成分、(B)成分、および (C)成分を含む反応液 中で反応を行なって中間体を得た後、(C)成分を除去せずに、この反応液中で (D) 塩基性触媒の存在下で中間体の処理を行なうことにより、ポリマーを得ることが好まし い。ここで、(D)塩基性触媒を含む溶媒中にこの反応液を添加してもよいし、あるい は、この反応液中に(D)塩基性触媒を添加してもよい。  [0029] Here, after obtaining the intermediate, it is preferable to treat the intermediate in the presence of (D) a basic catalyst without purification. That is, the reaction is carried out in a reaction solution containing the component (A), the component (B), and the component (C) to obtain an intermediate, and then the component (C) is not removed in the reaction solution ( D) It is preferred to obtain a polymer by treating the intermediate in the presence of a basic catalyst. Here, this reaction solution may be added to the solvent containing (D) the basic catalyst, or (D) the basic catalyst may be added to this reaction solution.
[0030] [化 2]  [0030] [Chemical 2]
Figure imgf000007_0001
Figure imgf000007_0001
· · · · · (1) (1)
(式中、 R1は水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基、 スルホン基、メタンスルホン基、トリフルォロメタンスルホン基、アルキル基、ァリール基 、ァリル基およびグリシジル基からなる群より選ばれる基を示し、 R2はハロゲン原子、 ヒドロキシ基、アルコキシ基、ァシロキシ基、スルホン基、メタンスルホン基、トリフルォ ロメタンスルホン基、アルキル基、ァリール基、ァリル基およびグリシジル基からなる群 より選ばれる基を示し、 R3, R4は同一または異なり、ハロゲン原子、ヒドロキシ基、アル コキシ基、ァシロキシ基、スルホン基、メタンスルホン基、トリフルォロメタンスルホン基 、炭素数 2〜6のアルキル基、ァリール基、ァリル基およびグリシジル基からなる群より 選ばれる基を示し、 R5〜R7は同一または異なり、置換または非置換のメチレン基、ァ ルキレン基、アルケニレン基、アルキニレン基、またはァリーレン基を示し、 X, y, zは 、それぞれ 0〜; 10, 000の数を示し、 5< x + y+ z< 10, 000の条件を満たす。 ) R8 SiZ (2) (Wherein R 1 is selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, an alkyl group, an aryl group, an aryl group, and a glycidyl group. R 2 represents a halogen atom, hydroxy group, alkoxy group, acyloxy group, sulfone group, methanesulfone group, trifluoro group. A group selected from the group consisting of a lomethanesulfone group, an alkyl group, an aryl group, an aryl group and a glycidyl group, wherein R 3 and R 4 are the same or different and are a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group , A methanesulfone group, a trifluoromethanesulfone group, a group selected from the group consisting of an alkyl group having 2 to 6 carbon atoms, an aryl group, an aryl group, and a glycidyl group, and R 5 to R 7 are the same or different, substituted or substituted Represents an unsubstituted methylene group, an alkylene group, an alkenylene group, an alkynylene group, or an arylene group, and X, y, and z each represent a number from 0 to 10,000; 5 <x + y + z <10, Meet the condition of 000. ) R 8 SiZ (2)
(式中、 R8は水素原子、アルキル基、アルケニル基、アルキニル基またはァリール 基を示し、 Zはハロゲン原子あるいはアルコキシ基を示し、 aは 0〜3の整数を表す。 ) (In the formula, R 8 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group or an aryl group, Z represents a halogen atom or an alkoxy group, and a represents an integer of 0 to 3.)
[0031] 以下、本実施形態に係るポリマーを製造するために使用する各成分について説明 する。 [0031] Hereinafter, each component used for producing the polymer according to the present embodiment will be described.
[0032] 1. 1. (A)成分  [0032] 1. 1. Component (A)
(A)成分は、上記一般式(1)で表される少なくとも 1種のポリカルボシラン (以下、「 化合物 1」ともいう。)であり、後述する (B)成分と縮合し、 Si— O— Si結合を形成でき る。なお、以下の説明において、(A)成分というとき、化合物 1が有機溶剤に溶解して V、る場合も含まれるものとする。  The component (A) is at least one polycarbosilane represented by the general formula (1) (hereinafter also referred to as “compound 1”), which is condensed with the component (B) described later to form Si—O. — Si bond can be formed. In the following description, the term “component (A)” includes the case where compound 1 is dissolved in an organic solvent.
[0033] 上記一般式(1)において、 I^〜R4で表されるハロゲン原子としては、例えばフッ素 原子、塩素原子、臭素原子などを挙げることができ、 I^〜R4で表されるアルコキシ基 としては、例えばメトキシ基、エトキシ基、プロピルォキシ基、ブトキシ基などを挙げる ことができ、 I^〜R4で表されるァシロキシ基としては、例えばァセチルォキシ基、プロ ピオニルォキシ基などを挙げることができ、 Ri〜R4で表されるアルキル基としては、 例えばメチル基、ェチル基、プロピル基、ブチル基、へキシル基、シクロへキシル基 などを挙げることができ、 I^〜R4で表されるァリール基としては、例えばフエニル基、 ナフチル基、メチルフエニル基、ェチルフエニル基、クロ口フエ二ル基、ブロモフエ二 ル基、フルオロフヱニル基などを挙げることができる。 [0033] In the general formula (1), the halogen atom represented by I ^ to R 4, there may be mentioned a fluorine atom, a chlorine atom, a bromine atom, represented by I ^ to R 4 Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butoxy group. Examples of the acyloxy group represented by I ^ to R 4 include an acetyloxy group and a propionyloxy group. can, the alkyl group represented by Ri~R 4, for example a methyl group, Echiru group, propyl group, butyl group, etc. hexyl group, cyclohexyl group can be exemplified to Table in I ^ to R 4 Examples of aryl groups that can be used include phenyl group, naphthyl group, methylphenyl group, ethenylphenyl group, chlorophenyl group, bromophenyl group, and fluorophenyl group. It can be.
[0034] また、上記一般式(1)において、 R5〜R7で表されるアルキレン基としては、例えば エチレン基、プロピレン基、ブチレン基、へキシレン基、デシレン基等などを挙げるこ とができ、好ましくは炭素数 2〜6であり、これらのアルキレン基は鎖状でも分岐してい ても、さらに環を形成していてもよぐ水素原子がフッ素原子、塩素原子、臭素原子、 ヨウ素原子などのハロゲン原子で置換されてレ、てもよ!/、。 R5〜R7で表されるアルケニ レン基としては、炭素数 2〜6 (好ましくは 1〜4)の直鎖あるいは分岐状のアルケニレ ン基が挙げられ、例えばビニレン基、プロぺニレン基、ブテニレン基、ペンテ二レン基 、 1ーメチルビ二レン基、 1 メチルプロぺニレン基、 2—メチルプロぺニレン基、 1ーメ チルペンテ二レン基、 3—メチルペンテ二レン基、 1ーェチルビ二レン基、 1ーェチノレ プロぺニレン基、 1 ェチルブテニレン基、 3—ェチルブテニレン基等を挙げることが できる。これらのアルケニレン基中の水素原子はフッ素原子、塩素原子、臭素原子、 ヨウ素原子などのハロゲン原子で置換されてレ、てもよ!/、。 R5〜R7で表されるアルキニ レン基としては、炭素数 2〜6 (好ましくは 1〜4)の直鎖あるいは分岐状のアルキニレ ン基が挙げられ、例えばェチニレン基、 1 プロピニレン基、 1 ブチニレン基、 1 ペンチ二レン基、 1一へキシュレン基、 2—ブチニレン基、 2—ペンチ二レン基、 1ーメ チルェチニレン基、 3—メチルー 1 プロピニレン基、 3—メチルー 1 ブチニレン基 等を挙げること力 Sできる。これらのアルキニレン基中の水素原子はフッ素原子、塩素 原子、臭素原子、ヨウ素原子などのハロゲン原子で置換されていてもよい。 R5〜R7で 表されるァリーレン基としては、例えばフエ二レン基、ナフチレン基等を挙げることが でき、水素原子がフッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子 で置換されていてもよい。 [0034] In the general formula (1), examples of the alkylene group represented by R 5 to R 7 include an ethylene group, a propylene group, a butylene group, a hexylene group, and a decylene group. Preferably, the alkylene group has 2 to 6 carbon atoms, and these alkylene groups may be chain-like or branched or may form a ring, and the hydrogen atom may be a fluorine atom, a chlorine atom, a bromine atom, It may be substituted with halogen atoms such as iodine atoms! Examples of the alkenylene group represented by R 5 to R 7 include linear or branched alkenylene groups having 2 to 6 carbon atoms (preferably 1 to 4), such as vinylene groups, propenylene groups, Butenylene group, Pentenylene group, 1-Methylbinylene group, 1 Methylpropenylene group, 2-Methylpropenylene group, 1-Methylpentenylene group, 3-Methylpentenylene group, 1-Ethylbinylene group, 1-Ethinole group Examples thereof include a propenylene group, a 1-ethylbutenylene group, and a 3-ethylbutenylene group. The hydrogen atoms in these alkenylene groups may be substituted with halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms and iodine atoms. Examples of the alkynylene group represented by R 5 to R 7 include linear or branched alkynylene groups having 2 to 6 carbon atoms (preferably 1 to 4), such as ethynylene group, 1 propynylene group, 1 List butynylene group, 1 pentynylene group, 1-hexylene group, 2-butynylene group, 2-pentynylene group, 1-methylethynylene group, 3-methyl-1 propynylene group, 3-methyl-1 butynylene group, etc. Power S can be. The hydrogen atom in these alkynylene groups may be substituted with a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. Examples of the arylene group represented by R 5 to R 7 include a phenylene group and a naphthylene group. A hydrogen atom is substituted with a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom. It may be.
[0035] また、上記一般式(1) ίこおレヽて、 X, y, ζίま、 0—10, 000の数で、 5 < x+y + z < l 0, 000である。 x+y + z < 5の場合には、ポリマーの保存安定性が劣る場合があり、 また 10, 000く x + y+ zの場合には、(B)成分と層分離を起こし、均一な膜を形成し ないことカある。好ましくは、 X, y, zはそれぞれ、 0≤x≤800, 0≤y≤500, 0≤z≤ 1 , 000であり、より好ましくは、 0≤x≤500, 0≤y≤300, 0≤z≤500であり、さらに 好ましく (ま、 0≤x≤100, 0≤y≤50, 0≤z≤100である。  [0035] Further, in the above general formula (1), X, y, ζί is a number from 0 to 10,000, and 5 <x + y + z <l 0,000. In the case of x + y + z <5, the storage stability of the polymer may be inferior, and in the case of 10,000 + x + y + z, it causes layer separation with the component (B), resulting in a uniform membrane It is not possible to form Preferably, X, y, and z are 0≤x≤800, 0≤y≤500, 0≤z≤ 1, 000, and more preferably 0≤x≤500, 0≤y≤300, 0 ≤z≤500, more preferably (or 0≤x≤100, 0≤y≤50, 0≤z≤100.
[0036] また、上記一般式(1)において、 5 < x + y+ z < l , 000であるのが好ましぐ 5 < x + y + z < 500であるのがより好ましく、 5 < x + y+ z < 250であるのがさらに好ましく、 5 < x + y+ z < 100であるのが最も好ましい。 [0037] (A)成分と(B)成分の混合比としては、(B)成分の完全加水分解縮合物 100重量 部に対して、(A)成分が 1〜; 1000重量部であることが好ましぐ特に 5〜200重量部 であること力 り好ましく、 5〜; 100重量部であることがさらに好ましい。 (A)成分が 1重 量部未満である場合には、膜形成後に十分な薬液耐性を発現することができない場 合があり、また 1000重量部を越えると膜の低誘電率化を達成できない場合がある。 [0036] In the general formula (1), 5 <x + y + z <l, 000 is preferable, and 5 <x + y + z <500 is more preferable, and 5 <x + More preferably, y + z <250, and most preferably 5 <x + y + z <100. [0037] The mixing ratio of the component (A) and the component (B) is such that the component (A) is 1 to 1000 parts by weight with respect to 100 parts by weight of the completely hydrolyzed condensate of the component (B). It is particularly preferably 5 to 200 parts by weight, more preferably 5 to 100 parts by weight. If component (A) is less than 1 part by weight, sufficient chemical resistance may not be achieved after film formation, and if it exceeds 1000 parts by weight, the dielectric constant of the film cannot be reduced. There is a case.
[0038] (A)成分のポリスチレン換算重量平均分子量は、 400〜50, 000であることが好ま しく、 500〜; 10, 000であることカより好ましく、 500〜3, 000であることカさらに好ま しい。 (A)成分のポリスチレン換算重量平均分子量が 50, 000を超えると、(B)成分 と層分離を起こし、均一な膜を形成しないことがある。  [0038] The polystyrene equivalent weight average molecular weight of component (A) is preferably 400 to 50,000, more preferably 500 to 10,000, and more preferably 500 to 3,000. I like it. If the polystyrene equivalent weight average molecular weight of component (A) exceeds 50,000, layer separation may occur with component (B) and a uniform film may not be formed.
[0039] 1. 2. (B)成分  [0039] 1. 2. Component (B)
(B)成分は、上記一般式 (2)で表される加水分解性シラン化合物(以下、「化合物 2 」ともいう。)である。  The component (B) is a hydrolyzable silane compound (hereinafter also referred to as “compound 2”) represented by the general formula (2).
[0040] 本発明において、「加水分解性シラン化合物」とは、本実施形態に係るポリマーの 製造時に加水分解されうる基を有するシラン化合物を!/、う。加水分解性基としては、 例えばノヽロゲン原子やアルコキシ基が挙げられる。  In the present invention, the “hydrolyzable silane compound” refers to a silane compound having a group that can be hydrolyzed during the production of the polymer according to this embodiment. Examples of the hydrolyzable group include a neurogen atom and an alkoxy group.
[0041] 上記一般式(2)において、 R8で表されるアルキル基およびァリール基としては、上 記一般式(1)において、 I^〜R4で表されるアルキル基およびァリール基として例示し た基を挙げること力 Sできる。また、 R8で表されるアルケニル基としては、炭素数 2〜6 ( 好ましくは 1〜4)の直鎖あるいは分岐状のアルケニル基が挙げられ、例えばビュル 基、 1 プロぺニル基、 2—プロぺニル基、イソプロぺニル基、 2—メチルー 1 プロぺ 二ノレ基、 3—メチルー 1 プロぺニル基、 2—メチルー 2—プロぺニル基、 3—メチノレ 2—プロぺニル基、 1ーブテュル基、 2—ブテュル基、 3—ブテュル基を挙げること ができ、水素原子がフッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原 子で置換されていてもよぐ R8で表されるアルキニル基としては、炭素数 3〜6 (好まし くは 1〜4)の直鎖あるいは分岐状のアルキニル基が挙げられ、例えばェチュル基、 1 プロピニル基、 2—プロピニル基、 1ーブチュル基、 2—ブチュル基、 3—ブチニノレ 基、 3—メチルー 1 プロピニル基、 2—メチルー 3—プロピニル基を挙げることができ 、水素原子がフッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子で置 換されていてもよい。 In the above general formula (2), examples of the alkyl group and aryl group represented by R 8 are the alkyl group and aryl group represented by I ^ to R 4 in the general formula (1). The ability to name Examples of the alkenyl group represented by R 8 include straight-chain or branched alkenyl groups having 2 to 6 (preferably 1 to 4) carbon atoms, such as a bur group, 1 propenyl group, 2— Propenyl group, isopropenyl group, 2-methyl-1 propenyl group, 3-methyl-1 propenyl group, 2-methyl-2-propenyl group, 3-methynole 2-propenyl group, 1 Buteyuru group, 2-Buteyuru group, and a 3-Buteyuru group, a hydrogen atom is a fluorine atom, a chlorine atom, a bromine atom, is represented by Yogu R 8 may be substituted with halogen atom such as iodine atom Examples of the alkynyl group include straight-chain or branched alkynyl groups having 3 to 6 carbon atoms (preferably 1 to 4 carbon atoms), such as an etulyl group, a 1-propynyl group, a 2-propynyl group, a 1-buturyl group, 2-Butul group, 3-Butynino group, 3-Me Lou 1-propynyl group, 2-methyl-3-propynyl group can be exemplified, hydrogen atom is a fluorine atom, a chlorine atom, a bromine atom, location with a halogen atom such as iodine atom It may be replaced.
化合物 2の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチ ノレトリー n プロポキシシラン、メチルトリイソプロポキシシラン、メチルトリー n ブトキ シシラン、メチノレトリー sec ブトキシシラン、メチノレトリー tert ブトキシシラン、メチノレ トリフエノキシシラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、ェチルトリー n プロポキシシラン、ェチノレトリイソプロポキシシラン、ェチノレトリー n ブトキシシラ ン、ェチノレトリー sec ブトキシシラン、ェチノレトリー tert ブトキシシラン、ェチノレトリ フエノキシシラン、 n—プロピルトリメトキシシラン、 n—プロピルトリエトキシシラン、 n— プロピルトリー n プロポキシシラン、 n プロピルトリイソプロポキシシラン、 n プロピ ノレトリー n ブトキシシラン、 n プロピルトリー sec ブトキシシラン、 n プロピルトリ — tert ブトキシシラン、 n—プロピルトリフエノキシシラン、イソプロピルトリメトキシシ ラン、イソプロピルトリエトキシシラン、イソプロピルトリ一 n プロポキシシラン、イソプロ ピルトリイソプロポキシシラン、イソプロピルトリ一 n ブトキシシラン、イソプロピルトリ一 sec ブトキシシラン、イソプロピルトリー tert ブトキシシラン、イソプロピルトリフエノ キシシラン、 n ブチノレトリメトキシシラン、 n ブチノレトリエトキシシラン、 n ブチノレトリ n プロポキシシラン、 n ブチノレトリイソプロポキシシラン、 n ブチノレトリー n ブト キシシラン、 n ブチノレトリー sec ブトキシシラン、 n ブチノレトリー tert ブトキシシ ラン、 n ブチノレトリフエノキシシラン、 sec ブチノレトリメトキシシラン、 sec ブチノレイ ソトリエトキシシラン、 sec—ブチルトリー n プロポキシシラン、 sec ブチルトリイソプ ロポキシシラン、 sec ブチノレトリー n ブトキシシラン、 sec ブチノレトリー sec ブト キシシラン、 sec ブチノレトリー tert ブトキシシラン、 sec ブチノレトリフエノキシシラ ン、 tert ブチノレトリメトキシシラン、 tert ブチノレトリエトキシシラン、 tert ブチノレト n プロポキシシラン、 tert ブチノレトリイソプロポキシシラン、 tert ブチノレトリー n ブトキシシラン、 tert ブチノレトリー sec ブトキシシラン、 tert ブチノレトリー tert —ブトキシシラン、 tert ブチルトリフエノキシシラン、フエニルトリメトキシシラン、フエ ニルトリエトキシシラン、フエニルトリー n プロボキシシラン、フエニルトリイソプロポキ シシラン、フエニノレトリー n—ブトキシシラン、フエニノレトリー sec ブトキシシラン、フエ ニルトリー tert ブトキシシラン、フエニルトリフエノキシシラン、ビュルトリメトキシシラ ン、ビュルトリエトキシシラン、ビュルトリー n プロポキシシラン、ビュルトリイソプロボ キシシラン、ビュルトリー n—ブトキシシラン、ビュルトリー sec ブトキシシラン、ビュル トリ一 tert ブトキシシラン、ビュルトリフエノキシシラン、トリメトキシシラン、トリエトキシ Specific examples of Compound 2 include methyltrimethoxysilane, methyltriethoxysilane, methylenotri npropoxysilane, methyltriisopropoxysilane, methyltri nbutoxysilane, methylinoretrie sec butoxysilane, methinoretrie tert butoxysilane, methinoretriphenoxy. Silane, Ethyltrimethoxysilane, Ethyltriethoxysilane, Ethyltri n propoxysilane, Ethinotritriisopropoxysilane, Ethinoretrie n Butoxysilane, Ethinoretrie sec Butoxysilane, Ethinotritry tert Butoxysilane, Ethinotriphenoxysilane, n-propyltrimethoxysilane N-propyltriethoxysilane, n-propyltree n propoxysilane, n-propyltriisopropoxysilane, n-propoxysilane Noretley n butoxysilane, n propyltree sec butoxysilane, n propyltri — tert butoxysilane, n-propyltriphenoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, isopropyltri-n-propoxysilane, isopropyltriiso Propoxysilane, isopropyl tri-n-butoxy silane, isopropyl tri-sec sec-butoxy silane, isopropyl tri-tert butoxy silane, isopropyl tri-phenoxy silane, n butynole trimethoxy silane, n butynole triethoxy silane, n butino tritri n propoxy silane, n buty Nortriisopropoxysilane, n Butinoretrie n Butoxysilane, n Butinotritry sec Butoxysilane, n Butinotritry tert Butoxysilane, n Butino Triflate enoki silane, sec butyl Honoré trimethoxysilane, sec Buchinorei source triethoxysilane, sec - Buchirutori n-propoxysilane, sec Buchirutoriisopu Ropokishishiran, sec Buchinoretori n-butoxysilane, sec Buchinoretori sec-butoxide Kishishiran, sec Buchinoretori tert-butoxysilane, sec Buchinore Triphenoxysilane, tert-butylenotrimethoxysilane, tert-butylenotritriethoxysilane, tert-butylenoto-n-propoxysilane, tert-butylenotriisopropoxysilane, tert-butylinoletry-n-butoxysilane, tert-butylinoletri sec-butoxysilane, tert-butylintory tert — Butoxysilane, tert butyltriphenoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltree Kishishiran, phenylalanine triisopropoxide Shishiran, Fueninoretori n- butoxysilane, Fueninoretori sec-butoxysilane, Hue Nirutori tert-butoxysilane, phenylalanine triflumizole Enoki silane, Bulle trimethoxysilane , Butyltriethoxysilane, butyltripropoxysilane, butyltriisopropoxysilane, butyltriisobutoxysilane, butyltri sec butyloxysilane, butyltritert butylbutoxysilane, butyltriphenoxysilane, trimethoxysilane, triethoxy
