WO2008065899A1 - Liquid crystal panel and liquid crystal display device - Google Patents

Liquid crystal panel and liquid crystal display device Download PDF

Info

Publication number
WO2008065899A1
WO2008065899A1 PCT/JP2007/072176 JP2007072176W WO2008065899A1 WO 2008065899 A1 WO2008065899 A1 WO 2008065899A1 JP 2007072176 W JP2007072176 W JP 2007072176W WO 2008065899 A1 WO2008065899 A1 WO 2008065899A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical compensation
liquid crystal
compensation layer
layer
crystal cell
Prior art date
Application number
PCT/JP2007/072176
Other languages
French (fr)
Japanese (ja)
Inventor
Kentarou Takeda
Junichi Nagase
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007265642A external-priority patent/JP2009015279A/en
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US12/516,264 priority Critical patent/US7969542B2/en
Publication of WO2008065899A1 publication Critical patent/WO2008065899A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis

Definitions

  • Liquid crystal panel and liquid crystal display device Liquid crystal panel and liquid crystal display device
  • the present invention relates to a liquid crystal panel and a liquid crystal display device having the liquid crystal panel.
  • liquid crystal display device In a vertical alignment mode liquid crystal display device, light from a knock light is turned on and off for each pixel by utilizing birefringence and polarization of liquid crystal.
  • the liquid crystal molecules are vertically aligned when no voltage is applied, the polarizing plates arranged on both sides of the liquid crystal cell are placed so that the absorption axes of the polarizers are orthogonal to each other. Therefore, black can be displayed.
  • the liquid crystal is tilted by applying a voltage to the absorption axis direction of the polarizer and 45 °, 135 °, 225 °, and 315 ° directions, respectively.
  • the polarizing plate is installed so that the absorption axes of the polarizers are orthogonal to each other. As the viewing angle is tilted in an oblique direction, the absorption axis apparently deviates from orthogonal. As a result, light leakage occurs.
  • an optical compensator that compensates for the birefringence of the liquid crystal and the axial misalignment of the polarizer of the polarizing plate, for example, a biaxial retardation plate is used in the liquid crystal display device in the vertical alignment mode (for example, (See Patent Document 1).
  • the optical compensator used is for light of a specific wavelength, compensation for light of all wavelengths emitted from the backlight is not sufficient, so light leakage at a certain wavelength is not possible. happens.
  • the transmittance varies depending on the wavelength, a phenomenon in which the color appears to change when the viewing angle is changed, a so-called color shift occurs. Low these phenomena In order to reduce, it is required to compensate the wavelength of visible light over the entire area.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-270442
  • Patent Document 2 Patent No. 3648240
  • the present invention has been made to solve the above-described conventional problems, contributes to thinning, improves viewing angle characteristics, achieves high contrast, suppresses color shift, and displays black. It would be interesting to provide a liquid crystal panel and a liquid crystal display device that can prevent light leakage in the well.
  • An academic compensation layer a first polarizer
  • the first optical compensation layer and the second optical compensation layer, the third optical compensation layer and the fourth optical compensation layer are arranged in a symmetrical positional relationship with respect to the liquid crystal cell. ! /
  • the liquid crystal cell is placed on one side of the liquid crystal cell.
  • the first optical compensation layer, the second optical compensation layer, and the first polarizer are arranged, and the third liquid crystal cell is arranged in this order from the liquid crystal cell on the other side of the liquid crystal cell.
  • the optical compensation layer, the fourth optical compensation layer, and the second polarizer are disposed.
  • the second optical compensation layer and the first optical compensation layer In order from the liquid crystal cell on one side of the liquid crystal cell, the second optical compensation layer and the first optical compensation layer in this order.
  • the first polarizer is disposed, and the fourth optical compensation layer, the third optical compensation layer, and the second optical device are arranged in this order from the liquid crystal cell on the other side of the liquid crystal cell.
  • the polarizer is arranged.
  • the first optical compensation layer and the third optical compensation layer have a photoelastic coefficient of 70 X 10 — 12 (m 2 / N) or less.
  • the first optical compensation layer and the third optical compensation layer include
  • the first optical compensation layer and the third optical compensation layer include
  • the first optical compensation layer and the third optical compensation layer are
  • V formed from a material having a non-aromatic cyclic structure and an ester group.
  • the second optical compensation layer and the fourth optical compensation layer include
  • the thickness direction retardation Rth of the second optical compensation layer and the fourth optical compensation layer is 20 nm or more.
  • the first optical compensation layer and the third optical compensation layer are polymer films stretched in the width direction.
  • a liquid crystal display device includes the liquid crystal panel.
  • a liquid crystal panel that contributes to thinning, improves viewing angle characteristics, realizes high contrast, suppresses color shift, and can favorably prevent light leakage in black display, and A liquid crystal display device may be provided.
  • FIG. 1 is a schematic sectional view of a liquid crystal panel according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating the alignment state of liquid crystal molecules in a liquid crystal layer in a VA mode liquid crystal cell.
  • FIG. 3 (A) is a graph showing refractive index wavelength dispersion characteristics of the first optical compensation layer and the second optical compensation layer obtained in Example 1.
  • (B) is a graph showing the refractive index wavelength dispersion characteristics of the norbornene-based resin film used in Comparative Example 4.
  • (C) shows the refractive index wavelength dispersion characteristics of the first optical compensation layer used in Example 6 and the first optical compensation layer used in Example 1.
  • FIG. 4 is a contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Example 1, and a graph (c) showing the relationship between X value and y value and azimuth angle. .
  • FIG. 5 is a contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Example 2, and a graph (c) showing the relationship between X and y values and azimuth. .
  • FIG. 6 is a contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Example 3, and a graph (c) showing the relationship between X value and y value and azimuth angle. .
  • FIG. 7 is a contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Example 4, and a graph (c) showing the relationship between X value and y value and azimuth angle. .
  • FIG. 8 is a contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Example 5, and a graph (c) showing the relationship between X value, y value and azimuth angle. .
  • FIG. 9 is a contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Comparative Example 1, and a graph (c) showing the relationship between X and y values and azimuth. . 10] Contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Comparative Example 2, and graph (c) showing the relationship between the X and y values and the azimuth.
  • FIG. 17 is an enlarged photograph of the screen during black display in the liquid crystal display device (a) produced in Example 1 and the liquid crystal display device (b) produced in Comparative Example 6.
  • nx is the refractive index in the direction that maximizes the in-plane refractive index (ie, slow axis direction), and “ny” is the direction that is perpendicular to the slow axis in the plane (ie, fast phase). (Axial direction), and “nz” is the refractive index in the thickness direction.
  • substantially equal is intended to include the case where nx and ny are different within a range that does not have a practical effect on the overall polarization characteristics of the liquid crystal panel.
  • In-plane retardation Re means the retardation value in the film (layer) plane measured with light at a wavelength of 590 nm at 23 ° C unless otherwise specified.
  • Thickness direction retardation Rth means a thickness direction retardation value measured at 23 ° C. with light having a wavelength of 590 nm unless otherwise specified.
  • the Nz coefficient is obtained from the following equation (1).
  • Nz (.nx—nz) / (nx—ny) (1)
  • the liquid crystal panel of the present invention includes a liquid crystal cell, a first optical compensation layer disposed on one side of the liquid crystal cell, a second optical compensation layer, a first polarizer, and the other of the liquid crystal cell.
  • a third optical compensation layer, a fourth optical compensation layer, and a second polarizer disposed on the first side, the first optical compensation layer and the second optical compensation layer, The third optical compensation layer and the fourth optical compensation layer are arranged in a symmetrical positional relationship with respect to the liquid crystal cell.
  • FIG. 1 (a) is a schematic cross-sectional view of a liquid crystal panel according to one preferred embodiment of the present invention. As shown in FIG.
  • the liquid crystal node 100 includes a liquid crystal cell 10 and a first optical compensation layer 11 and a second liquid crystal layer 10 arranged in this order from the liquid crystal cell side on one side of the liquid crystal cell 10.
  • FIG. 1 (b) is a schematic cross-sectional view of a liquid crystal panel according to another preferred embodiment of the present invention. As shown in FIG.
  • the liquid crystal panel 100 includes a liquid crystal cell 10 and a second optical compensation layer 21, a first liquid crystal cell 10 arranged in this order from the liquid crystal cell side on one side of the liquid crystal cell 10.
  • a second polarizer 32 arranged in this order from the liquid crystal sensor side to the other side of the liquid crystal cell 10.
  • the optical compensation layers having a predetermined birefringence are arranged symmetrically with the liquid crystal cell in between, so that when the liquid crystal cell is viewed from an oblique direction, the polarizers above and below the liquid crystal cell Optical defects (for example, coloring) due to deviation of the formed angle from crossed Nicols (90 °) can be compensated uniformly above and below the liquid crystal cell.
  • the viewing angle characteristics of the liquid crystal panel are improved, a high contrast is realized, the color shift is suppressed, and light leakage in black display can be prevented well.
  • the first polarizer 31 and the second polarizer 32 are arranged so that their absorption axes are substantially orthogonal to each other. Further, the first polarizer 31 is arranged so that the absorption axis thereof is substantially orthogonal to the slow axis of the first optical compensation layer 11. The second polarizer 32 is arranged such that its absorption axis is substantially perpendicular to the slow axis of the third optical compensation layer 12.
  • substantially orthogonal includes a case of 90 ° ⁇ 3.0 °, preferably 90 ° ⁇ 1.0 °, more preferably 90 ° ⁇ 0.5 °. It is.
  • each layer of the liquid crystal panel may be disposed via any appropriate pressure-sensitive adhesive layer or adhesive layer.
  • any appropriate protective layer may be provided on the side of the first polarizer 31 and / or the second polarizer 32 where the optical compensation layer is not formed (the side opposite to the liquid crystal cell).
  • any appropriate protective layer may be provided on the side of the first polarizer 31 and / or the second polarizer 32 where the optical compensation layer is formed (liquid crystal cell side).
  • the liquid crystal cell 10 used in the present invention includes a pair of substrates 41 and 42 and a liquid crystal layer 43 as a display medium disposed between the substrates.
  • the liquid crystal layer 43 includes liquid crystal molecules that are vertically aligned when no voltage is applied.
  • An example of such a liquid crystal cell is a VA mode liquid crystal cell.
  • FIG. 2 is a schematic cross-sectional view illustrating the alignment state of liquid crystal molecules in the VA mode.
  • the liquid crystal molecules are aligned perpendicular to the surfaces of the substrates 41 and 42 when no voltage is applied.
  • Such vertical alignment can be realized by arranging a nematic liquid crystal having negative dielectric anisotropy between substrates on which a vertical alignment film (not shown) is formed.
  • a vertical alignment film not shown
  • the incident light travels without changing the polarization direction and is absorbed by the second polarizer 32 having a polarization axis orthogonal to the first polarizer 31.
  • a display of a heel state can be obtained when no voltage is applied (normally black mode).
  • Fig. 2 (b) when a voltage is applied between the electrodes, the major axis of the liquid crystal molecules is oriented parallel to the substrate surface. Liquid crystal molecules exhibit birefringence with respect to linearly polarized light incident on the liquid crystal layer 43 in this state, and the polarization state of incident light changes according to the tilt of the liquid crystal molecules.
  • the light passing through the liquid crystal layer when a predetermined maximum voltage is applied becomes, for example, linearly polarized light whose polarization direction is rotated by 90 °, and thus is transmitted through the second polarizer 32 to obtain a bright display. It is done. When no voltage is applied again, the display can be returned to the cocoon state by the orientation regulating force. In addition, gradation display is possible by changing the intensity of transmitted light from the second polarizer 32 by changing the applied voltage to control the tilt of the liquid crystal molecules.
  • the first optical compensation layer can suitably compensate for the axial misalignment of the polarizer of the polarizing plate.
  • the in-plane retardation Re of the first optical compensation layer is preferably 20 to 180 nm, more preferably 25 to 160 nm, still more preferably 30 to 140 nm.
  • the thickness direction retardation Rth of the first optical compensation layer is preferably 20 to 200 nm, more preferably 30 to; 180 nm, and still more preferably 40 to 150 nm.
  • the Nz coefficient of the first optical compensation layer is 1 or more, preferably 1.1 or more, and more preferably 1.3 or more.
  • the Nz coefficient of the first optical compensation layer is 2.5 or less, preferably 2.2 or less, more preferably 2.0 or less, and particularly preferably 1.8 or less. .
  • the effect of V can be obtained if the axial misalignment of the polarizer of the polarizing plate can be more preferably compensated.
  • the first optical compensation layer preferably 70 X 10- 12 (m 2 / N) or less, more preferably 60 X 10 - 12 (m 2 / N) or less, more preferably 50 X 10- 12 (m 2 / N) or less, still more preferably 40 X 10- 12 (m 2 / N) or less, particularly preferably photoelastic of 0 ⁇ 1 X 10- 12 ⁇ 30 X 10- 12 (m 2 / N) Has a coefficient.
  • the photoelastic coefficient is in the above range, the occurrence of phase difference unevenness due to tension at the time of bonding with another optical element can be suppressed, so that an effect of obtaining a liquid crystal panel in which light leakage is suppressed can be obtained. obtain.
  • the first optical compensation layer is also preferably Re (780) / Re (550)> 1.1, more preferably 1. K Re (780) / Re (550) ⁇ 1.6, more preferably Has the relationship 1.15 ⁇ Re (780) / Re (550X 1.5.
  • the retardation value is constant over a wide visible light region.
  • the first optical compensation layer is also preferably Re (550) / Re (380)> 1.1, more preferably 1. KRe (550) / Re (380) ⁇ 1. 7, more preferably 1.3 ⁇ Re (550) / Re (380X 1.6.
  • the first optical compensation layer has the above relationship. Since the phase difference value is constant over a wide visible light region, the wavelength of the liquid crystal display device in the oblique direction is less likely to cause a wavelength deviation in light leaking when used in a liquid crystal display device. In particular, when used in a liquid crystal display device, light leakage in the blue region can be reduced and the display image can be prevented from being bluish.
  • materials having a non-aromatic cyclic structure and an ester group are preferably substituted with an acetyl group and a propionyl group! /,
  • a cellulose-based material, and a polyester-based material having a non-aromatic cyclic structure are preferably substituted with an acetyl group and a propionyl group! /.
  • cellulosic materials substituted with acetyl groups and propionyl groups (hereinafter simply referred to as "cellulosic materials"), the degree of substitution with acetyl groups exists in the cell mouth repeating units. It can be shown by the “degree of substitution of acetyl (DSac)” which indicates how much the three hydroxyl groups on average are substituted by the acetyl group. In the cellulosic material, the degree of substitution with propionyl groups indicates the average amount of substitution by three hydroxyl group propionyl groups present in the repeating unit of cellulose! DSpr) ".
  • the degree of substitution with acetyl (DSac) and the degree of substitution with propylene (DSpr) can be determined by the methods described in JP 2003-315538 A. (0016) to (001 9).
  • the degree of acetyl substitution (DSac) and the degree of propionyl substitution (DSpr) preferably satisfy the relational expression of 2.0 ⁇ DSac + DSpr ⁇ 3.0.
  • the lower limit value of DSac + DSpr is preferably 2.3 or more, more preferably 2.6 or more.
  • the upper limit value of DSac + DSpr is preferably 2.9 or less, more preferably 2.8 or less.
  • the cellulosic material preferably has a propionyl substitution degree (DSpr) of 1.0 ⁇ D
  • the relational expression Spr ⁇ 3.0 is satisfied.
  • the lower limit of DSpr is preferably 2 or more, more preferably
  • the upper limit of DSpr is preferably 2.9 or less, more preferably 2.8 or less.
  • the cellulosic material may have a substituent other than the acetyl group and the propionyl group.
  • substituents include ester groups such as butyrate; ether groups such as alkyl ether groups and araalkylene ether groups;
  • the number average molecular weight of the cellulosic material is preferably 5,000 to 100,000, more preferably 10,000 to 70,000. By setting it within the above range, it is possible to obtain excellent mechanical strength and excellent mechanical strength.
  • any appropriate method is adopted.
  • cellulose is treated with a strong caustic soda solution to obtain alkali cellulose, which is acylated with a mixture of a predetermined amount of acetic anhydride and propionic anhydride.
  • the degree of substitution “DSac + DSpr” is adjusted by partially hydrolyzing the acyl group.
  • the optical film (polymer film) formed from the cellulosic material may include any appropriate polymer material.
  • a polymer material include senorelose esterol such as cellulose butyrate; senolen ether ether such as methinoresenorelose and ethinoresenorelose; and the like.
  • the film may contain additives such as a plasticizer, a heat stabilizer, and an ultraviolet stabilizer as necessary.
  • optical film formed by the above-described cellulose-based material strength examples include, for example, JP 2003
  • KA film manufactured by Kane force Co., Ltd.
  • polyester material obtained by polymerizing a dicarboxylic acid component having a non-aromatic cyclic structure and a diol component
  • a polyester resin having a non-aromatic cyclic structure and an ester group is preferably used.
  • a first optical compensation layer having the desired optical characteristics for example, refractive index ellipsoid, in-plane retardation, thickness direction retardation
  • any suitable stretching method such as a longitudinal uniaxial stretching method, a transverse uniaxial stretching method, a longitudinal and transverse simultaneous biaxial stretching method, and a longitudinal and transverse sequential biaxial stretching method may be employed.
  • the stretching direction may be the film longitudinal direction (MD direction) or the width direction (TD direction).
  • MD direction film longitudinal direction
  • TD direction width direction
  • the stretching direction is the width direction (TD direction)
  • it can be bonded to other optical elements in a roll shape with a roll-to-roll, and productivity can be greatly improved. It is advantageous for industrial production.
  • the stretching temperature is preferably 130. ⁇ ; 170 ° C, more preferably 140 ⁇ ; 150 ° C.
  • the draw ratio is preferably 1.5 to 2.5 times, more preferably 1.9 to 2.3 times.
  • the thickness of the extended finalem formed is preferably 30 to 70 ⁇ 111, more preferably 40 to 60 ⁇ 111.
  • the second optical compensation layer is a negative C plate having positive refractive index wavelength dispersion (positive dispersion).
  • the second optical compensation layer can suitably compensate for the birefringence of the liquid crystal cell (positive uniaxial birefringence having positive dispersion: positive C plate component).
  • the in-plane retardation Re of the second optical compensation layer is preferably 0 to
  • the thickness direction retardation Rth of the second optical compensation layer is preferably 20 nm or more, more preferably Is 30 to 160 nm, more preferably 70 to 160 nm. Rth is in the above range
  • Liquid crystal cell birefringence positive uniaxial birefringence with positive dispersion: positive
  • the second optical compensation layer is also preferably Re (780) / Re (550) ⁇ 0.95, more preferably
  • the retardation value is constant over a wide area of visible light
  • the amount of color shift in the oblique direction of the liquid crystal display device which is less likely to cause wavelength deviation in light leaking, is further increased. You can power down.
  • light leakage in the red region is reduced, and the display image can be prevented from becoming reddish.
  • the second optical compensation layer is also preferably Re (550) / Re (380) ⁇ 0.95, more preferably
  • the phase difference value is constant in a wide region of visible light. It is possible to further reduce the amount of color shift in the oblique direction of a liquid crystal display device, where wavelength deviation is unlikely to occur in leaking light, especially when used in a liquid crystal display device. It becomes small and it can prevent that a display image becomes bluish.
  • the second optical compensation layer for example, a polymer selected from the group consisting of polyamide, polyimide, polyester, poly (ether ketone), poly (amidoimide) and poly (ester imide) is optically transparent.
  • Polyamide, polyimide, polyester, poly (ether ketone), poly (amidoimide), or poly (ester imide) that can form the second optical compensation layer are excellent in heat resistance, chemical resistance, and transparency.
  • the polymers described in (0018) to (0072) of JP 2004-46065 Koyuki, et al. Among them, a soluble polyimide (for example, an aromatic dianhydride and a polyaromatic diamine, which has high transparency, high orientation, and high stretchability) JP-A-8-511812) can be preferably used.
  • the coating method is not particularly limited, and any method can be used.
  • a method of applying a polyimide solution dissolved in a solvent such as heated and melted polyimide or cyclohexanone to a PET film or the like with a thickness of 10 to 30 m can be used.
  • the obtained coating film is, for example, naturally dried (air-dried) or 80 to; heated at 120 ° C. for 8 to 12 minutes to solidify the polyimide on the film, whereby the second optical compensation layer is formed. Can be formed.
  • the thickness of the above optically transparent layer of the polymer is preferably 0.;! To 10 111, more preferably 1 to 5 mm. Therefore, the second optical compensation layer formed from the polymer favorably compensates for the birefringence of the liquid crystal cell and contributes to the thinning of the liquid crystal panel.
  • the layer in which the cholesteric alignment state of the nematic liquid crystal is fixed does not have coloration or the like in the visible light region. That is, it is preferable that the selectively reflected light of the cholesteric aligned liquid crystal is not in the visible region.
  • the selective reflection is uniquely determined by the cholesteric chiral pitch and the refractive index of the liquid crystal.
  • the value of the center wavelength of selective reflection may be in the near infrared region, but it is more preferable to be in the ultraviolet region of 350 nm or less in order to avoid the influence of optical rotation.
  • the above-described cholesteric alignment solidified layer is, for example, imparted to a cholesteric structure (spiral structure) by applying a twist with a chiral agent in a state where the liquid crystal material exhibits a liquid crystal phase, and in that state, a polymerization treatment or a crosslinking treatment.
  • a cholesteric structure spiral structure
  • a polymerization treatment or a crosslinking treatment By applying the above, the alignment (cholesteric structure) of the liquid crystal material can be fixed.
  • cholesteric alignment solidified layer examples include the cholesteric alignment solidified layer described in JP-A-2003-287623.
  • the thickness of the cholesteric alignment solidified layer is preferably 0.;! ⁇ LO ⁇ m, more preferably It is;! ⁇ 5 m. Therefore, the second optical compensation layer, which is a solidified cholesteric alignment layer, can favorably compensate for the birefringence of the liquid crystal cell and contribute to the thinning of the liquid crystal panel.