、トリー sec ブトキシシラン、トリー tert ブトキシシラン、トリフエノキシシラン、ジメチ ノレジメトキシシラン、ジメチノレジェトキシシラン、ジメチノレジ n プロポキシシラン、ジ メチノレジイソプロポキシシラン、ジメチノレジ n ブトキシシラン、ジメチノレジ sec— ブトキシシラン、ジメチノレジ tert ブトキシシラン、ジメチノレジフエノキシシラン、ジェ チノレジメトキシシラン、ジェチノレジェトキシシラン、ジェチノレジ n プロポキシシラン 、ジェチノレジイソプロボキシシラン、ジェチノレジ n ブトキシシラン、ジェチノレジ s ec ブトキシシラン、ジェチノレジ tert ブトキシシラン、ジェチノレジフエノキシシラン 、ジー n プロピノレジメトキシシラン、ジー n プロピノレジェトキシシラン、ジー n プロ ピノレジ n プロポキシシラン、ジー n プロピノレジイソプロポキシシラン、ジー n プ ロピルジー n—ブトキシシラン、ジ n—プロピルジー sec ブトキシシラン、ジー n— プロピノレジ tert ブトキシシラン、ジー n プロピノレジーフエノキシシラン、ジイソプ 口ピルジメトキシシラン、ジイソプロピルジェトキシシラン、ジイソプロピルジー n プロ シラン、ジイソプロピルジー sec ブトキシシラン、ジイソプロピルジー tert ブトキシ ブチノレジェトキシシラン、ジー n ブチノレジ n プロポキシシラン、ジー n ブチノレ sec ブトキシシラン、ジー n ブチノレジ tert ブトキシシラン、ジー n ブチノレジ ーフエノキシシラン、ジー sec ブチノレジメトキシシラン、ジー sec ブチノレジェトキシ シラン、ジー sec ブチノレジ n プロポキシシラン、ジー sec ブチノレジイソプロボ キシシフン、ンー sec フ、 'チノレシ n フ、 'トキシシフン、シー sec フ、'テノレシ sec— ブトキシシラン、ジー sec ブチノレジ tert ブトキシシラン、ジー sec ブチノレジ フエノキシシラン、ジー tert ブチノレジメトキシシラン、ジー tert ブチノレジェトキシシ ラン、ジー tert ブチノレジ n プロポキシシラン、ジー tert ブチノレジイソプロポキ シシラン、ジ tert ブチノレジ n ブトキシシラン、ジ tert ブチノレジ sec ブ トキシシラン、ジー tert ブチノレジ tert ブトキシシラン、ジー tert ブチノレジーフ エノキシシラン、ジフエニノレジメトキシシラン、ジフエニノレジ エトキシシラン、ジフエ二 ルジ一 n プロポキシシラン、ジフェニノレジイソプロポキシシラン、ジフエニノレジ一 n— ブトキシシラン、ジフエ二ルジー sec ブトキシシラン、ジフエ二ルジー tert ブトキシ トリメトキシシラン、 Ί—ァミノプロピルトリエトキシシラン、 Ί—グリシドキシプロピルトリ メトキシシラン、 γ—グリシドキシプロピルトリエトキシシラン、 γ トリフルォロプロピル トリメトキシシラン、 γ—トリフルォロプロピルトリエトキシシラン、テトラメトキシシラン、テ トラエトキシシラン、テトラー η プロポキシシラン、テトライソプロポキシシラン、テトラ η プ'トキシラン、テトラー sec プ'トキシシラン、テトラー tert プ'トキシシラン、テト ラフエノキシシランなどが挙げられる。これらは、 1種あるいは 2種以上を同時に使用し てもよい。 , Tree sec butoxysilane, tree tert butoxysilane, triphenoxysilane, dimethylenoresimethoxysilane, dimethylenolegetoxysilane, dimethinoresin n propoxysilane, dimethinoresiisopropoxysilane, dimethinoresin n butoxysilane, dimethylenoresi sec- butoxysilane , Dimethinoresi tert butoxysilane, dimethinoresiphenoxysilane, getenoresimethoxysilane, getinolegetoxysilane, getinoresin n propoxysilane, getinoresiisopropoxysilane, getinoresin n butoxysilane, getinoresi s ec butoxysilane, getinoresi tert Butoxysilane, Getinoresiphenoxysilane, G-Propinoresimethoxymethoxy, G-ProPinolegetoxysilane, G-N-ProPinolegisilane, Prop Xisilane, xy n propinoresiisopropoxy silane, gen n propyl silane n-butoxy silane, di n-propyl zi sec butoxy silane, gin n-propino reg tert butoxy silane, gen n propino reginophenoxy silane, diisopropyl pill Dimethoxysilane, diisopropyljetoxysilane, diisopropyldi-n-prosilane, diisopropyldi-sec butoxysilane, diisopropyl-di tert-butoxybutinolegetoxysilane, di-n-butinoresin n-propoxysilane, di-n-butinole sec-butoxysilane, di-n-butinoresin tert-butoxysilane , N-butinoresin phenoxy silane, dia sec butino-resin methoxy silane, dia sec butinolegoxy silane, dia sec butino-resin n propoxy silane, dia sec butino-resin isop Boxysifun, N-sec, 'Tinoresi n,' Toxicifun, Seesec, 'Tenoresi sec- Butoxysilane, G-sec Butinoresin tert Butoxysilane, G-sec Butinoresin Phenoxysilane, G-tert Butinoresimethoxysilane, G-tert Butinoreget Kishiran, G-tert Butinoresin n Propoxysilane, G-tert Butinoresin Isopropoxy Sisilane, di-tert-butinoresin n-butoxysilane, di-tert-butinoresi sec sec-butoxysilane, di-tert-butinoresi-tert butoxysilane, di-tert-butinoresief enoxysilane, dipheninoresimethoxymethoxysilane, dipheninoresi ethoxysilane, diphenoxyl-dipropoxysilane, dipheninoresi Isopropoxysilane, dipheninoresin n-butoxysilane, diphenyl sec sec butoxysilane, diphenyl tert butoxy trimethoxysilane, Ί —aminopropyltriethoxysilane , Ί —glycidoxypropyltrimethoxysilane , γ-glycid Xylpropyltriethoxysilane, gamma trifluoropropyl trimethoxysilane, gamma-trifluoropropyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, tetra Ra η propoxysilane, tetraisopropoxysilane, tetra η flop 'Tokishiran, tetra sec-flop' Tokishishiran, tetra- tert-flop 'Tokishishiran, such as Tet rough enoki silane and the like. These may be used alone or in combination of two or more.
[0043] 化合物 2として特に好まし!/、化合物は、メチルトリメトキシシラン、メチルトリエトキシシ ラン、メチルトリー n—プロポキシシラン、メチルトリイソプロポキシシラン、ェチルトリメト キシシラン、ェチルトリエトキシシラン、ビュルトリメトキシシラン、ビュルトリエトキシシラ ン、フエニルトリメトキシシラン、フエニルトリエトキシシラン、ジメチルジメトキシシラン、 ジメチノレジェトキシシラン、ジェチノレジメトキシシラン、ジェチノレジェトキシシラン、ジフ ェニノレジメトキシシラン、ジフエニノレジェトキシシラン、テトラメトキシシラン、テトラエトキ  [0043] Particularly preferred as compound 2! /, The compounds are methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, butyltri Methoxy silane, butyl triethoxy silane, phenyl trimethoxy silane, phenyl triethoxy silane, dimethyl dimethoxy silane, dimethino letoxy silane, gethinoresi methoxy silane, jetino lesoxy silane, diphenyl sino methoxy silane, di Phenylo-Letoxysilane, Tetramethoxysilane, Tetraethoxy
[0044] 1. 3. (C)成分 [0044] 1. 3. Component (C)
上述したように、(C)成分は、金属キレート化合物および酸性触媒もしくはいずれか 一方である。すなわち、(C)成分として、金属キレート化合物および酸性触媒のいず れか一方を使用してもよ!/、し、あるいは両方を使用してもょレ、。  As described above, the component (C) is a metal chelate compound and / or an acidic catalyst. That is, as the component (C), either a metal chelate compound or an acidic catalyst may be used! /, Or both may be used.
[0045] 1. 3. 1.金属キレート化合物 [0045] 1. 3. 1. Metal chelate compound
(C)成分として使用可能な金属キレート化合物は、下記一般式 (3)で表される。  The metal chelate compound that can be used as the component (C) is represented by the following general formula (3).
[0046] R9 M (OR10) (3) [0046] R 9 M (OR 10 ) (3)
b  b
(式中、 R9はキレート剤、 Mは金属原子、 R1()はアルキル基またはァリール基を示し 、 bは金属 Mの原子価、 cは l〜bの整数を表す。) (Wherein R 9 is a chelating agent, M is a metal atom, R 1 () is an alkyl group or an aryl group. , B represents the valence of metal M, and c represents an integer of 1 to b. )
ここで、金属 Mとしては、 IIIB族金属(アルミニウム、ガリウム、インジウム、タリウム)お よび IVA族金属(チタン、ジルコニウム、ハフニウム)より選ばれる少なくとも 1種の金属 であること力 S好ましく、チタン、アルミユウム、ジルコユウムがより好ましい。また、 R1()で 表されるアルキル基またはァリール基としては、上述の一般式(1)における I^〜R4で 表されるアルキル基またはァリール基を挙げることができる。 Here, the metal M is at least one metal selected from a group IIIB metal (aluminum, gallium, indium, thallium) and a group IVA metal (titanium, zirconium, hafnium). S preferably titanium, aluminum Zircoyuum is more preferred. Examples of the alkyl group or aryl group represented by R 1 () include the alkyl group or aryl group represented by I ^ to R 4 in the general formula (1).
金属キレート化合物の具体例としては、トリエトキシ 'モノ(ァセチルァセトナート)チ タン、トリー n プロポキシ 'モノ(ァセチルァセトナート)チタン、トリイソプロポキシ 'モ ノ(ァセチルァセトナート)チタン、トリ n—ブトキシ 'モノ(ァセチルァセトナート)チタ ン、トリー sec ブトキシ.モノ(ァセチルァセトナート)チタン、トリー tert ブトキシ.モ ノ(ァセチルァセトナート)チタン、ジエトキシ 'ビス(ァセチルァセトナート)チタン、ジ —n—プロポキシ 'ビス(ァセチルァセトナート)チタン、ジイソプロポキシ 'ビス(ァセチ ルァセトナート)チタン、ジー n ブトキシ 'ビス(ァセチルァセトナート)チタン、ジー se c ブトキシ ·ビス(ァセチルァセトナート)チタン、ジー tert ブトキシ ·ビス(ァセチノレ ァセトナート)チタン、モノエトキシ 'トリス(ァセチルァセトナート)チタン、モノー n プ 口ポキシ 'トリス(ァセチルァセトナート)チタン、モノイソプロポキシ 'トリス(ァセチルァ セトナート)チタン、モノー n ブトキシ 'トリス(ァセチルァセトナート)チタン、モノー se c ブトキシ 'トリス(ァセチルァセトナート)チタン、モノー tert ブトキシ 'トリス(ァセチ ルァセトナート)チタン、テトラキス(ァセチルァセトナート)チタン、トリエトキシ.モノ(ェ チノレアセトアセテート)チタン、トリー n プロポキシ.モノ(ェチルァセトアセテート)チ タン、トリイソプロポキシ 'モノ(ェチルァセトアセテート)チタン、トリー n ブトキシ 'モノ (ェチルァセトアセテート)チタン、トリー sec—ブトキシ.モノ(ェチルァセトアセテート) チタン、トリー tert ブトキシ 'モノ(ェチルァセトアセテート)チタン、ジエトキシ 'ビス( ェチルァセトアセテート)チタン、ジ n—プロポキシ.ビス(ェチルァセトアセテート) チタン、ジイソプロポキシ 'ビス(ェチルァセトアセテート)チタン、ジー n ブトキシ 'ビ Specific examples of metal chelate compounds include triethoxy 'mono (acetylethylacetonate) titanium, tri-n-propoxy' mono (acetylethylacetonate) titanium, triisopropoxy 'mono (acetylethylacetonate) titanium. , Tri-n-Butoxy 'mono (acetylethylacetonate) titanium, Tory sec butoxy.mono (acetylethylacetonate) titanium, tri-tert butoxy.mono (acetylethylacetonate) titanium, diethoxy'bis ( Acetyl-acetonate) Titanium, Di-n-propoxy'bis (acetylethylacetonate) titanium, Diisopropoxy'bis (acetylacetonate) titanium, G-n Butoxy'bis (acetylethylacetonate) titanium, G se c Butoxy bis (acetyl cetate) titanium, tert tert Butoxy bis (acetino lacetner) ) Titanium, Monoethoxy 'Tris (Acetylacetonate) Titanium, Mono-n-Polyoxy' Tris (Acetylacetonate) Titanium, Monoisopropoxy 'Tris (Acetylasetonato) Titanium, Mono-n-Butoxy' Tris Cetylacetonate) Titanium, Mono-se c Butoxy 'Tris (Acetylasetonate) Titanium, Mono-tert Butoxy' Tris (Acetyllucertonate) Titanium, Tetrakis (Acetylasetonate) Titanium, Triethoxy Mono (Ethinole) Acetoacetate) titanium, tri-n-propoxy.mono (ethyl acetoacetate) titanium, triisopropoxy 'mono- (ethyl acetoacetate) titanium, tri-n-butoxy'mono (ethyl acetoacetate) titanium, tree sec —Butoxy mono (ethyl acetate acetate) Tert-Butoxy 'mono (ethylacetoacetate) titanium, diethoxy' bis (ethylacetoacetate) titanium, di-n-propoxy bis (ethylacetoacetate) titanium, diisopropoxy 'bis Tylacetoacetate) titanium, zi n butoxy 'bi
)チタン、ジー tert ブトキシ 'ビス(ェチルァセトアセテート)チタン、モノエトキシ 'トリ ート)チタン、モノイソプロポキシ 'トリス(ェチノレアセトアセテート)チタン、モノー n ブ トキシ'トリス(ェチルァセトアセテート)チタン、モノー sec ブトキシ 'トリス(ェチルァ セトアセテート)チタン、モノー tert ブトキシ 'トリス(ェチルァセトアセテート)チタン、 ) Titanium, tert-butoxy 'bis (ethylacetoacetate) titanium, monoethoxy' tri ) Titanium, Monoisopropoxy 'Tris (ethinoreacetoacetate) Titanium, Mono-n-Butoxy' Tris (Ethylacetoacetate) Titanium, Mono-sec Butoxy 'Tris (Ethylacetoacetate) Titanium, Mono-tert-Butoxy' Tris (ethyl acetate acetate) titanium,
ンキレート化合物;トリエトキシ 'モノ(ァセチルァセトナート)ジルコニウム、トリ n プ 口ポキシ ·モノ(ァセチルァセトナート)ジルコニウム、トリイソプロポキシ ·モノ(ァセチル ァセトナート)ジルコニウム、トリー n ブトキシ 'モノ(ァセチルァセトナート)ジルコユウ ム、トリー sec ブトキシ 'モノ(ァセチルァセトナート)ジルコニウム、トリー tert ブトキ シ 'モノ(ァセチルァセトナート)ジルコニウム、ジエトキシ 'ビス(ァセチルァセトナート) ジルコニウム、ジ n—プロポキシ 'ビス(ァセチルァセトナート)ジルコニウム、ジイソ プロポキシ 'ビス(ァセチルァセトナート)ジルコニウム、ジ n—ブトキシ 'ビス(ァセチ ルァセトナート)ジルコニウム、ジー sec ブトキシ 'ビス(ァセチルァセトナート)ジルコ 二ゥム、ジ tert ブトキシ 'ビス(ァセチルァセトナート)ジルコニウム、モノエトキシ' トリス(ァセチノレアセトナート)ジノレコニゥム、モノー n—プロポキシ 'トリス(ァセチルァセ トナート)ジルコニウム、モノイソプロポキシ 'トリス(ァセチルァセトナート)ジルコニウム 、モノー n—ブトキシ'トリス(ァセチノレアセトナート)ジノレコニゥム、モノー sec ブトキシ 'トリス(ァセチルァセトナート)ジルコニウム、モノー tert ブトキシ 'トリス(ァセチルァ セトナート)ジルコニウム、テトラキス(ァセチルァセトナート)ジルコニウム、トリエトキシ .モノ(ェチルァセトアセテート)ジルコニウム、トリー n—プロポキシ ·モノ(ェチルァセト アセテート)ジルコニウム、トリイソプロポキシ 'モノ(ェチルァセトアセテート)ジルコ二 ゥム、トリー n—ブトキシ 'モノ(ェチルァセトアセテート)ジルコニウム、トリー sec ブト キシ 'モノ(ェチルァセトアセテート)ジルコニウム、トリー tert ブトキシ 'モノ(ェチル ァセトアセテート)ジルコニウム、ジエトキシ 'ビス(ェチルァセトアセテート)ジルコユウ ム、ジ n—プロポキシ 'ビス(ェチルァセトアセテート)ジルコニウム、ジイソプロポキ シ.ビス(ェチルァセトアセテート)ジルコニウム、ジ n—ブトキシ 'ビス(ェチルァセト アセテート)ジルコニウム、ジ sec ブトキシ 'ビス(ェチルァセトアセテート)ジルコ二 ゥム、ジ tert ブトキシ 'ビス(ェチルァセトアセテート)ジルコニウム、モノエトキシ' トリス(ェチルァセトアセテート)ジルコニウム、モノー n—プロポキシ 'トリス(ェチルァセ トアセテート)ジルコニウム、モノイソプロポキシ 'トリス(ェチルァセトアセテート)ジルコ 二ゥム、モノー n—ブトキシ 'トリス(ェチルァセトアセテート)ジルコニウム、モノー sec ブトキシ 'トリス(ェチルァセトアセテート)ジルコニウム、モノー tert ブトキシ 'トリス (ェチルァセトアセテート)ジルコニウム、テトラキス(ェチルァセトアセテート)ジルコ二 ァセチルァセトナート)ビス(ェチルァセトアセテート)ジルコニウム、トリス(ァセチルァ セトナート)モノ(ェチルァセトアセテート)ジルコニウム、等のジルコニウムキレート化 合物;トリエトキシ 'モノ(ァセチルァセトナート)アルミニウム、トリ n プロポキシ 'モ ノ(ァセチルァセトナート)アルミニウム、トリイソプロポキシ 'モノ(ァセチルァセトナート )アルミニウム、トリー n—ブトキシ.モノ(ァセチルァセトナート)アルミニウム、トリー sec ブトキシ 'モノ(ァセチルァセトナート)アルミニウム、トリー tert ブトキシ 'モノ(ァセ チルァセトナート)アルミニウム、ジエトキシ.ビス(ァセチルァセトナート)アルミニウム 、ジ n—プロポキシ.ビス(ァセチルァセトナート)アルミニウム、ジイソプロポキシ 'ビ ス(ァセチルァセトナート)アルミニウム、ジ n—ブトキシ 'ビス(ァセチルァセトナート )アルミニウム、ジ sec ブトキシ 'ビス(ァセチルァセトナート)アルミニウム、ジ ter t—ブトキシ 'ビス(ァセチルァセトナート)ァノレミニゥム、モノエトキシ 'トリス(ァセチノレ ァセトナート)ァノレミニゥム、モノー n—プロポキシ 'トリス(ァセチルァセトナート)アルミ 二ゥム、モノイソプロポキシ 'トリス(ァセチルァセトナート)アルミニウム、モノー n—ブト キシ 'トリス(ァセチルァセトナート)アルミニウム、モノー sec ブトキシ 'トリス(ァセチ ルァセトナート)ァノレミニゥム、モノー tert ブトキシ 'トリス(ァセチルァセトナート)ァ ルミ二ゥム、テトラキス(ァセチルァセトナート)アルミニウム、トリエトキシ 'モノ(ェチル ァセトアセテート)アルミニウム、トリー n—プロポキシ 'モノ(ェチルァセトアセテート)ァ ルミユウム、トリイソプロポキシ 'モノ(ェチルァセトアセテート)アルミニウム、トリ一 n— ブトキシ 'モノ(ェチルァセトアセテート)アルミニウム、トリー sec ブトキシ 'モノ(ェチ ルァセトアセテート)アルミニウム、トリー tert ブトキシ.モノ(ェチルァセトアセテート )アルミニウム、ジエトキシ 'ビス(ェチルァセトアセテート)アルミニウム、ジ—n—プロ ポキシ 'ビス(ェチルァセトアセテート)アルミニウム、ジイソプロポキシ 'ビス(ェチルァ セトアセテート)アルミニウム、ジ n—ブトキシ 'ビス(ェチルァセトアセテート)アルミ 二ゥム、ジ sec ブトキシ 'ビス(ェチルァセトアセテート)アルミニウム、ジ tert— ブトキシ 'ビス(ェチルァセトアセテート)アルミニウム、モノエトキシ 'トリス(ェチルァセ トアセテート)アルミニウム、モノー n—プロポキシ 'トリス(ェチルァセトアセテート)アル ミニゥム、モノイソプロポキシ 'トリス(ェチルァセトアセテート)アルミニウム、モノー n— ブトキシ.トリス(ェチルァセトアセテート)アルミニウム、モノー sec ブトキシ.トリス(ェ Chelate compounds: triethoxy 'mono (acetylethylacetonate) zirconium, tri-n-propyloxymono (acetylethylacetonate) zirconium, triisopropoxy mono- (acetylylacetonate) zirconium, tri-n-butoxy'mono (acetyl) Acetate) Zircoum, Toly sec Butoxy 'mono (acetylacetylacetonate) zirconium, Tory tert Butoxy' mono (acetylacetylacetonate) zirconium, diethoxy 'bis (acetylethylacetonate) zirconium, di n —Propoxy 'bis (acetylethylacetonate) zirconium, diisopropoxy'bis (acetylethylacetonate) zirconium, di-n-butoxy'bis (acetylacetonate) zirconium, di-sec-butoxy'bis (acetylacetate) Zirco Nium , Di-tert-butoxy 'bis (acetylacetonate) zirconium, monoethoxy' tris (acetinoreacetonate) dinoleconium, mono-n-propoxy 'tris (acetylacetonato) zirconium, monoisopropoxy' tris (acetylacetate) Nato) zirconium, mono-n-butoxy'tris (acetinoreacetonate) dinoleconium, mono-sec butoxy'tris (acetylacetate) zirconium, mono-tert butoxy'tris (acetylacetonate) zirconium, tetrakis (acetylacetate) Nato) zirconium, triethoxy.mono (ethylacetoacetate) zirconium, tri-n-propoxy mono (ethylacetoacetate) zirconium, triisopropoxy'mono (ethylacetoacetate) di Kolym, Toly n-Butoxy 'mono (ethyl acetate acetate) zirconium, Tory sec butoxy' mono (ethyl acetate acetate), Tri-tert Butoxy 'mono (ethyl acetate acetate) zirconium, diethoxy' Bis (ethyl acetate acetate) zirconium, di-n-propoxy'bis (ethyl acetate acetate) zirconium, diisopropoxy.bis (ethyl acetate acetate) zirconium, di-n-butoxy'bis (ethyl acetate acetate) zirconium , Di sec butoxy 'bis (ethylacetoacetate) zirconium , Tert-butoxy 'bis (ethylacetoacetate) zirconium, monoethoxy' tris (ethylacetoacetate) zirconium, mono-n-propoxy 'tris (ethylacetoacetate) zirconium, monoisopropoxy' tris Tyracetoacetate) Zirconium, Mono-n-Butoxy 'Tris (ethyl acetate acetate) Zirconium, Mono-sec Butoxy' Tris (ethyl acetate acetate) Zirconium, Mono-tert Butoxy 'Tris (Ethylacetoacetate) ) Zirconium chelating compounds such as zirconium, tetrakis (ethylacetoacetate) zirconylacetylatetonate) bis (ethylacetoacetate) zirconium, tris (acetylethylacetonate) mono (ethylacetoacetate) zirconium Triethoxy 'mono (acetylethylacetonate) aluminum, tri-n-propoxy'mono (acetylethylacetonate) aluminum, triisopropoxy'mono (acetylethylacetonate) aluminum, tri-n-butoxy.mono (a Cetylacetonate) aluminum, tree sec butoxy 'mono (acetylethylacetonate) aluminum, tree tert-butoxy'mono (acetylethylacetonate) aluminum, diethoxy.bis (acetylethylacetonate) aluminum, di-n-propoxy. Bis (acetylacetonate) aluminum, Diisopropoxy'bis (acetylethylacetonate) aluminum, Di-n-Butoxy'bis (acetylethylacetonate) aluminum, Disec-Butoxy'bis (acetylacetate) Naruto aluminum, di ter t-butoxy (Acetylacetonate) Anoleminium, Monoethoxy 'Tris (Acetinoreacetonate) Anoleminium, Mono-n-propoxy' Tris (Acetylacetonate) Aluminum, Monoisopropoxy 'Tris (Acetylacetonate) Aluminum , Mono-n-Butoxy 'Tris (Acetylacetonate) Aluminum, Mono-Sec Butoxy' Tris (Acetyl Lucentato) Anoleminium, Mono-tert Butoxy 'Tris (Acetylacetonate) Aluminum, Tetrakis (Acetyl) Acetylene) aluminum, triethoxy 'mono (ethylacetoacetate) aluminum, tri-n-propoxy'mono (ethylacetoacetate) aluminum, triisopropoxy'mono (ethylacetoacetate) aluminum, tri-n Butoxy 'mono (ethyl acetate acetate) aluminum, tree sec Butoxy' mono (ethyl acetate acetate) aluminum, tree tert Butoxy mono (ethyl acetate acetate) aluminum, diethoxy 'bis (ethyl acetate acetate) Aluminum, di-n-pro Poxy 'bis (ethylacetoacetate) aluminum, diisopropoxy' bis (ethylacetoacetate) aluminum, di-n-butoxy 'bis (ethylacetoacetate) aluminum, 2 sec, di sec butoxy'bis (ethyl) Acetoacetate) aluminum, di tert-butoxy 'bis (ethylacetoacetate) aluminum, monoethoxy' tris (ethylacetoacetate) aluminum, mono-n-propoxy 'tris (ethylacetoacetate) aluminum, monoiso Propoxy 'Tris (ethyl acetoacetate) aluminum, mono-n-butoxy. Tris (ethyl acetoacetate) aluminum, mono- s ec butoxy.
-ト)ァノレミニゥム、モノー tert ブトキシ 'トリス(ェチルァセトァセテ :ニゥム、テトラキス(ェチルァセトアセテート)アルミニウム、モノ(ァセチルァ ビス(ェチルァセトアセテート)ァノレミニゥム、トリス(ァセチルァセトナート)モノ(ェチノレ ァセトアセテート)アルミニウム、等のアルミニウムキレート化合物;等の 1種または 2種 以上が挙げられる。  -G) Anoleminium, Mono-tert Butoxy 'Tris (Ethylacetoacetate): Nium, Tetrakis (Ethylacetoacetate) Aluminum, Mono (Acetylabis (Ethylacetoacetate) Anoleminium, Tris (Acetylacetate) One or more of aluminum chelate compounds such as mono (ethinorecetate) aluminum;
[0048] 特に、(CH (CH )HCO) Ti(CH COCH COCH ) , (CH (CH )HCO)  [0048] In particular, (CH (CH) HCO) Ti (CH COCH COCH), (CH (CH) HCO)
3 3 4 t 3 2 3 t 3 3 4— t 3 3 4 t 3 2 3 t 3 3 4— t
Ti(CH COCH COOC H ),(C H O) Ti(CH COCH COCH ),(C H O) Ti (CH COCH COOC H), (C H O) Ti (CH COCH COCH), (C H O)
3 2 2 5 t 4 9 4 t 3 2 3 t 4 9 4 3 2 2 5 t 4 9 4 t 3 2 3 t 4 9 4
Ti(CH COCH COOC H ) , (C H (CH )CO) Ti(CH COCH COCH ), t 3 2 2 5 t 2 5 3 4 t 3 2 3 tTi (CH COCH COOC H), (C H (CH) CO) Ti (CH COCH COCH), t 3 2 2 5 t 2 5 3 4 t 3 2 3 t
(C H (CH )CO) Ti(CH COCH COOC H ) , (CH (CH )HCO) Zr(CH(C H (CH) CO) Ti (CH COCH COOC H), (CH (CH) HCO) Zr (CH
2 5 3 4 t 3 2 2 5 t 3 3 4— t 2 5 3 4 t 3 2 2 5 t 3 3 4— t
COCH COCH ),(CH (CH )HCO) Zr(CH COCH COOC H ),(C H O COCH COCH), (CH (CH) HCO) Zr (CH COCH COOC H), (C H O
3 2 3 t 3 3 4 t 3 2 2 5 t 4 93 2 3 t 3 3 4 t 3 2 2 5 t 4 9
) Zr(CH COCH COCH ) , (C H O) Zr(CH COCH COOC H ) , (C H) Zr (CH COCH COCH), (C H O) Zr (CH COCH COOC H), (C H
4 t 3 2 3 t 4 9 4 t 3 2 2 5 t 24 t 3 2 3 t 4 9 4 t 3 2 2 5 t 2
(CH )CO) Zr(CH COCH COCH ),(C H (CH ) CO) Zr(CH COCH(CH) CO) Zr (CH COCH COCH), (C H (CH) CO) Zr (CH COCH
5 3 4 t 3 2 3 t 2 5 3 4 t 3 25 3 4 t 3 2 3 t 2 5 3 4 t 3 2
COOC H ),(CH (CH )HCO) A1(CH COCH COCH ),(CH (CH )HC COOC H), (CH (CH) HCO) A1 (CH COCH COCH), (CH (CH) HC
2 5 3— t 3 t  2 5 3— t 3 t
A1(CH COCH COOC H ),(C H O) A1(CH COCH COCH ),(C H A1 (CH COCH COOC H), (C H O) A1 (CH COCH COCH), (C H
: 3 2 2 5 t 4 9 3— t 3 2 3 t 4: 3 2 2 5 t 4 9 3—t 3 2 3 t 4
A1(CH COCH COOC H ) , (C H (CH )CO) A1(CH COCH COCA1 (CH COCH COOC H), (C H (CH) CO) A1 (CH COCH COC
3— t 2 5 2 5 3— t 3—t 2 5 2 5 3—t
H ),(C H (CH )CO) A1(CH COCH COOC H )等の 1種または 2種以上が H), (C H (CH) CO) A1 (CH COCH COOC H), etc.
3 t 2 5 3 3-t 3 2 2 5 t 3 t 2 5 3 3-t 3 2 2 5 t
、使用される金属キレート化合物として好ましい。  Are preferred as the metal chelate compounds used.
[0049] 金属キレート化合物の使用量は、(A)成分および (B)成分の総量 100重量部(完 全加水分解縮合物換算)に対して、 0.0001〜; 10重量部、好ましくは 0.00;!〜 5重 量部である。金属キレート化合物の使用割合が 0.0001重量部未満であると、塗膜 の塗布性が劣る場合があり、 10重量部を超えるとポリマー成長を制御できずゲル化 を起こす場合がある。また、金属キレート化合物は、加水分解縮合時に (D)成分とと もに有機溶媒中にあらかじめ添加しておいてもよいし、水の添加時に水中に溶解あ るいは分散させてぉレ、てもよレ、。 [0049] The amount of the metal chelate compound used is 0.0001 to 10 parts by weight, preferably 0.00; based on 100 parts by weight of the total amount of the component (A) and the component (B) (in terms of complete hydrolysis condensate). ~ 5 parts by weight. When the proportion of the metal chelate compound used is less than 0.0001 parts by weight, In some cases, the coating property of the polymer is inferior, and if it exceeds 10 parts by weight, the polymer growth cannot be controlled and gelation may occur. In addition, the metal chelate compound may be added in advance to the organic solvent together with the component (D) at the time of hydrolysis condensation, or dissolved or dispersed in water when water is added. Moyore.
[0050] 金属キレート化合物の存在下で (A)成分および (B)成分を加水分解縮合させる場 合、(A)成分および(B)成分の総量 1モル当たり 0· 5〜20モルの水を用いることが 好ましく、 1〜; 10モルの水を加えることが特に好ましい。添加する水の量が 0. 5モル 未満であると加水分解反応が十分に進行せず、塗布性及び保存安定性に問題が生 じる場合があり、 20モルを越えると加水分解および縮合反応中のポリマーの析出や ゲル化が生じる場合がある。また、水は断続的あるいは連続的に添加されることが好 ましい。 [0050] When the components (A) and (B) are hydrolytically condensed in the presence of the metal chelate compound, 0.5 to 20 mol of water is added per mol of the total amount of the components (A) and (B). Preference is given to using 1 to 10 mol of water being particularly preferred. If the amount of water added is less than 0.5 mol, the hydrolysis reaction will not proceed sufficiently, which may cause problems in coating properties and storage stability. If the amount exceeds 20 mol, hydrolysis and condensation reactions will occur. In some cases, polymer precipitation or gelation may occur. In addition, water is preferably added intermittently or continuously.
[0051] 1. 3. 2.酸性触媒  [0051] 1. 3. 2. Acidic catalyst
(C)成分として使用可能な酸性触媒としては、有機酸または無機酸が例示でき、有 機酸が好ましい。有機酸としては、例えば、酢酸、プロピオン酸、ブタン酸、ペンタン 酸、へキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シユウ酸、マレイン酸 、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、ァラキドン酸 、シキミ酸、 2—ェチルへキサン酸、ォレイン酸、ステアリン酸、リノール酸、リノレイン 酸、サリチル酸、安息香酸、 p—ァミノ安息香酸、 p—トルエンスルホン酸、ベンゼンス ルホン酸、モノクロ口酢酸、ジクロロ酢酸、トリクロ口酢酸、トリフルォロ酢酸、ギ酸、マロ ン酸、スルホン酸、フタル酸、フマル酸、クェン酸、酒石酸、無水マレイン酸、フマル 酸、ィタコン酸、コハク酸、メサコン酸、シトラコン酸、リンゴ酸、マロン酸、ダルタル酸 の加水分解物、無水マレイン酸の加水分解物、無水フタル酸の加水分解物等を挙 げること力 Sできる。無機酸としては、例えば、塩酸、硝酸、硫酸、フッ酸、リン酸等を挙 げること力 Sできる。なかでも、加水分解および縮合反応中のポリマーの析出やゲル化 のおそれが少ない点で有機酸が好ましぐこのうち、カルボキシル基を有する化合物 力はり好ましぐなかでも、酢酸、シユウ酸、マレイン酸、ギ酸、マロン酸、フタル酸、フ マノレ酸、ィタコン酸、コノヽク酸、メサコン酸、シトラコン酸、リンゴ酸、マロン酸、グノレタ ル酸、無水マレイン酸の加水分解物などの有機酸が特に好ましい。これらは 1種ある いは 2種以上を同時に使用してもよレ、。 Examples of the acidic catalyst that can be used as the component (C) include organic acids and inorganic acids, and organic acids are preferable. Examples of the organic acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacic acid, Gallic acid, butyric acid, melicic acid, arachidonic acid, shikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, Benzene sulphonic acid, monochlorodiacetic acid, dichloroacetic acid, trichlorodiethylacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthalic acid, fumaric acid, citrate, tartaric acid, maleic anhydride, fumaric acid, itaconic acid, succinic acid , Mesaconic acid, citraconic acid, malic acid, malonic acid, daltaric acid hydrolyzate, maleic anhydride Degradation products, hydrolysis products of phthalic anhydride can be force S ani gel. Examples of inorganic acids include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, and the like. Of these, organic acids are preferred because they are less likely to cause polymer precipitation or gelation during hydrolysis and condensation reactions. Of these, compounds having a carboxyl group are preferred. Among them, acetic acid, oxalic acid, maleic acid are preferred. Organic acids such as hydrolysates of acids, formic acid, malonic acid, phthalic acid, fumaroleic acid, itaconic acid, succinic acid, mesaconic acid, citraconic acid, malic acid, malonic acid, gnolelic acid, maleic anhydride Particularly preferred. There is one of these Or you can use two or more at the same time.
[0052] 酸性触媒の使用量は、(A)成分および (B)成分の総量 100重量部(完全加水分解 縮合物換算)に対して、 0. 0001〜; 10重量部、好ましくは 0. 00;!〜 5重量部である。 酸性触媒の使用割合が 0. 0001重量部未満であると、塗膜の塗布性が劣る場合が あり、 10重量部を超えると急激に加水分解縮合反応が進行しゲル化を起こす場合が ある。また、酸性触媒は、加水分解縮合時に (A)成分および (B)成分とともに有機溶 媒中にあらかじめ添加しておいてもよいし、水の添加時に水中に溶解あるいは分散さ せておいてもよい。 [0052] The amount of the acidic catalyst used is from 0.0001 to 10 parts by weight, preferably 0.000, based on 100 parts by weight of the total amount of component (A) and component (B) (in terms of complete hydrolysis condensate). ; To 5 parts by weight. When the use ratio of the acidic catalyst is less than 0.0001 parts by weight, the coating property of the coating film may be inferior, and when it exceeds 10 parts by weight, the hydrolysis condensation reaction may proceed rapidly and gelation may occur. The acidic catalyst may be added in advance to the organic solvent together with the components (A) and (B) at the time of the hydrolysis condensation, or may be dissolved or dispersed in water at the time of addition of water. Good.
[0053] 酸性触媒の存在下で (A)成分および (B)成分を加水分解縮合させる場合、 (A)成 分および(B)成分の総量 1モル当たり 0. 5〜20モルの水を用いることが好ましぐ 1 〜; 10モルの水を加えることが特に好ましい。添加する水の量が 0. 5モル未満である と加水分解反応が十分に進行せず、塗布性及び保存安定性に問題が生じる場合が あり、 20モルを越えると加水分解および縮合反応中のポリマーの析出やゲル化が生 じる場合がある。また、水は断続的あるいは連続的に添加されることが好ましい。  [0053] When the components (A) and (B) are hydrolytically condensed in the presence of an acidic catalyst, 0.5 to 20 mol of water is used per mol of the total amount of (A) component and (B) component. It is particularly preferred to add 1 to 10 mol of water. If the amount of water added is less than 0.5 mol, the hydrolysis reaction will not proceed sufficiently, which may cause problems in coating properties and storage stability. Polymer precipitation or gelation may occur. Moreover, it is preferable that water is added intermittently or continuously.
[0054] 1. 4. (D)塩基性触媒  [0054] 1. 4. (D) Basic catalyst
(D)塩基性触媒としては、例えば、メタノールァミン、エタノールァミン、プロパノー ノレアミン、ブタノールァミン、 N—メチルメタノールァミン、 N—ェチルメタノールァミン、 N—プロピルメタノールァミン、 N—ブチルメタノールァミン、 N—メチルエタノールアミ ン、 N—ェチルエタノールァミン、 N—プロピルエタノールァミン、 N—ブチルエタノー ノレアミン、 N—メチルプロパノールァミン、 N—ェチルプロパノールァミン、 N—プロピ ノレプロパノールァミン、 N—ブチルプロパノールァミン、 N—メチルブタノールァミン、 N—ェチルブタノールァミン、 N—プロピルブタノールァミン、 N—ブチルブタノ一ノレ ァミン、 N, N—ジメチルメタノールァミン、 N, N—ジェチルメタノールァミン、 N, N- ジプロピルメタノールァミン、 N, N—ジブチルメタノールァミン、 N, N—ジメチルエタ ノーノレアミン、 N, N—ジェチルエタノールァミン、 N, N—ジプロピルエタノールァミン 、 N, N—ジブチルエタノールァミン、 N, N—ジメチルプロパノールァミン、 N, N—ジ ェチルプロパノールァミン、 N, N—ジプロピルプロパノールァミン、 N, N—ジブチノレ プロパノールァミン、 N, N—ジメチルブタノールアミン、 N, N—ジェチルブタノ一ノレ ァミン、 N, N—ジプロピルブタノールァミン、 N, N—ジブチルブタノールァミン、 N - メチルジメタノールァミン、 N—ェチルジメタノールァミン、 N—プロピルジメタノールァ ミン、 N—ブチノレジメタノーノレアミン、 N—メチノレジエタノーノレアミン、 N—ェチノレジェ タノールァミン、 N—プロピルジエタノールァミン、 N—ブチルジェタノールァミン、 N ーメチルジプロパノールァミン、 N—ェチルジプロパノールァミン、 N—プロピルジプ ロパノールァミン、 N—ブチルジプロパノールァミン、 N—メチルジブタノールァミン、 N—ェチルジブタノールァミン、 N—プロピルジブタノールァミン、 N—ブチルジブタノ ールァミン、 N— (アミノメチル)メタノールァミン、 N— (アミノメチル)エタノールァミン、 N - (アミノメチル)プロパノールァミン、 N— (アミノメチル)ブタノールァミン、 N— (ァ ミノェチル)メタノールァミン、 N— (アミノエチル)エタノールァミン、 N— (アミノエチル )プロパノールァミン、 N— (アミノエチル)ブタノールァミン、 N— (ァミノプロピル)メタ ノーノレアミン、 N— (ァミノプロピノレ)エタノールァミン、 N— (ァミノプロピノレ)プロパノー ルァミン、 N- (ァミノプロピル)ブタノールアミン、 N— (アミノブチル)メタノールァミン 、 N- (アミノブチル)エタノールァミン、 N— (アミノブチル)プロパノールァミン、 N— ( アミノブチル)ブタノールァミン、メトキシメチルァミン、メトキシェチルァミン、メトキシプ 口ピノレアミン、メトキシブチノレアミン、エトキシメチノレアミン、エトキシェチノレアミン、エト キシプロピノレアミン、エトキシブチノレアミン、プロポキシメチノレアミン、プロポキシェチ ノレアミン、プロポキシプロピルァミン、プロポキシブチルァミン、ブトキシメチルァミン、 ブトキシェチルァミン、ブトキシプロピルァミン、ブトキシブチルァミン、メチルァミン、ェ チルァミン、プロピルァミン、ブチルァミン、 N, N—ジメチルァミン、 N, N—ジェチノレ ァミン、 N, N—ジプロピルァミン、 N, N—ジブチルァミン、トリメチノレアミン、トリェチル ァミン、トリプロピノレアミン、トリブチノレアミン、テトラメチルアンモニゥムハイドロキサイド 、テトラエチルアンモニゥムハイドロキサイド、テトラプロピルアンモニゥムハイドロキサ イド、テトラプチルアンモニゥムハイドロキサイド、テトラメチルエチレンジァミン、テトラ ェチルエチレンジァミン、テトラプロピルエチレンジァミン、テトラブチルエチレンジアミ ン、メチルアミノメチルァミン、メチルアミノエチルァミン、メチルァミノプロピルァミン、メ チルアミノブチルァミン、ェチルアミノメチルァミン、ェチルアミノエチルァミン、ェチル ァミノプロピルァミン、ェチルアミノブチルァミン、プロピルアミノメチルァミン、プロピル アミノエチルァミン、プロピルアミノプロピルァミン、プロピルアミノブチルァミン、ブチ ノレアミノメチノレアミン、ブチルアミノエチルァミン、ブチルァミノプロピルァミン、ブチル アミノブチルァミン、ピリジン、ピロール、ピぺラジン、ピロリジン、ピぺリジン、ピコリン、 モルホリン、メチルモルホリン、ジァザビシクロオクラン、ジァザビシクロノナン、ジァザ ビシクロウンデセン、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、 水酸化カルシウムなどを挙げることができる。 (D) Examples of basic catalysts include methanolamine, ethanolamine, propanolanolamine, butanolamine, N-methylmethanolamine, N-ethylmethanolamine, N-propylmethanolamine, N— Butylmethanolamine, N-methylethanolamine, N-ethylethanolamine, N-propylethanolamine, N-butylethanolamine, N-methylpropanolamine, N-ethylpropanolamine, N- Propinopropanolamine, N-butylpropanolamine, N-methylbutanolamine, N-ethylbutanolamine, N-propylbutanolamine, N-butylbutanolamine, N, N-dimethylmethanolamine , N, N-Detylmethanolamine, N, N-dipropylmethanolamine, N, N-dibutylmethanolamine, N, N-dimethylethanolanolamine, N, N-jetylethanolamine, N, N-dipropylethanolamine, N, N-dibutylethanolamine, N, N-dimethylpropanol N, N-diethylpropanolamine, N, N-dipropylpropanolamine, N, N-dibutinolepropanolamine, N, N-dimethylbutanolamine, N, N-jetylbutanol N, N-dipropylbutanolamine, N, N-dibutylbutanolamine, N-methyldimethanolamine, N-ethyldimethanolamine, N-propyldimethanolamine, N-butino Resin methanololamine, N-methinoresinethanolamine, N-ethinoregetanolamine, N-propyldiethanolamine, N-butyljetanolamine, N-methyldipropanolamine, N-ethyldipropanolamine N-propyldipropanolamine, N-butyldipropanolamine, N-methyldibutanolamine, N-ethyldibutanolamine, N-propyldibutanolamine, N-butyldibutanolamine, N- (aminomethyl) Methanolamine, N— (aminomethyl) ethanolamine, N- (aminomethyl) pro Panolamine, N— (aminomethyl) butanolamine, N— (aminoethyl) methanolamine, N— (aminoethyl) ethanolamine, N— (aminoethyl) propanolamine, N— (aminoethyl) butanol Min, N— (Aminopropyl) methanolamine, N— (Aminopropynole) ethanolamine, N— (Aminopropynole) propanolamine, N- (Aminopropyl) butanolamine, N— (aminobutyl) methanolamine, N- (aminobutyl) ) Ethanolamine, N- (aminobutyl) propanolamine, N- (aminobutyl) butanolamine, methoxymethylamine, methoxyethylamine, methoxybutanolamine, methoxybutynoleamine, ethoxymethylamine, Ethoxyethnoreamine, etoxip Pinoleamine, ethoxybutynoleamine, propoxymethinoleamine, propoxychhetyleneamine, propoxypropylamine, propoxybutyramine, butoxymethylamine, butoxychetylamine, butoxypropylamine, butoxybutylamine, methylamine, ethylamine , Propylamine, Butyramine, N, N-Dimethylamine, N, N-Getinoreamine, N, N-Dipropylamine, N, N-Dibutylamine, Trimethinoreamine, Triethylamine, Tripropinoreamine, Tributinoreamine, Tetramethyl Ammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraptylammonium hydroxide, tetramethylethylenediamine, Lathylethylenediamine, tetrapropylethylenediamine, tetrabutylethylenediamine, methylaminomethylamine, methylaminoethylamine, methylaminopropylamine, methylaminobutylamine, ethyl Aminomethylamine, Ethylaminoethylamine, Ethylaminopropylamine, Ethylaminobutyramine, Propylaminomethylamine, Propyl Aminoethylamine, propylaminopropylamine, propylaminobutylamine, butylaminoaminomethylamine, butylaminoethylamine, butylaminopropylamine, butylaminobutylamine, pyridine, pyrrole, piperazine , Pyrrolidine, piperidine, picoline, morpholine, methylmorpholine, diazabicycloocrane, diazabicyclononane, diazabicycloundecene, ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide, etc. Can be mentioned.
[0055] (D)塩基性触媒としては、特に、下記一般式 (4)で表される含窒素化合物(以下、 化合物 3とも!/、う)であること力 S好ましレ、。  [0055] (D) The basic catalyst is particularly a nitrogen-containing compound represented by the following general formula (4) (hereinafter, also referred to as Compound 3! /, U).
[0056] (X1X2X"X4N) Y (4) [0056] (X 1 X 2 X "X 4 N) Y (4)
g  g
上記一般式 (4)において、 X1, X2, X3, X4は同一または異なり、それぞれ水素原子 、炭素数 1〜20のアルキル基(好ましくはメチル基、ェチル基、プロピル基、ブチル基 、へキシル基など)、ヒドロキシアルキル基(好ましくはヒドロキシェチル基など)、ァリー ル基(好ましくはフエニル基など)、ァリールアルキル基(好ましくはフエニルメチル基 など)を示し、 Yはハロゲン原子(好ましくはフッ素原子、塩素原子、臭素原子、ヨウ素 原子など)、;!〜 4価のァニオン性基(好ましくはヒドロキシ基など)を示し、 gは 1〜4の 整数を示す。 In the above general formula (4), X 1 , X 2 , X 3 and X 4 are the same or different and each is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms (preferably a methyl group, an ethyl group, a propyl group or a butyl group). Hexyl group, etc.), hydroxyalkyl group (preferably hydroxyethyl group etc.), aryl group (preferably phenyl group etc.), arylalkyl group (preferably phenylmethyl group etc.), Y represents halogen atom ( Preferably a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.);! To a tetravalent anionic group (preferably a hydroxy group, etc.), and g represents an integer of 1 to 4.