  • the layer in which the columnar alignment or nematic alignment state of the discotic liquid crystal is fixed is, for example, a discotic liquid crystal material having a negative uniaxial property such as a phthalocyanine or a triphenylene compound having a molecular extension in the plane. Further, it can be formed by developing a columnar phase or a nematic phase. Specifically, for example, a layer in which the columnar orientation of the discotic liquid crystal is fixed can be obtained by the method described in JP-A-9-117983.
  • the layer in which the negative uniaxial crystal is oriented in the plane for example, those described in JP-A-6-82777 can be used.
  • Examples of the layer composed of a biaxially oriented polymer film include, for example, a method of biaxially stretching a polymer film having positive refractive index anisotropy in a balanced manner, a method of pressing a thermoplastic resin, and parallel orientation. And a polymer film formed by a method of cutting out from the obtained crystal.
  • Examples of a method for biaxially stretching a polymer film having positive refractive index anisotropy in a balanced manner include the ability to simultaneously or sequentially biaxially stretch a film made of a norbornene-based resin under the following conditions. . That is, preferably 120 to; 180 ° C, more preferably 130 to; 170 ° C, stretching temperature, preferably 1.2 to 3 times, more preferably 1.5 to 2.5 times the longitudinal stretching ratio, preferably Is a method of drawing at a transverse draw ratio of 1.2 to 3 times, more preferably 1.5 to 2.5 times.
  • the third optical compensation layer has negative refractive index wavelength dispersion (reverse dispersion).
  • the third optical compensation layer can suitably compensate for the axial misalignment of the polarizer of the polarizing plate.
  • the third optical compensation layer may be the same as or different from the first optical compensation layer.
  • the third optical compensation layer is formed of the same material as the first optical compensation layer and has the same thickness as the first optical compensation layer.
  • the fourth optical compensation layer is a negative C plate having positive refractive index wavelength dispersion (positive dispersion).
  • the fourth optical compensation layer can suitably compensate for the birefringence of the liquid crystal cell (positive uniaxial birefringence having positive dispersion: positive C plate component).
  • the fourth optical compensation layer may be the same as or different from the second optical compensation layer.
  • the fourth optical compensation layer is formed of the same material as the second optical compensation layer and has the same thickness as the second optical compensation layer.
  • any appropriate polarizer may be adopted as the polarizer depending on the purpose.
  • dichroic substances such as iodine and dichroic dyes may be added to hydrophilic polymer films such as polyalcohol-based films, partially formalized polybulal alcohol-based films, and ethylene.butyral acetate copolymer-based partially saponified films.
  • hydrophilic polymer films such as polyalcohol-based films, partially formalized polybulal alcohol-based films, and ethylene.butyral acetate copolymer-based partially saponified films.
  • Polyethylene-based oriented films such as those that have been adsorbed and uniaxially stretched, polyvural alcohol dehydrated products, and polychlorinated bull dehydrochlorinated products.
  • a polarizer obtained by adsorbing a dichroic substance such as iodine on a polybulualcohol-based film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio.
  • the thickness of these polarizers is not particularly limited, but is generally about !!-80 m.
  • a polarizer uniaxially stretched by adsorbing iodine to a polybulualcohol-based film is dyed by immersing polybulualcohol in an aqueous iodine solution and stretched 3 to 7 times the original length. It is possible to produce with S. If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or may be immersed in an aqueous solution of potassium iodide or the like. Furthermore, if necessary, the polybulal alcohol film may be immersed in water and washed before dyeing.
  • the polybulal alcohol-based film Swelling of the surface of the surface and anti-blocking agent as well as swelling of the polybulal alcohol film has the effect of preventing unevenness such as uneven dyeing.
  • the stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be performed after being stretched and then dyed with iodine. Stretch with force S in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • any appropriate film that can be used as a protective layer of a polarizer can be adopted.
  • the material that is the main component of such a film include cellulose resins such as triacetyl cellulose mouth (TAC), polyester, polybutyl alcohol, polycarbonate, polyamide, polyimide, and poly Examples thereof include transparent resins such as ether sulfone, polysulfone, polystyrene, polynorbornene, polyolefin, acrylic, and acetate.
  • thermosetting resins such as acrylic, urethane, acrylic urethane, epoxy, and silicone, or ultraviolet curable resins, and the like are also included.
  • a glassy polymer such as a siloxane polymer is also included.
  • JP 2001-343529 Koyuki WO01 / 37007 can also use the polymer phenol described in this document.
  • the material of the film include a thermoplastic resin having a substituted or unsubstituted imide group in the side chain, and A resin composition containing a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain can be used.
  • an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer are used.
  • the polymer film can be, for example, an extrusion-molded product of the resin composition, such as TAC, polyimide resin, polybutyl alcohol resin, and glassy polymer. TAC is more preferable.
  • the protective layer is preferably transparent and has no color.
  • the protective layer preferably has substantially optical isotropy.
  • the in-plane retardation of the protective layer is 0 to 10 nm, and the thickness direction retardation is 0 to 10 nm.
  • the thickness of the protective layer is preferably 5 mm or less, more preferably 1 mm or less, and even more preferably. Preferably, it is! -500 ⁇ m, and even more preferably 5--150 ⁇ m.
  • the protective layer provided on the outer side (opposite side of the optical compensation layer) of the polarizer may be subjected to a hard coat treatment, an antireflection treatment, an anti-sticking treatment, an antiglare treatment, or the like as necessary.
  • Arbitrary appropriate adhesives can be employ
  • Specific examples include a solvent-type pressure-sensitive adhesive, a non-aqueous emulsion type pressure-sensitive adhesive, a water-based pressure-sensitive adhesive, and a hot melt pressure-sensitive adhesive.
  • a solvent-type pressure-sensitive adhesive having an acrylic polymer as a base polymer is preferably used.
  • the thickness of the pressure-sensitive adhesive layer can be appropriately set according to the purpose of use, adhesive strength and the like. Specifically, the thickness of the pressure-sensitive adhesive layer is preferably 1 Hm to 100 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m, and even more preferably 10 ⁇ m to 30 ⁇ m.
  • a typical example of the adhesive that forms the adhesive layer is a curable adhesive.
  • Typical examples of the curable adhesive include a photocurable adhesive such as an ultraviolet curable adhesive, a moisture curable adhesive, and a thermosetting adhesive.
  • the amount of adhesive applied to each layer can be appropriately set according to the purpose.
  • the coating amount is preferably 0.3 to 3 ml, more preferably 0.5 per area (cm 2 ) with respect to the main surface of each layer.
  • the solvent contained in the adhesive is volatilized by natural drying or heat drying.
  • the thickness of the adhesive layer thus obtained is preferably 0.;! To 20 m, more preferably 0. ⁇ - ⁇ , ⁇ , and still more preferably ;! to 10 m.
  • the pressure-sensitive adhesive or adhesive may be appropriately selected depending on the type of adherend (optical element).
  • the liquid crystal panel of the present invention may further include other optical elements.
  • another optical element any appropriate optical element can be adopted depending on the purpose and the type of the liquid crystal display device. Specific examples include liquid crystal films, light scattering films, diffraction films, and Another optical compensation layer (retardation film) and the like can be mentioned.
  • the liquid crystal panel of the present invention for example, the optical elements can be force s is prepared by laminating by via an adhesive layer or an adhesive layer described above. Any appropriate means can be adopted as the lamination means.
  • the first optical compensation layer (third optical compensation layer), the second optical compensation layer (fourth optical compensation layer), and a polarizer are punched out to a predetermined size, and the angle formed by the optical axis of each layer is The directions can be adjusted so as to be within a desired range, and they can be laminated on the liquid crystal cell via an adhesive or an adhesive.
  • the second optical compensation layer (fourth optical compensation layer) can be directly formed on an adjacent layer, for example, a substrate functioning as a first optical compensation layer, a polarizer or a protective layer. In this case, the pressure-sensitive adhesive layer or adhesive layer for laminating these layers becomes unnecessary, which can contribute to thinning of the liquid crystal panel and simplification of the laminating operation.
  • the liquid crystal panel of the present invention can be used in a liquid crystal display device.
  • Liquid crystal display devices are, for example, office equipment such as laptop monitors, notebook computers, and copy machines; mobile devices such as mobile phones, watches, digital cameras, personal digital assistants (PDAs), and portable game machines; video cameras, liquid crystal televisions, and the like. Electrical equipment for home use such as microwave ovens; Back monitors, monitors for car navigation systems, in-car devices such as car audio; monitors for information for commercial stores; first-class display equipment; security equipment such as monitoring monitors; Suitable for nursing care and medical equipment such as monitors and medical monitors.
  • a film obtained by stretching a KA film (manufactured by KANEKI Co., Ltd., thickness: 80 m) twice at 150 ° C. at the fixed end was used as a first optical compensation layer.
  • the phase difference of the obtained film was measured using a phase difference measuring apparatus (manufactured by Oji Scientific Instruments Co., Ltd., KOBRA21ADH)
  • the refractive index wavelength dispersion of the film is shown in FIG. Fig. 3 is a graph drawn using Koshii's approximate expression. is there.
  • the power was OOnm.
  • the refractive index wavelength dispersion of the film is shown in FIG.
  • the third optical compensation layer and the fourth optical compensation layer were the same as the first optical compensation layer and the second optical compensation layer, respectively.
  • a polarizing plate manufactured by Nitto Denko Corporation, product number: SIG1423DU was used as the polarizer.
  • the second optical compensation layer (fourth optical compensation layer) was transferred from the PET film onto the polarizing plate via an acrylic adhesive (thickness: 20 m).
  • the first optical compensation layer (third optical compensation layer) is passed through an acrylic adhesive (thickness: 20 m) so that its slow axis is perpendicular to the absorption axis of the polarizer of the polarizing plate.
  • laminated on the second optical compensation layer (fourth optical compensation layer) to obtain two polarizing plates with an optical compensation layer.
  • the two polarizing plates with an optical compensation layer obtained were taken out of a liquid crystal television (manufactured by Sony Corporation, BRAVIA S2000 (32 inches)) on both sides of a VA mode liquid crystal cell.
  • a liquid crystal panel was fabricated by pasting so as to be orthogonal.
  • White and black images are displayed on the liquid crystal display device incorporating the obtained liquid crystal panel, and contrast and color shift (the polar angle in the azimuth angle 45 ° direction is 0 to 80 ° by EZ Contrast (manufactured by ELDIM)).
  • the color shift when tilted and the color shift when the azimuth was changed from 0 to 360 ° at a polar angle of 60 ° were measured. The results are shown in Fig. 4. [0095] [Example 2]
  • a film manufactured in the same manner as in Example 1 (Re: 36 nm, Rth: 50 nm, Nz coefficient: 1.4) was used as the first optical compensation layer.
  • a cyclohexanone solution (15 wt%) of polyimide prepared in the same manner as in Example 1 was applied on the first optical compensation layer to a thickness of 20 m.
  • a laminated film in which the second optical compensation layer (polyimide film, thickness: about 3111) was laminated on the first optical compensation layer was obtained.
  • the phase difference of the obtained laminated film was measured using a phase difference measuring device (manufactured by Oji Scientific Instruments Co., Ltd., KOBRA21ADH), it was found to be: e 35 mm, th force 155 im.
  • the third optical compensation layer and the fourth optical compensation layer were the same as the first optical compensation layer and the second optical compensation layer, respectively.
  • the same polarizer as in Example 1 was used as the polarizer.
  • the laminated film is placed so that the second optical compensation layer (fourth optical compensation layer) faces the polarizing plate, the polarizer's absorption axis of the polarizing plate, and the first optical compensation layer (third optical compensation layer).
  • the optical compensation layer was laminated on a polarizing plate via an acrylic pressure-sensitive adhesive (thickness: 20 m) so that the slow axis of the optical compensation layer was perpendicular to each other to obtain two polarizing plates with an optical compensation layer.
  • a liquid crystal panel was produced in the same manner as in Example 1, and the contrast and color shift were measured. The results are shown in FIG.
  • the second optical compensation layer (fourth optical compensation layer) and the polarizing plate are facing each other.
  • PVA adhesive thickness: 0.5
  • the absorption axis of the polarizer of the polarizing plate and the slow axis of the first optical compensation layer (third optical compensation layer) are perpendicular to each other. m) through.
  • the retardation of the obtained film was measured, the Re force Onm and Rth were
  • Re was 0.3 nm
  • Rth was
  • the third optical compensation layer and the fourth optical compensation layer were the same as the first optical compensation layer and the second optical compensation layer, respectively.
  • the same polarizer as in Example 1 was used as the polarizer.
  • a liquid crystal panel was produced in the same manner as in Example 1, and the contrast and color shift were measured. The results are shown in FIG.
  • a film produced in the same manner as in Example 4 (Re: 0.3 nm, Rth: 80 nm, thickness: about 2.5 ⁇
  • the third optical compensation layer and the fourth optical compensation layer were the same as the first optical compensation layer and the second optical compensation layer, respectively.
  • the same polarizer as in Example 1 was used as the polarizer.
  • a liquid crystal panel was produced in the same manner as in Example 1, and the contrast and color shift were measured. The results are shown in FIG.
  • a film obtained by stretching the film (thickness: 150 m) formed by this polyester resin strength twice at 135 ° C. twice at a fixed end was used as a first optical compensation layer.
  • the refractive index wavelength dispersion of the obtained film is shown in FIG. 3 (C) together with the refractive index wavelength dispersion of the first optical compensation layer used in Example 1.
  • the third optical compensation layer and the fourth optical compensation layer were the same as the first optical compensation layer and the second optical compensation layer, respectively.
  • the same polarizer as in Example 1 was used as the polarizer.
  • a liquid crystal panel was produced in the same manner as in Example 1.
  • the contrast and color shift of this liquid crystal panel were measured in the same manner as in Example 1, the same contrast and color shift as in FIG. One shift is obtained.
  • a film produced in the same manner as in Example 4 (Re: 0.3 nm, Rth: 80 nm, thickness: about 2.5 ⁇
  • the third optical compensation layer and the fourth optical compensation layer were the same as the first optical compensation layer and the second optical compensation layer, respectively.
  • the same polarizer as in Example 1 was used as the polarizer.
  • a liquid crystal panel was produced in the same manner as in Example 1.
  • the contrast and color shift of this liquid crystal panel are measured in the same manner as in Example 1, the same contrast and color shift as in FIG. 7 can be obtained.
  • a liquid crystal panel was prepared by pasting the liquid crystal cell on both sides of the same liquid crystal cell as in Example 1 so as to be orthogonal. Subsequently, the contrast and color shift were measured in the same manner as in Example 1. The results are shown in FIG.
  • a polarizing plate with an optical compensation layer To obtain a polarizing plate with an optical compensation layer.
  • the obtained polarizing plate with an optical compensation layer and a polarizing plate (manufactured by Nitto Denko Corporation, SEG1224) are attached to both sides of the same liquid crystal cell as in Example 1 so that the absorption axes of the polarizers are orthogonal to each other.
  • a liquid crystal panel was produced.
  • a polarizing plate with an optical compensation layer was attached to the backlight side.
  • the contrast and color shift were measured in the same manner as in Example 1. The result is shown in FIG.
  • Retardation film NTAC (Re: 45 nm, Rth: 145 nm, thickness: 80 ⁇ m, Nz coefficient: 3.2) manufactured by Konica Minolta, Inc., whose slow axis is orthogonal to the absorption axis of the polarizer of the polarizer
  • a polarizing plate SE G1224, manufactured by Nitto Denko Corporation
  • the obtained two polarizing plates with an optical compensation layer were attached to both sides of the same liquid crystal cell as in Example 1 so that the absorption axes of the polarizers were orthogonal to each other to produce a liquid crystal panel.
  • contrast and color shift were measured. The results are shown in FIG.
  • the refractive index wavelength dispersion of the norbornene-based resin film was so-called flat wavelength dispersion as shown in FIG.
  • the obtained two polarizing plates with an optical compensation layer were prepared so that the retardation film made of a norbornene-based resin was opposed to the liquid crystal cell and the absorption axes of the polarizers were orthogonal to each other.
  • a liquid crystal panel was prepared by sticking to both sides of the same liquid crystal cell.
  • the contrast and color shift were measured in the same manner as in Example 1 (because a lot of unevenness was observed on the screen, light was lost! Measured at points). The results are shown in FIG.
  • Z-TAC film made by Fuji Film Co., Ltd., film thickness: 80 m
  • PET film which has substantially optical isotropy
  • cyclohexanone solution of polyimide 15 wt%)
  • a polyimide film (thickness: about 2.5 111) was laminated on the Z-TAC film in the same manner as the method for producing the second optical compensation layer in Example 1 except that the coating thickness was set to 16 m.
  • a film was obtained.
  • the retardation of the obtained laminated film was measured, the Re force was nm and the Rth force was SlOOnm.
  • the laminated film obtained in this manner was so arranged that the Z-TAC film layer was opposite to the polarizing plate (manufactured by Nitto Denko Corporation, SIG1423DU), and the slow axis of the stretched polyimide film and the polarizer absorption of the polarizing plate
  • Two polarizing plates with an optical compensation layer were obtained by laminating with an acrylic pressure-sensitive adhesive (thickness: 20 m) so that the axis was orthogonal.
  • the obtained two polarizing plates with an optical compensation layer were attached to both sides of the same liquid crystal cell as in Example 1 so that the absorption axes of the polarizers were orthogonal to each other, thereby producing a liquid crystal panel.
  • the contrast and color shift were measured in the same manner as in Example 1. The results are shown in FIG.
  • the obtained phase difference film was laminated on a polarizing plate (manufactured by Nitto Denko Corporation, SEG1224) via an acrylic pressure-sensitive adhesive (thickness: 20 m) to obtain polarizing plate 1 with an optical compensation layer.
  • a polycarbonate resin film having a negative refractive index wavelength dispersion (reverse dispersion) (manufactured by Teijin Chemicals Ltd., Pure Ace, Re: 145 nm, Rth: 141 nm, thickness: 77 111, Nz coefficient: 1 ⁇ 0)
  • the polarizing plate 2 with an optical compensation layer was obtained by laminating with an acrylic pressure-sensitive adhesive (thickness: 20 ⁇ ) so that the slow axis and the absorption axis of the polarizer of the polarizing plate were orthogonal to each other.
  • the polarizing plates 1 and 2 with optical compensation layers were attached to both sides of the same liquid crystal cell as in Example 1 so that the absorption axes of the polarizers were orthogonal to each other, thereby producing a liquid crystal panel.
  • the polarizing plate 1 with an optical compensation layer was attached to the backlight side.
  • the contrast and the color shift were measured in the same manner as in Example 1. The results are shown in FIG.
  • a retardation film 1 (Re: 0.2 nm, Rt h: lOOnm) produced in the same manner as the second optical compensation layer of Example 1 was bonded to a polarizing plate (Nitto) via an acrylic adhesive (thickness: 20 m). The film was transferred from PET film onto Denko Corporation, product number: SIG1423DU).
  • a retardation film 2 (Re: 36 nm, Rth: 50 nm, Nz coefficient: 1 ⁇ 4) produced in the same manner as the first optical compensation layer of Example 1, and the slow axis of the polarizer of the polarizing plate
  • a polarizing plate 3 with an optical compensation layer was obtained by being laminated on the retardation film 1 via an talyl-based adhesive (thickness: 20 m) so as to be orthogonal to the absorption axis.
  • the above retardation film 2 is coated with a polarizing plate (manufactured by Nitto Denko Corporation) through an acrylic adhesive (thickness: 20 m) so that its slow axis is orthogonal to the absorption axis of the polarizer of the polarizing plate. And product number: SIG1423DU).
  • the retardation film 1 was laminated (transferred) onto the retardation film 2 via an acrylic pressure-sensitive adhesive (thickness: 20, im) to obtain a polarizing plate 4 with an optical compensation layer.
  • a liquid crystal panel was produced by pasting the obtained polarizing plates 3 and 4 with an optical compensation layer on both sides of the same liquid crystal cell as in Example 1 so that the absorption axes of the polarizers were orthogonal to each other. .
  • the polarizing plate 4 with an optical compensation layer was attached to the backlight side. Subsequently, the contrast and color shift were measured in the same manner as in Example 1. The results are shown in FIG. [0128] [Comparative Example 8]
  • Tables 1 and 2 show the outline of the configuration of the liquid crystal panels produced in Examples 1 to 7 and Comparative Examples 1 to 8.
  • the contrast viewing angle characteristics are remarkably improved.
  • the points on the chromaticity diagram indicate that the smaller the movement distance, the smaller the color shift. Therefore, as shown in the xy chromaticity diagrams of Figs. 4 to 14, the liquid crystal panel of Examples;! To 5 is the color when the polar angle is tilted from 0 to 80 ° in the direction of 45 ° azimuth.
  • the shift is also significantly suppressed compared with the liquid crystal panels of Comparative Examples 1 to 6!
  • the smaller the (X, y) amplitude is, the smaller the power error shift is.
  • the liquid crystal panels of Examples 1 to 5 change the azimuth angle from 0 to 360 ° at a polar angle of 60 °. It can be seen that the color shift is significantly suppressed compared to the liquid crystal panels of Comparative Examples;!
  • the liquid crystal panel of Comparative Example 6 has a small amplitude in the azimuth angle dependency of the X value and the y value, but the X value curve and the y value curve intersect each other many times. Since the liquid crystal panel having such characteristics varies greatly in color depending on the viewing angle, it gives a viewer a very uncomfortable feeling.
  • the liquid crystal panel of the example of the present invention is superior in both contrast and color shift compared to the liquid crystal panel of the comparative example.
  • the screens during black display in the liquid crystal display device manufactured in Example 1 and the liquid crystal display device manufactured in Comparative Example 6 were photographed.
  • the photograph is shown in FIG.
  • the liquid crystal display device of Example 1 shows no unevenness (light leakage)
  • the liquid crystal display device of Comparative Example 6 shows unevenness on the entire screen and is not at a practical level. I understand.
  • the unevenness observed in Comparative Example 6 is the retardation unevenness due to the tension at the time of laminating each optical element, and is considered to be caused by the large photoelastic coefficient of the used retardation film.
  • the liquid crystal panel of the present invention contributes to thinning, improves viewing angle characteristics, achieves high contrast, suppresses color shift, and can favorably prevent light leakage in black display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