[0057] 化合物 3の具体例としては、水酸化テトラメチルアンモニゥム、水酸化テトラエチル アンモニゥム、水酸化テトラー n—プロピルアンモニゥム、水酸化テトラー iso プロピ ノレアンモニゥム、水酸化テトラー n ブチルアンモニゥム、水酸化テトラー iso ブチ ルアンモニゥム、水酸化テトラー tert ブチルアンモニゥム、水酸化テトラペンチルァ ンモニゥム、水酸化テトラへキシルアンモニゥム、水酸化テトラへプチルアンモニゥム 、水酸化テトラオクチルアンモニゥム、水酸化テトラノニルアンモニゥム、水酸化テトラ デシルアンモニゥム、水酸化テトラウンデシルアンモニゥム、水酸化テトラドデシルァ ンモニゥム、臭化テトラメチルアンモニゥム、塩化テトラメチルアンモニゥム、臭化テトラ ェチルアンモニゥム、塩化テトラエチルアンモニゥム、臭化テトラー n—プロピルアン モニゥム、塩化テトラー n—プロピルアンモニゥム、臭化テトラー n ブチルアンモニゥ ム、塩化テトラー n ブチルアンモニゥム、水酸化へキサデシルトリメチルアンモニゥ ム、臭化 n へキサデシルトリメチルアンモニゥム、水酸化 n ォクタデシルトリメ チルアンモニゥム、臭化 n ォクタデシルトリメチルアンモニゥム、塩化セチルトリメ チルアンモニゥム、塩化ステアリルトリメチルアンモニゥム、塩化ベンジルトリメチルァ ゥム、塩化トリデシルメチルアンモニゥム、テトラプチルアンモニゥムハイドロジェンサ 塩化トリラウリルメチルアンモニゥム、水酸化べンジルトリメチルアンモニゥム、臭化べ ンジルトリェチルアンモニゥム、臭化べンジルトリブチルアンモニゥム、臭化フエニルト リメチルアンモニゥム、コリン等を好ましい例として挙げること力 Sできる。これらのうち特 に好ましくは、水酸化テトラメチルアンモニゥム、水酸化テトラエチルアンモニゥム、水 酸化テトラー n—プロピルアンモニゥム、水酸化テトラー n ブチルアンモニゥム、臭 化テトラメチルアンモニゥム、塩化テトラメチルアンモニゥム、臭化テトラェチルアンモ 二ゥム、塩化テトラエチルアンモユウム、臭化テトラ— n プロピルアンモユウム、塩化 テトラー n—プロピルアンモニゥムである。前記の化合物 3は、 1種あるいは 2種以上を 同時に使用してもよい。 [0057] Specific examples of compound 3 include tetramethyl ammonium hydroxide, tetraethyl ammonium hydroxide, tetra-n-propyl ammonium hydroxide, tetra-hydroxy isopropylene ammonium, tetra-n-butyl ammonium hydroxide, Hydroxy tetra isobutyl ammonium, tetra tert butyl ammonium, tetrapentyl ammonium hydroxide, tetrahexyl ammonium hydroxide, tetraheptyl ammonium hydroxide, tetraoctyl ammonium hydroxide, water Tetranonyl ammonium oxide, tetradecyl ammonium hydroxide, tetraundecyl ammonium hydroxide, tetradodecyl ammonium hydroxide, tetramethylammonium bromide, tetramethylammonium chloride, tetrabromide Tyramonium, tetraethyl chloride Ammonium, tetra-n-propylammonium bromide, tetra-n-propylammonium chloride, tetra-n-butylammonium bromide, tetra-n-butylammonium chloride, hexadecyltrimethylammonium hydroxide, bromide-n Hexadecyltrimethylammonium, n-octadecyltrimethyl hydroxide Tilammonium, n-octadecyltrimethylammonium bromide, cetyltrimethyl chloride tilamonium, stearyltrimethylammonium chloride, benzyltrimethylammonium chloride, tridecylmethylammonium chloride, tetraptylammonium hydrogen chloride trilauryl chloride Preferred examples include methylammonium, benzyltrimethylammonium hydroxide, benzyltriethylammonium bromide, benzyltributylammonium bromide, phenyltrimethylammonium bromide, and choline. The power to be listed as S. Of these, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetra-n-butylammonium hydroxide, tetramethylammonium hydroxide, Tetramethylammonium chloride, tetraethylammonium bromide, tetraethylammonium chloride, tetra-n-propylammonium bromide, and tetra-n-propylammonium chloride. The compound 3 may be used alone or in combination of two or more.
[0058] 上述した(D)塩基性触媒の使用量は、化合物;!〜 2中の加水分解性基の総量 1モ ノレ ίこ対して、通常、 0. 00001〜; 10モノレ、好ましく ίま 0. 00005〜5モノレで る。  [0058] The amount of the above-mentioned basic catalyst (D) used is generally the total amount of hydrolyzable groups in the compounds;! 0. 00005 to 5 mono.
[0059] 1. 5. (E)成分  [0059] 1. 5. Component (E)
上述したように、(D)塩基性触媒の存在下で中間体を反応させる際に、中間体およ び (E)成分を処理してもよ!/、。  As described above, when the intermediate is reacted in the presence of the (D) basic catalyst, the intermediate and the component (E) may be treated! /.
[0060] (E)成分としては、上記 (B)成分として例示された化合物を用いることができる。こ のうち、 (E)成分としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルト リー n プロポキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラー n プロ  [0060] As the component (E), the compounds exemplified as the component (B) can be used. Among these, as component (E), methyltrimethoxysilane, methyltriethoxysilane, methyltrin propoxysilane, tetramethoxysilane, tetraethoxysilane, tetran
[0061] (E)成分の使用量は、中間体の製造のために使用する (A)成分および (B)成分の 合計量を 100モル%としたとき、 50モル%以下であることが好ましい。中間体の製造 のために使用する (A)成分および (B)成分の合計量を 100モル%としたとき、中間 体中の (A)成分が 10モル%未満である場合には、酸処理してもあまり効果が得られ ない。 [0062] 1. 6.有機溶剤 [0061] The amount of component (E) used is preferably 50 mol% or less when the total amount of component (A) and component (B) used for the production of the intermediate is 100 mol%. . When the total amount of component (A) and component (B) used for the production of the intermediate is 100 mol%, if the component (A) in the intermediate is less than 10 mol%, acid treatment However, it is not very effective. [0062] 1. 6. Organic solvent
上述の中間体の製造にお!/、て、 (A)成分および (B)成分を有機溶媒に溶解させた 状態で反応させることができる。また、上述のポリマーの製造において、中間体(およ び (E)成分)を有機溶媒に溶解させた状態で反応させることができる。  In the production of the intermediate described above, the (A) component and the (B) component can be reacted in a state dissolved in an organic solvent. Further, in the production of the above-described polymer, the reaction can be performed in a state where the intermediate (and the component (E)) is dissolved in an organic solvent.
[0063] この場合に使用可能な有機溶媒としては、例えば、メタノール、エタノール、 n プ ロノ ノーノレ、 i プロノ ノーノレ、 n ブタノーノレ、 i ブタノーノレ、 sec ブタノ一ノレ、 t— ブタノール等のアルコール系溶媒;エチレングリコール、 1 , 2—プロピレングリコーノレ 、 1 , 3 ブチレングリコーノレ、 2, 4 ペンタンジオール、 2 メチルー 2, 4 ペンタン ジオール、 2, 5 へキサンジオール、 2, 4 ヘプタンジオール、 2 ェチルー 1 , 3 一へキサンジォ一ノレ、ジエチレングリコーノレ、ジプロピレングリコーノレ、 トリエチレング リコール、トリプロピレングリコールなどの多価アルコール系溶媒;エチレングリコール モノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、エチレングリコーノレモ ノプロピルエーテル、エチレングリコールモノブチルエーテルなどの多価アルコール 部分エーテル系溶媒;ェチルエーテル、 i—プロピルエーテル、 n ブチルエーテノレ 、 n へキシルエーテル、 2—ェチルへキシルエーテル、エチレンォキシド、 1 , 2—プ ロピレンォキシド、ジォキソラン、 4ーメチルジォキソラン、ジォキサン、ジメチルジォキ サン、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、 エチレングリコールモノェチルエーテル、エチレングリコールジェチルエーテルなど のエーテル系溶媒;アセトン、メチルェチルケトン、メチルー n—プロピルケトン、メチ ノレ n ブチルケトン、ジェチルケトン、メチルー iーブチルケトン、メチルー n ペン チルケトン、ェチルー n ブチルケトン、メチルー n へキシルケトン、ジー iーブチノレ ケトン、トリメチノレノナノン、シクロペンタノン、シクロへキサノン、シクロへプタノン、シク ロォクタノン、 2 へキサノン、メチノレシクロへキサノン、 2, 4 ペンタンジ才ン、ァセト ニルアセトン、ジアセトンアルコール、などのケトン系溶媒が挙げられる。  [0063] Examples of organic solvents that can be used in this case include alcohol solvents such as methanol, ethanol, n-prono-norole, i-prono-norole, n-butanol, i-butanol, sec-butanol and t-butanol; ethylene Glycol, 1,2-propylene glycolol, 1,3 butylene glycolanol, 2,4 pentanediol, 2 methyl-2,4 pentanediol, 2,5 hexanediol, 2,4 heptanediol, 2 ethyl-1,3 Polyhydric alcohol solvents such as hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol; ethylene glycol monomethino ethenore, ethylene glycol monomethino enoenore, ethylene glyconoremo Nopropyl ether Polyhydric alcohols such as ethylene glycol monobutyl ether Partial ether solvents: Ethyl ether, i-propyl ether, n butyl etherol, n hexyl ether, 2-ethyl hexyl ether, ethylene oxide, 1,2-propylene oxide, dioxolane, 4 -Ether solvents such as methyl dioxolane, dioxane, dimethyl dioxane, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, ethylene glycol jetyl ether; acetone, methyl ethyl ketone, methyl n-propyl Ketone, methylol butyl ketone, jetyl ketone, methyl i-butyl ketone, methyl n pentyl ketone, ethyl n butyl ketone, methyl n hexyl ketone, Ketones such as GE ibutinoleketone, trimethinolenonenone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, 2 hexanone, methinorecyclohexanone, 2, 4 pentane diene, acetonitrile acetonitrile, diacetone alcohol, etc. And system solvents.
[0064] 中間体の製造において、有機溶媒中における (A)成分および (B)成分の合計量の 濃度は 1〜30重量%であることが好ましい。また、ポリマーの製造において、有機溶 媒中における中間体(中間体と (E)成分とを反応させる場合は、中間体と (E)成分と の合計量)の濃度は 1〜30重量%であることが好ましい。 [0065] 加水分解縮合における反応温度は 0〜100°C、好ましくは 20〜80°C、反応時間は 30〜; 1000分、好まし <は 30〜; 180分である。 [0064] In the production of the intermediate, the concentration of the total amount of the component (A) and the component (B) in the organic solvent is preferably 1 to 30% by weight. In the production of the polymer, the concentration of the intermediate in the organic solvent (when the intermediate and (E) component are reacted, the total amount of the intermediate and (E) component) is 1 to 30% by weight. Preferably there is. [0065] The reaction temperature in the hydrolytic condensation is 0 to 100 ° C, preferably 20 to 80 ° C, the reaction time is 30 to 1000 minutes, and preferably <is 30 to 180 minutes.
[0066] 各成分の添加順としては、特に限定されないが、例えば有機溶媒に(D)塩基性触 媒を添加した液に、 (A)成分および (B)成分をそれぞれ有機溶媒に添加したものを 逐次添加してレ、く方法が好まし!/、。  [0066] The order of addition of each component is not particularly limited. For example, (D) a basic catalyst is added to an organic solvent, and (A) component and (B) component are added to the organic solvent. It is preferable to add them one after another!
[0067] 得られた特定加水分解縮合物のポリスチレン換算重量平均分子量は通常、 1, 0, 000—500, 000であるのカ好まし <、 20, 000—300, 000であるのカより好まし <、 30, 000-100, 000であるのがさらに好ましい。特定加水分解縮合物のポリスチレ ン換算重量平均分子量が 10, 000未満であると、 目的とする比誘電率が得られない 場合があり、一方、 500, 000を超えると、塗膜の面内均一性が劣る場合がある。  [0067] The weight average molecular weight in terms of polystyrene of the obtained specific hydrolyzed condensate is usually preferably 1, 000 to 500,000 <, more preferably 20,000 to 300,000. More preferably, 30,000-100,000. If the specific hydrolysis-condensation product has a polystyrene equivalent weight average molecular weight of less than 10,000, the target relative dielectric constant may not be obtained. On the other hand, if it exceeds 500,000, the in-plane uniformity of the coating will be uniform. May be inferior.
[0068] 1. 7.作用効果  [0068] 1. 7. Effects
本実施形態に係るポリマー (加水分解縮合物)の製造方法によれば、(A)成分とし て化合物 1を用いて、 (C)成分の存在下 (A)成分および (B)成分を反応 (加水分解 縮合)させて中間体を得た後、(D)塩基性触媒の存在下で中間体 (および (E)成分) を処理させることにより、分子量のバラつきが少なぐ所定の炭素含量を有するポリマ 一を得ること力 Sできる。すなわち、得られるポリマーは、(A)成分 (ポリカルボシラン)を 核とするポリマーが、(B)成分 (加水分解基含有シランモノマー)に由来するポリシ口 キサンの三次構造内に取り込まれた構造を有し、分子量が均一である。したがって、 上記ポリマーを含む絶縁膜形成用組成物は、比誘電率が小さぐ機械的強度および 密着性、ならびにエッチング耐性および薬液耐性などのプロセス耐性が非常に優れ 、かつ、該組成物を用いることにより、膜中の相分離がない絶縁膜を得ることができる According to the method for producing a polymer (hydrolysis condensate) according to the present embodiment, compound 1 is used as component (A) and (A) component and (B) component are reacted in the presence of component (C) ( Hydrolysis condensation) to obtain an intermediate, (D) by treating the intermediate (and component (E)) in the presence of a basic catalyst, it has a predetermined carbon content with little variation in molecular weight The ability to get a polymer S In other words, the resulting polymer has a structure in which a polymer having (A) component (polycarbosilane) as a nucleus is incorporated into the tertiary structure of a polysiloxane derived from (B) component (hydrolyzable group-containing silane monomer). And has a uniform molecular weight. Therefore, the composition for forming an insulating film containing the polymer is very excellent in mechanical strength and adhesion with a small relative dielectric constant, and process resistance such as etching resistance and chemical resistance, and uses the composition. Can obtain an insulating film without phase separation in the film.
Yes
[0069] 1. 8.ポリマー  [0069] 1. 8. Polymer
上述したように、本実施形態に係る製造方法により得られたポリマーは、(i) (A)成 分と (B)成分とを (C)成分の存在下で反応させて中間体を得た後、該中間体を (D) 塩基性触媒の存在下で処理させて得てもよいし、あるいは、(ii) (A)成分と(B)成分 とを (C)成分の存在下で反応させて中間体を得た後、該中間体および (E)成分を (D )塩基性触媒の存在下で処理させて得てもよ!/、。 [0070] 本実施形態に係る製造方法により得られたポリマーは、カルボシランオリゴマーお よびアルコキシシランモノマーの加水分解縮合によって得られ、炭素原子の含有率 力 〜 40原子% (好ましくは 8〜20原子%、特に好ましくは 10〜; 18原子%)であり、 かつ、 Mw/Mnが 1 · 5〜4· 0 (好ましくは 1 · 5〜3. 5)であることができる。ここで、 カルボシランオリゴマーとしては、例えば上述の (Α)成分が挙げられ、アルコキシシラ ンモノマーとしては、例えば上述の(Β)成分が挙げられる。この構造によれば、分子 量のバラつきが少なぐゲル化が抑制されており、かつ、炭素原子を所定量含むため 、該ポリマーを含む膜形成用組成物を用いてシリカ系膜を形成した場合、プロセス耐 性に優れ、かつ比誘電率が低いシリカ系膜を得ることができる。ここで、 Mw/Mnが 4. 0を超えると、ろ過性に影響を与える高分子量体や k値の低下を阻害する低分子 量体の発生が問題となる。 As described above, the polymer obtained by the production method according to this embodiment was obtained by reacting (i) (A) component and (B) component in the presence of (C) component. Thereafter, the intermediate may be obtained by treating in the presence of a basic catalyst (D), or (ii) reacting the component (A) and the component (B) in the presence of the component (C). After obtaining an intermediate, the intermediate and component (E) may be obtained by treatment in the presence of a basic catalyst (D)! /. [0070] The polymer obtained by the production method according to the present embodiment is obtained by hydrolytic condensation of a carbosilane oligomer and an alkoxysilane monomer, and has a carbon atom content of up to 40 atom% (preferably 8 to 20 atom). %, Particularly preferably 10 to 18 atom%), and Mw / Mn can be 1 · 5 to 4 · 0 (preferably 1 · 5 to 3.5). Here, examples of the carbosilane oligomer include the above-described component (ii), and examples of the alkoxysilane monomer include the above-described component (ii). According to this structure, gelation with little variation in molecular weight is suppressed, and since a predetermined amount of carbon atoms is contained, a silica-based film is formed using a film-forming composition containing the polymer. In addition, a silica-based film having excellent process resistance and low relative dielectric constant can be obtained. Here, when Mw / Mn exceeds 4.0, the generation of a high molecular weight substance that affects filterability and a low molecular weight substance that inhibits the decrease in k value becomes a problem.
[0071] このポリマーにおいて、炭素原子の含有率は 8〜40原子%であるのがより好ましく( さらに好ましくは 8〜20原子%、特に好ましくは 10〜; 18原子%)、 Mw/Mnは 1. 5 〜4· 0であるのがより好ましい(さらに好ましくは 1. 5〜3. 5)。  [0071] In this polymer, the carbon atom content is more preferably 8 to 40 atom% (more preferably 8 to 20 atom%, particularly preferably 10 to 18 atom%), and Mw / Mn is 1 More preferably, it is 5 to 4.0 (more preferably 1.5 to 3.5).
[0072] なお、ポリマーの炭素原子の含有率 (原子%)は、ポリマーの調製に用いた成分(( Α)成分および (Β)成分( (Ε)成分を用いた場合はさらに (Ε)成分)の加水分解性基 が完全に加水分解されてシラノール基となり、この生成したシラノール基が完全に縮 合しシロキサン結合を形成した時の元素組成から求められ、具体的には以下の式か ら求められる。  [0072] The carbon atom content (atomic%) of the polymer is determined based on the components used for polymer preparation ((ポ リ マ ー) component and (Β) component ((Ε) component in the case of using (Ε) component)). ) Hydrolyzable groups are completely hydrolyzed to form silanol groups, and the generated silanol groups are completely condensed to form siloxane bonds. Specifically, from the following formula: Desired.
[0073] 炭素原子の含有率 (原子%) = (有機シリカゾルの炭素原子数) / (有機シリカゾル の総原子数) X I 00  [0073] Carbon atom content (atomic%) = (number of carbon atoms in organic silica sol) / (total number of atoms in organic silica sol) X I 00
また、本実施形態に係るポリマーは、その Si— ΟΗ結合の含量が Si— Ο結合の総 量に対して好ましくは 20%以下であり、より好ましくは 15%以下であり、例えば 0. 1 〜20% (好ましくは 1〜; 15%)である。ここで、 Si— O結合の総量とは、 Si— O— Siに 含まれる Si— O結合及び Si— OH結合の合計量をいう。ポリマー中に Si— OH結合 が上記の割合を超えて存在すると、吸水性が高くなることがある。この Si— OH結合 の含量は、ポリマーについて測定した29 Si— NMRスペクトルにおけるピークの積算 値から求めることができ、具体的には、 29Si— NMRスペクトルにおいて、 Si— OH結 合の含量 = Si OH結合を示すピークの積算値/ (Si OH結合を示すピークの積 算値 + Si O結合を示すピークの積算値)である。 In the polymer according to this embodiment, the content of the Si-ΟΗ bond is preferably 20% or less, more preferably 15% or less, for example, 0.1 to 20% (preferably 1 to 15%). Here, the total amount of Si—O bonds refers to the total amount of Si—O bonds and Si—OH bonds contained in Si—O—Si. If Si—OH bonds are present in the polymer in excess of the above ratio, the water absorption may be increased. The content of Si—OH bond can be determined from the integrated value of peaks in the 29 Si—NMR spectrum measured for the polymer. Specifically, in the 29 Si—NMR spectrum, the Si—OH bond content can be determined. The total content = the integrated value of the peaks indicating the Si OH bonds / (the integrated value of the peaks indicating the Si OH bonds + the integrated value of the peaks indicating the Si 2 O bonds).