It is an object to provide a liquid crystal panel and a liquid crystal display device that contribute miniaturization, realize a high contrast with improvement in a viewing angle characteristic, suppress a color shift and can well prevent light leakage at a black display. The liquid crystal panel is comprised of a liquid crystal cell, first through fourth optical compensation layers and first and second polarizers. The first optical compensation layer disposed on one side of the liquid crystal cell has the following relationships: Nz = 1-2.5 and Re1 (380) < Re1 (550) < Re1 (780) and the second optical compensation layer has the following relationships: nx = ny > nz and Re2(380) > Re2 (550) > Re2 (780). The third optical compensation layer disposed on the other side of the liquid crystal cell has the following relationships: Nz = 1-2.5 and Re3 (380) < Re3 (550) < Re3 (780) and the first optical compensation layer has the following relationships: nx = ny > nz and Re4 (380) > Re4 (550) > Re4 (780). The first and second optical compensation layers and the third and fourth optical compensation layers are symmetrical in position with respect to the liquid crystal cell.

Description

明 細 書  Specification
液晶パネルおよび液晶表示装置  Liquid crystal panel and liquid crystal display device
技術分野  Technical field
[0001] 本発明は、液晶パネルおよび該液晶パネルを有する液晶表示装置に関する。  The present invention relates to a liquid crystal panel and a liquid crystal display device having the liquid crystal panel.
背景技術  Background art
[0002] 垂直配向モードの液晶表示装置では、液晶の複屈折と偏光とを利用して画素毎に ノ ックライトからの光をオン'オフしている。このような液晶表示装置においては、電圧 無印加時に液晶分子が垂直配向しているため、液晶セルの両側に配置した偏光板 を互いの偏光子の吸収軸が直交になるように設置しておくことで、黒表示できる。 白 表示の場合は、偏光子の吸収軸方向と 45° 、 135° 、 225° 、 315° の方向にそれ ぞれ電圧を印加して液晶を傾けることにより、液晶の複屈折を受けて偏光がちょうど 9 0° 回転した方向の直線偏光となり、光が透過して白表示できる。しかし、これは画面 を正面方向から見た場合に限られる。黒表示の場合、斜め方向から画面を見たとき、 例えば、偏光板の偏光子の吸収軸と 45° 方向から画面を見たとき、液晶が垂直配 向でなく斜めに配向しているように見える。このため、この方向の光は液晶の複屈折 により偏光の状態が変化し、偏光板で光を吸収しきれなくなる。その結果、光漏れが 生じる。  In a vertical alignment mode liquid crystal display device, light from a knock light is turned on and off for each pixel by utilizing birefringence and polarization of liquid crystal. In such a liquid crystal display device, since the liquid crystal molecules are vertically aligned when no voltage is applied, the polarizing plates arranged on both sides of the liquid crystal cell are placed so that the absorption axes of the polarizers are orthogonal to each other. Therefore, black can be displayed. In the case of white display, the liquid crystal is tilted by applying a voltage to the absorption axis direction of the polarizer and 45 °, 135 °, 225 °, and 315 ° directions, respectively. It becomes linearly polarized light in a direction rotated exactly 90 °, allowing light to pass through and displaying white. However, this is only possible when the screen is viewed from the front. In the case of black display, when viewing the screen from an oblique direction, for example, when viewing the screen from a direction of 45 ° with the absorption axis of the polarizer of the polarizer, the liquid crystal is not oriented vertically but oriented obliquely. appear. For this reason, the polarization state of the light in this direction changes due to the birefringence of the liquid crystal, and the light cannot be completely absorbed by the polarizing plate. As a result, light leakage occurs.
[0003] また偏光板は、互いの偏光子の吸収軸が直交方向になるように設置されている力 斜め方向に視角を倒すにつれて、吸収軸が見かけ上直交からずれてくる。その結果 、光漏れが生じる。  [0003] In addition, the polarizing plate is installed so that the absorption axes of the polarizers are orthogonal to each other. As the viewing angle is tilted in an oblique direction, the absorption axis apparently deviates from orthogonal. As a result, light leakage occurs.
[0004] このため、垂直配向モードの液晶表示装置には、液晶の複屈折と偏光板の偏光子 の軸ずれとを補償する光学補償板、例えば二軸位相差板が使用される(例えば、特 許文献 1参照)。  For this reason, an optical compensator that compensates for the birefringence of the liquid crystal and the axial misalignment of the polarizer of the polarizing plate, for example, a biaxial retardation plate is used in the liquid crystal display device in the vertical alignment mode (for example, (See Patent Document 1).
[0005] しかし、使用される光学補償板が、ある特定の波長の光を対象としている場合、バッ クライトから出射されるすべての波長の光に対する補償が十分ではないため、ある波 長では光漏れが起こる。また波長ごとに透過率が異なるため、視野角を変えていった 場合に色が変わって見える現象、いわゆるカラーシフトが起こる。これらの現象を低 減するためには、可視光の波長を全域にわたって補償することが求められる。 [0005] However, if the optical compensator used is for light of a specific wavelength, compensation for light of all wavelengths emitted from the backlight is not sufficient, so light leakage at a certain wavelength is not possible. Happens. In addition, since the transmittance varies depending on the wavelength, a phenomenon in which the color appears to change when the viewing angle is changed, a so-called color shift occurs. Low these phenomena In order to reduce, it is required to compensate the wavelength of visible light over the entire area.
[0006] 上記の要請に対し、正の屈折率波長分散 (正分散)を有する負の厚み方向位相差 [0006] In response to the above request, negative thickness direction retardation having positive refractive index wavelength dispersion (positive dispersion)
(nx = ny>nz)を持つ補償層と、偏光板の偏光子の軸ずれを補償する負の屈折率波 長分散 (逆分散)を有する位相差板とを用いて補償することが開示されてレ、る (特許 文献 2)。し力、し、当該技術では、光漏れまたはカラーシフトの抑制は十分ではない。 さらに、特許文献 2の液晶パネルは、貼り合わせによるムラが大きぐ実用に耐えるレ ベルが得られな V、場合が多!/、。  It is disclosed that compensation is performed using a compensation layer having (nx = ny> nz) and a retardation plate having negative refractive index wavelength dispersion (reverse dispersion) that compensates for the axial misalignment of the polarizer of the polarizing plate. Terreru (Patent Literature 2). However, in this technique, suppression of light leakage or color shift is not sufficient. In addition, the liquid crystal panel of Patent Document 2 has a large level of unevenness due to bonding, and a level that can withstand practical use cannot be obtained.
特許文献 1 :特開 2003— 270442号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-270442
特許文献 2:特許第 3648240号  Patent Document 2: Patent No. 3648240
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、上記従来の課題を解決するためになされたものであり、薄型化に寄与し 、視野角特性を向上させつつ、高コントラストを実現し、カラーシフトが抑制され、黒 表示における光漏れを良好に防止し得る液晶パネルおよび液晶表示装置を提供す ることを目白勺とする。  [0007] The present invention has been made to solve the above-described conventional problems, contributes to thinning, improves viewing angle characteristics, achieves high contrast, suppresses color shift, and displays black. It would be interesting to provide a liquid crystal panel and a liquid crystal display device that can prevent light leakage in the well.
課題を解決するための手段  Means for solving the problem
[0008] 本発明の液晶パネルは、電圧無印加時に垂直配向した液晶分子を含む液晶層を 有する液晶セルと、該液晶セルの一方の側に配置された Nz = l〜2. 5の関係を有し 、Re (380)く Re (550)く Re (780)の関係を有する第 1の光学補償層と、 nx = n y〉nzの関係を有し、 Re (380) >Re (550) >Re (780)の関係を有する第 2の光  [0008] The liquid crystal panel of the present invention has a relationship between a liquid crystal cell having a liquid crystal layer containing liquid crystal molecules vertically aligned when no voltage is applied, and Nz = l to 2.5 disposed on one side of the liquid crystal cell. A first optical compensation layer having a relationship of Re (380) and Re (550) and Re (780), and a relationship of nx = ny> nz, and Re (380)> Re (550)> Second light with Re (780) relationship
2 2 2  2 2 2
学補償層と、第 1の偏光子と、  An academic compensation layer, a first polarizer,
該液晶セルの他方の側に配置された Νζ = 1〜2· 5の関係を有し、 Re (380) < Re  The liquid crystal cell is placed on the other side of the liquid crystal cell and has a relationship of Νζ = 1 to 2.5, and Re (380) <
3 3 3 3
(550) < Re (780)の関係を有する第 3の光学補償層と、 nx=ny〉nzの関係を有し A third optical compensation layer having a relationship of (550) <Re (780) and a relationship of nx = ny> nz
3  Three
、Re (380) >Re (550) >Re (780)の関係を有する第 4の光学補償層と、第 2の , Re (380)> Re (550)> Re (780)
4 4 4 4 4 4
偏光子とを有し、  Having a polarizer,
該第 1の光学補償層および該第 2の光学補償層と、該第 3の光学補償層および該第 4の光学補償層とが、該液晶セルを基準にして対称の位置関係で配置されて!/、る。  The first optical compensation layer and the second optical compensation layer, the third optical compensation layer and the fourth optical compensation layer are arranged in a symmetrical positional relationship with respect to the liquid crystal cell. ! /
[0009] 好まし!/、実施形態にお!/、ては、上記液晶セルの一方の側に上記液晶セルからこの 順に、上記第 1の光学補償層と、上記第 2の光学補償層と、上記第 1の偏光子とが配 置され、上記液晶セルの他方の側に上記液晶セルからこの順に、上記第 3の光学補 償層と、上記第 4の光学補償層と、上記第 2の偏光子とが配置されている。 [0009] Preferable! /, In the embodiment! / This is because the liquid crystal cell is placed on one side of the liquid crystal cell. In order, the first optical compensation layer, the second optical compensation layer, and the first polarizer are arranged, and the third liquid crystal cell is arranged in this order from the liquid crystal cell on the other side of the liquid crystal cell. The optical compensation layer, the fourth optical compensation layer, and the second polarizer are disposed.
[0010] 好まし!/、実施形態にお!/、ては、上記液晶セルの一方の側に上記液晶セルからこの 順に、上記第 2の光学補償層と、上記第 1の光学補償層と、上記第 1の偏光子とが配 置され、上記液晶セルの他方の側に上記液晶セルからこの順に、上記第 4の光学補 償層と、上記第 3の光学補償層と、上記第 2の偏光子とが配置されている。 [0010] Preferable! /, In the embodiment! /, In order from the liquid crystal cell on one side of the liquid crystal cell, the second optical compensation layer and the first optical compensation layer in this order. The first polarizer is disposed, and the fourth optical compensation layer, the third optical compensation layer, and the second optical device are arranged in this order from the liquid crystal cell on the other side of the liquid crystal cell. The polarizer is arranged.
[0011] 好ましい実施形態においては、上記第 1の光学補償層および第 3の光学補償層の 光弾性係数が、 70 X 10_12 (m2/N)以下である。 In a preferred embodiment, the first optical compensation layer and the third optical compensation layer have a photoelastic coefficient of 70 X 10 — 12 (m 2 / N) or less.
[0012] 好ましい実施形態においては、上記第 1の光学補償層および第 3の光学補償層が[0012] In a preferred embodiment, the first optical compensation layer and the third optical compensation layer include
、 Re (780) /Re (550)〉1. 1の関係を有する。 , Re (780) / Re (550)> 1.1.
[0013] 好ましい実施形態においては、上記第 1の光学補償層および第 3の光学補償層が[0013] In a preferred embodiment, the first optical compensation layer and the third optical compensation layer include
、セルロース系材料またはポリエステル系材料から形成されて!/、る。 Formed from cellulosic materials or polyester materials!
[0014] 好ましい実施形態においては、上記第 1の光学補償層および第 3の光学補償層がIn a preferred embodiment, the first optical compensation layer and the third optical compensation layer are
、非芳香族の環状構造とエステル基とを有する材料から形成されて V、る。 V, formed from a material having a non-aromatic cyclic structure and an ester group.
[0015] 好ましい実施形態においては、上記第 2の光学補償層および第 4の光学補償層が[0015] In a preferred embodiment, the second optical compensation layer and the fourth optical compensation layer include
Re (780) /Re (550)く 0· 95の関係を有する。 Re (780) / Re (550) <0 · 95.
[0016] 好ましい実施形態においては、上記第 2の光学補償層および第 4の光学補償層の 厚み方向位相差 Rthが 20nm以上である。 In a preferred embodiment, the thickness direction retardation Rth of the second optical compensation layer and the fourth optical compensation layer is 20 nm or more.
[0017] 好ましい実施形態においては、上記第 1の光学補償層および第 3の光学補償層が 幅方向に延伸された高分子フィルムである。 [0017] In a preferred embodiment, the first optical compensation layer and the third optical compensation layer are polymer films stretched in the width direction.
[0018] 本発明のさらに別の局面によれば、液晶表示装置が提供される。この液晶表示装 置は、上記液晶パネルを含む。 [0018] According to still another aspect of the present invention, a liquid crystal display device is provided. The liquid crystal display device includes the liquid crystal panel.
発明の効果  The invention's effect
[0019] 本発明によれば、薄型化に寄与し、視野角特性を向上させつつ、高コントラストを 実現し、カラーシフトが抑制され、黒表示における光漏れを良好に防止し得る液晶パ ネルおよび液晶表示装置が提供され得る。  According to the present invention, a liquid crystal panel that contributes to thinning, improves viewing angle characteristics, realizes high contrast, suppresses color shift, and can favorably prevent light leakage in black display, and A liquid crystal display device may be provided.
[0020] このような効果は、液晶セルの一方の側に所定の位置関係で、 Nz = l〜2. 5の関 係を有し、 (380) < R^ (550) < R^ (780)の関係を有する第 1の光学補償層と 、 nx = ny〉nzの関係を有し、 Re (380) >Re (550) >Re (780)の関係を有する [0020] Such an effect has a predetermined positional relationship on one side of the liquid crystal cell, and a relationship of Nz = l to 2.5. A first optical compensation layer having a relationship of (380) <R ^ (550) <R ^ (780) and a relationship of nx = ny> nz, and Re (380)> Re ( 550)> Re (780)
2 2 2  2 2 2
第 2の光学補償層と、第 1の偏光子とが配置され、該液晶セルの他方の側に所定の 位置関係で、 Nz = l〜2. 5の関係を有し、 Re (380)く Re (550)く Re (780)の A second optical compensation layer and a first polarizer are disposed, and have a relationship of Nz = l to 2.5 in a predetermined positional relationship on the other side of the liquid crystal cell, and Re (380) Re (550) Ku Re (780)
3 3 3 関係を有する第 3の光学補償層と、 nx = ny〉nzの関係を有し、 Re (380) >Re (5  The third optical compensation layer having the relationship 3 3 3 and the relationship nx = ny> nz, and Re (380)> Re (5
4 4 4 4
50) >Re (780)の関係を有する第 4の光学補償層と、第 2の偏光子とが配置された 50)> Re (780) and the fourth optical compensation layer and the second polarizer are arranged.
4  Four
液晶パネルにより発現され得る。 It can be expressed by a liquid crystal panel.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の好ましい実施形態による液晶パネルの概略断面図である。 FIG. 1 is a schematic sectional view of a liquid crystal panel according to a preferred embodiment of the present invention.
[図 2]VAモードの液晶セルにおける液晶層の液晶分子の配向状態を説明する概略 断面図である。  FIG. 2 is a schematic cross-sectional view illustrating the alignment state of liquid crystal molecules in a liquid crystal layer in a VA mode liquid crystal cell.
[図 3] (A)は、実施例 1で得られた第 1の光学補償層および第 2の光学補償層の屈折 率波長分散特性を示すグラフである。 (B)は、比較例 4で用いたノルボルネン系樹脂 フィルムの屈折率波長分散特性を示すグラフである。 (C)は、実施例 6で用いた第 1 の光学補償層および実施例 1で用いた第 1の光学補償層の屈折率波長分散特性を  FIG. 3 (A) is a graph showing refractive index wavelength dispersion characteristics of the first optical compensation layer and the second optical compensation layer obtained in Example 1. (B) is a graph showing the refractive index wavelength dispersion characteristics of the norbornene-based resin film used in Comparative Example 4. (C) shows the refractive index wavelength dispersion characteristics of the first optical compensation layer used in Example 6 and the first optical compensation layer used in Example 1.
[図 4]実施例 1で得られた液晶表示装置のコントラスト等高線図(a)、 xy色度図(b)、 および X値および y値と方位角との関係を示すグラフ(c)である。 FIG. 4 is a contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Example 1, and a graph (c) showing the relationship between X value and y value and azimuth angle. .
[図 5]実施例 2で得られた液晶表示装置のコントラスト等高線図(a)、 xy色度図(b)、 および X値および y値と方位角との関係を示すグラフ(c)である。  FIG. 5 is a contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Example 2, and a graph (c) showing the relationship between X and y values and azimuth. .
[図 6]実施例 3で得られた液晶表示装置のコントラスト等高線図(a)、 xy色度図(b)、 および X値および y値と方位角との関係を示すグラフ(c)である。  FIG. 6 is a contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Example 3, and a graph (c) showing the relationship between X value and y value and azimuth angle. .
[図 7]実施例 4で得られた液晶表示装置のコントラスト等高線図(a)、 xy色度図(b)、 および X値および y値と方位角との関係を示すグラフ(c)である。  FIG. 7 is a contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Example 4, and a graph (c) showing the relationship between X value and y value and azimuth angle. .
[図 8]実施例 5で得られた液晶表示装置のコントラスト等高線図(a)、 xy色度図(b)、 および X値および y値と方位角との関係を示すグラフ(c)である。  FIG. 8 is a contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Example 5, and a graph (c) showing the relationship between X value, y value and azimuth angle. .
[図 9]比較例 1で得られた液晶表示装置のコントラスト等高線図(a)、 xy色度図(b)、 および X値および y値と方位角との関係を示すグラフ(c)である。 園 10]比較例 2で得られた液晶表示装置のコントラスト等高線図(a)、 xy色度図(b)、 および X値および y値と方位角との関係を示すグラフ(c)である。 FIG. 9 is a contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Comparative Example 1, and a graph (c) showing the relationship between X and y values and azimuth. . 10] Contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Comparative Example 2, and graph (c) showing the relationship between the X and y values and the azimuth.
園 11]比較例 3で得られた液晶表示装置のコントラスト等高線図(a)、 xy色度図(b)、 および X値および y値と方位角との関係を示すグラフ(c)である。 11] A contrast contour map (a), an xy chromaticity diagram (b) of the liquid crystal display device obtained in Comparative Example 3, and a graph (c) showing the relationship between the X and y values and the azimuth.
園 12]比較例 4で得られた液晶表示装置のコントラスト等高線図(a)、 xy色度図(b)、 および X値および y値と方位角との関係を示すグラフ(c)である。 12] A contrast contour diagram (a), an xy chromaticity diagram (b) of the liquid crystal display device obtained in Comparative Example 4, and a graph (c) showing the relationship between the X and y values and the azimuth.
園 13]比較例 5で得られた液晶表示装置のコントラスト等高線図(a)、 xy色度図(b)、 および X値および y値と方位角との関係を示すグラフ(c)である。 13] A contrast contour map (a), an xy chromaticity diagram (b) of the liquid crystal display device obtained in Comparative Example 5, and a graph (c) showing the relationship between the X and y values and the azimuth angle.
園 14]比較例 6で得られた液晶表示装置のコントラスト等高線図(a)、 xy色度図(b)、 および X値および y値と方位角との関係を示すグラフ(c)である。 14] Contrast contour map (a), xy chromaticity diagram (b) of the liquid crystal display device obtained in Comparative Example 6, and graph (c) showing the relationship between X value and y value and azimuth.
園 15]比較例 7で得られた液晶表示装置のコントラスト等高線図(a)、および X値およ び y値と方位角との関係を示すグラフ(b)である。 15] A contrast contour map (a) of the liquid crystal display device obtained in Comparative Example 7 and a graph (b) showing the relationship between the X and y values and the azimuth.
園 16]比較例 8で得られた液晶表示装置のコントラスト等高線図(a)、および X値およ び y値と方位角との関係を示すグラフ(b)である。 16] A contrast contour map (a) of the liquid crystal display device obtained in Comparative Example 8 and a graph (b) showing the relationship between the X and y values and the azimuth.
[図 17]実施例 1で作製した液晶表示装置(a)、および比較例 6で作製した液晶表示 装置 (b)における黒表示時の画面の拡大写真である。  FIG. 17 is an enlarged photograph of the screen during black display in the liquid crystal display device (a) produced in Example 1 and the liquid crystal display device (b) produced in Comparative Example 6.
符号の説明 Explanation of symbols
10 仪晶セノレ 10 仪
11 第 1の光学補償層  11 First optical compensation layer
12 第 3の光学補償層  12 Third optical compensation layer
21 第 2の光学補償層  21 Second optical compensation layer
22 第 4の光学補償層  22 Fourth optical compensation layer
31 第 1の偏光子  31 First polarizer
32 第 2の偏光子  32 Second polarizer
100 液晶パネル  100 LCD panel
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(用語および記号の定義) (Definition of terms and symbols)
本明細書における用語および記号の定義は下記の通りである: (1)「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率で あり、「ny」は面内で遅相軸に垂直な方向(すなわち、進相軸方向)の屈折率であり、 「nz」は厚み方向の屈折率である。また、例えば「nx = ny」は、 nxと nyが厳密に等し い場合のみならず、 nxと nyが実質的に等しい場合も包含する。本明細書において「 実質的に等しい」とは、液晶パネルの全体的な偏光特性に実用上の影響を与えない 範囲で nxと nyが異なる場合も包含する趣旨である。同様に、例えば「ny = nz」は、 n yと nzが厳密に等しい場合のみならず、 nyと nzが実質的に等しい場合も包含する。 Definitions of terms and symbols used herein are as follows: (1) “nx” is the refractive index in the direction that maximizes the in-plane refractive index (ie, slow axis direction), and “ny” is the direction that is perpendicular to the slow axis in the plane (ie, fast phase). (Axial direction), and “nz” is the refractive index in the thickness direction. For example, “nx = ny” includes not only the case where nx and ny are strictly equal, but also the case where nx and ny are substantially equal. In this specification, “substantially equal” is intended to include the case where nx and ny are different within a range that does not have a practical effect on the overall polarization characteristics of the liquid crystal panel. Similarly, for example, “ny = nz” includes not only the case where ny and nz are exactly equal, but also the case where ny and nz are substantially equal.
(2)「面内位相差 Re」は、特に明記しない限り、 23°Cにおける波長 590nmの光で 測定したフィルム(層)面内の位相差値をいう。 Reは、波長 590nmにおけるフィルム( 層)の遅相軸方向、進相軸方向の屈折率をそれぞれ、 nx、 nyとし、 d (nm)をフィルム (層)の厚みとしたとき、式: Re = (nx— ny) X dによって求められる。また、 Re ( )は (2) “In-plane retardation Re” means the retardation value in the film (layer) plane measured with light at a wavelength of 590 nm at 23 ° C unless otherwise specified. Re is the formula when the refractive index in the slow axis direction and the fast axis direction of the film (layer) at a wavelength of 590 nm is nx and ny, respectively, and d (nm) is the thickness of the film (layer): Re = (nx—ny) X d Also, Re () is
、 23°Cにおける波長え nmの光で測定したフィルム(層)面内の位相差値をいう。 The retardation value in the plane of the film (layer) measured with light of wavelength nm at 23 ° C.
(3)「厚み方向の位相差 Rth」は、特に明記しない限り、 23°Cにおける波長 590nm の光で測定した厚み方向の位相差値をいう。 Rthは、波長 590nmにおけるフィルム( 層)の遅相軸方向、厚み方向の屈折率をそれぞれ、 nx、 nzとし、 d (nm)をフィルム( 層)の厚みとしたとき、式: Rth= (nx— nz) X dによって求められる。  (3) “Thickness direction retardation Rth” means a thickness direction retardation value measured at 23 ° C. with light having a wavelength of 590 nm unless otherwise specified. Rth is the formula: Rth = (nx) where the refractive index in the slow axis direction and thickness direction of the film (layer) at a wavelength of 590 nm is nx and nz, respectively, and d (nm) is the thickness of the film (layer). — Nz) Calculated by Xd.
(4)本明細書に記載される用語や記号に付される添え字の「1」〜「4」は、それぞれ 第 1〜第 4の光学補償層を表す。  (4) The subscripts “1” to “4” attached to the terms and symbols described in this specification represent the first to fourth optical compensation layers, respectively.