[0074] ポリマーの重量平均分子量(Mw)は、 10, 000—200, 000であることが好ましく、  [0074] The weight average molecular weight (Mw) of the polymer is preferably 10,000 to 200,000,
50, 000—150, 000であることカより好ましく、 100, 000〜; 150,000であることカ特 に好ましい。ポリマーの重量平均分子量が 200, 000より大きいと、ゲル化が生じや すぐまた、得られるシリカ系膜内の細孔が大きくなりすぎて好ましくない。一方、ポリ マーの重量平均分子量が 10, 000より小さいと、塗布性や保存安定性に問題が生じ やす!/、。また低誘電率化するための空孔が小さくなりすぎてしまう。  More preferably, it is from 50,000 to 150,000, more preferably from 100,000 to 150,000. If the weight average molecular weight of the polymer is larger than 200,000, gelation is likely to occur, and the pores in the resulting silica-based film are too large, which is not preferable. On the other hand, if the weight average molecular weight of the polymer is less than 10,000, problems with coating properties and storage stability are likely to occur! In addition, the holes for reducing the dielectric constant are too small.
[0075] 2.膜形成用組成物  [0075] 2. Film-forming composition
本実施形態に係る膜形成用組成物は、上記ポリマーと有機溶剤とを含む。  The film forming composition according to this embodiment includes the polymer and an organic solvent.
[0076] また、本発明の一実施形態に係る絶縁膜形成用組成物は、カルボシランオリゴマ 一およびアルコキシシランモノマーの加水分解縮合によって得られたポリマー(加水 分解縮合物)と、有機溶剤とを含有し、該ポリマーの炭素原子の含有率が 8〜40原 子%であり、かつ、前記ポリマーの Mw/Mnが 1. 5〜4. 0であること力 Sできる。ここで 、カルボシランオリゴマーとしては、例えば上述の (A)成分が挙げられ、アルコキシシ ランモノマーとしては、例えば上述の(B)成分が挙げられる。さらに、ポリマーの炭素 原子の含有率は好ましくは 8〜20原子% (特に好ましくは 10〜; 18原子%)であり、ポ リマーの Mw/Mnは好ましくは 1 · 5〜3· 5であること力 Sできる。  [0076] In addition, the composition for forming an insulating film according to an embodiment of the present invention comprises a polymer (hydrolyzed condensate) obtained by hydrolytic condensation of a carbosilane oligomer and an alkoxysilane monomer, and an organic solvent. The polymer has a carbon atom content of 8 to 40 atomic%, and the polymer has an Mw / Mn of 1.5 to 4.0. Here, examples of the carbosilane oligomer include the aforementioned component (A), and examples of the alkoxysilane monomer include the aforementioned component (B). Further, the carbon atom content of the polymer is preferably 8 to 20 atom% (particularly preferably 10 to 18 atom%), and the polymer Mw / Mn is preferably 1 · 5 to 3.5 · 5. Power S can be.
[0077] 2. 1.有機溶剤  [0077] 2. 1. Organic solvent
本実施形態に係る絶縁膜形成用組成物に含まれる有機溶剤としては、アルコール 系溶媒、ケトン系溶媒、アミド系溶媒、エーテル系溶媒、エステル系溶媒、脂肪族炭 化水素系溶媒、芳香族系溶媒および含ハロゲン溶媒の群力 選ばれた少なくとも 1 種が挙げられる。  Examples of the organic solvent contained in the composition for forming an insulating film according to this embodiment include alcohol solvents, ketone solvents, amide solvents, ether solvents, ester solvents, aliphatic hydrocarbon solvents, and aromatic solvents. Group power of solvent and halogen-containing solvent At least one kind selected.
[0078] アルコール系溶媒としては、メタノール、エタノール、 η—プロパノール、 i—プロパノ 一ノレ、 n ブタノ一ノレ、 iーブタノ一ノレ、 sec ブタノ一ノレ、 tーブタノ一ノレ、 n ペンタノ 一ノレ、 i ペンタノ一ノレ、 2—メチノレブタノ一ノレ、 sec ペンタノ一ノレ、 t ペンタノ一ノレ 、 3 メトキシブタノール、 n へキサノール、 2 メチルペンタノール、 sec へキサノ ール、 2 ェチルブタノール、 sec へプタノール、 3 へプタノール、 n ォクタノー ノレ、 2 ェチルへキサノール、 sec ォクタノール、 n ノニルアルコール、 2, 6 ジメ チルー 4一へプタノール、 n デカノール、 sec ゥンデシルアルコール、トリメチルノ ニノレアノレコーノレ、 sec テトラテンノレアノレコーノレ、 sec ヘプタテンノレアノレコーノレ、フ ノレフリノレアノレコーノレ、フエノール、シクロへキサノール、メチルシクロへキサノール、 3, 3, 5—トリメチルシクロへキサノール、ベンジルアルコール、ジアセトンアルコールなど のモノアルコール系溶媒; [0078] Examples of the alcohol solvent include methanol, ethanol, η-propanol, i-propano monoole, n butanomonore, i-butanomonore, sec butanomonore, t-butanomonore, n pentanomonore, i pentano 1-noreth, 2-methylol-butanol, sec-pentanol-nor, t-pentanol-nor, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol , N Octano Nole, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, 2, 6-dimethylo-l-heptanol, n-decanol, sec-undecyl alcohol, trimethylno-nino-leanoreconole, sec-tetratenolenoreno-reconole, sec-hepta Monoalcohol solvents such as tennoreanolenoconole, phenoleurenorenoreconole, phenol, cyclohexanol, methylcyclohexanol, 3,3,5-trimethylcyclohexanol, benzyl alcohol, diacetone alcohol;
エチレングリコーノレ、 1 , 2—プロピレングリコーノレ、 1 , 3—ブチレングリコーノレ、 2, 4 ペンタンジォーノレ、 2 メチノレー 2, 4 ペンタンジォーノレ、 2, 5 へキサンジォ一 ノレ、 2, 4 ヘプタンジオール、 2 ェチルー 1 , 3 へキサンジオール、ジエチレング リコーノレ、ジプロピレングリコーノレ、 トリエチレングリコーノレ、 トリプロピレングリコーノレな どの多価アルコール系溶媒;  Ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, 2,4 pentanole, 2 methylolene 2,4 pentane nore, 2,5 hexane di nore, 2, Polyhydric alcohol solvents such as 4 heptanediol, 2 ethyl 1,3 hexanediol, diethylene glycolone, dipropylene glycolanol, triethyleneglycolanol, tripropylene glycolol;
エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、 エチレングリコーノレモノプロピノレエーテノレ、エチレングリコーノレモノブチノレエーテノレ、 エチレングリコーノレモノへキシノレエーテノレ、エチレングリコーノレモノフエニノレエーテノレ 、エチレングリコールモノ一 2—ェチルブチルエーテル、ジエチレングリコールモノメ チルエーテル、ジエチレングリコールモノェチルエーテル、ジエチレングリコールモノ プロピノレエーテノレ、ジエチレングリコーノレモノブチノレエーテノレ、ジエチレングリコーノレ モノへキシノレエーテノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレングリコー ノレモノェチノレエーテノレ、プロピレングリコーノレモノプロピノレエーテノレ、プロピレングリコ ーノレモノブチノレエーテノレ、ジプロピレングリコーノレモノメチノレエーテノレ、ジプロピレン グリコーノレモノェチノレエーテノレ、ジプロピレングリコーノレモノプロピノレエーテノレなどの 多価アルコール部分エーテル系溶媒;などを挙げることができる。これらのアルコー ル系溶媒は、 1種ある!/、は 2種以上を同時に使用してもよ!/、。  Ethylene glycol monomethino ethenore, ethylene glycol monomono chineno ethenore, ethylene glyco mono mono chineno ethenore, ethylene glyco mono mono butino enoate, ethylene glyco mono mono hexino ree Monophenylenoateolene, Ethylene glycol mono-2-ethylbutyl ether, Diethylene glycol monomethyl ether, Diethylene glycol monoethyl ether, Diethylene glycol monopropinoreethenole, Diethyleneglycolenobutinoreethenore, Diethyleneglycolole monohexenore Ethenore, Propylene Glycole Monomethinore Ete Nore, Propylene Glyco Monorechinore Ete Nore, Propylene Glico Monore Monopro Polyhydric alcohol partial ethers such as Noleyatenore, Propylene Glycol Nole Monobutenoleete Nore, Dipropylene Glyconore Monomethinoe Ete Nore, Dipropylene Glyconore Monoechinore Ete Nore Solvent; and the like. There is one kind of these alcohol solvents! /, Or two or more kinds may be used at the same time! /.
ケトン系溶媒としては、アセトン、メチルェチルケトン、メチルー n—プロピルケトン、メ チルー n ブチルケトン、ジェチルケトン、メチルー iーブチルケトン、メチルー n ぺ ンチルケトン、ェチルー n ブチルケトン、メチルー n へキシルケトン、ジー iーブチ ノレケトン、トリメチルノナノン、シクロペンタノン、シクロへキサノン、シクロへプタノン、シ クロォクタノン、 2 へキサノン、メチノレシクロへキサノン、 2, 4 ペンタンジオン、ァセ トニルアセトン、ジアセトンアルコール、ァセトフエノン、フェンチョンなどのケトン系溶 媒を挙げること力できる。これらのケトン系溶媒は、 1種あるいは 2種以上を同時に使 用してもよい。 The ketone solvents include acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n butyl ketone, jetyl ketone, methyl i-butyl ketone, methyl n n-pentyl ketone, ethyl n-butyl ketone, methyl n-hexyl ketone, ji i-butyl ketone, and trimethyl. Nonanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclocantanone, 2 hexanone, methinorecyclohexanone, 2, 4 pentanedione, Mention may be made of ketone solvents such as tonylacetone, diacetone alcohol, acetophenone and fenchon. These ketone solvents may be used alone or in combination of two or more.
[0080] アミド系溶媒としては、 N,N ジメチルイミダゾリジノン、 N メチルホルムアミド、 N, N ジメチルホルムアミド、 N, N ジェチルホルムアミド、ァセトアミド、 N メチルァ セトアミド、 N, N ジメチルァセトアミド、 N メチルプロピオンアミド、 N メチルピロリ ドンなどの含窒素系溶媒を挙げることができる。これらのアミド系溶媒は、 1種あるい は 2種以上を同時に使用してもよい。  [0080] Examples of amide solvents include N, N dimethylimidazolidinone, N methylformamide, N, N dimethylformamide, N, N jetylformamide, acetoamide, N methylacetamide, N, N dimethylacetamide, N methyl And nitrogen-containing solvents such as propionamide and N-methylpyrrolidone. These amide solvents may be used alone or in combination of two or more.
[0081] エーテル溶媒系としては、ェチルエーテル、 i—プロピルエーテル、 n ブチルエー テノレ、 n へキシルエーテル、 2—ェチルへキシルエーテル、エチレンォキシド、 1 , 2 プロピレンォキシド、ジォキソラン、 4ーメチルジォキソラン、ジォキサン、ジメチルジ ォキサン、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエー テノレ、エチレングリコーノレモノェチノレエーテノレ、エチレングリコーノレジェチノレエーテノレ 、エチレングリコーノレモノー n—ブチノレエーテノレ、エチレングリコーノレモノー n へキ シノレエーテノレ、エチレングリコーノレモノフエニノレエーテノレ、エチレングリコーノレモノー 2—ェチルブチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコ ールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコ ーノレモノエチノレエーテノレ、ジエチレングリコーノレジェチノレエーテノレ、ジエチレングリコ 一ノレモノー n ブチノレエーテノレ、ジエチレングリコーノレジー n ブチノレエーテノレ、ジ エチレングリコーノレモノー n へキシノレエーテノレ、エトキシトリグリコーノレ、テトラエチレ ングリコールジー n ブチルエーテル、プロピレングリコールモノメチルエーテル、プ ロピレングリコーノレモノェチノレエーテノレ、プロピレングリコーノレモノプロピノレエーテノレ、 プロピレングリコーノレモノブチノレエーテノレ、ジプロピレングリコ一ノレモノメチノレエーテ ノレ、ジプロピレングリコーノレモノェチノレエーテノレ、 トリプロピレングリコーノレモノメチノレ エーテル、テトラヒドロフラン、 2—メチルテトラヒドロフラン、ジフエニルエーテル、ァニ ソールなどのエーテル系溶媒を挙げることができる。これらのエーテル系溶媒は、 1 種あるいは 2種以上を同時に使用してもよ!/、。 [0081] Ether solvent systems include ethyl ether, i-propyl ether, n-butyl ether, n-hexyl ether, 2-ethyl hexyl ether, ethylene oxide, 1,2 propylene oxide, dioxolane, 4-methyldio Xoxolane, dioxane, dimethyl dioxane, ethylene glycol monomethyl ether, ethylene glycol dimethyl etherol, ethylene glycol nole chineno ethenore, ethylene glycono lesino chineno ethenore, ethylene glycono leneno enore n- butino enotenole, ethylene Glyco-mono-mono-hexenoyl etherenole, ethylene-glycol-monomonoethanolate, ethylene-glycol-monomono-2-ethylbutyl ether, ethylene glycol dibutyl ether, diethylene glycol monomer To methyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethylenoateolene, diethyleneglycolenojetinorenotenole, diethyleneglycol monoremonomono-butinoreethenore, diethyleneglycolenoregi n-butinoreenotenole, diethyleneglycolenolemono-n Xinoleatenole, Ethoxytriglycolenole, Tetraethyleneglycoldiol n-Butylether, Propyleneglycolmonomethylether, Propyleneglycolenomonoethylenoatenore, Propyleneglycolenomonopropinoreatenore, Propyleneglycolenomonobutinoreatenore , Dipropyleneglycol monomethinoatenore, dipropyleneglycolenomethinoreatenore, tripropyleneglycol Examples include ether solvents such as cornole monomethylol ether, tetrahydrofuran, 2-methyltetrahydrofuran, diphenyl ether, and anisole. These ether solvents may be used alone or in combination of two or more! /.
[0082] エステル系溶媒としては、ジェチルカーボネート、プロピレンカーボネート、酢酸メ チノレ、酢酸ェチル、 γ ブチロラタトン、 γ バレロラタトン、酢酸 η—プロピル、酢酸 i プロピル、酢酸 n ブチル、酢酸 iーブチル、酢酸 sec ブチル、酢酸 n ペンチル 、酢酸 sec ペンチル、酢酸 3 メトキシブチル、酢酸メチルペンチル、酢酸 2 ェチ ノレブチル、酢酸 2—ェチルへキシル、酢酸ベンジル、酢酸シクロへキシル、酢酸メチ ルシクロへキシル、酢酸 n ノエル、ァセト酢酸メチル、ァセト酢酸ェチル、酢酸ェチ レングリコーノレモノメチノレエーテノレ、酢酸エチレングリコーノレモノェチノレエーテノレ、酢 酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノェチルェ 一テル、酢酸ジエチレングリコールモノー n ブチルエーテル、酢酸プロピレングリコ 一ノレモノメチノレエーテノレ、酢酸プロピレングリコーノレモノェチノレエーテノレ、酢酸プロピ レングリコーノレモノプロピノレエーテノレ、酢酸プロピレングリコーノレモノブチノレエーテノレ 、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエ チルエーテル、ジ酢酸ダリコール、酢酸メトキシトリグリコール、プロピオン酸ェチル、 プロピオン酸 n ブチル、プロピオン酸 iーァミル、シユウ酸ジェチル、シユウ酸ジー n ーブチル、乳酸メチル、乳酸ェチル、乳酸 n ブチル、乳酸 n ァミル、マロン酸ジェ チル、フタル酸ジメチル、フタル酸ジェチルなどのエステル系溶媒を挙げることができ る。これらのエステル系溶媒は、 1種あるいは 2種以上を同時に使用してもよい。 [0082] Examples of ester solvents include jetyl carbonate, propylene carbonate, and acetic acid. Tinole, Ethyl acetate, γ-Butyloratonone, γ-Valerolataton, η-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, acetic acid 2-ethyl butyl, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, n- noyl acetate, methyl acetate, acetate ethyl acetate, ethylene glycolenolemonomethineateol, Ethylene acetate ethylene glycol monoethyl etherate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl acetate, diethylene glycol mono-butyl ether acetate, propylene acetate glycol monoethanolate methanol, propylene acetate Ricohone Monotino Reethenole, Propylene Glycol Nole Mono Propinore Ethenole Acetate, Propylene Glycol Gnonole Monobutinoreetenore Acetate, Dipropylene Glycol Monomethyl Ether Acetate, Dipropylene Glycol Monoethyl Ether Acetate, Dalicol Diacetate, Acetic Acid Methoxytriglycol, ethyl propionate, n-butyl propionate, i-amyl propionate, cetyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-amyl lactate, dimethyl malonate, dimethyl phthalate And ester solvents such as jetyl phthalate. These ester solvents may be used alone or in combination of two or more.
[0083] 脂肪族炭化水素系溶媒としては、 n ペンタン、 i ペンタン、 n へキサン、卜へ キサン、 n—ヘプタン、 i—ヘプタン、 2, 2, 4 トリメチルペンタン、 n—オクタン、 iーォ クタン、シクロへキサン、メチルシクロへキサンなどの脂肪族炭化水素系溶媒を挙げる ことができる。これらの脂肪族炭化水素系溶媒は、 1種あるいは 2種以上を同時に使 用してもよい。 [0083] Aliphatic hydrocarbon solvents include n-pentane, i-pentane, n-hexane, 卜 -hexane, n-heptane, i-heptane, 2, 2, 4 trimethylpentane, n-octane, i-octane And aliphatic hydrocarbon solvents such as cyclohexane and methylcyclohexane. These aliphatic hydrocarbon solvents may be used alone or in combination of two or more.
[0084] 芳香族炭化水素系溶媒としては、ベンゼン、トルエン、キシレン、ェチルベンゼン、 トリメチノレベンゼン、メチノレエチノレベンゼン、 n—プロピノレベンセン、 i—プロピノレベン セン、ジェチノレベンゼン、 iーブチノレベンゼン、トリェチノレベンゼン、ジー i プロピノレ ベンセン、 n—アミルナフタレン、トリメチルベンゼンなどの芳香族炭化水素系溶媒を 挙げること力 Sできる。これらの芳香族炭化水素系溶媒は、 1種あるいは 2種以上を同 時に使用してもよい。含ハロゲン溶媒としては、ジクロロメタン、クロ口ホルム、フロン、 クロ口ベンゼン、ジクロロベンゼン、などの含ハロゲン溶媒を挙げることができる。 [0085] 本実施形態に係る絶縁膜形成用組成物においては、沸点が 150°C未満の有機溶 剤を使用することが望ましぐ溶剤種としては、アルコール系溶剤、ケトン系溶剤、ェ ステル系溶剤が特に望ましぐさらにそれらを 1種あるいは 2種以上を同時に使用する ことが望ましい。 [0084] Aromatic hydrocarbon solvents include benzene, toluene, xylene, ethylbenzene, trimethylolenebenzene, methinoleethinobenzene, n-propinorebencene, i-propinolebencene, jetinolebenzene, i-butyl Examples include aromatic hydrocarbon solvents such as norebenzene, trietinolebenzene, zi-propinolebencene, n-amylnaphthalene, and trimethylbenzene. These aromatic hydrocarbon solvents may be used alone or in combination of two or more. Examples of the halogen-containing solvent include halogen-containing solvents such as dichloromethane, black mouth form, chlorofluorocarbon, black mouth benzene, and dichlorobenzene. [0085] In the composition for forming an insulating film according to the present embodiment, it is desirable to use an organic solvent having a boiling point of less than 150 ° C. Alcohol solvents, ketone solvents, esters These solvents are particularly desirable, and it is desirable to use one or more of them at the same time.
[0086] これらの有機溶剤は、中間体および/またはポリマーの合成に用いたものと同じも のであってもよいし、中間体および/またはポリマーの合成が終了した後に溶剤を所 望の有機溶剤に置換することもできる。  [0086] These organic solvents may be the same as those used in the synthesis of the intermediate and / or polymer, or the solvent may be used after the synthesis of the intermediate and / or polymer is completed. Can also be substituted.
[0087] 本発明の一実施形態に係る膜形成用組成物の全固形分濃度は、好ましくは 0. 1 〜20重量%であり、使用目的に応じて適宜調整される。本発明の一実施形態に係る 膜形成用組成物の全固形分濃度が 0. ;!〜 20重量%であることにより、塗膜の膜厚 が適当な範囲となり、より優れた保存安定性を有するものとなる。なお、この全固形分 濃度の調整は、必要であれば、濃縮および有機溶媒による希釈によって行われる。  [0087] The total solid concentration of the film-forming composition according to one embodiment of the present invention is preferably 0.1 to 20% by weight, and is appropriately adjusted according to the purpose of use. When the total solid concentration of the film-forming composition according to one embodiment of the present invention is 0.;! To 20% by weight, the film thickness of the coating film falls within an appropriate range, and thus excellent storage stability is achieved. It will have. This total solid concentration is adjusted by concentration and dilution with an organic solvent, if necessary.
[0088] 2. 2.その他の添加物  [0088] 2. 2. Other additives
本実施形態に係る絶縁膜形成用組成物には、さらに有機ポリマーや界面活性剤な どの成分を添加してもよレ、。  Components such as organic polymers and surfactants may be further added to the composition for forming an insulating film according to this embodiment.
[0089] 2. 2. 1.有機ポリマー  [0089] 2. 2. 1. Organic polymer
有機ポリマーとしては、例えば、糖鎖構造を有する重合体、ビュルアミド系重合体、 (メタ)アクリル系重合体、芳香族ビュル化合物系重合体、デンドリマー、ポリイミド,ポ リアミック酸、ポリアリーレン、ポリアミド、ポリキノキサリン、ポリオキサジァゾーノレ、フッ 素系重合体、ポリアルキレンオキサイド構造を有する重合体などを挙げることができる Examples of the organic polymer include a polymer having a sugar chain structure, a buramide polymer, a (meth) acrylic polymer, an aromatic bur compound polymer, a dendrimer, a polyimide, a polyamic acid, a polyarylene, a polyamide, a poly Examples include quinoxaline, polyoxadiazonole, fluorine-based polymers, and polymers having a polyalkylene oxide structure.