(5) Nz係数  (5) Nz coefficient
Nz係数は、以下の式(1)から求められる。  The Nz coefficient is obtained from the following equation (1).
Nz = (.nx— nz) / (nx— ny) (1)  Nz = (.nx—nz) / (nx—ny) (1)
Α.液晶パネル 液晶 .LCD panel
A— 1.液晶パネルの全体構成  A— 1. Overall configuration of LCD panel
本発明の液晶パネルは、液晶セルと、該液晶セルの一方の側に配置された第 1の 光学補償層と、第 2の光学補償層と、第 1の偏光子と、該液晶セルの他方の側に配 置された第 3の光学補償層と、第 4の光学補償層と、第 2の偏光子とを有し、該第 1の 光学補償層および該第 2の光学補償層と、該第 3の光学補償層および該第 4の光学 補償層とが、該液晶セルを基準にして対称の位置関係で配置されて V、る。 [0025] 図 1 (a)は、本発明の 1つの好ましい実施形態による液晶パネルの概略断面図であ る。図 1 (a)に示すように、液晶ノ ネル 100は、液晶セル 10と、液晶セル 10の一方の 側に該液晶セル側からこの順に配置された、第 1の光学補償層 11、第 2の光学補償 層 21および第 1の偏光子 31と、該液晶セル 10の他方の側に該液晶セル側からこの 順に配置された、第 3の光学補償層 12、第 4の光学補償層 22および第 2の偏光子 3 2とを有する。図 1 (b)は、本発明の別の好ましい実施形態による液晶パネルの概略 断面図である。図 1 (b)に示すように、液晶パネル 100は、液晶セル 10と、液晶セル 1 0の一方の側に該液晶セル側からこの順に配置された、第 2の光学補償層 21、第 1 の光学補償層 11および第 1の偏光子 31と、該液晶セル 10の他方の側に該液晶セ ノレ側からこの順に配置された、第 4の光学補償層 22、第 3の光学補償層 12および第 2の偏光子 32とを有する。 The liquid crystal panel of the present invention includes a liquid crystal cell, a first optical compensation layer disposed on one side of the liquid crystal cell, a second optical compensation layer, a first polarizer, and the other of the liquid crystal cell. A third optical compensation layer, a fourth optical compensation layer, and a second polarizer disposed on the first side, the first optical compensation layer and the second optical compensation layer, The third optical compensation layer and the fourth optical compensation layer are arranged in a symmetrical positional relationship with respect to the liquid crystal cell. FIG. 1 (a) is a schematic cross-sectional view of a liquid crystal panel according to one preferred embodiment of the present invention. As shown in FIG. 1 (a), the liquid crystal node 100 includes a liquid crystal cell 10 and a first optical compensation layer 11 and a second liquid crystal layer 10 arranged in this order from the liquid crystal cell side on one side of the liquid crystal cell 10. Optical compensation layer 21 and first polarizer 31, and third optical compensation layer 12, fourth optical compensation layer 22, and the other arranged on the other side of liquid crystal cell 10 in this order from the liquid crystal cell side. And a second polarizer 3 2. FIG. 1 (b) is a schematic cross-sectional view of a liquid crystal panel according to another preferred embodiment of the present invention. As shown in FIG. 1 (b), the liquid crystal panel 100 includes a liquid crystal cell 10 and a second optical compensation layer 21, a first liquid crystal cell 10 arranged in this order from the liquid crystal cell side on one side of the liquid crystal cell 10. The optical compensation layer 11 and the first polarizer 31, and the fourth optical compensation layer 22 and the third optical compensation layer 12 arranged in this order from the liquid crystal sensor side to the other side of the liquid crystal cell 10. And a second polarizer 32.
[0026] 第 1の光学補償層 11および第 3の光学補償層 12は、それぞれ、 Νζ = 1〜2· 5の 関係を有し、 Re (380)く Re (550)く Re (780)の関係を有する。また、第 2  [0026] The first optical compensation layer 11 and the third optical compensation layer 12 have a relationship of Νζ = 1 to 2.5, respectively, and Re (380) Re Re (550) Re Re (780) Have a relationship. Second
1 (3) 1 (3) 1 (3)  1 (3) 1 (3) 1 (3)
の光学補償層 21および第 4の光学補償層 22は、それぞれ、屈折率楕円体が nx = n y〉nzの関係を有し、 Re (380) >Re (550)〉Re (780)の関係を有する。  In the optical compensation layer 21 and the fourth optical compensation layer 22, the refractive index ellipsoid has a relationship of nx = ny> nz, and the relationship of Re (380)> Re (550)> Re (780) Have.
2 (4) 2 (4) 2 (4)  2 (4) 2 (4) 2 (4)
[0027] 上記のとおり、所定の複屈折性を有する光学補償層を、液晶セルを挟んで対称に 配置することにより、液晶セルを斜め方向から見た場合に、液晶セルの上下の偏光 子の成す角度がクロスニコル(90° )からずれることによる光学的不具合 (例えば、色 付き)を液晶セルの上下で均一に補償することができる。その結果、液晶パネルの視 野角特性が向上され、高コントラストが実現され、カラーシフトが抑制され、黒表示に おける光漏れが良好に防止され得る。  [0027] As described above, the optical compensation layers having a predetermined birefringence are arranged symmetrically with the liquid crystal cell in between, so that when the liquid crystal cell is viewed from an oblique direction, the polarizers above and below the liquid crystal cell Optical defects (for example, coloring) due to deviation of the formed angle from crossed Nicols (90 °) can be compensated uniformly above and below the liquid crystal cell. As a result, the viewing angle characteristics of the liquid crystal panel are improved, a high contrast is realized, the color shift is suppressed, and light leakage in black display can be prevented well.
[0028] 図 1に示す液晶パネル 100において、第 1の偏光子 31と第 2の偏光子 32とは互い の吸収軸が実質的に直交するように配置される。また、第 1の偏光子 31は、その吸収 軸が第 1の光学補償層 11の遅相軸に対して実質的に直交するように配置される。第 2の偏光子 32は、その吸収軸が第 3の光学補償層 12の遅相軸に対して実質的に直 交するように配置される。なお、本明細書において、「実質的に直交」とは、 90° ± 3 . 0° である場合を包含し、好ましくは 90° ± 1. 0° 、より好ましくは 90° ± 0. 5° で ある。 [0029] 図示しな!/、が、液晶パネルの各層は、任意の適切な粘着剤層または接着剤層を介 して配置され得る。実用的には、第 1の偏光子 31および/または第 2の偏光子 32の 光学補償層が形成されない側 (液晶セルと反対側)には任意の適切な保護層が設け られ得る。さらに必要に応じて、第 1の偏光子 31および/または第 2の偏光子 32の 光学補償層が形成される側(液晶セル側)には任意の適切な保護層が設けられ得るIn the liquid crystal panel 100 shown in FIG. 1, the first polarizer 31 and the second polarizer 32 are arranged so that their absorption axes are substantially orthogonal to each other. Further, the first polarizer 31 is arranged so that the absorption axis thereof is substantially orthogonal to the slow axis of the first optical compensation layer 11. The second polarizer 32 is arranged such that its absorption axis is substantially perpendicular to the slow axis of the third optical compensation layer 12. In the present specification, “substantially orthogonal” includes a case of 90 ° ± 3.0 °, preferably 90 ° ± 1.0 °, more preferably 90 ° ± 0.5 °. It is. [0029] Although not shown, each layer of the liquid crystal panel may be disposed via any appropriate pressure-sensitive adhesive layer or adhesive layer. Practically, any appropriate protective layer may be provided on the side of the first polarizer 31 and / or the second polarizer 32 where the optical compensation layer is not formed (the side opposite to the liquid crystal cell). Furthermore, if necessary, any appropriate protective layer may be provided on the side of the first polarizer 31 and / or the second polarizer 32 where the optical compensation layer is formed (liquid crystal cell side).
Yes
[0030] A— 2.液晶セル  [0030] A— 2. Liquid crystal cell
本発明で使用される液晶セル 10は、一対の基板 41、 42と、該基板間に配置され た表示媒体としての液晶層 43とを有する。液晶層 43は、電圧無印加時に垂直配向 した液晶分子を含む。このような液晶セルとしては、例えば VAモードの液晶セルが 挙げられる。  The liquid crystal cell 10 used in the present invention includes a pair of substrates 41 and 42 and a liquid crystal layer 43 as a display medium disposed between the substrates. The liquid crystal layer 43 includes liquid crystal molecules that are vertically aligned when no voltage is applied. An example of such a liquid crystal cell is a VA mode liquid crystal cell.
[0031] 図 2は、 VAモードにおける液晶分子の配向状態を説明する概略断面図である。図 2 (a)に示すように、電圧無印加時には、液晶分子は基板 41、 42面に垂直に配向す る。このような垂直配向は、垂直配向膜(図示せず)を形成した基板間に負の誘電率 異方性を有するネマチック液晶を配することにより実現され得る。このような状態で一 方の基板 41の面から光を入射させると、第 1の偏光子 31を通過して液晶層 43に入 射した直線偏光の光は、垂直配向している液晶分子の長軸の方向に沿って進む。液 晶分子の長軸方向には複屈折が生じないため入射光は偏光方位を変えずに進み、 第 1の偏光子 31と直交する偏光軸を有する第 2の偏光子 32で吸収される。これによ り電圧無印加時において喑状態の表示が得られる(ノーマリブラックモード)。図 2 (b) に示すように、電極間に電圧が印加されると、液晶分子の長軸が基板面に平行に配 向する。この状態の液晶層 43に入射した直線偏光の光に対して液晶分子は複屈折 性を示し、入射光の偏光状態は液晶分子の傾きに応じて変化する。所定の最大電 圧印加時において液晶層を通過する光は、例えばその偏光方位が 90° 回転させら れた直線偏光となるので、第 2の偏光子 32を透過して明状態の表示が得られる。再 び電圧無印加状態にすると配向規制力により喑状態の表示に戻すことができる。ま た、印加電圧を変化させて液晶分子の傾きを制御して第 2の偏光子 32からの透過光 強度を変化させることにより階調表示が可能となる。 [0032] A— 3.第 1の光学補償層 FIG. 2 is a schematic cross-sectional view illustrating the alignment state of liquid crystal molecules in the VA mode. As shown in Fig. 2 (a), the liquid crystal molecules are aligned perpendicular to the surfaces of the substrates 41 and 42 when no voltage is applied. Such vertical alignment can be realized by arranging a nematic liquid crystal having negative dielectric anisotropy between substrates on which a vertical alignment film (not shown) is formed. In this state, when light is incident from the surface of one substrate 41, linearly polarized light that has passed through the first polarizer 31 and entered the liquid crystal layer 43 is emitted from the vertically aligned liquid crystal molecules. Proceed along the direction of the long axis. Since no birefringence occurs in the major axis direction of the liquid crystal molecules, the incident light travels without changing the polarization direction and is absorbed by the second polarizer 32 having a polarization axis orthogonal to the first polarizer 31. As a result, a display of a heel state can be obtained when no voltage is applied (normally black mode). As shown in Fig. 2 (b), when a voltage is applied between the electrodes, the major axis of the liquid crystal molecules is oriented parallel to the substrate surface. Liquid crystal molecules exhibit birefringence with respect to linearly polarized light incident on the liquid crystal layer 43 in this state, and the polarization state of incident light changes according to the tilt of the liquid crystal molecules. The light passing through the liquid crystal layer when a predetermined maximum voltage is applied becomes, for example, linearly polarized light whose polarization direction is rotated by 90 °, and thus is transmitted through the second polarizer 32 to obtain a bright display. It is done. When no voltage is applied again, the display can be returned to the cocoon state by the orientation regulating force. In addition, gradation display is possible by changing the intensity of transmitted light from the second polarizer 32 by changing the applied voltage to control the tilt of the liquid crystal molecules. [0032] A— 3. First optical compensation layer
第 1の光学補償層は、 Νζ = 1〜2· 5の関係を有し、 Re (380) < Re (550) < Re (780)の関係を有する。すなわち、第 1の光学補償層は、負の屈折率波長分散 (逆 分散)を有する。第 1の光学補償層は、偏光板の偏光子の軸ずれを好適に補償し得  The first optical compensation layer has a relationship of Νζ = 1 to 2.5, and has a relationship of Re (380) <Re (550) <Re (780). That is, the first optical compensation layer has negative refractive index wavelength dispersion (reverse dispersion). The first optical compensation layer can suitably compensate for the axial misalignment of the polarizer of the polarizing plate.
[0033] 第 1の光学補償層の面内位相差 Reは、好ましくは 20〜; 180nm、より好ましくは 25 ~ 160nm,さらに好ましくは 30〜; 140nmである。 [0033] The in-plane retardation Re of the first optical compensation layer is preferably 20 to 180 nm, more preferably 25 to 160 nm, still more preferably 30 to 140 nm.
[0034] 第 1の光学補償層の厚み方向位相差 Rthは、好ましくは 20〜200nm、より好まし くは 30〜; 180nm、さらに好ましくは 40〜; 150nmである。  [0034] The thickness direction retardation Rth of the first optical compensation layer is preferably 20 to 200 nm, more preferably 30 to; 180 nm, and still more preferably 40 to 150 nm.
[0035] 第 1の光学補償層の Nz係数は、 1以上であり、好ましくは 1. 1以上であり、さらに好 ましくは 1. 3以上である。また、第 1の光学補償層の Nz係数は、 2. 5以下であり、好 ましくは 2. 2以下であり、さらに好ましくは 2. 0以下であり、特に好ましくは 1. 8以下 である。 Nz係数が上記範囲内にある場合、偏光板の偏光子の軸ずれがさらに好適 に補償され得ると V、う効果が奏される。  [0035] The Nz coefficient of the first optical compensation layer is 1 or more, preferably 1.1 or more, and more preferably 1.3 or more. The Nz coefficient of the first optical compensation layer is 2.5 or less, preferably 2.2 or less, more preferably 2.0 or less, and particularly preferably 1.8 or less. . When the Nz coefficient is within the above range, the effect of V can be obtained if the axial misalignment of the polarizer of the polarizing plate can be more preferably compensated.
[0036] 第 1の光学補償層は、好ましくは 70 X 10— 12 (m2/N)以下、より好ましくは 60 X 10 — 12 (m2/N)以下、さらに好ましくは 50 X 10— 12 (m2/N)以下、さらにより好ましくは 40 X 10— 12 (m2/N)以下、特に好ましくは 0· 1 X 10— 12〜30 X 10— 12 (m2/N)の光 弾性係数を有する。光弾性係数が上記範囲にある場合、他の光学素子との貼り合わ せ時におけるテンションによる位相差ムラの発生が抑制され得るため、光漏れが抑制 された液晶パネルが得られるという効果が奏され得る。 [0036] The first optical compensation layer, preferably 70 X 10- 12 (m 2 / N) or less, more preferably 60 X 10 - 12 (m 2 / N) or less, more preferably 50 X 10- 12 (m 2 / N) or less, still more preferably 40 X 10- 12 (m 2 / N) or less, particularly preferably photoelastic of 0 · 1 X 10- 12 ~30 X 10- 12 (m 2 / N) Has a coefficient. When the photoelastic coefficient is in the above range, the occurrence of phase difference unevenness due to tension at the time of bonding with another optical element can be suppressed, so that an effect of obtaining a liquid crystal panel in which light leakage is suppressed can be obtained. obtain.
[0037] 第 1の光学補償層はまた、好ましくは Re (780) /Re (550)〉1. 1、より好ましく は 1. K Re (780) /Re (550) < 1. 6、さらに好ましくは 1. 15 < Re (780) /Re (550X 1. 5の関係を有する。第 1の光学補償層が上記の関係を有する場合、可視 光の広い領域で位相差値が一定になるため、液晶表示装置に用いた場合に、光漏 れする光に、波長の偏りが生じ難ぐ液晶表示装置の斜め方向のカラーシフト量をよ り一層小さくすること力できる。特に、液晶表示装置に用いた際に、赤色領域での光 漏れが小さくなり、表示画像が赤みを帯びるのを防ぐことができる。  [0037] The first optical compensation layer is also preferably Re (780) / Re (550)> 1.1, more preferably 1. K Re (780) / Re (550) <1.6, more preferably Has the relationship 1.15 <Re (780) / Re (550X 1.5. When the first optical compensation layer has the above relationship, the retardation value is constant over a wide visible light region. When used in a liquid crystal display device, it is possible to further reduce the amount of color shift in the oblique direction of the liquid crystal display device, which is less likely to cause a wavelength shift in light leaking light. In this case, light leakage in the red region is reduced, and the display image can be prevented from becoming reddish.
[0038] 第 1の光学補償層はまた、好ましくは Re (550) /Re (380)〉1. 1、より好ましく は 1. KRe (550) /Re (380) < 1. 7、さらに好ましくは 1. 3<Re (550) /Re ( 380X 1. 6の関係を有する。第 1の光学補償層が上記の関係を有する場合、可視 光の広い領域で位相差値が一定になるため、液晶表示装置に用いた場合に、光漏 れする光に、波長の偏りが生じ難ぐ液晶表示装置の斜め方向のカラーシフト量をよ り一層小さくすること力できる。特に、液晶表示装置に用いた際に、青色領域での光 漏れが小さくなり、表示画像が青みを帯びるのを防ぐことができる。 [0038] The first optical compensation layer is also preferably Re (550) / Re (380)> 1.1, more preferably 1. KRe (550) / Re (380) <1. 7, more preferably 1.3 <Re (550) / Re (380X 1.6. The first optical compensation layer has the above relationship. Since the phase difference value is constant over a wide visible light region, the wavelength of the liquid crystal display device in the oblique direction is less likely to cause a wavelength deviation in light leaking when used in a liquid crystal display device. In particular, when used in a liquid crystal display device, light leakage in the blue region can be reduced and the display image can be prevented from being bluish.
[0039] 第 1の光学補償層の形成材料としては、 Νζ = 1〜2· 5の関係を有し、 Re (380) < Re (550) <Re (780)の関係を有する光学補償層が形成される限り、特に限定さ れない。力、かる形成材料としては、セルロース系材料、ポリエステル系材料、ポリカー ボネート系材料、ポリビュルアルコール系材料、ポリメチルメタタリレート系材料、ポリ スチレン系材料、アクリロニトリル/スチレン共重合体、スチレン/無水マレイミド共重 合体、マレイミドノスチレン共重合体等が挙げられる。なかでも、非芳香族の環状構 造とエステル基とを有する材料が好ましぐァセチル基およびプロピオニル基で置換 されて!/、るセルロース系材料、および非芳香族の環状構造を有するポリエステル系 材料がより好ましい。 [0039] As a material for forming the first optical compensation layer, there is an optical compensation layer having a relationship of Νζ = 1 to 2.5, and a relationship of Re (380) <Re (550) <Re (780). There is no particular limitation as long as it is formed. Examples of such materials include cellulosic materials, polyester materials, polycarbonate materials, polybutyl alcohol materials, polymethyl methacrylate materials, polystyrene materials, acrylonitrile / styrene copolymers, and styrene / anhydrous materials. Examples thereof include maleimide copolymers and maleimidostyrene copolymers. Of these, materials having a non-aromatic cyclic structure and an ester group are preferably substituted with an acetyl group and a propionyl group! /, A cellulose-based material, and a polyester-based material having a non-aromatic cyclic structure. Is more preferable.
[0040] ァセチル基およびプロピオニル基で置換されているセルロース系材料(以下、単に 「セルロース系材料」と称する。)において、ァセチル基による置換の程度は、セル口 ースの繰り返し単位中に存在する 3個の水酸基力 ァセチル基で平均してどれだけ 置換されてレ、る力、を示す「ァセチル置換度(DSac)」で示され得る。上記セルロース 系材料において、プロピオニル基による置換の程度は、セルロースの繰り返し単位中 に存在する 3個の水酸基力 プロピオニル基で平均してどれだけ置換されて!/、るかを 示す「プロピオニル置換度(DSpr)」で示され得る。上記ァセチル置換度(DSac)お よびプロピ才ニノレ置換度(DSpr) (ま、特開 2003— 315538号公幸 (0016)〜(001 9)に記載の方法により求めることができる。  [0040] In cellulosic materials substituted with acetyl groups and propionyl groups (hereinafter simply referred to as "cellulosic materials"), the degree of substitution with acetyl groups exists in the cell mouth repeating units. It can be shown by the “degree of substitution of acetyl (DSac)” which indicates how much the three hydroxyl groups on average are substituted by the acetyl group. In the cellulosic material, the degree of substitution with propionyl groups indicates the average amount of substitution by three hydroxyl group propionyl groups present in the repeating unit of cellulose! DSpr) ". The degree of substitution with acetyl (DSac) and the degree of substitution with propylene (DSpr) can be determined by the methods described in JP 2003-315538 A. (0016) to (001 9).
[0041] 上記のセルロース系材料は、好ましくは、ァセチル置換度(DSac)およびプロピオ ニル置換度(DSpr)が、 2. 0≤DSac + DSpr≤3. 0なる関係式を満たす。 DSac + DSprの下限値は、好ましくは 2. 3以上、より好ましくは 2. 6以上である。 DSac + DS prの上限値は、好ましくは 2. 9以下、より好ましくは 2. 8以下である。セルロース系材 料の DSac + DSprを上記範囲とすることにより、所望の光学特性を有する光学フィル ムを効率良く得ることが可能となる。 [0041] In the cellulosic material, the degree of acetyl substitution (DSac) and the degree of propionyl substitution (DSpr) preferably satisfy the relational expression of 2.0≤DSac + DSpr≤3.0. The lower limit value of DSac + DSpr is preferably 2.3 or more, more preferably 2.6 or more. The upper limit value of DSac + DSpr is preferably 2.9 or less, more preferably 2.8 or less. Cellulosic material By making DSac + DSpr of the material within the above range, an optical film having desired optical characteristics can be obtained efficiently.
[0042] 上記のセルロース系材料は、好ましくは、プロピオニル置換度(DSpr)が、 1. 0≤D[0042] The cellulosic material preferably has a propionyl substitution degree (DSpr) of 1.0≤D
Spr≤3. 0なる関係式を満たす。 DSprの下限値は、好ましくは 2以上、より好ましくはThe relational expression Spr≤3.0 is satisfied. The lower limit of DSpr is preferably 2 or more, more preferably
2. 5以上である。 DSprの上限値は、好ましくは 2. 9以下、より好ましくは 2. 8以下で ある。セルロース系材料の DSprを上記範囲とすることにより、所望の光学特性を有す る光学フィルムを効率良く得ることが可能となる。 2. It is 5 or more. The upper limit of DSpr is preferably 2.9 or less, more preferably 2.8 or less. By setting the DSpr of the cellulosic material within the above range, an optical film having desired optical characteristics can be obtained efficiently.
[0043] 上記のセルロース系材料は、ァセチル基およびプロピオニル基以外のその他の置 換基を有し得る。その他の置換基としては、例えば、ブチレート等のエステル基;アル キルエーテル基、ァラアルキレンエーテル基等のエーテル基;等が挙げられる。 [0043] The cellulosic material may have a substituent other than the acetyl group and the propionyl group. Examples of other substituents include ester groups such as butyrate; ether groups such as alkyl ether groups and araalkylene ether groups;
[0044] 上記のセルロース系材料の数平均分子量は、好ましくは 5千〜 10万、より好ましく は 1万〜 7万である。上記範囲とすることにより、生産性に優れ、かつ、良好な機械的 強度が得られ得る。 [0044] The number average molecular weight of the cellulosic material is preferably 5,000 to 100,000, more preferably 10,000 to 70,000. By setting it within the above range, it is possible to obtain excellent mechanical strength and excellent mechanical strength.
[0045] ァセチル基およびプロピオニル基への置換方法としては、任意の適切な方法が採 用される。例えば、セルロースを強苛性ソーダ溶液で処理してアルカリセルロースとし 、これを所定量の無水酢酸とプロピオン酸無水物との混合物によりァシル化する。ァ シル基を部分的に加水分解することにより、置換度「DSac + DSpr」を調整する。  [0045] As a method for substitution to the acetyl group and propionyl group, any appropriate method is adopted. For example, cellulose is treated with a strong caustic soda solution to obtain alkali cellulose, which is acylated with a mixture of a predetermined amount of acetic anhydride and propionic anhydride. The degree of substitution “DSac + DSpr” is adjusted by partially hydrolyzing the acyl group.
[0046] 上記のセルロース系材料から形成される光学フィルム(高分子フィルム)は、任意の 適切な高分子材料を含み得る。このような高分子材料としては、例えば、セルロース ブチレート等のセノレロースエステノレ;メチノレセノレロース、ェチノレセノレロース等のセノレ口 ースエーテル;等が挙げられる。該フィルムは、必要に応じて、可塑剤、熱安定剤、紫 外線安定剤等の添加剤を含み得る。  [0046] The optical film (polymer film) formed from the cellulosic material may include any appropriate polymer material. Examples of such a polymer material include senorelose esterol such as cellulose butyrate; senolen ether ether such as methinoresenorelose and ethinoresenorelose; and the like. The film may contain additives such as a plasticizer, a heat stabilizer, and an ultraviolet stabilizer as necessary.
[0047] 上記のセルロース系材料力、ら形成される光学フィルムとしては、例えば特開 2003 [0047] Examples of the optical film formed by the above-described cellulose-based material strength include, for example, JP 2003
315538号公報、または米国特許第 6503581号公報に記載のものが挙げられる No. 315538, or US Pat. No. 6,650,581
。また、力、かるフィルムとしては、市販のフィルム、例えば、 KAフィルム(株式会社カネ 力製)を使用すること力できる。 . Further, as the force and film, a commercially available film such as KA film (manufactured by Kane force Co., Ltd.) can be used.
[0048] 上記ポリエステル系材料としては、任意の適切な材料が採用され得る。例えば、非 芳香族の環状構造を有するジカルボン酸成分とジオール成分とを重合して得られる 、非芳香族の環状構造とエステル基とを有するポリエステル樹脂が好ましく用いられ [0048] Any appropriate material may be adopted as the polyester material. For example, obtained by polymerizing a dicarboxylic acid component having a non-aromatic cyclic structure and a diol component A polyester resin having a non-aromatic cyclic structure and an ester group is preferably used.
[0049] 上記のセルロース系材料または上記ポリエステル系材料から形成される光学フィル ムを延伸条件 (例えば、延伸温度、延伸倍率、延伸方向)、延伸方法等を適切に選 択して延伸することにより、上記所望の光学特性 (例えば、屈折率楕円体、面内位相 差、厚み方向の位相差)を有する第 1の光学補償層が得られ得る。 [0049] By stretching the optical film formed from the cellulose-based material or the polyester-based material by appropriately selecting stretching conditions (for example, stretching temperature, stretching ratio, stretching direction), stretching method, and the like. A first optical compensation layer having the desired optical characteristics (for example, refractive index ellipsoid, in-plane retardation, thickness direction retardation) can be obtained.
[0050] 延伸方法としては、例えば、縦一軸延伸法、横一軸延伸法、縦横同時二軸延伸法 、縦横逐次二軸延伸法等の任意の適切な延伸方法が採用され得る。延伸方向は、 フィルム長手方向(MD方向)であってもよぐ幅方向(TD方向)であってもよい。延伸 方向が幅方向(TD方向)である場合、ロール状の他の光学素子とロール ·ッゥ 'ロー ルでの貼り合わせることが可能であり、生産性を大幅に向上させることができるので、 工業的な製造に有利である。  [0050] As the stretching method, for example, any suitable stretching method such as a longitudinal uniaxial stretching method, a transverse uniaxial stretching method, a longitudinal and transverse simultaneous biaxial stretching method, and a longitudinal and transverse sequential biaxial stretching method may be employed. The stretching direction may be the film longitudinal direction (MD direction) or the width direction (TD direction). When the stretching direction is the width direction (TD direction), it can be bonded to other optical elements in a roll shape with a roll-to-roll, and productivity can be greatly improved. It is advantageous for industrial production.
[0051] 第 1の光学補償層が上記のセルロース系材料または上記ポリエステル系材料から 形成される光学フィルム(高分子フィルム)を延伸処理することによって形成される場 合、延伸温度は、好ましくは 130〜; 170°C、より好ましくは 140〜; 150°Cである。延伸 倍率は、好ましくは 1. 5〜2. 5倍、より好ましくは 1. 9〜2. 3倍である。形成される延 申フイノレムの厚みは、好ましくは30〜70〃111、より好ましくは 40〜60〃111である。  [0051] When the first optical compensation layer is formed by stretching an optical film (polymer film) formed from the cellulose-based material or the polyester-based material, the stretching temperature is preferably 130. ~; 170 ° C, more preferably 140 ~; 150 ° C. The draw ratio is preferably 1.5 to 2.5 times, more preferably 1.9 to 2.3 times. The thickness of the extended finalem formed is preferably 30 to 70〃111, more preferably 40 to 60〃111.
[0052] A— 4.第 2の光学補償層  [0052] A— 4. Second optical compensation layer
第 2の光学補償層は、 nx = ny〉nzの関係を有し、 Re (380) >Re (550) >Re (  The second optical compensation layer has a relationship of nx = ny> nz, and Re (380)> Re (550)> Re (
2 2 2 2 2 2
780)の関係を有する。すなわち、第 2の光学補償層は、正の屈折率波長分散 (正分 散)を有するネガティブ Cプレートである。第 2の光学補償層は、液晶セルの複屈折 性 (正分散を有する正の一軸性の複屈折:ポジティブ Cプレート成分)を好適に補償 し得る。 780). That is, the second optical compensation layer is a negative C plate having positive refractive index wavelength dispersion (positive dispersion). The second optical compensation layer can suitably compensate for the birefringence of the liquid crystal cell (positive uniaxial birefringence having positive dispersion: positive C plate component).
[0053] 本明細書において「nx = ny」は、 nxと nyが厳密に等しい場合のみならず、 nxと ny が実質的に等しい場合も包含するので、第 2の光学補償層は面内位相差 Reを有し 得、また、遅相軸を有し得る。第 2の光学補償層の面内位相差 Reは、好ましくは 0〜  In the present specification, “nx = ny” includes not only the case where nx and ny are exactly equal, but also the case where nx and ny are substantially equal. It may have a phase difference Re and may have a slow axis. The in-plane retardation Re of the second optical compensation layer is preferably 0 to
2  2
20nm、より好ましくは 0〜5nm、さらに好ましくは 0〜3nmである。  It is 20 nm, more preferably 0 to 5 nm, still more preferably 0 to 3 nm.
[0054] 第 2の光学補償層の厚み方向位相差 Rthは、好ましくは 20nm以上、より好ましく は 30〜; 160nm、さらに好ましくは 70〜; 160nmである。 Rthが上記の範囲内にある [0054] The thickness direction retardation Rth of the second optical compensation layer is preferably 20 nm or more, more preferably Is 30 to 160 nm, more preferably 70 to 160 nm. Rth is in the above range
2  2
ことにより、液晶セルの複屈折性 (正分散を有する正の一軸性の複屈折:ポジティブ Liquid crystal cell birefringence (positive uniaxial birefringence with positive dispersion: positive
Cプレート成分)が好適に補償され得る。 C plate component) can be suitably compensated.
[0055] 第 2の光学補償層はまた、好ましくは Re (780) /Re (550) < 0. 95、より好ましく [0055] The second optical compensation layer is also preferably Re (780) / Re (550) <0.95, more preferably
2 2  twenty two
は 0. 8 <Re (780) /Re (550) < 0. 95、さらに好ましくは 0. 85<Re (780) /R  0.8 <Re (780) / Re (550) <0.95, more preferably 0.85 <Re (780) / R
2 2 2  2 2 2
e (550X 0. 95の関係を有する。第 2の光学補償層が上記の関係を有する場合、 e (550X 0.95 relationship. When the second optical compensation layer has the above relationship,
2 2
可視光の広い領域で位相差値が一定になるため、液晶表示装置に用いた場合に、 光漏れする光に、波長の偏りが生じ難ぐ液晶表示装置の斜め方向のカラーシフト量 をより一層小さくすること力 sできる。特に、液晶表示装置に用いた際に、赤色領域で の光漏れが小さくなり、表示画像が赤みを帯びるのを防ぐことができる。  Since the retardation value is constant over a wide area of visible light, when used in a liquid crystal display device, the amount of color shift in the oblique direction of the liquid crystal display device, which is less likely to cause wavelength deviation in light leaking, is further increased. You can power down. In particular, when used in a liquid crystal display device, light leakage in the red region is reduced, and the display image can be prevented from becoming reddish.
[0056] 第 2の光学補償層はまた、好ましくは Re (550) /Re (380) < 0. 95、より好ましく [0056] The second optical compensation layer is also preferably Re (550) / Re (380) <0.95, more preferably
2 2  twenty two
は 0. 7<Re (550) /Re (380) < 0. 9、さらに好ましくは 0. 75<Re (550) /Re  0.7 <Re (550) / Re (380) <0.9, more preferably 0.75 <Re (550) / Re
2 2 2 2 2 2 2 2
(380X 0. 85の関係を有する。第 2の光学補償層が上記の関係を有する場合、可 視光の広い領域で位相差値が一定になるため、液晶表示装置に用いた場合に、光 漏れする光に、波長の偏りが生じ難ぐ液晶表示装置の斜め方向のカラーシフト量を より一層小さくすること力 Sできる。特に、液晶表示装置に用いた際に、青色領域での 光漏れが小さくなり、表示画像が青みを帯びるのを防ぐことができる。 (It has a relationship of 380X 0.85. When the second optical compensation layer has the above relationship, the phase difference value is constant in a wide region of visible light. It is possible to further reduce the amount of color shift in the oblique direction of a liquid crystal display device, where wavelength deviation is unlikely to occur in leaking light, especially when used in a liquid crystal display device. It becomes small and it can prevent that a display image becomes bluish.
[0057] 第 2の光学補償層としては、例えば、ポリアミド、ポリイミド、ポリエステル、ポリ(エー テルケトン)、ポリ(アミドイミド)およびポリ(エステルイミド)からなる群より選択されるポ リマーで光学的に透明である層、二軸性配向したポリマーフィルムからなる層、ネマ チック液晶のコレステリック配向状態を固定した層、ディスコチック液晶のカラムナー 配向またはネマチック配向状態を固定した層、負の一軸性結晶を面内に配向させた 層等が挙げられる。 [0057] As the second optical compensation layer, for example, a polymer selected from the group consisting of polyamide, polyimide, polyester, poly (ether ketone), poly (amidoimide) and poly (ester imide) is optically transparent. A layer composed of a biaxially oriented polymer film, a layer in which the cholesteric alignment state of a nematic liquid crystal is fixed, a layer in which the columnar alignment or nematic alignment state of a discotic liquid crystal is fixed, and a negative uniaxial crystal in-plane And a layer oriented in the above.
[0058] 第 2の光学補償層を形成し得るポリアミド、ポリイミド、ポリエステル、ポリ(エーテルケ トン)、ポリ(アミドイミド)またはポリ(エステルイミド)としては、耐熱性、耐薬品性、透明 十生に優れ、岡 IJ十生にも富むこと力、ら、特開 2004— 46065号公幸の(0018)〜(0072) に記載のポリマーが好ましい。中でも、高透明性、高配向性、高延伸性を有すること から、例えば芳香族二無水物とポリ芳香族ジァミンとから形成される可溶性ポリイミド( 特表平 8— 511812号公報参照)が好ましく用いられ得る。 [0058] Polyamide, polyimide, polyester, poly (ether ketone), poly (amidoimide), or poly (ester imide) that can form the second optical compensation layer are excellent in heat resistance, chemical resistance, and transparency. The polymers described in (0018) to (0072) of JP 2004-46065 Koyuki, et al. Among them, a soluble polyimide (for example, an aromatic dianhydride and a polyaromatic diamine, which has high transparency, high orientation, and high stretchability) JP-A-8-511812) can be preferably used.
[0059] 上記ポリマーを、例えば、樹脂フィルムまたはシートに塗工し、固化することにより第 2の光学補償層が形成され得る。上記ポリマーは、液晶性材料とは異なり、基板の配 向性に関係なぐそれ自身の性質により nx = ny〉nzという光学的一軸性を示す膜を 形成し得る。 [0059] The second optical compensation layer can be formed by applying the polymer to, for example, a resin film or sheet and solidifying. Unlike the liquid crystalline material, the polymer can form a film exhibiting an optical uniaxial property of nx = ny> nz due to its own property that is not related to the orientation of the substrate.
[0060] 上記ポリマーとしてポリイミドを用いる場合、塗工方法は特に限定されず、任意の方 法が使用され得る。例えば、加熱溶融したポリイミドまたはシクロへキサノン等の溶媒 に溶解したポリイミド溶液を、 PETフィルム等に 10〜30 mの厚みで塗布する方法 が使用され得る。次いで、得られた塗膜を、例えば自然乾燥 (風乾)または 80〜; 120 °Cで 8〜; 12分加熱して、上記フィルム上にポリイミドを固化することにより、第 2の光学 補償層が形成され得る。  [0060] When polyimide is used as the polymer, the coating method is not particularly limited, and any method can be used. For example, a method of applying a polyimide solution dissolved in a solvent such as heated and melted polyimide or cyclohexanone to a PET film or the like with a thickness of 10 to 30 m can be used. Next, the obtained coating film is, for example, naturally dried (air-dried) or 80 to; heated at 120 ° C. for 8 to 12 minutes to solidify the polyimide on the film, whereby the second optical compensation layer is formed. Can be formed.
[0061] 上記ポリマーで光学的に透明である層の厚みとしては、好ましくは 0.;!〜 10 111、 より好ましくは l〜5〃mである。したがって、上記ポリマーから形成される第 2の光学 補償層は、液晶セルの複屈折性を好適に補償し、かつ、液晶パネルの薄型化に貢 献し守る。  [0061] The thickness of the above optically transparent layer of the polymer is preferably 0.;! To 10 111, more preferably 1 to 5 mm. Therefore, the second optical compensation layer formed from the polymer favorably compensates for the birefringence of the liquid crystal cell and contributes to the thinning of the liquid crystal panel.
[0062] ネマチック液晶のコレステリック配向状態を固定した層(以下、「コレステリック配向 固化層」と称する。)は、可視光領域に色付き等を有さないものであることが望ましい。 すなわち、コレステリック配向した液晶の選択反射光が可視領域にないことが好まし い。選択反射はコレステリックのカイラルピッチと液晶の屈折率によって一義的に決 定される。選択反射の中心波長の値は、近赤外領域にあっても良いが、旋光の影響 等を回避するため、 350nm以下の紫外部にあることがより好ましい。  It is desirable that the layer in which the cholesteric alignment state of the nematic liquid crystal is fixed (hereinafter referred to as “cholesteric alignment solidified layer”) does not have coloration or the like in the visible light region. That is, it is preferable that the selectively reflected light of the cholesteric aligned liquid crystal is not in the visible region. The selective reflection is uniquely determined by the cholesteric chiral pitch and the refractive index of the liquid crystal. The value of the center wavelength of selective reflection may be in the near infrared region, but it is more preferable to be in the ultraviolet region of 350 nm or less in order to avoid the influence of optical rotation.
[0063] 上記のコレステリック配向固化層は、例えば、液晶材料が液晶相を示す状態でカイ ラル剤によってねじりを付与してコレステリック構造(らせん構造)に配向させ、その状 態で重合処理または架橋処理を施すことにより、当該液晶材料の配向(コレステリック 構造)が固定されて形成され得る。  [0063] The above-described cholesteric alignment solidified layer is, for example, imparted to a cholesteric structure (spiral structure) by applying a twist with a chiral agent in a state where the liquid crystal material exhibits a liquid crystal phase, and in that state, a polymerization treatment or a crosslinking treatment. By applying the above, the alignment (cholesteric structure) of the liquid crystal material can be fixed.
[0064] 上記コレステリック配向固化層の具体例としては、特開 2003— 287623号公報に 記載のコレステリック配向固化層が挙げられる。  [0064] Specific examples of the cholesteric alignment solidified layer include the cholesteric alignment solidified layer described in JP-A-2003-287623.
[0065] 上記コレステリック配向固化層の厚みとしては、好ましくは 0.;!〜 lO ^ m、より好ま しくは;!〜 5 mである。したがって、コレステリック配向固化層である第 2の光学補償 層は、液晶セルの複屈折性を好適に補償し、かつ、液晶パネルの薄型化に貢献し得 [0065] The thickness of the cholesteric alignment solidified layer is preferably 0.;! ~ LO ^ m, more preferably It is;! ~ 5 m. Therefore, the second optical compensation layer, which is a solidified cholesteric alignment layer, can favorably compensate for the birefringence of the liquid crystal cell and contribute to the thinning of the liquid crystal panel.
[0066] ディスコチック液晶のカラムナー配向またはネマチック配向状態を固定した層は、 例えば、面内に分子の広がりを有したフタロシアニン類、トリフエ二レン類化合物等の 負の一軸性を有するディスコティック液晶材料に、カラムナー相またはネマチック相を 発現させることにより形成され得る。具体的には、例えば、ディスコチック液晶のカラム ナー配向を固定した層は、特開平 9— 117983号公報に記載の方法によって得るこ と力 Sできる。 [0066] The layer in which the columnar alignment or nematic alignment state of the discotic liquid crystal is fixed is, for example, a discotic liquid crystal material having a negative uniaxial property such as a phthalocyanine or a triphenylene compound having a molecular extension in the plane. Further, it can be formed by developing a columnar phase or a nematic phase. Specifically, for example, a layer in which the columnar orientation of the discotic liquid crystal is fixed can be obtained by the method described in JP-A-9-117983.
[0067] 負の一軸性結晶を面内に配向させた層としては、例えば、特開平 6— 82777号公 報に記載のものが用いられる。  [0067] As the layer in which the negative uniaxial crystal is oriented in the plane, for example, those described in JP-A-6-82777 can be used.
[0068] 二軸性配向したポリマーフィルムからなる層としては、例えば、正の屈折率異方性を 有する高分子フィルムをバランス良く二軸延伸する方法、熱可塑樹脂をプレスする方 法、平行配向した結晶体から切り出す方法等で形成されたポリマーフィルムが挙げら れる。 [0068] Examples of the layer composed of a biaxially oriented polymer film include, for example, a method of biaxially stretching a polymer film having positive refractive index anisotropy in a balanced manner, a method of pressing a thermoplastic resin, and parallel orientation. And a polymer film formed by a method of cutting out from the obtained crystal.
[0069] 正の屈折率異方性を有する高分子フィルムをバランス良く二軸延伸する方法として は、例えば、ノルボルネン系樹脂からなるフィルムを以下の条件で同時または逐次二 軸延伸すること力挙げられる。すなわち、好ましくは 120〜; 180°C、より好ましくは 130 〜; 170°Cの延伸温度、好ましくは 1. 2〜3倍、より好ましくは 1. 5〜2. 5倍の縦延伸 倍率、好ましくは 1. 2〜3倍、より好ましくは 1. 5〜2. 5倍の横延伸倍率で延伸する 方法が挙げられる。  [0069] Examples of a method for biaxially stretching a polymer film having positive refractive index anisotropy in a balanced manner include the ability to simultaneously or sequentially biaxially stretch a film made of a norbornene-based resin under the following conditions. . That is, preferably 120 to; 180 ° C, more preferably 130 to; 170 ° C, stretching temperature, preferably 1.2 to 3 times, more preferably 1.5 to 2.5 times the longitudinal stretching ratio, preferably Is a method of drawing at a transverse draw ratio of 1.2 to 3 times, more preferably 1.5 to 2.5 times.
[0070] A— 5.第 3の光学補償層  [0070] A— 5. Third optical compensation layer
第 3の光学補償層は、 Νζ = 1〜2· 5の関係を有し、 Re (380) <Re (550) <Re  The third optical compensation layer has a relationship of Νζ = 1 to 2.5, and Re (380) <Re (550) <Re
3 3 3 3 3 3
(780)の関係を有する。すなわち、第 3の光学補償層は、負の屈折率波長分散 (逆 分散)を有する。第 3の光学補償層は、偏光板の偏光子の軸ずれを好適に補償し得 (780) relationship. That is, the third optical compensation layer has negative refractive index wavelength dispersion (reverse dispersion). The third optical compensation layer can suitably compensate for the axial misalignment of the polarizer of the polarizing plate.
[0071] 第 3の光学補償層については、 A- 3.項の説明を適用することができる。第 3の光 学補償層は、第 1の光学補償層と同一であってもよぐ異なっていてもよい。好ましく は、第 3の光学補償層は、第 1の光学補償層と同一の材料で形成され、かつ、第 1の 光学補償層と同一の厚みを有する。 [0071] For the third optical compensation layer, the description in Section A-3 can be applied. The third optical compensation layer may be the same as or different from the first optical compensation layer. Preferably The third optical compensation layer is formed of the same material as the first optical compensation layer and has the same thickness as the first optical compensation layer.
[0072] A— 6.第 4の光学補償層 [0072] A— 6. Fourth optical compensation layer
第 4の光学補償層は、 nx = ny〉nzの関係を有し、 Re (380) >Re (550) >Re (  The fourth optical compensation layer has a relationship of nx = ny> nz, and Re (380)> Re (550)> Re (
4 4 4 4 4 4
780)の関係を有する。すなわち、第 4の光学補償層は、正の屈折率波長分散 (正分 散)を有するネガティブ Cプレートである。第 4の光学補償層は、液晶セルの複屈折 性 (正分散を有する正の一軸性の複屈折:ポジティブ Cプレート成分)を好適に補償 し得る。 780). That is, the fourth optical compensation layer is a negative C plate having positive refractive index wavelength dispersion (positive dispersion). The fourth optical compensation layer can suitably compensate for the birefringence of the liquid crystal cell (positive uniaxial birefringence having positive dispersion: positive C plate component).
[0073] 第 4の光学補償層については、 A-4.項の説明を適用することができる。第 4の光 学補償層は、第 2の光学補償層と同一であってもよぐ異なっていてもよい。好ましく は、第 4の光学補償層は、第 2の光学補償層と同一の材料で形成され、かつ、第 2の 光学補償層と同一の厚みを有する。  [0073] For the fourth optical compensation layer, the description in the section A-4 can be applied. The fourth optical compensation layer may be the same as or different from the second optical compensation layer. Preferably, the fourth optical compensation layer is formed of the same material as the second optical compensation layer and has the same thickness as the second optical compensation layer.
[0074] A— 7.偏光子  [0074] A— 7. Polarizer
偏光子としては、 目的に応じて任意の適切な偏光子が採用され得る。例えば、ポリ ビュルアルコール系フィルム、部分ホルマール化ポリビュルアルコール系フィルム、 エチレン.酢酸ビュル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、 ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビュルァ ルコールの脱水処理物やポリ塩化ビュルの脱塩酸処理物等ポリェン系配向フィルム 等が挙げられる。これらのなかでも、ポリビュルアルコール系フィルムにヨウ素等の二 色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く特に好ましい。こ れら偏光子の厚さは特に制限されないが、一般的に、;!〜 80 m程度である。  Any appropriate polarizer may be adopted as the polarizer depending on the purpose. For example, dichroic substances such as iodine and dichroic dyes may be added to hydrophilic polymer films such as polyalcohol-based films, partially formalized polybulal alcohol-based films, and ethylene.butyral acetate copolymer-based partially saponified films. Polyethylene-based oriented films such as those that have been adsorbed and uniaxially stretched, polyvural alcohol dehydrated products, and polychlorinated bull dehydrochlorinated products. Among these, a polarizer obtained by adsorbing a dichroic substance such as iodine on a polybulualcohol-based film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio. The thickness of these polarizers is not particularly limited, but is generally about !!-80 m.
[0075] ポリビュルアルコール系フィルムにヨウ素を吸着させて一軸延伸した偏光子は、例 えば、ポリビュルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の 3〜7倍に延伸することで作製すること力 Sできる。必要に応じてホウ酸や硫酸亜鉛、塩 化亜鉛等を含んでいても良いし、ヨウ化カリウム等の水溶液に浸漬することもできる。 さらに必要に応じて染色の前にポリビュルアルコール系フィルムを水に浸漬して水洗 しても良い。 [0075] A polarizer uniaxially stretched by adsorbing iodine to a polybulualcohol-based film, for example, is dyed by immersing polybulualcohol in an aqueous iodine solution and stretched 3 to 7 times the original length. It is possible to produce with S. If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or may be immersed in an aqueous solution of potassium iodide or the like. Furthermore, if necessary, the polybulal alcohol film may be immersed in water and washed before dyeing.
[0076] ポリビュルアルコール系フィルムを水洗することでポリビュルアルコール系フィルム 表面の汚れやブロッキング防止剤を洗浄することができるだけでなぐポリビュルアル コール系フィルムを膨潤させることで染色のムラ等の不均一を防止する効果もある。 延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても良いし、また延 伸してからヨウ素で染色しても良い。ホウ酸やヨウ化カリウム等の水溶液中や水浴中 であ延伸すること力 Sでさる。 [0076] By washing the polybulal alcohol-based film with water, the polybulal alcohol-based film Swelling of the surface of the surface and anti-blocking agent as well as swelling of the polybulal alcohol film has the effect of preventing unevenness such as uneven dyeing. The stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be performed after being stretched and then dyed with iodine. Stretch with force S in an aqueous solution of boric acid or potassium iodide or in a water bath.
[0077] A— 8.その他の構成要素  [0077] A— 8. Other components
A— 8— 1.保護層  A— 8— 1. Protective layer
保護層としては、偏光子の保護層として使用できる任意の適切なフィルムが採用さ れ得る。このようなフィルムの主成分となる材料の具体例としては、トリァセチルセル口 ース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビュルアルコール系、ポ リカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系 、ポリスチレン系、ポリノルボルネン系、ポリオレフイン系、アクリル系、アセテート系等 の透明樹脂等が挙げられる。また、アクリル系、ウレタン系、アクリルウレタン系、ェポ キシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。こ の他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また 、特開 2001— 343529号公幸 (WO01/37007 こ記載のポリマーフイノレムも使用 できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を 有する熱可塑性樹脂と、側鎖に置換または非置換のフエニル基ならびに二トリル基を 有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンと N—メ チルマレイミドからなる交互共重合体と、アクリロニトリル 'スチレン共重合体とを有す る樹脂組成物が挙げられる。上記ポリマーフィルムは、例えば、前記樹脂組成物の押 出成形物であり得る。 TAC、ポリイミド系樹脂、ポリビュルアルコール系樹脂、ガラス 質系ポリマーが好ましぐ TACがより好ましい。  As the protective layer, any appropriate film that can be used as a protective layer of a polarizer can be adopted. Specific examples of the material that is the main component of such a film include cellulose resins such as triacetyl cellulose mouth (TAC), polyester, polybutyl alcohol, polycarbonate, polyamide, polyimide, and poly Examples thereof include transparent resins such as ether sulfone, polysulfone, polystyrene, polynorbornene, polyolefin, acrylic, and acetate. In addition, thermosetting resins such as acrylic, urethane, acrylic urethane, epoxy, and silicone, or ultraviolet curable resins, and the like are also included. In addition, for example, a glassy polymer such as a siloxane polymer is also included. Further, JP 2001-343529 Koyuki (WO01 / 37007 can also use the polymer phenol described in this document. Examples of the material of the film include a thermoplastic resin having a substituted or unsubstituted imide group in the side chain, and A resin composition containing a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain can be used.For example, an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer are used. The polymer film can be, for example, an extrusion-molded product of the resin composition, such as TAC, polyimide resin, polybutyl alcohol resin, and glassy polymer. TAC is more preferable.