Yes
[0090] ポリアルキレンオキサイド構造を有する重合体としては、ポリメチレンオキサイド構造 、ポリエチレンオキサイド構造、ポリプロピレンオキサイド構造、ポリテトラメチレンォキ サイド構造、ポリブチレンォキシド構造などが挙げられる。  [0090] Examples of the polymer having a polyalkylene oxide structure include a polymethylene oxide structure, a polyethylene oxide structure, a polypropylene oxide structure, a polytetramethylene oxide structure, and a polybutylene oxide structure.
[0091] 具体的には、ポリオキシメチレンアルキルエーテル、ポリオキシエチレンアルキルェ 一テル、ポリオキシェテチレンアルキルフエニルエーテノレ、ポリオキシエチレンステロ ールエーテル、ポリオキシエチレンラノリン誘導体、アルキルフエノールホルマリン縮 合物の酸化エチレン誘導体、ポリオキシエチレンポリオキシプロピレンブロックコポリ マー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルなどのエーテル型 化合物、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン 脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシェチレ ン脂肪酸アル力ノールアミド硫酸塩などのエーテルエステル型化合物、ポリエチレン グリコール脂肪酸エステル、エチレングリコール脂肪酸エステル、脂肪酸モノグリセリ ド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール 脂肪酸エステル、ショ糖脂肪酸エステルなどのエーテルエステル型化合物などを挙 げること力 Sでさる。 [0091] Specifically, polyoxymethylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl etherol, polyoxyethylene sterol ether, polyoxyethylene lanolin derivative, alkylphenol formalin condensate Ethylene oxide derivatives, polyoxyethylene polyoxypropylene block copoly , Ether type compounds such as polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene glycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene fatty acid alkanol amide sulfate and other ether ester type Compounds, polyethylene glycol fatty acid esters, ethylene glycol fatty acid esters, fatty acid monoglycerides, polyglycerin fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, sucrose fatty acid esters, etc. .
[0092] ポリオキシチレンポリオキシプロピレンブロックコポリマーとしては、下記のようなブロ ック構造を有する化合物が挙げられる。  [0092] Examples of the polyoxyethylene polyoxypropylene block copolymer include compounds having the following block structure.
[0093] 一(X' )—(Υ' ) 一 [0093] One (X ')-(Υ') One
1 m  1 m
一(χ' ) - (Υ' ) _ (χ' ) - One (χ ')-(Υ') _ (χ ')-
1 m n 1 m n
(式中、 X' は一 CH CH O—で表される基を、 Y' は一 CH CH (CH )〇一で表  (In the formula, X ′ is a group represented by 1 CH 2 CH 2 O—, Y ′ is represented by 1 CH 2 CH (CH 2)
2 2 2 3 される基を示し、 1は;!〜 90、 mは 10〜99、 nは 0〜90の数を示す。 )  2 represents a group to be formed, 1 represents;! To 90, m represents 10 to 99, and n represents a number from 0 to 90. )
これらの中で、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシ プロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンァノレキノレエ一 テル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂 肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、などのエーテル型 化合物をより好ましい例として挙げること力 Sできる。前述の有機ポリマーは、 1種あるい は 2種以上を同時に使用しても良い。  Among these, polyoxyethylene alkyl ethers, polyoxyethylene polyoxypropylene block copolymers, polyoxyethylene polyoxypropylene anolenoyl ether, polyoxyethylene glycerin fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene An ether type compound such as oxyethylene sorbitol fatty acid ester can be cited as a more preferable example. One or two or more of the aforementioned organic polymers may be used at the same time.
[0094] 2. 2. 2.界面活性剤 [0094] 2. 2. 2. Surfactant
界面活性剤としては、たとえば、ノユオン系界面活性剤、ァユオン系界面活性剤、 カチオン系界面活性剤、両性界面活性剤などが挙げられ、さらには、フッ素系界面 活性剤、シリコーン系界面活性剤、ポリアルキレンォキシド系界面活性剤、ポリ(メタ) アタリレート系界面活性剤などを挙げることができ、好ましくはフッ素系界面活性剤、 シリコーン系界面活性剤を挙げることができる。  As the surfactant, for example, a noion surfactant, a cation surfactant, a cationic surfactant, an amphoteric surfactant, and the like can be mentioned. Furthermore, a fluorine surfactant, a silicone surfactant, Examples include polyalkylene oxide surfactants and poly (meth) acrylate surfactants, preferably fluorine surfactants and silicone surfactants.
[0095] 界面活性剤の使用量は、得られる重合体 100重量部に対して、通常、 0. 00001 〜1重量部である。これらは、 1種あるいは 2種以上を同時に使用しても良い。 [0096] 3.絶縁膜の製造方法 [0095] The amount of the surfactant used is usually from 0.0001 to 1 part by weight based on 100 parts by weight of the resulting polymer. These may be used alone or in combination of two or more. [0096] 3. Method of manufacturing insulating film
本発明の一実施形態に係る絶縁膜 (シリカ系絶縁膜)の製造方法は、上記絶縁膜 形成用組成物を基板に塗布し、硬化処理を施す工程を含む。  A method for producing an insulating film (silica-based insulating film) according to an embodiment of the present invention includes a step of applying the insulating film-forming composition to a substrate and performing a curing process.
[0097] 絶縁膜形成用組成物が塗布される基板としては、 Si、 SiO、 SiN、 SiC、 SiCN等 [0097] Examples of the substrate on which the composition for forming an insulating film is applied include Si, SiO, SiN, SiC, SiCN, etc.
2  2
の Si含有層が挙げられる。絶縁膜形成用組成物を基板に塗布する方法としては、ス ピンコート、浸漬法、ロールコート法、スプレー法などの塗装手段が用いられる。基板 に膜形成用組成物を塗布した後、溶剤を除去し塗膜を形成する。この際の膜厚は、 乾燥膜厚として、 1回塗りで厚さ 0. 05〜2. 5〃m、 2回塗りでは厚さ 0. ;!〜 5. O ^ m の塗膜を形成することができる。その後、得られた塗膜に対して、硬化処理を施すこ とでシリカ系膜を形成することができる。  Si-containing layer. As a method of applying the insulating film forming composition to the substrate, a coating means such as spin coating, dipping method, roll coating method, spray method or the like is used. After the film-forming composition is applied to the substrate, the solvent is removed to form a coating film. The film thickness at this time is a dry film thickness of 0.05 to 2.5 mm when applied once, and a thickness of 0.;! To 5. O ^ m when applied twice. be able to. Then, a silica-type film | membrane can be formed by performing a hardening process with respect to the obtained coating film.
[0098] 硬化処理としては、加熱、電子線や紫外線などの高エネルギー線照射、プラズマ 処理、およびこれらの組み合わせを挙げることができ、加熱処理または高エネルギー 線照射が好ましい。 [0098] Examples of the curing treatment include heating, irradiation with high energy rays such as electron beams and ultraviolet rays, plasma treatment, and combinations thereof. Heat treatment or irradiation with high energy rays is preferable.
[0099] 加熱により硬化を行なう場合は、この塗膜を不活性雰囲気下または減圧下で 80〜  [0099] When curing is performed by heating, the coating film is 80 to 80 in an inert atmosphere or under reduced pressure.
450°C (好ましくは 300°C〜450°C)に加熱する。この際の加熱方法としては、ホット プレート、オーブン、ファーネスなどを使用することができ、加熱雰囲気としては、不 活性雰囲気下または減圧下で行なうことができる。  Heat to 450 ° C (preferably 300 ° C to 450 ° C). As a heating method at this time, a hot plate, an oven, a furnace, or the like can be used, and the heating atmosphere can be an inert atmosphere or a reduced pressure.
[0100] また、上記塗膜の硬化速度を制御するため、必要に応じて、段階的に加熱したり、 あるいは窒素、空気、酸素、減圧などの雰囲気を選択したりすることができる。このよう な工程により、シリカ系膜の製造を行なうことができる。  [0100] Further, in order to control the curing rate of the coating film, it is possible to heat stepwise, or to select an atmosphere such as nitrogen, air, oxygen, reduced pressure or the like as necessary. Through such a process, a silica-based film can be produced.
[0101] 4.シリカ系膜  [0101] 4. Silica-based membrane
本発明の一実施形態に係るシリカ系膜 (シリカ系絶縁膜)は、低誘電率であり、かつ 表面平坦十生に優れるため、 LSI,システム LSI、 DRAM, SDRAM, RDRAM, D— RDRAMなどの半導体素子用層間絶縁膜として特に優れており、かつ、エッチング ストッパー膜、半導体素子の表面コート膜などの保護膜、多層レジストを用いた半導 体作製工程の中間層、多層配線基板の層間絶縁膜、液晶表示素子用の保護膜や 絶縁膜などに好適に用いることができる。また、本発明の一実施形態に係るシリカ系 膜は、銅ダマシンプロセスを含む半導体装置に有用である。 [0102] 本発明の一実施形態に係るシリカ系膜は、その比誘電率が、好ましくは 1. 5〜3. 5 、より好ましくは 1. 8〜3. 0、さらに好ましくは 1. 8〜2. 5であり、その弾性率が、好ま しく (ま 2. 5—15. 0GPa、より好ましく (ま 3. 0—12. OGPaであり、その膜密度力 好 ましくは 0. 7〜; ! · 3g/cm3、より好ましくは 0. 8〜; ! · 27g/cm3である。これらのこと から、本発明の一実施形態に係る有機シリカ系膜は、機械的特性、比誘電率等の絶 縁膜特性に極めて優れてレ、るとレ、える。 A silica-based film (silica-based insulating film) according to an embodiment of the present invention has a low dielectric constant and excellent surface flatness, so that LSI, system LSI, DRAM, SDRAM, RDRAM, D-RDRAM, etc. It is particularly excellent as an interlayer insulating film for semiconductor elements, and is an etching stopper film, a protective film such as a surface coating film for semiconductor elements, an intermediate layer in a semiconductor manufacturing process using a multilayer resist, and an interlayer insulating film for a multilayer wiring board It can be suitably used as a protective film or an insulating film for liquid crystal display elements. The silica-based film according to an embodiment of the present invention is useful for a semiconductor device including a copper damascene process. [0102] The silica-based film according to one embodiment of the present invention has a relative dielectric constant of preferably 1.5 to 3.5, more preferably 1.8 to 3.0, and still more preferably 1.8 to 2.5, and its elastic modulus is preferably (2.5 to 15.0 GPa, more preferably (3.0 to 12 OGPa, and its film density force is preferably 0.7 to; · 3 g / cm 3 , more preferably 0.8 to • • 27 g / cm 3 From these facts, the organic silica-based film according to one embodiment of the present invention has mechanical properties and relative permittivity. It is extremely excellent in insulating film properties such as.
[0103] 5.実施例  [0103] 5. Examples
以下、本発明を、実施例を挙げてさらに具体的に説明する。本発明は以下の実施 例に限定されるものではない。なお、実施例および比較例中の「部」および「%」は、 特記しない限り、それぞれ重量部および重量%であることを示している。  Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples. In the examples and comparative examples, “parts” and “%” indicate parts by weight and% by weight, respectively, unless otherwise specified.
[0104] 5. 1.評価方法  [0104] 5. 1. Evaluation method
各種の評価は、次のようにして行った。  Various evaluations were performed as follows.
[0105] なお、硬度、弾性率、薬液耐性、および膜の分離につ!/、ては、以下の方法で形成 されたポリマー膜 (シリカ系膜)を用いた。すなわち、各実施例および比較例で得られ た組成物をスピンコート法でシリコンウェハ上に塗布したのち、ホットプレート上で、 9 0°Cで 3分間、窒素雰囲気下 200°Cで 3分間基板を乾燥し、さらに 400°Cの窒素雰囲 気下にてホットプレートで基板を 60分間焼成して、膜厚 500 mのポリマー膜を得、 このポリマー膜を上述の各種評価に使用した。  [0105] For the hardness, elastic modulus, chemical resistance, and membrane separation, a polymer film (silica film) formed by the following method was used. That is, the composition obtained in each example and comparative example was applied onto a silicon wafer by spin coating, and then the substrate was heated on a hot plate at 90 ° C. for 3 minutes and at 200 ° C. in a nitrogen atmosphere for 3 minutes. The substrate was further dried, and the substrate was baked on a hot plate for 60 minutes under a nitrogen atmosphere of 400 ° C. to obtain a polymer film having a thickness of 500 m. This polymer film was used for the various evaluations described above.
[0106] 5. 1. 1.比誘電率測定, A k  [0106] 5. 1. 1. Relative permittivity measurement, A k
8インチシリコンウェハ上に、スピンコート法を用いて膜形成用組成物を塗布し、ホッ トプレート上にて 90°Cで 3分間、次いで窒素雰囲気下 200°Cで 3分間乾燥し、さらに 50mTorrの減圧下 (真空雰囲気) 420°Cの縦型ファーネスで 1時間焼成した。得ら れた膜に、蒸着法によりアルミニウム電極パターンを形成し、比誘電率測定用サンプ ルを作成した。該サンプルについて、周波数 100kHzの周波数で、横河'ヒューレット パッカード(株)製、 HP16451B電極および HP4284Aプレシジョン LCRメータを用 いて CV法により、室温(24°C)および 200°Cでの当該膜の比誘電率を測定した。  A film-forming composition is applied onto an 8-inch silicon wafer by spin coating, dried on a hot plate at 90 ° C for 3 minutes, then in a nitrogen atmosphere at 200 ° C for 3 minutes, and further 50 mTorr. Baked in a vertical furnace at 420 ° C for 1 hour under reduced pressure (vacuum atmosphere). An aluminum electrode pattern was formed on the obtained film by vapor deposition to prepare a sample for measuring relative permittivity. For this sample, the ratio of the membrane at room temperature (24 ° C) and 200 ° C was measured by the CV method using the HP16451B electrode and HP4284A Precision LCR meter manufactured by Yokogawa Hewlett-Packard Co., Ltd. at a frequency of 100 kHz. The dielectric constant was measured.
[0107] A kは、室温(24°C)、 40%RHの雰囲気で測定した比誘電率(k@RT)と、 200°C 、乾燥窒素雰囲気下で測定した比誘電率(k@ 200°C)との差( Δ k=k@RT— k@ 2 00°C)である。力、かる A kにより、主に、膜の吸湿による比誘電率の上昇分を評価す ること力 Sできる。通常、 A kが 0· 25以上であると、吸水性の高い有機シリカ膜であると いえる。 [0107] A k is the relative dielectric constant (k @ RT) measured in an atmosphere of room temperature (24 ° C) and 40% RH, and the relative dielectric constant (k @ 200) measured in a dry nitrogen atmosphere at 200 ° C. ° C) (Δ k = k @ RT— k @ 2 00 ° C). The force S can mainly be used to evaluate the increase in relative permittivity due to moisture absorption of the film. Usually, when Ak is 0.25 or more, it can be said that the organic silica film has high water absorption.
[0108] 5. 1. 2.絶縁膜の硬度および弾性率(ヤング率)評価  [0108] 5. 1. 2. Hardness and elastic modulus (Young's modulus) evaluation of insulating film
MTS社製超微少硬度計 (Nanoindentator XP)にバーコビツチ型圧子を取り付 け、得られたポリマー膜のユニバーサル硬度を求めた。また、弾性率は連続剛性測 定法により測定した。  A Barcobit type indenter was attached to an ultra-small hardness meter (Nanoindentator XP) manufactured by MTS, and the universal hardness of the resulting polymer film was determined. The elastic modulus was measured by a continuous stiffness measurement method.
[0109] 5. 1. 3.保存安定性  [0109] 5. 1. 3. Storage stability
40°Cで 30日保存した膜形成用組成物を、スピンコート法を用いて基板に塗布し、 ホットプレート上にて 90°Cで 3分間、次いで窒素雰囲気下 200°Cで 3分間基板を乾 燥し、さらに 50mTorrの減圧下にて 420°Cの縦型ファーネスで 1時間焼成した。この ようにして得られた塗膜の膜厚を、光学式膜厚計 (Rudolph Technologies社製、 S pectra LaSer200)を用いて塗膜面内で 50点測定した。得られた膜の膜厚を測定 し、下式により求めた膜厚増加率により、保存安定性を評価した。 The film-forming composition stored at 40 ° C for 30 days is applied to the substrate using a spin coating method, and the substrate is applied on a hot plate at 90 ° C for 3 minutes and then at 200 ° C for 3 minutes in a nitrogen atmosphere. It was dried and further baked in a vertical furnace at 420 ° C. for 1 hour under a reduced pressure of 50 mTorr. Thus the thickness of the resulting coating film in the optical film thickness meter (Rudolph Technologies, Inc., S pectra La Se r200) were measured 50 points by coating the surface with. The film thickness of the obtained film was measured, and the storage stability was evaluated by the film thickness increase rate obtained by the following formula.
[0110] 膜厚増加率(%) = ( (保存後の膜厚) (保存前の膜厚)) ÷ (保存前の膜厚) X 10 0  [0110] Thickness increase rate (%) = ((film thickness after storage) (film thickness before storage)) ÷ (film thickness before storage) X 10 0
A :膜厚増加率が 4%以下である。  A: The film thickness increase rate is 4% or less.
[0111] B :膜厚増加率が 4%を超える。 [0111] B: The film thickness increase rate exceeds 4%.
[0112] 5. 1. 4.薬液耐性 [0112] 5. 1. 4. Chemical resistance
ポリマー膜が形成された 8インチウェハを、室温で 0. 2%の希フッ酸水溶液中に 1 分間浸潰し、浸漬前後のシリカ系膜の膜厚変化を観察した。下記に定義する残膜率 力 S 99 %以上であれば、薬液耐性が良好であると判断する。  The 8-inch wafer on which the polymer film was formed was immersed in a 0.2% dilute hydrofluoric acid aqueous solution for 1 minute at room temperature, and the change in film thickness of the silica-based film before and after immersion was observed. If the remaining film rate defined below is S 99% or more, it is judged that the chemical resistance is good.
[0113] 残膜率(%) = (浸漬後の膜の膜厚) ÷ (浸漬前の膜の膜厚) X 100 [0113] Remaining film ratio (%) = (film thickness after immersion) ÷ (film thickness before immersion) X 100
A:残膜率が 99 %以上である。  A: The remaining film rate is 99% or more.
[0114] B :残膜率が 99%未満である。 [0114] B: Remaining film ratio is less than 99%.
[0115] 5. 1. 5.膜の相分離有無の確認 [0115] 5. 1. 5. Confirmation of membrane phase separation
絶縁膜の断面を、集束イオンビーム法で観察用に加工し、 TEMを用いて 18000 倍にて外観を調べた。判断結果を以下にして示す。 [0116] A:断面の形状観察では、均一な塗膜が得られている。 The cross section of the insulating film was processed for observation by the focused ion beam method, and the appearance was examined at 18000 times using a TEM. The judgment results are shown below. [0116] A: A uniform coating film was obtained in cross-sectional shape observation.
[0117] B:塗膜に海島状のドメイン相分離が確認される。 [0117] B: Sea-island domain phase separation is confirmed in the coating film.
[0118] 5. 1. 6.フィルターテスト [0118] 5. 1. 6. Filter test
膜形成用組成物 10mLが 0. 2 m孔径のテフロン (登録商標)製フィルターを通過 するか否かを調べた。判断結果を以下に示す。  It was examined whether 10 mL of the film-forming composition passed through a Teflon (registered trademark) filter having a 0.2 m pore size. The judgment results are shown below.