[0078] 上記保護層は、透明で、色付きが無いことが好ましい。また、上記保護層は、実質 的に光学的に等方性を有することが好ましい。 1つの実施形態においては、保護層 の面内位相差は 0〜10nmであり、厚み方向位相差は 0〜10nmである。  [0078] The protective layer is preferably transparent and has no color. The protective layer preferably has substantially optical isotropy. In one embodiment, the in-plane retardation of the protective layer is 0 to 10 nm, and the thickness direction retardation is 0 to 10 nm.
[0079] 上記保護層の厚みとしては、任意の適切な厚みが採用され得る。具体的には、保 護層の厚みは、好ましくは 5mm以下であり、より好ましくは lmm以下であり、さらに好 ましくは;!〜 500 μ mであり、さらにより好ましくは 5〜; 150 μ mである。 [0079] Any appropriate thickness can be adopted as the thickness of the protective layer. Specifically, the thickness of the protective layer is preferably 5 mm or less, more preferably 1 mm or less, and even more preferably. Preferably, it is! -500 μm, and even more preferably 5--150 μm.
[0080] 偏光子の外側(光学補償層と反対側)に設けられる保護層には、必要に応じて、ハ ードコート処理、反射防止処理、ステイツキング防止処理、アンチグレア処理等が施さ れ得る。 [0080] The protective layer provided on the outer side (opposite side of the optical compensation layer) of the polarizer may be subjected to a hard coat treatment, an antireflection treatment, an anti-sticking treatment, an antiglare treatment, or the like as necessary.
[0081] A— 8— 2.粘着剤層  [0081] A— 8— 2. Adhesive layer
粘着剤層を形成する粘着剤としては、任意の適切な粘着剤が採用され得る。具体 例としては、溶剤型粘着剤、非水系ェマルジヨン型粘着剤、水系粘着剤、ホットメルト 粘着剤等が挙げられる。これらの中でも、アクリル系ポリマーをベースポリマーとする 溶剤型粘着剤が好ましく用いられる。  Arbitrary appropriate adhesives can be employ | adopted as an adhesive which forms an adhesive layer. Specific examples include a solvent-type pressure-sensitive adhesive, a non-aqueous emulsion type pressure-sensitive adhesive, a water-based pressure-sensitive adhesive, and a hot melt pressure-sensitive adhesive. Among these, a solvent-type pressure-sensitive adhesive having an acrylic polymer as a base polymer is preferably used.
[0082] 上記粘着剤層の厚みは、使用目的や接着力等に応じて適宜設定され得る。具体 的には、粘着剤層の厚みは、好ましくは 1 H m〜100 μ m、より好ましくは 5 μ m〜50 μ m、さりに好ましくは 10 μ m〜30 μ mである。 [0082] The thickness of the pressure-sensitive adhesive layer can be appropriately set according to the purpose of use, adhesive strength and the like. Specifically, the thickness of the pressure-sensitive adhesive layer is preferably 1 Hm to 100 μm, more preferably 5 μm to 50 μm, and even more preferably 10 μm to 30 μm.
[0083] A— 8— 3.接着剤層 [0083] A— 8— 3. Adhesive layer
接着剤層を形成する接着剤としては、代表的には、硬化型接着剤が挙げられる。 硬化型接着剤の代表例としては、紫外線硬化型等の光硬化型接着剤、湿気硬化型 接着剤、熱硬化型接着剤が挙げられる。  A typical example of the adhesive that forms the adhesive layer is a curable adhesive. Typical examples of the curable adhesive include a photocurable adhesive such as an ultraviolet curable adhesive, a moisture curable adhesive, and a thermosetting adhesive.
[0084] 各層間への接着剤の塗工量は、 目的に応じて適宜設定され得る。例えば、塗工量 は、各層の主面に対して面積(cm2)あたり、好ましくは 0. 3〜3ml、より好ましくは 0.[0084] The amount of adhesive applied to each layer can be appropriately set according to the purpose. For example, the coating amount is preferably 0.3 to 3 ml, more preferably 0.5 per area (cm 2 ) with respect to the main surface of each layer.
5〜2ml、さらに好ましくは;!〜 2mlである。 5 to 2 ml, more preferably;! To 2 ml.
[0085] 塗工後、必要に応じて、接着剤に含まれる溶媒は、自然乾燥や加熱乾燥によって 揮発させられる。このようにして得られる接着剤層の厚みは、好ましくは 0. ;!〜 20 m、より好ましくは 0. δ—ΐ δ , ΐη,さらに好ましくは;!〜 10 mである。 [0085] After coating, if necessary, the solvent contained in the adhesive is volatilized by natural drying or heat drying. The thickness of the adhesive layer thus obtained is preferably 0.;! To 20 m, more preferably 0.δ-ΐδ, ΐη, and still more preferably ;! to 10 m.
[0086] 上記粘着剤または接着剤は、被着体 (光学素子)の種類に応じて適切に選択され 得る。 [0086] The pressure-sensitive adhesive or adhesive may be appropriately selected depending on the type of adherend (optical element).
[0087] A— 8— 4.その他の光学素子  [0087] A— 8— 4. Other optical elements
本発明の液晶パネルは、さらに他の光学素子を備えていてもよい。このような他の 光学素子としては、 目的や液晶表示装置の種類に応じて任意の適切な光学素子が 採用され得る。具体例としては、液晶フィルム、光散乱フィルム、回折フィルム、さらに 別の光学補償層 (位相差フィルム)等が挙げられる。 The liquid crystal panel of the present invention may further include other optical elements. As such another optical element, any appropriate optical element can be adopted depending on the purpose and the type of the liquid crystal display device. Specific examples include liquid crystal films, light scattering films, diffraction films, and Another optical compensation layer (retardation film) and the like can be mentioned.
[0088] B.液晶パネルの製造方法  [0088] B. Manufacturing method of liquid crystal panel
本発明の液晶パネルは、例えば、各光学素子を上記の粘着剤層や接着剤層を介 して積層することにより作製すること力 sできる。積層手段としては、任意の適切な手段 が採用され得る。例えば、第 1の光学補償層(第 3の光学補償層)と第 2の光学補償 層 (4の光学補償層)と偏光子とを所定の大きさに打ち抜き、各層の光軸がなす角度 が所望の範囲となるように方向を合わせて、粘着剤や接着剤を介してそれらを液晶 セル上に積層することができる。また、第 2の光学補償層(第 4の光学補償層)は、隣 接する層、例えば第 1の光学補償層、偏光子または保護層として機能する基材上に 直接形成され得る。この場合、これらの層を積層するための粘着剤層または接着剤 層が不要となるため、液晶パネルの薄型化および積層操作の簡素化に寄与し得る。 The liquid crystal panel of the present invention, for example, the optical elements can be force s is prepared by laminating by via an adhesive layer or an adhesive layer described above. Any appropriate means can be adopted as the lamination means. For example, the first optical compensation layer (third optical compensation layer), the second optical compensation layer (fourth optical compensation layer), and a polarizer are punched out to a predetermined size, and the angle formed by the optical axis of each layer is The directions can be adjusted so as to be within a desired range, and they can be laminated on the liquid crystal cell via an adhesive or an adhesive. In addition, the second optical compensation layer (fourth optical compensation layer) can be directly formed on an adjacent layer, for example, a substrate functioning as a first optical compensation layer, a polarizer or a protective layer. In this case, the pressure-sensitive adhesive layer or adhesive layer for laminating these layers becomes unnecessary, which can contribute to thinning of the liquid crystal panel and simplification of the laminating operation.
[0089] C.液晶表示装置  [0089] C. Liquid crystal display device
本発明の液晶パネルは液晶表示装置に用いられ得る。液晶表示装置は、例えば、 ノ ソコンモニター、ノートパソコン、コピー機等の OA機器;携帯電話、時計、デジタル カメラ、携帯情報端末 (PDA)、携帯ゲーム機等の携帯機器;ビデオカメラ、液晶テレ ビ、電子レンジ等の家庭用電気機器;バックモニター、カーナビゲーシヨンシステム用 モニター、カーオーディオ等の車載用機器;商業店舗用インフォメーション用モニタ 一等の展示機器;監視用モニター等の警備機器;介護用モニター、医療用モニター 等の介護 ·医療機器に好適に用いられる。  The liquid crystal panel of the present invention can be used in a liquid crystal display device. Liquid crystal display devices are, for example, office equipment such as laptop monitors, notebook computers, and copy machines; mobile devices such as mobile phones, watches, digital cameras, personal digital assistants (PDAs), and portable game machines; video cameras, liquid crystal televisions, and the like. Electrical equipment for home use such as microwave ovens; Back monitors, monitors for car navigation systems, in-car devices such as car audio; monitors for information for commercial stores; first-class display equipment; security equipment such as monitoring monitors; Suitable for nursing care and medical equipment such as monitors and medical monitors.
[0090] 以下、実施例によって本発明をさらに具体的に説明する力 本発明はこれら実施 例によって限定されるものではない。  [0090] Hereinafter, the present invention will be described more specifically by way of examples. The present invention is not limited to these examples.
[0091] [実施例 1]  [0091] [Example 1]
(第 1の光学補償層の作製)  (Preparation of the first optical compensation layer)
KAフィルム(株式会社カネ力製、厚み: 80 m)を 150°Cで 2倍に固定端横延伸し て得られたフィルムを第 1の光学補償層とした。位相差測定装置 (王子計測機器株式 会社製、 KOBRA21ADH)を使用して、得られたフィルムの位相差を測定したところ 、 Re力 ¾6nm、 Rth力 S50nmであった(Nz係数 = 1. 4)。該フィルムの屈折率波長 分散を図 3 (A)に示す。なお、図 3は、コーシ一の近似式を用いて外揷したグラフで ある。 A film obtained by stretching a KA film (manufactured by KANEKI Co., Ltd., thickness: 80 m) twice at 150 ° C. at the fixed end was used as a first optical compensation layer. When the phase difference of the obtained film was measured using a phase difference measuring apparatus (manufactured by Oji Scientific Instruments Co., Ltd., KOBRA21ADH), the Re force was 6 nm and the Rth force S50 nm (Nz coefficient = 1.4). The refractive index wavelength dispersion of the film is shown in FIG. Fig. 3 is a graph drawn using Koshii's approximate expression. is there.
[0092] (第 2の光学補償層の作製)  [0092] (Preparation of second optical compensation layer)
2, 2 '—ビス(3, 4 ジカルボキシフエ二ノレ)へキサフルォロプロパン(6FDA)と、 2 , 2,一ビス(トリフルォロメチル) 4, 4,ージアミノビフエニル(PFMBまたは TFMB) とを出発原料として用い、定法に従ってポリイミドを調製した。得られたポリイミドを 15 wt%となるようシクロへキサノンに溶解することにより調製した溶液を、 PETフィルム( 厚み: 50 m)上に 20 mの厚みで塗布した。次いで、 100°C、 10分の乾燥処理を 行うことにより、第 2の光学補償層としてポリイミドフィルム(厚み:約 3 πι)を得た。得 られたポリイミドフィルムをガラス板に転写し、位相差測定装置(王子計測機器株式会 社製、 KOBRA21ADH)を使用して、位相差を測定したところ、 Reが 0. 2nm、 Rth  2,2'-bis (3,4 dicarboxyphenyl) hexafluoropropane (6FDA) and 2,2,1bis (trifluoromethyl) 4,4, -diaminobiphenyl (PFMB or TFMB) was used as a starting material and a polyimide was prepared according to a conventional method. A solution prepared by dissolving the obtained polyimide in cyclohexanone so as to be 15 wt% was applied on a PET film (thickness: 50 m) to a thickness of 20 m. Subsequently, a polyimide film (thickness: about 3πι) was obtained as a second optical compensation layer by performing a drying treatment at 100 ° C. for 10 minutes. The obtained polyimide film was transferred to a glass plate, and the phase difference was measured using a phase difference measuring device (manufactured by Oji Scientific Instruments Co., Ltd., KOBRA21ADH). Re was 0.2 nm, Rth
2  2
力 OOnmであった。該フィルムの屈折率波長分散を図 3 (A)に示す。  The power was OOnm. The refractive index wavelength dispersion of the film is shown in FIG.
2  2
[0093] (その他の光学素子)  [0093] (Other optical elements)
第 3の光学補償層および第 4の光学補償層としては、それぞれ第 1の光学補償層 および第 2の光学補償層と同じものを用いた。偏光子としては、偏光板(日東電工株 式会社製、製品番号: SIG1423DU)を用いた。  The third optical compensation layer and the fourth optical compensation layer were the same as the first optical compensation layer and the second optical compensation layer, respectively. A polarizing plate (manufactured by Nitto Denko Corporation, product number: SIG1423DU) was used as the polarizer.
[0094] (液晶パネルの作製)  [0094] (Production of liquid crystal panel)
第 2の光学補償層(第 4の光学補償層)を、アクリル系粘着剤 (厚み: 20 m)を介し て上記偏光板上に PETフィルムから転写した。次いで、第 1の光学補償層(第 3の光 学補償層)を、その遅相軸が偏光板の偏光子の吸収軸と直交するように、アクリル系 粘着剤 (厚み: 20 m)を介して第 2の光学補償層(第 4の光学補償層)上に積層して 、 2枚の光学補償層付偏光板を得た。得られた 2枚の光学補償層付偏光板を、液晶 テレビ(ソニー株式会社製、 BRAVIA S2000 (32インチ))から取り出した VAモー ドの液晶セルの両側に、互いの偏光子の吸収軸が直交するように貼り付けることによ り、液晶パネルを作製した。得られた液晶パネルを組込んだ液晶表示装置に白画像 および黒画像を表示させ、 EZ Contrast (ELDIM社製)により、コントラストおよび カラーシフト(方位角 45° 方向に極角を 0〜80° に倒していった場合のカラーシフト および極角 60° で方位角を 0〜360° 変えた場合のカラーシフト)を測定した。結果 を図 4に示す。 [0095] [実施例 2] The second optical compensation layer (fourth optical compensation layer) was transferred from the PET film onto the polarizing plate via an acrylic adhesive (thickness: 20 m). Next, the first optical compensation layer (third optical compensation layer) is passed through an acrylic adhesive (thickness: 20 m) so that its slow axis is perpendicular to the absorption axis of the polarizer of the polarizing plate. And laminated on the second optical compensation layer (fourth optical compensation layer) to obtain two polarizing plates with an optical compensation layer. The two polarizing plates with an optical compensation layer obtained were taken out of a liquid crystal television (manufactured by Sony Corporation, BRAVIA S2000 (32 inches)) on both sides of a VA mode liquid crystal cell. A liquid crystal panel was fabricated by pasting so as to be orthogonal. White and black images are displayed on the liquid crystal display device incorporating the obtained liquid crystal panel, and contrast and color shift (the polar angle in the azimuth angle 45 ° direction is 0 to 80 ° by EZ Contrast (manufactured by ELDIM)). The color shift when tilted and the color shift when the azimuth was changed from 0 to 360 ° at a polar angle of 60 ° were measured. The results are shown in Fig. 4. [0095] [Example 2]
(第 1の光学補償層の作製)  (Preparation of the first optical compensation layer)
実施例 1と同様に作製したフィルム(Re : 36nm, Rth : 50nm、 Nz係数: 1. 4)を 第 1の光学補償層とした。  A film manufactured in the same manner as in Example 1 (Re: 36 nm, Rth: 50 nm, Nz coefficient: 1.4) was used as the first optical compensation layer.
[0096] (第 2の光学補償層の作製と積層)  [0096] (Preparation and lamination of second optical compensation layer)
実施例 1と同様にして調製したポリイミドのシクロへキサノン溶液(15wt%)を、第 1 の光学補償層上に 20 mの厚みで塗布した。次いで、 100°C、 10分の乾燥処理を 行うことにより、第 2の光学補償層(ポリイミドフィルム、厚み:約 3 111)が第 1の光学補 償層上に積層された積層フィルムを得た。位相差測定装置 (王子計測機器株式会社 製、 KOBRA21ADH)を使用して、得られた積層フィルムの位相差を測定したところ 、: eカ 35nm、: th力 155i mで つた。  A cyclohexanone solution (15 wt%) of polyimide prepared in the same manner as in Example 1 was applied on the first optical compensation layer to a thickness of 20 m. Next, by performing a drying treatment at 100 ° C. for 10 minutes, a laminated film in which the second optical compensation layer (polyimide film, thickness: about 3111) was laminated on the first optical compensation layer was obtained. . When the phase difference of the obtained laminated film was measured using a phase difference measuring device (manufactured by Oji Scientific Instruments Co., Ltd., KOBRA21ADH), it was found to be: e 35 mm, th force 155 im.
[0097] (その他の光学素子)  [0097] (Other optical elements)
第 3の光学補償層および第 4の光学補償層としては、それぞれ第 1の光学補償層 および第 2の光学補償層と同じものを用いた。偏光子としては、実施例 1と同じ偏光 板を用いた。  The third optical compensation layer and the fourth optical compensation layer were the same as the first optical compensation layer and the second optical compensation layer, respectively. The same polarizer as in Example 1 was used as the polarizer.
[0098] (液晶パネルの作製)  [0098] (Production of liquid crystal panel)
上記の積層フィルムを、第 2の光学補償層(第 4の光学補償層)が偏光板に対向す るように、かつ、偏光板の偏光子の吸収軸と第 1の光学補償層(第 3の光学補償層) の遅相軸とが直交するように、アクリル系粘着剤(厚み: 20 m)を介して偏光板上に 積層して、 2枚の光学補償層付偏光板を得た。得られた 2枚の光学補償層付偏光板 を用いて、実施例 1と同様に液晶パネルを作製し、コントラストおよびカラーシフトを測 定した。結果を図 5に示す。  The laminated film is placed so that the second optical compensation layer (fourth optical compensation layer) faces the polarizing plate, the polarizer's absorption axis of the polarizing plate, and the first optical compensation layer (third optical compensation layer). The optical compensation layer was laminated on a polarizing plate via an acrylic pressure-sensitive adhesive (thickness: 20 m) so that the slow axis of the optical compensation layer was perpendicular to each other to obtain two polarizing plates with an optical compensation layer. Using the obtained two polarizing plates with an optical compensation layer, a liquid crystal panel was produced in the same manner as in Example 1, and the contrast and color shift were measured. The results are shown in FIG.
[0099] [実施例 3]  [0099] [Example 3]
偏光板(日東電工株式会社製、 SEG1224)の片側の保護層の代わりとして実施例 2で作製した積層フィルムを、第 2の光学補償層(第 4の光学補償層)と偏光板とが対 向するように、かつ、偏光板の偏光子の吸収軸と第 1の光学補償層(第 3の光学補償 層)の遅相軸とが直交するように、 PVA系接着剤(厚み: 0. 5 m)を介して積層した 。これにより、 2枚の光学補償層付偏光板を得た。得られた 2枚の光学補償層付偏光 板を用いて、実施例 1と同様に液晶パネルを作製し、コントラストおよびカラーシフトを 測定した。結果を図 6に示す。 Instead of the protective layer on one side of the polarizing plate (manufactured by Nitto Denko Corporation, SEG1224), the second optical compensation layer (fourth optical compensation layer) and the polarizing plate are facing each other. PVA adhesive (thickness: 0.5) so that the absorption axis of the polarizer of the polarizing plate and the slow axis of the first optical compensation layer (third optical compensation layer) are perpendicular to each other. m) through. As a result, two polarizing plates with an optical compensation layer were obtained. Two polarizations with optical compensation layer obtained A liquid crystal panel was produced using the plate in the same manner as in Example 1, and the contrast and color shift were measured. The result is shown in FIG.
[0100] [実施例 4] [0100] [Example 4]
(第 1の光学補償層の作製)  (Preparation of the first optical compensation layer)
延伸温度を 140°Cにしたこと以外は実施例 1と同様にして得たフィルムを第 1の光 学補償層とした。得られたフィルムの位相差を測定したところ、 Re力 Onm、 Rthが A film obtained in the same manner as in Example 1 except that the stretching temperature was 140 ° C. was used as the first optical compensation layer. When the retardation of the obtained film was measured, the Re force Onm and Rth were
80nmであった(Nz係数 = 2)。 80 nm (Nz coefficient = 2).
[0101] (第 2の光学補償層の作製) [0101] (Production of second optical compensation layer)
ポリイミドのシクロへキサノン溶液(15wt%)の塗布厚みを 16 mにしたこと以外は 実施例 1と同様にして得たポリイミドフィルム(厚み:約 2· δ μ ηι)を第 2の光学補償層 とした。得られたポリイミドフィルムの位相差を測定したところ、 Reが 0. 3nm、 Rthが  A polyimide film (thickness: about 2 · δ μ ηι) obtained in the same manner as in Example 1 except that the coating thickness of the polyimide cyclohexanone solution (15 wt%) was 16 m was used as the second optical compensation layer. did. When the retardation of the obtained polyimide film was measured, Re was 0.3 nm, Rth was
2 2 twenty two
80nmであった。 It was 80 nm.
[0102] (その他の光学素子) [0102] (Other optical elements)
第 3の光学補償層および第 4の光学補償層としては、それぞれ第 1の光学補償層 および第 2の光学補償層と同じものを用いた。偏光子としては、実施例 1と同じ偏光 板を用いた。  The third optical compensation layer and the fourth optical compensation layer were the same as the first optical compensation layer and the second optical compensation layer, respectively. The same polarizer as in Example 1 was used as the polarizer.
[0103] (液晶パネルの作製) [0103] (Production of liquid crystal panel)
実施例 1と同様にして液晶パネルを作製し、コントラストおよびカラーシフトを測定し た。結果を図 7に示す。  A liquid crystal panel was produced in the same manner as in Example 1, and the contrast and color shift were measured. The results are shown in FIG.
[0104] [実施例 5] [Example 5]
(第 1の光学補償層の作製)  (Preparation of the first optical compensation layer)
延伸倍率を 2. 2倍にしたこと以外は実施例 1と同様にして得たフィルムを第 1の光 学補償層とした。得られたフィルムの位相差を測定したところ、 Re力 Onm、 Rthが 60nmであった(Nz係数 = 1 · 5)。  A film obtained in the same manner as in Example 1 except that the draw ratio was 2.2 times was used as the first optical compensation layer. When the retardation of the obtained film was measured, the Re force Onm and Rth were 60 nm (Nz coefficient = 1 · 5).
[0105] (第 2の光学補償層の作製) [0105] (Production of second optical compensation layer)
実施例 4と同様に作製したフィルム(Re : 0. 3nm, Rth : 80nm、厚み:約 2· 5 μ ηι  A film produced in the same manner as in Example 4 (Re: 0.3 nm, Rth: 80 nm, thickness: about 2.5 μηι
2 2  twenty two
)を第 2の光学補償層とした。  ) Was used as the second optical compensation layer.
[0106] (その他の光学素子) 第 3の光学補償層および第 4の光学補償層としては、それぞれ第 1の光学補償層 および第 2の光学補償層と同じものを用いた。偏光子としては、実施例 1と同じ偏光 板を用いた。 [0106] (Other optical elements) The third optical compensation layer and the fourth optical compensation layer were the same as the first optical compensation layer and the second optical compensation layer, respectively. The same polarizer as in Example 1 was used as the polarizer.
[0107] (液晶パネルの作製)  [0107] (Production of liquid crystal panel)
実施例 1と同様にして液晶パネルを作製し、コントラストおよびカラーシフトを測定し た。結果を図 8に示す。  A liquid crystal panel was produced in the same manner as in Example 1, and the contrast and color shift were measured. The results are shown in FIG.
[0108] [実施例 6]  [Example 6]
(第 1の光学補償層の作製)  (Preparation of the first optical compensation layer)
ジカルボン酸成分として、 1 , 4ーシクロへキサンジカルボン酸(トランス体:シス体 = 95 : 5)と、ジ才ーノレ成分を 100モノレ0 /0としたとさ、ジ才ーノレ成分として、 9, 9 ビス [4 一(2 ヒドロキシエトキシ)フエ二ノレ]フルオレン 80モル0 /0、および 1 , 4ーシクロへキ サンジメタノール 20モル%から合成したポリエステル樹脂をポリエステル系材料とし て用いた。このポリエステル樹脂の固有粘度は、 0. 462dl/g、ガラス転移温度は 13 0. 1°Cであった。このポリエステル樹脂力、ら形成されたフィルム(厚み: 150 m)を 1 35°Cで 2倍に固定端横延伸して得られたフィルムを第 1の光学補償層とした。得られ たフィルムの位相差を測定したところ、 Re力 Sl30nm、: th力 40nmであった(Nz 係数 = 1. 1)。得られたフィルムの屈折率波長分散を、実施例 1で用いた第 1の光学 補償層の屈折率波長分散とともに図 3 (C)に示す。 As the dicarboxylic acid component, 1, 4 Cyclohexanedicarboxylic acid to Shikuro (trans isomer: cis isomer = 95: 5) and the di-old Nore component Is and was 100 Monore 0/0, as di old Nore components, 9, 9 bis [4 one (2-hydroxyethoxy) phenylene Honoré] fluorene 80 mole 0/0, and 1, 4 Shikuro to Cyclohexanedicarboxylic methanol 20 mol% of a synthetic polyester resin was used as a polyester-based material. This polyester resin had an intrinsic viscosity of 0.462 dl / g and a glass transition temperature of 130.1 ° C. A film obtained by stretching the film (thickness: 150 m) formed by this polyester resin strength twice at 135 ° C. twice at a fixed end was used as a first optical compensation layer. When the retardation of the obtained film was measured, the Re force was Sl30 nm: the th force was 40 nm (Nz coefficient = 1.1). The refractive index wavelength dispersion of the obtained film is shown in FIG. 3 (C) together with the refractive index wavelength dispersion of the first optical compensation layer used in Example 1.
[0109] (第 2の光学補償層の作製)  [0109] (Production of second optical compensation layer)
実施例 1と同様に作製したフィルム(Re : 0. 2nm, Rth : lOOnm、厚み:約 3 m)  Film prepared in the same manner as in Example 1 (Re: 0.2 nm, Rth: lOOnm, thickness: about 3 m)
2 2  twenty two
を第 2の光学補償層とした。  Was used as the second optical compensation layer.
[0110] (その他の光学素子) [0110] (Other optical elements)
第 3の光学補償層および第 4の光学補償層としては、それぞれ第 1の光学補償層 および第 2の光学補償層と同じものを用いた。偏光子としては、実施例 1と同じ偏光 板を用いた。  The third optical compensation layer and the fourth optical compensation layer were the same as the first optical compensation layer and the second optical compensation layer, respectively. The same polarizer as in Example 1 was used as the polarizer.
[0111] (液晶パネルの作製) [0111] (Production of liquid crystal panel)
実施例 1と同様にして液晶パネルを作製した。この液晶パネルのコントラストおよび カラーシフトを実施例 1と同様にして測定すると、図 4と同様のコントラストおよびカラ 一シフトが得られる。 A liquid crystal panel was produced in the same manner as in Example 1. When the contrast and color shift of this liquid crystal panel were measured in the same manner as in Example 1, the same contrast and color shift as in FIG. One shift is obtained.
[0112] [実施例 7] [0112] [Example 7]
(第 1の光学補償層の作製)  (Preparation of the first optical compensation layer)
実施例 6と同様に作製したフィルム(Re : 130nm, Rth : 140nm、 Nz係数 = 1 · 1 )を第 1の光学補償層とした。  A film produced in the same manner as in Example 6 (Re: 130 nm, Rth: 140 nm, Nz coefficient = 1 · 1) was used as the first optical compensation layer.
[0113] (第 2の光学補償層の作製) [0113] (Production of second optical compensation layer)
実施例 4と同様に作製したフィルム(Re : 0. 3nm, Rth : 80nm、厚み:約 2· 5 μ ηι  A film produced in the same manner as in Example 4 (Re: 0.3 nm, Rth: 80 nm, thickness: about 2.5 μηι
2 2  twenty two
)を第 2の光学補償層とした。  ) Was used as the second optical compensation layer.
[0114] (その他の光学素子) [0114] (Other optical elements)
第 3の光学補償層および第 4の光学補償層としては、それぞれ第 1の光学補償層 および第 2の光学補償層と同じものを用いた。偏光子としては、実施例 1と同じ偏光 板を用いた。  The third optical compensation layer and the fourth optical compensation layer were the same as the first optical compensation layer and the second optical compensation layer, respectively. The same polarizer as in Example 1 was used as the polarizer.
[0115] (液晶パネルの作製) [0115] (Production of liquid crystal panel)
実施例 1と同様にして液晶パネルを作製した。この液晶パネルのコントラストおよび カラーシフトを実施例 1と同様にして測定すると、図 7と同様のコントラストおよびカラ 一シフトが得られる。  A liquid crystal panel was produced in the same manner as in Example 1. When the contrast and color shift of this liquid crystal panel are measured in the same manner as in Example 1, the same contrast and color shift as in FIG. 7 can be obtained.
[0116] [比較例 1 ] [0116] [Comparative Example 1]
VAモードの液晶セル用の光学補償層付偏光板(日東電工株式会社製、製品名「 NIBCOM (NXP)」、光学補償層の Nz係数 = 4. 8)を、偏光板の偏光子の吸収軸 が直交するように、実施例 1と同じ液晶セルの両側に貼り付けることにより、液晶パネ ルを作製した。次いで、実施例 1と同様にして、コントラストおよびカラーシフトを測定 した。結果を図 9に示す。  Polarizing plate with optical compensation layer for VA mode liquid crystal cell (Nitto Denko Corporation, product name “NIBCOM (NXP)”, optical compensation layer Nz coefficient = 4.8) A liquid crystal panel was prepared by pasting the liquid crystal cell on both sides of the same liquid crystal cell as in Example 1 so as to be orthogonal. Subsequently, the contrast and color shift were measured in the same manner as in Example 1. The results are shown in FIG.
[0117] [比較例 2] [0117] [Comparative Example 2]
ノルボルネン系樹脂フィルム(日本ゼオン株式会社製、ゼォノア)を 135°Cで、横軸 方向へ 1. 25倍、縦軸方向へ 1. 03倍の逐次二軸延伸を行うことにより、 Reが 78nm であり、 Rthが 170nmである位相差フィルム(厚み: 80 m)を得た(Nz係数 = 2· 2) 。該フィルムを、その遅相軸が偏光板の偏光子の吸収軸に対して直交するように、ァ クリル系粘着剤(厚み: 20 m)を介して偏光板(日東電工株式会社製、 SEG1224) に積層して光学補償層付偏光板を得た。得られた光学補償層付偏光板と、偏光板( 日東電工株式会社製、 SEG1224)とを、互いの偏光子の吸収軸が直交するように、 実施例 1と同じ液晶セルの両側に貼り付けることにより、液晶パネルを作製した。この とき、光学補償層付偏光板をバックライト側に貼り付けた。次いで、実施例 1と同様に して、コントラストおよびカラーシフトを測定した。結果を図 10に示す。 By performing sequential biaxial stretching of norbornene-based resin film (Zeonor, manufactured by Nippon Zeon Co., Ltd.) at 135 ° C, 1.25 times in the horizontal axis direction and 1.03 times in the vertical axis direction, Re becomes 78 nm. There was obtained a retardation film (thickness: 80 m) having an Rth of 170 nm (Nz coefficient = 2 · 2). A polarizing plate (manufactured by Nitto Denko Corporation, SEG1224) is passed through an acrylic pressure-sensitive adhesive (thickness: 20 m) so that the slow axis thereof is perpendicular to the absorption axis of the polarizing plate polarizer. To obtain a polarizing plate with an optical compensation layer. The obtained polarizing plate with an optical compensation layer and a polarizing plate (manufactured by Nitto Denko Corporation, SEG1224) are attached to both sides of the same liquid crystal cell as in Example 1 so that the absorption axes of the polarizers are orthogonal to each other. As a result, a liquid crystal panel was produced. At this time, a polarizing plate with an optical compensation layer was attached to the backlight side. Subsequently, the contrast and color shift were measured in the same manner as in Example 1. The result is shown in FIG.
[0118] [比較例 3] [0118] [Comparative Example 3]
コニカミノルタ社製の位相差フィルム NTAC (Re : 45nm、 Rth : 145nm、厚み: 80 ^ m, Nz係数: 3. 2)を、その遅相軸が偏光板の偏光子の吸収軸に対して直交する ように、アクリル系粘着剤(厚み: 20 m)を介して偏光板(日東電工株式会社製、 SE G1224)に積層して 2枚の光学補償層付偏光板を得た。得られた 2枚の光学補償層 付偏光板を、互いの偏光子の吸収軸が直交するように、実施例 1と同じ液晶セルの 両側に貼り付けることにより、液晶パネルを作製した。次いで、実施例 1と同様にして 、コントラストおよびカラーシフトを測定した。結果を図 11に示す。  Retardation film NTAC (Re: 45 nm, Rth: 145 nm, thickness: 80 ^ m, Nz coefficient: 3.2) manufactured by Konica Minolta, Inc., whose slow axis is orthogonal to the absorption axis of the polarizer of the polarizer Thus, two polarizing plates with an optical compensation layer were obtained by laminating on a polarizing plate (SE G1224, manufactured by Nitto Denko Corporation) via an acrylic adhesive (thickness: 20 m). The obtained two polarizing plates with an optical compensation layer were attached to both sides of the same liquid crystal cell as in Example 1 so that the absorption axes of the polarizers were orthogonal to each other to produce a liquid crystal panel. Next, in the same manner as in Example 1, contrast and color shift were measured. The results are shown in FIG.
[0119] [比較例 4] [Comparative Example 4]
ノルボルネン系樹脂フィルム(日本ゼオン株式会社製、ゼォノア)を 160°Cで、 1. 5 倍に固定端横延伸することにより、 Reが 42nmであり、 Rthが 55nmである位相差フィ ルム(厚み:60 m)を得た(Nz係数 = 1 · 3)。該ノルボルネン系樹脂フィルムの屈折 率波長分散は、図 3 (B)に示されるとおり、いわゆるフラットな波長分散であった。  A norbornene-based resin film (Zeon, manufactured by Nippon Zeon Co., Ltd.) is stretched 1.5 times at 160 ° C to obtain a retardation film with a Re of 42 nm and an Rth of 55 nm (thickness: 60 m) was obtained (Nz coefficient = 1 · 3). The refractive index wavelength dispersion of the norbornene-based resin film was so-called flat wavelength dispersion as shown in FIG.
[0120] 実施例 4の第 2の光学補償層と同様に作製したポリイミドフィルム (Re: 0. 3nm、 Rt h: 80nm、厚み:約2. 5 m)を、アクリル系粘着剤(厚み: 20 m)を介して偏光板( 日東電工株式会社製、 SIG1423DU)に積層した。次いで、上記ノルボルネン系樹 脂からなる位相差フィルムを、その遅相軸が偏光板の偏光子の吸収軸に対して直交 するように、上記ポリイミドフィルム上にアクリル系粘着剤(厚み: 20 m)を介して積 層して、 2枚の光学補償層付偏光板を得た。得られた 2枚の光学補償層付偏光板を 、ノルボルネン系樹脂からなる位相差フィルムが液晶セルに対向するように、かつ、 互いの偏光子の吸収軸が直交するように、実施例 1と同じ液晶セルの両側に貼り付 けることにより、液晶パネルを作製した。次いで、実施例 1と同様にして、コントラストお よびカラーシフトを測定した(画面上にムラが多く観察されるため、光抜けして!/、なレヽ 箇所で測定した)。結果を図 12に示す。 [0120] A polyimide film (Re: 0.3 nm, Rth: 80 nm, thickness: about 2.5 m) produced in the same manner as the second optical compensation layer of Example 4 was bonded to an acrylic adhesive (thickness: 20 m) and laminated on a polarizing plate (manufactured by Nitto Denko Corporation, SIG1423DU). Next, an acrylic pressure-sensitive adhesive (thickness: 20 m) is formed on the polyimide film so that the retardation film made of the norbornene resin is perpendicular to the absorption axis of the polarizer of the polarizing plate. Then, two polarizing plates with an optical compensation layer were obtained. The obtained two polarizing plates with an optical compensation layer were prepared so that the retardation film made of a norbornene-based resin was opposed to the liquid crystal cell and the absorption axes of the polarizers were orthogonal to each other. A liquid crystal panel was prepared by sticking to both sides of the same liquid crystal cell. Next, the contrast and color shift were measured in the same manner as in Example 1 (because a lot of unevenness was observed on the screen, light was lost! Measured at points). The results are shown in FIG.
[0121] [比較例 5] [0121] [Comparative Example 5]
PETフィルムの替わりとして実質的に光学的等方性を有する Z— TACフィルム(富 士フィルム株式会社製、膜厚: 80 m)を用いたこと、および、ポリイミドのシクロへキ サノン溶液(15wt%)の塗布厚みを 16 mにしたこと以外は実施例 1の第 2の光学 補償層の作製方法と同様にして、 Z—TACフィルム上にポリイミドフィルム(厚み:約 2 . 5 111)を積層したフィルムを得た。得られた積層フィルムの位相差を測定したところ 、 Re力 nm、 Rth力 SlOOnmであった。  Z-TAC film (made by Fuji Film Co., Ltd., film thickness: 80 m), which has substantially optical isotropy, was used instead of PET film, and cyclohexanone solution of polyimide (15 wt%) A polyimide film (thickness: about 2.5 111) was laminated on the Z-TAC film in the same manner as the method for producing the second optical compensation layer in Example 1 except that the coating thickness was set to 16 m. A film was obtained. When the retardation of the obtained laminated film was measured, the Re force was nm and the Rth force was SlOOnm.
[0122] 次に、 PETフィルムの替わりにノルボルネン系樹脂フィルム(日本ゼオン株式会社 製、ゼォノア)を用いたこと、および、ポリイミドのシクロへキサノン溶液(15wt%)の塗 布厚みを 8 a mにしたこと以外は実施例 1の第 2の光学補償層の作製方法と同様にし て、ポリイミドフィルムを得た。次いで、得られたポリイミドフィルムを 160°Cで 2. 5倍に 自由端延伸することにより、延伸ポリイミドフィルム(厚み:約 1 m)を得た。得られた 延伸ポリイミドフィルムをガラス板に転写して、その位相差を測定したところ、 Reが 40 nm、: th力 8nmであった(Nz係数 = 1 · 2)。  [0122] Next, a norbornene-based resin film (Zeonor, manufactured by Nippon Zeon Co., Ltd.) was used instead of PET film, and the coating thickness of the polyimide cyclohexanone solution (15 wt%) was set to 8 am. Except for this, a polyimide film was obtained in the same manner as in the production method of the second optical compensation layer of Example 1. Subsequently, the obtained polyimide film was subjected to free end stretching at 160 ° C. by 2.5 times to obtain a stretched polyimide film (thickness: about 1 m). When the obtained stretched polyimide film was transferred to a glass plate and the phase difference was measured, Re was 40 nm, and th force was 8 nm (Nz coefficient = 1 · 2).
[0123] 上記延伸ポリイミドフィルム(Re : 40nm、 Rth : 48nm、 Nz係数: 1 · 2)を、アクリル系 粘着剤(厚み: 20 m)を介して上記積層フィルム(Re: lnm、 Rth: lOOnm)のポリイ ミドフィルム層上に、カレボルネン系樹脂フィルムから転写した。これにより得られた積 層フィルムを、 Z— TACフィルム層が偏光板(日東電工株式会社製、 SIG1423DU) に対向するように、かつ、延伸ポリイミドフィルムの遅相軸と偏光板の偏光子の吸収軸 とが直交するようにアクリル系粘着剤(厚み: 20 m)を介して積層することにより、 2 枚の光学補償層付偏光板を得た。次いで、得られた 2枚の光学補償層付偏光板を、 互いの偏光子の吸収軸が直交するように、実施例 1と同じ液晶セルの両側に貼り付 けることにより、液晶パネルを作製した。次いで、実施例 1と同様にして、コントラストお よびカラーシフトを測定した。結果を図 13に示す。  [0123] The above-mentioned stretched polyimide film (Re: 40 nm, Rth: 48 nm, Nz coefficient: 1 · 2) is bonded to the above laminated film (Re: lnm, Rth: lOOnm) via an acrylic adhesive (thickness: 20 m). On the polyimide film layer, it was transferred from a calebornene-based resin film. The laminated film obtained in this manner was so arranged that the Z-TAC film layer was opposite to the polarizing plate (manufactured by Nitto Denko Corporation, SIG1423DU), and the slow axis of the stretched polyimide film and the polarizer absorption of the polarizing plate Two polarizing plates with an optical compensation layer were obtained by laminating with an acrylic pressure-sensitive adhesive (thickness: 20 m) so that the axis was orthogonal. Next, the obtained two polarizing plates with an optical compensation layer were attached to both sides of the same liquid crystal cell as in Example 1 so that the absorption axes of the polarizers were orthogonal to each other, thereby producing a liquid crystal panel. . Subsequently, the contrast and color shift were measured in the same manner as in Example 1. The results are shown in FIG.
[0124] [比較例 6]  [0124] [Comparative Example 6]
正の屈折率波長分散 (正分散)を有するフィルム (JSR株式会社製、 ARTON1)を 175°Cで縦横方向に 1. 3倍の逐次二軸延伸を行うことにより、位相差フィルム(屈折 率分布:nx = ny〉nz、 Re : 2nm、 Rth : 220nm、厚み: 80 m)を得た。得られた位 相差フィルムを、アクリル系粘着剤(厚み: 20 m)を介して偏光板(日東電工株式会 社製、 SEG1224)に積層することにより、光学補償層付偏光板 1を得た。また、負の 屈折率波長分散 (逆分散)を有するポリカーボネート系樹脂フィルム(帝人化成株式 会社製、ピュアエース、 Re : 145nm、 Rth : 141nm、厚み: 77 111、 Nz係数: 1 · 0) を、その遅相軸と偏光板の偏光子の吸収軸とが直交するようにアクリル系粘着剤(厚 み: 20 πι)を介して積層することにより、光学補償層付偏光板 2を得た。次いで、光 学補償層付偏光板 1および 2を、互いの偏光子の吸収軸が直交するように、実施例 1 と同じ液晶セルの両側に貼り付けることにより、液晶パネルを作製した。ここで、光学 補償層付偏光板 1をバックライト側に貼り付けた。次いで、実施例 1と同様にして、コ ントラストおよびカラーシフトを測定した。結果を図 14に示す。 A film having positive refractive index wavelength dispersion (positive dispersion) (ARTS1, manufactured by JSR Corporation) is subjected to successive biaxial stretching in the longitudinal and transverse directions at 175 ° C by a factor of 1. Rate distribution: nx = ny> nz, Re: 2 nm, Rth: 220 nm, thickness: 80 m). The obtained phase difference film was laminated on a polarizing plate (manufactured by Nitto Denko Corporation, SEG1224) via an acrylic pressure-sensitive adhesive (thickness: 20 m) to obtain polarizing plate 1 with an optical compensation layer. In addition, a polycarbonate resin film having a negative refractive index wavelength dispersion (reverse dispersion) (manufactured by Teijin Chemicals Ltd., Pure Ace, Re: 145 nm, Rth: 141 nm, thickness: 77 111, Nz coefficient: 1 · 0), The polarizing plate 2 with an optical compensation layer was obtained by laminating with an acrylic pressure-sensitive adhesive (thickness: 20 πι) so that the slow axis and the absorption axis of the polarizer of the polarizing plate were orthogonal to each other. Next, the polarizing plates 1 and 2 with optical compensation layers were attached to both sides of the same liquid crystal cell as in Example 1 so that the absorption axes of the polarizers were orthogonal to each other, thereby producing a liquid crystal panel. Here, the polarizing plate 1 with an optical compensation layer was attached to the backlight side. Subsequently, the contrast and the color shift were measured in the same manner as in Example 1. The results are shown in FIG.
[0125] [比較例 7] [0125] [Comparative Example 7]
実施例 1の第 2の光学補償層と同様に作製した位相差フィルム 1 (Re : 0. 2nm、 Rt h: lOOnm)を、アクリル系粘着剤(厚み: 20 m)を介して偏光板(日東電工株式会 社製、製品番号: SIG1423DU)上に PETフィルムから転写した。次いで、実施例 1 の第 1の光学補償層と同様に作製した位相差フィルム 2 (Re: 36nm、 Rth: 50nm、 Nz係数: 1 · 4)を、その遅相軸が偏光板の偏光子の吸収軸と直交するように、アタリ ル系粘着剤(厚み: 20 m)を介して位相差フィルム 1上に積層して、光学補償層付 偏光板 3を得た。  A retardation film 1 (Re: 0.2 nm, Rt h: lOOnm) produced in the same manner as the second optical compensation layer of Example 1 was bonded to a polarizing plate (Nitto) via an acrylic adhesive (thickness: 20 m). The film was transferred from PET film onto Denko Corporation, product number: SIG1423DU). Next, a retardation film 2 (Re: 36 nm, Rth: 50 nm, Nz coefficient: 1 · 4) produced in the same manner as the first optical compensation layer of Example 1, and the slow axis of the polarizer of the polarizing plate A polarizing plate 3 with an optical compensation layer was obtained by being laminated on the retardation film 1 via an talyl-based adhesive (thickness: 20 m) so as to be orthogonal to the absorption axis.
[0126] 上記位相差フィルム 2を、その遅相軸が偏光板の偏光子の吸収軸と直交するように 、アクリル系粘着剤 (厚み: 20 m)を介して偏光板(日東電工株式会社製、製品番 号: SIG1423DU)上に積層した。次いで、上記位相差フィルム 1を、アクリル系粘着 剤 (厚み : 20 ,i m)を介して位相差フィルム 2上に積層(転写)して、光学補償層付偏 光板 4を得た。  [0126] The above retardation film 2 is coated with a polarizing plate (manufactured by Nitto Denko Corporation) through an acrylic adhesive (thickness: 20 m) so that its slow axis is orthogonal to the absorption axis of the polarizer of the polarizing plate. And product number: SIG1423DU). Next, the retardation film 1 was laminated (transferred) onto the retardation film 2 via an acrylic pressure-sensitive adhesive (thickness: 20, im) to obtain a polarizing plate 4 with an optical compensation layer.
[0127] 得られた光学補償層付偏光板 3および 4を、互いの偏光子の吸収軸が直交するよう に、実施例 1と同じ液晶セルの両側に貼り付けることにより、液晶パネルを作製した。 ここで、光学補償層付偏光板 4をバックライト側に貼り付けた。次いで、実施例 1と同 様にして、コントラストおよびカラーシフトを測定した。結果を図 15に示す。 [0128] [比較例 8] [0127] A liquid crystal panel was produced by pasting the obtained polarizing plates 3 and 4 with an optical compensation layer on both sides of the same liquid crystal cell as in Example 1 so that the absorption axes of the polarizers were orthogonal to each other. . Here, the polarizing plate 4 with an optical compensation layer was attached to the backlight side. Subsequently, the contrast and color shift were measured in the same manner as in Example 1. The results are shown in FIG. [0128] [Comparative Example 8]
光学補償層付偏光板 3を ^ックライト側に貼り付け、光学補償層付偏光板 4を視認 側に貼り付けた以外は比較例 7と同様にして、コントラストおよびカラーシフトを測定し た。結果を図 16に示す。  Contrast and color shift were measured in the same manner as Comparative Example 7 except that the polarizing plate 3 with an optical compensation layer was attached to the light side and the polarizing plate 4 with an optical compensation layer was attached to the viewing side. The results are shown in FIG.
[0129] 上記実施例 1〜7および比較例 1〜8で作製した液晶パネルの構成の概略を表 1お よび表 2に示す。  [0129] Tables 1 and 2 show the outline of the configuration of the liquid crystal panels produced in Examples 1 to 7 and Comparative Examples 1 to 8.
[0130] [表 1] [0130] [Table 1]
Figure imgf000031_0001
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0002
バックライト側 Backlight side
¾ ra-^¾藜 M¾¾H薪^H6541818;?U〜〜 ¾ ra- ^ ¾ 藜 M¾¾H 薪 ^ H6541818;? U ~~
Figure imgf000032_0001
Figure imgf000032_0001
比較例 1〜8の液晶パネルと比べて、コントラストの視野角特性が顕著に向上されて いる。また、色度図上の点は、その移動距離が小さいほどカラーシフトが少ないことを 示す。したがって、図 4〜; 14の xy色度図に示されるとおり、実施例;!〜 5の液晶パネ ノレは、方位角 45° 方向に極角を 0〜80° に倒していった場合のカラーシフトも、比 較例 1〜6の液晶パネルと比べて顕著に抑制されて!/、ること力 S確認できる。また、 X値 および y値と方位角との関係を示すグラフにおいては、(X, y)の振幅が小さいほど力 ラーシフトが少ないことを示す。したがって、図 4〜; 16の X値および y値と方位角との 関係を示すグラフに示されるとおり、実施例 1〜5の液晶パネルは、極角 60° で方位 角を 0〜360° 変えた場合のカラーシフトが、比較例;!〜 8の液晶パネルと比べて顕 著に抑制されていることがわかる。なお、比較例 6の液晶パネルは、 X値および y値の 方位角依存性における振幅が小さいが、 X値の曲線と y値の曲線とが何度も交差して いる。このような特性を有する液晶パネルは、見る角度によって色味が大きく異なるた め、視認者に対して非常に違和感を与えるものとなる。以上のように、本発明の実施 例の液晶パネルは、比較例の液晶パネルに比べて、コントラストおよびカラーシフトの いずれにも優れている。 Compared with the liquid crystal panels of Comparative Examples 1 to 8, the contrast viewing angle characteristics are remarkably improved. Also, the points on the chromaticity diagram indicate that the smaller the movement distance, the smaller the color shift. Therefore, as shown in the xy chromaticity diagrams of Figs. 4 to 14, the liquid crystal panel of Examples;! To 5 is the color when the polar angle is tilted from 0 to 80 ° in the direction of 45 ° azimuth. The shift is also significantly suppressed compared with the liquid crystal panels of Comparative Examples 1 to 6! In the graph showing the relationship between the X and y values and the azimuth, the smaller the (X, y) amplitude is, the smaller the power error shift is. Therefore, as shown in the graph showing the relationship between the X and y values in FIG. 4 to 16 and the azimuth angle, the liquid crystal panels of Examples 1 to 5 change the azimuth angle from 0 to 360 ° at a polar angle of 60 °. It can be seen that the color shift is significantly suppressed compared to the liquid crystal panels of Comparative Examples;! The liquid crystal panel of Comparative Example 6 has a small amplitude in the azimuth angle dependency of the X value and the y value, but the X value curve and the y value curve intersect each other many times. Since the liquid crystal panel having such characteristics varies greatly in color depending on the viewing angle, it gives a viewer a very uncomfortable feeling. As described above, the liquid crystal panel of the example of the present invention is superior in both contrast and color shift compared to the liquid crystal panel of the comparative example.
[0133] [参考例 1] [0133] [Reference Example 1]
実施例 1で作製した液晶表示装置、および比較例 6で作製した液晶表示装置にお ける黒表示時の画面を写真に撮影した。該写真を図 17に示す。図 17に示される通り 、実施例 1の液晶表示装置はムラ(光漏れ)が観察されないのに対し、比較例 6の液 晶表示装置は画面全体にムラが観察され、実用的なレベルでないことがわかる。比 較例 6で観察されたムラは、各光学素子の貼り合せ時のテンションによる位相差ムラ であり、使用された位相差フィルムの光弾性係数が大きいことに起因するものと考え られる。  The screens during black display in the liquid crystal display device manufactured in Example 1 and the liquid crystal display device manufactured in Comparative Example 6 were photographed. The photograph is shown in FIG. As shown in FIG. 17, the liquid crystal display device of Example 1 shows no unevenness (light leakage), whereas the liquid crystal display device of Comparative Example 6 shows unevenness on the entire screen and is not at a practical level. I understand. The unevenness observed in Comparative Example 6 is the retardation unevenness due to the tension at the time of laminating each optical element, and is considered to be caused by the large photoelastic coefficient of the used retardation film.
[0134] [参考例 2] [0134] [Reference Example 2]
実施例;!〜 5で第 1の光学補償層(第 3の光学補償層)として使用した KAフィルム、 実施例 6および 7で使用したポリエステル樹脂フィルム、および比較例 6で使用した正 面複屈折を持ち、かつ負の屈折率波長分散を有するポリカーボネート系フィルムの 光弾性係数を表 3に示す。 [0135] [表 3]
Figure imgf000034_0001
KA film used as the first optical compensation layer (third optical compensation layer) in Examples;! To 5, the polyester resin film used in Examples 6 and 7, and the front birefringence used in Comparative Example 6 Table 3 shows the photoelastic coefficients of polycarbonate-based films with negative refractive index and wavelength dispersion. [0135] [Table 3]
Figure imgf000034_0001
[0136] 表 3に示されるとおり、比較例 6で使用したフィルムは、実施例;!〜 7で使用したフィ ルムよりも光弾性係数が大きいことがわかる。すなわち、光弾性係数が大きいほど、 小さ V、力で位相差を発現することから、光弾性係数が大き V、位相差フィルムを使用 する場合、貝占り合せ時のわずかなテンションの差によってムラが生じやす!/、ことがわ かる。 [0136] As shown in Table 3, it can be seen that the film used in Comparative Example 6 has a photoelastic coefficient larger than those of Examples;! -7. In other words, the larger the photoelastic coefficient is, the smaller the V and the force the phase difference is manifested. Is easy to occur!
産業上の利用可能性  Industrial applicability
[0137] 本発明の液晶パネルは、薄型化に寄与し、視野角特性を向上させつつ、高コントラ ストを実現し、カラーシフトが抑制され、黒表示における光漏れを良好に防止し得る。 [0137] The liquid crystal panel of the present invention contributes to thinning, improves viewing angle characteristics, achieves high contrast, suppresses color shift, and can favorably prevent light leakage in black display.