[0119] A: 10mLすべてフィルターを通過した。 [0119] A: All 10 mL passed through the filter.
[0120] B: 10mLすべてがフィルターを通過できなかった。 [0120] B: All 10 mL could not pass through the filter.
[0121] 5. 1. 7.分子量(Mn, Mw) [0121] 5. 1. 7. Molecular weight (Mn, Mw)
下記条件によるゲルパーミエーシヨンクロマトグラフィー(GPC)法により測定した。  It was measured by gel permeation chromatography (GPC) method under the following conditions.
[0122] 試料:テトラヒドロフランを溶媒として使用し、ポリマー(加水分解縮合物) lgを、 100 ccのテトラヒドロフランに溶解して調製した。 [0122] Sample: Prepared by using tetrahydrofuran as a solvent and dissolving polymer (hydrolysis condensate) lg in 100 cc of tetrahydrofuran.
[0123] 標準ポリスチレン:米国プレッシャーケミカル社製の標準ポリスチレンを使用した。 [0123] Standard polystyrene: Standard polystyrene manufactured by US Pressure Chemical Company was used.
[0124] 装置:米国ウォーターズ社製の高温高速ゲル浸透クロマトグラム(モデル 150— C[0124] Apparatus: High-temperature, high-speed gel permeation chromatogram (Model 150-C, manufactured by Waters, USA)
ALC/GPC) (ALC / GPC)
5. 1. 8. 29Si— NMRスぺクトノレ 5. 1. 8. 29 Si—NMR spectrum
下記装置を用いて、溶媒として重ベンゼンを用いて、ポリマーの29 Si— NMRスぺク トルを測定した。 Using the following apparatus, the 29 Si-NMR spectrum of the polymer was measured using deuterated benzene as a solvent.
[0125] 装置: BRUKER AVANCE 500型(ブルカー (Bruker)社製)  [0125] Equipment: BRUKER AVANCE 500 (Bruker)
5. 2.膜形成用組成物の製造  5. 2. Production of film-forming composition
5. 2. 1.実施例 1  5. 2. 1.Example 1
石英製セパラブルフラスコ中で、下記構造式(5)を有するジエトキシポリカルボシラ ン(Mw= 900) 47. lgおよび卜リエ卜キシシラン 150. 4gを、メタノーノレ 200giこ溶角早さ せたのち、スリーワンモーターで攪拌させ、溶液温度を 60°Cに安定させた。次に、 1 重量%マレイン酸水溶液 51gおよびイオン交換水 lOOgを添加し 1時間攪拌した(反 応液 i)。  In a quartz separable flask, 47. lg of diethoxypolycarbosilane having the following structural formula (5) (Mw = 900) and 150.4 g of sodium oxysilane were allowed to melt at 200 gm methanol. The solution temperature was stabilized at 60 ° C by stirring with a three-one motor. Next, 51 g of a 1% by weight maleic acid aqueous solution and lOOg of ion-exchanged water were added and stirred for 1 hour (reaction solution i).
[0126] 次 ίこ、石英製セノ ラフ、、ノレフラスコ ίこ、メタノーノレ 2000g、ィ才ン交換水 1500g、 25 重量%テトラプチルアンモニゥムハイド口キシド水溶液 50. lgを入れ、液温を 60°Cに 安定させた(反応液 ii)。この反応液 iiに反応液 iおよびメチルトリメトキシシラン 50. lg を加え、 1時間反応させた。 [0126] Next ί, Quartz senoraf, Nore Flask ί, Methanolol 2000 g, Water-exchanged water 1500 g, 25 wt% tetraptylammonium hydride mouthwater solution 50. lg is added, and the temperature is 60 ° C was stabilized (reaction solution ii). Add this reaction mixture ii to reaction mixture i and methyltrimethoxysilane 50.lg Was added and allowed to react for 1 hour.
[0127] 次いで、酢酸の 20%プロピレングリコールモノプロピルエーテル溶液 2000gを添加 し、さらに 10分間反応させ、反応液を室温まで冷却した。 50°Cで反応液からメタノー ルと水とを含む溶液をエバポレーシヨンで 15%まで濃縮し、組成物 A (組成物中のポ リマーの炭素原子含有率: 10原子%)を得た。また、 29Si— NMRスペクトルの測定を 行った結果、得られたポリマーの Si— OH結合の含量は Si— O結合の総量に対して 10%であった。 [0127] Next, 2000 g of a 20% propylene glycol monopropyl ether solution of acetic acid was added, and the mixture was further reacted for 10 minutes, and the reaction solution was cooled to room temperature. A solution containing methanol and water was concentrated from the reaction solution to 50% by evaporation at 50 ° C. to obtain composition A (carbon atom content of polymer in composition: 10 atom%). As a result of measuring 29 Si-NMR spectrum, the content of Si—OH bond in the obtained polymer was 10% with respect to the total amount of Si—O bond.
[0128] [化 3]  [0128] [Chemical 3]
Figure imgf000036_0001
Figure imgf000036_0001
[0129] 5. 2. 2.実施例 2 [0129] 5. 2. 2. Example 2
石英製セパラブルフラスコ中で、上記構造式(5)を有するジエトキシポリカルボシラ ン(Mw= 900) 65. lg、メチル卜リエ卜キシシラン 175. 5gおよびテ卜ラメ卜キシシラン 8 0. 5gをメタノール 200gに溶解させたのち、スリーワンモーターで攪拌させ、溶液温 度を 60°Cに安定させた。次に、 1重量%シユウ酸水溶液 51. Ogおよびイオン交換水 100gを添加し 1時間攪拌した (反応液 iii)。  In a separable flask made of quartz, 65. lg of diethoxypolycarbosilane having the above structural formula (5) (Mw = 900), 175.5 g of methyl oxysilane, and 0.5 g of teraxyloxysilane were added. After dissolving in 200 g of methanol, the solution temperature was stabilized at 60 ° C by stirring with a three-one motor. Next, 1 wt% aqueous oxalic acid solution 51. Og and 100 g of ion-exchanged water were added and stirred for 1 hour (reaction solution iii).
[0130] 次に、石英製セパラブルフラスコに、メタノーノレ 2000g、イオン交換水 1500g、およ び 25重量%テトラプチルアンモニゥムハイド口キシド水溶液 36. 7gを入れ、液温を 6 0°Cに安定させた。このフラスコへ反応液 iiiを添加し、 1時間反応させた。  [0130] Next, 2000 g of methanol, 1500 g of ion-exchanged water, and 36.7 g of a 25 wt% tetraptylammonium hydride aqueous solution were added to a quartz separable flask, and the liquid temperature was adjusted to 60 ° C. Stabilized. Reaction solution iii was added to the flask and allowed to react for 1 hour.
[0131] 次いで、酢酸の 20%プロピレングリコールモノプロピルエーテル溶液 2500gを添加 し、さらに 10分間反応させ、反応液を室温まで冷却した。 50°Cで反応液からメタノー ルおよび水を含む溶液をエバポレーシヨンで 15%まで濃縮し、組成物 B (組成物中 のポリマーの炭素原子含有率: 14原子%)を得た。また、 29Si— NMRスペクトルの測 定を行った結果、得られたポリマーの Si— OH結合の含量は Si— O結合の総量に対 して 12%であった。 [0132] 5. 2. 3.実施例 3 [0131] Next, 2500 g of a 20% propylene glycol monopropyl ether solution of acetic acid was added, and the mixture was further reacted for 10 minutes, and the reaction solution was cooled to room temperature. A solution containing methanol and water was concentrated from the reaction solution at 50 ° C. to 15% by evaporation to obtain a composition B (carbon atom content of the polymer in the composition: 14 atom%). As a result of measurement of 29 Si-NMR spectrum, the content of Si—OH bond in the obtained polymer was 12% with respect to the total amount of Si—O bond. [0132] 5. 2. 3. Example 3
石英製セパラブルフラスコ中で、上記構造式(5)を有するジエトキシポリカルボシラ ン(Mw= 900) 250. lgおよびメチノレトリイソプロポキシシラン 250· 2gをメタノーノレ 2 00gに溶解させたのち、スリーワンモーターで攪拌させ、溶液温度を 60°Cに安定させ た。次に、トリ一 i—プロポキシ.モノ(ァセチルァセトナート)チタン 1 · 65gおよびィォ ン交換水 200gを添加し、 2時間攪拌した(反応液 iv)。  In a quartz separable flask, after dissolving 250. lg of diethoxypolycarbosilane having the above structural formula (5) (Mw = 900) 250. lg and methinotritriisopropoxysilane in 200 g of methanol, The solution temperature was stabilized at 60 ° C by stirring with a three-one motor. Next, 1-65 g of tri-i-propoxy.mono (acetylacetate) titanium and 200 g of ion-exchanged water were added and stirred for 2 hours (reaction liquid iv).
[0133] 次に、石英製セパラブルフラスコに、メタノール 1000g、イオン交換水 2000g、およ び 25重量%テトラメチルアンモニゥムハイド口キシド水溶液 24. lgを入れ、液温を 60 °Cに安定させた。このフラスコへ反応液 ivを添加し、 1時間反応させた。  [0133] Next, put 1000 g of methanol, 2000 g of ion-exchanged water, and 24. lg of 25 wt% tetramethylammonium hydride aqueous solution in a quartz separable flask to stabilize the liquid temperature at 60 ° C. I let you. The reaction solution iv was added to the flask and allowed to react for 1 hour.
[0134] 次いで、酢酸の 20%プロピレングリコールモノプロピルエーテル溶液 2500gを添加 し、さらに 10分間反応させ、反応液を室温まで冷却した。 50°Cで反応液からメタノー ルおよび水を含む溶液をエバポレーシヨンで 15%まで濃縮し、組成物 C (組成物中 のポリマーの炭素原子含有率: 17原子%)を得た。また、 29Si— NMRスペクトルの測 定を行った結果、得られたポリマーの Si— OH結合の含量は Si— O結合の総量に対 して 14%であった。 [0134] Next, 2500 g of a 20% propylene glycol monopropyl ether solution of acetic acid was added, and the mixture was further reacted for 10 minutes, and the reaction solution was cooled to room temperature. A solution containing methanol and water was concentrated from the reaction solution at 50 ° C. to 15% by evaporation to obtain composition C (carbon atom content of polymer in composition: 17 atom%). As a result of measuring 29 Si-NMR spectrum, the content of Si—OH bond in the obtained polymer was 14% based on the total amount of Si—O bond.
[0135] 5. 2. 4.比較例 1  [0135] 5. 2. 4. Comparative Example 1
石英製セパラブルフラスコ中で、上記構造式(5)を有するジエトキシポリカルボシラ ン(Mw= 900) 47. lg、卜リエ卜キシシラン 150. 4g、およびメチル卜リメ卜キシシラン 5 0. lgをメタノール 2000gに溶解させたのち、スリーワンモーターで攪拌させ、イオン 交換水 2000gおよび 25重量0 /0テトラメチルアンモニゥムハイド口キシド水溶液 20. 1 gを入れ、液温を 60°Cに安定させ、 1時間反応させた。 In a separable flask made of quartz, 47. lg of diethoxypolycarbosilane having the above structural formula (5) (Mw = 900), 15.4 g of polyoxysilane, and 50.lg of methyl limesilane. After dissolved in methanol 2000g, it was stirred using a three-one motor, and ion-exchange water 2000g and 25 weight 0/0 tetramethylammonium Niu arm Hyde port Kishido solution 20. 1 g, to stabilize the liquid temperature to 60 ° C, Reacted for 1 hour.
[0136] 次に、酢酸の 20%プロピレングリコールモノプロピルエーテル溶液 2000gを添加し 、さらに 10分間反応させ、反応液を室温まで冷却した。 50°Cで反応液からメタノール および水を含む溶液をエバポレーシヨンで 15%まで濃縮し、組成物 D (組成物中の ポリマーの炭素原子含有率: 10原子%)を得た。また、 29Si— NMRスペクトルの測定 を行った結果、得られたポリマーの Si— OH結合の含量は Si— O結合の総量に対し て 14%であった。 [0136] Next, 2000 g of a 20% propylene glycol monopropyl ether solution of acetic acid was added and reacted for 10 minutes, and the reaction solution was cooled to room temperature. A solution containing methanol and water from the reaction solution at 50 ° C. was concentrated to 15% by evaporation to obtain a composition D (carbon atom content of polymer in composition: 10 atom%). As a result of measuring 29 Si-NMR spectrum, the content of Si—OH bond in the obtained polymer was 14% with respect to the total amount of Si—O bond.
[0137] 5. 2. 5.比較例 2 石英製セパラブルフラスコ中で、上記構造式(5)を有するジエトキシポリカルボシラ ン(Mw= 900) 65. lg、メチノレトリエトキシシラン 175. 5g、およびテトラメトキシシラン 80. 5gをメタノール 200gに溶解させたのち、スリーワンモーターで攪拌させ、溶液温 度を 60°( ίこ安定させ、メタノーノレ 1500g、ィ才ン交換水 2000g、および 25重量0 /0テ トラブチルアンモニゥムハイド口キシド水溶液 90. 7gを入れ、 1時間反応させた。 [0137] 5. 2. 5. Comparative Example 2 In a quartz separable flask, diethoxypolycarbosilane having the above structural formula (5) (Mw = 900) 65. lg, methinotritriethoxysilane 175.5 g, and tetramethoxysilane 80.5 g are mixed with 200 g of methanol. After dissolved in, then stirred using a three-one motor, a solution temperature 60 ° (it is ί this stable, Metanonore 1500 g, Isain exchanged water 2000 g, and 25 weight 0/0 Te tiger butyl ammonium Niu arm Hyde port Kishido solution 90. 7 g was added and reacted for 1 hour.
[0138] 次に、酢酸の 20%プロピレングリコールモノプロピルエーテル溶液 2500gを添加し 、さらに 10分間反応させ、反応液を室温まで冷却した。 50°Cで反応液からメタノール および水を含む溶液をエバポレーシヨンで 15%まで濃縮し、組成物 E (組成物中の ポリマーの炭素原子含有率: 14原子%)を得た。また、 29Si— NMRスペクトルの測定 を行った結果、得られたポリマーの Si— OH結合の含量は Si— O結合の総量に対し て 16%であった。 [0138] Next, 2500 g of a 20% propylene glycol monopropyl ether solution of acetic acid was added and reacted for another 10 minutes, and the reaction solution was cooled to room temperature. A solution containing methanol and water was concentrated from the reaction solution at 50 ° C. to 15% by evaporation to obtain a composition E (carbon atom content of polymer in composition: 14 atom%). As a result of measuring 29 Si-NMR spectrum, the content of Si—OH bond in the obtained polymer was 16% with respect to the total amount of Si—O bond.
[0139] 5. 2. 6.比較例 3  [0139] 5. 2. 6. Comparative Example 3
石英製セパラブルフラスコ中で、上記構造式(5)を有するジエトキシポリカルボシラ ン(Mw= 900) 250. lgおよびメチノレトリイソプロポキシシラン 250· 2gをメタノーノレ 2 000gに溶解させたのち、 25重量0 /0テトラメチルアンモニゥムハイド口キシド水溶液 22 . lgを入れ、 1時間反応させた。 In a quartz separable flask, after dissolving 250. lg of diethoxypolycarbosilane having the above structural formula (5) (Mw = 900) 250. lg and methinotritriisopropoxysilane in 2 000 g of methanol, 25 weight 0/0 tetramethylammonium Niu arm Hyde port Kishido aqueous 22. put lg, it was reacted for 1 hour.
[0140] 次に、酢酸の 20%プロピレングリコールモノプロピルエーテル溶液 2500gを添加し 、さらに 10分間反応させ、反応液を室温まで冷却した。 50°Cで反応液からメタノール および水を含む溶液をエバポレーシヨンで 15%まで濃縮し、組成物 F (組成物中の ポリマーの炭素原子含有率: 17原子%)を得た。また、 29Si— NMRスペクトルの測定 を行った結果、得られたポリマーの Si— OH結合の含量は Si— O結合の総量に対し て 18%であった。 [0140] Next, 2500 g of a 20% propylene glycol monopropyl ether solution of acetic acid was added and reacted for another 10 minutes, and the reaction solution was cooled to room temperature. A solution containing methanol and water was concentrated from the reaction solution at 50 ° C. to 15% by evaporation to obtain composition F (carbon atom content of polymer in composition: 17 atom%). As a result of measuring 29 Si-NMR spectrum, the content of Si—OH bond in the obtained polymer was 18% with respect to the total amount of Si—O bond.
[0141] 5. 3.評価結果  [0141] 5. 3. Evaluation results
上記実施例および比較例で得られた組成物 A〜Fに含まれるポリマーの分子量な らびに組成物 A〜Fに対する保存安定性およびフィルターテストの結果、ならびに、 組成物 A〜Fを用いて得られた膜の比誘電率、弾性率、硬度、薬液耐性および断面 観察結果を上述の方法にて評価を行った。評価結果を表 1に示す。  Obtained using the molecular weight of the polymers contained in the compositions A to F obtained in the above Examples and Comparative Examples, the results of storage stability against the compositions A to F and the results of filter tests, and the compositions A to F. The dielectric constant, elastic modulus, hardness, chemical resistance and cross-sectional observation result of the obtained film were evaluated by the above-mentioned methods. Table 1 shows the evaluation results.
[0142] [表 1] [0142] [Table 1]
Figure imgf000039_0001
Figure imgf000039_0001
[0143] 実施例;!〜 3で得られた組成物 A、 B、 Cにおいては、酸処理を行ったため、 0. 2 μ mフィルターを 10mL全量パスした。これに対して、比較例 1〜3で得られた組成物 D 、 E、 Fにおいては、組成物の一部(それぞれ 5mL、 3mL、 lmL)が 0· 2 111フィノレタ 一を通過したものの、途中で目詰まりしてしまった。その理由としては、比較例;!〜 3 では、(D)塩基性触媒を用いた処理の前に、キレート触媒または酸性触媒の存在下 での反応を行なわなかったため、組成物 D、 E、 Fを調製するための反応中において 、粗大粒子が生成してしまい、分子量が増大したためであると考えられる。 [0143] Compositions A, B, and C obtained in Examples;! To 3 were subjected to acid treatment, and thus a 0.2 μm filter was passed through 10 mL in total. On the other hand, in the compositions D, E, and F obtained in Comparative Examples 1 to 3, some of the compositions (5 mL, 3 mL, and 1 mL, respectively) passed through the 0.2 · 11 111 I got clogged. The reason for this is that in Comparative Examples;! To 3, since the reaction in the presence of the chelate catalyst or acidic catalyst was not performed before the treatment with (D) the basic catalyst, the compositions D, E, F It is considered that coarse particles were generated during the reaction for preparing the compound, and the molecular weight was increased.
[0144] また、組成物 A〜Fの分子量分布の広がりについて、 Mw/Mnの値から考察する と、実施例;!〜 3で得られた組成物 A、 B、 Cのように、(D)塩基性触媒を用いた処理 前に酸性触媒または金属キレート化合物による処理を施した場合の方力 比較例 1 〜3で得られた組成物 D、 E、 Fのように、(D)塩基性触媒を用いた処理前に酸性触 媒または金属キレート化合物による処理を施さない場合に比べて分子量分布が狭か つた(すなわち Mw/Mnが小さ力、つた)。このことは、低比誘電率の絶縁膜 (例えば 比誘電率が 2. 5以下の絶縁膜)を形成するために使用する絶縁膜形成用組成物に 含まれるポリマーを合成する際に、高分子量体による粗大粒子の発生を抑えるととも に、低分子量体を所定の割合に抑制できることが理解できる。  [0144] Further, considering the spread of the molecular weight distribution of the compositions A to F from the value of Mw / Mn, as in the compositions A, B, and C obtained in Examples;! To 3, (D ) Treatment with basic catalyst Before treatment with acidic catalyst or metal chelate compound As in compositions D, E, F obtained in Comparative Examples 1 to 3, (D) Basic The molecular weight distribution was narrow (ie, Mw / Mn was small) compared to the case where no treatment with an acidic catalyst or metal chelate compound was performed before the treatment with the catalyst. This is because when a polymer contained in a composition for forming an insulating film used for forming an insulating film having a low relative dielectric constant (for example, an insulating film having a relative dielectric constant of 2.5 or less) is synthesized, a high molecular weight It can be understood that the generation of coarse particles by the body can be suppressed and the low molecular weight body can be suppressed to a predetermined ratio.
[0145] 以上により、本発明により得られるシリカ系膜は、機械的強度に優れ、比誘電率が 低ぐかつ、薬液耐性などのプロセス耐性および保存安定性において優れているた め、半導体素子などの層間絶縁膜として好適である。 [0145] As described above, the silica-based film obtained by the present invention has excellent mechanical strength, a low relative dielectric constant, and excellent process resistance such as chemical resistance and storage stability. It is suitable as an interlayer insulating film.