Claims

請求の範囲 The scope of the claims
電圧無印加時に垂直配向した液晶分子を含む液晶層を有する液晶セルと、 該液晶セルの一方の側に配置された  A liquid crystal cell having a liquid crystal layer containing liquid crystal molecules vertically aligned when no voltage is applied, and disposed on one side of the liquid crystal cell
Nz = l〜2. 5の関係を有し、 Re (380) < Re (550) < Re (780)の関係を有する 第 1の光学補償層と、  A first optical compensation layer having a relationship of Nz = l to 2.5, and having a relationship of Re (380) <Re (550) <Re (780);
nx = ny〉nzの関係を有し、 Re (380) >Re (550) >Re (780)の関係を有する第 nx = ny> nz, and Re (380)> Re (550)> Re (780)
2 2 2  2 2 2
2の光学補償層と、  Two optical compensation layers;
第 1の偏光子と、 A first polarizer,
該液晶セルの他方の側に配置された Arranged on the other side of the liquid crystal cell
Nz = l〜2. 5の関係を有し、 Re (380) < Re (550) < Re (780)の関係を有する  Nz = l to 2.5, Re (380) <Re (550) <Re (780)
3 3 3  3 3 3
第 3の光学補償層と、 A third optical compensation layer;
nx = ny〉nzの関係を有し、 Re (380) >Re (550) >Re (780)の関係を有する第 nx = ny> nz, and Re (380)> Re (550)> Re (780)
4 4 4  4 4 4
4の光学補償層と、  4 optical compensation layers;
第 2の偏光子とを有し、 A second polarizer,
該第 1の光学補償層および該第 2の光学補償層と、該第 3の光学補償層および該第 4の光学補償層とが、該液晶セルを基準にして対称の位置関係で配置されて!/、る液 晶パネル。 The first optical compensation layer and the second optical compensation layer, the third optical compensation layer and the fourth optical compensation layer are arranged in a symmetrical positional relationship with respect to the liquid crystal cell. ! /, A liquid crystal panel.
前記液晶セルの一方の側に前記液晶セルからこの順に、前記第 1の光学補償層と 、前記第 2の光学補償層と、前記第 1の偏光子とが配置され、  The first optical compensation layer, the second optical compensation layer, and the first polarizer are arranged in this order from the liquid crystal cell on one side of the liquid crystal cell,
前記液晶セルの他方の側に前記液晶セルからこの順に、前記第 3の光学補償層と、 前記第 4の光学補償層と、前記第 2の偏光子とが配置されている請求項 1に記載の 液晶パネル。 2. The third optical compensation layer, the fourth optical compensation layer, and the second polarizer are arranged in this order from the liquid crystal cell on the other side of the liquid crystal cell. LCD panel.
前記液晶セルの一方の側に前記液晶セルからこの順に、前記第 2の光学補償層と 、前記第 1の光学補償層と、前記第 1の偏光子とが配置され、  The second optical compensation layer, the first optical compensation layer, and the first polarizer are arranged in this order from the liquid crystal cell on one side of the liquid crystal cell,
前記液晶セルの他方の側に前記液晶セルからこの順に、前記第 4の光学補償層と、 前記第 3の光学補償層と、前記第 2の偏光子とが配置されている請求項 1に記載の 液晶パネル。 2. The fourth optical compensation layer, the third optical compensation layer, and the second polarizer are arranged in this order from the liquid crystal cell on the other side of the liquid crystal cell. LCD panel.
前記第 1の光学補償層および第 3の光学補償層の光弾性係数が、 70 X 10— 12 (m2 /N)以下である請求項 1から 3の!/、ずれかに記載の液晶パネル。 Photoelastic coefficient of the first optical compensation layer and the third optical compensation layer, 70 X 10- 12 (m 2 The liquid crystal panel according to any one of claims 1 to 3, which is not more than / N).
前記第 1の光学補償層および第 3の光学補償層が Re (780) /Re (550)〉1. 1の 関係を有する請求項 1から 4のいずれかに記載の液晶パネル。  5. The liquid crystal panel according to claim 1, wherein the first optical compensation layer and the third optical compensation layer have a relationship of Re (780) / Re (550)> 1.1.
前記第 1の光学補償層および第 3の光学補償層が、セルロース系材料またはポリエ ステル系材料から形成されて!/、る請求項 1から 5の!/、ずれかに記載の液晶パネル。 前記第 1の光学補償層および第 3の光学補償層が、非芳香族の環状構造とエステ ル基とを有する材料から形成されて!/、る請求項 1から 5の!/、ずれかに記載の液晶パ ネル。  6. The liquid crystal panel according to claim 1, wherein the first optical compensation layer and the third optical compensation layer are formed from a cellulosic material or a polyester material. The first optical compensation layer and the third optical compensation layer are formed of a material having a non-aromatic cyclic structure and an ester group! / Liquid crystal panel as described.
前記第 2の光学補償層および第 4の光学補償層が Re (780) /Re (550) < 0. 95 の関係を有する請求項 1から 7のいずれかに記載の液晶パネル。  The liquid crystal panel according to claim 1, wherein the second optical compensation layer and the fourth optical compensation layer have a relationship of Re (780) / Re (550) <0.95.
前記第 2の光学補償層および第 4の光学補償層の厚み方向位相差 Rthが 20nm 以上である請求項 1から 8のいずれかに記載の液晶パネル。  9. The liquid crystal panel according to claim 1, wherein a thickness direction retardation Rth of the second optical compensation layer and the fourth optical compensation layer is 20 nm or more.
前記第 1の光学補償層および第 3の光学補償層が幅方向に延伸された高分子フィ ルムである請求項 1から 9のいずれかに記載の液晶パネル。  10. The liquid crystal panel according to claim 1, wherein the first optical compensation layer and the third optical compensation layer are polymer films stretched in the width direction.
請求項 1から 10のいずれかに記載の液晶パネルを有する液晶表示装置。  A liquid crystal display device comprising the liquid crystal panel according to claim 1.
PCT/JP2007/072176 2006-11-27 2007-11-15 Liquid crystal panel and liquid crystal display device WO2008065899A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/516,264 US7969542B2 (en) 2006-11-27 2007-11-15 Liquid crystal panel and liquid crystal display apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-318629 2006-11-27
JP2006318629 2006-11-27
JP2007149328 2007-06-05
JP2007-149328 2007-06-05
JP2007-265642 2007-10-11
JP2007265642A JP2009015279A (en) 2006-11-27 2007-10-11 Liquid crystal panel and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2008065899A1 true WO2008065899A1 (en) 2008-06-05

Family

ID=39467692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072176 WO2008065899A1 (en) 2006-11-27 2007-11-15 Liquid crystal panel and liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2008065899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194111A1 (en) * 2018-04-04 2019-10-10 大阪ガスケミカル株式会社 Polymer for retardation film, retardation film, and manufacturing method and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182036A (en) * 2000-04-06 2002-06-26 Fujitsu Ltd Viewing angle compensation film and liquid crystal display device
JP2004035688A (en) * 2002-07-02 2004-02-05 Tomoegawa Paper Co Ltd Adhesive for electronic part, and adhesive tape for electronic part
JP2005521920A (en) * 2002-04-04 2005-07-21 サムスン エレクトロニクス カンパニー リミテッド Liquid crystal display device with compensation film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182036A (en) * 2000-04-06 2002-06-26 Fujitsu Ltd Viewing angle compensation film and liquid crystal display device
JP2005521920A (en) * 2002-04-04 2005-07-21 サムスン エレクトロニクス カンパニー リミテッド Liquid crystal display device with compensation film
JP2004035688A (en) * 2002-07-02 2004-02-05 Tomoegawa Paper Co Ltd Adhesive for electronic part, and adhesive tape for electronic part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194111A1 (en) * 2018-04-04 2019-10-10 大阪ガスケミカル株式会社 Polymer for retardation film, retardation film, and manufacturing method and use thereof
JPWO2019194111A1 (en) * 2018-04-04 2021-05-13 大阪ガスケミカル株式会社 Polymers for retardation films, retardation films and their manufacturing methods and applications
JP7377794B2 (en) 2018-04-04 2023-11-10 大阪ガスケミカル株式会社 Polymers for retardation films, retardation films, and their manufacturing methods and uses

Similar Documents

Publication Publication Date Title
JP3883134B2 (en) Liquid crystal display
TWI401478B (en) Liquid crystal display device
JP5530580B2 (en) Liquid crystal panel and liquid crystal display device
WO2006095617A1 (en) Liquid crystal panel, liquid crystal television, and liquid crystal display device
WO2006090617A1 (en) Polarizing element, liquid crystal panel, liquid crystal television and liquid crystal display device
JP2015025830A (en) Liquid crystal display device
WO2007046282A1 (en) Polarizing plate with optical compensation layer, liquid crystal panel using polarizing plate with optical compensation layer, liquid crystal display unit, and image display unit
WO2007138838A1 (en) Liquid crystal panel, and liquid crystal display device
JP2008209676A (en) Liquid crystal panel and liquid crystal display
WO2013172364A1 (en) Liquid-crystal display device
JP2015031790A (en) Liquid crystal display device
TWI838457B (en) Image display apparatus and circularly polarizing plate to be used in the image display apparatus
WO2007057998A1 (en) Liquid crystal display
US7969542B2 (en) Liquid crystal panel and liquid crystal display apparatus
JP3950468B2 (en) Liquid crystal display
JP2008197536A (en) Liquid crystal panel and liquid crystal display device
JP3967764B2 (en) Liquid crystal panel and liquid crystal display device
JP4789139B2 (en) Liquid crystal panel and liquid crystal display device using the same
JP2009015292A (en) Liquid crystal panel and liquid crystal display device
WO2021149290A1 (en) Liquid crystal display device
JP2007178984A (en) Liquid crystal panel and liquid crystal display device
WO2008065899A1 (en) Liquid crystal panel and liquid crystal display device
JP2008191376A (en) Liquid crystal panel and liquid crystal display
JP2007213093A (en) Liquid crystal panel and liquid crystal display
WO2008062624A1 (en) Multilayer optical film, liquid crystal panel employing multilayer optical film and liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831906

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12516264

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831906

Country of ref document: EP

Kind code of ref document: A1