Claims

請求の範囲 The scope of the claims
(A)下記一般式(1)で表される少なくとも 1種のポリカルボシラン化合物と、(B)下 記一般式(2)で表される加水分解性シラン化合物で表される化合物から選ばれた少 なくとも 1種のシラン化合物とを、(C)金属キレート化合物および酸性触媒もしくはい ずれか一方の存在下で反応させて中間体を得た後、該中間体を (D)塩基性触媒の 存在下で処理する工程を含む、ポリマーの製造方法。  (A) at least one polycarbosilane compound represented by the following general formula (1) and (B) a compound represented by the hydrolyzable silane compound represented by the following general formula (2) After reacting at least one silane compound in the presence of (C) a metal chelate compound and / or an acidic catalyst, an intermediate is obtained, and then the intermediate is converted into (D) a basic catalyst. The manufacturing method of a polymer including the process processed in presence of.
[化 4]  [Chemical 4]
Figure imgf000041_0001
Figure imgf000041_0001
· · · · · (1) (1)
(式中、 R1は水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基、 スルホン基、メタンスルホン基、トリフルォロメタンスルホン基、アルキル基、ァリール基 、ァリル基およびグリシジル基からなる群より選ばれる基を示し、 R2はハロゲン原子、 ヒドロキシ基、アルコキシ基、ァシロキシ基、スルホン基、メタンスルホン基、トリフルォ ロメタンスルホン基、アルキル基、ァリール基、ァリル基およびグリシジル基からなる群 より選ばれる基を示し、 R3, R4は同一または異なり、ハロゲン原子、ヒドロキシ基、アル コキシ基、ァシロキシ基、スルホン基、メタンスルホン基、トリフルォロメタンスルホン基 、炭素数 2〜6のアルキル基、ァリール基、ァリル基およびグリシジル基からなる群より 選ばれる基を示し、 R5〜R7は同一または異なり、置換または非置換のメチレン基、ァ ルキレン基、アルケニレン基、アルキニレン基、ァリーレン基を示し、 X, y, zは、それ ぞれ 0〜; 10, 000の数を示し、 5< x + y+ z< 10, 000の条件を満たす。 ) (Wherein R 1 is selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, an alkyl group, an aryl group, an aryl group, and a glycidyl group. R 2 is selected from the group consisting of a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, an alkyl group, an aryl group, an aryl group, and a glycidyl group. R 3 and R 4 are the same or different and are a halogen atom, a hydroxy group, an alkoxy group, an acyloxy group, a sulfone group, a methanesulfone group, a trifluoromethanesulfone group, an alkyl group having 2 to 6 carbon atoms, an aryl A group selected from the group consisting of a group, an aryl group and a glycidyl group, R 5 ˜R 7 are the same or different and each represents a substituted or unsubstituted methylene group, alkylene group, alkenylene group, alkynylene group, arylene group, and X, y, z each represents a number of 0 to; 10,000 And 5 <x + y + z <10,000 conditions.)
R8 SiZ (2) R 8 SiZ (2)
(式中、 R8は水素原子、アルキル基、アルケニル基、アルキニル基またはァリール 基、 Zはハロゲン原子あるいはアルコキシ基、 aは 0〜3の整数を示す。 ) (In the formula, R 8 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group or an aryl group, Z represents a halogen atom or an alkoxy group, and a represents an integer of 0 to 3.)
[2] (A)上記一般式(1)で表される少なくとも 1種のポリカルボシラン化合物と、(B)上 記一般式(2)で表される加水分解性シラン化合物で表される化合物から選ばれた少 なくとも 1種のシラン化合物とを、(C)金属キレート化合物および酸性触媒もしくはい ずれか一方の存在下で反応させて中間体を得た後、該中間体および (E)上記一般 式(2)で表される少なくとも 1種の加水分解性シラン化合物を (D)塩基性触媒の存在 下で処理する工程を含む、ポリマーの製造方法。 [2] (A) at least one polycarbosilane compound represented by the above general formula (1) and (B) a compound represented by the hydrolyzable silane compound represented by the above general formula (2) Selected from At least one silane compound is reacted in the presence of (C) a metal chelate compound and / or an acidic catalyst to obtain an intermediate, and then the intermediate and (E) the above general formula (2 And (D) a process for treating the hydrolyzable silane compound represented by (4) in the presence of a basic catalyst.
[3] 請求項 1または 2において、 [3] In claim 1 or 2,
前記金属キレート化合物は (C)下記一般式 (3)で表される、ポリマーの製造方法。  The metal chelate compound is (C) a method for producing a polymer represented by the following general formula (3).
R9 M (OR10) (3) R 9 M (OR 10 ) (3)
c b_c  c b_c
(式中、 R9はキレート剤を示し、 Mは金属原子を示し、 R1()はアルキル基またはァリ 一ル基を示し、 bは金属 Mの原子価を示し、 cは l〜bの整数を表す。 ) (Wherein R 9 represents a chelating agent, M represents a metal atom, R 1 () represents an alkyl group or an aryl group, b represents the valence of metal M, and c represents l to b Represents an integer.)
[4] 請求項 1ないし 3のいずれかにおいて、 [4] In any one of claims 1 to 3,
前記 (D)塩基性触媒は下記一般式 (4)で表される含窒素化合物である、ポリマー の製造方法。  (D) The method for producing a polymer, wherein the basic catalyst is a nitrogen-containing compound represented by the following general formula (4).
ΧΧ2Χ"Χ4Ν) Υ (4) Χ Χ 2 Χ "Χ 4 Ν) Υ (4)
g  g
(式中、 X1, X2, X3, X4は同一または異なり、水素原子、炭素数 1〜20のアルキル 基、ヒドロキシアルキル基、ァリール基、またはァリールアルキル基を示し、 Yはハロゲ ン原子または 1〜4価のァニオン性基を示し、 gは 1〜4の整数を表す。 ) (In the formula, X 1 , X 2 , X 3 and X 4 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group, an aryl group, or an aryl alkyl group, and Y represents a halogen atom. Or a 1 to 4 valent anionic group, and g represents an integer of 1 to 4.)
[5] 請求項 1ないし 4のいずれかの製造方法によって製造されるポリマーと、有機溶剤と を含む絶縁膜形成用組成物。 [5] A composition for forming an insulating film, comprising the polymer produced by the production method according to any one of claims 1 to 4 and an organic solvent.
[6] 請求項 5において、 [6] In claim 5,
前記ポリマーの Mw/Mnが 1. 5〜4. 0である、絶縁膜形成用組成物。  The composition for insulating film formation whose Mw / Mn of the said polymer is 1.5-4.0.
[7] 請求項 6において、 [7] In claim 6,
前記ポリマーは、炭素原子の含有率が 8〜40原子%である、絶縁膜形成用組成物 The polymer is a composition for forming an insulating film, wherein the carbon atom content is 8 to 40 atomic%
Yes
[8] カルボシランオリゴマーおよびアルコキシシランモノマーの加水分解縮合物と、有 機溶剤とを含有し、  [8] A hydrolysis-condensation product of a carbosilane oligomer and an alkoxysilane monomer, and an organic solvent,
前記加水分解縮合物の炭素原子の含有率が 8〜40原子%であり、かつ、前記加 水分解縮合物の Mw/Mnが 1. 5〜4. 0である、絶縁膜形成用組成物。  The composition for insulating film formation whose content rate of the carbon atom of the said hydrolysis-condensation product is 8-40 atomic%, and whose Mw / Mn of the said hydrolysis-decomposition condensation product is 1.5-4.0.
[9] 請求項 8において、 前記加水分解縮合物の Si— OH結合の含量は Si— O結合の総量に対して 20%以 下である、絶縁膜形成用組成物。 [9] In claim 8, The composition for forming an insulating film, wherein the content of Si—OH bonds in the hydrolysis-condensation product is 20% or less based on the total amount of Si—O bonds.
[10] 請求項 5ないし 9のいずれかに記載の絶縁膜形成用組成物を基板に塗布し、 30〜 [10] Applying the insulating film-forming composition according to any one of claims 5 to 9 to a substrate,
450°Cに加熱することを含む、シリカ系絶縁膜の製造方法。  A method for producing a silica-based insulating film, comprising heating to 450 ° C.
[11] 請求項 5ないし 9のいずれかに記載の絶縁膜形成用組成物を基板に塗布し、高工 ネルギ一線を照射することを含む、シリカ系絶縁膜の製造方法。 [11] A method for producing a silica-based insulating film, comprising applying the composition for forming an insulating film according to any one of claims 5 to 9 to a substrate and irradiating a high-energy line.
[12] 請求項 10または 11に記載のシリカ系絶縁膜の製造方法により得られる、シリカ系 絶縁膜。 [12] A silica-based insulating film obtained by the method for producing a silica-based insulating film according to claim 10 or 11.
PCT/JP2007/072902 2006-11-30 2007-11-28 Method for producing polymer, composition for forming insulating film, and silica insulating film and method for producing the same WO2008066060A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008547003A JPWO2008066060A1 (en) 2006-11-30 2007-11-28 Method for producing polymer, composition for forming insulating film, silica-based insulating film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-323696 2006-11-30
JP2006323696 2006-11-30

Publications (1)

Publication Number Publication Date
WO2008066060A1 true WO2008066060A1 (en) 2008-06-05

Family

ID=39467850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072902 WO2008066060A1 (en) 2006-11-30 2007-11-28 Method for producing polymer, composition for forming insulating film, and silica insulating film and method for producing the same

Country Status (3)

Country Link
JP (1) JPWO2008066060A1 (en)
TW (1) TW200835723A (en)
WO (1) WO2008066060A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090248A (en) * 2008-10-07 2010-04-22 Jsr Corp Composition for forming silicon-containing film for multilayer resist process, silicon-containing film, and method for forming pattern
US9169163B2 (en) 2012-01-18 2015-10-27 United Technologies Corporation Method of treating a preceramic material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354279A (en) * 1989-07-21 1991-03-08 Catalysts & Chem Ind Co Ltd Preparation of coating liquid for forming silica film
JPH0598012A (en) * 1991-10-11 1993-04-20 Shin Etsu Chem Co Ltd Production of organopolysiloxane resin
JPH05139714A (en) * 1991-11-14 1993-06-08 Toagosei Chem Ind Co Ltd Silica-based coating material and coated body
JP2000058540A (en) * 1998-08-03 2000-02-25 Sony Corp Composition for forming low-permittivity insulating film and formation thereof
JP2001164186A (en) * 1999-09-29 2001-06-19 Jsr Corp Composition for film forming, process for forming film and insulating film
JP2004307693A (en) * 2003-04-09 2004-11-04 Shin Etsu Chem Co Ltd Composition for forming porous film, method for producing porous film, porous film, interlayer dielectric film and semiconductor device
WO2005068540A1 (en) * 2004-01-16 2005-07-28 Jsr Corporation Composition for forming insulating film, method for producing same, silica insulating film and method for forming same
WO2005108468A1 (en) * 2004-05-11 2005-11-17 Jsr Corporation Method for forming organic silica film, organic silica film, wiring structure, semiconductor device, and composition for film formation
WO2005108469A1 (en) * 2004-05-11 2005-11-17 Jsr Corporation Method for forming organic silica film, organic silica film, wiring structure, semiconductor device, and composition for film formation
WO2007088908A1 (en) * 2006-02-02 2007-08-09 Jsr Corporation Organic silica film and method for forming same, composition for forming insulating film of semiconductor device and method for producing same, wiring structure and semiconductor device
WO2007139004A1 (en) * 2006-05-31 2007-12-06 Jsr Corporation Composition for forming insulating films, process for production thereof, silica-base insulating films, and process for the formation of the films

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115920A (en) * 1997-06-17 1999-01-12 Inax Corp Production of siliceous coating material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354279A (en) * 1989-07-21 1991-03-08 Catalysts & Chem Ind Co Ltd Preparation of coating liquid for forming silica film
JPH0598012A (en) * 1991-10-11 1993-04-20 Shin Etsu Chem Co Ltd Production of organopolysiloxane resin
JPH05139714A (en) * 1991-11-14 1993-06-08 Toagosei Chem Ind Co Ltd Silica-based coating material and coated body
JP2000058540A (en) * 1998-08-03 2000-02-25 Sony Corp Composition for forming low-permittivity insulating film and formation thereof
JP2001164186A (en) * 1999-09-29 2001-06-19 Jsr Corp Composition for film forming, process for forming film and insulating film
JP2004307693A (en) * 2003-04-09 2004-11-04 Shin Etsu Chem Co Ltd Composition for forming porous film, method for producing porous film, porous film, interlayer dielectric film and semiconductor device
WO2005068540A1 (en) * 2004-01-16 2005-07-28 Jsr Corporation Composition for forming insulating film, method for producing same, silica insulating film and method for forming same
WO2005108468A1 (en) * 2004-05-11 2005-11-17 Jsr Corporation Method for forming organic silica film, organic silica film, wiring structure, semiconductor device, and composition for film formation
WO2005108469A1 (en) * 2004-05-11 2005-11-17 Jsr Corporation Method for forming organic silica film, organic silica film, wiring structure, semiconductor device, and composition for film formation
WO2007088908A1 (en) * 2006-02-02 2007-08-09 Jsr Corporation Organic silica film and method for forming same, composition for forming insulating film of semiconductor device and method for producing same, wiring structure and semiconductor device
WO2007139004A1 (en) * 2006-05-31 2007-12-06 Jsr Corporation Composition for forming insulating films, process for production thereof, silica-base insulating films, and process for the formation of the films

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090248A (en) * 2008-10-07 2010-04-22 Jsr Corp Composition for forming silicon-containing film for multilayer resist process, silicon-containing film, and method for forming pattern
US9169163B2 (en) 2012-01-18 2015-10-27 United Technologies Corporation Method of treating a preceramic material
US9745226B2 (en) 2012-01-18 2017-08-29 United Technologies Corporation Method of treating a preceramic material
EP2617756B1 (en) * 2012-01-18 2020-03-25 United Technologies Corporation Method of forming a preceramic material

Also Published As

Publication number Publication date
TW200835723A (en) 2008-09-01
JPWO2008066060A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
KR101185644B1 (en) Composition for forming insulating film, method for producing same, silica insulating film and method for forming same
KR101168452B1 (en) Composition for forming insulating film, method for producing same, silica insulating film and method for forming same
KR100709644B1 (en) Silica-based Film, Process for Forming the Same, Composition for Forming Insulating Film of Semiconductor Device, Wiring Structure and Semiconductor Device
TWI304077B (en) Method of forming organic silica-based film
KR101203225B1 (en) Composition For Forming Film, Process For Preparing the Same, Material For Forming Insulating Film, Process For Forming Film and Silica Film
TWI431040B (en) Organic silicon dioxide film and method for forming the same, composition for forming insulating film of semiconductor device and manufacturing method thereof, and wiring structure
WO2005068539A1 (en) Method for producing polymer, polymer, composition for forming insulating film, method for producing insulating film, and insulating film
WO2005108468A1 (en) Method for forming organic silica film, organic silica film, wiring structure, semiconductor device, and composition for film formation
WO2005082976A1 (en) Polymer and process for producing the same, composition for forming insulating film, and insulating film and method of forming the same
WO2005108469A1 (en) Method for forming organic silica film, organic silica film, wiring structure, semiconductor device, and composition for film formation
WO2007139004A1 (en) Composition for forming insulating films, process for production thereof, silica-base insulating films, and process for the formation of the films
EP1650250A1 (en) Silicon-containing polymer, process for rpoducing the same, heat-resistant resin composition, and heat-resistant film
JP4180417B2 (en) Composition for forming porous film, method for producing porous film, porous film, interlayer insulating film, and semiconductor device
JP2001098224A (en) Silica-based film, method of forming silica-based film, and electronic component having silica-based film
WO2005057646A1 (en) Insulating film, method for forming same and composition for forming film
JP2001098218A (en) Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film
TW201139572A (en) Silica-based film forming material for formation of air gaps, and method for forming air gaps
JP2000328004A (en) Composition for forming film and material for forming insulating film
WO2007119554A1 (en) Method for producing polymer, polymer, composition for forming polymer film, method for forming polymer film, and polymer film
TW200835756A (en) Composition for forming coating and coating formed of composition
WO2008066060A1 (en) Method for producing polymer, composition for forming insulating film, and silica insulating film and method for producing the same
JP6503630B2 (en) Silicon-containing film forming composition and pattern forming method
JP5099301B2 (en) Composition for forming insulating film, polymer and method for producing the same, method for producing insulating film, and silica-based insulating film
JP2000309751A (en) Composition for forming film and material for forming insulation film
JP2003115482A (en) Insulation film forming composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832624

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008547003

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832624

Country of ref document: EP

Kind code of ref document: A1